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Several polyurethane solutions of the same composition but varying temperature (25, 50, 75 and 100 °C), were sub-
jected to an electric field whilst flowing through a conducting nozzle. All other typical electrospinning parameters
(applied voltage, medium infusion rate and collecting distance) were kept constant. The effects of processing solu-
tion temperature on the resulting fibre morphologies were assessed using optical and scanning electron microsco-
py, and were also correlated with solution properties (surface tension, viscosity, electrical conductivity and density).
It was observed that increasing the solution temperature leads to a significant reduction in the mean diameter and
size distribution of the resulting fibres. Increasing the temperature from 25 to 100 °C enabled the reduction of the
mean fibre diameter from 2.5 um to 1.2 um. The Ty, value of resulting fibres generally increased as the solution pro-
cessing temperature increased suggesting a change to the orientation of polymer chains in the overall structure.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The electrospinning or electrospraying process is a simple
manufacturing technique which utilises electrostatic forces exerted
on a drop ejected from the tip of a needle under the influence of a
high electrical potential difference. The utilisation of this process
has expanded in the last decade largely due to an increasing interest
in micro and nano technologies, especially involving polymeric mate-
rials. In addition to producing structures in this size range, the process
has the potential for high fibre output production. Other desirable
features of the fabricated structures include high surface area to vol-
ume ratio and excellent mechanical properties, which have generated
a considerable amount of interest from industry [1-3].

The electrospinning process may be broken down into several sub-
processes. These can be classified as: jet-formation, jet-thinning in the
presence of an electric field, formation of jet-instabilities and finally so-
lidification and production of fibres [4,5]. The first part of the spinning
process consists of charging a droplet of a polymer solution. The mode
in which the liquid droplet exits the capillary is governed predominant-
ly by the two main operating parameters -potential difference and the
flow rate. The range of modes has been identified previously [6], and
may also be sub-divided into two main groups: dripping and spraying.
The first group consists of modes where the jet breaks up into small lig-
uid fragments i.e. droplets. The second group consists of modes where
the liquid is ejected from the capillary in the form of a jet which later
disintegrates into charged droplets or the spinning process.

In electrospinning the fibre characteristics are determined by the
processing parameters and can be tailored for numerous applications
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requiring different fibre morphologies and sizes (from nano- to
micrometre). These include tissue engineering matrices (e.g. scaffolds
for bone and soft tissue regeneration), textile engineering (including
drug loaded wound dressings), drug delivery, filters, catalytic nanofi-
bres and sensors [7-12].

The aim of this study is to determine the effectiveness of an addi-
tional control parameter on electrospun fibre characteristics by varying
the processing solution temperature. Instabilities present during the
electrospinning process may arise from the solution properties and/or
operating conditions [13,14], therefore these will invariably regulate
the morphology of resultant fibres. In particular, variation in fibre diam-
eter has been attributed to the balance between stresses in the liquid
(due to surface tension and electrostatic surface charge) vapour pres-
sure, evaporation rate of the driving solvent and concentration of the
solution [15,16]. Hence, altering the temperature of processing solu-
tions will not only affect solution properties before fabrication (viscosi-
ty, surface tension, electrical conductivity etc.) but will also have an
influence on solvent behaviour immediately after material emission
from the electrospinning nozzle (evaporation, vapour pressure and
polymer concentration). For instance, an increase in temperature will
cause a decrease in the viscosity and surface tension whilst increasing
the electrical conductivity and the vapour pressure of the solution.
These factors are all crucial in determining the final fibre morphology
therefore it is vital to correlate changes in temperature with the mor-
phology of electrospun fibres [16-19].

2. Experimental procedure
Dimethyl-formamide (DMF) and Polyurethane (PU) (Poly [4,4'-

methylenebis(phenyl-isocyanate)-alt-1,4-butanediol/polytetrahy-
drofuran) elastomer were purchased from Sigma-Aldrich (Poole,
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Table 1

Solution properties and the resultant mean fibre diameter and standard deviation at each solution processing temperatures (25, 50, 75 and 100 °C).

Processing Solution temperature before Surface tension Viscosity Electrical Density Mean fibre Standard
solution and after processing (°C) mNm~' mPa s conductivity us m~! Kgm~> diameter pm deviation
25 25,23 50 713 1.1 950 247 0.79
50 50,47 43 445 1.7 940 224 0.78
75 75,71 38 299 29 880 1.99 0.66
100 100,93 31 275 33 880 1.19 0.29

UK). A 10 wt% PU solution was prepared by mechanically stirring the
polymer in DMF solution for 72 hours at the ambient temperature
(20 °C). Once dissolved, the concentration of the solution was kept con-
stant throughout experimentation by sealing the PU solution vial. The
solution was then gradually heated to 100 °C and various characterisa-
tions (surface tension, electrical conductivity, viscosity and density) of

the polymer solution were performed at selected temperatures (25, 50,
75 and 100 °C) in a fume hood. The density of the solution was estimated
using a standard 25 ml density bottle (VWR, Lutterworth, UK). Surface
tension was measured using a KrUss Tensiometer K9 (Kriis GmbH,
Hamburg, Germany). Viscosity was measured using a Ubbelohde viskosi-
meter (Schott Instruments GmbH, Germany). Electrical conductivity was

Fig. 1. Optical and scanning electron micrographs (respectively) of formed fibres using selected processing solution temperatures of (a1-a2) 25 °C (b1-b2) 50 °C (c1-c2) 75 °C and
(d1-d2) 100 °C. [Applied voltage = 10 kV, Flow rate = 60 pl/min, Collecting distance =100 mm and Collecting time = 20s]. [Scale bars for a1,b1,c1,d1 =50 pm].
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assessed using a HACH SensION ™ 156 probe (Camlab Ltd., Cambridge,
UK). The temperature of the solution was recorded prior to and after
measurements were obtained.

A second identical stock solution of PU solution was prepared in sim-
ilar fashion and heated again gradually to 100 °C. The polymer solution
was electrospun at previously allocated temperatures (25, 50, 75 and
100 °C), using minimal perfusion distances to prevent or minimise heat
loss due to solution movement from the infuser to the processing nozzle.
The set-up utilised comprised typical electrospinning components and a
stainless steel needle with an inner orifice diameter of 480 um was se-
lected. The needle was coupled to a high voltage supply (Glassman Eu-
rope Limited, Tadley, UK), in an epoxy resin mould. PU solution was
perfused through the needle at a controlled flow rate using a specially
designed Harvard syringe pump (Harvard Apparatus Ltd., Edenbridge,
UK). The operating parameters were fixed as: applied voltage 10 kV,
flow rate 60 pl/min, collection distance 100 mm and collection time 20
seconds. A high speed camera (Weinberger AG, Dietikon, Switzerland)
was connected to a computer, allowing the observation of the medium
behaviour at the tip of the processing nozzle during the electrospinning
process. Fibres were deposited on glass slides directly below the proces-
sing nozzle. After samples had been obtained, the temperature of the so-
lutions was recorded immediately. Fibres were analysed using optical
and scanning electron microscopes (SEM) (Nikon ME 600 and JEOL
JSM 3600). For SEM analysis, samples were coated with a thin layer of
gold. Samples were also analysed using Differential-Scanning Calorime-
try (DSC) (Netzsch-Geratebau GmbH, Wittelsbacherstr, Bavaria) at a tem-
perature range between 20-400 °C, applying a heating step rate of
10 °C min ™. This was used to determine the melting temperature (Ty,).

3. Results and discussion

Controlled variations in processing solution temperature are
expected to have an impact on the resultant electrospun structures.
This can be due to changes in solvent drying properties once droplets
or threads have been ejected from the processing nozzle. However, it
is also important to characterise the physical properties of such solu-
tions (i.e. electrical conductivity and viscosity) as these are well
established aspects which can drive or hinder such processes. These
measurements are shown in Table 1. All solutions were initially heat-
ed to 100 °C and were subjected to brisk mechanical stirring. This was
to ensure that all solutions were homogeneous, thus reducing the
effect of any internal thermal gradients and any external polymeric
factors affecting solution properties, although the PU used in this
work has a melting point much greater (>200 °C) than the highest
temperature selected for solution processing.

The heat induced change to polymeric chains dictates the relation-
ship between the viscosity and the temperature and is recognised as ex-
ponential. As the temperature is increased, the polymer chains in the
liquid gain kinetic energy. This allows them to overcome the intermole-
cular forces of attraction which in turn decrease the cohesive forces.
Therefore, a decrease in viscosity in liquids is observed as the tempera-
ture is increased. Surface tension, likewise, decreases as the tempera-
ture increases. Surface tension in its simplest form is the measure of
the force per unit length along a line parallel to the surface of a material.
This is caused by the cohesion of like molecules at the surface. As noted
for the viscosity, the kinetic energy will increase with temperature
causing a decrease in the molecular interaction of the molecules at the
surface causing a decrease in surface tension. A decrease in both the vis-
cosity and surface tension of the polymer solution causes a decrease in
the visco-elastic nature of the fluid. Due to this, the Coulombic force of
repulsion becomes the dominant effect present during electrospinning.
The electrical conductivity as expected increased with temperature. The
density of the solution showed no significant decrease from the lower to
the upper limit of the two temperatures ranges (25, 50, 75 and 100 °C).
There were minimal changes to the individual solution temperature in
between the relevant characterisation steps.

The mean fibre diameter (Table 1) was seen to decrease as the
processing temperature was increased, e.g. the reduction between
25 to 50 °C was 0.25 pm whilst from 75 to 100 °C it was 0.8 pm. The
standard deviation in the fibre diameter measurements followed a
similar pattern to the mean diameter. There was an insignificant de-
crease in the standard deviation between the lowest temperatures,
as the temperature was increased, however, at the upper limit the
standard deviation dropped rapidly.

Fig. 1 shows optical and electron micrographs of fibres produced using
the various processing solutions, which visually demonstrate these
changes. For example, fibres prepared from the 25 °C solution (Fig. 1a1-
a2) were considerably coarser than those prepared from the 100 °C solu-
tion (Fig. 1d1-d2). Another phenomenon observed is the beading
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Fig. 2. Electrospun fibre diameter distribution obtained using selected processing solu-
tion temperatures of (a) 25 °C (b) 50 °C (c¢) 75 °C and (d) 100 °C.
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variation in the fibres. At the lowest temperature the beads formed were
more spherical and little transformation was seen from 25 °C to 50 °C. As
the temperature was increased from 50 °C to 75 °C, the beads became
elongated at the edges forming a spindle-like shape at the highest tem-
peratures (Fig. 1c2).

The decrease in the mean fibre diameter may be attributed to both the
reduction in surface tension and viscosity, in addition to the rise in the
electrical conductivity. Additionally, changes to polymeric molecules
resulting from a reduction in chain entanglements may also play a role
in this reduction [20,21]. This in coalition with the decrease in viscosity
and surface tension causes the viscoelastic relaxation time to drop signif-
icantly affecting the magnitude of the viscoelastic forces. Coulombic re-
pulsion forces are thus dominant causing rapid elongation of the jet.
Consequently, this allows the diameter of the fibres produced to decrease
significantly [1,16].

The rate of evaporation and the vapour pressure of the solution de-
crease significantly as the processing solution temperature drops. There-
fore, at the lowest temperatures, the solidification time of the solution is
greatest, allowing additional elongation of the jet. Due to the solidifica-
tion, the solvent has evaporated to such an extent that the intermolecu-
lar forces between the polymer molecules oppose further stretching of
the liquid. A “terminal” diameter for the fibres is thus reached.

Analysing the fibre diameter size distribution resulting from the var-
ious processing solutions (Fig. 2) reveals a clear trend. The distribution
of fibres obtained using the 25 °C solution (Fig. 2a), shows a broad range
of fibre production from 0.9-4.3 pum, with a bell shaped population dis-
tribution in between these values. However, increasing the solution
temperature to 50 °C, results in a skew towards the lower limit of
0.9 um (Fig. 2b), although some outliers appear beyond the initial
upper limit of 4.3 um. Increasing the processing solution temperature
further to 75 °C (Fig. 2c), further slants the distribution towards the
lower limit. However, once a processing solution temperature of
100 °C is utilised (Fig. 2d), finer fibres (0.5 pm) are formed in addition
to a much more uniform distribution, skewed around the initial lower
limit. Hence the use of heat can be applied to refine fibre distribution,
giving rise to a much more uniform population. There is also potential
to reduce fibre sizes using heat- assisted spinning.

The spun fibres were analysed using DSC as shown in Fig. 3. Even
though the various polymer samples were prepared from the same PU
concentration solution, which were all subjected to 100 °C, there is a
clear difference in the melting endotherm values. PUs are segmented
and can demonstrate different degrees of crystallinity according to the
processing conditions [22]. Furthermore, without the addition of heat,
parametric variations in the electrospinning process (e.g. applied volt-
age, infusion rate) can also alter the melting temperatures of fibres pre-
pared from the same solution [23].
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Fig. 3. DSC curves of fibres formed at selected processing solution temperatures (25,
50, 75 and 100 °C).

It may be seen that as the processing solution temperature was
increased there was an increase in the Ty,,. For example, fibres prepared
using the 100 °C solution had a Ty, of 347 °C, which is higher than the
values obtained when processing solutions at lower temperatures
(e.g. Ty, for 75, 50 and 25 ° C were 339, 338 and 333 °C, respectively).
It is also clear that as the processing temperature is increased the en-
thalpy of fusion also increases, although there is some overlap between
fibres prepared from 25 and 50 °C solutions (area is increased due to
broader peaks). It has been shown previously that the level of crystallin-
ity is increased when using the electrospinning process, going from film
to fibre morphology, resulting in an increase in the Ty, values. In relation
to our findings, heat assisted electrospinning favours this structural en-
hancement further as there is an increment in the Ty, at elevated tem-
peratures, arising from the formation of domains (in fibres) due to
increased movement of polymeric chains yielding greater crystallinity
[24].

4. Conclusions

In this work, PU fibres were produced using typical electrospinning
apparatus. The role of temperature on the final morphology of the fibres
was investigated by optical and scanning electron microscopy. Key so-
lution properties were measured in order to correlate the effect of the
solution temperature on the final fibre morphology. It was found that
heat assisted electrospinning of PU fibres can be used to refine the di-
ameter distribution of PU fibres generated in a spinning operation.
Beading is also altered when the solution temperature is varied, going
from spherical to needle shaped morphologies. Finally, as PU crystallin-
ity can be varied using various material processes requiring heat, con-
trolling the temperature of PU solutions during electrospinning can
lead to variations in Ty, arising from changes in the orientations (and
segmentation) of PU polymeric chains.
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