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Abstract

We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum
likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This
work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive
aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light
wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full
knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal
intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking
observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for
reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to
distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength
discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction
and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and
shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in
particular predict discriminations in dichromats). Our mathematical formulation and solution can be applied to general
problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.
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Introduction

In a classical wavelength discrimination experiment, the

observer views a bipartite field, one half filled with light of a

standard wavelength and the other with light of a comparison

wavelength. The wavelength of the comparison field is changed in

small steps and the observer adjusts the radiance of the

comparison field following each change in an attempt to make

the two fields perceptually identical. Wavelength discrimination

threshold is reached when the observer reports that the two fields

always appear different, regardless of the radiance of the

comparison [1]. This discrimination threshold in humans is a

‘‘w’’ shaped function of the wavelength of the light: it has a central

peak at around wavelength l~540 nanometers (nm), minima at

l~490 and l~580 nm, and rises up sharply for lw650 nm and

for very short wavelengths[1]; similar results hold for the macaque

monkey and presumably other old world primates[2].

This work aims to see if human monochromatic light

discrimination thresholds can be understood as optimal decoding

of the sensory input using the information available in the cones,

regardless of the specific neural mechanisms involved. In particular,

we derive and evaluate a photon noise limited ideal observer that

performs wavelength discrimination based on the numbers of

photons absorbed in the three classes of cone. It is well known that

human performance does not approach that of a photon noise

limited ideal observer[3, 4, 5, 6], and thus our primary aim here is to

determine how well the shape of the human wavelength

discrimination function is explained by the ideal observer, regardless

of its overall amplitude. If the shape were perfectly explained, then it

would imply that the neural mechanisms following the cones are

equally efficient for different wavelengths.

Wavelength discrimination of monochromatic lights is one of

the visual tasks most suited to ideal observer analysis for the

following reasons. Input sampling by the photoreceptors is among

the best quantitatively understood process along the visual

processing pathway. In particular, the wavelength sensitivities of

cones are known, and the stochastic nature of the cone absorption

levels can be described by Poisson distributions of absorption

levels. The discrimination task is simple because it involves purely

chromatic discrimination, so the spatial and temporal aspects of

the inputs can be ignored or absorbed by the scale for the total

input intensity. Therefore, total cone absorptions by the excited

cones can lead to sufficient statistics for analysing the consequent

decoding and its uncertainty of the input stimulus.

There have been many previous studies using ideal observer

analysis to understand human visual performance[7, 3, 4, 5, 8, 6].
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Geisler[8] in particular used such an analysis to understand many

human discrimination tasks based on cone responses. Among these

tasks analyzed is our task of monochromatic light discrimination.

His work and the current work are both based on the maximum

likelihood method which can be used to optimally estimate or

discriminate sensory inputs from their evoked neural responses.

These two methods are approximately equivalent in the principle

of maximum likelihood discrimination of two stimuli. However,

this previous work did not identify an important issue that is

essential for fully understanding the behavioral data. This issue is

that of a confound in perception of multiple sensory features – in

particular, human observers can easily confuse an input color

change with an input intensity change when monochromatic lights

are the inputs; for example a long wavelength input may appear

darker when the input wavelength is increased while input

intensity is held fixed. This confusion reduces human ability in

hue discrimination when observers do not have the full knowledge

of input intensities. To fully account for the behavioral data, this

confound should be formulated explicitly in the ideal observer

analysis.

The current work presents an augmented formulation of the

ideal observer analysis to address sensory discrimination under a

perceptual confound, and applies it to wavelength discrimination

behavior. The sensory input includes both sensory feature

dimensions: one is the input wavelength dimension whose

discrimination is of interest, and the other is the input intensity

dimension which interferes or interacts with wavelength discrim-

ination through the perceptual confound and the experimental

methods used. Our mathematical formulation of this problem of

sensory discrimination under perceptual confound is general.

While it is applied specifically to the wavelength discrimination

problem in this paper, it can also be applied elsewhere. It will

enable us to identify experimental methods which can provide

more reliable measurments of the discrimination performance.

From our formulation, we derive how the threshold is related to

the cones’ wavelength sensitivities and the input light intensity,

illustrate how sensitively the predictions depend on the relative

densities of the three types of cones in the retina, and analyze why

the discrimination threshold varies with the input wavelength in

the ways observed. We show that our theoretical predictions from

the augmented ideal observer analysis to accommodate the

perceptual confound can give a better account of the behavioral

data. Furthermore, we show how different sizes of stimuli used by

different experiments may explain their different patterns of

results. A preliminary report about this work has been presented

elsewhere[9].

Methods

The spectral sensitivities of the cones
Let there be three types of cone a~L,M,S, which are most

sensitive to long, medium, and short wavelengths respectively (they

are sometimes called red, green, and blue cones). They have

tuning curves fa(l), such that the average cone absorption of a

single cone a to a monochromatic light of intensity I at wavelength

l is �rra~Ifa(l). If na cones of type a are excited by a uniform patch

of light, then the essential quantities for determining input color,

regardless of the spatial shape of the input patch, are the total

responses from each of the three cone types. For the task of color

discrimination, it is equivalent to view the na cones of type a
collectively as a single giant cone with sensitivity nafa(l), for this

giant cone’s sensitivity provides a sufficient statistic for the task

(i.e., this sensitivity provides all the information relevant to the

task) such that viewing individual cones separately does not

provide any additional useful information for the task. The all-

important ratios nLfL(l) : nM fM (l) : nSfM (l) depend on both the

relative densities and the relative sensitivities of the different cone

types.

According to various experimental data on the responses from

and light absorption by cones [10, 11, 12], fa(l) for different cones

should peak to the same peak value, if one ignores the pre-receptor

absorption by the ocular media. We denote this normalized

spectral sensitivity as f̂fa(l), and will call it the cone fundamental.

However, pre-receptor absorption of the input lights by the ocular

media makes fa(l)~O(l)f̂fa(l) where O(l)ƒ1 is the pre-receptor

absorption factor. Let Oa~fa(la), where la is the wavelength

where fa(l) peaks; then fa(l)=Oa should correspond to the

behaviorally measured (normalized) cone fundamental, and for

notation simplicity we still denote it as f̂fa(l) and thus

fa(l)~Oaf̂fa(l). Meanwhile, assuming that O(l) does not change

as quickly as f̂fa(l) with l near la, then Oa&10{OD(la) where

OD(la) is the optical density of the pre-receptor ocular media at

wavelength la.

In our analysis later, we will include the cone density factor na

and use the notation fa(l)~naOaf̂fa(l). Furthermore, we normal-

ize fa(l) such that Maxl

P
a fa(l)~1. Given these normalizations,

the total photon absorptions of the cones will also scale with the

size of the input light field (which determines the total number of

cones for each cone type) and the effective input integration time

by the viewing of the observers. These scale factors will be

absorbed into the input intensity parameter I , which also scales

with the input radiance. We will see later that, given fa(l), the

shape of the curve relating the discrimination threshold to

wavelength is completely determined by the optimal decoding,

and the parameter I merely scales the threshold.

As our illustrative starting point, we approximate nL : nM : nS~

6 : 3 : 1 and OL : OM : OS~1 : 1 : 0:2. These numerical values

arise from the following considerations. Firstly, various sources

suggest that S cones are almost absent within 0.3 deg from the

center of fovea but their contribution to the total cone density rises

and peaks to 15% around 1 deg from the center[13] and

approaches 7–10% in the periphery[13, 14]. Meanwhile, the

Pokorny and Smith data[1] were from experiments using a

centrally viewed 3o disc containing the bipartite field of color

inputs. We combine this information to assume that the S cones

contribute 10% to all cones excited by the Pokorny and Smith

stimuli. Secondly, various sources suggest that L cones are about

twice as numerous as the M cones[14], we hence assume that L

and M cones contribute 60% and 30%, respectively, of all the

excited cones by the stimuli. This gives us nL : nM : nS~6 : 3 : 1.

Thirdly, the optical density of the pre-receptor ocular media is

almost constant in the medium and long wavelength region, giving

OL : OM&1, but rises with decreasing l by 0.7 log units when

l~lS&440 nm[14], giving OL : OS&100:7&5. Additionally,

although the cone fundamentals f̂fa(l) from various literature

sources are similar, we use those from Smith and Pokorny[15]

(obtained from the CVRL website (http://www.cvrl.org) by

Andrew Stockman), since we will be fitting their wavelength

discrimination data[1]. Combining the considerations above gives

fa(l) as shown in Fig. 1. It turns out that these fa(l)’s are not far

from those by Vos and Walraven[16], who made
P

a fa(l)~V (l)
where V(l) is the luminous efficiency function, a measure of the

visual effectiveness of lights at different wavelengths for luminosity,

normalized such that the maximum value of V (l) is 1, i.e.,

MaxlV (l)~1. The biggest discrepancy between the two sets of

fa(l)’s is that the S cone contribution is weaker in Vos and

Walraven’s composition[16] than in ours. This is not too

surprising, as although the relative contributions by different cone
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types to luminosity perception are not necessarily the same as their

relative contributions to color perception, they should be related or

quite close to each other, except that S cones may contribute to the

luminosity perception less than suggested by their density[17]. Our

analysis and conclusions do not depend sensitively on our actual

approximation for fa(l). We will later explore how our results vary

quantitatively when we use other choices for the ratio

fL(l) : fM (l) : fS(l). This ratio depends on cone densities and

the optical density of the pre-receptor ocular media, which both

vary substantially between observers (e.g., by up to one log unit in

optical density[14]). This ratio fL(l) : fM (l) : fS(l) also depends

on the cone spectral sensitivities, which do not vary as substantially

between observers but different literature sources provide slightly

different quantitative values for them.

Stochastic cone absorptions in response to
monochromatic light

In this paper, we only consider monochromatic inputs. Hence,

we describe our input stimulus by s~(l,I), a vector of two

parameters, l and I , for the wavelength and intensity of the input

light. The actual cone absorption ra for cone a is stochastic

following a Poisson distribution with a mean �rra~Ifa(l)

P(rajs)~
(�rra)ra

ra!
exp ({�rra)~

(Ifa(l))ra

ra!
exp ({Ifa(l)): ð1Þ

Sometimes we also call ra the response of the cone to the input

light. The population response r:(rL,rM ,rS) has the probability

P(rjs)~PaP(rajs)~½Pa

(Ifa(l))ra

ra!
� exp½{I

X
a

fa(l)�: ð2Þ

Fig. 1 shows how an input of particular wavelength could give

rise to many possible responses in the three dimensional space

r~(rL,rM ,rS) near the mean response r~(�rrL,�rrM ,�rrS).

Maximum likelihood decoding
Given the responses r, one can decode the input stimulus

s~(l,I) from the conditional probability P(sjr) (of s given r) by

finding the s that makes P(sjr) maximum or large. So the most

likely input to evoke r is the one that maximizes P(sjr). By Bayes’s

formula, we have P(sjr)~P(rjs)P(s)=P(r) where P(s) is the prior

probability of input s and P(r)~
Ð

P(rjs)P(s)ds. When the prior

probability P(s) is constant so that it does not favour one s over

another, then P(sjr) varies with s only through P(rjs), i.e.,

P(sjr)!P(rjs): ð3Þ

Therefore, the input s for responses r can be found by maximizing

P(rjs). As P(rjs) is also called the likelihood of r given s, decoding

by maximizing P(rjs) is called maximum likelihood decoding. We

will use this method to understand wavelength discrimination.

Decoding for input wavelength when input intensity is
known and fixed

When input intensity I is known and fixed, knowing the

response r enables us to estimate the input wavelength l using

maximum likelihood decoding. We call this the simple model of

optimal input wavelength estimation, in the sense that we are not

considering the variation of I (as in experimental procedure of

Pokorny and Smith[1]) in decoding. With a flat prior expectation

that l could be any value (within the visible light spectrum), the

best estimate l̂l for the input l is the one that maximizes the

probability P(rjs) or equivalently its natural logarithm, ln P(rjs),

ln P(rjs)~
X

a

ra ln (I fa(l)){I
X

a

fa(l)

z terms independent of I or l ,

ð4Þ

which we call the log likelihood.

 

 

 

Figure 1. Illustrations of noisy encoding of monochromatic inputs by the cone responses. On the left is the cone spectral sensitivity fa(l)
(with fa(l)!naOaf̂fa(l), where f̂fa(l)s are derived from the Smith and Pokorny cone fundamentals[15], the cone density ratio is nL : nM : nS~6 : 3 : 1,
the pre-receptor light transmission factors OL : OM : OS~1 : 1 : 0:2, and Maxl

P
a fa(l)~1). A monochromatic input of wavelength l evokes

response r~(rL,rM ,rS) from the three cones, L, M, and S. Due to input noise, there is a range of possible responses r from this input. If the mean
response to a monochromatic input of nearby wavelength lzdl is one of the typical responses within this range of responses r to input l, then it
will be difficult to perceptually distinguish the input l from input lzdl.
doi:10.1371/journal.pone.0019248.g001
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The best estimate l̂l is the value of l satisfying

L ln P(rjs)

Ll
~
X

a

raf 0a(l)

fa(l)
{
X

a

I f 0a(l)~0: ð5Þ

In a special case, if ra~I fa(l) under input s~(l,I) for all three

cones (i.e., the response of each cone type is exactly equal to the

mean absorption), then l̂l~l is the value satisfying the above

equation. In general, there is no l̂l to make ra~I fa(l̂l) exactly for

all three cones simultaneously, but one can still find a l̂l to satisfy

the equation above. In any case, given an input wavelength l,

different responses r will lead to different estimates l̂l(r); most of

them will be near to but not equal to the actual input wavelength

l. So if two different input wavelengths l1 and l2 are similar

enough, the estimated wavelengths l̂l1 and l̂l2 may appear to be

drawn from the same probability distribution. In such a case, these

two input wavelengths would appear perceptually indiscriminable,

or within the discrimination threshold; see Fig. 1.

With strong enough responses r (effectively responses collected

from enough cones and sufficiently many captured photons), it is

known that the variance of these maximum likelihood decoded

l̂l(r) for a given input l should approach[18]

½s(l)�2:
ð

(l̂l(r){l)2P(rjs)dr~1=IF (l), ð6Þ

where IF (l) is the Fisher information defined as

IF (l)~

ð
drp(rjs)({

L2 ln P(rjs)

Ll2
):{S

L2 ln P(rjs)

Ll2
T, ð7Þ

where SxT denotes average
Ð

drP(rjs)x of x over P(rjs). Since

L2 ln P(rjs)

Ll2
~
X

a

raf 00a (l)

fa(l)
{ra(

f 0a(l)

fa(l)
)2{

X
a

I f 00a (l), ð8Þ

and SraT~I fa(l), we have

IF (l)~
X

a

I ½f 0a(l)�2=fa(l): ð9Þ

As s2~1=IF (l), a larger Fisher information gives a smaller

estimation error s. This estimation error can be expressed as

s(l)~

f
P

a

½f 0a(l)�2=fa(l)g{1=2

ffiffiffi
I
p :

~ss(l)ffiffiffi
I
p , ð10Þ

in which ~ss(l) does not depend on intensity I .

The estimation error s(l) is identified here as the discrimination

threshold, as it characterizes the uncertainty of the perceived

wavelength. Fig. 2 shows this threshold s(l) as a function of l,

together with the experimentally observed threshold sdata(l) from

Pokorny and Smith[1]. Let sdata(l) and Dsdata(l) be the mean

and the standard deviation of the wavelength discrimination

thresholds of the four observers in Pokorny and Smith[1]. The

input intensity I~3210 in Fig. 2 is chosen as the one that

minimizes the average square difference:

x2:
1X

l
1

X
l

½s(l){sdata(l)�2

½Dsdata(l)�2
: ð11Þ

The I that minimizes x2 is the one that gives Lx2=LI~0, leading

to (since s(l)~
~ss(l)ffiffiffi

I
p )

I~

X
l
½~ss2=(Dsdata)2�X

l
½~sssdata=(Dsdata)2�

( )2

: ð12Þ

One can see that the model prediction greatly underestimates

the threshold for long wavelengths l§620 nm. Also, the peak

location near 550 nm is not quite right. This best fit gives

x~1:419, indiciating that for most data points, the model predicts

a threshold which departs from the data by more than a standard

deviation of the data point.

The poor fit of the simple model arises because of the following.

In Pokorny and Smith’s experiment, observers adjusted the

intensity I of the comparison input field with wavelength lzdl
to make it look as perceptually indistinguishable as possible from

 

Figure 2. Wavelength discrimination assuming input intensity
I is fixed and known during color matching. It is by maximum
likelihood decoding of the cone responses r using the simple model.
The solid curve plots the discrimination threshold s(l)~½IF (l)�{1=2 as a
function of l from the model. The data points with error bars are
the mean sdata and the standard deviation Dsdata of the discrimina-
tion thresholds of the four observers of Pokorny and Smith[1]. In fit-
ting the model to the data, I is chosen such that the quantity

x2:
1X

l
1

X
l

½s(l){sdata(l)�2

½Dsdata(l)�2
is minimized.

doi:10.1371/journal.pone.0019248.g002
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the standard input field which has input wavelength l. This

adjustment makes the comparison and standard input fields look

indistinguishable until dl is too large, and the wavelength

discrimination threshold is defined as the dl when this matching

between the two fields starts to become impossible, so the

comparison field is perceptually discriminable from the standard

field no matter how observers adjust the intensity I . If the

observers somehow had the full knowledge of the intensities I in

both fields, they should in principle still be able to decode and thus

discriminate the wavelength to roughly the same accuracy as

predicted by the simple model when the intensity is held fixed and

identical in the two fields. The reason the predictions overestimate

the human accuracy is because one should not assume that the

observers know the intensities I , which also have to be decoded

from the same sensory stimuli used to decode the wavelength. To

explain the experimental data, our model should let I be unknown

and changeable rather than known and fixed. We call this the full

model (rather than the simple model) of optimal wavelength

estimation, and this model is explained next.

Sensory discrimination under perceptual confound –
wavelength discrimination when input intensity is not
fixed

Wavelength discrimination when input intensity is not fixed is

just one example of a general problem of sensory discrimination

under perceptual confound: sensory discrimination along one

sensory feature dimension when neural responses are also affected

by feature changes in another feature dimension. In the

wavelength discrimination case, the two feature dimensions are

input light wavelength l and input intensity I . Here, we formulate

this problem in general, and it will be clear that our result in

equation (20) is general and not specific to our example of

monochromatic wavelength discrimination. Meanwhile, we will

use our wavelength discrimination problem as an example to

illustrate this general result.

Let the sensory input be s~(s1, s2), where s1 and s2 are feature

values in the two feature dimensions, e.g., s1~l and s2~I . Let r
be the neural responses evoked by s with probability P(rjs). The

maximum likelihood estimation ŝs of s from r can be arrived at by

finding the solution to

L ln P(rjs)=Ls1~0, ð13Þ

L ln P(rjs)=Ls2~0: ð14Þ

The estimation error is

ŝs{s:(ds1,ds2): ð15Þ

This error depends on the specific response r in each trial. Over

many trials, these two dimensional errors (ds1,ds2) have a

covariance, generalizing from the simple 1-dimensional case

above, given by

SdsidsjT~½I{1
F (s)�ij , ð16Þ

where I{1
F (s) is the matrix inverse of the Fisher information

matrix

IF (s):{

S
L2 ln P(rjs)

Ls2
1

T S
L2 ln P(rjs)

Ls1Ls2

T

S
L2 ln P(rjs)

Ls1Ls2
T S

L2 ln P(rjs)

Ls2
2

T

0
BBBB@

1
CCCCA: ð17Þ

We note that, when s1 is l in our example, the matrix element

½IF (s)�11~S
L2 ln P(rjs)

Ll2
T is exactly the Fisher information we had

in our simple model of wavelength discrimination.

Let the P(̂ssjs) be the probability of obtaining the maximum

likelihood estimate ŝs when the true input is s. Since the estimation

error ds~ŝs{s has the covariance structure in equation (16), we

can approximate P(̂ssjs) as

P(̂ssjs)&P(sjs) exp½{ 1

2

X2

i,j~1

½IF (s)�ij (̂ss{s)i (̂ss{s)j �: ð18Þ

Note that this approximation makes the error ds have zero mean

and gives the correct error covariance.

Now the threshold to discriminate s1 while s2 is not fixed is the

largest ds1 value that can be obtained to maintain P(̂ssjs)~
P(sjs) exp ({1=2), i.e., to give

X
ij

(IF (s))ijdsidsj~1: ð19Þ

Applying the above to the example of wavelength discrimination,

the threshold for wavelength l discrimination while I is not fixed

is the largest ds1~dl value that can be obtained to maintain

(IF )11dl2z(IF )22dI2z2(IF )12dldI~1, a particular example of

equation (19). This can be illustrated in Fig. 3. This figure shows the

contour plot of the posterior probability P(l̂l,ÎI js). This probability

peaks at the origin s~(l,I) of the coordinates in this plot. As deviation

ds~(dl,dI) of ŝs~(l̂l,ÎI) from s~(l,I) increases, the probability

P(l̂l,ÎI js) decreases, as indicated by the contours of probabilities, with

larger, darker, contours indicating smaller probabilities. When dI~0,

the largest dl to make
P

ij (IF (s))ijdsidsj~1 is dl~½(IF )11�
{1=2

, the

color discrimination threshold in the simple model and indicated by

DldI~0 in Fig. 3. If dI=0, then the largest wavelength deviation

dl~DldI=0 on the contour P(l̂l,ÎI js)~P(sjs) exp ({1=2) should be

larger, as indicated in the figure. This condition of dI=0 means that

the decoding system assumes that ÎI can be different from the default I ,

i.e., the intensity of the comparison field can be different from the

intensity of the standard field in the color matching.

We can show (detailed derivation in the next subsection after

equation (28)) that the discrimination threshold for feature s1 when

input feature s2 is not fixed (e.g., wavelength discrimination

threshold at wavelength l when input intensity I is not fixed) is

s(s1)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(IF )22= det IF

p
: ð20Þ

In particular, IF in our wavelength discrimination problem is

IF (s):{

S
L2 ln P(rjs)

Ll2
T S

L2 ln P(rjs)

LlLI
T

S
L2 ln P(rjs)

LlLI
T S

L2 ln P(rjs)

LI2
T

0
BBBB@

1
CCCCA: ð21Þ
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Since we have

L ln P(rjs)

LI
~

X
a

ra

I
{
X

a

fa(l), ð22Þ

L ln P(rjs)

Ll
~
X

a

raf 0a(l)

fa(l)
{
X

a

I f 0a(l), ð23Þ

and

L2 ln P(rjs)

LI2
~{

X
a

ra

I2
, ð24Þ

L2 ln P(rjs)

LILl
~{

X
a

f 0a(l), ð25Þ

L2 ln P(rjs)

Ll2
~
X

a

raf 00a (l)

fa(l)
{ra(

f 0a(l)

fa(l)
)2{

X
a

I f 00a (l), ð26Þ

then, given �rra~Ifa(l), we have

IF ~

I
X

a

(f 0a(l))2

fa(l)

X
a

f 0a(l)

X
a

f 0a(l)
X

a
fa(l)=I

0
BB@

1
CCA: ð27Þ

Plugging the above into equation (20) we have

wavelength discrimination threshold

s (l )~
1ffiffiffi
I
p

X
a

fa(l)X
b

(f ’b(l))2

fb(l)

� � X
c

fc(l)
h i

{
X

d
f ’d (l)

h i2

0
BBB@

1
CCCA

1=2

:
ð28Þ

Again, this threshold can be writen as s(l)~~ss(l)=
ffiffiffi
I
p

. This

predicts precisely how wavelength discrimination threshold should

vary with wavelength l, and that it should scale with 1=
ffiffiffi
I
p

as in

the simple model. Like the simple model, the full model only has

one free parameter, I .

Mathematical proof of equation (20)
For matrix IF , let us denote its normalized eigenvectors as V1 and

V2, with corresponding eigenvalues F1 and F2. Note that the two

eigenvectors V1 and V2 are orthogonal to each other, since IF is a

symmetric matrix, so any 2 dimensional vector (̂ss{s):ds~

(ds1,ds2)T (where the superscript T denotes transpose) can be

expanded in their basis as ds~v1V1zv2V2 with coefficients v1 and

v2 respectively. Then
P2

i,j~1 (IF )ijdsidsj~F1v2
1zF2v2

2 due to the

invariance of this quantity to the bases used. Note that since IF is

positive definite, F1w0 and F2w0. Defining s{2
i :Fi, we have

P(̂ssjs)&P(sjs) exp ({
1

2
(

v2
1

s2
1

z
v2

2

s2
2

)): ð29Þ

Analogous to the 1-d case, we find the discrimination threshold by

looking at the dI vs. dl curve such that
v2

1

s2
1

z
v2

2

s2
2

~1, and find the

Figure 3. Illustration of 2D decoding in the full model. Given the true input s~(l,I), ŝs~(l̂l,ÎI) is the estimated input parameters. This plot
illustrates the conditional probability P(l̂l,ÎI js), since a given s may evoke different responses r leading to different ŝs. The wavelength discrimination
threshold Dl when ÎI is allowed to deviate from I is larger than otherwise.
doi:10.1371/journal.pone.0019248.g003
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largest dl on this curve, and this largest dl should be the

discrmination threshold.

One can always find a parameter h (see Fig. 3), such that the

eigenvectors are

V1~( cos (h), sin (h))T ; V2~({ sin (h), cos (h))T ; ð30Þ

One notes that the dot product V1:V2~0. Then we have

v1~ds:V1~ cos (h)dlz sin (h)dI ;

v2~ds:V2~{ sin (h)dlz cos (h)dI ;
ð31Þ

From these we can solve for dl in terms of v1 and v2 as

dl~ cos (h)v1{ sin (h)v2: ð32Þ

The values of v1 and v2 on the curve
v2

1

s2
1

z
v2

2

s2
2

~1 can be

described by a parameter 0ƒav2p such that

v1~s1 cos (a),v2~s2 sin (a): ð33Þ

Hence, we can write dl as a function of a as

dl~ cos (h) cos (a)s1{ sin (h) sin (a)s2: ð34Þ

The largest dl is when ddl=da~0, giving

ddl=da~{ cos (h) sin (a)s1{ sin (h) cos (a)s2~0: ð35Þ

The above is satisfied when

cos (a)~{
sin (a) cos (h)s1

sin (h)s2

, ð36Þ

and

tan (a)~{ tan (h)s2=s1, ð37Þ

and since sin2 (a)z cos2 (a)~1, and tan (a)~ sin (a)= cos (a);
then we have

sin2 (a)~
sin2 (h)s2

2

cos2 (h)s2
1z sin2 (h)s2

2

: ð38Þ

Plug equation (36) to equation (34), writing s for this extreme dl
(the discrimination threshold) when ddl=da~0, we have

s~{ cos2 (h) sin (a)s2
1=(s2 sin (h)){ sin (h) sin (a)s2, ð39Þ

or

s2~ sin2 (a)½cos2 (h)

sin (h)
s2

1=s2z sin (h)s2�2 ð40Þ

~
sin2 (h)s2

2

cos2 (h)s2
1z sin2 (h)s2

2

( cos2 (h)s2
1z sin2 (h)s2

2)2

sin2 (h)s2
2

ð41Þ

~ cos2 (h)s2
1z sin2 (h)s2

2~½cos2 (h)F2z sin2 (h)F1�=(F1F2): ð42Þ

Noting that, as properties of eigenvectors V1~( cos (h), sin (h))T ,

and V2~({ sin (h), cos (h))T ,

cos (h) { sin (h)

sin (h) cos (h)

0
B@

1
CA:

F1 0

0 F2

0
B@

1
CA:

cos (h) sin (h)

{ sin (h) cos (h)

0
B@

1
CA~IF ,

ð43Þ

we have, equating (IF )22 on the right hand side of the equation to

that in the left hand side

cos2 (h)F2z sin2 (h)F1~(IF )22: ð44Þ

Also noting that F1F2~ det (IF ), the determinant of the IF matrix,

we have

s2~(IF )22= det IF : ð45Þ

Results

Figure 4 illustrates the full model’s predicted threshold (in

equation (28)) fitted to the data. It uses the optimal I , as in

equation (12), such that the summed squared difference (as in

equation (11)) between the predicted and observed thresholds is

minimized. The fitting quality is much better than that by the

simple model. In particular, with x~0:663, the predicted

threshold is within the standard deviation of experimental data

for most data points. As in the data, the predicted threshold rises

sharply as l approaches the ends of the spectrum.

The wavelength-intensity confound and the divergence
of threshold near the red and blue ends of the spectrum

The thresholds predicted by the full and simple models differ

most towards the red and blue ends of the spectrum. This is because

only one cone type can be substantially activated at the spectrum

ends, making the system practically color blind, just like in scotopic

vision when only the rods are active. For example, in the red end of

the spectrum when the M and S cones are almost silent, an increase

in l, i.e., dlw0, weakens the L cone response rL, i.e, drLv0. The

simple model uses drL for wavelength discrimination by attributing

it to dl with the relationship d�rrL~I f 0L(l)dl. The full model

however sees this drLv0 as equally attributable to a reduced input

I , i.e., dIv0, with d�rrL~fL(l)dI , making it hard to distinguish

whether the input gets redder or darker. This wavelength-intensity

confound for the same drL makes wavelength discrimination

difficult. In the procedure of the Pokorny and Smith experiment[1],

it means that an increase in l can be easily compensated by an

increase in I , making the threshold large.

The wavelength-intensity confound is present generally even

when all cone types are substantially activated. Let lL, lM , and lS ,
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with lLwlMwlS , be the preferred wavelengths of the L, M, and S

cones respectively. This confound is stronger when lwlL or lvlS ,

when the predictions from the simple and full models differ most

(see Fig. 4. In these wavelength regions, a change dl causes response

change dr~½f 0L(l), f 0M (l), f 0S(l)�Idl, which either simultaneously

increases or simultaneously decreases the responses from all cone

types, just like the response change dr~½fL(l), fM (l), fS(l)�dI
caused by an intensity change dI . Although a dl slightly changes the

ratio �rrL : �rrM : �rrS while a dI does not, the difference between the dr
caused by dI and the dr caused by dl could be submerged under

noise such that the two causes are perceptually indistinguishable.

This confound is weaker when lSvlvlL, when a wavelength

change dl will raise responses from some cone types while

lowering responses from other cone types. In this case, a dl cannot

be easily compensated for by an dI , which raises or lowers the

responses from all cone types simultaneously. Hence, the simple

and full model predict similar thresholds, particularly when

lMvl&560nmvlL is in between the preferred wavelengths of

the two most numerous cone types, L and M. For l*520 nm, the

S cones are still insensitive, while both the L and M cones prefer

larger l, and the confound is again significant, causing a

substantial difference in the predicted thresholds from the simple

and the full models. This is because a dl increases or decreases the

responses from the L and M cones simultaneously (while affecting

the S cone response relatively little), and can be easily

compensated for by a dI .

Implications of the wavelength-intensity confound on
the experimental procedures and on the stability of the
threshold measurements

The wavelength-intensity confound, especially when l 6[ (lS, lL),
means that there can be problems with some experimental methods

used to measure wavelength discrimination threshold. In many such

experiments (e.g., [19, 20]), the procedure requires adjusting the

intensity of the comparison field such that the brightnesses of the

two fields match. The confound means that, when observers see a

difference between the two fields, it is not easy to tell whether it is a

brightness difference or a hue difference. This is a known difficulty

noted in the accompanying discussions of Wright and Pitt’s paper by

fellow color vision scientists (pages 469–473 of [20]). Supposedly,

 

Figure 4. Wavelength discrimination under input intensity confound. A: Wavelength discrimination by maximum likelihood decoding of
cone inputs using the full model, assuming that the color matching is done by adjusting both the input intensity I and wavelength l of the
comparison field. The solid curve shows the results from the full model. The parameter I (of the standard field) is chosen such that the quantity

x2:
1P
l 1

X
l

½s(l){sdata(l)�2

½Dsdata(l)�2
is minimized. The dashed curve shows the results from the simple model using this same input intensity I . The data

points with error bars are the mean sdata and the standard deviation Dsdata of the discrimination thresholds of the four observers of Pokorny and
Smith[1]. B: cone sensitivities plotted on a linear scale.
doi:10.1371/journal.pone.0019248.g004
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the threshold is the smallest wavelength difference between the two

fields when observers deem the two fields to differ in hue but not in

brightness. However, whether the observers judge some perceptual

difference to be a brightness or hue difference is likely to be

dependent on the following factors: observers’ internal criteria based

on their expectations or biases, specific task instructions given by the

experimenters, and perhaps even the visual environment around the

experimental set up. These factors cannot be predicted straightfor-

wardly from our optimal decoding theory, and could also cause

variabilities between data from different observers and from

different laboratories.

The procedure used by Pokorny and Smith[1] differs from the

procedure above. They ask the observers to adjust the intensity of

the comparison field until the two fields match in both hue and

brightness, and the threshold is the smallest wavelength difference

when this match is impossible by any intensity adjustment. This

procedure does not require observers to decide whether any

perceptual difference is due to brightness or hue, as they simply

need to judge whether the two fields differ or not. This makes the

threshold data more stable. Therefore, we do not intend to

compare our theoretical prediction with data other than those by

Pokorny and Smith[1].

The effect of the cone densities and pre-receptor light
transmission on wavelength discrimination

It is clear from the analysis that the discrimination threshold

depends on the relative sensitivities fa(l) for different cone types a.

Since our fa(l)~naOaf̂fa(l) scales with the relative cone density na

and the relative pre-receptor transmission factor Oa for each cone

a, na and Oa should affect discrimination. We remind ourselves

that the cone fundamental f̂fa(l) for all cones a have the same peak

value Maxl f̂fa(l)~1, and we have the normalization MaxlX
a

fa(l)~1. Let us denote naOa by da:naOa, which could be

understood as the effective cone density for cone type a. We can

rewrite the threshold in equation (28) as

threshold s (l )~

1ffiffiffi
I
p

X
a

daf̂fa(l)X
b

db(f̂f 0b(l))2 f̂fb(l)
h i X

c
dcf̂fc(l)

h i
{
X

e
def̂f 0e (l)

h i2

0
B@

1
CA

1=2

:

ð46Þ

So s(l) at any particular wavelength l scales roughly with 1=
ffiffiffiffiffi
da

p

for the cone type a that dominates at l. For example, increasing the

fraction nL of the L cones among all cones would relatively lower the

discrimination threshold near the red end of the spectrum, and

increasing light absorption by the pre-receptor ocular media near

the short wavelength region would decrease OS and thus raise the

threshold near the blue end of the spectrum.

Fig. 5A–C shows the predictions using Smith and Pokorny cone

fundamentals[15] f̂fa(l) but with different settings for dL : dM : dS .

Fig. 5A is a replot of Fig. 4 with different scales on the axes. Its

dL : dM : dS~30 : 15 : 1 arises from our estimated nL : nM : nS~
6 : 3 : 1 and OL : OM : OS~1 : 1 : 0:2 from experimental da-

ta[13, 14]. We note that its worst predictions are near wavelength

l~500 nm, which is in the region where S cones’ sensitivity f̂fS(l)
has large slopes dfS=dl and hence a high sensitivity to wavelength

changes. Fig. 5B has dL : dM : dS~1 : 1 : 1 which could be seen

as a situation when all cones have the same density and pre-

receptor optical transmission. It raises the relative density for the S

cones way over the physiological reality, and slightly raises the

relative density of the M cones over the L cones. Consequently, it

vastly over-estimates the discrimination sensitivities near the

region l*500{550 nm, in the domain of the S and M cone

contribution. As a result, it gives a x~1:289 that is substantially

worse than the x~0:663 in Fig. 5A. Fig. 5C has a

dL : dM : dS~13 : 9 : 1 ratio that minimizes x, such that the

predicted thresholds best agree with experimental data. This

dL : dM : dS ratio is obtained by exhaustively searching all integer

values of 1ƒdL,dMƒ120 with dS~1 held fixed. With x~0:576,

almost all the data points are within a standard deviation from the

predicted values. Compared with Fig. 5A, Fig. 5C raises the

weights for the S cones (and slightly for the M cones), but not as

dramatically as Fig. 5B does. Hence, it corrects the worst

predictions in Fig. 5A near the l~500 nm region without

overshooting the correction.

Fig. 5D–F show the best predicted thresholds like Fig. 5C by

three other cone fundamentals f̂fa(l) obtained from different

sources in the literature: [21], [16], and [22] (see Andrew

Stockman’s webpage http://www.cvrl.org/). Compared with the

predictions when using the Smith and Pokorny cone fundamen-

tals[15] in Fig. 5C, their best predicted dL : dM : dS ratios are

similar, and so are their goodness of fit x~0:702, 0:614, and

0:628, which are only slightly worse than x~0:576 in Fig. 5C.

This finding is not so surprising, as the cone fundamentals from

different literature sources are similar to each other. Meanwhile, it

may not be a coincidence that the cone fundamentals of Smith and

Pokorny[15] best fitted the wavelength discrimination data

obtained by them. It is likely that different researchers have

different research styles and experimental procedures and hence

different sets of experimental data obtained by the same style are

more likely to be consistent with each other.

The importance of the S cone minority
Experimental data for wavelength discrimination for lv440

nm are scarse and very variable. These may be caused by many

factors, including the large inter-subject variabilities (e.g., in cone

densities and optical density of the ocular media) in that

wavelength region, the difficulties of delivering stimulus in the

short wavelength region, where light absorption by ocular media

is dramatic[14], and, as discussed above, the wavelength-intensity

confound makes some experimental procedures problematic in

that wavelength region. However, Bedford & Wyszecki[19]

reported that, as threshold rises with decreasing l below 500
nm, it dips again around 410{430 nm before rising sharply.

Wright and Pitt reported in 1934[20] a much shallower dip at a

slightly larger l&445 nm. As we argued, a perceptual confound

between wavelength and intensity for lvlS&440nm, the most

preferred wavelength by S cones, should make threshold rise

continuously with decreasing l as all three cone types become less

and less sensitive. So it may seem puzzling how this dip could

arise from our full model, which shows a continuous rise of the

threshold as l decreases. Bedford and Wyszecki[19] acknowl-

edged and discussed that the presence of this dip was

controversial experimentally. In fact, a dip in the very long

wavelength region was also seen by earlier studies and was then

invalidated by later studies[20], and is no longer seen in modern

day data[19, 1].

We suggest that the extra dip near l&440 nm may be the side

effect of an extra peak in threshold at l&460 nm caused by too

few blue cones involved in some experiments. We note that

Bedford and Wyszecki[19] used input bipartite fields that were 1o

or smaller. This is smaller than the input field 3o used by Pokorny

and Smith[1]. As the density of S cones drops drastically to zero

within 1o from the center of the fovea[14], there are fewer S
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cones involved if the central viewing color matching fields are

smaller than 1o. (Note that observers in Bedford and Wyszecki’s

experiment[19] used free viewing for their task. We consider such

free viewing in this attention demanding task as central viewing

since gaze follows attention mandatorily in free viewing[23]). If

there are no S cones, wavelength discrimination relies on L and

M cones only. A close examination of the L and M cone spectral

sensitivities reveals that, in a small region of l around l&460 nm,

fL(l)~cfM (l) with a scale factor c that is almost constant within

that region. This means, as l changes in that region, the

responses of the L and M cones co-vary almost completely

(except for noise) so that they act together as if a single rather

than two different cone types. This makes the L+M dichromatic

system almost color blind in that local wavelength region, and

consequently the discrimination threshold shoots up. This

covariance of the two cone types can be seen in the signature

jf̂fL(l)=f̂fM (l){f̂f 0L(l)=f̂f 0M (l)j?0, and we can define a degree of

co-variance as

Degree of Co{variance~
f̂fL(l)=f̂fM (l)zf̂f 0L(l)=f̂f 0M (l)

f̂fL(l)=f̂fM (l){f̂f 0L(l)=f̂f 0M (l)

�����
�����: ð47Þ

Mathematically, the 2x2 Fisher information matrix IF reduces its

rank to 1 when both cones have their fa(l) scale with each other,

and thus the two dimensional wavelength-intensity input space is

collapsed into one by the two redundant cone types acting as one.

Fig. 6 illustrates how this Degree of Co-variance between the L

and M cones shoots up near l&460nm, thus giving a peak in

threshold around that wavelength when there are too few S

cones. The exact location of the peak depends slightly on the

f̂fa(l) cone fundamentals used, whether it is the[15] cone

fundamentals or other cone fundamentals, but this difference is

not big. This rise in threshold around l&460 nm can be

    

    

    

Figure 5. Variations of the model predictions due to variations in the cone fundamentals, cone densities, and pre-receptor
transmission. The f̂fa(l) is normalized to the same peak value Maxl f̂fa(l), the cone factor da~naOa combines the cone density na and pre-receptor

transmission factor Oa , to determine the cone sensitivity fa(l)~da f̂fa(l), with normalizations Maxl

X
a

fa(l)~1. Each plot is like Fig. 4A, having a full

model predicted threshold with an optimal I . Each is labeled with the literature source for f̂fa(l) and the dL : dM : dS used. A–C have the Smith and
Pokorny cone fundamentals[15] with different dL : dM : dS . A is a modified plot of Fig. 4A. C–F show the best predictions (the dL : dM : dS that
minimizes x) for four different cone fundamentals. Only integer values of dL, dM , and dS are used (dS~1 in all cases).
doi:10.1371/journal.pone.0019248.g005
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prevented by having sufficiently many S cones to remove the

collapse of dimensionality. The dramatically worse discrimina-

bility at l*460 nm with smaller color matching field sizes or in

tritanopic dichromats (who lack S cones) has been observed in

previous studies ([24, 25].

Discussion

Our maximum likelihood decoding model can explain the

experimental data reasonably well. This is based on adjusting a

single free parameter, I , which characterizes the net effect of the

radiance of the input light, the effective integration time (within the

observer’s visual system), and the total area of the input field, etc.

Although we did not compute overall quantum efficiencies (i.e., the

ratio between the number of photons needed by the ideal and

human observers for the same task; [7]), they are undoubtedly quite

low (typically they are less than 0.1, [3, 4, 5]). Nonetheless, the good

agreement between the model and data shows that, for wavelength

discrimination, the efficiency of human color processing mecha-

nisms is nearly constant over the spectrum (i.e., information is

extracted with equal efficiency at all wavelengths).

The best fit between data[1, 15] and theoretical prediction

suggests that the ratios between effective densities of different cones

are dL : dM : dS~13 : 9 : 1. Here, the effective density da~naOa

for each cone type a is the actual cone density na diluted by the pre-

receptor optical transmission factor Oav1. Meanwhile, evidence

suggest that on average nL : nM : nS~6 : 3 : 1 and OL : OM : OS~

1 : 1 : 0:2[14, 13], giving dL : dM : dS~30 : 15 : 1. Since variabil-

ity in human optical density can give up to a factor of 10 difference

in Oa, and a difference in human nL=nM by a factor of 3 seems not

unusual[14], our finding of an optimal dL : dM : dS~13 : 9 : 1
can be seen as within the range of variability of the human

quantities.

We analyzed the probable causes of the differences in results

across color matching experiments, and how the results could

sensitively depend on the experimental procedures and stimulus

parameters. It is expected and straightforward to conclude that

discrimination threshold should be smaller when color matching is

done without adjusting the matching field intensity. Furthermore,

we identify that different sizes of the centrally viewed matching fields

may cause different findings regarding whether or not there is a dip

in discrimination threshold below 450 nm, or a peak around

460 nm. This peak and the resulting dip in particular may arise

from small, foveally viewed, fields such that fewer blue cones are

excited by the inputs. We also point out that the brightness-hue

confound can make some experimental procedures give more

accurate and stable results than others. In particular, the procedure

used by Pokorny and Smith[1], in which subjects only need to judge

whether the two fields differ, is better than other matching

procedures in which subjects need to match the brightness of the

two fields before judging whether they differ in hue.

The factors responsible for the low overall quantum efficiency of

wavelength and other simple discriminations are unknown, but

presumably they include photoreceptor inefficiencies, limits in the

spatial and temporal integration (by the post-receptor neural

mechanisms) of the photoreceptor responses, and neural noise.

Any of these factors would tend to reduce overall quantum

efficiency while preserving constant relative efficiency[4, 6].

Our method in this paper can easily be applied to predict

wavelength discrimination by dichromats. Fig. 7 shows that,

 

 

 

 

 

Figure 6. Illustration of how reducing the density of S cones should create a threshold peak near l&460nm. Because the L and M cones
have their spectral sensitivity co-vary with each other as l varies near l&460 nm, they act as if they are a single cone type around that l. As threshold
eventually increases when l approaches 400 nm, this local threshold peak at 460 nm creates a threshold dip between 400 and 460 nm.
doi:10.1371/journal.pone.0019248.g006
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compared with the trichromats, the protanopes and deuteranopes

should have much larger thresholds in the long wavelength region,

and the tritanopes should have much larger thresholds in the short

wavelength region. These predictions seem to suggest that, for

trichromats, wavelength discrimination is mediated by the

protanopic/deuteranopic system at short wavelengths and on the

tritanopic system at long wavelengths. These theoretical predic-

tions are in line with known observations[25]. They are intuitively

expected since color discrimination in the long wavelength region

requires the combined activations of both L and M cones, while

the S cones are essential for short wavelength discrimination since

L and M cones are both only weakly active and co-vary

considerably in that wavelength region. These qualitative

predictions are insensitive to the actual cone densities used in

our formula. These results are arrived at by assuming that the

number of L/M cones in a protanope/deuteranope is the same as

the total number of L and M cones in a trichromat (as suggested

by data from[26]), and that the missing S cones in tritanopes are

replaced proportionally by additional L and M cones so that the

total number of cones is conserved. The predictions then follow

naturally from equation (28) except to replace all summations over

three cone types by the corresponding summations over two cone

types. One caveat of these predictions is that the large threshold

predictions, especially for the dichromats, should be taken as only

qualitatively rather than quantitatively trustworthy. This is

because our Fisher information formulation for discriminability

is based on discriminating two stimuli very close to each other such

that a Taylor expansion of log likelihood ratio is a suitable

approximation. The suitability of this approximation breaks down

when the two stimuli are very different from each other, when the

discrimination threshold is too large. This issue has been raised by

a previous work on tritanopia[27].

Our formulation of an ideal observer analysis for sensory feature

discrimination under perceptual confound is general, and can be

used in other sensory discriminations beyond our example case in

this paper. More specifically, let a sensory world contain two

feature dimensions, whose feature values are denoted by s1 and s2

respectively, hence s~(s1, s2). And suppose we have an

experiment to find the minimum difference in feature s1 needed

to distinguish a comparison input from a standard input,

regardless of the feature s2 in the comparison input, analogous

to the method of Pokorny and Smith[1]. Let r be the population

neural responses to the sensory input s with probability P(rjs).
One can derive Fisher information matrix IF as in equation (17)

 

 

Figure 7. Theoretical preditions of the wavelength discrimination by dichromatics as compared to that by the trichromats. All these
curves are by fixing input intensity I~1, while using fa(l)~nada f̂fa(l) in which f̂fa(l) is normalized by Maxl f̂fa(l)~1, while fa(l) are no longer

normalized by Maxl

X
a

fa(l)~1. The values ½n1,n2,n3� are ½0,9,1�, ½9,0,1�, ½6:7,3:3,0�, and ½6,3,1� for protanopes, deuteranopes, tritanopes, and

trichromats, respectively.
doi:10.1371/journal.pone.0019248.g007
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with elements (IF )ij ; then equation (20) gives the discrimination

threshold in s1 while feature s2 may present a perceptual

confound.
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