Practical and theoretical considerations of the
application of marginal structural models to
estimate causal effects of treatment in HIV

infection

Fiona Marie Ewings

Submitted to University College London
for the degree of Doctor of Philosophy

University College London, &
Medical Research Council Clinical Trials Unit



Declaration

I, Fiona Marie Ewings, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated in the

thesis.

Signed:

Date:



Acknowledgements

I am extremely grateful to my supervisors Andrew Copas, Sarah Walker and James Car-

penter, and particularly to my unofficial supervisor Debbie Ford.

I would like to thank the CASCADE collaboration for allowing me to use their data, and

the Medical Research Council for my studentship.

I am indebted to my family and friends, especially my parents and Alex, for their unwavering

support throughout the last few years.



Abstract

Standard marginal structural models (MSMs) are commonly applied to estimate causal ef-
fects in the presence of time-dependent confounding; these may be extended to history-adjusted
MSMs to estimate effects conditional on time-updated covariates, and dynamic MSMs to esti-
mate effects of pre-specified dynamic regimes (Cain et al., 2010). We address methods to assess
the optimal time for treatment initiation with respect to CD4 count in HIV-infected persons,
and apply these to CASCADE cohort data. We advocate the application of all three types of
MSM to address such causal questions and investigate gaps in the literature concerning their
application.

Of importance is the construction of suitable inverse probability weights. We have structured
this process as four key decisions, defining a range of strategies; all demonstrated a beneficial
effect of ART in CASCADE. We found a trend towards greater treatment benefit at lower CD4
across a range of models.

Via large simulated randomised trials based on CASCADE data, longer grace periods (per-
mitted delay in treatment initiation) and in particular less-frequently observed CD4 indicated
higher optimal regimes (earlier treatment initiation at higher CD4), although similar AIDS-free
survival rates may be achieved at these higher optimal regimes. In realistically-sized obser-
vational simulations, the optimal regime estimates lacked precision, mainly due to broadly
constant AIDS-free survival rates at higher CD4. Optimal regimes estimated from dynamic
MSMs should be interpreted with regard to the shape of the outcome-by-regime curve and the
precision. In our clinical setting, we found that allowing a 3-month grace period may increase
precision with little bias under the interpretation of no grace period; under longer grace periods,
the bias outweighed the efficiency gain. In our CASCADE population, immediate treatment was
preferable to delay, although estimation was limited by relatively short follow-up. Comparison

across the MSM approaches offers additional insights into the methodology and clinical results.
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Chapter 1

Introduction

The motivation for this thesis lies in the application of marginal structural models and their
extensions to estimate optimal dynamic treatment regimes. The clinical motivation arises from
the field of HIV infection, namely the contentious question of when to initiate treatment in HIV-
infected persons. We begin by introducing the concept and estimation methods of causality,
followed by a definition of dynamic treatment regimes and an outline of the methods for their
optimisation. We give an overview of the treatment of HIV-infection (section 1.5) and an
introduction to the CASCADE data which are used throughout the thesis (section 1.6). Finally,

we provide an outline for the rest of the thesis (section 1.7).

1.1 Causality

The causal effect of an intervention on an individual is defined as the difference in the outcome
of interest under that intervention compared to the outcome in the absence of the intervention
(Rubin, 1974). Our interest lies in the receipt of a treatment compared to no treatment, but
“intervention” could, for example, also refer to other medical procedures or environmental expo-
sures, and may be compared to standard practice or a control. For example, for an individual i,
let A; = 1 if the individual receives a particular treatment and A; = 0 otherwise, and let Y;(A;)
represent some outcome of interest under treatment A;. Then we may be interested in for exam-
ple the causal effect Y;(1) — ¥;(0). Clearly, it is not possible to observe both these outcomes in
the same individual, and so they are referred to as “potential outcomes”. These concepts were
introduced by Neyman et al. (1923) for randomised experiments, developed by Rubin (1974) for
non-randomised studies, and later formalised and referred to as Rubin’s Causal Model (Holland,
1986). If there are no (classically) missing data, then for each subject one potential outcome

will be observed, while the other remains counterfactual, and so it is clearly not possible to

17



calculate the causal effect in one person. In general, interest lies in the average causal effects in
a population, and looking at average causal effects (hereafter, simply causal effects) allows us
statistically to overcome the issue of counterfactuals (Rubin, 1974). Note that counterfactual
variables can be considered a form of missing data and the methods can be applied similarly
(see section 1.2.6).

In general, treatment may be initiated or stopped over time and so A;(t) may be time-
dependent. We describe different patterns of treatment as “treatment regimes”. For example,
Ai(t) == {4;(0),...,A;(t)} = {0,...,0} indicates the regime of no treatment up until time ¢,
Ai(t) = {1,...,1} indicates immediate and continuous treatment to time ¢, whereas A;(t) =
{0,...,0,1,...,1} represents treatment initiation at some intermediate time s, 0 < s < ¢ (and
continuous thereafter to time ¢). From here on, we assume that patients are a random sample
from a large population with a common distribution and hence drop the subscript ¢ for subject.

In a randomised controlled trial (RCT), the balance created by randomisation means that we
can simply compare the average outcomes in those randomised to receive treatment compared
to those not, in a standard intention-to-treat (ITT) analysis. In the presence of non-compliance
to randomised regime, an I'TT analysis will still provide an unbiased estimate of effectiveness
(the expected effect of the randomised strategy in an equivalent population of compliers and
non-compliers), but may be biased for efficacy (the effect in those persons who would follow
exactly the randomised treatment regime). Further, while analysis by ITT is generally seen as
conservative, this is not true for trials in which the outcome is safety or which aim to demonstrate
equivalence (Toh et al., 2010).

In the absence of evidence from an RCT we may turn to observational studies, but these are
prone to confounding. That is, there may exist variables which are simultaneously predictors of
(future) treatment and risk factors for the outcome of interest. We could use standard methods
such as a suitable model for the outcome of interest with adjustment for the confounders, but
if there exist time-dependent confounders L(t) which are predicted by past treatment, then
standard methods will be biased for the estimation of causal effects (Herndn et al., 2005). This
is sometimes referred to as confounding by intermediate variables, since the covariates lie on
the causal pathway between treatment and outcome (Figure 1.1; Robins (1989a)).

For the estimation of efficacy, either from an RCT which suffers from non-compliance, or
an observational study in which there exist time-dependent confounders which are predicted by

treatment history, causal methods are required (Hernan et al., 2006).
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Figure 1.1: The time-dependent confounder L(¢ + 1) lies on the causal pathway between treat-
ment A(t) and the outcome Y.

1.2 Methods for estimating causal effects

The field of causal inference has advanced enormously in the last couple of decades. Robins
(1986) first introduced the g-computation algorithm estimator to compare the causal effects
of different treatment regimes on the time to an event of interest in an observational setting,
and extensions of these methods led to the development of g-estimation of structural nested
models (SNMs, section 1.2.2). The prefix “g” stands for “generalised” and is used to indicate
methods which permit unbiased estimation of any form of hypothetical intervention, even in
the presence of time-dependent confounders which are affected by previous treatment. The
term “structural” arose from the disciplines of economics and social sciences but is synonymous
with “causal”. Robins (1998) was also responsible for the development of another methodology
for investigating causal effects: estimation of marginal structural models (MSMs) using inverse
probability of treatment weighting (section 1.2.3). Below, we outline and briefly compare these
three approaches. Non-parametrically, these methods will lead to identical results (Daniel et al.,
2011), but in realistic scenarios with a number of time-points and/or more complex treatment

regimes, parametric methods are required.

1.2.1 G-computation formula

G-computation originated in an observational setting to compare the causal effects of different
treatment regimes on the time to an event of interest (Robins, 1986). Let T'; represent a
potentially counterfactual time-to-event outcome under a treatment regime A for a given patient.
Then the g-null hypothesis of no effect of treatment on the time to the event of interest is given
by:

Pr(Tz, > t) = Pr(Tz, > t) for all treatment regimes Ay and As.

The g-computation formula expresses Pr(7; > t) in terms of the conditional probabilities of

the event given treatment and covariate history, and of the current covariates given treatment
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and covariate history (Lok et al., 2004). For example, consider a study with clinic visits at
times t = 0, 1,2, ... where ¢t = 0 represents baseline (time of entry into study). For each patient,
at each time-point ¢, a covariate vector L(t) is measured and treatment A(t) is determined,
and an overall time 7" to an event of interest is observed (in the absence of any censoring). As
above, let overbars represent history, and let lower case letters represent realisations of random
variables. Then, under certain assumptions, the g-computation formula is given by (Lok et al.,

2004):

Pr(Tz>t+1)=3% .2,

Pr (T > t+1|L(t) = I(t), A(t) = a(t),T > t)
i Pr(T >klL(k—1)=1(k—1),A(k—1)=a(k—1),T >k —1)

i x Pr (L(k) = 1(k)|T(k — 1) = I(k — 1), A(k — 1) = a(k — 1), T > k)

where the summation over ly,...,l; is over all possible values [ of the covariate history. For
continuous L(t), this summation is replaced with an integral, as in Daniel et al. (2011). This
equation is sometimes equivalently referred to simply as the g-formula (Daniel et al., 2011;

Taubman et al., 2009). Therefore, the g-formula expresses Pr(T; >t + 1) in terms of:

Pr (T > ¢+ 1|L(¢) = I(t), A(t) =a(t), T > 1)

which is the probability of remaining event-free beyond time £+ 1, given covariate and treatment

history to time ¢ and remaining event-free to time t;
Pr(T >kL(k—-1)=1k—1),A(k—1)=ak—1),T > k—1)

which for k = 0, ...,¢ is the probability of remaining event-free beyond time k, given covariate

and treatment history to time k — 1 and remaining event-free to time k — 1; and
Pr(L(k) =(k)|L(k—1)=1l(k—1),A(k —1) =a(k — 1), T > k)

which is the probability of the covariates L(k) = l(k) measured at time k, given covariate
and treatment history to time k£ — 1 and remaining event-free to time k. As Daniel et al.
(2011) outline, the g-formula is the appropriate generalisation of standardisation (estimation of

expected outcome in a population under a hypothetical time-independent intervention, given
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time-independent covariates) to a scenario with time-dependent covariates and treatment.

Robins (1986) developed an algorithm to aid the computation of this formula which requires
knowledge, or estimation from the data, of the conditional distributions, such as implemented
by Taubman et al. (2009) and Young et al. (2011). Briefly, there are three main steps which
must be applied for each of the treatment regimes under consideration. The first step is to use
the data to estimate the parameters of the conditional distributions of (a) each of the current
covariates, and (b) the outcome, given covariate and treatment history. Secondly, Monte Carlo
simulation is used to simulate a cohort based on the estimated distributions and under the given
treatment regime. In the simple example of initiating treatment immediately, this would mean
setting the treatment indicator variable(s) in the conditional distribution models equal to 1 for
all time, and similarly equal to O for the scenario of never initiating treatment. Thirdly, the
simulated cohort is used to estimate the outcome, which can be interpreted as an estimate for
the outcome under that specific treatment regime. Once this is repeated for each treatment
regime, these estimates can be compared across regimes.

A disadvantage of the g-formula is the number of parametric assumptions required and hence
increased risk of bias. In addition, this approach may suffer from the “g-null paradox”, whereby
under certain situations and given enough data, the null hypothesis (of no effect of treatment
for example) will be rejected even when true. This is discussed further by Daniel et al. (2011)

and Robins et al. (1999).

1.2.2 G-estimation of structural nested models

To address the limitations of the g-computation formula, Robins (1989b) developed semi-
parametric accelerated failure time (AFT) structural nested models (SNMs), which directly
model the causal effect of treatment received at a given time on subsequent outcome, given
treatment and covariate history (Robins, 1994). Lok et al. (2004) showed that AFT SNMs
may be considered as a reparameterisation of the g-computation formula and estimated using
maximum likelihood estimation, but this is not straightforward and cannot be computed easily
using standard software (see also Walker et al. (2004)). Alternatively, the parameters of AFT
SNMs can be estimated using a technique called g-estimation, which controls for confounding
by intermediate variables. Conceptually, for each time, the procedure estimates the association
between the treatment at that time and the counterfactual underlying true but unknown time
to event under no treatment, after adjusting for treatment and covariate history, but with-

out adjusting for subsequent treatment and covariate values (Robins et al., 1992). It does not
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consider identical treatments received at different times (that is, with different treatment and
covariate histories) to be the same, since the time-varying confounding means that these are
not comparable (Robins et al., 1992).

Consider just the single parameter case. In the absence of censoring, each subject’s observed
time to event 7' under observed treatment A(T) = {A(0),..., A(T)} may be related to the
potentially counterfactual event time Ty which would have been observed had the subject never

received treatment, using:
T

To = /exp {pA(t)} dt (1.1)

0
(Robins and Tsiatis, 1991). In this equation, exp{t} is the factor by which time is “stretched”
when on treatment compared to not. For example, if 1 is estimated as —log(2), then for a
patient who initiates treatment immediately, their time to event is doubled compared to that
which would have been observed had they remained off treatment for all time.

The parameters of this AFT SNM can be estimated using g-estimation as follows. For a
chosen estimate 1; of 1, it is possible to calculate To(wz) from the observed data {T, A(T)}
using 1.1 and inserting the chosen Tp for 1. A “g-test” is constructed and applied to test the
hypothesis that 1~b is equal to the true value 1. The g-estimate 1} of v is that for which the
g-test has p-value equal (or closest) to 1.

In an RCT, by the nature of randomisation, at the true value of ¢ the randomised treatment
is independent of Ty, and a test of this hypothesis constitutes the g-test (that is, the randomised
group is the intermediate variable). Therefore g-estimation is able to directly exploit the ran-
domisation, and in such circumstances these methods are known as “randomisation-respecting”
or “randomisation-based” and preserve the ITT p-value (White et al., 1999).

In an observational study, one approach would be to formulate a model for treatment, given
treatment and covariate history, which incorporates Ty. For example, consider a study with
clinic visits at times t = 0,1, 2, ... in which we are interested in the causal effects of a treatment
which once initiated is continued. A possible model for treatment initiation, given treatment

and covariate history, and incorporating Ty(7), might be:
logit Pr {A(t) = 1| A(t—1)=0,L(t), To(9), T > t} = B(t) + YL(t) + 0Ty ()

where logit(p) = 10g<1%p) and ((t), v and € are unknown parameter vectors. Under the as-
sumption of no unmeasured confounders, the treatment received at a given time ¢ is independent

of Ty at the true value of v, given the treatment and covariate history. Therefore, a test for
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6 = 0 corresponds to a test for the independence of A(t) and Tj given treatment and covariate
history, and this forms the g-test (Witteman et al., 1998).

Test-based (1 — «)% confidence intervals for 1 can be found based on those values of W for
which the g-test fails to reject at the a% level. In practice, a simple way to find the g-estimate
and associated confidence interval is to perform a grid or interval search (White et al., 1999).

Under certain assumptions (see section 1.2.4), g-estimates are unbiased under the null hy-
pothesis of no effect of treatment, but are only valid under administrative censoring and even
then require an additional step of artificial re-censoring (Robins and Tsiatis, 1991). If a patient

is censored at a time C, then for a given zz, Ty (17}) is censored at:

C
Ry = /exp {@NZJA(t)} dt
0

which is a function of A(t) and therefore may depend on the underlying prognosis of the patient.
As White et al. (1999) explain, even if censoring on the Tp-scale is non-informative, it may be
informative on the Rg-scale. For example, patients with the same Ty are more likely to be
censored the more treatment they receive, assuming treatment is beneficial. This problem can
be addressed by artificially re-censoring 7 0(&) by a function of Ty (QZ) and C which is observed
for all patients. White et al. (1999) provide an example of this for an RCT and Witteman et al.
(1998) outline an example in an observational setting.

SNMs have been applied to repeated measure outcomes (Robins, 1994), but the extension
to Cox proportional hazards (PH) models has been limited. Greenland et al. (2008) attempted
to interpret their results from an AFT SNM in terms of hazards, by assuming that the un-
derlying event (hazard) rate was constant given baseline covariates, so that the inverse rate
(hazard) ratios were equal to the event time ratios. White et al. (1999) attempted to translate
from AFT modelling into a PH interpretation by constructing artificial datasets based on the
parameters from the AFT model that would have been observed under a desired treatment
scenario. They used these data to estimate “corrected” hazard ratios, though the properties
of such estimators “are unclear” (Loeys et al., 2005). Cox PH SNMs have been constructed
directly in a randomisation-based setting, firstly for all-or-nothing treatment (Loeys and Goet-
ghebeur, 2003), and then for the more general case of time-constant (but could be categorical or
continuous, perhaps time-averaged) treatment (Loeys et al., 2005), but the estimation of these
models is not straightforward. While the AFT SNMs construct potential survival times under

no treatment for each patient, the approach of Loeys et al. (2005) uses a PH model to relate
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the treatment-regime-specific observed survival time in the treatment arm to the counterfactual
survival time which would have been observed had that patient (counter to fact) been ran-
domised to no treatment. The authors assumed that patients randomised to the no treatment
arm cannot access the treatment. Although the estimation of Cox PH SNMs is challenging, an
advantage is that artificial re-censoring is not required as for the AFT models. Further, hazard
ratios are more commonly used and understood in practice. However, as far as we are aware,
the PH methods have not been developed for time-dependent treatment and so far have not
been applied to allow for treatment changes in both treatment and control arms; the extension

to observational studies is not trivial.

1.2.3 Estimation of marginal structural models using inverse probability of

treatment weighting

MSMs model the marginal distributions of potential outcomes relating to different treatment
histories, rather than modelling the joint distribution of such variables (Fewell et al., 2004).
That is, they directly model the outcomes that would have been observed had all patients been
subject to the same treatment history (Robins and Tsiatis, 1991). The beauty of MSMs is that
they are natural extensions of standard methods and can relatively easily be applied to any
outcome of interest, leading to an explosion in the application of MSMs in the last decade. For
example, Toh et al. (2010) applied MSMs with a survival outcome to estimate the causal effect
of postmenopausal hormone therapy on the risk of invasive breast cancer, Cole et al. (2005)
used repeated measures MSMs to estimate the effect of treatment on the biomarker CD4 count
in HIV-infected persons and Bodnar et al. (2004) applied logistic MSMs to look at the effect of
iron supplements during pregnancy on the odds of anaemia at delivery, to name but a few.

We will be interested in a time-to-event outcome and hence the estimation of Cox PH
MSMs. As above, let Ty be the potentially counterfactual time to event under a treatment
regime A = {A(0), A(1),...} and let V be a vector of baseline covariates where V' C L(0). Then
for each possible A, a Cox PH MSM is given by:

A {t|A(1), V) = Xo(t) exp {aA(t) + BV}

where A\g(t) is the baseline hazard, a and  are unknown parameters and exp{a} can be inter-
preted causally as the hazard ratio of the outcome of treatment versus no treatment at time ¢,
given V' (Herndn et al., 2000). (Note that other specifications exist, for example incorporating

functions of A(t) rather than just the treatment received at time ¢.) Since at least some of these
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outcomes will remain unobserved, it is not possible to fit this model directly. However, the pa-
rameters of MSMs can be consistently estimated (under certain assumptions, see section 1.2.4)
using inverse probability of treatment weighting. Briefly, for a Cox PH MSM, each individual
still in the risk set at each event time is weighted by an estimate of the inverse probability of
the observed treatment received by that person at that time, given their observed treatment
and covariate history. This weighting addresses the bias due to time-dependent confounding of

intermediate variables and will be discussed further in chapter 2.

1.2.4 Assumptions

In any study, whether randomised or observational, measurement error may be present and there
exist methods to address this. However, here we assume that the data are measured without
error (or minimally). We also assume that there is no interaction between patients (known
at “SUTVA”, the stable unit treatment value assumption; Little and Rubin (2000)) and that
any missing data are missing at random (Herndn and Robins, 2006). For causal inference in

observational studies, we also require the following assumptions (Cole and Hernédn, 2008):

e Consistency: this states that the potentially counterfactual outcome under a particular
treatment regime is equal to the observed outcome if the individual was observed to follow

that regime.

e No unmeasured confounders between treatment and the outcome (otherwise known as

exchangeability).

e No misspecification of the models.

Further, MSMs require the assumption of positivity (or the experimental treatment assign-
ment assumption), that is that there is a non-zero probability of receiving each treatment regime
for all combinations of covariate and treatment history. This is discussed further in section 2.2.2.

With time-to-event data, right-censoring is common. If information on prognostic factors
for censoring is available, then censoring-weighted estimators can be used to correct for the
potential bias due to this censoring under the (untestable) assumption that there is no residual
confounding (Robins and Finkelstein, 2000). This will be addressed further in section 2.2.4. The
assumption of no unmeasured confounders between outcome and censoring can be explored via
sensitivity analyses by considering the potential effects of an imaginary unmeasured confounder;
Scharfstein et al. (2001) developed such methods for discrete time and Scharfstein and Robins

(2002) extended these methods to allow for continuous time. More recently, the methods of
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Rotnitzky et al. (2007) allow for competing censoring mechanisms by introducing a “censor-
ing bias function”. However, we assume that the available data are sufficient to describe the

censoring processes and these methods are not addressed further in this thesis.

1.2.5 Comparison of methods

A considerable advantage of the use of MSMs to estimate causal effects, using inverse probability
of treatment weighting, is their resemblance to standard models and hence relative ease of
implementation. A potential difficulty associated with the application of MSMs is the need
for positivity. If the data are “close” to non-positivity (for example, if at some levels of the
covariates, treatment is nearly always given), then large weights may arise (Cole and Hernén,
2008). Similarly, if there are many time-points or treatment is strongly correlated with baseline
covariates, then the weights may become large. These problems may be attenuated to some
extent by stabilisation of the weights (see section 2.2.3), truncation of the very largest weights
(Cole and Hernén, 2008), or addressed using doubly robust estimators (Bang and Robins, 2005).
Doubly robust estimators are not discussed further in this thesis.

While the g-computation formula can be applied to highly complex pre-defined interventions
(such as “avoid smoking, exercise at least 30 minutes daily and consume at least 5g of alcohol
daily”; Taubman et al. (2009)), it is computationally intensive and best suited to a small number
of interventions (Daniel et al., 2011). In addition, this approach is at risk of the g-null paradox
(see section 1.2.1).

Although g-estimation of SNMs may benefit from greater efficiency than inverse probability
treatment weighting of MSMs and fewer parametric assumptions than g-computation (Daniel
et al., 2011), it is perhaps less robust to model misspecification and is not intuitive nor easy
to apply. Further, if there is right-censoring of survival times, g-estimation of SNMs requires
artificial re-censoring in order to break any dependency of the censoring time on treatment,
which may be related to the underlying prognosis of the patient (section 1.2.2). In practice,
other authors have found that this method may suffer from low power (White et al., 1999).
Young et al. (2009) performed a simulation study to illustrate and compare MSMs versus SNMs
and found that, compared to the g-estimators, the inverse probability weighted estimators were

similarly or less biased, and were more efficient.
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1.2.6 Relation to missing data problems

Counterfactual variables may be considered as a missing data problem; they are monotonely
missing data. Inverse probability weighting methods have been developed and applied simi-
larly in the missing data paradigm (Robins et al., 1995). Drawing on other methods from the
field of missing data, one could perhaps consider implementing multiple imputation in a poten-
tial outcomes setting, where counterfactual outcomes are multiply imputed using the observed
outcomes and measured confounders. Under certain scenarios, inverse probability weighting
methods resemble those of multiple imputation, but these methods are not addressed further

in this thesis.

1.2.7 Effect modification by baseline covariates

The methods described above can all easily be adapted to incorporate an interaction between
treatment and a baseline covariate to investigate effect modification. A number of papers
describe this for MSMs (Bodnar et al., 2004; Hernén et al., 2006; Robins et al., 2000), but, to
our knowledge, it has rarely been applied in practice in the setting of antiretroviral therapy for
HIV-infected persons (our clinical example, introduced in section 1.5). The only example we
are aware of is a series of papers by Cole and colleagues (2007; 2005; 2003), looking at whether
there is a differential effect of treatment by sex or CD4 count at study entry on a range of
different outcomes. Loeys et al. (2005) outline how to adapt their causal PH SNM to allow for
an interaction between treatment and a baseline covariate, but we are not aware of this having

been applied in practice.

1.3 Dynamic treatment regimes

There are many situations in medical practice in which treatment decisions are made based
on the current well-being of the patient, perhaps to minimise time spent on potentially toxic
treatments or to optimise resources. For example, treatment may be given until a desired level
of recovery is achieved, delayed until a certain stage of disease progression is reached, or given
intermittently, perhaps based on some observed biomarker. Such treatment regimes which are
in response to a patient’s time-dependent measurements are known as “dynamic” (Hernén et al.,
2006). Moodie et al. (2007) and Murphy (2003) view dynamic regimes as a function or list of
decision rules, which are based on treatment and covariate history. These types of treatment
regimes have also been referred to as “individualized treatment rules” (Petersen, Deecks, and

van der Laan, 2007) or “adaptive strategies” (Murphy, 2003). Note that while treatment regimes
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may change over time, they may not necessarily be dynamic; for example, “take drug X for Y
weeks then drug Z” is an example of a time-varying but non-dynamic regime. Although clinical
trials most often compare non-dynamic treatment regimes, dynamic treatment regimes may be
more common in practice (Cain et al., 2010). Dynamic treatment regimes can be considered as
interactions between treatment and time-dependent covariates (Herndn et al., 2002). We may
naturally wish to identify optimal dynamic treatment regimes, defined by Petersen, Deeks, and
van der Laan (2007) as “the treatment rule that produces, on average, the best patient outcome
at a given time-point”. Dawid and Didelez (2010) recommend approaching the assessment of

strategies as a decision theory problem.

1.3.1 Classes of dynamic treatment regimes

Theoretically, dynamic treatment regimes may be a complex function of all covariate and treat-
ment history; consider such a large class of regimes R. In practice, a more limited set of
well-defined regimes may be preferable. For example, consider the simple question of when to
initiate treatment for a chronic disease, where once treatment is initiated it is continued for life
(for example, in the motivating clinical example of HIV infection introduced in section 1.5). In
order to preserve time off treatment, treatment may be delayed until a certain disease stage
is reached and if so then one could pre-specify a limited set of regimes, defined by treatment
initiation dependent on different stages of disease. This pre-defined set of regimes R* is a subset
of the larger class R. It is possible to imagine the equivalent RCT which in theory could be
conducted to determine the optimal choice in terms of an outcome of interest from this pre-
defined set of regimes R*: patients would be enrolled at some starting point, perhaps onset of
the disease, and then randomised to one of the regimes in the set R*. Comparison of the out-
come across the patients would inform the optimal regime from this set R*. Such a pre-defined
set may be of most use to inform policy makers.

In contrast, rather than pre-defining a limited set of regimes in advance, consider the presen-
tation of a patient to clinic, where the natural question arising is whether to initiate treatment
at that time, or delay. This decision may be based on the covariate and treatment history of
that patient to that time-point. The RCT comparison in this situation would be based on a
series of randomisations at each successive clinic visit, to immediately initiate or defer treat-
ment. Van der Laan and Petersen (2004) refer to the optimisation of such regimes as estimating
“optimal history-adjusted static treatment regimes” or “statically-optimal dynamic treatment

regimes”; we will use the former nomenclature. Following the optimal history-adjusted static
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regime over time maps to a specific type of optimal dynamic treatment regime, defined by follow-
ing at each time-point the first action of the optimal history-adjusted static treatment regime.
It may be argued that optimisation of such regimes would be of most interest to clinicians who

wish to determine the best immediate course of action for a patient who has presented to clinic.

1.4 Methods for estimating optimal dynamic treatment regimes

1.4.1 G-computation formula

The g-computation formula may easily be applied to optimise dynamic treatment regimes (Taub-
man et al., 2009; Young et al., 2011). The method as described in section 1.2.1 can be directly
extended at the second stage to incorporate dynamic treatment regimes, and the optimal treat-

ment regime is identified as that with the best outcome across all the regimes.

1.4.2 G-estimation of structural nested models

SNMs can easily be extended to handle simple dynamic treatment regimes by incorporating
interactions (Hernén et al., 2006). For example, Herndn et al. (2005) discuss the extension to
a two-parameter model in an observational study for evaluating how the effect of treatment
received at a given time is modified by a time-dependent covariate. We are aware of only one
such application in practice: White et al. (1999) grouped HIV-infected persons by their CD4
count at treatment initiation (< or > 350 cells/mm3) and used a bivariate model to obtain
separate estimates for the effect of treatment by whether it was initiated at low or high CD4
count, and thus providing (albeit limited) information of the timing of treatment initiation in
such patients (see further detail on this clinical example in section 1.5). Each parameter requires
a separate test; the authors used logrank and Gehan-Wilcoxon (or Breslow) tests (Breslow, 1970;
Gehan, 1965). However, the authors found this method was not robust and suffered from a lack
of power. Murphy (2003) and Robins (2004) developed semi-parametric methods for structural
nested mean models for optimisation of more complex dynamic treatment regimes, which have
been compared and reconciled by Moodie et al. (2007). Rosthoj et al. (2006) applied the methods
of Murphy (2003) to investigate dosing strategies for patients on anticoagulant treatments, and

discussed problems met in their implementation.
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1.4.3 Estimation of marginal structural models using inverse probability of

treatment weighting

MSMs have been deemed “less useful” for estimation of causal effects of dynamic treatment
regimes since they are not directly applicable to such questions (Hernan et al., 2002, 2006). Two
extensions to standard MSMs have been suggested: history-adjusted MSMs (HAMSMs) for the
estimation of optimal history-adjusted static treatment regimes (Van der Laan et al. (2005);
Petersen, Deeks, Martin, and van der Laan (2007)) and dynamic MSMs for the optimisation of
pre-defined dynamic treatment regimes (Cain et al., 2010; Herndn et al., 2006; Robins et al.,
2008).

HAMSMs can be viewed as a series of “trials” at each time in the visit schedule, where
the aim at each new “baseline” visit is to optimise subsequent outcome. In its most basic
form, a history-adjusted model may just estimate the causal effect of the treatment received
at “baseline” and adjust for the “baseline” covariates (Writing Committee for the CASCADE
Collaboration, 2011), but may also look at subsequent treatment received during each “trial”,
with adjustment for subsequent time-dependent confounders using inverse probability of treat-
ment weights as for a standard MSM. That is, a standard MSM is assumed at each time-point
(Petersen, Deeks, Martin, and van der Laan, 2007), and a common model is formulated which
considers each time-point in turn, in a static way, resulting in regimes in terms of treatment at
each time-point with respect to time-dependent covariates. A potential criticism of these meth-
ods is that while the models need to be sufficiently flexible to allow time-dependent treatment
effects, this could result in incompatibilities and implausible conclusions (Robins et al., 2007).
Further details on these methods are given in chapter 3.

Dynamic MSMs are another extension of standard MSMs for simple but perhaps more
pragmatic dynamic regime classes. In their most basic form, they depend upon the availability of
a suitable time-dependent covariate upon which the dynamic treatment regimes may be defined
in advance. Herndn et al. (2006) introduced these methods for just two dynamic regimes and
they have since been extended to many regimes (Cain et al., 2010; Robins et al., 2008). The
key idea behind this approach is that all patients are considered to follow all of the pre-defined
treatment regimes initially and are censored from each regime if they become noncompliant.
Of course, this artificial censoring process is likely to be informative but inverse probability
weighting can be used to address this. Since the censoring process will depend entirely on
treatment and the time-dependent covariate by which the dynamic regimes are defined, the

weights required are the inverse probability of treatment weights as employed by the standard
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MSMs. These methods will be further discussed in chapter 4.

1.4.4 Comparison of methods

While the methods of Murphy (2003) and Robins (2004) using SNMs and the approach of
Petersen, Deeks, Martin, and van der Laan (2007) with HAMSMSs are useful for optimising
complex treatment regimes, such as intermittent treatment dependent on a number of factors,
this can be a disadvantage if simpler treatment regimes are desired which may perhaps be more
readily translated into clinical practice. Thus, the g-computation formula and dynamic MSMs
may be more useful as they can estimate the causal effects of pre-specified treatment regimes,
from the set R* (section 1.3.1). In theory, SNMs may be used to estimate potentially large
classes of dynamic treatment regimes from the larger set R, however in practice this is typically
restricted by the number of interactions which can be included given the available data.

The SNMs discussed above require a correct model but use all the available data (except if re-
censoring is required in the presence of right-censored data). Conversely, the censoring required
under the dynamic MSMs means that data after artificial censoring is discarded, therefore this
approach may be less efficient, but does not impose a structural model for the effect of treatment
across regimes. This is the usual bias-variance trade-off frequently encountered in statistical

modelling (Hernén et al., 2006).

1.4.5 Consistency across marginal structural models

Further to the estimation of treatment effects using a standard MSM, under the assumption
of constant treatment effect regardless of the time on treatment, it is possible to estimate
the cumulative effects of having received immediate and continuous versus no treatment. For
example, if we are interested in a time-to-event outcome, then it would be possible to estimate
the event-free survival under immediate versus no treatment initiation. These treatment regimes
of immediate versus no treatment could also be incorporated into the set of regimes considered
under a dynamic MSM and we might expect the results to be consistent with those from the
standard MSM. Similarly, a basic HAMSM considering treatment initiation or deferral given
“baseline” covariates at successive “trials” will yield information on the benefit of treatment
at different values of the “baseline” covariates. If these covariates are also those by which the
dynamic regimes are defined, then we might expect consistency in the conclusions drawn from

the history-adjusted and dynamic MSMs.
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1.5 Treatment of HIV-infection

We now introduce the clinical topic of interest throughout the thesis.

Thanks to the rapid development of a range of antiretroviral therapies, HIV has been trans-
formed from a disease with poor prognosis to a manageable condition with much improved
long-term survival (Ewings et al., 2008). However, successful treatment requires a number of
concurrent drugs which may have a variety of side effects. Further, long-term treatment may
result in the development of drug resistance. For these reasons, initiation of treatment is often
delayed until some immunodeficiency is evident, but there are arguments for starting treatment
earlier to potentially minimise the long-term damage of HIV. A key biomarker used to moni-
tor the degree of immunosuppression in HIV-infected persons is CD4 cell count, which typically
declines after infection and low levels predict poor prognosis. Previous guidelines in the UK rec-
ommended initiating treatment around CD4 counts of 200 cells/mm?, while current guidelines
in the UK recommend initiating treatment around 350 cells/mm? (Gazzard and on behalf of the
BHIVA Treatment Guidelines Writing Group, 2008), but there may be benefits of initiating still
earlier at higher CD4 counts. For example, a recent study in more than 40,000 treatment-naive
persons with high CD4 counts (> 350 cells/mm?) found that the mortality rate was higher
than that in the general population, and was greatest at lower CD4 counts within this range,
therefore offering support for further exploration of treatment in such persons (Study Group on
Death Rates at High CD4 Count in Antiretroviral Naive Patients, 2010). Recently, there have
been a number of observational studies investigating the question of when to start treatment in
patients with HIV infection, but the findings have left experts divided.

A large study in approximately 17,500 persons found that in those with CD4 counts in the
ranges 351 — 500 or > 500 cells/mm?, immediate treatment initiation was associated with a
reduction in the risk of death compared to delaying treatment (Kitahata et al., 2009). Sub-
sequent to these findings, the US guidelines were amended at the end of 2009 to recommend
earlier treatment initiation, though the panel members were not able to reach agreement regard-
ing initiation of treatment at CD4 counts > 500 cells/mm? (Panel on Antiretroviral Guidelines
for Adults and Adolescents, 2009). However, there were a number of concerns raised about this
study relating to potential sources of bias (Arribas et al., 2009; Buchbinder and Jain, 2009;
Hernan and Robins, 2009).

A different approach relying on historical data was used by the When to Start Consortium
(2009). In contrast, they found that deferring treatment until CD4 count was in the range

251 — 350 cells/mm? was associated with a higher risk of AIDS or death than initiating when
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CD4 count was in the range 351 — 450 cells/mm? but did not see a benefit of earlier treatment
initiation with CD4 count > 450 cells/mm?.

While a separate study found that treatment initiation at CD4 counts < 500 cells/mm? was
beneficial, the authors cautioned that due to the low absolute AIDS and death rate at CD4
counts > 350 cells/mm?, the benefits of treatment should be balanced against the implications
of long-term therapy, such as side-effects and the risk of developing drug resistance (Writing
Committee for the CASCADE Collaboration, 2011). Of note, this study used data from the
CASCADE collaboration; we will be using a subset of these data (see section 1.6).

More recently, the HIV-CAUSAL Collaboration (2010) applied the methods of Cain et al.
(2010) and found that treatment initiation when CD4 counts were around 500 cells/mm? im-
proved AIDS-free survival compared to waiting until CD4 counts dropped lower, but mortality
rates did not vary greatly when treatment was initiated > 300 cells/mm?3.

Aside from AIDS-defining illnesses, the implications of other serious adverse events have
more recently been recognised. For example, Lichtenstein et al. (2010) found higher risk of car-
diovascular disease at low CD4 counts, therefore raising the question of whether early treatment
may help reduce the risk of events other than those traditionally associated with HIV infection.

A large international randomised controlled trial (START; INSIGHT (2009)) is currently
underway to determine whether immediate initiation of treatment in patients with CD4 counts
> 500 cells/mm?3 is superior to deferral of treatment initiation until CD4 count drops to < 350
cells/mm? in terms of mortality and HIV- and non-HIV-related morbidity, but this will not be
completed until 2016. Therefore our interest lies in the question of when to initiate treatment
with respect to CD4 count in HIV-infected individuals, which is an example of a dynamic
treatment regime. Further, while the START trial compares just two regimes, in practice some
intermediary regime may be preferable and indeed the application of observational methods to
this problem may suggest other possible regimes for consideration in future trials, or potentially
yield additional information worth further exploration such as effect modification by baseline

covariates.

1.6 CASCADE

Throughout the thesis, we used data from CASCADE (Concerted Action on SeroConversion to
AIDS and Death in Europe), an ongoing collaboration of cohorts of HIV-infected persons with
well-estimated dates of infection (CASCADE Collaboration, 2009). CASCADE annually pools

participant data, including information on demographics, vital status, AIDS events, treatment

33



use, and CD4 cell count and HIV RNA measurements. Data collection and follow-up varies
across the cohorts, which are a mixture of interval and clinical cohorts (Lau et al., 2007). For
each participant, the HIV seroconversion date was estimated as the date of laboratory evidence
of seroconversion, if available, otherwise as the midpoint of the last negative and first positive
HIV antibody tests, no more than 3 years apart. The data used here were collated in July 2008

on 19,615 participants from 22 cohorts across 12 countries.

1.6.1 Data used for our analyses
Entry to our analysis

Participants were eligible to enter our analysis at their first CD4 count > 500 cells/mm? at least
1 year but no more than 5 years after seroconversion and after 1 January 1996, provided still
treatment-naive and AIDS-free at this point (Figure 1.2). We refer to the time of entry to the
study as baseline. These criteria are quite stringent but necessary to capture the population
of interest and avoid bias, for the reasons as follows. Firstly, the inclusion of participants from
the time of a high CD4 cell count at least 1 year after seroconversion ensured that we captured
participants at a “peak” CD4 cell count before the decline associated with long-term infection.
This is the population in whom our question “when to start treatment” has meaning, since
patients with low CD4 counts shortly after seroconversion do not have the opportunity to start
treatment at high CD4 counts. While the initial methods we used (standard MSMs, section
1.2.3) could be applied without the rather stringent restriction of a first CD4 > 500 cells/mm?,
thus enabling us to include a greater number of patients and from an earlier starting time, we
wished to demonstrate a treatment effect in the subset of patients which are included in our
later analyses (to answer the question of when to start, using dynamic regime MSMs), which in
this case do require such restrictions if we desire all patients to initially be eligible for all regimes
(although this was not enforced by all researchers; see discussion in chapter 5). Secondly, we
excluded patients who had been infected for over 5 years at analysis entry since, in the absence of
treatment, it is unusual for an individual to remain alive, AIDS-free and with high CD4 counts
for over 5 years after infection (Lodi et al., 2011). These excluded patients were a mixture
of (i) those who were enrolled late into the cohort with missing earlier CD4 counts and (i7)
those who initially had CD4 counts < 500 cells/mm? with a blip to > 500 cells/mm? at some
time later during infection. The inclusion of type (i) patients may have led to survivorship
bias, since these are a select group who have survived long enough to enter the cohort. Our

question of “when to start treatment” is less applicable to type (i7) patients, for whom a different

34



| | ——-

SC Patient eligible to Patient enters the study Patient followed
enter the study at first CD4 count >=500 until AIDS or death
at least 1 year cellsimm?3since eligible, (or LTFU)

after SC and after provided still treatment-
1 January 1996 naive, AIDS-free and no

more than 5 years since SC

Figure 1.2: Timeline showing eligibility and entry of participants into the study.
SC=seroconversion. LTFU=lost to follow-up.

treatment management strategy is likely to be preferable. Lastly, effective treatment was only
available from 1 January 1996, therefore we only allowed entry after this time to avoid classic
survivorship bias (only a select subset of participants with good outcome surviving long enough
without treatment to enter the analysis). We further excluded participants aged <16 years old
at HIV seroconversion and a relatively small number of people who initiated treatment with a

suboptimal or unknown treatment regime (see definition below).

Treatment

Effective antiretroviral therapy (hereafter, ART) was defined as any regimen consisting of at
least three antiretroviral drugs from at least two classes, or containing abacavir or tenofovir. We
were interested in the initiation of ART, therefore we ignored subsequent treatment interrup-
tions. This approach assumes that once a participant initiates treatment, they remain on it and
so has an ITT “flavour” (Herndn et al., 2006). Therefore participants who have stopped ART
will be counted as having started on treatment, and so potentially diluting estimated treatment
effects as estimates of efficacy. However, treatment may be stopped for a number of reasons
including for example due to toxicity, which is an inherent part of the chosen treatment path.
Estimating the effect of “ever having started” (effectiveness) is an estimate of likely population
level effect assuming that the cohort participants are representative of the wider population
of interest in terms of patterns of treatment discontinuation. Further, only 6% of the total

follow-up time post-treatment initiation was spent off ART.

Outcome

Our outcome of interest was time to first diagnosis of AIDS or death (CDC, 1992); reaching

CD4 count < 200 cells/mm?® was not considered an AIDS event. Data on serious non-AIDS
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events were not available.

Baseline covariates

Baseline covariates included sex, age at and year of HIV seroconversion, route of HIV transmis-
sion, an indicator for short HIV test interval (<30 days between last negative and first positive
HIV tests, or laboratory evidence of seroconversion) as a proxy for seroconversion illness (Tyrer
et al., 2003), length of time HIV-infected at baseline (approximated by time from estimated
seroconversion to study entry), baseline CD4 count and baseline HIV RNA (if available within
—6 to +1 months relative to study entry date). Cohorts were grouped by country, and countries
with less than 100 participants were combined. In the analyses, continuous baseline covariates
were treated as linear, route of HIV transmission was categorised as injecting drug use (IDU)

versus other, and a missing indicator for the availability of baseline HIV RNA was included.

Follow-up and censoring

We split time into one-monthly intervals from entry into this analysis (at the first CD4 count
> 500 cells/mm? at least one year but no more than five years after seroconversion and after 1
January 1996), given by ¢t = 1,2, .... Follow-up ended when the patient progressed to AIDS or

death, or was censored. We defined three types of censoring, with indicators C,(t), z = 1,2, 3:

1. lost to follow-up (LTFU), which was defined as when a patient had no CD4 count in the
12 months prior to the last CD4 measurement within their cohort. Censoring occurred at

the earliest of the patient’s last known alive date or 12 months after their last CD4 count.

2. irregular CD4 counts, where there was a gap between measurements of over 12 months,
with subsequent CD4 counts recorded. Censoring occurred at 12 months after the last

CD4 count before the (first) gap.

3. administrative, which included all remaining patients who were alive, AIDS-free and not

otherwise censored. We used the last alive date as the date of censoring.

Of note, there is a temporal ordering to these censorings: a patient had to remain in follow-
up with regular CD4 counts in order to be administratively censored, and must not have been
LTFU in order to be censored due to irregular CD4 counts. The reasoning behind censoring
type (2) is that we require time-updated data in order to reliably estimate the weights via the

treatment prediction model. Patients did not re-enter the risk set after a gap between CD4
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count measurements of more than 12 months in CD4 count measurements because there was

concern that the reasons for the gap may not be adequately captured by the available data.

Time-dependent covariates

Time-dependent covariates L(t) were taken as the latest recorded strictly before time ¢; the
notation will be formalised in section 2.2.1. This included the latest CD4 count provided within
the last 12 months. By allowing a CD4 count to be valid for up to 12 months, we essentially
carried the last observation forward for this time, so the CD4 count for 12 consecutive months
was constant if there was no interim measurement. For modelling purposes, CD4 counts > 1000
cells/mm? were truncated to 1000 cells/mm? since the inherent variability at such high CD4
counts (which are within the normal range for HIV-uninfected adults) means there is little to
distinguish such values biologically (Samet et al., 2001).

In addition to CD4 count, we considered a number of other time-varying covariates to be

included in L(t), broadly following Writing Committee for the CASCADE Collaboration (2011):

e CD4 count decrease from time ¢t — 1 (artificially zero if the last observation was carried

forward due to no recent CD4 count)
e time in months since last CD4 count, defined as t—date of last CD4 count
e nadir CD4 count prior to time ¢
e number of previous CD4 counts prior to time ¢

e number of previous HIV RNA measurements prior to time ¢ (with all the following vari-

ables set to zero if none)

e last HIV RNA (observation carried forward indefinitely if no subsequent measurements

recorded)
e time in months since last HIV RNA
e peak HIV RNA prior to time t.

CD4 count decrease was categorised as large increase (> 100 cells/mm?), small increase
(< 100 cells/mm?), no change, small decrease (< 100 cells/mm?®) or large decrease (> 100
cells/mm?®) since it was heavily weighted on zero due to no change when the last CD4 count
value was carried forward. HIV RNA was categorised using the 10, 25, 50, 75 and 90" percentiles
(corresponding to < 500, > 500 — 2910, > 2910 — 11820, > 11820 — 37743, > 37743 — 97809 and

> 97809 copies/ml, respectively), with an additional category for no previous measurement.
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1.6.2 Sample characteristics
Participants and baseline characteristics

Of the initial 19,615 CASCADE participants, 115 and 9 patients had estimated seroconversion
date (as defined in section 1.6) after treatment initiation and progression to AIDS, respectively,
451 did not have any available CD4 counts and 976 had no CD4 counts before progression to
AIDS. In order to meet our analysis entry criteria (outlined in section 1.6.1) of a CD4 count
> 500 cells/mm? at least 1 year but no more than 5 years after seroconversion and after 1

January 1996, the following participants were excluded:

e 55 and 2388 due to treatment initiation or AIDS, respectively, before 1 January 1996
e 601 due to no CD4 count available after 1 January 1996
e 4375 due to no CD4 count at least 1 year but no more than 5 years after seroconversion

e 6672 due to no (treatment-naive) CD4 count > 500 cells/mm?® within the above window.

A further 6 patients aged < 16 years at seroconversion, 539 who initiated suboptimal or
unknown treatment (357 of whom initiated in 1996-97), and 46 who had less than one month
of follow-up were excluded, leaving 3382 adults for our analysis. The numbers of participants
within cohorts and respective countries are summarised in Table 1.1. The majority (55%) of
patients were from French cohorts; the patients from the smallest cohorts in Australia, Canada,
Denmark, the Netherlands and Norway were combined.

The median (interquartile range, IQR) age at seroconversion was 31 (26, 37) years, and
the majority of participants were male (80%) and infected through sex between men (61%)
(Table 1.2). The median (IQR) year of seroconversion was 2000 (1995, 2003) and time between
seroconversion and entry to our analysis was 1.3 (1.1, 1.9) years. Only 8% of participants
were identified as HIV-infected close to seroconversion. At baseline (entry to our analysis), the
median (IQR) CD4 count was 641 (560, 788) cells/mm?® and, of those who had a measurement
available (2671, 79% of patients), the baseline HIV RNA was 4.1 (3.5, 4.7) logio copies/ml and
< 500 copies/ml in 289 (11%) patients (a broadly similar rate of viraemic control as seen in

previous CASCADE analyses of untreated patients; Madec et al. (2005)).
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There were some differences in the patient characteristics across the countries, reflecting
underlying differences in the HIV-infected populations targeted by the different seroconverter
cohorts. Germany and the UK had few female patients (8 and 6%, respectively), and this
was reflected in a greater proportion of patients reporting the route of HIV transmission as
sex between men in those countries (86 and 89%, respectively). On average, the patients
from Germany seroconverted later (median year 2004) and those from Italy and Spain earlier
(1996 and 1997, respectively); this tied in with a relatively large proportion of Italian and
Spanish patients reporting the route of HIV transmission as injecting drug use (IDU; 31 and
37%, respectively, compared to 9% overall). These individuals were also less likely to have an
available baseline HIV RNA measurement (65 and 52%, respectively). A large percentage of
German patients were identified as HIV-infected close to seroconversion (36%). The median
baseline CD4 count ranged from 629 cells/mm? in UK patients to 706 cells/mm? in Spanish
patients, and the percentage of patients with baseline HIV RNA <500 copies/ml ranged from

3% in Germany to 14% in Italy and Switzerland.

Follow-up

A total of 686 (20%) patients were censored due to irregular CD4 counts (resulting in the
censoring of 74 events); of these, 626 patients (19 events) would subsequently have been censored
due to LTFU. A further 1652 (49%) patients (with otherwise regular CD4 counts during follow
up) were censored due to LTFU (no CD4 count in the 12 months before the last CD4 in the
cohort); of these, 240 patients (34 events) were censored at 12 months after their last CD4 date
and 1412 patients were censored at their last alive date. The large number of patients censored
at their last alive date (which ranged from July 1996 to March 2008) came mainly from France
(n =911) and the UK (n = 279). After these censorings, 157 (5%) AIDS or death events were
observed (103 AIDS and 54 deaths). The remaining 705 (21%) patients were considered to be
administratively censored. The median follow-up time was 2.3 years (IQR 1.1, 4.6; maximum
12.4; Table 1.1). Overall, 1082 (32%) patients were observed to initiate treatment during follow-
up, at median (IQR) [range] 17 (5, 33) [0, 123] months after baseline and at CD4 count 432
(296, 576) [12, 1998] cells/mm3. The median (IQR) time between CD4 count measurements
was 3.3 (2.4, 4.6) months, though varied by country (Table 1.1). The last CD4 count was
carried forward in 75% of patient-months. There were no HIV RNA data available at all for
7% of patients and no prior HIV RNA data was available in 6% of patient-months. The time-
dependent covariates are summarised over all follow-up time in Table 1.3. Of note, the median

(IQR) CD4 count over all follow-up was relatively high, at 595 (468, 767) cells/mm?.
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All follow-up Treatment-naive follow-up
(1082 patients initiated treatment)

Number of patient-months follow-up 133 568 88 545
Follow-up time, months 27 (13, 55) 17 (5, 33)
CD4 count, cells/mm? 595 (468, 767) 591 (477, 751)
(5" and 95" percentiles] [303, 1116] [326, 1090]
CD4 count decrease
Large increase (>100 cells/mm?) 5798 (4%) 2521 (3%)
Small increase (<100 cells/mm3) 7604 (6%) 3976 (4%)
No changel! 104 982 (79%) 72 711 (82%)
Small decrease (<100 cells/mm?) 8241 (6%) 5001 (6%)
Large decrease (>100 cells/mm?) 6943 (5%) 4336 (5%)
Time since last CD4 count, months 2.1 (1.0, 3.8) 2.3 (1.0, 4.0)
Nadir CD4 count, cells/mm? 482 (345, 610) 530 (417, 661)
Number of previous CD4 counts 6 (3, 14) 4 (2, 8)
Number of previous HIV RNAs 6 (3, 13) 4 (2, 8)
Last HIV RNA, logjo copies/ml[*?] 3.7 (2.3, 4.4) 4.1 (3.4, 4.6)
Time since last HIV RNA, months® 2.1 (1.0, 3.9) 2.4 (1.0, 4.2)
Peak HIV RNA, log;o copies/mll? 4.6 (4.0, 5.0) 4.3 (3.8, 4.8)

Table 1.3: Summary of time-dependent covariates over all follow-up and treatment-naive follow-
up. Values are n (%) for categorical variables and median (interquartile range) for continuous
variables unless otherwise indicated. [1] By definition, there was no change in CD4 count
if the last value was carried forward (as for 75% of observations over all follow-up and 78%
of observations over treatment-naive follow-up). [2] Of the patient-months with prior HIV
RNA data available (94% over all follow-up and 90% over treatment-naive follow-up). [3] If no
subsequent measurements available, last HIV RNA measurement carried forward regardless of
the length of time.
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1.7 Scope of the thesis

Our interest ultimately lay in the application of dynamic MSMs to optimise pre-specified dy-
namic treatment regimes, defined by time-dependent covariates, but these rely on having ap-
propriately estimated inverse probability weights. We begin in chapter 2 with the estimation
of causal treatment effects using a standard MSM, in order to investigate the construction of
such weights. This process is not straightforward and there currently exists limited guidance
for researchers. We illustrate and discuss the complexities of obtaining a suitable set of weights.
We propose a simple and transparent algorithm for the construction of the weights, framed as a
series of decisions, which must inevitably be subjective. We applied our algorithm to the CAS-
CADE data to explore the implications of those decisions on the overall conclusions relating to
the effect of antiretroviral therapy on the risk of AIDS or death in HIV-infected persons.

In chapter 3, we extend the standard MSMs in the most straightforward way to incorporate
effect modification by a time-dependent covariate. We firstly considered the estimation of
the effect of immediate versus deferred treatment initiation given current CD4 count, which
addresses the clinically-relevant question regularly faced by health care providers and patients
regarding whether to initiate or defer treatment with respect to current CD4 count. We then
used history-adjusted MSMs to estimate the effects of treatment initiation immediately versus
never, given current CD4 count. We compared these results to those under the immediate versus
deferred treatment scenario, and also to the results from the standard MSMs; although these
approaches address different questions, these comparisons may help improve understanding of
the causal effects of treatment. The results from these history-adjusted MSMs could then be
used to determine the optimal history-adjusted static regime for a patient, given their time-
dependent covariate history.

We move to dynamic MSMs in chapter 4 to consider the optimisation of pre-specified dy-
namic treatment regimes, defined by CD4 count in our application to the treatment of HIV-
infected persons. Although history-adjusted and dynamic MSMs share similar concepts, they
are applied to different questions. Once again, while these different questions will of course
give different answers, one might expect some consistency across the results with respect to
treatment initiation in relation to CD4 count in HIV-infection. The inverse probability weights
which are required for history-adjusted and dynamic MSMs are constructed in a similar way as
for the standard MSM, hence the importance of the first step in determining adequate weights
for the standard MSM before proceeding to more complex methods. We aimed to use this

sequential application of all three types of MSM to enhance our understanding of the causal
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effects of interest.

There have been recent developments in the application of dynamic MSMs to incorporate
permitted delays in treatment initiation (“grace periods”; Cain et al. (2010)). These have rarely
been applied in practice (Cain et al., 2010; HIV-CAUSAL collaboration, 2011; Shepherd et al.,
2010) and their implications have not previously been investigated; we attempted to address this
gap in the literature in chapter 4. In addition, we aimed to contribute to the debate outlined
above in section 1.5 regarding the optimal timing of treatment initiation with respect to CD4
count in HIV-infected individuals.

Finally, in chapter 5, we compare and summarise the results across the chapters, draw some

conclusions, discuss limitations and outline potential future work.

1.8 Summary of main contributions of the thesis

We advocate the application of all three types of MSM to address dynamic causal questions, and
comparison across the approaches offers additional insights into the methodology and clinical
results.

For the crucial step of construction of suitable inverse probability weights, we have structured
this process as four key decisions, defining a range of strategies; all demonstrated a beneficial
effect of ART in CASCADE. We found a trend towards greater treatment benefit at lower CD4
across a range of models.

Via large simulated randomised trials based on CASCADE data, longer grace periods (per-
mitted delay in treatment initiation) and in particular less-frequently observed CD4 indicated
higher optimal regimes (earlier treatment initiation at higher CD4), although similar AIDS-free
survival rates may be achieved at these higher optimal regimes. In realistically-sized obser-
vational simulations, the optimal regime estimates lacked precision, mainly due to broadly
constant AIDS-free survival rates at higher CD4. Optimal regimes estimated from dynamic
MSMs should be interpreted with regard to the shape of the outcome-by-regime curve and
the precision. When our desired inference is under the absence of a grace period, we found
in our clinical setting that allowing a 3-month grace period may increase precision with little
bias; under longer grace periods, the bias outweighed the efficiency gain. In our CASCADE
population, immediate treatment was preferable to delay, although estimation was limited by

relatively short follow-up.
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Chapter 2
Standard marginal structural models

2.1 Introduction

In chapter 1, we introduced a number of methods for the estimation of causal effects. The
aim of this chapter is to explore the estimation of causal effects using marginal structural
models (MSMs) via inverse probability weighting. As discussed in section 1.7, the construction
of appropriate weights may be a complex process. This has been addressed to some extent
by previous authors (Cole and Herndn, 2008), but the majority of previous approaches are
somewhat opaque and perhaps not easily implementable by many researchers (see section 2.3.1;
Brookhart and van der Laan (2006); Mortimer et al. (2005); Petersen, Deeks, Martin, and
van der Laan (2007)). We aim to contribute to this area by approaching the construction of the
weights as a series of decisions, and use these to propose a range of plausible model building
strategies. We apply these methods to estimate the causal effects of treatment on time to AIDS
or death in HIV-infected persons in our population of patients from CASCADE, and assess the

implications of these decisions.

2.2 Methodology

2.2.1 Notation

We wish to estimate the effect of treatment on time to the first occurrence of an AIDS-defining
illness or death, assuming for now that there is no censoring (relaxed in section 2.2.4). We
discretise time into small intervals (months) so that treatment and event probabilities can be
calculated within those intervals and therefore aid computation; the weighted logistic regression
models which we introduce in section 2.2.2 approximate weighted Cox proportional hazards

regression models, provided event probabilities within each time interval are small (D’Agostino
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et al., 1990), and are easier to implement using standard software.

Adapting and extending the notation introduced in chapter 1, let 7" be the time to the first
AIDS event or death, and let Y (¢) be an indicator for whether an AIDS event or death occurred
prior to time ¢, that is Y (¢) = 1if 7' < ¢t and Y (¢) = 0 if 7" > ¢. Similarly, let A(t) = 0,1 be an
all-or-nothing but time-dependent indicator for whether treatment was initiated prior to time t,
that is A(t) = 1 if treatment was initiated before time ¢, and 0 otherwise (including if treatment
was initiated at time t). As indicated previously, we are interested in treatment initiations and
ignore subsequent treatment discontinuations, therefore if A(t) = 1 then A(s) =1 for s > ¢. Let
L(t) represent the latest time-dependent covariates measured prior to time ¢. As before, we use
overbars to indicate history, so A(t) = {A(0), A(1),..., A(t)} and L(t) = {L(0), L(1),..., L(t)},
and V represents a vector of baseline covariates.

For illustration, Figure 2.1 shows two examples of the data which may be collected. In
example (a), the patient’s time-dependent covariates L were measured between times ¢t — 2 and
t — 1; these measurements would then be used for L(t — 1). The patient initiated treatment
between ¢ — 1 and ¢, meaning that A(t —1) = 0 while A(¢) = 1, and the patient experienced the
event between times ¢ and ¢t 4 1, therefore Y (¢) = 0 and Y (¢ + 1) = 1. Example (b) is included
to illustrate what happens if these measurements and events take place at given time-points,
which may be considered at, rather than between, clinic visits. The time-dependent covariates
L were measured at time ¢ — 2 for this patient, therefore by our definition this informs L(t — 1).
Similarly, this patient initiated treatment at time ¢t — 1 and therefore A(t—1) =0 and A(¢t) = 1,
and this patient experienced the event at time ¢, so Y (¢) = 0 with V(¢ + 1) = 1.

Of note, we have used the end of each time interval to label the outcome, treatment and
covariates (that is, prior to time ¢ rather than including time t). These choices are unlikely to
affect the findings from our work, but clearly it is important to apply the definitions consistently
throughout to ensure temporality (time-dependent covariates predicting treatment, and both
time-dependent covariates and treatment predicting outcome). We have applied these definitions
since, in our work, the covariates L are typically measurements such as CD4 count or HIV RNA,
for which bloods are taken and the results available at some later time. Other choices may be
more appropriate in situations where the covariates L consist of measurements whose results

are known immediately, such as blood pressure or weight.
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Figure 2.1: Examples of measurement of time-dependent covariates (L), treatment and events.
See text for how these are used to determine the values at each time-point. Both examples are
likely to occur in any observational data (including in interval and clinical cohorts).

2.2.2 Marginal structural Cox proportional hazards models

We might attempt to estimate the effect of current treatment using a Cox proportional hazards
(PH) model given by:
A {t|A(t), V} = Xo(t) exp {’A(t) + BV} (2.1)

If, given V, treatment was unconfounded, then o/ would be an unbiased estimate for the causal
effect of ever versus never having initiated treatment. However, as discussed in chapter 1, if
treatment is confounded by time-updated covariates (an example of confounding by indication),
then o will be a biased estimate for the causal effect of treatment, whether or not we adjust
for those time-dependent covariates in addition to V' (Herndn et al., 2002).

Recall that T represents the time to event under a particular treatment regime A. For a
given patient, Tz will remain unobserved for the regimes which that patient did not follow and,
under the assumption of consistency (see below), will equal the observed T for the treatment
regime(s) A that they did follow. Then, as introduced in section 1.4.3, the Cox PH MSM of
interest is given by:

Az {HA(), V) = Xo(t) exp {aA(t) + BV} (2.2)

As outlined previously, since at least some of these outcomes will remain unobserved, we
cannot fit this model directly. However, if we use inverse probability weights to create a pseudo-
population in which we upweight patients who are and are not on treatment at each time-point to
account for the patients with the same covariate history but who are not on the same treatment
path, then we have removed the dependence of treatment on the measured time-dependent

covariates and so treatment is no longer confounded by those covariates (Herndn et al., 2000).
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Then the standard Cox PH model of equation 2.1 applied to the pseudo-population (via inverse
probability of treatment weighting) will yield an unbiased estimate & for the causal effect of

ever versus never treated, under certain assumptions.

Assumptions

As outlined in section 1.2.4, for the application of MSMs to estimate causal effects in observa-

tional studies, we require the following assumptions (Cole and Hernén, 2008):

e Consistency: formally, this states that the potentially counterfactual outcome T'; under
treatment regime A is equal to the observed outcome 7 if the patient was observed to

follow regime A.

e No unmeasured confounders between treatment and the outcome (otherwise known as ex-
changeability). That is, at each time ¢, the treatment received at that time is independent
of the time to event, given treatment and covariate history. Formally, this means that for
each A, we assume that T%; is independent of A(t) given A(¢t — 1) and L(t — 1) (Hernédn

et al., 2001).
e No misspecification of the models.

e Positivity, that is that there is a non-zero probability of receiving each treatment regime
for all combinations of treatment and covariate history. Formally, letting f(-) repre-
sent the probability density function, we assume that f {Z(t — 1), L(t — 1)} > 0 implies

F{A®)|A(t —1),L(t — 1)} > 0 for all A(t),A(t—1),L(¢t — 1) (Herndn et al., 2002).

The first three assumptions cannot be tested from the data, though the second and third
can be explored by considering a broad range of potential confounders and different model
specifications. Note that we also require temporality, that is L(t — 1) is measured prior to A(t),
which we have by the conservative construction of our data (section 2.2.1).

Since current guidelines (outside the USA) recommend HIV-infected persons to initiate
treatment around CD4 counts of 350 cells/mm3 (Gazzard and on behalf of the BHIVA Treatment
Guidelines Writing Group, 2008; WHO, 2010), we might for example expect all patients with
CD4 count < 300 cells/mm3 to be on treatment. This would violate the positivity assumption
and we would not be able to estimate the causal effects of treatment in this CD4 count range.
Cole and Herndn (2008) refer to such cases as “structural zeroes” since by definition in these
circumstances there would be zero probability of never having started treatment when CD4

count < 300 cells/mm?. In practice, it is unlikely that we will see such consistent treatment
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patterns. “Random zeroes” due to chance are permitted since the use of a model essentially
“borrows” from the remaining data, although the presence of random zeros increases the chance
of bias due to non-positivity (Cole and Hernan, 2008).

Aside from non-positivity concerns, if there exist patients who remain treatment-naive with
very low CD4 counts, these patients are an unusual subset. If it was possible to identify
such “treatment refusers” from the outset, then we might consider excluding those patients
altogether, on the grounds that they do not constitute our population of interest and further we
may be worried that we have not captured all potential confounders to adequately describe the
treatment behaviour of these patients. However, this could result in bias; we cannot identify
these patients from the outset. Alternatively, if we observed a patient to reach CD4 count
< 100 cells/mm? without initiating treatment then we may be tempted to censor the patient
at that time, in order to attempt to restrict to our population of interest, namely patients who
would consider taking treatment. However, such a censoring process is dynamic and cannot
be appropriately accounted for, via weighting of MSMs or otherwise, without addressing the
dynamic element. In chapter 3, where we consider the start of each treatment-naive month
of follow-up as a “trial” for immediate treatment initiation versus deferral, we will be able to

3. Further, in chapter 4

exclude “trials” where the “baseline” CD4 count is < 100 cells/mm
such patients will implicitly be censored from regimes defined by earlier treatment initiation at

higher CD4 counts. However, we cannot easily address this issue further with standard MSMs.

2.2.3 Inverse probability of treatment weights

In general, the treatment weights are not known, therefore we must estimate them from the data.
However, even if the true weights are known, it has been shown that appropriately estimated
weights are more efficient (Herndn et al., 2001; Moodie, 2009). The inverse probability of
treatment weight for a particular patient at time ¢ is defined by the inverse probability of that
patient having received their observed treatment to ¢, given their baseline and time-updated
covariates and previous treatment. In practice, we split time into suitable intervals denoted
t = 1,2, ... and use pooled logistic regression, treating each person-time interval as an observation
and estimate the treatment probabilities up to each time ¢ as follows.

Following the notation of Hernén et al. (2001), define:
pa(t):=Pr{A(t)=0[A(t-1)=0,Y(t)=0,L(t—1)} (2.3)

for t = 1,2,... where A(0) = 0, since by definition all patients are treatment-naive at base-
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line, and L(0) are the time-dependent covariates measured at baseline and include the time-
independent covariates V. We perform a pooled logistic regression, on patients previously
treatment-naive, with outcome of treatment initiation, to obtain the probabilities of treatment
initiation in the time intervals ¢ = 1, 2, ... given time-updated covariates, and hence obtain the
estimates p4 (t) for non-initiation of treatment. We are then able to estimate the probability of
each patient’s observed treatment to time ¢, given baseline covariates, time-dependent covariate

history and past treatment, as follows:

t
H pa (k) if patient did not initiate treatment up to time ¢
k=1

qa (t) = k—1
{1—pa(k)} H pa (1) if patient initiated treatment in [k — 1, k), for k < ¢
=1

and we estimate the weights using:

For example, consider four patients with the same covariate history prior to time ¢t — 1, who
were all treatment-naive prior to time t—1, and three of these patients remained off treatment to
time ¢ but the fourth patient initiated treatment prior to time ¢. Then in this subset of patients,
the probability of initiating treatment prior to time ¢ (given off treatment prior to time ¢ — 1)
is 1/4. At time ¢, the first three patients who did not initiate treatment are assigned weight
1_711/4 = 4/3, so these three patients count for themselves and also the fourth patient who is no
longer following that treatment regime of not initiating treatment prior to time t. Conversely,
the fourth patient who did initiate treatment is assigned weight ﬁ = 4, and therefore counts
for him/herself plus the three patients who did not follow that regime of initiating treatment
prior to time t.

In practice, a select few patients may have large weights and these would dominate the
analysis thus leading to large standard errors. Therefore, we usually stabilise the weights to
increase the efficiency (Herndn et al., 2000). In theory, this can be done by replacing the
numerator of 1 in /V[7(t) with any function of treatment A(t¢) but which is not a function of the
time-dependent covariates (Herndn and Robins, 2006). In practice, we typically use a function
of time-independent variables by defining p* (¢) analogously to pa (t) as in equation 2.3, except

replacing L (t — 1) with V, and similarly estimate g% (¢). Then the stabilised weights are given

by:
(t)
(t)

N

SWa(t) =

§)
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Informally, the denominator is the probability of treatment given treatment history and time-
updated covariates (including baseline), whereas the numerator is the probability of treatment
given treatment history and baseline covariates only. The informal reasoning behind this is
that we can adjust more efficiently for the baseline covariates in the outcome model instead,
rather than via the weighting. We must adjust for the covariates V' in the outcome model, since
the stabilised weights only remove the time-dependent confounding conditional on V' (Cole and
Hernén, 2008). To further help control the weights, truncation may be performed (Cole and

Hernén, 2008). For further discussion on the weight estimation, see section 2.3.

2.2.4 Censoring

As mentioned in section 1.2.4, right-censoring is common with time-to-event data therefore some
patients will be censored before we observe the event. Under the assumption that the censoring
process is independent of T, conditional on covariate and treatment history (no unmeasured
confounders), then we can easily adapt our weighting method of above to estimate inverse
probability of censoring weights and therefore account for censoring. By doing so, we are
attempting to estimate the effect of treatment in the absence of any censoring (Hernan et al.,
2001). For illustration, assume there is just one type of censoring and let C'(t) = 0,1 represent

whether censoring has occurred prior to time t. Define for ¢t = 1,2, ...
pe (t) =Pr{C(t+1)=0[A(t),L(t),C(t)=0,Y(t+1) =0}

and again analogously for pf, (¢) with L (¢) replaced by V. We consider C(¢+1), that is, censoring
in the interval [t, ¢+ 1), rather than C(¢), to correspond with the interval used for the outcome
estimation (see section 2.2.5). Estimation of the stabilised weights SW ¢ (t) then follows as above
for the treatment weights. In practice, there may be a number of different reasons for censoring
(as in section 1.6.1, for example). These methods can be applied to different censoring types
to estimate separate weights, which can then be combined, or extended analogously to treat
different censoring types as a range of outcomes in a multinomial logistic regression. While in
theory any number of different types of censoring may be incorporated in this way, in practice
this may be limited by the data available, and the analyst should check that this does not cause
excessive variability in the weights.

The overall weights are given by the joint probability of observed treatment and remaining
uncensored, assuming these are independent processes given the measured confounders. There-

fore in the presence of censoring, we amend the treatment weight estimation to also condition on
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C(t) = 0 in equation 2.3 and similarly for p% (¢), and obtain the overall weights by multiplying

the (amended) treatment and censoring weights together to estimate the overall weights:
SW(t) = SWa(t) x SWe(t).

2.2.5 Estimation of treatment effect

Finally, for t = 1,2, ..., we estimate:
p(t) =Pr{Y(t+1)=1]Y(t)=0,C(t+1)=0,4(t),V}
using for example a pooled logistic regression of the form:

logit {p(t)} = log { . p(t)

_p(t)} = aA(t) + BV +vf(t) (2:4)

weighted using the overall stabilised weights SW (t), where f(¢) is some function of time. That

is, the log-likelihood function which we seek to maximise is given by:

Z{ TYi(t+1) = 1] SW;(t)logpi(t) + I [Yi(t + 1) = 0] SW;(t) log (1 — pi(t)) }

_ [ I+ D) = 1] (D) + BY; + (1)
B ;SWz“”g{ T+ oxp {adi(t) + BV + 1/ (D)} }

where I [-] is an indicator equal to 1 if - is true, and 0 otherwise, and ¢ indexes the patients in
the study; the parameters to be estimated are «, 8 and 7. Using the weights ﬁ/(t) for the
estimation of the outcome in the interval [t,¢ + 1) means that we do not adjust for treatment
initiations in that interval, to ensure temporality (treatment initiation in that interval could be
in response to the event).

In general, it is not possible to efficiently estimate an intercept for every time interval,
therefore we use a function of time f(t), perhaps categorical or a spline (Hernén et al., 2000).
Assuming small event probabilities per time interval, the resulting odds ratios can be interpreted
as hazard ratios (D’Agostino et al., 1990). Under the assumption of no unmeasured confounders
for treatment and outcome, we obtain an unbiased estimate & for the effect of ever versus never
treated on the time to AIDS or death. We use robust variance estimators to allow for correlated
observations induced by the use of time-dependent weights (Cook et al., 2002; Zeger and Liang,
1986), implemented using Stata’s robust command which uses the sandwich variance estimator.

This model assumes a constant effect of treatment over time, which may not be plausible

52



in certain scenarios. For example, we might expect a greater benefit of treatment the longer
time spent on it; this could be incorporated with a covariate capturing time on treatment. In
addition, it is possible to investigate treatment effect modification by baseline covariates V' by

incorporating interactions with treatment, for example using:

logit {p(t)} = a A(t) + BV +7£(t) + JA()V.

Of note, if we wish to look at such interactions with baseline covariates then it is not essential
to incorporate those baseline covariates into the model for the numerator of the weights, but
since they will be in the outcome model including them in the model for the numerator may
potentially increase efficiency.

Usual model fitting techniques and methods for checking goodness of fit can and should be

applied.

2.3 Estimation of the weights in practice

We now discuss the estimation of the inverse probability of treatment weights in practice, but
in the presence of censoring the same principles and methods can be applied to estimate inverse

probability of censoring weights.

2.3.1 Bias-variance trade-off

Adequate specification of the treatment prediction model is necessary for consistent estimation
of causal treatment effects via an MSM, but in practice determination of such a model may
not be straightforward. Cole and Herndn (2008) outline three main steps for constructing the
weights: firstly, they recommend checking the positivity assumption for the confounders which
are suspected to be most influential. Secondly, they suggest investigation of the assumption
of no unmeasured confounders by considering a broad range and specification of measured
potential time-dependent covariates in the weight estimation, checking for sensitivity in the
estimated treatment effect. Lefebvre et al. (2008) recommend including in the treatment model
confounders for outcome and treatment, and risk factors for the outcome, but not predictors
of treatment alone (that is, which are not also associated with the outcome); they found via
simulations that the bias in using an incorrect treatment model was not significant and was
outweighed by the gain in efficiency. The third step of Cole and Hernan (2008) is to assess

model specifications by looking at the distribution of the weights, namely the mean and spread.
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At each time-point, the mean of the stabilised weights should be close to one. To see why, let

f(A, C) be the probability density function for treatment A and censoring C'. Then the stabilised

weights are given by % and so the stabilised weights should have mean one since, under
- fACIV) } _ [ { fAACIY) T }] _
the assumption of no unmeasured confounders, F {f(A,C\L(t)) E|E FACTO) |L (t) 1

(Herndn and Robins, 2006). For simplicity, we usually simply look at the mean over all time
intervals. As Cole and Herndn (2008) indicate, this could lead to the selection of weights which
fit reasonably well over all time-points rather than a set of alternative weights which fit better
at most time-points but poorly at a few. For this reason, we may also wish to check the weights
at each time-point.

Large weights may arise due to a few patients who for some reason do not follow typical
treatment patterns (and are thus most informative with regard to confounding), leading to
situations close to non-positivity. Further, large weights may arise due to model misspecification,
particularly for continuous covariates since the treatment model may predict very low or high
probabilities of treatment initiation at the extremes of the range, therefore any patients who do
or do not initiate treatment, respectively, will receive large weights. Even in the absence of bias
due to non-positivity or model misspecification, large weights which are merely a consequence
of sampling variation may dominate the analysis leading to large standard errors and unstable
estimates, so some truncation of the weights may be prudent.

Whilst we would expect well-estimated weights to have small standard deviation or range,
Cole and Herndn (2008) note that the “best” weights, with respect to these conditions of small
standard deviation and mean one, would be equal to one for all patients and time-intervals,
but this would not adjust for time-dependent confounding at all. They describe this process of
simultaneously attempting to address the assumptions of positivity, no unmeasured confounders
and no model misspecifications as a bias-variance trade-off. This balance can be explored by
looking at progressive truncation of the weights (Cole and Hernén, 2008), though Cole et al.
(2005) caution that the most extreme weights contain the most information with respect to
confounding therefore weight truncation is not ideal for model checking.

Therefore, even within the extent of existing guidance, there are a number of subjective
decisions to be made in terms of this balance of bias and variance which may legitimately be
approached differently by different researchers. The potential for different choices primarily
lies with determining what size change is important when investigating the sensitivity in the
estimated treatment effect to different model specifications and what is deemed a reasonable

weight distribution. Of note, “traditional” model building approaches such as stepwise back-
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wards selection are not appropriate since they focus on determining predictors of treatment
rather than confounders of treatment and outcome, and do not consider the efficiency of the
treatment effect estimator.

There have been a number of attempts to formalise the treatment model selection procedure.
Firstly, the approach of Mortimer et al. (2005) requires predefining a candidate set of treat-
ment models (they used 10) and optimising the bias-variance trade-off using a cross-validation
approach with a residual sum of squares (RSS) criterion. In particular, the first step of their
method involves splitting the data by 90% to 10% into training and test sets, respectively. Each
of the candidate treatment models are fit to the training set and that which minimises the
Akaike information criterion (AIC, given by 2k — 21In(L), where k is the number of parameters
and L is the maximised value of the likelihood function) is labelled X. From each of the can-
didate models, inverse probability weights are estimated and the corresponding MSM estimate
of the parameter of interest is obtained. The outcome is then predicted for each observation
in the test set based on each of the MSM estimates. Ideally, the best MSM estimate would be
that which minimises the mean counterfactual RSS, but of course those are not all observed.
Therefore, a modified RSS is employed, whereby the observed RSS is weighted just as in an
MSM. That is, the modified RSS is given by:

%observed RSS
Pr (treatment | time-updated covariates)

Q=

where n is the number of observations in the test dataset. The model X determined above is
used to apply this weighting. This process should be iterated a large number of times (Mortimer
et al. (2005) did so 10,000 times) and the overall ) is taken to be the average. The best treatment
model is then chosen as that with minimal overall Q).

A potential limitation of this approach is the requirement for a restricted set of treatment
models to be chosen at the outset. Further, although the authors note that the distribution
of the weights should always be checked and recommend that sensitivity analyses should be
performed in order to give confidence in the chosen weights, they do not provide any additional
recommendations on how this may be done. In particular, if this procedure leads to a model
with weights which are not deemed suitable for some reason, then it is unclear how the analyst
should proceed; indeed, it is not entirely clear how to assess the suitability of the weights.

In a paper on HAMSMs (see chapter 3), Petersen, Deeks, Martin, and van der Laan (2007)
used a somewhat different cross-validation approach with a “deletion/substitution/addition

algorithm” in order to select their treatment model. Once again, this process involves fitting
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models of various sizes and complexities, assessing performance in independent samples, and
selecting that which optimises the bias-variance trade-off. While the range of model possibilities
under Petersen, Deeks, Martin, and van der Laan (2007) was quite extensive, there was still
some lack of transparency in the process, which would not be straightforward to implement.
Brookhart and van der Laan (2006) also used a cross-validation approach, to minimise the mean
square error.

The ultimate aim of these methods is to select a treatment model which best balances bias
versus variance. While a parsimonious model may offer relatively low variance and avoid bias due
to positivity, it may inadequately control for the time-dependent confounding in the treatment
model. Further, treatment model misspecification may result in bias or inflated variance. While
the approaches above methodically select an optimal treatment model based on a (finite sample)
bias-variance trade-off, they are not easy to apply and are unlikely to be adopted by many
researchers. The processes are not transparent; a suitable stepwise approach to the model
selection process (which focuses on controlling for confounding between treatment and outcome,
not determining predictors of treatment like in “traditional” model building approaches) may
offer insights into the data at hand and potential issues with particular variables or models.
Further, there are a number of other factors, such as truncation of the weights, which are not
addressed by these methods. Lastly, as mentioned above, it is unclear how to proceed if the
approaches discussed above yield weights that are for some reason deemed unsuitable. We sought
to address the various subjective decisions that an analyst may be faced with when attempting
to determine a suitable treatment model and propose an informal, transparent approach to the

construction of the weights, as a series of decisions.

The positivity assumption

As mentioned above, the first step of Cole and Herndn (2008) for constructing the weights is
to check the positivity assumption for the key confounders. In practice, this can be explored
by examining the treatment initiation patterns across different categories of the confounder,
to see whether patients do and do not initiate treatment at all levels of the confounder. This
could simply be done for one key confounder (for example, CD4 count), or across different levels
of multiple confounders (for example, CD4 count and HIV RNA). Even if it is thought that
structural zeroes are unlikely, then this may help identify random zeroes.

If there is concern about violations of the positivity assumption, then one option for the
analyst may be to collapse categories of the confounder, or model the confounder continuously in

order to smooth over the random zeroes. An alternative, and somewhat more extreme option,
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would be to restrict the sample to exclude groups of patients for whom there exists limited
variability in the treatment pattern (for example, if the vast majority of patients initiated
treatment when CD4 < 200 cells/mm? then we exclude the small subset of patients who did
not initiate treatment with such a low CD4 count, on the grounds that those patients do not
constitute the population in whom we wish to estimate treatment effects).

Petersen et al. (2010) provide more detail about diagnosing and responding to violations in
the positivity assumption, and, in the presence of such violations, the authors recommend a
systematic approach to the trade-off between the desired inference (unbiased) and identifiability

(precision).

2.3.2 Key decisions

While Cole and Hernén (2008) give a broad outline of the principles behind the treatment model
building process, there is still scope for a number of different approaches. One such difference lies
in the starting point for analysis. Let Ly, be a small number of covariates which are known a
priori to be important confounders of the relationship between treatment and outcome; the first
step of Cole and Herndn (2008) is to investigate the positivity assumption with respect to these
variables. Let L, denote the remaining potential confounders which may be considered for
inclusion in the treatment model. One possible approach to the model building process might be
to begin with a treatment model consisting of time, baseline covariates V' and Ly, only and then
consider the addition of each of the other potential confounders of L, in turn with reference
to some pre-defined criteria for identifying which covariates are important confounders and so
should be included in the treatment model. Iterating this process until no further covariates
meet the criteria for inclusion would yield the final treatment model. Alternatively, the analyst
could start from a “full” treatment model including the potential confounders L, in addition
to time, V' and Lge,, and the reverse procedure applied to identify covariates which are not
important confounders and so can be removed from the treatment model.

The pre-defined criteria for identifying important confounders may incorporate a number
of factors, such as the distribution of the weights, the estimated treatment effect and/or its
standard error; this is different to a standard model selection procedure such as backwards
elimination which would only consider the significance or otherwise of the variables in the
treatment model. Note that covariates which are solely risk factors for the outcome, and not
confounders for treatment, may be adjusted for directly in the outcome model, even if they are

time-dependent.
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Starting point: minimal treatment model with
time, baseline covariates V and L,,,; or full
model with in addition L, (decision 1)

y
Add/remove all remaining covariates

of L, one atatime

A

y

Work with weights which are untruncated
or truncated (decision 2)

Repeat until no more
covariates to
include/remove

y
Identify the covariate to add/remove T
(under criteria of decision 3)

y

Identify level of truncation for final weights
(under criteria of decision 4)

Figure 2.2: Flow chart for treatment model building process. See text for further details on the
decisions.

In the absence of bias in the estimated treatment effect, progressive truncation of the weights
will result in weights which have mean closer to one and smaller standard deviation. In practice,
truncation may result in bias due to poorer control of confounding, but conversely it may help
protect against bias due to non-positivity or model misspecification. Therefore it is prudent to
check sensitivity of the estimated treatment effect to weight truncation.

One possible approach to the treatment model building process, covering the aspects dis-
cussed above, is outlined in Figure 2.2, with the key decisions highlighted. While there are other
possible approaches and scope for variation, these decisions cover a number of key aspects and
will illustrate the potential differences that may arise under alternative but equally plausible

strategies. We now consider each of the decisions in detail.

Decision 1: starting point

As suggested above, the analyst may choose to start with a minimal model consisting of time,
baseline covariates V' and the key confounders Lj.,, or a “full” model consisting of the potential
confounders L, in addition to time, V' and Lj,. Backwards selection could be done, but if for
example L, contains a large number of variables and there are concerns about non-positivity,
then it may be preferable to start with the minimal model. This relates to the forward /backward

part of the algorithm proposed by Brookhart and van der Laan (2006).
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Decision 2: working weights

The weights used during the treatment model building process may be truncated or untrun-
cated. If there is concern about non-positivity and it is thought that some truncation may be
performed on the final weights, then one may argue that it is preferable to work with truncated
weights throughout; the extent of the truncation could be determined from a priori set criteria.
Conversely, one may argue that it is preferable to work with untruncated weights during the
model building process to ensure that all potential confounders are identified, although one may

wish to still consider truncation at the end under the criteria of decision 4.

Decision 3: covariate selection

Firstly consider the case where we start with a minimal model and identify covariates for
inclusion. At each stage, we will have a basic model M to which we are considering adding
each of the remaining covariates of L,,; which are not yet in the treatment model; let model M;
denote model M but with in addition the i covariate of Lpot. 1f the addition of covariate ¢ to the
treatment model moves the estimated treatment effect away from the unweighted estimate, then
this could be due to better control of confounding (or similarly improved model specification)
or problems relating to bias. Bias could be due to finite-sample bias and being close to non-
positivity (Cole and Hernédn, 2008), or to selection bias arising from collider-stratification. This
latter issue is discussed by Greenland (2003); it is difficult to think how this might arise in
our application and it would not be possible to detect empirically, but if this source of bias
was suspected then it may perhaps indicate that we should not include the covariate ¢ in the
model (Cole and Herndn, 2008). Problems with positivity can be identified by looking at the
distribution of the weights: mean weights far from one indicate problems with positivity, or
perhaps model misspecification. Preference may also be given to models with a small standard
error (as in Cole and Herndn (2008)) though note it is likely that the unweighted treatment effect
estimate will also have small standard error since there is no additional variability introduced
by the weights. Of note, if a covariate is a statistically significant predictor of treatment but
does not result in much change in the estimated treatment effect, then that covariate is unlikely
to be a (strong) confounder of treatment and outcome. Further to the findings of Lefebvre
et al. (2008), such a variable should not be included in the treatment model since the potential
bias due to an incorrect treatment model would be minimal compared to the gain in efficiency.
Therefore when comparing models M with M; to determine whether to include covariate i,

there are three factors to be considered: the proximity of the mean of the weights to one, the
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size of the treatment effect estimate and the size of the standard error of the treatment effect
estimate (which is related to the standard deviation and range of the weights, therefore we do

not consider these separately). We quantified these factors as follows:

1. proximity of the mean of the weights to one by looking at the absolute change in the mean

of the weights towards one for model M; compared to M

2. movement of the estimated treatment effect relative to the unweighted estimate by looking

at the absolute and relative change for model M; compared to M

3. absolute and relative increase in the standard error of the estimated treatment effect for

model M; compared to M.

These factors were informally considered by Cole and Hernan (2008) when comparing differ-
ent treatment models. These could be combined and parameterised as follows: the i*" covariate
of Ly, is eligible for inclusion if, compared to model M, it () moves the mean of the weights >p
closer to one or (ii) changes the treatment effect estimate relative to the unweighted estimate
by > qﬁp% (and >¢ for some small ¢, to avoid very small differences being counted) or reduces
the standard error by > 0,% (and > o) but with mean of the weights < p,, further from one.
Increasing p, ¢, or op, or decreasing p,,,, will make the criteria more stringent and hence may
lead to a smaller treatment model. When identifying eligible covariates, all three criteria are
of equal importance. If more than one covariate is eligible, then we pick the one for inclusion
as that which most improves the weights (or impairs the least if none improve, since we may
wish to include a covariate which has a large impact on the treatment effect estimate even at
the expense of slightly poorer weights). That is, we prioritised criterion 1 over criteria 2 and 3,
in order to focus on obtaining well-behaved weights. With our logistic regression models, the
treatment effect estimate and associated standard error should be considered on the log odds

scale since the standard error of the odds ratio will be related to the size of the odds ratio.

Interactions and stratification Interactions between key covariates can be considered under
these criteria in the same way as the addition of a covariate. Taking this one step further, if
there are known strata such as different centres or countries, then stratification on that factor
can be considered similarly, since stratification can be considered as incorporating interactions
between the stratification factor and all other variables. Therefore although there would be
a large increase in the number of parameters, the unstratified model is still nested within the

stratified model. So letting M represent the unstratified model and M; represent the stratified
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model, then the same criteria as above can be applied to determine whether separate treatment

models should be estimated within levels of the stratification factor (e.g. centre or country).

Process beginning with a “full” model Under decision 1 where the analyst begins with
a “full” model, the reverse of this process can be applied to determine removal of covariates.
That is, if M’ represents the current model, then compare with each of the models M, which
are identical to M’ but with the ¥ remaining covariate of Lyot removed. Applying the reverse
of the same criteria as above, we can determine whether or not to remove covariate ¢ from M’
in favour of the smaller model M;.

A combination of these steps, akin to the stepwise backwards procedure often used in tra-
ditional model selection, could be applied. For ease, this was not applied here, but we would

anticipate seeing broadly similar results as under the range of strategies considered below.

Decision 4: degree of weight truncation

As discussed above, weight truncation may induce bias due to poorer control of confounding
but conversely may help protect against bias due to non-positivity or model misspecification.
Similarly to Cole and Hernan (2008), we propose considering progressive truncation to investi-
gate the effects on the estimated treatment effect and distribution of the weights. In addition
we propose specific criteria to determine what level of truncation to choose, reflecting either a
desire for a simpler model if there are concerns about positivity or a more complex model in or-
der to better control for confounding. Assuming no bias in the initial treatment effect estimate,
progressive truncation will result in estimates which are increasingly biased but more precise
(Cole and Herndn, 2008), so we will typically see a decrease in the mean and standard deviation
of the weights, which translates to a treatment effect estimate closer to the unweighted estimate
and smaller standard error of that estimate.

It will be necessary to propose a set of truncations to consider. There is little to inform the
specific levels of truncation in this set and it should be recognised that different choices may
lead to different conclusions, since clearly the decision whether to progress from one level of
truncation to the next will depend on the (relative) levels of truncation. If very extreme weights
are seen then it may be prudent to perform some minimal truncation by default.

For each final treatment model, we propose the following two possible criteria to determine
whether to proceed with additional truncation (and stop when decide not to truncate any

further):
(a) truncate if it leads to a reduction (that is, weakening) in the estimated treatment effect of
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> ¢ and > ¢, %, provided no worsening of the mean of the weights in terms of absolute

distance from one (and assuming reduction of the standard error)

(b) truncate if it leads to a reduction in the standard error by > p and > p,%, provided the

reduction in the estimated treatment effect is < ¢,, %

Rule (a) favours truncation if that is associated with a large change in the treatment effect,
since this large change could indicate problems with positivity and truncation may help protect
against the potential bias due to non-positivity. This will typically be a conservative approach.
In contrast, rule (b) will only truncate if that offers benefits in terms of increased precision and
is not associated with a large change in the treatment effect; since “the extreme weights encode
the greatest amount of confounding” (Cole et al., 2005), the argument is that truncation may

lead to inadequate control for confounding.

2.3.3 Strategies

In theory, numerous permutations of the decisions above could be combined to form a large
number of strategies; in order to have a manageable but varied set of strategies, we may wish
to consider a limited combination of decisions. For example, if we were most concerned about
positivity (perhaps from initial investigations or through consultation with clinicians) then we
might favour the following options, which we might suspect would lead to a smaller model and

therefore avoid large models where there may be a higher risk of non-positivity:

e start with the minimal model; recognise that some weights are likely to be unreasonably
large and so work with truncated weights; choose the parameters {u, ¢,0} to favour a
smaller model; apply criterion (a) to favour greater truncation to avoid bias due to non-

positivity.

Conversely, if we suspect that our a priori specified set of covariates really are likely to be
important confounders for treatment and outcome and we are most concerned about adequate
control for confounding, then we might instead prefer the following options to tend towards a

larger model to allow maximum control for confounding;:

e start with a large model; work with untruncated weights which may better capture the
confounding; choose the parameters {u, ¢, o} to favour a larger model; apply criterion (b)

to favour less truncation.
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Strategy Decision

1. Where to 2. Working 3. Covariate selection 4. Degree of
start? weights? procedure? Parameterise weight trunca-
{p, »,0} to favour: tion? Favour:

I (a) minimal  (a) truncated (a) smaller model (a) greater
model truncation

IT (a) minimal (a) truncated (a) smaller model (b) less
model truncation

111 (a) minimal  (a) truncated (b) larger model (b) less
model truncation

v (a) minimal  (b) untruncated (b) larger model (b) less
model truncation

\4 (b) “full” (b) untruncated (b) larger model (b) less
model truncation

Table 2.1: Summary of the treatment model building strategies.

These two strategies are shown as I and V, respectively, in Table 2.1. In addition, we propose
to evaluate three other intermediate strategies, yielding a set of strategies which provide direct
comparisons for each of the four decisions. We would anticipate different combinations of the
decisions to be intermediaries of this set. While other approaches or decisions are possible,
we believe the chosen strategies provide a realistic yet varied set of approaches to the weight

construction.

2.3.4 Model checking using centre or country

As discussed above, if there exist known strata such as centre or country, then we may wish to
stratify the treatment model on that factor by fitting separate treatment models for each level
of that covariate. Such a variable may also be exploited in a different way: while we might ex-
pect different event rates across the different strata, we may expect to see consistent treatment
effects across the strata, assuming that the treatment is homogeneous. This may not be the
case for complex interventions such as behavioural therapy for example, but where there exist
fairly standard drug regimens and guidelines across the strata, the assumption of homogeneity
is likely to be reasonable. This can easily be investigated by incorporating interactions between
treatment and the centre or country covariate in the outcome model. However, if there exist
interactions between treatment and other baseline covariates, these could induce spurious in-
teractions between treatment and the stratification factor if the baseline covariates differ across

the strata, therefore such interactions should also be considered.
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2.4 Application to CASCADE

The CASCADE data were introduced in section 1.6.

2.4.1 Methods

We firstly demonstrated that CD4 count is a time-dependent confounder, by fitting pooled
logistic regression models for (i) AIDS or death on time (2-yearly categories), V', time-updated
treatment (ever versus never initiated) and time-updated CD4 count to show that CD4 count
predicts time to AIDS or death and (i¢) treatment initiation on time (five knot spline with knots
at the 5, 25, 50, 75 and 95" percentiles of 0.1, 0.6, 1.3, 2.7 and 5.8 years), V and time-updated
CD4 count to show that CD4 count predicts treatment initiation. We used a linear model for
mean CD4 count at time ¢, adjusting for ¢ (2-yearly categories), V', treatment at time ¢t — 1 and
CD4 count at time ¢t — 2, to show that treatment predicts subsequent CD4 count and hence
CD4 count is on the causal pathway between treatment and outcome.

To investigate the positivity assumption, we tabulated treatment initiations firstly by CD4

count alone and secondly also by HIV RNA.

Model fitting

As a preliminary treatment model, we included time (five knot spline as above), V' and Ly, =
{CD4 count}. We considered a variety of functional forms for CD4 count, including categorical
(by 50 cells/mm?) and three, five and seven knot splines (with knots at the 10, 50 and 90"
percentiles; 5, 25, 50, 75 and 95" percentiles; and equally spaced between 2.5 and 97.2
percentiles, respectively, broadly following Harrell (2001)). All weights were stabilised using the
baseline covariates V; the outcome model included the same covariates V' plus an indicator for
treatment and time in 2-yearly categories.

Since our preliminary model indicated some large weights (perhaps due to positivity or
model misspecification), we decided to apply by default minimal truncation of the outer 0.1%
of all final stabilised weights. By truncation of the outer p% of weights, we mean replacing
those which are < p™ or > (100 — p)*" percentiles with the p** and (100 — p)* percentiles,
respectively. In a slight abuse of phrase, we will refer to this as “p% truncation”. A common
(though arbitrary) practice is to truncate the weights at a maximum of 10 (see for example HIV-
CAUSAL Collaboration (2010)); 0.1% truncation roughly corresponded with a similar order of

truncation across most models.

We used clustered sandwich estimators to estimate robust standard errors, since the esti-
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mated weights induce correlation within patients. These estimators may be conservative, there-
fore we also calculated bootstrap confidence intervals for the main results using nonparametric
resampling with 1000 replications.

The additional time-dependent covariates to be included in L(t) were introduced in section
1.6.1. CD4 count decrease and HIV RNA were categorised as previously. The remaining time-
dependent covariates were included as five knot splines (with knots at the 5, 25, 50, 75 and
95" percentiles). In models where HIV RNA-related variables were included but the absence
of any previous measurements was not captured by those variables, we also included a missing
indicator for availability. For example, if the number of previous HIV RNA measurements was
included in a model, then such an indicator was not required since it was captured by the value
zero of the number of previous HIV RNA measurements. However, if for example the only HIV
RNA related variable included was the last value, then the missing indicator was included. An
indicator for whether the last CD4 count was carried forward (maximum 12 months; termed
LOCF) was also considered for inclusion.

Since different guidelines or typical clinical practice across the different countries may im-
pact on treatment decisions, we considered firstly an interaction between country and the key
confounder CD4 count, and secondly separate treatment models for each country. Since only
one German patient was observed to progress to AIDS or death, we combined the German pa-
tients with the “Other” category. Further, there were no Italian patients who met the criteria
for being identified as HIV-infected close to seroconversion and were subsequently observed to

initiate treatment, therefore we omitted this variable from the treatment model for Italy.

Application of the strategies

We applied the model building process and five strategies of section 2.3. Under decision 2, where
working weights were truncated, we used 0.5% truncation since we did not want to be over-
zealous with the weight truncation at this stage; a different choice may have yielded different
results but this choice will serve to illustrate the potential differences that may arise.

Under decision 3, we used one of the following two parameterisations, which were directly
compared (that is, holding the other conditions the same) under strategies II and III, respec-

tively:

(a) the 7" covariate of Ly, was eligible for inclusion if, compared to model M, it (i) moved
the mean of the weights > 0.01 closer to one or (i7) moved the treatment effect estimate

away from the unweighted estimate by > 10% (and > 0.05) or reduced the standard error
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by > 10% (and > 0.05) but with mean of the weights < 0.005 further from one.

(b) the i" covariate of L,y was eligible for inclusion if, compared to model M, it (i) moved
the mean of the weights closer to one at all (practicably, say > 0.001) or (i7) moved the
treatment effect estimate away from the unweighted estimate by > 5% (and > 0.05) or
reduced the standard error by > 5% (and > 0.05) but with mean of the weights < 0.01

further from one.

To put these parameterisations into context, the preliminary treatment model yielded weights
with mean 1.133 and treatment effect estimate on the log-scale of —2.28 (standard error 0.40).
Therefore, under criterion (a), covariate i of Ly, would be eligible for inclusion if it reduced
the mean of the weights to < 1.123, or resulted in treatment effect estimate < —2.51 or with
standard error < 0.35 provided the mean of the weights was < 1.138. Under criterion (b), the
variable would be eligible if it reduced the mean of the weights to < 1.132, or yielded treatment
effect estimate < —2.39 or standard error < 0.35 but with mean of the weights < 1.143.

These criteria impose the direction of change of the estimated treatment effect to be away
from the unweighted estimate. The reason for this is that, based on prior knowledge about HIV
treatment, we know the direction of the causal effect relative to the unweighted estimate (and
supported by the preliminary treatment model with CD4 count alone). However, there may
be concern that these criteria lead to a causal estimate that is too strong. Therefore we also
introduced a sixth strategy (labelled strategy Ib) which was the same as the original strategy I
(now labelled Ia) but with the following parameterisations for decision 3, which did not specify

the direction of change of the estimated treatment effect relative to the unweighted estimate:

(c) the it" covariate of Ly, was eligible for inclusion if, compared to model M, it (i) moved
the mean of the weights > 0.01 closer to one or (i7) changed the treatment effect estimate
relative to the unweighted estimate by > 10% (and > 0.05) or reduced the standard error

by > 10% (and > 0.05) but with mean of the weights < 0.005 further from one.

Under decision 4, we considered the following progressive truncations: 0.1, 0.5, 1, 2, 5 and
10%. As mentioned above, a common practice is to truncate weights at a maximum of 10; in
our analyses, truncations of around 0.1 or 0.5% yielded weights with similar order maximum

weights. We used the following two parameterisations of the criteria of section 2.3:

(a) truncate if it leads to a reduction (that is, weakening) in the estimated treatment effect of
> 0.01 and > 10%, provided no worsening of the mean in terms of absolute distance from

one.
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Strategy Decision

1. Where to start? 2. Working 3. Covariate selection 4. Degree of weight
weights? procedure? Parameterise truncation? Favour:
Truncated: {u, ¢, 0} to favour: (default 0.1%)
Ia (a) minimal model (a) 0.5% (a) smaller model (a) greater
(n=0.01, ¢, = 10, (¢ =0.01,¢, = 10)
op =10, 1,,, = 0.005)
Ib (a) minimal model (a) 0.5% (¢) smaller model (as (a) greater
above but no direction (as above)
for treatment effect)
IT (a) minimal model (a) 0.5% (a) smaller model (b) less (p = 0.01,
(as top) pp = 10, ¢, = 10)
I11 (a) minimal model (a) 0.5% (b) larger model (b) less (as above)

(= 0.001,¢, =5,
op =5, b, = 0.01)

v (a) minimal model (b) - (b) larger model (b) less (as above)
(as above)

\4 (b) “full” model (b) - (b) larger model (b) less (as above)
(as above)

VI HIV RNA and interaction with CD4 count

VII “Traditional” model-building approach

Table 2.2: Summary of the treatment model building strategies applied to the CASCADE data.
See text for more details.
(b) truncate if it leads to a reduction in standard error by > 0.01 and > 10%, provided the

reduction in the estimated treatment effect is < 10%.

These were directly compared (that is, keeping the other criteria constant) under strategies
I and II. Putting these parameterisations into context by applying them to the results from the
preliminary treatment model, criterion (a) would lead to truncation if it yielded a treatment
effect estimate > —2.05 provided the mean of the weights remained < 1.133, whereas criterion
(b) would lead to truncation if it yielded a standard error of < 0.36 provided the treatment
effect estimate was < —2.05.

None of the predefined strategies led to inclusion of any HIV RNA data, which we felt could
be an important confounder and appeared to have a differing impact on treatment initiation
by CD4 count, therefore we additionally considered a model with CD4 count, HIV RNA and
their interaction (labelled strategy VI). Lastly, for comparison we also employed a “traditional”
model building strategy of stepwise backwards selection (remove if p > 0.05, re-enter if p <
0.01) for comparison with our defined pre-strategies (labelled strategy VII). The strategies are

summarised in Table 2.2.
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Standard error estimation

We used robust standard errors throughout, but since these may be conservative we also boot-
strapped with resampling stratified by country (1000 repetitions; grouped Italy with Others
since few patients in Italy). We assumed fixed weights for all strategies; for two strategies
(Ia and II) we also did a separate set of bootstraps re-estimating the weights each time to

incorporate the uncertainty associated with estimating the weights.

Censoring

As indicated in section 2.3, the same process for the construction of the treatment model can be
applied for that of the censoring process(es). Therefore we applied the same first six strategies
as outlined above to construct inverse probability weights for the three different censoring
mechanisms, starting with the same covariates of time, V and CD4 count as previously. We
used the same Ly, for consideration for inclusion for all three censoring types except under
censoring type 2 (irregular CD4 counts). By the definition of that censoring, the last CD4
count and most likely last HIV RNA measurement would be 12 months previously therefore
we omitted the variables relating to time since last CD4 count and HIV RNA measurement,
and also the indicator for LOCF (true by definition). Lastly, the usual CD4 decrease variable
(by definition equal to zero when LOCF) was amended to take the value of the decrease in
CD4 count when that variable was last measured 12 months previously. We also applied the
“traditional” model building approach as an additional strategy.

The treatment weights from each strategy were multiplied together with the three sets of
censoring weights from the matching strategy to form the overall weights for each strategy.
Since there was no strategy VI (with CD4 count by HIV RNA interaction) considered for the
censoring weights, the overall strategy VI weights were obtained using the censoring strategy IV
weights. The degree of truncation of these overall weights was decided according to the relevant

criteria for each strategy (decision 4).

Treatment effect modification

We investigated treatment effect modification by baseline covariates, by incorporating interac-
tions between treatment and all the baseline covariates (except country) in the outcome model
and applying a stepwise backward selection procedure (remove if p > 0.05, re-enter if p < 0.01).
We allowed for non-linearity in continuous baseline covariates using splines (three knots at the

10, 50 and 90" percentiles; Harrell (2001)), which were tested for non-linearity and included if
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p < 0.05, otherwise linear. We lastly examined the interaction between treatment and country
(combining German and Italian patients in the “Other” category since there were few events

among those patients) as a model checking procedure (see section 2.3.4).

AIDS-free survival

Throughout, we report hazard ratios, which estimate the effect of ever versus never having
received treatment, assuming a constant treatment effect regardless of the time spent on treat-
ment. The comparable RCT would consist of sequential randomisations at each time-point.
However, it is possible that the benefit of treatment may change with the time spent on treat-
ment. Therefore we replaced the treatment indicator in the outcome models with time on
treatment, categorised as < 0.5, 0.5— < 2 and > 2 years. From these models, we were able
to estimate the standardised (by baseline covariates) survival curves for immediate versus no
treatment. To do this, we estimated the predicted conditional probabilities of survival at each
time ¢ given survival through to time ¢ — 1, and multiplied across time to obtain the survival
estimates. We did this firstly assuming all patients initiated treatment at baseline to represent
immediate treatment, and secondly with the time on treatment set to zero for all time to rep-
resent no treatment; survival was estimated at every time-point for all patients regardless of
when events or censoring was observed (Toh et al., 2010). This allowed us to plot the survival
curves over time for immediate versus no treatment. We obtained 95% confidence intervals

using bootstrap stratified by country (1000 repetitions).

2.4.2 Results
Demonstration of time-dependent confounding by CD4 count

Compared to < 200 cells/mm?, current CD4 counts of 200 — 349, 350 —499 and > 500 cells/mm?
were associated with a 80% (95% confidence interval 63, 89), 88% (78, 93) and 94% (90, 97) lower
odds of AIDS or death, respectively. Therefore, CD4 count is a risk factor for the outcome, with
lower CD4 counts associated with poorer outcome, as we would expect. Compared to < 200
cells/mm?, CD4 counts of 200 — 349, 350 — 499 and > 500 cells/mm3 were associated with a
85% (77, 90), 97% (95, 98) and 99% (98, 99) lower odds of initiating treatment, respectively.
Therefore low CD4 count predicted subsequent treatment, and we have demonstrated that CD4
count is a time-dependent confounder for AIDS or death (see section 1.1). Being on treatment
predicted a 25 (22, 28) cells/mm? higher CD4 count in the next month, thus demonstrating

that CD4 count is affected by prior treatment.
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CD4 count, Number of Initiated treatment?

cells/ mm?3  patient-months No Yes
< 50 9 (< 1%) 27 (93.1%) (6.9%)
50 — 99 4 (< 1%) 25 (73.5%) 9 (26 5%)
100 — 149 87 (< 1%) 59 (67.8%) 28 (32.2%)
150 — 199 217 (< 1%) 167 (77.0%) 50 (23.0%)
200 — 249 763 (1%) 682 (89.4%) 81 (10.6%)
250 — 299 1640 (2%) 1535 (93.6%) 105 (6.4%)
300 — 349 3411 (4%) 3301 (96.8%) 110 (3.2%)
350 — 399 4885 (6%) 4782 (97.9%) 103 (2.1%)
400 — 449 6592 (8%) 6513 (98.8%) 79 (1.2%)
450 — 499 7093 (8%) 7032 (99.1%) 61 (0.9%)
500 — 549 10828 (13%) 10696 (98.8%) 132 (1.2%)
550 — 599 8973 (10%) 8875 (98.9%) 98 (1.1%)
600 — 649 8268 (10%) 8216 (99.3%) 52 (0.6%)
650 — 699 6155 (7%) 6106 (99.2%) 49 (0.8%)
700 — 749 5431 (6%) 5396 (99.4%) 35 (0.6%)
750 — 799 4739 (5%) 4710 (99.4%) 29 (0.6%)
800 — 849 3607 (4%) 3589 (99.5%) 8 (0.5%)
850 — 899 2837 (3%) 2830 (99.8%) 7 (0.3%)
900 — 949 2068 (2%) 2060 (99.6%) 8 (0.4%)
950 — 999 1962 (2%) 1957 (99.8%) 5 (0.3%)
> 1000 6626 (8%) 6605 (99.7%) 21 (0.3%)

Table 2.3: Pattern of treatment initiation across patient-months by CD4 count. Values are num-
ber of (previously treatment-naive) patient-months and either (column) percentage of patient-
months over all (previously treatment-naive) follow-up for column 2 or (row) percentage of
patient-months within that CD4 count category for columns 3 and 4.

Investigation of the positivity assumption

Treatment initiation was more likely at lower CD4 counts, as we would expect, but treatment
initiations did and did not occur over a broad range of CD4 counts (Table 2.3). However, at high
CD4 counts, the probability of treatment initiation was very low (< 1% for CD4 counts > 600
cells/mm?). For CD4 counts < 50 cells/mm?, there were a surprisingly low number of treatment
initiations; these results were driven by a small number of patients who either were not observed
to initiate treatment or delayed treatment initiation despite having very low CD4 counts. We
shall see that there were potential problems with the weights at lower CD4 counts, possibly due
to non-positivity, but also perhaps due to residual unmeasured confounding in these “treatment
refusers” or model misspecification. However, without resorting to the rather drastic approach
of excluding these patients altogether, we cannot address these problems without moving to a
dynamic modelling framework.

Looking at treatment initiations also by HIV RNA, but with broader CD4 count categories
(Table 2.4), we can see that at low CD4 counts, participants were more likely to initiate treat-

ment if they also had a high HIV RNA.
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HIV RNA, CD4 count, cells/mm? Total

copies/ml < 200 200 — 349 350 — 499 > 500
None available 1,7 (14%) 4/140 (3%) 5/582 (1%) 37/7507 (< 1%)  47/8236 (1%)
< 500 2/35 (6%) 5/180 (3%) 7/1029 (1%) 65,7280 (1%) 79/8524 (1%)

>500-2910 2/12 (17%)  10/425 (2%)  10/1874 (1%)  31/8800 (< 1%) 53/11111 (< 1%)
>2910-11820  1/39 (3%)  38/1088 (3%)  27/4480 (1%)  55/13682 (< 1%)  121/19289 (1%)
>11820-37743  10/49 (20%)  59/1619 (4%)  43/4979 (1%)  89/12929 (1%)  201/19576 (1%)
>37743-97809  24/77 (31%)  64/1096 (6%)  66/3257 (2%) 67/7278 (1%) 221/11708 (2%)

>97809 49/148 (33%) 116/1266 (9%)  85/2369 (4%)  110/4018 (3%) 360,/7801 (5%)
Total 89/367 (24%) 296/5814 (5%) 243/18570 (1%)  454/61494 (1%)  1082/86245 (1%)

Table 2.4: Treatment initiations by CD4 count and HIV RNA. Values are n/N (%) where
n=number of treatment initiations and N=number of (previously treatment-naive) patient-
months. HIV RNA categorised by 10, 25, 50, 75 and 90" percentiles.

Functional form for CD4 count

6717 (8%) observed treatment-naive CD4 counts were > 1000 cells/mm? (median 1158, max-
imum 2367 cells/mm?) and therefore truncated to 1000 cells/mm3. Figure 2.3 illustrates the
odds of initiating treatment over the range of CD4 counts, compared with CD4 count of 450
cells/mm? (approximate median CD4 count at treatment initiation) for different functional
forms of CD4 count. In general, as we would expect, the probability of treatment initiation was
higher at lower CD4 counts, however the categorical plot clearly shows a decline in the probabil-
ity of treatment at lower CD4 counts, which is not captured by any of the splines. As discussed
above, this is likely to be due to a small subset of patients who repeatedly refused treatment.
While the three knot spline displayed some evidence of poor fit at higher CD4 counts, the five
knot spline appeared to capture the data well for the majority of the CD4 count range, and for
parsimony we favoured this over the seven knot spline, which is similar. In order to attempt to
address the sharp drop off in treatment initiation at CD4 counts < 100 cells/mm?, we truncated
CD4 counts < 100 cells/mm? to 100 cells/mm? (n = 66; median 50, minimum 5 cells/mm?)
and re-fit this “blunted” five knot spline, which essentially forced a constant probability of
treatment initiation within that range. While this is somewhat arbitrary, it provided us with
a better treatment prediction model in that it reduced somewhat the predicted probabilities of

treatment for CD4 counts < 100 cells/mm3 (Figure 2.3, green dashed line).

Naive estimation of treatment effect

Table 2.5 illustrates the estimated treatment effects based on an unadjusted model (model only
with treatment indicator and time), a model adjusted for baseline covariates, and a model ad-
justed for baseline covariates and time-dependent CD4 count. Under the unadjusted model, the

point estimate suggests a benefit of treatment (HR=0.91) but this is not statistically significant
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Figure 2.3: Treatment initiation by CD4 count, with CD4 count categorical or modelled as a
three, five or seven knot spline.

Model Hazard ratio for treatment
effect (95% CI)
Unadjusted 0.91 (0.63, 1.32)
Adjusted for baseline covariates!!! 0.91 (0.61, 1.36)
Adjusted for baseline covariates and time-dependent CD4 2.58 (1.16, 5.71)

Table 2.5: Naive estimation of treatment effect. [1] This result is the same as the unweighted
estimate in the first row of Table 2.6.

(95% CI 0.63, 1.32). Adjusting for the baseline covariates does not materially alter the results.
However, adjusting in addition for time-dependent CD4 count changes the results considerably
(HR 2.58, 95% CI 1.16, 5.71), suggesting that treatment is harmful in terms of time to AIDS
or death. This result is biased since it does not appropriately adjust for the time-dependent

confounder CD4 which is also predicted by treatment history.

Estimation of the inverse probability of treatment weights

The overall results based on the preliminary treatment model of section 2.4.2, with CD4 count
the only time-dependent covariate included, are shown in Table 2.6. The mean and maximum
of the estimated weights were large at 1.133 and 1508, respectively; minimal truncation of the
outer 0.1% controlled the weights well bringing the mean and maximum down to 1.052 and
26, respectively. This resulted in a more moderate estimated treatment effect, with odds ratio

(OR) of 0.33 compared to 0.10 with untruncated weights. This indicated that there may be
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issues with non-positivity in our dataset, and this observation led to the decision to perform
0.1% truncation by default regardless of the strategy. Compared to the unweighted treatment
effect estimate, the OR was considerably further from one (0.33 compared to 0.91 unweighted),

demonstrating control of confounding.

Strategy Ia The complete treatment model selection process for strategy Ia is illustrated in
Table 2.7. At the first stage in strategy Ia, nadir CD4 count and number of previous CD4
counts met the criteria for inclusion under decision 3a (together with time-dependent CD4
count), since both brought the mean weights at least 0.01 closer to one; the latter was chosen
since the mean of the weights was slightly closer to one (1.002 compared to 0.997 with nadir
CD4 count and 1.013 without either, after 0.5% truncation according to decision 2a of strategy
I). At the next step, only time since last CD4 count was eligible for inclusion; although the
mean weights increased slightly, from 1.002 to 1.005, the OR moved further from one, from
0.56 to 0.52, suggesting perhaps better control of confounding. No subsequent variables were
identified, therefore yielding a final treatment model with number of previous CD4 counts and

time since last CD4 count, in addition to time, CD4 count and baseline covariates (Table 2.6).

Strategy Ib Strategy Ib was the same as Ia except that it did not specify direction of change
of the estimated treatment effect in the model selection process. At the first step, two additional
covariates (number of previous HIV RNA measurements and time since last HIV RNA) were
identified, since they moved the estimated treatment effect > 10% towards the null, with mean of
the weights within the permitted limits. However, since the covariate which most improves the
mean of the weights is selected, number of previous CD4 counts was chosen as in strategy la. At
the second stage, no additional covariates beyond time since CD4 count were identified, therefore
was included as in strategy Ia. In contrast to strategy la, nadir CD4 count was identified for
inclusion at the third step, since it moved the estimated treatment effect on the log-scale from
—0.65 to —0.56. No further variables were identified, therefore yielding a final treatment model
the same as that under strategy Ia but including also nadir CD4 count. Compared to strategy
Ia, the estimated treatment effect was more moderate with an OR of 0.57 (SE 0.14) versus 0.52
(0.15). The means of the weights were a similar distance from one (0.994 under strategy Ib

compared to 1.005 under strategy Ia; Table 2.6).
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Strategy II Strategy II differed from Ia only in the degree of truncation performed at the end
of the modelling process (decision 4), therefore used the same treatment model. However, strat-
egy la led to 0.5% truncation (notably, the level at which the modelling was performed according
to decision 2a) whereas strategy II suggested no truncation, but our default 0.1% truncation
was applied. As we would expect, greater truncation under strategy la led to weights with mean
closer to one (1.005 versus 1.025 after 0.5% (Ia) and 0.1% (II) truncation, respectively) and a

more moderate estimated treatment effect (OR 0.52 versus 0.39, respectively; Table 2.6).

Strategy IIT Under strategy III, a number of covariates met the criteria for inclusion at the
first stage (CD4 decrease, time since last CD4 count, nadir CD4 count, number of previous CD4
counts, number of previous HIV RNA measurements and LOCF) but number of previous CD4
counts was selected as under strategy Ia, and the subsequent covariate selection was as that of
strategy la. Therefore strategy III yielded the same treatment model as strategy II, indicating
that decision 3 relating to preference for a smaller or larger model did not make a difference in
practice in this example.

While the CD4 count by country interaction was highly statistically significant (p < 0.0001),
strategies Ia, Ib, IT and III did not support inclusion of this interaction, nor of separate treatment
models by country, according to decision 3. For example, under strategy la, the mean of the
weights was slightly increased with separate treatment models by country (from 1.005 to 1.010,
after 0.5% truncation) with no clear strengthening of the estimated treatment effect (OR 0.52

compared to 0.58 with separate treatment models).

Strategy IV  Strategy IV differed from III in that the modelling process was performed using
untruncated weights (decision 2). At the first step, a number of covariates were identified
as eligible for inclusion under decision 3b (CD4 count decrease, time since last CD4 count,
nadir CD4 count, number of CD4 counts, number of previous HIV RNA measurements and
LOCF), of which time since last CD4 count was selected. At the second step, nadir CD4 count,
number of previous CD4 counts and LOCF met the criteria for inclusion; nadir CD4 count
was selected. At the third stage, only number of previous CD4 counts was eligible and so
was included. At the fourth stage, LOCF was additionally identified and included; no further
variables were subsequently identified. Thus strategy IV yielded a more complex treatment
model than the previous strategies, incorporating nadir CD4 count and LOCF, in addition to
time since last CD4 count and number of previous CD4 counts. Further, this strategy supported

separate treatment models by country under decision 3b. Decision 4b indicated only the default
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0.1% truncation. Compared to strategies II/III, the mean and maximum of the weights were
slightly smaller under strategy IV (1.020 versus 1.025, and 11 versus 16, respectively; Table
2.6). Correspondingly, the estimated treatment effect was closer to the unweighted estimate

(0.60 versus 0.39).

Strategy V The first four strategies all started with a minimal model with time, V' and
CD4 count only; in contrast, strategy V began with a “full” model including all potential time-
dependent confounders (see section 2.4.1; decision 1b), with the remaining decisions reflecting
those of strategy IV. At the first stage, CD4 count decrease, time since last CD4 count, time
since last HIV RNA, peak HIV RNA and LOCF were identified for removal under decision 3b;
peak HIV RNA was selected. The subsequent iterations led to the successive removal of last
HIV RNA, CD4 count decrease, number of previous CD4 counts, time since last HIV RNA
and number of previous HIV RNA measurements, thus yielding a model with time since last
CD4 count, nadir CD4 count and LOCF. Once again, this strategy indicated separate treatment
models by country under decision 3b, and decision 4b indicated only the default 0.1% truncation.
Therefore this model was the same as that under strategy IV, except it did not include number
of previous CD4 counts, and the results were similar, with mean of the weights 1.020 and
estimated treatment effects 0.54 (versus 1.020 and 0.60, respectively, under strategy IV; Table
2.6).

There was clear overlap in the different treatment models across the strategies: all contained
time since last CD4 count and there was no variable which made an appearance in only one
strategy. Across all models, there was evidence of nonlinearity for all the included covariates
(test of the spline components, all p < 0.05). In contrast to I-III, strategies IV and V indicated
separate treatment models by country according to decision 3. For comparison, the results
from strategies IV and V, but with one overall treatment model across all countries, are also
given in Table 2.6. The results from strategies II/III, IV and V with one overall treatment
model were fairly similar (mean of the weights 1.025, 1.025 and 1.020; ORs 0.39, 0.40 and 0.43,
respectively). However, allowing separate treatment models in strategies IV and V changed the
results fairly dramatically (mean of the weights both 1.020; ORs more modest at 0.60 and 0.54,

respectively).

Strategy VI Interestingly, none of the treatment models included any HIV RNA-related
variables as main effects. High HIV RNA is a known predictor for faster pre-treatment disease

progression (Mellors et al., 1996) and Figure 2.4 illustrates that high HIV RNA was associated
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Figure 2.4: Treatment initiation by HIV RNA. Cl=confidence interval.

with higher probability of treatment initiation; we have seen that there may be a differential
association by CD4 count (see Table 2.4). Of note, no previous HIV RNA measurement was
associated with low probability of treatment initiation, probably related to fewer clinic visits.
Therefore we considered an additional treatment model, based on that of strategy IV (the largest
model), but in addition incorporating an interaction between CD4 count and HIV RNA (both
categorical). A few of the weights were exceptionally large (> 10000) likely due to positivity
issues; after 0.1% truncation, HIV RNA met the criteria for inclusion under decision 3b since
it reduced the mean of the weights to 1.007 (compared to 1.025 in the model with categorical
CD4 count alone). Although the interaction did not meet the criteria for inclusion (after 0.1%
truncation, the mean of the weights increased slightly to 1.011 and the treatment effect was
little changed), it was highly statistically significant (p = 0.0006). This formed our model under
strategy VI. We did not consider separate treatment models by country under this approach
due to limited numbers of patients in each CD4 count/HIV RNA category within each country.
The estimated OR, was very similar to that under strategy IV without stratification by country
(0.39 [SE 0.32 on the log-odds scale] versus 0.40 [0.33]; Table 2.6), perhaps indicating that HIV

RNA is not an important confounder.

Strategy VII The standard model building approach with stepwise backwards selection re-

moved CD4 count decrease and nadir CD4 count (p = 0.05 and 0.07, respectively), yielding a

78



model with time since last CD4 count, number of previous CD4 counts, LOCF, last HIV RNA,
peak HIV RNA, time since last HIV RNA, and number of HIV RNA measurements. The un-
truncated weights were somewhat unwieldy, with mean 42 and maximum > 1000000. Applying

decision 4a to favour truncation, 0.5% truncation was preferred, giving mean weights of 0.971

(maximum 8) and OR 0.43 (Table 2.6).

Summary To summarise, we have derived four treatment models from our six original strate-
gies: one each from Ia/II/III, Ib, IV and V. In addition, we have two models which are more
complex: one incorporating an interaction between CD4 count and HIV RNA (strategy VI),
and one from a “traditional” model building approach (strategy VII). Therefore we have six
treatment models in total. All strategies resulted in the default 0.1% weight truncation, except
strategies Ia, Ib and VII with 0.5% truncation.

The (robust) standard errors of the treatment effect estimates were very similar for strategies
II-VII (ranging from 0.31 to 0.33 on the log odds scale). The standard errors from strategies Ia
and Ib, where there was greater truncation, were somewhat smaller at 0.27 and 0.26, respectively.
In contrast, the standard error from the preliminary model, which had a large mean of the
weights, was larger at 0.40 with no truncation and 0.38 after 0.1% truncation. These standard
errors were all larger than that from the unweighted model (0.20) by the nature of being based
on weighted estimation. Where estimated, bootstrap confidence intervals were very similar to
the confidence intervals based on a robust standard error (Table 2.6) and the medians of the
bootstrapped estimates were broadly similar to the overall point estimates. Where estimated,
the bootstrap confidence intervals which re-estimated the weights were fairly similar (although
slightly larger as expected) to those which assumed fixed weights ((0.30, 0.92) and (0.20, 0.76)

for strategies Ia and II/III, respectively, versus (0.30, 0.90) and (0.21, 0.75), respectively).

Predictors of treatment initiation

For illustration, the treatment model from strategies Ia, II and III is summarised in Table 2.8
and the model used for the numerator of the stabilised weights (the same across all strategies
except estimated separately by country under strategies IV and V) is summarised in Table
2.9. Of note, while we have given standard errors and p-values here for reference, these were
deliberately omitted by Petersen, Deeks, Martin, and van der Laan (2007) in order to emphasise
that only the point estimates are relevant in terms of contributing to the estimated weights.
In both models, higher baseline HIV RNA, no available baseline HIV RNA, earlier year of

HIV seroconversion and shorter time HIV-infected at baseline were associated with higher prob-
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Variable Odds ratio Standard error D

Time-dependent covariates

CD4 count, cells/mm3 [1] - < 0.0001
Number of previous CD4 counts 2] - < 0.0001
Time since last CD4 count, months 2] - < 0.0001
Baseline covariates (V)

Baseline HIV RNA, log;o copies/ml 1.29 0.06 < 0.001
Baseline HIV RNA not available 1.67 0.35 0.01
Baseline CD4 count, per 100 cells/mm? 1.03 0.02 0.21
Sex, female 0.95 0.08 0.54
Age at HIV seroconversion, per 10 years 1.06 0.04 0.10
Year of HIV seroconversion 0.87 0.01 < 0.001
Route of HIV transmission, IDU 0.82 0.10 0.12
Country, versus France < 0.0001

Germany 0.43 0.15

Italy 0.65 0.10

Spain 0.77 0.11

Switzerland 0.97 0.14

UK 0.37 0.03

Others 0.46 0.06
Time HIV-infected at baseline, years 0.89 0.04 0.01
Identified as HIV-infected close to seroconversion 0.85 0.12 0.23

Table 2.8: Results from the treatment model: denominator with time-dependent and baseline
covariates for strategies Ia, II and III. Time modelled as a spline. [1] Not illustrated; similar
to the spline illustrated previously in Figure 2.3 from the preliminary treatment model. [2]
Modelled as a spline; see Figure 2.5.

Variable Odds ratio Standard error P
Baseline HIV RNA, logyo copies/ml 1.56 0.07 < 0.001
Baseline HIV RNA not available 3.41 0.70 < 0.001
Baseline CD4 count, per 100 cells/mm3 0.81 0.02 < 0.001
Sex, female 0.99 0.08 0.89
Age at HIV seroconversion, per 10 years 1.11 0.04 0.002
Year of HIV seroconversion 0.90 0.01 < 0.001
Route of HIV transmission, IDU 0.97 0.12 0.80
Country, versus France < 0.0001

Germany 0.43 0.15

Italy 0.66 0.10

Spain 0.76 0.10

Switzerland 0.82 0.11

UK 0.50 0.04

Others 0.68 0.08
Time HIV-infected at baseline, years 0.91 0.04 0.02
Identified as HIV-infected close to seroconversion 0.77 0.10 0.06

Table 2.9: Results from the treatment model: numerator with baseline covariates only. Time
modelled as a spline.
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ability of treatment initiation, but there was no association between treatment initiation and
either sex or route of HIV transmission. Compared to France, the odds of treatment initiation
were typically lower in the other countries, particularly Germany, the UK and “Others”.

In the numerator model, there were a number of other covariates which were associated with
treatment initiation, namely lower baseline CD4 count, older age and not being identified as
HIV-infected close to seroconversion. Further, lack of a baseline HIV RNA measurement was
more strongly predictive of treatment initiation in the numerator model with a relatively large
odds ratio of 3.41. We examined more closely the 711 patients with no baseline HIV RNA:
a relatively large proportion were from Spain (19%) and the UK (24%). A high proportion
of these patients were IDU (20% compared to 9% overall), they tended to be slightly younger
(median [IQR] age at HIV seroconversion 29 [25, 34] years), seroconverted earlier (1994 [1993,
1995]) and were HIV-infected for a relatively long time before entering our study (2.1 [1.4, 3.3]
years). Therefore perhaps these patients were at a later stage of disease by the time they entered
our study in a way that is not entirely captured by the other covariates, and hence more likely
to initiate treatment.

From the denominator model, the splines for the continuous time-dependent covariates num-
ber of previous CD4 count measurements and time since last CD4 count measurement are il-
lustrated in Figure 2.5. A higher number of previous CD4 count measurements was associated
with higher probability of treatment initiation. Either a short or long time since last CD4
count measurement was associated with a higher probability of treatment initiation, the former
probably due to having had a recent clinic visit at which treatment decisions would be made,
and the latter perhaps because a large gap between CD4 count measurements indicated poorer
health of the patient and hence treatment was initiated or perhaps because a clinic visit did

occur but we are missing a recorded CD4 measurement.

Distribution of the treatment weights

It is of interest to know from where the largest weights are arising. As discussed above, for ease
we have so far considered the mean of the weights over all time intervals, but in general we expect
the stabilised weights to have mean one across all time intervals. Figure 2.6 illustrates the mean
and range of the weights from the six final treatment models arising from the eight strategies,
plotted over time in yearly categories; Figure 2.7 is the same except after 0.1% truncation of
the weights. It is clear from Figure 2.6 that there are some very large weights occurring, most
noticeably under strategies Ia/II/III (which shared the same treatment model), Ib, VI, and,

exceptionally, VII. While the outer 0.1 percentiles clearly depend on the distribution of the
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Figure 2.5: Treatment initiation by number of previous CD4 count measurements and time
since last CD4 count measurement. The vertical dashed lines indicate the interquartile range.

weights for each strategy, Figure 2.7 shows that even after this relatively minimal truncation,
the weights are much more well-behaved and more similar across the strategies, although still
somewhat larger under strategy VII.

Across these six treatment models, the upper 0.1 percentile of the weights came from 405
patient-months in 20 patients: 9 French, 1 German, 1 Italian, 1 Spanish, 7 UK and 1 Danish.
There was nothing remarkable about the baseline characteristics of these patients, except they
had slightly lower median (IQR) baseline CD4 count of 601 (540, 630) cells/mm? compared to
641 (560, 788) cells/mm? across all patients and they tended to be early seroconverters with
median (IQR) year of HIV seroconversion 1996 (1993, 1998) compared to 2000 (1995, 2003)
across all patients.

The vast majority of the large weights were due to non-initiation at low CD4 counts (typi-
cally with high HIV RNA). Where patients were observed to eventually initiate treatment, the
weights then dropped, though in two cases (both French) the weights from strategies VI and
VII remained in the upper 0.1 percentile (at 127 and 222 for strategies VI and VII, respectively,
for one patient; and at 28 and 321, respectively, for the second patient) and so were carried for-
ward for the rest of follow-up (approximately 3 and 4.5 years, respectively). If the weights were
large under one model, they tended to be inflated across all models, though only two patients
had weights in the upper 0.1 percentile across all six treatment models (both French, due to

no or delayed treatment initiation at low CD4 counts; one of these patients was the first one
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Figure 2.6: Distribution of the estimated stabilised weights for the five treatment models. Spikes
= range, bars = interquartile range, o = median, x = mean. Note that the scales of the y-axes

vary.
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Figure 2.7: Distribution of the estimated stabilised weights for the five treatment models, after
truncation of the outer 0.1 percentiles. Spikes = range, bars = interquartile range, o = median,

x = mean. Note that the scales of the y-axes vary.
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mentioned above who had large weights carried forward after eventually initiating treatment).

Three patients (German, Spanish and UK) had large weights due to initiation of treatment
at high CD4 counts (684, 760 and 690 cells/mm?, respectively); by definition these weights were
then carried forward for the rest of follow-up (approximately 2, 5 and 3.5 years, respectively).
However, the size of these weights was relatively small compared to those flagged due to non-
initiation at low CD4 counts (German patient: strategy IV weight = 11, strategy V weight =
12; Spanish patient: strategy Ib weight = 24; UK patient: strategy V weight = 11).

One French patient had a somewhat odd CD4 count pattern of 820 followed by 192 (at which
point they received a large weight of 41 under strategy VI for non-initiation at such a low CD4
count), then 840 and finally initiated treatment at 570 cells/mm? (at which point the weight
under strategy VI increased to 77, and also weights from strategies Ib and IV were inflated at
23 and 16, respectively, due to initiation at a high CD4 count; these weights were then carried
forward for the remaining 1.5 year follow-up). There was one further French patient whose
CD4 count pattern appeared questionable: (s)he had successive CD4 counts of 624, 69 and
567 cells/mm? within the space of four months and received a weight of 19 under strategy Ia
(in the upper 0.1 percentile) due to non-initiation at CD4 count of 69 cells/mm?; this weight
remained large for the remaining four year follow-up during which time the patient remained
treatment-naive but had quite variable CD4 counts ranging from 323 to 1006 cells/mm3. While
we could have excluded the low CD4 count of 69 cells/mm?® on the grounds of implausibility, the
resulting weights are not overly large and unlikely to affect the overall conclusions, particularly
after weight truncation.

Seventeen of the 20 patients with large weights were censored before progressing to AIDS
or death; the remaining three progressed to AIDS while treatment-naive with low CD4 counts.
One was the French patient mentioned above who remained treatment-naive with exceptionally
large weights across all six treatment models (562, 502, 84, 69, 10,358 and > 1,000,000 under
strategies Ia, Ib and IV-VII, respectively), the second had large weights under strategies Ia, Ib,
VI and VII (470, 249, 13,001 and > 100,000, respectively), and the third had a large weight

under strategy V only (26).
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Tables 2.10 and 2.11 show the means and maxima of the weights by country, without trun-
cation and with truncation as per the strategy, respectively. The very largest weights appeared
mainly from France, and also Italy under strategies I-III, VI and VII. Where the treatment
model was stratified by country, the weights were much more well-behaved. After truncation,
the means of the weights were generally centred on one and the maxima much more tolerable
(generally around 5-15, although >20 under strategy VI in France, Italy and the UK). However,
there were some clear differences by country, with the mean of the weights always less than one
for Italy, UK and Others, and always greater than one for France and Spain. It is difficult to

determine why this might be, but could indicate residual confounding.

Censoring

For all three censoring types (1, LTFU; 2, irregular CD4 counts with a gap of more than 12
months; 3, administrative), strategies Ia, II and III did not add any further variables to the
preliminary model incorporating just time, baseline covariates V' and CD4 count. These results
are shown in Table 2.12; note that this table is to illustrate the effects of incorporating censoring
weights compared to the unweighted model and there is no treatment weighting. Further, no
truncation of the weights has yet been performed; this will be done according to the criteria of
each strategy after the treatment and censoring weights have been combined. The estimated
weights from strategies Ia, II and III were centred on one with mean (SD) 1.000 (0.022), 1.003
(0.119) and 1.000 (0.012) for the censoring types 1, 2 and 3, respectively, and the estimated
treatment effects were identical to 2 decimal places to the unweighted effect estimate of 0.91 (SE
0.19). This could perhaps indicate that none of the censorings were very informative. However,
there were some differences in the censoring models under the other strategies.

For censoring type 1 (LTFU), strategy Ib did not include any further covariates. In contrast,
strategy IV added in succession: number of HIV RNA measurements, LOCF and CD4 decrease;
this yielded weights with similar mean (0.999 compared to 1.000 under strategies Ia, IT and III)
but with much larger maximum weights (112 compared to 1.3). The standard error of the
treatment effect estimate was similar though the point estimate was somewhat smaller than the
unweighted (0.86 compared to 0.91). Strategy V led to a more complex censoring model, with
only time since last CD4 count and CD4 decrease removed from the “full” model, leaving nadir
CD4 count, number of previous CD4 counts, number of previous HIV RNA measurements, last
HIV RNA, time since last HIV RNA measurement, peak HIV RNA and LOCEF. The mean of the
weights was somewhat increased (1.007), as was the maximum (204), although the treatment

effect estimate was similar to the unweighted estimate (OR 0.93, SE 0.20). Strategy VII (step-

86



wise backwards selection) removed nadir CD4 count and peak HIV RNA (p = 0.64 and 0.08,
respectively) to leave another complex model with CD4 decrease, time since last CD4 count,
number of previous CD4 counts, last HIV RNA, number of previous HIV RNA measurements,
time since last HIV RNA measurement and LOCF. However, this model yielded weights with
smaller mean (0.959) although once again the estimated treatment effect was similar to the
unweighted estimate (OR 0.90, SE 0.19).

For censoring type 2 (irregular CD4 counts), strategy Ib added CD4 decrease (the amended
variable to capture CD4 decrease at the last CD4 count which by definition was observed 12
months ago), but at the expense of weights with large mean at 1.087 (maximum 117). The
point estimate for the OR of treatment effect was above one (OR 1.15, SE 0.25). Strategy IV
introduced only peak HIV RNA. The mean of the weights remained centred on one (1.000) with
maximum 10 and the estimated treatment effect was similar to the unweighted estimate (OR
0.94, SE 0.20). Strategy V led to the removal of (amended) CD4 decrease only, therefore yielding
another complex model with nadir CD4 count, number of previous CD4 counts, number of
previous HIV RNA measurements, last HIV RNA and peak HIV RNA (recall, a slightly different
set Ly, was used for this censoring type; see section 2.4.1). The weights remained centred on
one (mean 1.000) but the maximum increased hugely to 1374, perhaps raising concerns of model
misspecification or non-positivity. The estimated treatment effect was close to one (OR 1.00) and
poorly estimated (SE 0.24; 0.25 on the log-odds scale). Strategy VII successively removed last
HIV RNA, peak HIV RNA and nadir CD4 count (p = 0.33, 0.63 and 0.23, respectively), leaving
a model with (amended) CD4 decrease, number of previous CD4 counts and number of previous
HIV RNA measurements. The mean and maximum of the weights increased considerably, to
1.260 and 1586, respectively, and the estimated treatment odds ratio was 1.29 (SE 0.34); this
may raise concerns about model misspecification or non-positivity.

For censoring type 3 (administrative), strategies Ib, IV and V also led to the simple model
with no additional covariates. Strategy VII successively removed number of previous CD4
counts, LOCF, last HIV RNA, number of previous HIV RNA measurements, nadir CD4 count
and peak HIV RNA (p = 0.82, 0.80, 0.36, 0.28, 0.14 and 0.06, respectively), leaving a model
with CD4 decrease, time since last CD4 count and time since last HIV RNA measurement. The
estimated weights and treatment effects were broadly similar to those from the simpler model
with just time, the baseline covariates V' and CD4 count (mean of the weights 1.000, OR 0.90,

SE 0.18).
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We applied the same techniques as for the treatment model to investigate whether to stratify
the censoring models by country. There were few Swiss patients with no baseline HIV RNA
and of those all were LTFU, therefore we omitted this variable from the Swiss censoring type 1
models. There were very few patients from Italy, Switzerland or “Others” who had a change in
CD4 count before being LTFU, therefore the covariate CD4 decrease was omitted from those
country censoring type 1 models under strategy VI. Similarly under strategy V, there were few
Swiss patients who were LTFU in each of the last HIV RNA categories, therefore that covariate
was omitted from that Swiss censoring type 1 model. Lastly, all Italian or Spanish patients who
were identified as HIV-infected close to seroconversion were administratively censored, therefore
this covariate was removed from those country censoring type 3 models. However, none of the

censoring types indicated stratifying by country under any of the strategies I-V.

Distribution of the censoring weights As outlined above, for censoring type 1 (LTFU),
there were four censoring models (Table 2.12). Across these models, the upper 0.1 percentile of
the weights came from 461 patient-months in 108 patients. These patients broadly matched the
overall cohort demographics, although were more likely to be female (29% versus 20% overall)
and infected through IDU (14% versus 9%). All these patients were eventually censored (92
LTFU, two due to irregular CD4 counts, 14 administratively). Only one patient had any weights
>100; this patient was from Spain, was not observed to initiate treatment despite CD4 dropping
to around 360 cells/mm?, and received weights > 100 at month 25 under strategy V and at
month 30 under strategy IV, although all the weights remained < 200 until administrative
censoring at 31 months.

For censoring type 2 (irregular CD4 counts), the upper 0.1 percentile of the weights across
the five censoring models came from 506 patient-months in 63 patients. As for censoring type
1, these patients were more likely to be female (32%) and infected through IDU (27%). In
addition, these patients tended to be younger (median 29 years old versus the overall median
of 31), seroconverted earlier (1995 versus 2000) and were less likely to have a baseline HIV
RNA measurement (available for 51% versus 79%). The summary of the weights in Table 2.12
illustrates that the maxima varied considerably across the different models. There were seven
patients who had any censoring type 2 weights > 100: six were French and one was from Norway
(grouped under Other countries). None of these patients were observed to reach AIDS or death;
five were LTFU, one was censored due to irregular CD4 counts and one was administratively
censored. Six of these patients typically had high CD4 counts and were not observed to initiate

treatment; all had large weights under strategies V and/or VII. Three of these patients had
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Strategy Estimated weights Estimated treatment effect

Truncation Mean (SD)  Range OR (SE)I' 95% CI Log OR (SE

Unweighted - - - 0.91 (0.18) 0.61, 1.35  -0.10 (0.20
Ia 0.5 1.000 (0.676) 0.04,6  0.54 (0.14) 0.32,0.90  -0.62 (0.26

Ib 1 0.995 (0.702) 0.05,5  0.63 (0.16) 0.38,1.04  -0.46 (0.26
I1/111 0.1 1.030 (1.075) 0.03,23  0.36 (0.12) 0.19,0.70  -1.02 (0.34
v 0.1 1.031 (1.221) 0.02,26  0.50 (0.20) 0.22,1.11  -0.69 (0.41

A% 0.1 1.022 (2.247) 0.01,50  0.29 (0.14) 0.11,0.75  -1.25 (0.49

VI 0.1 1.071 (2.583) 0.02,66  0.35 (0.10) 0.19,0.62  -1.06 (0.30
VII 0.5 0.898 (1.108) 0.02,12  0.32 (0.10) 0.17,0.60  -1.14 (0.32

I
)
)
)
)
)
)
)
)

Table 2.13: Results from the strategies: combined treatment and censoring weights and es-
timated treatment effects. SD=standard deviation. OR=odds ratio. SE=standard error.
CI=confidence interval. [1] Robust SE calculated using clustered sandwich estimator, except
for unweighted models since no weights to induce correlations.

just a single month with large weights before censoring occurred. In the other three patients,
where large weights were observed over longer follow up, the weights escalated in size quite
quickly. For example, one patient first received weights > 100 under both strategies V and
VII at month 30, of values 135 and 117, respectively, which then increased to 1374 and 1024
by month 33 before being censored (LTFU). The one remaining patient, who was observed
to initiate treatment at 5.5 years, had large weights > 100 occurring under strategy Ib from
approximately 8 years onwards but these weights always remained < 120 until administrative
censoring at approximately 11 years.

Across the two censoring models for censoring type 3 (administrative), the upper 0.1 per-
centile of the weights came from 237 patient-months in 136 patients. However, the maxima of
the weights were just 2 (under the model applied to all but strategy VII) and 4 (under strategy
VII). This is as we might expect for administrative censoring, which we would anticipate to be

independent of patients’ characteristics.

Treatment effect estimates

After obtaining the overall weights for each strategy by combining the relevant treatment and
censoring weights, as previously strategy Ia led to 0.5% truncation and strategies II, IV and
V indicated only the default 0.1% truncation, whereas strategy Ib indicated 1% truncation.
As discussed previously, 0.1% and 0.5% truncation was applied under strategies VI and VII,
respectively. The overall weights and resulting treatment effect estimates are summarised in
Table 2.13 and illustrated in Figure 2.8.

Compared to the results when just incorporating treatment weights (Table 2.6), the results

for strategies Ia, Ib, II/III, IV and VI were broadly similar, although the confidence interval
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Figure 2.8: Estimated treatment effect on time to AIDS or death across the modelling strategies.

for strategy Ib after incorporating censoring weights contained one. The estimated treatment
effects for strategies V and VII were somewhat more extreme, perhaps unsurprisingly since
those two strategies had the most complex censoring models and therefore may have had better
control for confounding due to censoring (or could perhaps be bias). This was at the expense
of an increase in the standard error for strategy V (from 0.34 to 0.49 on the log-odds scale),
although due to the large change in the estimated treatment effect, the confidence interval still
excluded one.

All the strategies appeared to demonstrate considerable control for confounding, with the
point estimates having moved away from the unweighted estimate. There was a trend towards
stronger estimated treatment effects with higher strategy number (that is, those designed to
be more complex), but overall the strategies led to broadly consistent results, with overlapping
confidence intervals and all but strategies Ib and VI indicating a statistically significant benefit
(at the 5% level) of treatment in delaying time to AIDS or death. The OR point estimates ranged
from 0.29 (95% CI 0.11, 0.75) to 0.63 (0.38, 1.04), corresponding to a 37% to 71% reduction
in the hazard of AIDS or death with treatment compared to no treatment. Strategies IV and
V had considerably larger standard errors at 0.41 and 0.49 on the log-odds scale, compared to
a maximum of 0.34 under the other strategies; this is probably due to the stratification of the
treatment models by country. Strategy Ib led to a more moderate estimated treatment effect

than strategy la; this could be related to our reason for introducing this strategy, namely that
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Figure 2.9: Effect of progressive truncation of the weights on the mean of the weights and the
estimated treatment effect (treatment model from strategy Ia).

incorporating the direction of movement of the estimated treatment effect away from the null
(as in strategy la) may lead to causal effect estimates that are too strong. However, strategy
Ib led to more complex treatment and censoring models than strategy Ia, and therefore greater
truncation was required to bring the weights under control; this was perhaps at the expense of
control for confounding.

The only difference between strategies Ia and II/III was the degree of truncation of the
weights. Exploring this further, Figure 2.9 illustrates the effect of progressive truncation of the
weights from strategy Ia, which results in smaller mean weights and smaller estimated treatment
effects, with 2% truncation yielding an estimated treatment effect which is no longer statistically
significant at the 5% level, and 10% truncation yielding an estimated treatment effect which is
similar to the unweighted estimate and therefore indicating little if any control for confounding.
The largest jump in the odds ratio is seen between no and 0.1% truncation; the truncation may
be to some extent protecting against bias due to non-positivity or model misspecification, or
may be demonstrating poorer control for confounding. One might argue that 0.5% truncation
may be preferred since it results in weights most closely centred on one (mean 1.000). However,
as argued previously, the extreme weights capture the most information with respect to time-
dependent confounding (Cole et al., 2005) and the intermediate 0.1% truncation offers perhaps

a satisfactory compromise, although this is inevitably a subjective decision.
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Predictors of outcome

Looking at the outcome models more closely, Table 2.14 summarises the results after applying
weights from strategies Ia, Ib, II/III and IV. Under strategy Ia, being IDU and male were
predictive of poor outcome, with OR 2.53 (95% CI 1.51, 4.22) for IDU versus not, and 0.58
(0.34, 1.00) for female versus male. There was a suggestion that higher baseline HIV RNA, no
baseline HIV RNA, older age at HIV seroconversion, earlier year of HIV seroconversion, longer
time HIV-infected at baseline and being identified as HIV-infected close to seroconversion were
also all associated with poorer outcome, but not statistically significantly so (at the 5% level).
There was no evidence of a difference in AIDS-free survival by country (p = 0.73), although
the ORs ranged from 0.50 (0.09, 3.71) for Germany to 1.48 (0.85, 2.57) for the UK, compared
to France. There was no association between baseline CD4 count and time to AIDS or death
(p = 0.52), probably because the time-dependent CD4 count which is taken into account via
the weighting is more important.

Except for the treatment effect estimate, the outcome results after weighting according to
strategies Ib, II/III (same treatment model as for strategy Ia but with 0.1% instead of 0.5%
truncation) and IV were broadly similar to those under strategy Ia (Table 2.14). The results from
strategy V were also broadly similar, although the association of the lack of baseline HIV RNA
(OR 9.37 [95% CI 1.88, 46.79]) and being identified as HIV-infected close to seroconversion (5.17
[1.40, 19.10]) with AIDS-free survival increased considerably though the confidence intervals
were wide, and IDU was no longer associated with the outcome (1.34 [0.65, 2.74]; Table 2.15;
key results to note indicated with an asterisk).

The results from strategy VI were somewhat different. There was no suggestion of an
association between baseline HIV RNA or its availability (p =1.00 and 0.94, respectively; Table
2.15), probably because strategy VI incorporated time-updated HIV RNA therefore baseline
HIV RNA became less important. Lower baseline CD4 was associated with faster progression
(OR 0.91 [95% CI 0.83, 1.00]) and there was an indication of different AIDS-free survival by
country (p =0.04) with the ORs ranging from 0.39 (0.05, 2.96) in Germany to 1.72 (0.90, 3.27)
in Italy, compared to France. The results from strategy VII were broadly similar to those under

strategies II/III (Table 2.15).
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Treatment effect modification by baseline covariates

There was evidence of nonlinearity in the outcome models for baseline HIV RNA and time
HIV-infected at baseline under strategies VI and VII (p = 0.0002 and 0.003, respectively, under
strategy VI, and p = 0.02 and 0.02, respectively, under strategy VII; p-values are for the test for
the spline components), but not for any other baseline covariates or strategies. For consistency,
to investigate the interactions between treatment and baseline covariates, we included baseline
HIV RNA and time HIV-infected at baseline as splines in all strategies, and the other continuous
baseline covariates as linear.

The interactions between treatment and baseline covariates as identified by the stepwise
backward selection procedure are summarised in the first 3 columns of Table 2.16. There was
quite a range of different interactions identified under the different strategies.

Under strategy Ia, interactions with treatment were identified for year of seroconversion and
lack of a baseline HIV RNA measurement (p = 0.03 for both). The estimated OR (95% CI)
for the effect of treatment for a patient who seroconverted in the median year 2000 and with a
baseline HIV RNA measurement was 0.72 (0.37, 1.40). For a comparable patient who serocon-
verted one year later, the estimated treatment effect was 0.87 (0.40, 1.91). For a comparable
patient who seroconverted in 2000 but without a baseline HIV RNA measurement, the esti-
mated treatment effect was 2.73 (0.69, 10.9). The reasons for these effects are not clear, though
there is a great deal of uncertainty and there may perhaps be some residual confounding.

Under strategies II/III, there was evidence of treatment effect modification by time HIV-
infected at baseline, with the suggestion of a greater benefit of treatment the less time infected at
baseline (Figure 2.10). This may be related to those identified closer to seroconversion generally
having poorer prognosis (Tyrer et al., 2003), although these patients have been infected for at
least one year before inclusion in this study. Relatedly, those infected longer at study entry have
survived AIDS-free longer with high CD4 counts, therefore perhaps do not benefit as greatly
from treatment as those identified closer to infection.

Under strategy V, there was initially evidence of treatment interactions with baseline HIV
RNA, age at and year of seroconversion, and whether identified as HIV-infected close to se-
roconversion. However, if incorporating baseline HIV RNA, then it is necessary to include
the indicator for availability of such a measurement; when incorporating interaction between
treatment and the indicator, the interaction with baseline HIV RNA was no longer statistically
significant (p = 0.1) therefore this was removed from the model; the rest of the interactions

remained statistically significant. Therefore, for a patient with median year of seroconversion
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Figure 2.10: Odds ratio for estimated effect of treatment by length of time HIV-infected at
baseline. Solid vertical line=median; dashed vertical lines=interquartile range.

(2000), a baseline HIV RNA measurement, median age at seroconversion (31 years) and who
was not identified as HIV-infected close to seroconversion, the estimated treatment effect was
0.43 (0.19, 1.00). For a comparable patient who seroconverted one year later, the estimated
treatment effect was 0.59 (0.22, 1.61), that is, in the same direction as seen under strategy Ia.
For a comparable patient with no baseline HIV RNA measurement, the estimated treatment
effect was 6.85 (0.58, 81.0); once again, in the same direction as seen for strategy Ia. For a
comparable patient who was identified as HIV-infected close to seroconversion, the estimated
treatment effect was 0.06 (0.01, 0.33). The size of this result is somewhat surprising, but pa-
tients who are identified as HIV-infected close to seroconversion are a small selected subset and
this is a known surrogate for subsequent poorer prognosis (Tyrer et al., 2003), therefore we may
expect a greater benefit of treatment in these patients who otherwise fare poorly. Finally, for
a comparable patient who was 10 years older at seroconversion, the estimated treatment effect
was 0.86 (0.34, 2.16). Since we would expect older patients to have poorer prognosis in general,
this does not tie in with our argument above that those who would otherwise fare poorly bene-
fit the most from treatment. However, our finding is in agreement with previous studies which
have shown better immunological and clinical response to treatment in younger persons (Col-
laboration of Observational HIV Epidemiological Research Europe (COHERE) Study Group,

2008).
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Under strategy VI, there was evidence of treatment interactions with age at HIV seroconver-
sion and whether identified as HIV-infected close to seroconversion. For a patient with median
age at seroconversion (31 years) and who was not identified as HIV-infected close to seroconver-
sion, the estimated treatment effect was 0.45 (0.26, 0.79). For a comparable patient who was 10
years older at seroconversion, the estimated treatment effect was 0.76 (0.40, 1.45); this was 0.07
(0.02, 0.28) for a comparable patient who was identified as HIV-infected close to seroconversion.
These results are similar to those seen under strategy V.

There was no evidence of treatment effect modifications under strategies Ib, IV or VII. The
estimated treatment effects under strategies Ib and IV were somewhat closer to 1, therefore

perhaps making the detection of interactions unlikely.

Interaction between treatment and country Finally, we considered interactions between
treatment and country. As discussed in section 2.3.4, we anticipated that there should be no
such interaction. However, we found evidence of such an interaction under strategies IV and
VI (p = 0.05 and 0.02, respectively; Table 2.16), and these interactions remained even when
taking into account other interactions with treatment where indicated (for example, age at
seroconversion and whether identified as HIV-infected close to SC under strategy VI). Since
the treatment-by-country interactions remained broadly similar regardless of whether other
interactions were taken into account, and in order to compare across the different strategies by
country, we proceeded with the models with interactions between treatment and country only,
for illustrative purposes.

The estimated treatment effects by country for all of the strategies are illustrated in Figure
2.11 (without any other interactions included). The point estimates for treatment effect were
somewhat different across the strategies albeit with wide confidence intervals. Note that across
all strategies and in all countries, the weighted models yielded estimated treatment effects
further from the null than the unweighted model, demonstrating control of confounding.

The only difference between strategies Ia (orange) and II/III (green) was the degree of
truncation. To investigate this further, consider Figure 2.12 which illustrates the results from
these strategies and in addition with no truncation. In line with previous results, and as we
would anticipate, progressive truncation resulted in more moderate estimated treatment effects
across all countries, except Switzerland where the results were consistent regardless of the degree
of truncation. This is because, as we have seen above, Switzerland has fairly stable weights and

is little affected whether 0.1 or 0.5% truncation is performed.
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Time, years Strategy No treatment  Immediate treatment Difference

3 Unweighted 0.96 (0.95, 0.96)  0.97 (0.96, 0.98)  0.01 (0.002, 0.03)
Ia 0.95 (0.94, 0.96)  0.97 (0.96,0.98)  0.02 (0.009, 0.04)

Ib 0.95 (0.94, 0.96)  0.97 (0.96,0.98)  0.02 (0.007, 0.03)

II/III  0.94 (0.93,0.96)  0.98 (0.97, 0.99) 0.04 (0.02, 0.05)

v 0.95 (0.93, 0.97)  0.97 (0.96,0.99)  0.02 (0.002, 0.05)

v 0.94 (0.91, 0.96)  0.98 (0.96, 0.99) 0.04 (0.01, 0.07)

VI 0.93 (0.91, 0.95)  0.97 (0.95, 0.99) 0.04 (0.02, 0.07)

VII 0.94 (0.93, 0.96)  0.98 (0.97, 0.99) 0.04 (0.02, 0.05)

6 Unweighted  0.91 (0.89, 0.93)  0.93 (0.91, 0.96) 0.02 (-0.01, 0.06)
Ia 0.91 (0.89, 0.94)  0.95 (0.93,0.97)  0.04 (0.009, 0.07)

Ib 0.92 (0.90, 0.94)  0.95 (0.93,0.97)  0.03 (0.002, 0.06)

II/III 0.90 (0.87,0.93)  0.96 (0.94, 0.98) 0.06 (0.02, 0.09)

v 0.91 (0.89, 0.94)  0.95 (0.92,0.98)  0.04 (-0.005, 0.08)

A% 0.90 (0.86, 0.94)  0.96 (0.93, 0.99) 0.06 (0.01, 0.11)

VI 0.88 (0.85, 0.91)  0.95 (0.92, 0.98) 0.07 (0.02, 0.12)

VII 0.90 (0.87, 0.93)  0.96 (0.94, 0.98) 0.06 (0.02, 0.10)

Table 2.17: Predicted 3 and 6 year AIDS-free survival (bootstrapped 95% confidence intervals).

Recall that strategies IV (blue) and V (purple) have treatment models stratified by country.
To explore this further, consider Figure 2.13 which illustrates the results for these strategies,
in addition with one overall treatment model across countries. Stratifying the treatment mod-
els by country resulted in more moderate estimated treatment effects, with the exception of
Switzerland where the effect is in the opposite direction. The reasons for this are not clear;
we have seen above that the weights for Switzerland are fairly stable, therefore perhaps this

suggests some lack of control for confounding in the remaining countries.

AIDS-free survival

Although some interactions were detected with some weighting strategies, there was a lack
of agreement across them. For illustration, the standardised survival curves for immediate
versus no treatment, as described in section 2.4.1, are shown in Figure 2.14, assuming no
interactions with treatment. Table 2.17 also gives the predicted AIDS-free survival at 3 and
6 years under these treatment regimes, with bootstrapped confidence intervals, and for the
differences in AIDS-free survival between the two regimes at those time-points. The medians
of the bootstrapped estimates were similar to the overall point estimates. Of note, two of the
bootstrapped datasets only contained patients from Italy who were not observed to reach the
endpoint, therefore all patients from Italy were dropped from the pooled logistic regression
models. However, the results from those models were checked by eye individually and were
found not to be overt outliers compared to the overall bootstrap estimates, and therefore were

included for the bootstrapped confidence interval estimation.
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Figure 2.12: Effect of treatment by country, under weighting from treatment model of strategies
I-III, with different degrees of truncation.
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Figure 2.13: Effect of treatment by country, unweighted and under weighting from strategies
IV and V, with either separate treatment models by country or overall treatment models.
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Figure 2.14: Standardised AIDS-free survival over 6 years for immediate (solid lines) versus no
(dashed lines) treatment, across the different strategies and an unweighted model.

The unweighted curves for immediate and no treatment remained fairly close together over
time compared to the weighted curves, which all predicted higher AIDS-free survival under
immediate treatment, and typically similar or lower AIDS-free survival under no treatment,
compared to the unweighted curve. While there was some departure between the weighted
curves at later times, there was a great deal of uncertainty at these times, and overall they
yielded fairly consistent results. At 3 years, the unweighted and weighted curves all predicted
statistically significantly higher AIDS-free survival for immediate versus no treatment, although
the weighted curves more so (from 2 to 4% higher AIDS-free survival compared to 1% higher
survival unweighted). At 6 years, the magnitudes of the differences between the curves for
immediate versus no treatment increased although the uncertainty also increased; there was
no longer any evidence of a difference between the two regimes from the unweighted models.
In contrast, most of the weighted models continued to predict higher AIDS-free survival under
immediate versus no treatment, with the exception of strategy IV (unsurprisingly since we have
already seen greater uncertainty under this strategy) and strategy V. The predicted AIDS-free
survival at 6 years ranged across the weighted models from 0.88 (0.85, 0.91) to 0.92 (0.90,
0.94) under strategies VI and Ib, respectively, for a patient who had never taken treatment,
and around 0.95-0.96 under all strategies for a patient who started treatment immediately.

The difference in AIDS-free survival ranged from 0.03 (0.002, 0.06) to 0.07 (0.02, 0.12) under
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strategies Ib and VI, respectively, compared to 0.02 (-0.01, 0.06) under the (biased) unweighted

approach.

2.5 Discussion

While MSMs offer a relatively intuitive extension of standard methods to estimate causal effects,
their application in practice is not straightforward. Of crucial importance is the construction
of suitable inverse probability of treatment weights, which requires a number of inevitably
subjective decisions. While formal methods have been proposed to develop a treatment model
(Brookhart and van der Laan (2006); Mortimer et al. (2005); Petersen, Deeks, Martin, and
van der Laan (2007)), these methods are not necessarily easy to implement, are somewhat
opaque and still require decisions at the start regarding potential covariates and at the end to
determine whether a suitable model has been achieved. We have broken down and structured
the process as a set of four well-defined key decisions: the starting point (minimal model of key
potential confounders versus “full” model of potential confounders), working with truncated or
untruncated weights, identification of covariates to add (or remove) from the model, and the
level of truncation for the final weights. We have indicated potential choices which may be
preferable to different researchers, and based on these different viewpoints have constructed a
set of six varied strategies (Ia, Ib, IL, ITI, IV and V). Of course, there are many other possibilities
which may yield different results; these six realistic options were chosen to explore and illustrate
the potential differences that could arise, and might be expected to yield the most contrasting

results.

2.5.1 The key decisions and strategies for construction of the treatment

model

The six strategies led to four distinct models for treatment weights, although there was a great
deal of overlap. A broad range of potential confounders were considered for inclusion in the
treatment model, although no variable appeared in only one treatment model. Time since last
CD4 count appeared in all models, and the number of previous CD4 counts appeared in all
but one; some had in addition nadir CD4 count and the indicator for last CD4 observation
carried forward. Two of the treatment models were stratified by country. Even the preliminary
model with CD4 count as the only time-dependent variable demonstrated considerable control
for confounding, with a reduction in the estimated OR for the effect of treatment by almost two-

thirds, from 0.91 unweighted to 0.33 (after 0.1% truncation of the weights). The weights were
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improved upon with the incorporation of other time-dependent covariates. All the strategies
appeared to demonstrate considerable control for confounding, with the point estimates having
moved away from the unweighted estimate.

Applying the same strategies to the construction of censoring weights, the strategies which
were constructed to favour larger models did result in larger models, although all the ORs
were fairly close to 1 indicating that the censoring processes were not very informative in this

example.

Decision 1

Decision 1 regarding the starting point (minimal versus “full” model) may be most directly
assessed by comparing strategies IV (starting with the minimal model) and V (starting with
the “full” model). These two strategies led to similar treatment models although, perhaps
conversely to expected, the forward selection procedure of strategy IV yielded a slightly larger
model which included the number of previous CD4 counts in addition to those covariates which
were included under strategy V.

After applying in addition the censoring weights, strategy V led to the most extreme OR
seen from all the strategies (0.29) compared to 0.35 under strategy IV, albeit with larger SE

(0.49 versus 0.41 on the log-odds scale).

Decision 2

Decision 2 determined the level of truncation of the weights when making decisions about which
covariates to add to (or remove from) the model; working with untruncated weights led to a much
more complex model, including stratification by country (comparing strategies IV versus III).
This is in the direction that we might expect. It is not immediately clear whether one approach
is advantageous over the other; one could argue that the untruncated weights have greater
potential for capturing confounding, therefore indicating that working with truncated weights
may result in important confounders being missed. Conversely, if there are positivity problems,
then working with untruncated weights may result in including variables which amplify that
problem.

Of note, we found that if the model building process was performed at a given degree of
truncation, then this was subsequently matched by the degree of truncation selected at the
final stage. This is unsurprising since the process has been directed towards that degree of
truncation, but is worth noting since it implies that decisions made relating to the criteria for

selecting covariates are inevitably linked to the weight truncation indicated at the end.
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After applying in addition the censoring weights, strategy IV with the more complex treat-
ment and censoring models yielded results with a more moderate estimated treatment effect
(OR=0.50 versus 0.36 under strategies II/IIT) and less precision (SE=0.41 versus 0.34 on the
log-odds scale). Therefore, it appears that working with truncated weights during the treatment

model building process may be advantageous.

Decision 3

In our example, we found that decision 3 relating to different criteria for adding variables to (or
removing from) the treatment model did not make a difference (comparing strategy III versus
IT). However, during the construction process more variables were identified as eligible under the
decision criterion which favoured a larger model (strategy I11) as opposed to that which favoured
a smaller model (strategy II), therefore it is possible that in other applications, this decision
may result in different treatment models. However, it is somewhat reassuring that somewhat
different but equally reasonable strategies with respect to the incorporation of covariates are

likely to lead to similar treatment models.

Decision 4

Decision 4, regarding the truncation of the final weights, will in general make the largest dif-
ference to the estimated causal effects, as illustrated by Figures 2.9 and 2.12. It is necessary
for the analyst to make a reasonable judgment about whether large weights are likely due to
non-positivity problems or model misspecification (and therefore truncate) or the degree of con-
trol of confounding (therefore do not truncate). This cannot typically be determined from the
data, therefore it seems prudent to perform some truncation if there are extreme weights; in
addition, this will most likely help increase the precision of the treatment effect estimate. In
our example, we felt that some truncation was needed, and 0.1% truncation seemed sufficient
to bring the weights under control.

Compared to strategy 11, additional truncation was applied under strategy Ia, which favoured
greater protection from non-positivity or model misspecification bias. After applying in addi-
tion the censoring weights, the impact of this decision on the estimated treatment effect was
considerable, changing the estimated OR from 0.36 under strategy II/III to 0.54 under strategy
Ia, with an associated reduction in the SE (0.34 to 0.26 on the log-odds scale).

Weight truncation will typically make a substantial difference to estimates of treatment
effect on outcome, and perhaps researchers should be encouraged to specify a priori what level

they will use or at least what criteria will be applied to determine the level of truncation at
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each stage. However, we would recommend performing a range of sensitivity analyses to assess

the impact of the weight truncation, which should be reported alongside the main results.

Additional non-directional strategy

We realised that incorporating the direction of change of treatment effect away from the null in
the selection process may preferentially lead to an exaggerated estimate of treatment effect. We
therefore introduced an additional strategy (Ib) which matched strategy Ia except it did not
depend on the direction of change of the treatment effect estimate. Compared to la, strategy
Ib incorporated one extra variable in the treatment model, namely nadir CD4 count. The
estimated treatment effect was more moderate under strategy Ib than strategy Ia; this could be
related to our reason for introducing this strategy, namely that incorporating the direction of
movement of the estimated treatment effect away from the null (as in strategy Ia) may lead to
causal effect estimates that are too strong. However, strategy Ib led to more complex treatment
and censoring models than strategy Ia, and therefore greater truncation was required to bring

the weights under control; this was perhaps at the expense of control for confounding.

Additional strategy with interaction between CD4 count and HIV RNA

Strategy VI, incorporating an interaction between CD4 count and HIV RNA, yielded some very
large weights, most likely due to non-positivity issues (very few patients with high CD4 counts
and low HIV RNA levels were observed to initiate treatment). However, after 0.1% truncation
of the weights, the estimated treatment effects were very similar to those from strategy IV
without stratification by country (the same model but without the CD4 count by HIV RNA
interaction). Therefore our original treatment model building strategy did not appear to have

missed an important confounder in HIV RNA.

Additional strategy using traditional model selection procedure

The additional strategy VII with the “traditional” stepwise procedure led to an overly com-
plex model, incorporating a number of variables capturing HIV RNA-related data. This model
yielded some very extreme weights, perhaps due to positivity issues with the large model.
Greater truncation was needed (0.5% compared to 0.1% under the majority of the other strate-
gies) in order to bring the weights under control. However, after truncation, the results were
not inconsistent with those from the other strategies, therefore suggesting perhaps that even in
cases of severe non-positivity, this issue may be to some extent ameliorated with simple weight

truncation. After incorporating in addition the censoring weights, the results from this strategy
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were not inconsistent with the results from the majority of the other strategies (OR 0.32, SE

0.32 on the log-odds scale).

Summary

In summary, strategies la, Ib and IV yielded somewhat more modest estimated treatment
effects, with ORs of 0.54, 0.63 and 0.50, respectively. The remainder of the strategies had
broadly consistent results, with the ORs ranging from 0.29 under strategy V to 0.36 under
strategy II/III. All these ORs were statistically significantly different from 1. Strategies IV and
V had considerably larger standard errors at 0.41 and 0.49 on the log-odds scale, compared to a
maximum of 0.34 under the other strategies; this was due to the stratification of the treatment
models by country. Notably, these strategies used untruncated weights during the treatment
model building process. We therefore recommend strategies la, Ib, II and III over strategies
IV and V. Analysts may be reassured that the different criteria for covariate selection did not
make a difference in practice in our application to the CASCADE data. In such examples
where there are concerns about violations of the positivity assumption, we may prefer to opt
for the strategy which was designed to lead to a minimal model, namely strategy Ia. If there
are not concerns about non-positivity, then further work simulating different scenarios may be
useful to determine which strategy may be more generally preferable in different circumstances.
Regardless, we recommend that a range of strategies, in particular with different degrees of

weight truncation, are performed to examine the sensitivity of the results to the assumptions.

2.5.2 “Treatment refusers”

A number of the models yielded some overtly large weights; these derived mainly from a few
patients with low CD4 counts who persistently delayed treatment initiation, resulting perhaps in
non-positivity issues, residual confounding or model misspecification. This issue was addressed
to some extent by adapting the CD4 count model to the “blunted” spline, forcing a constant
probability of treatment initiation at CD4 counts <100 cells/mm?, and also with default 0.1%
truncation of the weights. This degree of truncation was somewhat arbitrary but was necessary
in order to exclude unreasonably large weights (for example >1000 for the preliminary model).
A further step may be to censor these persistent “treatment refusers” at those low CD4 counts,
but then the dynamic element must be recognised since this censoring process is dependent on
time-updated data. Therefore within the constraints of these standard MSMs, there is nothing

that can easily be done to unbiasedly address this problem. However, we shall see in subsequent
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chapters that it is possible to incorporate the dynamic element with history-adjusted or dynamic
MSMs. In the next chapter on HAMSMs, we can simply exclude “trials” with low “baseline”
CD4 count, say < 100 cells/mm?, on the grounds that these extreme cases are irrelevant to
treatment decisions at a population level. In dynamic MSMs, the lowest regime that will be
considered will be to initiate when the CD4 count is first observed to drop below 200 cells/mm3,
and so these “treatment refusers” will implicitly be dealt with. That is, these patients will
be progressively censored from regimes as their CD4 count drops, and finally censored from
all regimes when their CD4 count dropped < 200 cells/mm?® and they still did not initiate

treatment.

2.5.3 Treatment effect modification by baseline covariates

We investigated treatment effect modification by baseline covariates. There was a lack of agree-
ment in the interactions identified, though that may be due to lack of power, particularly in
strategies IV and V where there was stratification of the treatment model by country.

Where interactions were identified, they were typically present in two strategies. These
were discussed in detail in section 2.4.2. Briefly, in strategies Ia and V, later year of serocon-
version and lack of a baseline HIV RNA measurement were associated with weaker treatment
effect estimates, but the reasons for these associations were not clear and there may be residual
confounding. The particularly strong beneficial effect of treatment in those identified close to
seroconversion under strategies V and VI was somewhat surprising, but we know that such
patients are a small and select subgroup, and such early presentation is a well-known pre-
dictor for worse prognosis (Tyrer et al., 2003), therefore it is plausible that treatment could
be particularly beneficial among that subset of patients. Previous studies have shown better
immunological and clinical response to treatment in younger persons (Collaboration of Obser-
vational HIV Epidemiological Research Europe (COHERE) Study Group, 2008), in agreement
with our findings under strategies V and VI, where younger age at seroconversion was asso-
ciated with stronger treatment effect. One further interaction was identified, under strategies
IT/I11: shorter time infected at baseline was associated with stronger treatment effect. This may
be related to a survivorship bias, in that those infected longer at baseline must have survived
longer treatment-naive, AIDS-free and with such high CD4 counts > 500 cells/mm? in order to
enter the analysis.

As far as we are aware, the only previous investigation of treatment (antiretroviral therapy)

effect modification by baseline covariates using MSMs in HIV-infected patients was in a series
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of papers by Cole and colleagues (2007; 2005; 2003), where “baseline” was the first clinic visit
in 1995 or 1996. In their 2003 paper, they found no difference in the estimated treatment effect
on progression to AIDS or death by sex. However, they did find that treatment appeared to be
most beneficial in those with lower baseline CD4 counts, and in fact there was no strong benefit
of treatment in those with baseline CD4 counts > 350 cells/mm?>. In their 2005 paper looking at
the effect of treatment on CD4 count, the authors found a larger effect of treatment in the first
year among men compared to women, but there was no evidence of a difference after one year.
Similarly, those with a lower baseline CD4 count experienced a greater benefit of treatment
in the first year but with no difference thereafter. In 2007, the authors found evidence of a
stronger effect of treatment in men compared to women on HIV RNA, but no difference by
baseline CD4 count. In contrast to those studies, our population includes patients with high
baseline CD4 counts, and subsequent CD4 decline, rather than the starting value, is likely to be
more important, therefore it is no surprise that we did not see any treatment effect modification
by baseline CD4 count. This may be different when we progress to HAMSMs where we can look
at treatment effect modification by trial “baseline”, that is time-dependent, CD4 count. We

did not find any evidence of an interaction of sex with treatment across any of the strategies.

2.5.4 Model checking using country

As suggested in section 2.3.4, we were able to exploit the existence of different countries to test
for an interaction with treatment, as a model checking procedure.

Recall that a number of countries with few patients were combined, namely Australia,
Canada, Denmark, the Netherlands and Norway. There is no reason that treatment or outcome
in these countries would necessarily be similar in any way; greater numbers of patients would
enable analyses split by these countries too and perhaps add to our understanding. Those coun-
tries which were included separately are known to contain different populations; in particular,
the populations from the UK and Germany were predominantly men infected through having
sex with men, while the populations from Italy and Spain had high proportions of patients
infected through IDU. The frequency of CD4 count measurements varied by country, with the
medians ranging from 3.0 to 5.6 months.

There was evidence of differential treatment effects by country under strategies IV and VI. Of
note, strategy VI was based on strategy IV, but with the incorporation of an interaction between
CD4 count and HIV RNA in the treatment model. Strategy IV led to the largest treatment

model of the original strategies, but aside from this it was not clear how this strategy differed
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to indicate treatment effect modification by country where the others did not. However, Figure
2.11 illustrates that, despite not reaching conventional statistical significance, there appeared
to be some differential effects of treatment by country across all the strategies. In particular,
the treatment effect appeared to be strongest in Switzerland. Notably, the estimated treatment
effects for Switzerland were least affected by truncation of the weights, perhaps suggesting that
the strong treatment effect estimates seen for Switzerland better captured the truth and we
may be missing residual confounders in the other countries. However, given that treatment
guidelines across these countries are broadly consistent, and based mainly on CD4 count, it is
difficult to imagine what those confounders might be.

Regardless of the result, we found this process to be helpful in examining and understanding
the data and would encourage others to consider applying such an approach. We did not see any
great advantage in stratifying the treatment models by country. While other examples may be
different, this offers some reassurance to other studies where stratification may not be possible,

for example by subpopulations of clinical centres which may not be recorded.

2.5.5 Limitations

All results presented here rely on a number of assumptions (section 2.2.2), in particular con-
sistency, no unmeasured confounders between treatment and outcome, no misspecification of
the treatment or outcome models and positivity. The consistency assumption is likely to be a
reasonable one in general, but the others are perhaps more debatable. There was some empirical
evidence of non-positivity. We have considered a range of different models, but we cannot ex-
plicitly test whether the models, in terms of specification and incorporation of all confounders,
are correct. Truncation of the weights should provide some protection against violation of these
assumptions, at the potential expense of bias.

Patients with less than one month of follow-up were excluded, therefore the probability of
AIDS-free survival in the first month was artificially equal to 1 in our analysis, although there
were only 46 such patients.

The median follow-up was only 2.3 years, restricted in part by the follow-up time starting
at least one year after seroconversion and by the large proportions of patients being censored
due to lack of availability of CD4 counts. With longer follow-up with complete CD4 count
data, and hence greater power, some of the differences arising under the different strategies, for
example identification of different interactions of treatment with baseline covariates, may have

been resolved.
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2.5.6 Application to other disease areas

Our approach of defining the treatment model building process as a series of (subjective) de-
cisions helps to ensure the decision-making process is transparent and may facilitate greater
involvement of collaborators such as clinicians. Our range of strategies helped to illustrate the
potential differences in results that may arise from different modelling approaches. While no
approach is more “correct” than another, this may help researchers understand potential differ-
ences seen in literature published previously or in the future, and may for example help inform
any systematic reviews by having indicated likely sources of any heterogeneity between results,
such as the degree of weight truncation. Further, we suggest that authors may wish to consider
more than one of the strategies outlined here, in order to explore the potential problems of
positivity, model misspecification or residual confounding. Of course, there are other possible
strategies which may also be considered. These recommendations apply to the field of HIV

research and more widely.

2.5.7 Summary

In this chapter, we have proposed a transparent process for the construction of treatment models
in terms of a series of decisions, and illustrated how these may be combined to form different
modelling strategies. These may be adapted for the estimation of causal effects in any setting.
We have applied these strategies to our population of patients from CASCADE, and illustrated
the need for weighting to appropriately adjust for time-dependent confounders which are used
in the treatment decision process. Across all strategies, we demonstrated a beneficial effect of
treatment in terms of reduction in the risk of AIDS or death. There were some differences in
the point estimates obtained, but overall the results were broadly consistent. In addition, we
have estimated survival according to the non-dynamic treatment regimes of immediate versus
no treatment, adjusting for baseline covariates only. We will compare these estimates to those
obtained in subsequent chapters under different approaches.

We have explored treatment effect modification by baseline covariates, but, as previously
described, it is not possible to investigate such effect modification by time-dependent covariates
with standard MSMs. A natural follow-on question is when to initiate treatment; perhaps an
intermediate time would still provide the benefits afforded by immediate treatment initiation,
but reduce the time spent on treatment over a patient’s lifetime, thus potentially reducing
the risks associated with long-term treatment such as side effects and development of drug

resistance. In the following chapter, we will incorporate interactions between treatment and
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CD4 count using HAMSMSs to address the question of whether to initiate or defer treatment
with respect to current CD4 count, which is the situation faced by clinicians and patients at
each clinic visit. In chapter 4, we then proceed to consider pre-specified, well-defined dynamic
treatment regimes in terms of CD4 count, whose effects are estimated using dynamic MSMs. The
construction of inverse probability of treatment weights for unbiased estimation of treatment
effects via history-adjusted and dynamic MSMs follow the same principles as those for standard

MSMs, therefore we will make use of the weights constructed in this chapter.
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Chapter 3

History-adjusted marginal structural

models

3.1 Introduction

As discussed in section 2.5.7, a limitation of standard MSMs is that they cannot directly incor-
porate interactions between treatment and time-dependent covariates. For example, we found
that baseline CD4 count was not a treatment effect modifier in our population of HIV-infected
persons from CASCADE, perhaps unsurprisingly given that, by design, all patients had a high
CD4 count at the time of study entry. However, one might hypothesise that treatment is
most beneficial at subsequent low CD4 counts; such treatment effect modifications cannot be
addressed using standard MSMs.

We introduced the concept of history-adjusted static treatment regimes and their estimation
using history-adjusted MSMs (HAMSMsS) in section 1.4.3, with the idea of a series of “trials” and
a common standard MSM assumed at each time-point (Petersen, Deeks, Martin, and van der
Laan, 2007). In chapter 2, we outlined a range of potential strategies for estimation of the
inverse probability weights, applied these to the CASCADE data to obtain an array of estimated
weights, and demonstrated a treatment effect on the time to AIDS or death in our population
of CASCADE patients.

In this chapter, we build on that work, firstly introducing the theory of HAMSMs and then
applying these methods to the CASCADE data using the different sets of estimated weights from
chapter 2, and in particular exploring treatment effect modification by time-updated CD4 count.
As outlined in section 1.5, previous researchers have looked at estimating the causal effects of

immediate versus deferred treatment, given current (or past) CD4 count, using CASCADE
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data (although with all initial CD4 counts, not restricted to those with a first CD4 count > 500
cells/mm? as in our population; Writing Committee for the CASCADE Collaboration (2011)).
As we shall see, this question may be extended to consider the effects of treatment initiation
immediately versus never (that is, no subsequent treatment), using HAMSMs (Hernén et al.,
2008). We consider and compare both of these approaches, and obtain causal estimates of
treatment given current CD4 count. It will be of interest to return to these results in chapter
5 to compare them with those obtained from the optimisation of dynamic treatment regimes,
in chapter 4. While the application of history-adjusted and dynamic MSMs typically answer
different questions, we might anticipate some consistency across the two approaches, and the

application of both may offer additional insights to the inference of interest.

3.2 Methodology

As in section 1.4.3, in their most basic form HAMSMs can be used to estimate the effects of ini-
tiating treatment sequentially at each given time-point, given treatment and covariate history,
ignoring whether treatment is subsequently initiated by those patients who initially deferred
treatment, that is considering only the effect of starting treatment now versus not starting now
and assuming behaviour in those deferring treatment is generalisable. This approach may be
extended to estimate “adherence-adjusted” effects (Herndn et al., 2008), where appropriate ad-
justment is made for those patients who initially deferred but subsequently initiated treatment,
in order to estimate the effects of immediate versus no treatment. We now describe these two

scenarios further and the appropriate methods for estimation.

3.2.1 Treatment regimes Immediate versus Deferred treatment
Notation

We use exactly the same set-up and notation for time-dependent covariates L(k), treatment
A(k) and outcome Y () as introduced in section 2.2.1, with overbars representing history to that
time. The key concept behind HAMSMs is to consider each small time interval, for example
month, of patient follow-up as the start of a new “trial”, and then investigate treatment effects
by performing estimation across the pooled trials. Therefore, in practice, the first step is to
expand the data, treating each month in which a patient remains alive, event-free, in follow-up
and previously treatment-naive as the start of a new trial. For the first trial, given by £ = 1, we
use the first month of follow-up, that is time [0, 1), to determine A(1) and hence the treatment

status for that first trial, where A(1) = 0 means the patient is following the regime Deferred
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Figure 3.1: Tlustration of expansion of data for an example patient who was treatment-naive
up to time-point 2 but had initiated treatment by time-point 3. We create a series of trials,
starting at each time-point the patient remains alive, event-free, in follow-up and previously
treatment-naive. The solid lines indicate the follow-up time included for that trial; the dashed
lines indicate the time during which the treatment status is determined for that trial (Immediate
or Deferred).

treatment and A(1) = 1 means the patient is following the regime Immediate treatment. Follow-
up of that first trial then begins at time 1. In general, for a trial k, the treatment status of the
patient is determined by A(k) and follow-up begins at time k. We use t = 0,1, 2, ... to indicate
follow-up time within a given trial k. The “baseline” covariates for trial k£ are those given by
L(k — 1); this ensures temporality in that the “baseline” covariates are always measured before
determination of treatment status. In order to clearly distinguish between different variables,
we refer to those at overall study entry as “true-baseline” covariates (constant for each patient
across all trials) and those at the start of each trial as “trial-baseline” covariates (constant within
each trial but different for each patient-trial). Expansion is performed for all patient-months for
which the patient remains in follow-up with A(k — 1) = 0 and Y (k) = 0. Of note, this requires
for the first trial that Y (1) = 0, on the grounds of temporality; if treatment was initiated in the
first month then we cannot be sure that it was not in response to the event.

Consider the example patient illustrated in Figure 3.1. In the first two months, the patient
did not initiate treatment, therefore A(1) = A(2) = 0, and so for the first two trials, given by
k = 1,2, we consider the patient to be following the regime Deferred treatment. In the third
month, the patient did initiate treatment, and so A(3) = 1 and, in this third trial, the patient
is considered to be following the regime Immediate treatment. The patient does not contribute
to any further trials.

The equivalent RCT would involve the randomisation of patients who are currently treatment-
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naive at each time-point to one of the two treatment regimes of Immediate or Deferred treat-
ment. Note that the treatment regime Deferred permits treatment initiation at any subsequent

time; see further discussion relating to this in section 3.2.2.

Cox proportional hazards model

When comparing the regimes of Immediate versus Deferred treatment, since the covariates
L(k — 1) can be considered as baseline covariates for trial k, and we do not take into account
subsequent treatment, this means that we do not have the problem of time-dependent confound-
ing for the comparison of these two regimes. This means that straightforward adjustment of the
trial-baseline covariates will provide an unbiased estimate for the effect of initiating treatment
immediately versus deferral on the outcome of interest, under standard assumptions (section
1.2.4). In this case, weighting is not required and it is possible to easily use standard mod-
els, such as Cox proportional hazards models for our time-to-event outcome, since there are
no time-varying weights to incorporate. Compared to pooled logistic regression models, this
reduces computational time since only one record per patient per trial is required, rather than
one record per patient per trial per month, so less data expansion is required. In addition,
standard model building approaches can be employed.

Consider trial k; we could fit the following Cox proportional hazards model in patients who

are in follow-up, previously treatment-naive and event-free:
A {E(AR), Ak 1) = 0.Z(k — 1), } = 3 () exp {aA(R) + BL(k = 1)} (3.1)

where T is the time to event of interest (now measured from the start of trial k). A(k),
A(k — 1) and L(k — 1) are as explained above. Equation 3.1 therefore consists of the baseline
(perhaps trial-dependent) hazard )\((]k)(t), and parameters « and 8 which we seek to estimate.
In particular, @ will provide our estimate of the effect of the regimes Immediate versus Deferred
treatment. To clarify for the equivalent RCT analysed by ITT, A(k) represents the randomised
regime (Immediate or Deferred treatment), rather than whether the patient actually initiated
treatment or not, in order to preserve the randomisation balance.

Assuming homogeneity in the treatment effect across trials, we can pool across all k, al-
though then we may choose to include k in the model, preferably as a smooth function. This
homogeneity assumption can be tested by incorporating an interaction between treatment and
k (Hernén et al., 2008). The treatment effect modification by a trial-baseline covariate can then

be explored using interactions between that covariate and treatment regime.
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This approach was used by Writing Committee for the CASCADE Collaboration (2011)
to estimate the effect of treatment on time to AIDS or death by CD4 count in CASCADE
participants (not restricting to those with a high initial CD4 count); the authors found that
treatment initiation, compared to deferral, was beneficial at CD4 counts < 350 cells/mm?, and
more greatly so at lower CD4 counts. There was some suggestion that initiation of treatment
at CD4 counts of 350 — 500 cells/mm3 may be beneficial, but the authors noted that the event
rate was low in this range of CD4 counts. The authors also considered an alternative approach,
whereby instead of direct adjustment of the baseline covariates for each trial in the model via
L(k—1) in equation 3.1, they estimated inverse probability of treatment weights and used these
in a Cox proportional hazards model to account for the non-random differences between the
patients who were and were not observed to initiate treatment at the start of each trial. They

noted that the results were very similar, as one would expect.

3.2.2 Treatment regimes Immediate versus No treatment

The approach described in section 3.2.1 comparing the effect of immediate initiation of treatment
versus deferral does not attempt to take into account the subsequent treatment (or not) in those
patients who initially deferred treatment. This in itself is useful clinically, where clinicians
and patients are typically faced with the decision to immediately initiate or defer treatment
at successive clinic visits. However, “deferral” in this instance encompasses a broad range
of subsequent treatment options. If instead interest lies in the effect of initiating treatment
immediately versus never, then this approach would in general yield a conservative estimate.
In a study investigating the effect of postmenopausal hormone therapy on the risk of coronary
heart disease using observational data, Herndn et al. (2008) began with the direct-adjustment
method of Writing Committee for the CASCADE Collaboration (2011), but then progressed to
an “adherence-adjusted” approach. This involved censoring patients when they discontinued
their trial-baseline treatment regime; that is, those who initiated treatment immediately at the
start of a given trial were censored if they subsequently stopped treatment, and those who
initially deferred treatment were censored if they subsequently initiated treatment. They used
inverse probability weighting of pooled logistic regression models to account for this potentially
informative censoring, thus up-weighting those patients who remained on their trial-baseline
regime to allow for those censored from their trial-baseline regime due to non-adherence. Of
note, while Herndn et al. (2008) censored both those patients who initially initiated treatment

but later stopped and those who initially deferred treatment but later started, as outlined
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in section 1.6.1, we will only be concerned with the latter, under the assumption that once
treatment is initiated, it is continued for life in HIV-infected persons. This is similar to other
studies in HIV infection (Gran et al., 2010; Writing Committee for the CASCADE Collaboration,
2011).

More recently, Gran et al. (2010) employed sequential Cox proportional hazards models to
estimate the direct causal effect of treatment in HIV-infected persons. As in the adherence-
adjusted approach of Herndn et al. (2008), patients were censored if they initially deferred but
subsequently initiated treatment, and weights were applied accordingly. They estimated the
parameters of these models using composite (pseudo) likelihood, stratifying the Cox models by
trial start time, and estimated the standard errors using a jackknife approach. These models
are the same as those approximated by the weighted pooled logistic regression models of Herndn
et al. (2008), which are easier to implement with time-varying weights in standard software. As
discussed in section 2.2.5, the odds ratios obtained from pooled logistic regression models can
be interpreted as hazard ratios providing the probability of an event in each time interval is
small (D’Agostino et al., 1990).

Petersen, Deeks, Martin, and van der Laan (2007) used a similar approach in a different
field of HIV: when to switch from a failing treatment regime. They included patients with
virological failure and estimated the effect of each additional month delay until switching on
the CD4 count eight months later. As in the approach used by Writing Committee for the
CASCADE Collaboration (2011), they constructed a number of trials, starting at each month
that a patient remained in the study. Inverse probability weighting was used to adjust for
treatment switches after the baseline time. Petersen, Deeks, Martin, and van der Laan (2007)
refer to their models as HAMSMSs, since they employed standard MSMs with multiple baseline
times. In particular, they used a range of baseline times, and for each there was a single
fixed time after the start of that trial at which the outcome was evaluated. That is, for each
trial, there was a trial-specific outcome, namely CD4 count eight months later. However, in a
subsequent commentary, Robins et al. (2007) suggest that the term HAMSM should be reserved
for the scenario where there are a number of baseline times mapping to at least one overarching
outcome time across the study, rather than the one-to-one relationship between start and end
times in Petersen, Deeks, Martin, and van der Laan (2007). Robins et al. (2007) argue that
the danger of such HAMSMs is that if one allows realistically flexible models, then there may
be a risk of model incompatibilities. However, such inconsistencies will not arise provided the

assumptions of correct model specification and no unmeasured confounding are met.
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At each time-point k, the estimates from the Immediate versus No treatment regimes deter-
mine the optimal history-adjusted static treatment regime from that time k onwards. Petersen,
Deeks, Martin, and van der Laan (2007) demonstrated that following the optimal history-
adjusted static treatment regime determined at time k will in general yield a poorer outcome
compared to sequentially following the optimal history-adjusted static treatment regime deter-
mined at time k, followed by the optimal history-adjusted static treatment regime determined
at time k + 1, and so on. Consider a simple example, where the optimal history-adjusted treat-
ment regime is to initiate if the current CD4 count is < 350 cells/mm?. If a patient, who was
previously treatment-naive, had a CD4 count > 350 cells/mm3 at time k, then following the
optimal history-adjusted treatment regime determined at time & from that time onwards would
mean not initiating treatment for the remainder of follow-up. However, sequentially following
the optimal history-adjusted static treatment regime determined at time k, followed by that
at time k£ + 1, and so on, would mean that the patient would initiate treatment if they have a
subsequent CD4 count < 350 cells/mm?, and this will in general yield a better outcome than
remaining off treatment.

These sequential optimal history-adjusted static treatment regimes can be considered to map
to a dynamic treatment regime. Petersen, Deeks, Martin, and van der Laan (2007) show that
in a simple scenario with just one time-point, their optimal history-adjusted static treatment
regime yields the optimal dynamic treatment regime (see chapter 4). However, with more
time-points, their statically-optimal dynamic treatment regime may be inferior to the optimal
dynamic treatment regime. In addition, they note that if the outcome is for example CD4 count
m months later, rather than for example CD4 count at a specific time K at the end of the study,
then their HAMSMs and the dynamic MSMs of Robins et al. (2008) are optimising different
quantities since the outcome is different.

As outlined above, estimation of the effects of the Immediate versus No treatment regimes
firstly requires censoring patients who deviate from their initial treatment regime. As we assume
that treatment is continued once initiated, we are only concerned with the censoring of patients
who initially deferred but subsequently initiated treatment. This censoring may be informative

and we address this using inverse probability weighting.

Inverse probability weighting

We firstly assume that there is no “usual” censoring, for example due to loss to follow-up; this
is addressed below. Since the artificial censoring from the regime Deferred treatment is directly

related to treatment initiation, we use an analogous approach as for the inverse probability of
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treatment weighting of standard MSMs. We fit the same model as in 3.1, except that patients
who initially deferred but later initiated treatment are censored from the time they initiated,
and inverse probability weights are incorporated to account for this potentially informative
censoring.

As in section 2.2.3, we define:

pa(u) :=Pr{A(u) =0]A(u—1)=0,Y(u) =0,L(u—1)}

for u = 1,2,.... Estimation of ps(u) follows as previously, using pooled logistic regression on
the unexpanded data (hence we have used u to denote time, rather than ¢, to avoid confusion
with follow-up time within a trial k). However, the remainder of the estimation differs.

As above, the data are expanded into one record per patient per trial £ per month of follow-
up, while patients remain in follow-up, treatment-naive and event-free. All patients receive
weight 1 at time ¢ = 0 in each trial, because the trial-baseline covariates may be adjusted
for directly in the outcome model. In addition, since we assume that treatment is continued
once initiated, those patients with A(k) = 1, who are considered to be following the regime
Immediate treatment, receive weight 1 for all follow-up in that trial k. For the patients who
initially deferred treatment in trial k, we use the estimates p4(u) to obtain the (cumulative)
probability of remaining off treatment. That is, for a given patient in trial £ = 1,2, ..., the

weight at times ¢t = 0,1, 2, ... is estimated by:

1 ift=0o0r A(k) =1
k) N K+t
qy () = i (3.2)
4 ] Ba(w) ift>1and A(k) =0

u=k+1

As in section 2.2.3, the (non-stabilised) weights then are estimated as:

—~ 1
W () =

Stabilisation The weights can be stabilised as previously using the true-baseline covariates
(section 2.2.3). Alternatively, we can now incorporate the trial-baseline covariates with the aim

of increasing the efficiency. Define:

PP () = Pr{A(t) = 0[A(t — 1) = 0,Y(t) = 0,L(k — 1)}
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which is the same as p* (¢) defined in section 2.2.3, except replacing V with L(k — 1), and using
the superscript (k) to indicate the trial-dependence. Estimation of p(:ﬁ(t) follows from pooled
logistic regression models for the probability of treatment initiation, estimated on the expanded

data over patient-months with ¢ > 1 in trials where treatment was initially deferred, that is

A(k) = 0. The numerator for the stabilised weights is estimated similarly to qz(f)(t):

1 ift=0o0r A(k) =1

t
Hﬁ(:”(s) ift>1and A(k) =0
s=1

and the stabilised weights are then simply given by:

—m,. @
qy (1)

Pooled logistic regression model

Still assuming no “usual” censoring, we estimate for t = 1,2, ...:
p(t) =Pr{Y(t+1)=1Y(t) =0,k, A(k), A(k — 1) =0,L(k — 1)}

using for example a pooled logistic regression model, in patients event-free and previously

—— (k
treatment-naive, with estimated weights S Wfq)(t):

logit {p(t)} = aA(k) + BL(k — 1) + v (k) + 651 (¢)

where f(k) and f7(t) are functions of the trial k£ and follow-up time ¢ within that trial, respec-
tively. As indicated above, this assumes heterogeneity across the trials k; this can be tested by

incorporating an interaction between A(k) and f(k).

Comparison with standard MSMs

As we have seen in chapter 2, standard MSMs may be susceptible to large inverse probability of
treatment weights, resulting in unstable treatment effect estimates. These may arise in partic-
ular at treatment initiations when the estimated probability of treatment is small. In contrast,
with these history-adjusted models, patients who initially deferred treatment are censored at
the time of subsequent treatment initiation, therefore such large weights at treatment initiations
will be censored (Gran et al., 2010). Further, under standard MSMs, the estimated weights at

treatment initiation are carried forward for the remaining follow-up; again this is not the case
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under history-adjusted estimation. Of note, the weights are, strictly-speaking, inverse proba-
bility of (artificial) censoring weights, but since the (artificial) censoring is determined based
on treatment history, and in order to distinguish from “usual” censoring, we will refer to the
inverse probability of (artificial) censoring weights as inverse probability of treatment weights
henceforth.

As discussed in chapter 2, large weights may arise when the data are close to non-positivity.
In CASCADE, we have seen that there is a small subset of patients who continued to defer
treatment initiation despite having low CD4 counts. With the standard MSMs, we were unable
to do anything further, other than truncate the weights, unless we had taken the rather drastic
and potentially biased approach of excluding those patients completely. However, with history-
adjusted models, it is easy to restrict the trials, with respect to the trial-baseline covariates, to
the population of interest. We suspected that these patients who persistently deferred treatment
initiation despite low CD4 counts are not part of the population in which we wished to estimate
the effects of treatment, and therefore it was possible to simply restrict our analyses to those
trials in which the trial-baseline CD4 count is above a certain threshold, that is for when the
question of Immediate versus Deferred treatment initiation is a clinically relevant choice.

While the treatment effect parameters from the standard MSMs and the HAMSMs discussed
above are not the same and therefore not directly analogous, both approaches are an attempt to
understand the effects of treatment and we would anticipate that the results would be broadly
compatible. Gran et al. (2010) found their results to be very similar to previous treatment effect
estimates from applying standard MSMs to the same data; they argued that this supports the
validity of each approach. However, as mentioned, the treatment parameters in these models
are not identical. In particular, the adherence-adjusted treatment effect estimate (looking at
immediate versus no treatment) from the HAMSM is adjusted for the trial-baseline covariates,

whereas that from the standard MSM is not.

Comparison with effect of regimes Immediate versus Deferred treatment

Any differences observed in the estimated effects of the treatment regimes Immediate versus
No treatment, compared to Immediate versus Deferred, will depend on the treatment initiation
patterns in relation to the time-dependent covariates. We might anticipate that treatment is
less likely to be delayed for long periods of time at low current CD4 counts, therefore at such
CD4 counts the actual differences between the Immediate and Deferred treatment regimes may
be relatively small due to those initially deferring treatment subsequently initiating soon after.

In contrast, the Immediate versus No treatment estimation will censor those patients, and
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upweight accordingly comparable patients who remain off treatment, therefore we may expect
to see stronger treatment effects under this approach, and particularly at low CD4 counts,

compared to the treatment regimes Immediate versus Deferred treatment.

3.2.3 Censoring

In the presence of “usual” censoring, for example due to LTFU, weights may be applied in
a similar way to those as in section 2.2.4. As for the treatment weights described above, the
denominator of the “usual” censoring weights is typically estimated using the unexpanded data,
and the numerator is typically estimated based on the expanded data to include the trial-baseline
covariates. For adherence-adjusted estimation, the overall weights are obtained as in chapter 2.

The outcome models must also then condition on being uncensored due to “usual” censoring.

3.2.4 Standard error estimation

As for standard MSMs, we use robust variance estimators in the outcome models. For the
comparison of the regimes Immediate versus Deferred treatment, this is necessary since patients
may contribute to more than one trial. This reasoning also applies to the adherence-adjusted
estimation, but also to allow for correlated observations induced by the use of time-dependent

weights estimated from the data.

3.3 Application to CASCADE

Our ultimate aim is to apply dynamic MSMs to the CASCADE data to investigate the question
of when to initiate treatment in HIV-infected persons. Using standard MSMs in chapter 2, we
have begun by demonstrating a treatment effect on the time to AIDS or death in the population
of patients from CASCADE in which we will apply the dynamic MSMs, and have considered

effect modification by true-baseline covariates. We now propose the following analyses:

1. use the direct-adjustment approach of Writing Committee for the CASCADE Collabo-
ration (2011) to estimate the effect on time to AIDS or death of the regimes Immediate
versus Deferred treatment, ignoring subsequent treatment in those patients who initially
deferred treatment, in our subset of CASCADE participants with CD4 > 500 cells/mm?

at study entry; and

2. extend these analyses to obtain the adherence-adjusted estimates of Hernén et al. (2008),

by accounting for subsequent treatment initiations in the patients who initially deferred
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with the use of censoring and inverse probability weighting, to give estimates of the effect

of the regimes Immediate versus No treatment.

For both, we will investigate treatment effect modification by time-dependent (trial-baseline)
CD4 count. This will help inform our subsequent work with dynamic MSMs and enable us to

make comparisons between the different methods.

3.3.1 Methods

We firstly outline the methods for estimating the effects of the regimes Immediate versus De-
ferred treatment, ignoring subsequent treatment initiations in those patients who initially de-
ferred treatment. Recall that, since the regime is determined at the start of the trial, adjustment
for the trial-baseline covariates in the outcome model is sufficient, and this can be done straight-
forwardly using Cox proportional hazards models. That is, no weighting is required. Secondly,
we detail the methods for the adherence-adjusted approach, which censors patients who initially
deferred but subsequently initiated treatment. Inverse probability weights are required to ac-
count for this potential informative censoring, and we use (weighted) pooled logistic regression

models due to limitations of current software.

Treatment regimes Immediate versus Deferred treatment

We began by using Cox proportional hazards models adjusted for the true-baseline covari-
ates only (including country), then incorporated firstly just trial-baseline CD4 count and then
the other time-dependent trial-baseline covariates. We considered a “full” model with all the
covariates a priori identified as potential confounders (see Table 1.3 of chapter 2, with the cate-
gorisations as given there for the categorical variables and splines for the continuous variables,
with five knots at the 5, 25, 50, 75 and 95" percentiles) and then used a stepwise backwards
selection procedure for the trial-baseline covariates (except CD4 count which was kept in the
model) to identify a more parsimonious model (remove if p > 0.05, re-enter if p < 0.01). Trial
start time k, measured from overall entry into the study as detailed in section 1.6.1, was in-
cluded as a spline (five knots at the 5, 25, 50, 75 and 95th percentiles). To test for heterogeneity
in the treatment effect across trials, we considered including an interaction between treatment
regime and trial k.

To investigate treatment effect modification by trial-baseline CD4 count, we included an
interaction between CD4 count and treatment, with underlying CD4 count modelled as a five

knot spline and the interaction with treatment based on categorical CD4 count. We began by
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categorising CD4 count as Writing Committee for the CASCADE Collaboration (2011), but
had limited data in the lowest CD4 count category of < 50 cells/mm? (5 patients contributing
to 29 trials) therefore combined the two lowest categories and considered < 200, 200 — 349,
350 — 499 and > 500 cells/mm?3.

We performed a range of sensitivity analyses, as follows:

1. Stratified by trial-baseline CD4 count, therefore permitting different effects of the other

confounders on the time to AIDS or death by the trial-baseline CD4 count.

2. Excluded the trials beginning in the first month, since a high number of treatment initia-
tions occurred in the first month (161 (5%) patients initiated in the first month following

entry into the study as detailed in section 1.6.1).

3. Excluded trials with no previous HIV RNA information, since we suspected that HIV

RNA might be important and the lack thereof indicative of a different prognosis.

4. Excluded trials with trial-baseline CD4 count < 100 cells/mm?. As discussed previously,
we were concerned that such “treatment refusers” might be different in some way to our

population of interest.

5. Relaxed the LTFU and regular CD4 count requirements (as defined in section 2.4.1).
This was required in the standard MSM approaches since we needed regular CD4 counts
in order to reliably estimate the inverse probability of treatment weights. While we may be
concerned about the implications of LTFU or irregular CD4 counts, we can be reassured
that this censoring did not appear to be very informative in the estimation of the standard
MSMs, and we were able with the history-adjusted models to relax that requirement. That
is, patients were no longer censored during the course of a trial if they had irregular CD4
counts or met the criteria for LTFU (no CD4 count measured for > 12 months). However,
patients did not contribute to new trials once they were considered censored under these

criteria, since trial-baseline data would not have been available.

6. Used pooled logistic regression instead of Cox proportional hazards models, to check that
the approximation of the pooled logistic regressions (which were used for the adherence-
adjusted estimation with time-dependent weights, presented next) was reasonable. In this
model, time since trial start ¢ was included as a spline (five knots at the 5, 25, 50, 75 and

95" percentiles).
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Treatment regimes Immediate versus No treatment

We proceeded to apply the adherence-adjusted approach to estimate the effects of immediate
versus no treatment, by censoring patients who initially deferred treatment at the start of a trial
but subsequently initiated, and using inverse probability weighting to account for this potentially
informative censoring. Since it is not straightforward to apply time-dependent weights with Cox
proportional hazards models, we used pooled logistic regression models. We also considered
the effects of applying the censoring only, without the upweighting, labelled the “unweighted”
approach. Note that this will in general be biased for the causal estimates of interest, since it
fails to account for the potential informative censoring of patients who initially deferred but
subsequently initiated treatment. Further note that this is different to the approach above
comparing Immediate versus Deferred treatment regimes, which addresses a different question
and where weighting is not required.

We used the treatment models derived in the different strategies of chapter 2 to estimate
a range of weights, with the numerator determined using the trial-baseline values of the time-
dependent covariates in the respective treatment model. However, we did not include strategy
VI since it was not possible to reliably estimate the model with interactions between CD4 count
and both HIV RNA and treatment. We estimated an additional set of weights based on the
model selected by the stepwise backwards procedure from the estimation of the effect of the
regimes Immediate versus Deferred treatment (labelled strategy VIII). Time was included in
the numerator models as outlined above (k and ¢ as splines). Truncations were applied as
indicated in chapter 2 (prior to incorporating censoring weights); that is, 0.1% truncation for
all strategies, except for strategies Ia, Ib and VII where 0.5% truncation was applied. Since the
weights from strategy VIII were somewhat unstable, 0.5% truncation was applied. All weight
summaries presented were based on the trials in which the patient initially deferred treatment,
and did not include the first month of each trial. That is, the summaries were only over the
patient-months in which the weights were estimated, and not those in which the weights were
set to 1 (see equation 3.2). This is to avoid including a lot of patient-months in which the
weight is known to be 1, which does not help inform the performance of the weight estimation.

In the outcome models, time was included as above (k and ¢ as splines). Although the
treatment parameters from the standard MSMs and the adherence-adjusted HAMSMs are not
directly comparable, it is reasonable to expect that they might be consistent, therefore we first
estimated average hazard ratios across all trial-baseline CD4 counts. We then proceeded to

incorporate an interaction between treatment and CD4 count as above to look at the effect of
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treatment by trial-baseline CD4 count.

Standard error estimation

As outlined in the methods, robust variance estimators were used throughout. However these
may be conservative, therefore for the main analyses we also bootstrapped (1000 repetitions)
with resampling stratified by country (though as for the standard MSMs, we had to group Italy
with Others since there were few patients in Italy). We assumed fixed weights since re-estimating
the weights is extremely time- and computer-intensive, and previous work with the standard
MSMs indicated that the additional uncertainty associated with re-estimating the weights on

each bootstrap sample is likely to be relatively small.

Censoring

As outlined in section 3.2.3, we proceeded to incorporate censoring weights. We used the censor-
ing models as determined previously, with the numerator estimated based on the trial-baseline
covariates for each respective model, as for the treatment weights. The simplest censoring
weights (from strategy Ia) were combined with the treatment weights from the new strategy

VIII to create the overall strategy VIII weights.

Model checking using country

As under the standard MSMs, we considered incorporating an interaction between country and

treatment, as a form of model checking.

AIDS-free survival

As for standard MSMs, these HAMSMs assume no effect of the length of time spent on treat-
ment. To assess effect modification by CD4 count with a time-varying or cumulative effect
of treatment, it would be necessary to include interactions between time on treatment and
trial-baseline CD4 count. However, due to limited numbers of patients and events within these
categories, this is not possible without substantially collapsing the CD4 categories, therefore

this has not been addressed here.
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Trial N N initiated N N events in those

patients  treatment  events who initiated
immediately immediately
1 3356 161 157 10
2 3156 32 144 1
3 3071 22 142 0
4 3015 19 140 3
5 2938 21 134 0
6 2871 25 129 0
7 2803 24 128 1
8 2737 19 123 0
9 2681 33 121 2
10 2603 29 115 2

Table 3.1: Tllustration of the expansion of the CASCADE data to create a new trial for each
month that a patient remains alive, AIDS-free, in follow up and treatment-naive (for first 10
trials).

3.3.2 Results
Data

Our initial dataset was the same as that used for the application of standard MSMs in chapter
2. Of note, patients with less than one month of follow-up (including due to AIDS or death)
were excluded from that dataset, therefore meeting the requirement of Y (1) = 0 as indicated
in section 3.2.1. Of the 3382 patients, 26 had less than two months follow-up before being
censored, therefore, although they contributed to the estimation of censoring weights, they did
not contribute to the outcome model. The remaining 3356 patients contributed cumulatively
to a total of 84,029 patient-trials, with a median of 18 trials per patient (IQR 11, 33). The
maximum number of trials per patient was 147; 10 patients contributed to at least 130 trials
each. Table 3.1 illustrates, for the first 10 trials, the number of patients contributing to each
trial, the number of patients initiating treatment immediately, and the number of subsequent
events. Of note, a large number of patients initiated treatment in the first month despite having
high CD4 counts; this may in part be related to all patients by definition having a clinic visit
at that time (a CD4 count was recorded); these were excluded under the second sensitivity

analysis, as detailed above.
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Trial-baseline CD4 count stratum, cells/mm?

< 200 200 — 349 350 — 499 > 500
Number of trials 360 5683 18103 59883
Number of patients!! 115 698 1458 3356
Follow-up, person-years!! 331 2164 4638 10974
Number of events!!! 8 38 78 157
Treatment regime
Defer 272 5395 17864 59436
Immediate 88 288 239 447

Subsequently initiated after Deferred?! 157 (58%) 3219 (60%) 7156 (40%) 14365 (24%)

Table 3.3: Summary of trials, patients, follow-up, subsequent treatment initiations and events,
by trial-baseline CD4 count. [1] Follow-up time and the numbers of patients and events are
unique within but not across the strata. [2] Percentage of those who initially deferred treatment
at the trial start.

Demographics and follow-up

The characteristics of patients who immediately initiated versus deferred treatment, by trial-
baseline CD4 count, are shown in Table 3.2. As we would expect, the probability of treatment
initiation was higher at lower CD4 counts, and within each CD4 stratum those who initiated
treatment had lower CD4 counts and higher HIV RNA levels. UK (and to some extent Other)
patients made up a higher proportion of those who initiated at lower versus higher CD4 counts;
conversely, the French made up a smaller proportion. At lower CD4 counts, females and IDUs
were more likely to defer treatment; these factors are likely to be correlated and this higher rate
of deferral amongst IDU was observed by Writing Committee for the CASCADE Collaboration
(2011). Also at lower CD4 counts, patients with decreases in CD4 count were more likely to
initiate treatment immediately, as we might expect. Further, no change in CD4 count, LOCF
and longer time since last CD4 count were associated with deferral of treatment at lower CD4
counts; these are likely to be proxy measures for no recent clinic visit and hence no CD4
measured. At higher CD4 counts, the nadir CD4 count tended to be slightly lower amongst
those who initiated treatment immediately, but this was not seen at the lower CD4 counts,
perhaps because at that stage of infection, the current CD4 count is a more influential factor in
the treatment decision than past values. At lower CD4 counts, the median number of previous
CD4 counts was lower in those who deferred treatment; again, this may be a proxy measure for
no recent CD4, but also it may be that the type of patient who attends fewer visits is less likely
to begin treatment.

Subsequent follow-up, including treatment initiations in patients who initially deferred and
events, is summarised in Table 3.3. There was a great deal more follow-up at higher CD4

counts, since patients all began with CD4 counts > 500 cells/mm3. As we might expect, a large
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Trial-dependent covariates Estimated treatment effect
included in the model HR (SE)¥  95% CI¥l  p

- 0.83 (0.12) 0.63, 1.10 0.20

CD4 count!!! 0.71

(0.13) 0.50, 1.00  0.05
CD4 count plus all other trial-dependent covariates® 0.58 (0.10) 0.41, 0.82 0.002
CD4 count and peak HIV RNAL 0.58 (0.11) 0.40, 0.83 0.003

Table 3.4: Estimated effect of treatment, with different time-dependent covariates included in
the Cox proportional hazards model. All models included time of trial start as a five knot
spline, plus the true-baseline covariates. HR=hazard ratio. SE=standard error. CI=confidence
interval. [1] Spline with five knots at the 5, 25, 50, 75 and 95" percentiles. [2] See text
for further details of the trial-dependent covariates. [3] As determined by a refined stepwise
backwards selection procedure (see text for more details). [4] Robust standard errors.

percentage of patients who initially deferred treatment in any given trial went on to initiate

subsequently, particularly at lower trial-baseline CD4 counts.

Effect on time to AIDS or death of regimes Immediate versus Deferred treatment

(no adjustment for subsequent treatment initiation if initially deferred)

There was no evidence of a significant difference in the regimes Immediate versus Deferred
treatment on the time to AIDS or death in the model adjusting for true-baseline covariates only
(HR=0.83 [95% CI 0.63, 1.10], p = 0.20; Table 3.4). However, after adjusting for trial-baseline
CD4 count, Immediate treatment was associated with a 29% reduction in the hazard of AIDS
or death compared to Deferred treatment (0.71 [0.50, 1.00], p = 0.05). After further adjustment
for all trial-baseline covariates, a stronger benefit of treatment was apparent (0.58 [0.41, 0.82],
p = 0.002).

The stepwise backwards selection procedure successively dropped time since last RNA
measurement, LOCF, last HIV RNA, number of previous CD4 counts and nadir CD4 count
(p = 0.87, 0.85, 0.60 and 0.35, respectively), leaving a model with CD4 decrease, time since
last CD4 count, number of previous HIV RNA measurements and peak HIV RNA (along with
CD4 count, the true-baseline covariates and time). The estimated treatment regime effect was
similar to the full model, but with slightly more precision (0.56 [0.40, 0.79], p = 0.001).

However, there were concerns about over-fitting in this model due to effect estimates of
certain covariates being in the opposite direction to that expected based on HIV epidemiology,
and colinearity was suspected between some covariates. For example, both shorter and longer
time since last CD4 count at trial-baseline were associated with lower risk of AIDS or death,
as was no change in CD4 count compared with any change (whether increase or decrease),

but the CD4 decrease category of no change captures to some extent the lack of a recent

133



CD4 measurement. Therefore we undertook the following refinements to the model: firstly,
we refitted the model without time since last CD4 count. This resulted in no change to 2
decimal places in the estimated effect of the regime Immediate versus Deferred treatment, nor
in much difference to the effects of the other covariates, except that it rendered CD4 decrease
non-significant. Therefore, in the interests of a parsimonious model, it was decided to omit
both (trial-baseline) time since last CD4 count and CD4 decrease, yielding a similar HR for the
regimes Immediate versus Deferred treatment of 0.55 (0.39, 0.77).

There were a number of HIV RNA-related variables in the model which gave rise to fur-
ther concerns about colinearity. In particular, both the absence of a true-baseline HIV RNA
measurement and higher true-baseline HIV RNA, if available, were associated with lower risk
of progression to AIDS or death, contrary to expectations. This effect was reversed if (trial-
baseline) peak HIV RNA was omitted from the model, supporting our concern of colinearity.
However, this resulted in a weaker treatment effect estimate (HR=0.72), suggesting that peak
HIV RNA may be an important confounder and should be included in the model. Therefore,
true-baseline HIV RNA and the indicator for its availability were removed from the model. In
this revised model, the (trial-baseline) number of previous HIV RNA measurements was no
longer significant (p = 0.14), therefore this was also dropped from the model (although an
indicator for availability of any previous HIV RNA measurement was included).

In conclusion, the final model, via this refined stepwise backwards selection procedure, in-
cluded the same true-baseline covariates as previously except for baseline HIV RNA, and in-
cluded only the trial-baseline covariates CD4 count and peak HIV RNA (and its availability).
The resulting estimated HR for the regimes Immediate versus Deferred treatment was 0.58
(0.40, 0.83). Including an interaction between treatment regime and time of trial start yielded
a p-value of 0.53, indicating homogeneity across trials, therefore we proceeded with the model
pooled across trials.

The results from this final model are given in Table 3.5. There was no evidence of a difference
in outcome by trial-baseline CD4 count (p = 0.45). Higher peak HIV RNA was associated with
faster time to AIDS or death, as we would expect (Figure 3.2). There was a strong trend
towards the lack of any previous HIV RNA measurement being predictive of AIDS or death,
but the confidence interval was extremely wide. Being HIV-infected via IDU was associated
with faster time to AIDS or death, as was shorter time HIV-infected at study entry. This may
be because those entering further from seroconversion were a different type of patient in that

they had to have survived that long with a high CD4 count in order to enter the study. There
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Covariate HR (95% CD)l p
Immediate, versus Deferred treatment 0.58 (0.40, 0.83)  0.003
Trial-baseline covariates
CD4 count, cells/mm? 2] 0.45
Peak HIV RNA, logio copies/ml 2] < 0.001
No previous HIV RNA measurement available 3.13 (0.10, 98.2) 0.52
True-baseline covariates
CD4 count, per 100 cells/mm3 1.02 (0.94, 1.12) 0.60
Sex, female 0.69 (0.37,1.28)  0.24
Age at seroconversion, per 10 years 1.17 (0.96, 1.43) 0.13
Year of seroconversion 0.94 (0.87,1.03)  0.18
Route of HIV transmission, IDU 1.96 (1.10, 3.49) 0.02
Country, versus France 0.94
Germany 0.50 (0.07, 3.79)
Ttaly 0.74 (0.26, 2.12)
Spain 0.94 (0.39, 2.28)
Switzerland 1.06 (0.42, 2.66)
UK 0.75 (0.43, 1.32)
Others 0.94 (0.48, 1.85)
Time HIV-infected at entry, years 0.79 (0.62, 1.01)  0.06
Identified as HIV-infected close to seroconversion 1.71 (0.80, 3.64) 0.16

Table 3.5: Predictors of time to AIDS or death. Time included as a five knot spline. HR=hazard
ratio. SE=standard error. CI=confidence interval. [1] Robust standard errors. [2] Splines used

for continuous variables.

yd

Hazard ratio (log scale)

l /

Peak HIV RNA, log,, copies/ml

Figure 3.2: Hazard ratios for time to AIDS or death for peak HIV RNA (five knot spline).
Centred on HR=1 for the median. The vertical dashed lines indicate the interquartile range.
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was no association between time to AIDS or death and true-baseline CD4 count, sex, age at or

year of seroconversion, country or whether identified as HIV-infected close to seroconversion.

Sensitivity analyses Table 3.6 shows the overall results for this model and the sensitivity

analyses (outlined in section 3.3.1); the results are all broadly similar.

Treatment effect modification by CD4 count We proceeded to incorporate an interaction
between treatment regime and CD4 count in the original model to look at effect modification by
trial-baseline CD4 count. While the interaction was not significant (p = 0.27 and 0.26 with CD4
categorical or continuous, respectively), there was a trend towards greater benefit of treatment at
lower CD4 counts (Table 3.6). At trial-baseline CD4 counts < 350 cells/mm?, there was clear
evidence of a benefit of immediate compared to deferred treatment, although the confidence
intervals were wide, probably due to the more limited data in these strata (HR 0.20 [0.05, 0.77]
and 0.44 [0.22, 0.88] for CD4 counts < 200 and 200 — 349 cells/mm3, respectively). There was a
suggestion of a benefit of immediate compared to deferred treatment at trial-baseline CD4 counts
> 350 cells/mm? but the confidence intervals included one and overlapped considerably (0.79
[0.46, 1.37] and 0.70 [0.44, 1.09] for CD4 counts 350 — 499 and > 500 cells/mm?, respectively).
The effects of the other true- and trial-baseline covariates were similar to those from the model

without the CD4 count by treatment interaction.

Sensitivity analyses The results from the original model are presented along with those
by CD4 stratum from the sensitivity analyses in Table 3.6 and Figure 3.3. The results were
all fairly consistent across the different sensitivity analyses. Restricting to those trials with
trial-baseline CD4 count > 100 cells/mm?, the HR for the lowest CD4 category (now 100 — 199
compared to 0 — 199 cells/mm?® previously) was closer to one at 0.31 (0.08, 1.14), as we would

expect since by definition the trials with the very lowest CD4 counts were omitted.
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Regimes Immediate versus No treatment (adherence-adjusted estimation, adjusting

for those trials where treatment was initially deferred but subsequently initiated)

As detailed in the methods, to obtain adherence-adjusted estimates, the patients who initially
deferred treatment at the start of a trial but then subsequently initiated were censored at the
time of treatment initiation, and weighting was required to adjust for this potentially informative
censoring. We proceeded with the original analysis above only (that is, we did not repeat any
of the sensitivity analyses detailed in the previous section), since the treatment effect estimates
did not appear to be sensitive to these assumptions. However, the weighting was applied using
the range of treatment and censoring models developed under the different strategies of chapter
2. Of note, trial-baseline CD4 count was always included in the models for the denominator

and numerator of the weights.

Distribution of the inverse probability weights The estimated inverse probability weights,
for the artificial censoring of the patients who initially deferred but subsequently initiated treat-
ment, are illustrated over time in Figures 3.4 and 3.5 (the former with no truncation and the
latter with 0.1% truncation for illustration). Once again, there were some very large weights
occurring, but in contrast to the weights employed for the standard MSMs, there were also some
very small weights. The weights were much more centrally located on one, with narrower in-
terquartile ranges, compared to those for the standard MSM. After 0.1% truncation, the weights
were again much more well-behaved, although there were still somewhat large weights under
strategies VII and VIII (neither of which were the main strategies recommended in chapter 2),
although still < 100.

As outlined in section 3.3.1, the treatment model building strategies were used to determine
what degree of truncation should be applied, which was 0.1% truncation across all strategies,
except strategies Ia, Ib and VII where 0.5% truncation was applied, and 0.5% truncation was
applied to the new strategy VIII. After applying these strategy-specific truncations, the means
of the weights were all slightly less than one, ranging from 0.969 under strategy VIII to 0.996
under strategy V (Table 3.7). All sets of weights were fairly stable with smaller standard
deviations and ranges compared to the weights under the standard MSMs (maximum weight

11, under strategies II/III).
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Figure 3.3: Results from the original and sensitivity analyses: estimated effect of regimes Imme-
diate versus Deferred treatment by trial-baseline CD4 count. See section 3.3.1 for further details
on the different sensitivity analyses; briefly, 1=stratified by trial-baseline CD4 count, 2=ex-
cluded first trials, 3=excluded trials without HIV RNA, 4=excluded trials with trial-baseline
CD4 count <100 cells/mm?, 5=relaxed LTFU and regular CD4 count restrictions, 6=pooled
logistic regression.
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Figure 3.4: Distribution of the estimated stabilised weights for the different treatment models.
Spikes = range, bars = interquartile range, o = median, x = mean. Note that the scales of the
y-axes vary.
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Stabilised weights

Strategies la, 11 & 1 Strategy Ib Strategy IV
10 A 101
11 "
1-T T T T T T 1-T T T T T 11 T T T T T
02 4 & & 1D T 4 6 & 10 o 4 6 & 10
Strategy Strategy Wil Strategy Wl
100 100
10 104
1 14
. . . 1 — . A ——
0o 4 & & 10 I 4 6 & 1D I 4 6 & 10

Time from overall study entry, years

Figure 3.5: Distribution of the estimated stabilised weights for the different treatment models,
after truncation of the outer 0.1 percentiles, for illustration. Spikes = range, bars = interquartile
range, o = median, x = mean. Note that the scales of the y-axes vary.
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Average estimated treatment effects The results for the effect of immediate versus no
treatment, across all CD4 strata, arising from each of the different strategies are shown in
Table 3.7. All strategies demonstrated considerable control for confounding when compared to
the unweighted estimate of 0.46 (0.25, 0.86). Recall that this unweighted approach involved
applying the censoring of patients who initially deferred but subsequently initiated treatment,
but not the weighting, and therefore is biased for the causal effect of the regimes Immediate
versus No treatment; it is included to demonstrate the effects of weighting. Strategies Ia and
Ib yielded odds ratios closest to one (0.31 [0.15, 0.62] and 0.30 [0.15, 0.61], respectively), as we
might have expected since these had the greatest truncation of 0.5% applied. However, strategy
VIII (the model obtained by the adapted stepwise backwards selection procedure) also had 0.5%
truncation applied yet yielded the odds ratio furthest from one (0.20 [0.11, 0.39]). Of note, the
standard errors arising from strategies IV and V, where the treatment models were stratified
by country, were considerably larger than those from the other strategies (0.52 and 0.54 on the

log-odds scale, respectively, compared to 0.31-0.36 under the other strategies).

Comparing the estimated treatment effects with those from the standard MSMs
and those of the regimes Immediate versus Deferred treatment As discussed above,
although the treatment parameters of the standard MSMs and adherence-adjusted HAMSMs
are not the same, we would expect effects in the same direction, as observed. With respect to the
magnitude of effect, the adherence-adjusted odds ratios were all consistently lower (further from
one) than those from the standard MSMs (Table 3.7). In fact, the results from the standard
MSMs more closely matched the estimated effect of the regimes Immediate versus Deferred
treatment (0.56 [0.40, 0.79], Table 3.4). Therefore, by adjusting for the subsequent treatment
initiations in those who initially deferred treatment, a greater benefit of treatment is apparent,
as we might expect.

The standard errors from the HAMSMs were all somewhat larger than those from the stan-
dard MSMs, perhaps contrary to what we might expect. The bootstrapped Cls were comparable
to the robust Cls, and if anything were a little wider (Table 3.7). We incorporated a further
500 bootstraps for strategies Ia and III, but the resulting Cls were very similar. The medians

were similar to the point estimates.

Treatment effect modification by CD4 count Incorporating an interaction between treat-
ment and trial-baseline CD4 count, the odds ratios for Immediate versus No treatment across

all strategies and CD4 count strata were lower than the unweighted estimates (that is, with cen-
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Strat- CD4 count, cells/mm? p2

egy < 200 200 — 349 350 — 499 > 500
Unweighted  0.08 (0.02,0.35)  0.28 (0.12, 0.65) 0.92 (0.46, 1.82) 0.83 (0.48, 1.42)  0.007

Ia 0.04 (0.01, 0.17)  0.19 (0.08, 0.46) 0.73 (0.35, 1.52)  0.73 (0.42, 1.27) < 0.001
Ib 0.03 (0.01, 0.15) ~ 0.21 (0.09, 0.50)  0.78 (0.37, 1.66) 0.70 (0.40, 1.22) < 0.001

I1/111 0.03 (0.01, 0.14)  0.16 (0.07, 0.37)  0.57 (0.26, 1.24)  0.63 (0.35, 1.11) < 0.001
I\Y 0.02 (0.004, 0.15  0.17 (0.06, 0.50)  0.71 (0.31, 1.61) 0.63 (0.34, 1.20) < 0.001
A% 0.02 (0.003, 0.12) 0.15 (0.05, 0.45) 0.70 (0.30, 1.63) 0.57 (0.29, 1.12) < 0.001
VII 0.03 (0.01, 0.13)  0.15 (0.07, 0.36)  0.39 (0.19, 0.84) 0.44 (0.24, 0.81)  0.004
VIII 0.03 (0.006, 0.11)  0.13 (0.06, 0.32)  0.47 (0.22, 1.02) 0.44 (0.24, 0.82) < 0.001

Table 3.8: Estimated effect of regimes Immediate versus No treatment, by trial-baseline CD4
count, across the different treatment model building strategies of chapter 2 (treatment (artificial
censoring) weights only). Results are odds ratio (95% confidence interval, with robust standard
errors). Note that the overall results are shown in Table 3.7. [1] Censoring applied (therefore
different to the previous results which were estimating the effects of Immediate versus Deferred
treatment with no censoring performed) but no weighting applied (therefore in general biased for
the causal effects of the regimes Immediate versus No treatment). [2] p-value for the interaction
between treatment and trial-baseline CD4 count category.

soring but not weighting applied), as expected, since these estimates account for the patients
who initially deferred but subsequently initiated treatment (Table 3.8 and Figure 3.6). We saw
a similar pattern to the results from the regimes Immediate versus Deferred treatment, but
the evidence for a greater benefit of treatment at lower CD4 count strata was much stronger.
Compared to the Immediate versus Deferred treatment results, the estimated odds ratios were
broadly similar for CD4 counts > 350 cells/mm3, but in contrast were now somewhat lower
(further from one) for CD4 counts < 350 cells/mm?, at least for strategies IT1/I1I, VII and VIII.
This is in line with our observation that, at lower trial-baseline CD4 counts, higher percentages
of patients were subsequently observed to initiate treatment. The confidence intervals after the
artificial censoring and weighting for non-adherence to trial-baseline regime were wider than
under the regimes Immediate versus Deferred treatment, as we might expect by the nature of
weighted estimates.

As previously, while there was a suggestion of a benefit of treatment at CD4 counts > 350
cells/mm?®, the confidence intervals spanned one for the majority of the strategies. However,
strategies VII and VIII indicated that there may be a benefit of treatment at CD4 counts
350 — 499 cells/mm? (albeit borderline for strategy VIII) and even > 500 cells/mm3 (0.39 [0.19,
0.84] and 0.44 [0.24, 0.81], respectively, for strategy VII; 0.47 [0.22, 1.02] and 0.44 [0.24, 0.82],
respectively, for strategy VIIT). However, given the issues raised earlier in this section regarding
potential collinearity between a number of HIV RNA variables, we might be concerned about
the results from strategy VII, which incorporated a number of covariates based on HIV RNA

data.
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Figure 3.6: Effect of regimes Immediate versus No treatment on time to AIDS or death by trial-
baseline CD4 count, and by the different strategies (treatment (artificial censoring) weights
only). [1] “Unweighted” approach censored patients if they initially deferred but subsequently
initiated treatment (biased for the causal effect of Immediate versus No treatment); “imme-
diate/deferred” approach applied neither censoring nor weighting of such patients (different
question).

Censoring The results after incorporating the weights for the “usual” censoring are shown
in Table 3.9. The means, standard deviations and maxima of the estimated weights were all
slightly larger than with the treatment weights only, most noticeably for strategy V where
the standard deviation and maximum more than doubled (from 0.403 to 1.027 and from 8 to
24, respectively); this strategy had rather complex censoring models. These changes in the
estimated weights were reflected in the larger standard errors of the average (across CD4 count
strata) estimated treatment effects, except for strategies IV and V where the standard errors
were smaller. These two strategies also yielded more extreme average estimated treatment
effects once censoring was taken into account (average ORs reduced from 0.24 to 0.17 and from
0.21 to 0.17, respectively). The average estimated treatment effects under the other strategies
were all broadly similar; those for strategies VII and VIII were slightly larger than previously

but the confidence intervals were widely overlapping.

144



*£10897%0 IN0d
(D PuIPseq-[eLI) PUR JUSMIIRII) Uo0M]d] UOIIdRISIUI oY) 10J onfea-d [1] -[oqesridde o1oym ‘o[eds sppo-80[ o) UO I0LID PIRpUR)S ISNCOI| (SIOLD pIRpUR)S
ISNGOI HIM ‘TRAIDIUI 9OUSPYUOD 04GE) ORI SPPO OIR SOIRUINISI 109]Jo Jueu)eal], *(s)Som SULIOSUaD  Jensn, pue (SULIOSULD [RIDYIYIR) Jueunjeal)) ¢ I1ojderd
JO so1807RI1S SUIP[INQ [9POW JUSISHIP 9Y} SSOIOR ‘JUNO0D F(J)) QUI[ESB]-TRLI} AQ pUR [[BIOAO ‘JUSUIIBII} ON SNSIOA 9IRIPOWIW] JO 109[0 POYRWI)SH :6'€ O[qBL

700 (60T ‘12°0) 67°0 (99T ‘62°0) 0.°0 (0270 ‘€T°0) 0€°0  (¥2°0 ‘T0°0) S0°0  [¥€°0] (97°0 ‘ZT°0) ¥2'0 €2000  (¥8¢°0) L00T S0 IIIA
600 (LTT‘12°0) 67°0 (29T ‘T2’0) 660 (680 ‘cT°0) 9¢°0  (82°0 ‘T0°0) 0°0  [L€0] (£5°0 ‘€T°0) 92°0 ¢-€000  (LL7°0) G960 S0 1A
20’0 (660 ¥T°0) 80 (18T ‘82°0) 120 (0670 ‘F1°0) ¢&'0 (910 ‘¥00°0) 200  [97°0] (€F°0 ‘20°0) LT°0 €2-100°0 > (L20°'T) 820°'T 10 A
€00 (ST'T‘12°0) 67°0 (82T ‘22°0) 0L°0 (6,0 ‘€T°0) 2€°0 (9T°0 ‘€00°0) 20°0  [0S°0] (9%°0 ‘90°0) LT°0 0T-T00°0 > (€25°0) 20T T0 Al
€00 (6771 °220) €90 (L6'T 9€0) 280 (280 FT°0) ¥€0 (6270 ‘T0°0) 90°0  [2£°0] (L&°0 ‘€T°0) 80 T1-100°0 > (16%°0) ¢e0'T 10  III/II
200 (€97 ‘ce0) €20 (2T ‘#7°0) €01 (00T 21°0) T7°0  (0£°0 ‘T0°0) 90°0  [L€°0] (29°0 ‘CT°0) 2€0 €-90°0 (62€°0) 610°T I q1
200 (€971 °Ce0) g0 (1€CT70) 860 (3670 ‘91°0) 8¢°0  (£€°0 ‘T0°0) 900 [2£°0] (9970 ‘GT°0) T€0 €000 (20€0) LTOT €0 ]
00g < 667 — 0G¢ 67¢ — 00% 00g > uorye
E& LU /ST[2D “UN0d H(I) reAQ) asuey (@s) ueejy  -ouniy, 430

JUSUI}RSI} ON STISIOA 9)RIPAUWINI] SOUILSSI JO 1090 POjRIISH SIYSIOM PoJRWIISH -1ReI9G

145



Treatment effect modification by CD4 count after censoring applied Considering the
results by CD4 strata (Table 3.9 and Figure 3.7), the estimated ORs tended to be slightly larger
(closer to one) in the < 200 cells/mm? stratum compared to previously, but the confidence
intervals were somewhat larger. The most noticeable differences were seen in the 200 — 349
cells/mm? stratum, where the ORs roughly doubled across all strategies when using censoring
weights as well as treatment weights (for example from 0.19 to 0.38 under strategy Ia). The
estimated treatment effects in the 350 — 499 cells/mm? stratum also increased, but not quite
so dramatically. In contrast, there was no clear pattern in the > 500 cells/mm? stratum; under
strategy Ia there was little change in the estimated treatment effect (0.73 compared with 0.72
previously), under strategy IV the estimated odds ratio dropped from 0.60 to 0.49, and under

strategy VIII the estimated odds ratio increased from 0.44 to 0.49.

Model checking using country Figure 3.8 illustrates the estimated effects of the regimes
Immediate versus No treatment by country for each of the different strategies (all CD4 count
strata combined; estimation performed by incorporating an interaction between treatment and
country). Visually, there appears to be some difference in the estimated treatment effects by
country, although not statistically significant under any of the strategies (p-values shown in
brackets in the Figure). As under the standard MSMs, the treatment effect estimates appeared
to be strongest for Switzerland and Spain, while weakest for France and the UK. Overall, we
may be reassured that there is no strong evidence of a difference in the treatment effect estimates

by country.

3.4 Discussion

We have estimated that the effect of immediate treatment initiation compared to deferral (ignor-
ing any subsequent treatment initiation), with straightforward adjustment for time-dependent
covariate history, is associated with a 42% (17, 60) reduction in the risk of AIDS or death in
our CASCADE population. Although not statistically significant, we observed a trend towards
a greater benefit of immediate treatment initiation compared to deferral at lower current CD4
counts, with treatment associated with a 80% (23, 95) reduction in the risk of AIDS or death
in those with current CD4 counts < 200 cells/mm? compared to 30% reduction (9% increase to
46% reduction) in those with current CD4 counts > 500 cells/mm?. These results were robust
to a broad range of sensitivity analyses. One of these sensitivity analyses relaxed the LTFU

and regular CD4 requirements, by not censoring patients within a trial if they had irregular
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Figure 3.7: Effect of regimes Immediate versus No treatment on time to AIDS or death by trial-
baseline CD4 count, and by the different strategies (treatment (artificial censoring) and “usual”
censoring weights). “Unweighted” approach censored patients if they initially deferred but
subsequently initiated treatment (biased for the causal effect of Immediate versus No treatment).
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Figure 3.8: Estimated effect of regimes Immediate versus No treatment on time to AIDS or death
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treatment (biased for the causal effect of Immediate versus No treatment). [1] Treatment model
stratified by country.
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CD4 counts or met the LTFU criteria (no CD4 count measured for > 12 months). However,
patients did not contribute to new trials once considered censored under these criteria. This
could have been further extended to include patients again if new CD4 counts were available,
although there may be concern about what happened to those patients in the interim, which it
may not be possible to adjust for using observed data.

We have outlined why “adherence-adjusted” estimates may be desirable, shown how these
may be obtained using inverse probability weighting of HAMSMs, and applied these methods
to our CASCADE population using a range of weight-estimation strategies. By “adherence-
adjusted” estimates, we mean the estimation of the effect of the regimes Immediate versus No
treatment. Although the principles of weight estimation are exactly the same as for standard
MSMs, the weights are applied slightly differently. In particular, for a patient who initially de-
ferred but subsequently initiated treatment, their follow-up is censored at the time of treatment
initiation and therefore large weights, which may occur under standard MSMs due to a low
probability of treatment initiation, may be avoided (Gran et al., 2010). This was apparent in
the more stable weights observed here, with means close to one and small range, compared to
those for the standard MSM.

After applying the appropriate censoring and weighting for those patients who initially
deferred but subsequently initiated treatment, the estimated odds ratios were much further
from one compared to those from the Immediate versus Deferred treatment analysis. This is as
we would expect since the regime Deferred treatment encompasses a broad range of subsequent
treatment paths and implicitly assumes that treatment will be started at some later time-point,
rather than being artificially withheld forever. The results of this adherence-adjusted analysis of
Immediate versus No treatment were broadly consistent across the different weighting strategies,
as expected, with odds ratios ranging from 0.20 (0.11, 0.39) to 0.31 (0.15, 0.62). If weighting
was not applied to account for the artificial censoring process, we saw a somewhat larger odds
ratio (0.46 [0.25, 0.86]), which nicely illustrates the important role of weighting for unbiased
estimation in this scenario.

We observed a stronger trend towards greater benefit of treatment at lower current CD4
counts under the regimes Immediate versus No treatment, compared to the regimes of Immediate
versus Deferred treatment, due to the larger proportions of patients who initially deferred
treatment at lower CD4 counts subsequently initiating treatment, as we might expect. Although
the confidence intervals were wide, there were differences in the treatment effect estimates for

current CD4 counts < 200, 200 — 349 and > 350 cells/mm3, with strong evidence of a benefit of
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treatment when current CD4 counts were < 200 and 200 — 349 cells/mm? (0.06 [0.01, 0.33] and
0.38 [0.16, 0.92], respectively) but no clear benefit of treatment at when current CD4 counts of
350 — 499 or > 500 cells/mm? (0.98 [0.41, 1.63] and 0.72 [0.32, 1.63], respectively).

The overall effect estimate from the Immediate versus Deferred treatment regimes (odds ratio
0.58 [0.40, 0.83]) broadly resembled the treatment effect estimates from the standard MSMs (for
example, 0.54 [0.32, 0.90] under strategy Ia), while the estimates from the Immediate versus
No treatment regimes were considerably smaller (odds ratios of 0.20-0.31 as given above). As
discussed in section 3.2.2, Gran et al. (2010) suggested that the treatment effects of interest from
the standard MSMs and adherence-adjusted HAMSMs should be similar, and they found this
to be the case. However, they also obtained similar estimates with and without the adherence-
adjustments, that is, with and without taking into account subsequent treatment initiations
in those patients who initially deferred treatment. The reason for this is not clear, but will
be dependent on the subsequent treatment initiation patterns of those patients who initially
deferred treatment in relation to their CD4 count trajectories. While the treatment effect
estimates of Gran et al. (2010) were considerably further from one than our estimates (their
overall HR was 0.17 [0.08, 0.34]), their results were not dissimilar to the estimates we obtained
in the Swiss data (visible in Figure 3.8; their study used data from the Swiss HIV Cohort, which
feeds in to CASCADE). Also, in contrast to their study, our treatment effect estimates were
somewhat different with and without the weighting to adjust for adherence. Fundamentally,
the standard MSMs and adherence-adjusted HAMSMs are estimating different quantities (Gran
et al., 2010), so it is possible that the fact that their estimates were similar was coincidental.

The approach used by Writing Committee for the CASCADE Collaboration (2011) is most
comparable to our analysis of the regimes of Immediate versus Deferred treatment regimes, since
the authors permitted patients to follow any treatment path following initial deferral. However,
they included all patients regardless of initial CD4 count, rather than focus on the group with
high CD4 counts shortly after seroconversion. Overall, our results were broadly consistent with
their findings, albeit with wider confidence intervals because of the smaller sample size due to
our stringent eligibility criteria (our estimates: 0.20 [0.05, 0.77], 0.44 [0.22, 0.88], 0.79 [0.46,
1.37] and 0.70 [0.44, 1.09] for CD4 counts < 200, 200 — 349, 350 — 499 and > 500 cells/mm?3,
respectively; their results: 0.32 [0.17, 0.59], 0.48 [0.31, 0.74], 0.59 [0.43, 0.81], 0.75 [0.49, 1.14]
and 1.10 [0.67, 1.79] for CD4 counts < 50, 50—199, 200 — 349, 350 —499 and 500— 799 cells/mm3,
respectively, with sample size 9455 patients).

As discussed in chapter 2, our population is unlike many others in that all patients enter
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the risk set with a high CD4 count. In particular, this meant we had limited data on trials with
low trial-baseline CD4 count. Longer follow-up may address this issue, however if all patients
initiated treatment according to current guidelines then there would be no patients with CD4
counts < 350 cells/mm?® remaining off treatment.

Of note, Hernén et al. (2008) performed the treatment model fitting with the time-dependent
covariates (which then contributes to the denominator of the inverse probability weights) on
the expanded data, with one treatment model per trial. This was possible because they had
a limited number of trials, only 8. In contrast, we fitted the treatment models with the time-
dependent covariates on the unexrpanded data, following Petersen, Deeks, Martin, and van der
Laan (2007), because we had a large number of trials (median 18 per patient, and one patient
contributed to 147). No heterogeneity was detected between the trials, therefore it was possible
to use a model pooled across the trials.

We have demonstrated treatment effect modification by time-dependent CD4 count, with
treatment having a greater effect in those with lower current CD4 count. In chapter 5, we will
return to the results presented here to compare with those obtained from the optimisation of
dynamic treatment regimes, which are explored in the next chapter. As previously highlighted,
while the application of history-adjusted and dynamic MSMs typically answer different ques-
tions, we might anticipate some consistency across the two approaches, and such a comparison

may offer additional insights to the inference of interest.
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Chapter 4

Dynamic marginal structural models

4.1 Introduction

In previous chapters, we have explored the estimation of causal effects using MSMs. We have
proposed and applied a range of plausible strategies for the estimation of the inverse probability
weights, and have considered treatment effect modification by baseline covariates. We progressed
to HAMSMs, to allow the effects of treatment to depend on time-dependent covariates. We now
move to an approach which will allow us to look directly at the estimation of pre-defined dynamic
treatment regimes, that is a set of regimes which are defined in advance in terms of a patient’s
time-dependent covariates (see section 1.3). Our motivating clinical example is when to initiate
treatment in HIV-infected persons, with respect to their CD4 count.

In this chapter, we begin by outlining the methodology of dynamic MSMs, which are a rel-
atively recent approach. These methods have recently been extended to incorporate permitted
delays in treatment initiation (grace periods; see section 4.2.2; Cain et al. (2010)). However,
these extensions have been rarely applied in practice (Cain et al., 2010; HIV-CAUSAL collabora-
tion, 2011; Shepherd et al., 2010), and their implications have not previously been investigated.
We discuss and explore some of the issues surrounding these methods, firstly via simulation

studies and then applied to the CASCADE data.

4.1.1 A hypothetical randomised trial

A recommended approach to defining dynamic causal questions is to consider the hypothet-
ical randomised trial we would ideally conduct (Cain et al., 2010; Herndn et al., 2008). To
address our question of when treatment should be initiated with respect to CD4 count in
HIV-infected persons, we could imagine a trial which enrols treatment-naive patients with

CD4 counts > 500 cells/mm? and randomises them to start treatment when their CD4 count
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first falls below 2 cells/mm3, with the range of x to be considered perhaps given by z €
{200, 210, 220, ...,490,500}. Alternatives to this set are discussed in section 4.6.3. As in any
randomised trial, we may specify certain requirements in the protocol, such as that patients
should have their CD4 count measured every month and start treatment within a month of
their CD4 count reaching the value defined by their randomised regime x. It would then be
possible to compare these regimes by looking at the AIDS-free survival at say 10 years, and se-
lecting the optimal x as that which maximises 10-year AIDS-free survival. However, in practice
it would not be trivial to conduct such a trial, since very large numbers of patients would be
required with very long follow-up. We wish to mimic this randomised trial using causal methods
with observational data; this could help inform a more limited set of potential optimal regimes

for consideration in future trials.

4.2 Methodology

4.2.1 Dynamic marginal structural Cox model

As in the hypothetical randomised trial (section 4.1.1), HIV-infected treatment-naive persons
are included from the time of first observed CD4 count > 500 cells/mm? and regimes are defined
by:

“inttiate treatment when observed CD4 count first falls below x cells/mmg 7

where = € {200, 210, ...,500}. For brevity, we refer to these regimes by their index z, for example
regime z = 350 means to initiate treatment when observed CD4 count first drops below 350
cells/mm?®. Let T} be the time to AIDS or death for a given patient under a regime z. If we could
observe T, for all patients and regimes x, or indeed if a sufficiently large number of patients were
randomised to each x as in section 4.1.1, then the optimal regime x would simply be that which
minimises the risk of AIDS or death across all patients, assuming constant treatment regime
effects across patients. However, even in the absence of any other censoring, it is clearly not
possible to observe T, for all patients and regimes; in practice, for each patient we observe only
a subset of regimes (which may be empty, or have one or more elements), and the regime(s) that
any given patient is observed to follow may be confounded by their prognosis. In particular,
any patient who initiated treatment at a CD4 count above their nadir (lowest value to date) no
longer contributes to any regimes. Assuming for now that there is no censoring, for each patient
we observe the time to event T and, under the assumption of consistency, 7" under observed

x is T, (section 1.2.4). For those regimes x which a patient is not compliant with throughout
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follow-up, T, remains counterfactual.

We define a dynamic marginal structural Cox model for the time to AIDS or death by:

Ar, (Hz, V) = X (t) exp {ag () + BV}

where V' is a vector of baseline covariates and g(z) is some function of the regimes, which
could for example simply be categorical or linear, or more complex such as a spline or fractional
polynomial (Royston and Sauerbrei, 2008). This is an extension of the standard MSM (equation
2.2). Since T, remains counterfactual for some patients and regimes x, we cannot fit this model
directly. However, we can estimate the causal parameter of interest a of this MSM using inverse
probability weighting methods, similar to those of section 2.2.3. There are three main steps to

the method.

Step 1. All patients initially follow all regimes

As previously, we split time into suitable intervals, given by t = 1,2,.... We use exactly the
same set-up and notation for time-dependent covariates L(t), treatment A(t) and outcome Y ()
as introduced in section 2.2.1, with overbars representing history to that time. Of note, as in
previous chapters, since we model outcome Y (¢ + 1) given A(t), this means that we assume
treatment in [t,¢ + 1) is independent of the outcome in that interval. We consider all patients
to be compliant with all regimes initially; patients are then artificially censored from regimes
when they first become noncompliant with that regime due to their covariate and treatment
history. Define C,(¢) to be an indicator for “artificial” censoring, taking value 0 if the patient’s
observed data is still consistent with regime = prior to time ¢, and value 1 otherwise.

Consider the example patient shown in Figure 4.1. This patient had monthly CD4 counts,
where, as per the notation introduced in section 2.2.1, CD4(t) refers to the latest CD4 count
measured in [t — 1,¢) (that is, the latest CD4 count assumed to be available to inform the
treatment decision at time t). Treatment was initiated in the interval [5,6), therefore A(t) =0
for t <5 and A(t) = 1 for ¢ > 6. The patient may then have experienced AIDS or death at
some later time t > 6.

Firstly, imagine the simple case of just three regimes, defined by x = 200, 350,500. The
patient is compliant with all regimes to start with. Under the regime given by x = 500, we have
Cs00(t) = 0 for t < 2 and Cso0(t) = 1 for ¢ > 3, since the patient did not initiate treatment
in the interval [2,3) in response to the first observed CD4 count below that threshold. It is

important to note that although the censoring indicator takes the value 1 in this interval, any
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Figure 4.1: Hlustration of compliance over time for an example patient with CD4 counts observed
monthly and with regimes given by z = 200, 350 and 500 (no grace period). Recall that C'D4(t)
is the latest CD4 count measured in the time interval [t — 1,¢). Cx(t) is an artificial censoring
indicator; see text for more details.

AIDS or death events occurring in this interval would be included in the analysis; only AIDS
or death events occurring from time 3 onwards are censored. The reason for this is to ensure
that events occurring in patients who did and did not initiate treatment in a given interval are
handled in the same way, to avoid introducing bias. Henceforth, when we refer to a patient
being censored from (or non-compliant with) a regime from time ¢ onwards, we mean that AIDS
or death events occurring from time ¢ onwards are no longer included in the analysis, and we
have Cy(s) =0 for s <t —1 and Cy(s) =1 for s > t.

Considering the regime given by = = 350, since the patient did initiate treatment in response
to his first observed CD4 count below that threshold, he is considered to be compliant with
that regime for all time. Lastly, under the x = 200 regime, the patient is censored from time
6 onwards, since he initiated treatment in the interval [5,6) when his last CD4 count was still
> 200 cells/mm3.

Expanding this example to all regimes of interest given by z = 200, 210, ..., 500, Table 4.1
(no grace period) and panel A of Figure 4.2 illustrate the regimes the same example patient is
considered to be compliant with over time (see section 4.2.2 for discussion on the grace period).
Prior to time 3, this patient is compliant with all regimes since C D4(t — 1) > 500 cells/mm? for
t < 3. However, when he does not initiate treatment in response to C'D4(2) = 475 cells/mm?,
he is censored from time 3 onwards from all higher regimes given by x > 475 and therefore is still
compliant only with the 28 regimes given by x = 200, 210, ...,470. While the patient remains

off treatment, the number of regimes with which he remains compliant drops with his observed
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t CD4(t—1) A(t) Regimes from which uncensored from ¢ onwards
(cells/mm3) No grace period Grace period
(m=1) (m=2)
T = N T = N
1 520 0 200-500 31 200-500 31
2 505 0  200-500 31 200-500 31
3 AT5 0 200-470 28 200-500 31
4 393 0  200-390 20 200-470 28
5 360 0 200-360 17 200-390 20
6 onwards 280 1 290-360 8 290-390 11

Table 4.1: Compliance over time of the example patient of Figure 4.1 with multiple regimes
given by = = 200, 210, ...,500 with no grace period (m = 1) and a grace period (m = 2; see
section 4.2.2). Recall that CDA4(t — 1) is the latest CD4 count measured in the time interval
[t—2,t—1).

CD4 count. Once treatment was initiated following the observed CD4 count of 280 cells/mm?,
the patient is thereafter compliant with just the 8 regimes given by x = 290, 300, ..., 360. Of
note, once a patient is observed to initiate treatment, they will never be censored off the regimes
with which they were compliant at treatment initiation.

Cain et al. (2010) indicate that an alternative to this expansion method would be to randomly
allocate each patient to one of the multiple regimes with which they are compliant, although
this would be statistically inefficient compared to the approach applied here of including all
patients on all regimes which with they remain compliant, and adjusting the variance estimates
accordingly for multiple observations per patient (either approach requires the weighting as
detailed in the next section for unbiased estimation).

Formalising our notation, let Q(¢) be an indicator for whether a patient’s CD4 count has
dropped < z cells/mm? prior to time ¢. Then the censoring indicator Cy(t) is a deterministic

function of A, Y and x, given for ¢t = 1,2, ... by:

Cy(t) =0 if and only if, for all j <t¢, A(j) =0 when Q.(j —1)=0,Y(t) =0
and A(j)=1when Q,(j —1)=1Y(t)=0

and Cy(t) is missing if Y'(¢) = 1. As noted above, if A(t) =1 and Cy(t) = 0 then C,(s) = 0 for
all s > t, since if treatment was initiated in compliance with a given regime then the patient will
be compliant with that regime for the remainder of their follow-up. This broadly follows Cain
et al. (2010) but we have used discrete indicators. Of course, this artificial censoring process is

likely to be informative; we take account of this using inverse probability weighting.
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Figure 4.2: Illustration of compliance over time with regimes given by =z = 200, 210, ..., 500 of:
the example patient of Figure 4.1, (A) under no grace period (m = 1) and (B) with a grace
period of m = 2 months, and a second patient who has the same CD4 trajectory as the first
patient, but delays treatment initiation for one month, by which time his CD4 count increased
above the nadir, (C) under no grace period (m = 1) and (D) with a grace period of m = 2
months. Recall that CD4(t—1) is the latest CD4 count measured in the time interval [t—2,¢—1).
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Step 2. Estimate inverse probability weights

Under the assumption of no unmeasured confounders for censoring and outcome (see section
2.2.2), and given baseline and time-updated covariates and treatment history, the weight for a

patient on regime x at time ¢ is the inverse probability of remaining uncensored to t:

Wi(t) = — — —
1;[1 Pr {Cx(J) = Olcx(.j - 1) = O,Y(j) = 07L(j - 1)}

where I [-] is an indicator equal to 1 if - is true, and 0 otherwise.

As with HAMSMs, the probability of remaining uncensored for any given regime to a given
time is the same as the probability of the observed treatment history to that time, conditional
on baseline and time-updated covariates and treatment history (Herndn et al., 2006; Robins

et al., 2008). Therefore the weights can equivalently be given by:

Wo(t) = — I[Cy(t) = 0]
Hl Pr{A(j)|A(j —1),Y(j) =0,L( — 1)}
=
= I [Cx(t) = 0]
ﬁ pa(§)AN=0] {1 — p 4 (5 AG-D=0AG)=1]
j=1

where

pa(j) =Pr{A(j) =0[A(j —1)=0,Y(j) = 0,L(j — 1)}

is the probability of not initiating treatment given covariate history as in equation 2.3, noting
that after treatment initiation the probability of treatment is 1. As in section 2.2.3, we can esti-
mate pa(j) from the data using a pooled logistic regression model. The treatment probabilities
are independent of treatment regime x, so we fit this model on a dataset with one observation
per patient (per month), and when we expand to one observation per patient per regime (per
month), at any given time the weights are constant for each patient across all regimes with

which they are still compliant.

Stabilisation of the weights As in section 2.2.3, we may wish to stabilise the weights.
However, we cannot use the same approach as for standard MSMs; not only must the nu-
merator of the stabilised weights not depend on time-updated covariates, but it also cannot
depend on past treatment. That is, the numerator can depend on z, V and Y, but not on

L nor A. Cain et al. (2010) suggest a natural choice is the cumulative product over time of
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Pr {Cx(j) =0[C.(j —1)=0,Y(j) =0,z, V}. Therefore while the patient remains uncensored,

the stabilised weights may be given by:

TPr{Ca() = 0[C( — 1) = 0,Y(j) = 0,2, V'}
SW,(t) = 2=

ﬁ paA()TAG=0] {1 — p, (5)} AG-D=0.A0)=1]
j=1

We can similarly fit a pooled logistic regression model for the numerator, but, because x is a
factor in the linear predictor, the model for the numerator must be estimated on the expanded
data (that is, with all patients following all regimes until censored, as in Step 1, so one obser-
vation per patient per regime [per month]) and over all time intervals in which patients remain
uncensored, regardless of whether they are on treatment on not. Separate numerator models
could be used for each treatment regime, or if there are many regimes then it may be more
efficient to use just one model incorporating regime, perhaps as a smooth function.

If a patient has initiated treatment in accordance with a given regime, then we know they
cannot be censored from that regime, but they will continue to contribute to the numerator
censoring model. This means that, while the non-stabilised weights will remain constant after
treatment initiation, the stabilised weights will not. Non-stabilised weights essentially weight
the data such that all patients follow all regimes for all time (with patient numbers at later
times declining only because of patients dropping out due to events, or “usual” censoring).
Conversely, the stabilised weights depend on the “artificial” censoring process, therefore the
weighted follow-up will reflect that of the (artificially) censored but unweighted follow-up over
time.

Cain et al. (2010) state that these stabilised weights may not necessarily reduce the variance.
It has also not been described how to stabilise the weights under a scenario with uniform
initiation across a grace period (see section 4.2.2), which is not trivial. Therefore, we will only

use non-stabilised weights hereafter.

Step 3. Weighted discrete-time survival regression with a smooth function for

regime

Once we have estimated the weights, a simple approach would be to estimate the (weighted)
survival for each regime. In realistic scenarios, this may be somewhat unstable, since few patients
will be following any one regime at a given time. Instead, Cain et al. (2010) suggest applying
a pooled logistic regression model to the weighted data with one observation per patient per

regime (per month) and using a smooth function for regime x. That is, they suggest employing
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a model such as:

logit Pr{Y (t+1) =0|Y(t) =0,Cy(t) = 0,2, V} =exp{ag (z) + BV +vf(t) + dg (x) f(t)}
(4.1)
where f(t) is some function of time, as in equation 2.4. The parameters of this model may be
estimated using weighted maximum pseudo-likelihood, with robust standard errors, since there
are multiple non-independent observations per patient. Of note, as highlighted above, we model
Y (¢ + 1) conditional on Cy(t) = 0, therefore even if Cy(t + 1) = 1, we include AIDS or death
events which occur in that interval [t,¢ + 1).

The assumption of proportional hazards is highly likely to be implausible when looking at
dynamic treatment regimes. For example, consider the regimes given by z = 200 and 350;
these regimes are identical until the patient’s CD4 count drops < 350 cells/mm?®. Therefore it
is important to allow for time-dependent effects of the regimes (g(x)f(¢) in the above pooled
logistic regression model) and so we will consider survival curves rather than hazard ratios. We
will plot survival curves, estimated from the pooled logistic regression parameters, over time
and focus on 10-year AIDS-free survival rates. The optimal regime x is therefore determined as

that which minimises the risk of AIDS or death by 10 years.

Alternative approaches There are alternatives to the pooled logistic regression model as
outlined above. For example, we could first obtain the weighted Kaplan-Meier estimates for the
event of interest for each regime, and then perhaps perform some smoothing over these estimates.
A global procedure would require modelling on the bounded [0, 1] scale of the survivor function
which is unlikely to be appropriate. Rather, a local smoothing procedure may be preferable,
although if there is a great deal of uncertainty in the estimates, then relatively heavy local
smoothing may be required. The estimation of standard errors would not be straightforward,

but bootstrapping could be applied.

4.2.2 Grace periods

In clinical practice, there may be a delay between the taking of bloods for CD4 count mea-
surement, performing the analysis, informing the patient of the results and the patient being
prescribed and finally initiating treatment. Further delay may result if the patient or clinician
requests a second confirmatory CD4 count before initiating treatment, although the treatment
initiation may still be considered in response to the first CD4 measurement. For these reasons,

allowing delayed initiation may better reflect the processes that led to the observed data. Cain
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et al. (2010) refer to this permitted delayed action as a “grace period” indexed by m. Formally,

the regimes are defined as:

“initiate treatment within m months after observed CD4 count first falls below x cells/mmg 7

and such regimes, with a permitted delay, may be more typical of those implemented via the
protocol of an RCT. Note that Cain et al. (2010) consider “immediate” initiation of treatment
to be given by m = 0, but since “immediate” initiation refers to within the first month we prefer
to consider this as m = 1 and so true grace periods here are given by m > 2. As in the scenario
where there is no grace period, patients are censored if they initiate treatment before becoming
eligible for a given regime (that is, observed CD4 count > z cells/mm?). However, for all other
patients, since we are allowing m > 1 months for initiation after having observed CD4 count
dropping below the given threshold, none will be censored during the grace period, but will
be censored after the m!* interval of the grace period if they have not initiated treatment by
that time. As in the m = 1 situation, patients who are not censored at that point will remain
uncensored for the rest of their follow-up. Our definition of C,(t) can be extended to allow for

a grace period of m months as follows (Cain et al., 2010):

Cy(t) =0 if and only if, for all j <t¢, A(j) =0 when Q.(j —1)=0,Y(¢t) =0
and A(j+m—1)=1when Q,(j —1)=1Y()=0

and again C,(t) is missing if Y (¢) = 1. Again, note that we model Y (¢ + 1) conditional on
Cy(t) = 0.

Example patients

Consider our example patient (Figure 4.1), whose regime compliance permitting a grace period
of m = 2 months is given in the last two columns of Table 4.1 and illustrated in panel B of
Figure 4.2. Compared to the scenario with no grace period, the patient is compliant with at
least as many regimes within each time interval, and often more.

A benefit of a grace period is that if the patient’s observed CD4 count rises slightly from the
nadir before treatment initiation, then the patient may still be considered to be compliant with
some regimes with which they would not have been considered compliant if no grace period
were permitted. For example, consider a second patient with the observed CD4 counts as given
in Table 4.2. The covariate and treatment history of this patient is the same as that of the

first example patient, except that this patient delayed treatment for one month, by which time

160



t CD4(t—1) A(t) Regimes from which uncensored from ¢ onwards

(cells/mm3) No grace period Grace period
(m = 1) (m = 2)

T = N T = N
1 520 No  200-500 31 200-500 31
2 505 No 200-500 31 200-500 31
3 475 No  200-470 28 200-500 31
4 393 No 200-390 20 200-470 28
) 360 No  200-360 17 200-390 20
6 280 No  200-280 9 200-360 17
7 onwards 290 Yes - 0 290-360 8

Table 4.2: Compliance of a second example patient with multiple regimes over time give by
x = 200,210, ...,500 with no grace period (m = 1) and a grace period (m = 2). Recall that
CDA4(t — 1) is the latest CD4 count measured in the time interval [t — 2,¢ — 1).

his observed CD4 count had risen slightly from 280 to 290 cells/mm3. Under no grace period,
this patient would be censored from all regimes from time 7 onwards (illustrated in panel C
of Figure 4.2). However, under a grace period of m = 2 months, this patient is considered
to be compliant with the eight regimes given by =z = 290, 300, ..., 360 from time 7 onwards, a
scenario which is perhaps more clinically realistic given known measurement error and natural
fluctuations in CD4 count (Table 4.2 and panel D of Figure 4.2).

In observational data, since such fluctuations in observed CD4 count and treatment initia-
tion patterns may be common, permitting a grace period may result in fewer of the observed
treatment initiations being censored, therefore perhaps leading to more efficient estimation. It
is important to note that to allow a grace period is to ask a different question, that is the effect
of the regimes permitting a maximum delay in treatment initiation, compared to the original
question which considers the effects of the regimes assuming no delay in treatment initiation.
However, one may be prepared to accept the potential bias associated with an interpretation
assuming no grace period, although one was permitted for analysis, in order to exploit the

potential gain in efficiency. Below, we seek to evaluate these trade-offs through simulation.

Regimes are not fully identified

In the presence of a grace period, the regimes are not fully identified, since for each x there is
more than one possible treatment path which is consistent with the definition, namely those in
which treatment is initiated in any of the m intervals of the grace period. Of note, Young et al.
(2011) refer to regimes without grace periods as deterministic, and to those with grace periods
as random, since there may be a random element to the time at which treatment is initiated

during the grace period. Cain et al. (2010) considered two examples. The first can be more
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precisely specified as “do not initiate treatment before the CD4 count is <z cells/mm?, and do
initiate exactly m months after the CD4 count first drops below x cells/mm? if treatment has
not already been initiated in the first m — 1 months of the grace period”. The authors describe
their second example as “initiate treatment within m months after the CD4 count first drops
below z cells/mm?>, such that there is a uniform probability of starting in each of the months
1,2,...,m”, though note this is still not fully specified since the treatment probabilities could
be conditional on covariates such as CD4 count yet still achieve uniform marginal probabilities
of treatment initiation across the grace period. These choices have implications for the weight

estimation; we now describe how the weights may be estimated in each of these two scenarios.

Weight estimation

Note that since we model Y (¢t + 1) (equation 4.1), the weights W, (¢) are used to upweight
outcome in the next month. Patients who reach the end of the grace period without initiating
treatment are censored at the end of the grace period; there is no censoring during the grace

period.

First approach The weight estimation is simplest under the first approach of Cain et al.
(2010), where only the patients who initiated treatment in the m' interval of the grace period
are weighted up (in the next month) to account for those censored at the end of the grace period
due to non-initiation of treatment. Let the time ¢, be such that Q»(¢z —1) = 0 and Q. (¢») = 1.

Then the (non-stabilised) weights are estimated as follows:

Wx(t) _ I [Cx(t) = 0]

t
HPA(j)I[j<qz] x {1 —palqs: + m)}f[thz+m}
j=1

where p4(j) is estimated from the data as in the case where m = 1, that is, on the dataset
before expansion. The first component of the denominator of these weights is the probability
of remaining uncensored while CD4 count is > x cells/mm3, that is, off treatment. The second
component of the denominator is the probability of remaining uncensored after the m‘* interval
of the grace period (which is m months after treatment indicated by the regime and CD4
count history); this probability is given by the probability of treatment initiation at that time.
Therefore, those patients who initiated treatment in the m!”* interval of the grace period are
upweighted to account for those censored at the end of the grace period due to non-initiation

of treatment.
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Second approach Under the second approach of Cain et al. (2010), we assume that the
probability of treatment initiation is uniform across the grace period, and the patients who
initiated treatment at any point during the grace period are weighted up to account for those
censored at the end of the grace period because they did not initiate by that time. The (non-
stabilised) weights are estimated as follows:

" 1—1/(m+1-1) }I[thxH,A(qx-&-l):O]

o = L0 =0 71 ] U

¢ 1/(m+1-1) I[t>qe+1,A(gz+1—1)=0,A(g=+1)=1]
[Ipatib=et =t L% {4t
j=1

The first component of the weights is identical to that of the first approach (the probability
of remaining uncensored, that is, off treatment, while CD4 count is > z cells/mm?). The second
part of the weights spans the grace period, [ = 1,...,m, that is, covering the m months after
treatment is indicated by the regime and CD4 count history. The denominator is based on the
probabilities of observed treatment, that is, the probability of remaining off treatment while
treatment-naive during the grace period, multiplied by the probability of initiating treatment
when (if) it is initiated during the grace period. The numerator of the second part of these
weights is to form the uniform distribution of treatment initiation over the grace period. In
the [ interval of the grace period, the numerator takes value 1/(m + 1 — [) for patients who
initiated in that interval (that is 1/m,1/(m—1),...,1/2,1 for intervals [ = 1, ..., m, respectively)
and value 1 — 1/(m + 1 — [) for those who did not initiate in that interval (that is values
1-1/m,1—1/(m—1),...,1/2,0 for intervals [ = 1,...,m, respectively). Given this adjustment,
it is difficult to express these weights in terms of the probability of remaining censored at a
given time ¢, but they serve to upweight those patients who initiated during the grace period
to account for those who are censored at the end of the grace period due to non-initiation of

treatment.

Comparison of these approaches

The first approach upweights the patients who initiated treatment in the m!” interval of the
grace period to account for those who did not initiate by the end of the grace period; this may
potentially be a small subset of patients who may not be comparable to those who initiated
earlier in the grace period. The second approach assumes uniform treatment initiation across
the grace period which also may not be plausible; for example, if m is large then perhaps
patients may be more likely to initiate earlier in the grace period, with few patients delaying

treatment initiation for m months.
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Of course, other choices are possible. For example, suppose it was anticipated that if the
regimes were implemented in practice then the majority of patients would initiate in the first
interval of the grace period. Then one could assume for example 80% of the patients would
initiate in the first interval, and uniform initiation across the remainder of the grace period. Fur-
ther, the treatment initiation pattern could be data-driven, that is based on what was observed
in the real data. However, the correct weights would need to be determined (adjustments made
to the numerator) and, strictly-speaking, the results should then be interpreted in the same
vein. This approach would only be advantageous if it was thought that clinicians would employ
the same treatment initiation patterns when implementing the results of the study, which is
perhaps unlikely, since if they are changing practice then the treatment initiation patterns are

likely to also change.

4.2.3 Other censoring

Other types of “usual” censoring, such as LTFU or administrative, may be incorporated in a

similar way as for standard MSMs (section 2.2.4).

4.2.4 Interactions between treatment effect and baseline characteristics

We have so far assumed a constant regime effect across all patients; that is, the optimal regime(s)
is the same for all patients. In reality, the optimal regime x may vary by baseline patient
characteristics such as age or sex. These can be addressed using interactions, for example by
replacing the function g(z) of regime z in the pooled logistic regression model for the outcome
(equation 4.1, in the components ag () + dg (z) h(t)) with some function g (x, V') of the regime

x and baseline covariates V', for example:
gz, V) => (14 6;V)aP
J
Robins et al. (2008) described the use of such interactions, but to our knowledge this has not

been done in practice in the context of optimal dynamic treatment regimes.

4.2.5 Gaps in the methodological literature

While dynamic MSMs have been applied in practice a number of times previously (Cain et al.,
2010; HIV-CAUSAL collaboration, 2011; Shepherd et al., 2010), and we know that asymp-
totically the methods are unbiased for causal estimation of the effects of dynamic treatment

regimes (Robins et al., 2008), their performance in realistically-sized datasets has not been sys-
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tematically explored. In addition, the impact on the optimal regime of factors such as the rate
of decline and measurement frequency of the biomarker which is used to define the dynamic
regimes, and also length of the grace period, has not been investigated. Such knowledge could,
for example, enable comparison between different studies which have been conducted under
different conditions to help understand any differences in the results.

Further, while we may be interested in inferences under the assumption of no grace period,
which may be easier to interpret and implement in practice, there could perhaps be potential
gains in efficiency by permitting a grace period for the purposes of analysis, since fewer treatment
initiations will be censored. This may be at the risk of bias for the inference of interest (assuming
no grace period); this bias-variance trade-off has not previously been studied.

We investigated these issues via simulation studies.

4.3 Simulation study 1

4.3.1 Motivation

There were two overarching aims for our first simulation study. The first was concerned with
the effects of different CD4 observation frequencies and grace periods on the optimal regime.
Since we are defining the optimal regimes in terms of maximising a time-to-event outcome, it
is not possible to easily determine the optimal regimes directly. Therefore we simulated large
randomised trials for this purpose. The second aim was related to the performance of these

methods in realistic situations, therefore we simulated observational studies.

First aim (via randomised trials)

Our first aim was to explore the effects of different observation frequencies of CD4 count (for
the purposes of treatment initiation) and different length grace periods on the optimal regime.
As mentioned above, this has not previously been systematically investigated. These two issues
are clearly closely related. For example, individuals monitored less frequently or permitted a
delay in treatment initiation may need to be directed to initiate earlier at higher CD4 counts
to prevent long periods of time before treatment initiation and hence CD4 counts dropping to
levels associated with increased risk of AIDS or death. We also considered populations with
different average treatment-naive CD4 declines. Of note, these scenarios with different CD4
declines, CD4 count observation frequencies and grace periods are expected to lead to different
results since they are addressing different questions. As mentioned above, initially we were

interested in the true effects of these factors on the optimal regime, therefore we simulated large
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randomised trials to address these issues.

Second aim (via observational studies)

Our second aim was to explore the performance of these methods using realistically-sized ob-
servational datasets, in terms of bias and precision. We know that asymptotically the methods
will be unbiased, but in practice limited data will be available.

A key motivation for incorporating grace periods is to attempt to minimise the number of
censored treatment initiations in (likely limited) observational data, thereby aiming to increase
efficiency. Since permitting a grace period is to ask a different question than a scenario without
a grace period, we were also interested in the potential bias arising from interpreting results from
a study with a grace period as if there was no grace period. If the gain in efficiency outweighed
the potential bias, then even in scenarios where inference was desired in the absence of a grace
period, it may be beneficial to allow a grace period anyway for the purposes of analysis. This
bias-variance trade-off has not previously been studied, and was therefore part of our second
aim.

To investigate these issues, we simulated realistically-sized observational studies. In partic-

ular, the questions we wished to address were:

1. With realistically-sized datasets, are the methods unbiased (compared to the results from
the RCT simulations for the same population in terms of treatment-naive CD4 decline

and CD4 count observation frequency, and also the same grace period)?
2. What is the precision of a single analysis of this size?

3. What is the bias-variance trade-off in allowing grace periods of m > 1 months, when in
fact the question of interest is under the scenario of no grace period (m = 1)? That
is, assuming that we want to interpret the results under no grace period, we compared
the results from the RCT with a given population (in terms of treatment-naive CD4
decline and CD4 count observation frequency) and no grace period with the results from
the observational studies with the same population but permitting a grace period. As
discussed above, by increasing the grace period, we may gain efficiency but potentially at

the expense of bias for the inference of interest.
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4.3.2 Methods
Data generation

Simulated patients were included with observed baseline CD4 counts uniformly in [500, 550]
cells/mm?; this narrow range of baseline CD4 counts was chosen to avoid lengthy amounts of
time spent with CD4 count > 500 cells/mm?, which would not contribute to the comparison

between the defined regimes. Follow-up over 10 years was divided into monthly intervals.

Modelling CD4 count trajectory Our models were based on previous work modelling
CD4 count using CASCADE data by A Babiker (personal communication, 10 September 2010).
This previous work suggested a piecewise linear mixed effects model for square-root CD4 count,
with a change-point at treatment initiation and one year after initiation, and incorporating
Brownian motion (this was superior over the standard mixed effects model). We now describe
these models in more detail, and give the parameters as estimated by that previous work. Note
that all the following parameter estimates are those which were used for the population with
regular treatment-naive CD4 decline; the changes made to consider populations with different
CD4 declines are described below.

Let CD4T(t) and CD49(t) represent the true and observed CD4 count, respectively, for

patient 7 at time ¢. Measurement error was incorporated as follows:

\/ CD49(t) = \/ CDAL(t) + E;(¢) (4.2)

where Ej;(t) are independent random measurement errors with distribution N(0,0%), with the
variance 0% dependent on whether treatment had been initiated or not. We used the following

model for the treatment-naive CD4 trajectory:
CDAT(t) = B + 5,,(t/12) + Wy (t)

where time ¢ is measured in months and, for patient i, (BZT )2 is the true baseline CD4 count
and Sp; is the random slope drawn from N (MSO,O'%O). Note that B} is random, determined
from the uniformly-simulated observed baseline CD4 count CD49(0) in [500, 550] cells/mm?
(see above) and equation 4.2. No correlation between the baseline CD4 count and subsequent
slope was incorporated, since time was from trial entry and patients are captured within a
narrow range of observed baseline CD4 counts (of note, the range of true baseline CD4 counts

was somewhat wider than the observed due to the measurement error, though not large; see
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results in Table 4.3). Outside a simulation model, we would be unlikely to capture patients
within such a narrow range of CD4 counts, but here the baseline CD4 count is not for example
representative of the CD4 count at seroconversion, so we would not necessarily expect a corre-
lation between the baseline CD4 count and subsequent slope. WOJ(t) represents the Brownian
motion process, which is independent of the baseline CD4 count or slope, and has W;(0) = 0,
distribution N (0, dot/12) and corr [Wy(t1), Wo(t2)] = min(t1,t2)/+/t1t2. Appendix A describes
how Wy ;(t2) is simulated in practice, given Wy ;(t1). The parameters were previously estimated
from CASCADE data to be g, = —1.10,04, = 0.50,d0 = 6.89 and 02E1 = 2.26.

After treatment initiation, the CD4 trajectory was modelled as follows, with time ¢ in

months from treatment initiation:

R+ Sy ,;(t'/12) + W, ,( if # < 12 months
o - L E/12) 4 W, ()
Ri+ 8y ;+ Sy,(t'/12 = 1) + Wy ;(#') if ¢’ > 12 months

where, for patient i, RZ-2 is the true CD4 count at treatment initiation, and SLZ- and S27i are
the slopes during the first year and from one year after treatment initiation, respectively, on
the square-root scale. Therefore, R? is known (the true CD4 count at treatment initiation) and

Sy

i and S, ; were simulated conditional on R; (see appendix A). Overall, these three random

variables followed a trivariate Normal distribution, with mean vector and variance-covariance

matrix given by:

po= | ps | = 293
/‘LSQ 010

2
OR OR,S1 OR,S2

— 2
and X = | opgs, 0% 058,

2
OR,S2 051,52 03,

2
UR TR7510'R0'51 er‘S'QO.RO-SQ
- 2
- TR,S10R0 5, 05, 7$1,5205,03,
2
T‘R7S2O-RO-SQ 7“517520-51 USQ USQ
where 7, = corr(z,y) = gz—gy The variance-covariance parameters were previously estimated
z0y
from CASCADE data to be o = 5.71,04 = 2.06,05, = 0.57 and rggs, = —0.44; g,

was found to be -1, that is the slope after one year after treatment initiation was a linear

function of R; (the square-root of the true CD4 count at treatment initiation), and therefore
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81,8, = —TR,s;- Once again, W ;(¢) represents a Brownian motion process, independent of R,
Sp and Sg, with W1(0) = 0, distribution N (0,d1¢/12) and correlation as given above (simulated
as described in appendix A). The remaining parameters were given by 61 = 7.83 and 0%2 = 2.19.

In practice, successive CD4 counts were determined as follows:

VJODAT () = \JODAT (1 — 1) + §;4/12 = W, (t — 1) + W ,(0)

That is, the random effects and Brownian motion components were additive. In our simula-
tion study, CD4 counts were truncated at 0 if estimated as < 0 cells/mm?, and values > 1000
cells/mm?® were truncated at 1000 cells/mm?, due to the high biological variation at such high
CD4 counts and little difference in the probability of reaching AIDS/death (or initiating treat-
ment, in the observational study) at those levels. The numbers of observations truncated at

each of these limits are shown in the results (Tables 4.3 and 4.8).

Modelling event rates Let p;(¢) represent the probability of AIDS or death at a given time

t for patient 7; this was dependent on true CD4 count and treatment, as follows:

log pi(t) o —voy/CDAF(t—1) if A4;(t—1)=0
1—pi(t) A —v1y/CDAT(t = 1) if Aj(t—1) =1
0.582 — 0.2664/CD4T(t — 1) if A;(t—1)=0
0.763 — 0.415,/CD4T(t — 1) if A;(t—1)=1

where the parameters \g, vg, A1, 1 were chosen to equate to the probability of the event being
0.01 and 0.0005 while off treatment for CD4 counts of 200 and 500 cells/mm?, respectively,
and 0.006 and 0.0002 while on treatment for the same CD4 counts, respectively. These values
were based on previous work estimating event rates using CASCADE data (A Babiker, personal

communication, 23 August 2010). The event probability curves are illustrated in Figure 4.3.

Determining the optimal regime The optimal regime was that with the highest AIDS-
free survival at 10 years (see below for how this was estimated in the RCTs and observational
studies).

The randomised trials

A total of 31 million simulated patients were randomised equally across the 31 regimes given

by “initiate treatment within one month of observed CD4 count first dropping < z cells/mm3”
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Figure 4.3: Model for probability of AIDS or death given true CD4 count and treatment status.

where z = 200, 210, ..., 500 (1 million patients on each regime). AIDS-free survival was estimated
by Kaplan-Meier. The sample size was chosen to be large enough to obtain sufficiently stable

results; further exploration of the impact of the sample size on precision is discussed below.

Exploration of the sample size Due to the large measurement errors and low event rates,
a large number of patients were required. By using Kaplan-Meier estimation, we were able to
see any residual uncertainty in estimating the optimal regime by plotting the 10-year AIDS-free
survival against regime. In theory, with sufficient patient numbers and high enough event rate,
by the construction of the models, the curve should be smooth. However, even with such a large
sample size of 1 million patients per regime, it was still possible to detect a small amount of
uncertainty. Whilst we could have used a global smoothing method, such as modelling regime
with a spline or fractional polynomials, there was concern that this may only serve to hide the
uncertainty and perhaps lead to incorrect inferences. In particular, the uncertainty was greatest
at higher regimes due to the lower event rates at high CD4 counts; these extremities of the data
may unduly influence such models. It is important to note that the differences in the 10-year
AIDS-free survival between neighbouring regimes (that is, differing by 10 cells/mm?) close to
the optimal regime were very small, and typically they were identical to 3 decimal places. Such
differences are not of great interest clinically but we wanted to be certain that we were correctly
determining the optimal regime. Therefore, we considered a number of different sensitivity

analyses:
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1. We applied a least squares local smoothing technique (“lowess” in Stata 11.1; StataCorp
(2009)). This procedure performs a series of weighted linear regressions of the dependent
variable of interest y (here, the estimated 10-year AIDS-free survival) on the independent
variable of interest z (here, regime z) to obtain smoothed estimates, with one regression
centred on each (y;,z;). We used a bandwidth of 0.2, meaning that 20% of the data
were used for each regression; this relatively small bandwidth was chosen to ensure only
very local smoothing. The regressions were weighted with the greatest weight going to
the central data pair; we used “tricube” weighting, which means that for each of the

observations (y;, zj) contributing to the regression centred on (y;, z;), the following weight

o [e]

where A = 1.0001max (ziJr — 2, 2 — zi_), and z;, and z;_ are the maximum and mini-

was applied:

mum values of z contributing to the (y;, z;) regression, respectively.

2. We used an ad-hoc local smoothing approach by weighting the 10-year AIDS-free survival
estimate for each regime z (given by uy) as follows: (Uy—10 + 2Uy + Ugp+10)/4, With no

change for the most extreme datapoints.

3. We considered the “minimum acceptable regime”, defined as that given by the lowest x
with no worse than 0.5% poorer AIDS-free survival at 10 years than that of the optimal
regime. The reasoning behind this is that the 10-year AIDS-free survival estimates are very
similar close to the optimal regime, therefore this lower bound of the minimum acceptable
regime may be more stable. Note that the minimum acceptable regime is not the same as

the optimal regime, and answers a different question.

Variations We explored a variety of scenarios via the RCT simulations, including populations
with different mean treatment-naive CD4 count declines, less-frequently observed CD4 counts

and permitting grace periods.

Treatment-naive CD4 decline The above models assumed a mean absolute treatment-
naive CD4 decline of 1.10 per year on the square-root scale (referred to as the “regular-decline”
population), based on the previous work mentioned above using CASCADE data. We considered
the effect of different populations, with slower or faster average decline, to look at the impact on
the optimal regime. That is, we changed the mean decline per year on the square-root scale to

either 0.76 or 1.44 (based on the lower and upper quartiles, respectively, of the regular decline
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distribution; labelled the “slow” and “fast” decline populations, respectively). For a patient
with a CD4 count of 500 cells/mm? and mean decline at the population level, their CD4 count
one year later would be 467, 452 or 438 cells/mm? in populations with slow, regular or fast
decline, respectively. Similarly, a patient with a CD4 count of 350 cells/mm? and mean decline
at the population level would have a CD4 count one year later of 322, 310 or 298 cells/mm3,
respectively, in those three populations. We would anticipate estimated optimal regimes given

by higher z in populations with faster treatment-naive CD4 decline.

Frequency of observed CD4 count If CD4 counts are observed less frequently than
monthly for treatment initiation, then these methods may be applied in exactly the same way.
However, this is likely to have an impact on the results and the interpretation. For example,
if CD4 counts are only observed every p > 1 months, then initiating treatment when CD4
count is first observed to drop below a given threshold will tend to be later, in terms of CD4
count at treatment initiation and hence cumulative event risk, than if CD4 counts had been
observed monthly (p = 1), due to the time lag. Therefore, under schedules where CD4 count
is observed less frequently, we might expect optimal regimes to be given by higher = compared
to scenarios where CD4 count is observed more frequently, in order to attempt to address that
time lag. We considered the impact on the optimal regime if CD4 counts were observed every
p =3, 6 or 12 months. Of note, for the RCTs, the frequency of observed CD4 counts relates to
those observed for the purposes of treatment initiation only; that is, true CD4 counts were still
estimated monthly for the purposes of applying the event rates and the outcome estimation was

still applied with time split into monthly intervals.

Grace periods No grace period (that is, m = 1, “immediate” treatment initiation) has
so far been assumed. We considered allowing grace periods of m = 3, 6 or 12 months; we would
anticipate higher estimated optimal regimes with longer grace periods. As discussed above,
regimes in the presence of grace periods are not fully identified; we chose to apply uniform
initiation across the grace period (second approach of Cain et al. (2010)). For the RCTs,
this meant that all patients identified for treatment initiation at a given time, based on their
randomised regime and CD4 count history, were treated as if they had been randomly allocated
to initiate in one of the following intervals of the grace period, with probability of initiation in
each interval given by 1/m. Note that, after this allocation, patients may have been removed
from the risk set before treatment initiation during the grace period due to reaching the event

(that is, while waiting for their allocated treatment initiation time during the grace period), but
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since the event rates were low this would typically be a very small number of patients. The use
of this approach means that, in the equivalent observational study, we avoid estimating weights
based on a small and potentially unrepresentative group of subjects initiating treatment in the

last interval of the grace period.

The observational studies

We firstly simulated a large observational study with n = 100,000 patients, with regular
treatment-naive CD4 decline, monthly observed CD4 counts and no grace period (m = 1),
and only considered the 3 regimes given by xz = 200, 350 and 500, to check that we obtained
similar results to the equivalent RCT (the number of patients and regimes were limited by
the computational power required at the data expansion step). There was some uncertainty re-
maining despite the large sample size, therefore we also considered different scenarios (3-monthly
observed CD4 counts and 3-month grace periods, all with regular treatment-naive CD4 decline)
and then repeated all of these large observational studies (different starting seed) to look at the
variation in the 10-year AIDS-free survival estimates.

We then simulated 1000 datasets each with n = 3000 patients, from a population with regular
treatment-naive CD4 decline and CD4 counts measured monthly. We repeated these simulations
with CD4 counts observed only every 3 months, which is the median frequency observed in
our CASCADE data. As mentioned above, the CD4 observation frequency is relevant for
the purposes of treatment initiation; the event rates were applied to the true CD4 counts
which were always calculated monthly. However, for the observational studies, the observed
CD4 counts were in addition used for performing the weight estimation. These datasets were
then used with different grace periods for the estimation of the optimal regime (with regimes
x = 200, 210, ..., 500). Of note, we considered the grace periods to be a step in the data analysis,

not in the data generation.

Modelling treatment initiation The curve for the probability of treatment initiation given
CD4 count was chosen to resemble that of the model from chapter 2 (page 72), with the
parameters of the curve determined by the probability of treatment initiation at CD4 count 200
and 500 cells/mm? being 0.23 and 0.01, respectively (approximately based on the results of the

chapter 2 model). The model used was:

log % = 4.62 — 0.412,/CD4O(t)
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Figure 4.4: Model for probability of treatment initiation given current observed CD4 count.

where p(t) represents the probability of treatment initiation at time ¢, and this is illustrated in
Figure 4.4. If CD4 counts were observed less frequently than monthly, then the last observed
CD4 count was carried forward and the treatment probabilities applied to that. Of note, since
A(t) was generated based on C'D49(t), this was reflected in the treatment model, rather than
modelling A(t) conditional on C'D4°(t — 1) as indicated in section 4.2. The latter approach is
in order to be conservative with real data, where CD4 counts in the same month as treatment
initiations may not actually have been available at the time of treatment initiation and therefore
not contributed to the treatment decision, or indeed may have been measured after treatment
initiation; this concern does not apply to these simulated data, and the interpretation and

generalisability of the results is not affected.

Weight estimation We used a pooled logistic regression model for treatment initiation in pa-
tients previously treatment-naive, given current observed CD4 count (square-root transformed
and as a continuous variable; this mimics the data generation). From this, we estimated the
(non-stabilised) weights under the second approach of Cain et al. (2010) as described above in

section 4.2.2. The weights were truncated at maximum 20.

Outcome model In such realistically-sized datasets, there will undoubtedly be a great deal of
uncertainty in the (weighted) Kaplan-Meier estimates of the AIDS-free survival. One approach
is to model the outcome of AIDS or death using the pooled logistic regression models of Cain
et al. (2010), as outlined in section 4.2. However, this global procedure may be heavily influenced

by the extremes of the data. Therefore we also considered different approaches, as indicated in
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section 4.2. That is, we estimated the optimal regimes (that with the highest 10-year AIDS-free

survival) under the following approaches:

1. Based on the raw Kaplan-Meier estimates.

2. Applying local smoothing to the Kaplan-Meier estimates. Due to the much smaller sample
size and hence greater uncertainty than the randomised trials, much heavier local smooth-
ing was required. We used the command “smooth” of Stata 11.1 (StataCorp, 2009), which
applies robust non-linear smoothing. A smoother of span r produces smoothed values of
the variable y of interest by taking the median of each y; and the r — 1 values around
y; (with linear interpolation if r is even). We applied multiple smoothers in sequence
to ensure relatively heavy smoothing, along with the Hanning smoother (Velleman and
Hoaglin, 1981), which applies a smoother of span 3 with binomial weights (specified by
“H”), and some further refinements: firstly, special treatment of the ends of the data
(specified by “E”); secondly, “splitting” repeated values with a smoother of span 3 to
avoid flat-topped peaks and troughs (specified by “S”); lastly, repeating an odd-spanned
smoother until the smoothed variable did not change anymore (specified by “R”). The

complete command we used was: 753SR8642EH.

3. Using a spline in a weighted pooled logistic regression model, as Cain et al. (2010). Regime
and time were modelled as four-knot splines (with knots at the 5, 35, 65 and 95" centiles),
and interactions between regime (as a spline) and time (in two-yearly categories) were

incorporated.

The questions of interest Addressing the questions of interest as outlined above:

1. To investigate bias in these realistically-sized datasets, we compared the mean and median
of the optimal regimes from the 1000 datasets to the optimal regime from the equivalent
randomised trial (that is, with the same treatment-naive CD4 decline, frequency of ob-
served CD4 and grace period). In addition, we looked at the proportion of estimates which

were less than the minimum acceptable regime from the equivalent RCT.

2. To look at the precision of a single analysis of this size, we estimated the standard error

using the standard deviation of the estimates from the 1000 simulated datasets.

3. To investigate the bias-variance trade-off in allowing grace periods of m > 1 months,

when the inference of interest is under no grace period (m = 1), we compared the results
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from the observational study simulations, with grace periods of m = 1, 3 and 6 months,
with that from the equivalent randomised trial except with no grace period (that is, the
same population treatment-naive CD4 decline and frequency of observed CD4 counts).
We assessed the bias-variance trade-off by examining the mean square error, calculated as
the square of the estimated standard error from (2) plus the square of the difference in the
estimated optimal regimes from the observational study and RCT (Burton et al., 2006).
In addition, we considered the relative efficiency, which for a given CD4 count observation
frequency was calculated for each approach and choice of grace period as the square of the
estimated standard error from (2) divided by the square of the standard error under the
pooled logistic regression approach with no grace period (m = 1; Lebanon (2006)); this

was chosen as the reference group since this method is commonly used in the literature.

4.3.3 Results: the randomised trials

We firstly present detailed results for the population with regular treatment-naive CD4 decline,
where CD4 counts were observed monthly for the purpose of treatment initiation, and with no
grace period (m = 1).

For illustration, Figure 4.5 shows the path of CD4 count over time for an example patient,
who was randomised to initiate treatment when their CD4 count was first observed to drop
< 200 cells/mm3. The black lines indicate the underlying CD4 slopes, with decline while
treatment-naive, relatively steep increase after treatment initiation at 57 months, and more
gradual increase from one year after treatment initiation onwards. The blue lines show the path
of the true CD4 count over time, that is after incorporating the Brownian motion. The red lines
illustrate the observed CD4 count, that is after allowing for measurement error. Of note, this
patient initiated treatment at a low observed CD4 count of 169 cells/mm?, while their true CD4
count was at 333 cells/mm3. This behaviour was common across the population, by the nature

of CD4 decline and the definitions of the regimes. This issue is discussed further in section 4.6.

Summary of baseline characteristics and treatment

Summary statistics of the baseline characteristics and treatment for the 1,000,000 patients on
each of the three regimes given by x = 200, 350 and 500 are given in Table 4.3. As anticipated
for a large randomised trial, the baseline CD4 counts (observed or true) and treatment-naive
slopes were very similar across all regimes. While the observed baseline CD4 counts were all

by definition in [500, 550] cells/mm?3, this did not necessarily hold for the true baseline CD4
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Figure 4.5: Tllustration of underlying, true and observed CD4 count over time for an example
patient randomised to initiate when CD4 count was first observed to be < 200 cells/mm? (from
the scenario with regular treatment-naive CD4 decline, CD4 counts observed monthly and no
grace period). This patient initiated treatment at 57 months, when their observed and true
CD4 counts were 169 and 333 cells/mm3, respectively.

counts, as shown by the interquartile ranges of 457 to 598 cells/mm? across the regimes.

The summary results relating to treatment initiation reflect what we might expect by de-
finition of the regimes. At regimes defined by higher x, a greater proportion of patients were
observed to initiate treatment (> 99% versus 78% for the x = 500 and 200 regimes, respectively)
and sooner (median 3 versus 37 months, respectively). The percentage of follow-up time spent
on treatment was 94% for regime x = 500 compared with just 49% for regime z = 200.

By definition, the observed CD4 counts at treatment initiation were all < x cells/mm?
for each of the regimes, with median 432 versus 175 cells/mm? for regimes = = 500 and 200,
respectively. The true CD4 counts at treatment initiation tended to be higher than that defined
by the regime, influenced by unusually low observed CD4 counts resulting in treatment initiation
despite higher true CD4 count, as exemplified by the CD4 count paths of the example patient
shown in Figure 4.5. This was more noticeable at regimes defined by lower =, with median true
CD4 counts at treatment initiation of 503 versus 275 cells/mm? for regimes x = 500 and 200,
respectively.

As a consequence of the random error structure of the simulated data, treatment initiation
at lower CD4 counts was associated with faster initial and subsequent CD4 count increase

on the square-root scale. The median increase in square-root CD4 count over the first year
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Regimes given by x

200 350 500
Baseline
Observed CD4 count, cells/mm? 525 (513, 538) 525 (512, 537) 525 (512, 538)
True CD4 count, cells/mm? 525 (457, 598) 525 (457, 598) 525 (457, 598)
Annual slope, square-root scale 1.10 (0.76, 1.44) 1.10 (0.76, 1.44)  1.10 (0.76, 1.44)
Treatment
N patients observed to initiate 783,766 (78%) 952,144 (95%) 995,522 (>99%)
treatment
Time to initiation, months!! 37 (21, 62) 10 (4, 25) 3(2,5)
Observed CD4 count at 175 (154, 189) 313 (282, 333) 432 (379, 469)
initiation, cells/mm?3M!]
True CD4 count at initiation, 275 (240, 313) 425 (381, 472) 503 (441, 565)
cells/mm?3!)
Initial annual slope after 3.42 (2.16, 4.68) 2.78 (1.52,4.04)  2.51 (1.24, 3.77)
initiation, square-root scalell2
Annual slope one year after 0.41 (0.30, 0.52) 0.01 (-0.10, 0.12) -0.17 (-0.31, -0.03)
initiation, square-root scalell:2]
Percentage of follow-up time 49% 79% 94%

spent on treatment

Table 4.3: Simulation study 1 (RCT): summary of baseline characteristics and treatment for
n = 1,000,000 patients on each of the three regimes given by x = 200, 350 and 500 (popu-
lation with regular treatment-naive CD4 decline, CD4 counts observed monthly and no grace
period). Unless otherwise stated, values are n (%) for categorical variables and median (in-
terquartile range) for continuous variables. Of note, < 1% of true CD4 counts were truncated
at 0 cells/mm?3, and approximately 1, 2 and 3% of true CD4 counts were truncated at 1000
cells/mm?® on the regimes given by = = 200, 350 and 500 cells/mm? respectively. [1] In those
patients who were observed to initiate treatment. [2] As assigned at treatment initiation.
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after treatment initiation was 2.51 and 3.42 for regimes = 500 and 200, respectively. In the
absence of Brownian motion, and for patients who initiated when their true CD4 counts were
500 and 200 cells/mm?, these median increases translated to a CD4 count one year later of 618
and 308 cells/mm3, respectively (a broadly similar increase on the absolute scale). The median
increase in square-root CD4 count after the first year on treatment was —0.17 and 0.41 per year
thereafter for regimes x = 500 and 200, respectively. Similarly, these translated to a CD4 count
of 577 and 384 cells/mm?, respectively, five years later. Of note, for regimes defined by higher z,
the slope beyond one year after treatment initiation tended to be negative, thereby introducing
a penalty for early treatment initiation. Figures 4.6 and 4.7 illustrate the distribution of true
CD4 count over time for the regimes = = 200, 350 and 500 (in a random subset of n = 100, 000
patients per regime due to computational limitations); in Figure 4.6, it is possible to see the

slightly negative slope over the longer term for the x = 500 regime.

Outcome results

Overall, 17%, 13% and 14% of patients were observed to progress to AIDS/death on regimes
given by z = 200, 350 and 500, respectively, during the 10 year follow up. Figure 4.8 shows the
estimated AIDS-free survival curves for these three regimes; the estimated 10-year AIDS-free
survival was 0.8278, 0.8657 and 0.8587, respectively, for these regimes.

Figure 4.9 illustrates the estimated AIDS-free survival at 10 years by regime; the peak of the
curve at z = 350 is the optimal regime. As mentioned above, the probability of surviving AIDS-
free to 10 years under this regime was 0.8657. As discussed in the methods, there was some
residual uncertainty apparent in the plot, particularly at regimes given by higher x where the
event rate is much lower. Applying the local smoothing by either least squares or weighting, the
optimal regime was given by x = 360 (with 10-year AIDS-free survival of 0.8656 in both cases).
The smoothed plots are illustrated in Figure 4.10. Consideration of the minimum acceptable
regime, as illustrated in Figure 4.9, yielded = = 290 regardless of whether local smoothing was
applied (with 10-year AIDS-free survival rates of 0.8621, 0.8619 and 0.8620 for no smoothing,

least squares smoothing or weighted smoothing, respectively).

Frequency of observed CD4 counts

In the population with regular treatment-naive CD4 decline and with no grace period, reducing
the frequency of observed CD4 counts from monthly to every 3, 6 or 12 months increased
the optimal treatment regime from x = 350 to 410, 460 and 490, respectively, and the 10-

year AIDS-free survival on those optimal regimes decreased from 0.8657 to 0.8650, 0.8634 and
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Figure 4.6: Simulation study 1 (RCT): true CD4 count over time (median, interquartile range
and 5/95" percentiles) for a subset of n = 100,000 patients in the RCT on each of the three
regimes given by x = 200, 350 and 500 (population with regular treatment-naive CD4 decline,
CD4 counts observed monthly and no grace period).
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Figure 4.7: Simulation study 1 (RCT): true CD4 count categorised over time from trial start
for a subset of n = 100,000 patients on each of the three regimes given by x = 200, 350 and
500 (population with regular treatment-naive CD4 decline CD4 decline, CD4 counts observed
monthly and no grace period).
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Figure 4.8: Simulation study 1 (RCT): AIDS-free survival curves over 10 years for the three
regimes given by x = 200, 350 and 500 (population with regular treatment-naive CD4 decline,
CD4 counts observed monthly and no grace period).
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Figure 4.9: Simulation study 1 (RCT): probability of surviving AIDS-free to 10 years by regime
(population with regular treatment-naive CD4 decline, CD4 counts observed monthly and no
grace period). The optimal regime is determined by that with maximum 10-year AIDS-free
survival (solid lines). The minimum acceptable regime is defined as the lowest with no worse
than 0.5% poorer 10-year AIDS-free survival than under the optimal regime (dashed lines).
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Figure 4.10: Simulation study 1 (RCT): probability of surviving AIDS-free to 10 years by
regime, with no smoothing, least squares smoothing or weighted average smoothing (and all
three compared in the bottom right plot; they overlap considerably; population with regular
treatment-naive CD4 decline, CD4 counts observed monthly and no grace period).

0.8564, respectively (Table 4.4 and Figure 4.11). Figure 4.12 illustrates that observing CD4
counts only annually results in 10-year AIDS-free survival under the optimal regime more than
0.5 percentage points lower than if CD4 counts were observed monthly.

However, applying the optimal regime from the population with regular treatment-naive
CD4 decline and CD4 counts observed monthly (namely, x = 350; no grace period) to the
comparable scenario but with CD4 counts observed 3-, 6- or 12-monthly, the 10-year AIDS-free
survival would be 0.8616, 0.8528 and 0.8304, respectively. Similarly, if the optimal regime from
the population with regular treatment-naive CD4 decline and 3-monthly observed CD4 counts
was applied to the comparable scenario but with 6- or 12-monthly observed CD4 counts, then
the 10-year AIDS-free survival would be 0.8615 and 0.8484, respectively.

Similar patterns were observed in the populations with slower or faster treatment-naive
CD4 decline (Table 4.4 and Figure 4.11). As we might expect, in populations with faster CD4
decline, the optimal regime tended to be given by higher x, and the 10-year AIDS-free survival
was lower. If CD4 counts were observed only 6- or 12-monthly, the impact of the different
population CD4 declines was less apparent, but the optimal regime for the population with fast
CD4 decline when CD4 counts were observed so infrequently was estimated at the maximum of

the permitted range (z = 500) and so may be higher in reality.
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CD4 decline!! Frequency of observed CD4 counts, months(?

1 3 6 12
Slow 310 (0.8731) 380 (0.8720) 460 (0.8705) 490 (0.8671)
320 (0.8727) - 420 (0.8703) 480 (0.8668)
- - 420 (0.8703) -
Regular 350 (0.8657) 410 (0.8650) 460 (0.8634) 490 (0.8564)
360 (0.8656) - - -
360 (0.8656) - - -
Fast 360 (0.8601) 460 (0.8592) 460 (0.8569) 500 (0.8471)
370 (0.8600) 450 (0.8591) 500 (0.8569) -
370 (0.8600) - 500 (0.8569) -

Table 4.4: Simulation study 1 (RCTs): optimal regimes in populations with different
treatment-naive CD4 declines and frequencies of observed CD4 count (no grace period, m = 1).
For each population, the first line gives the results with no local smoothing, and the second and
third line shows the results under local smoothing using least squares and weighting, respec-
tively (the smoothed results are only shown if the optimal differs from that under no smoothing).
Values in brackets are the estimated probabilities of surviving AIDS-free to 10 years under that
regime. [1] Population CD4 decline while treatment-naive; see text for details regarding the
rates. [2] Frequency with which CD4 count was observed for treatment initiation.
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Figure 4.11: Simulation study 1 (RCTs): probability of surviving AIDS-free to 10 years by
regime, across different treatment-naive CD4 declines and frequencies of observed CD4 counts
(no grace period, m = 1). Note that probabilities were only plotted if > 0.80 to preserve a
common scale. Horizontal lines drawn at 0.85 to aid comparison between plots.
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Figure 4.12: Simulation study 1 (RCTs): probability of surviving AIDS-free to 10 years under
the optimal regime, for the population with regular treatment-naive CD4 decline and different
CD4 observation frequencies (with grace period fixed at 1 month) and grace periods (with CD4
observation frequency fixed at monthly). The horizontal dashed line is set at 0.5 percentage
points lower AIDS-free survival than that under the scenario when CD4 counts were observed
monthly and with no grace period. Numbers on the plot show the optimal regime for each
scenario after local smoothing applied (in bold where the CD4 observation frequency was varied,
and in italic where the grace period was varied).

Smoothing Local smoothing of the results resulted in some small changes to the estimated
optimal regime (Table 4.4), but typically by no more than 10 cells/mm3. There were two
exceptions, both where CD4 counts were observed every 6 months, and in both cases the two
methods of local smoothing yielded the same optimal regimes. Firstly, in the population with
slow declining treatment-naive CD4 count, the optimal regime estimated after smoothing was
420 compared to 460 cells/mm? without smoothing. Secondly, in the population with fast
declining CD4 count, the optimal with smoothing was 500 compared to 460 cells/mm? without.
However, the estimated 10-year AIDS-free survival probabilities on the optimal regimes from

smoothing and not smoothing were very similar, and it is clear from Figure 4.11 that the curves

were quite flat in these regions.

Minimum acceptable regime The same patterns were observed when considering the min-
imum acceptable regime (Table 4.5). As anticipated, these minimum acceptable regimes were
somewhat more stable than the optimal regimes, with only three instances of the smoothed and
non-smoothed approaches leading to different estimated optimal regimes. In a population with
regular treatment-naive CD4 decline, CD4 counts observed monthly and no grace period, de-
laying treatment initiation until CD4 count was first observed to drop below 290 cells/mm? was

associated with 10-year AIDS-free survival no worse than 0.5 percentage points lower than the
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CD4 declinel!] Frequency of observed CD4 counts, months(?

1 3 6 12
Slow 260 (0.8682) 310 (0.8673) 350 (0.8657) 410 (0.8622)
Regular 290 (0.8621) 350 (0.8616) 390 (0.8587) 430 (0.8517)
- 340 (0.8602) - -
- 340 (0.8601) - -
Fast 310 (0.8564) 370 (0.8552) 410 (0.8526) 460 (0.8445)
- 360 (0.8541) - 450 (0.8422)
- 360 (0.8541) - 450 (0.8421)

Table 4.5: Simulation study 1 (RCTs): minimum acceptable regimes in populations with
different treatment-naive CD4 declines and frequencies of observed CD4 count (no grace period,
m = 1). For each population, the first line gives the results with no local smoothing, and the
second and third line shows the results under local smoothing using least squares and weighting,
respectively (the smoothed results are only shown if the optimal differs from that under no
smoothing). Values in brackets are the estimated probabilities of surviving AIDS-free to 10
years under that regime. [1] CD4 decline while treatment-naive; see text for details regarding
the rates. [2] Frequency with which CD4 count is observed for treatment initiation.

optimal (under the regime given by = = 350). For a patient with the median treatment-naive
CD4 decline, this translates to a delay in treatment initiation of approximately 18 months, in the
absence of Brownian motion or measurement error (time for CD4 count to drop 60 cells/mm3

from 350 to 290 cells/mm?).

Grace periods

Fixing the frequency with which CD4 counts were observed as monthly, and with regular
treatment-naive CD4 decline, increasing the grace period from m = 1 to 3, 6 or 12 months
resulted in an increase in the optimal regime from z = 350 to 360, 370 and 380, respectively,
and the 10-year AIDS-free survival on those optimal regimes decreased from 0.8657 to 0.8644,
0.8631 and 0.8598, respectively (Table 4.6 and Figure 4.13). Therefore, the effect of permitting
a grace period of 12 months had much less of an impact on the optimal regime than reducing the
observation frequency to 12 monthly. This is as we might anticipate, for at least two reasons.
Firstly, with only yearly observed CD4 counts, patients were only able to initiate treatment at
yearly time-points, whereas under the 12-month grace period, only 1/12 patients eligible to ini-
tiate treatment delayed for the full 12 months. Secondly, and perhaps more importantly, there
is an asymmetry due to the regimes being defined by CD4 counts dropping below a threshold.
For example, when the CD4 counts were observed monthly, the same patients were identified
for treatment initiation regardless of whether a grace period of 1 or 12 months was permitted.

However, if a CD4 count observed on the monthly schedule indicated treatment initiation ac-

186



CD4 declinelll

Grace period (m), months

1 3 6 12
Slow 310 (0.8731) 310 (0.8722) 340 (0.8708) 350 (0.8679)
320 (0.8727) 320 (0.8721) 350 (0.8707) 360 (0.8674)
320 (0.8721) 350 (0.8707)
Regular 350 (0 8657) 360 (o 8644) 370 (0 8631) 330 (0 8598)
360 (0.8656) 400 (0.8596)
360 (0.8656) - - 400 (0.8596)
Fast 360 (0.8601) 400 (0.8589) 420 (0.8575) 450 (0 8538)
370 (0.8600) 390 (0.8588) -
370 (0.8600) - - -

Table 4.6: Simulation study 1 (RCTs):
treatment-naive CD4 declines and grace periods (CD4 counts observed monthly).

optimal regimes in populations with different

population, the first line gives the results with no local smoothing, and the second and third
line shows the results under local smoothing using least squares and weighting, respectively (the
smoothed results are only shown if the optimal differs from that under no smoothing). Values
in brackets are the estimated probabilities of surviving AIDS-free to 10 years under that regime.
Of note, the first column of results is the same as that presented in Table 4.4. [1] CD4 decline
while treatment-naive; see text for details regarding the rates.

cording to a given regime, but that CD4 count was not observed on the 12-monthly CD4 count
schedule, then that patient would not have been identified for treatment initiation under the
less-frequent CD4 observation until some time later. In particular, if that CD4 count observed
on the monthly but not 12-monthly schedule was a random low value, and the following observed
CD4 counts were higher (closer to the underlying trend), then that patient may not have been
identified for treatment initiation until much later on the 12-monthly schedule. Therefore the
regime would need to be higher in order to identify such patients for treatment initiation, hence
the optimal regime is higher. However, it is still important to note that allowing grace periods
of 12 months resulted in 10-year AIDS-free survival more than 0.5 percentage points lower than
immediate treatment initiation (m = 1) on the optimal regime (Figure 4.12). Therefore if grace
periods are to be used to potentially increase power, then grace periods of this length will be

associated with substantial bias. Broadly similar patterns were observed across the populations

with different treatment-naive CD4 decline.

Smoothing Again, local smoothing of the estimates resulted in some small changes in the
estimated optimal regime, though typically no more than 10 cells/mm?. The one exception was
in the scenario with regular treatment-naive CD4 decline and a 12 month grace period, where
the smoothed optimal regimes were 400 compared to 380 cells/mm? in the absence of smoothing.
Once again, the estimated 10-year AIDS-free survival probabilities were very similar, and the

curves were fairly flat in this region (Figure 4.13).
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Figure 4.13: Simulation study 1 (RCTs): probability of surviving AIDS-free to 10 years by
regime, across different treatment-naive CD4 declines and grace periods (CD4 counts observed
monthly). Note that probabilities were only plotted if > 0.80 to preserve a common scale.
Horizontal lines drawn at 0.85 to aid comparison between plots.

Minimum acceptable regime The same patterns were observed when considering the min-
imum acceptable regime (Table 4.7), but with no differences between the smoothed and non-

smoothed optimal regimes, indicating the greater stability of the minimum acceptable regimes.

Different combinations of CD4 count observation frequency and grace periods

All the results above either hold grace period at m = 1 months and vary the frequency of CD4
measurements, or vice versa. Combinations of these are likely to be of interest.

For a population with regular treatment-naive CD4 decline, observing CD4 counts every
3 months and permitting a 3- or 6-month grace period, the optimal regime was given by z =
410 and 460, respectively (with 10-year AIDS-free survival of 0.8638 and 0.8625, respectively,
which is 0.0019 and 0.0032 less, respectively, than the optimal under the scenario where CD4
counts were observed monthly and with no grace period, when the optimal regime was given
by = = 350). The local smoothing methods led to the same optimal regime in the presence of
the 3-month grace period, but were somewhat lower at 420 with a grace period of 6 months;
the curve was very flat at high = (10-year AIDS free survival under this optimal regime after
local smoothing using least squares and weighting was 0.8621 and 0.8662, respectively). The

minimum acceptable regimes were given by x = 350 (0.8600) and 360 (0.8584) under 3- and
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CD4 declinel! Grace period (m), months

1 3 6 12
Slow 260 (0.8682) 270 (0.8682) 280 (0.8670) 300 (0.8638)
Regular 290 (0.8621) 290 (0.8600) 300 (0.8581) 330 (0.8553)
Fast 310 (0.8564) 310 (0.8542) 330 (0.8535) 350 (0.8489)

Table 4.7: Simulation study 1 (RCTs): minimum acceptable regimes in populations with
different treatment-naive CD4 declines and grace periods (CD4 counts observed monthly). For
each population, the first line gives the results with no local smoothing, and the second and third
line shows the results under local smoothing using least squares and weighting, respectively (the
smoothed results are only shown if the optimal differs from that under no smoothing). Values
in brackets are the estimated probabilities of surviving AIDS-free to 10 years under that regime.
Of note, the first column of results is the same as that presented in Table 4.4. [1] CD4 decline
while treatment-naive; see text for details regarding the rates.

6-month grace periods, respectively, with no change under local smoothing.

If instead CD4 counts were measured every 6 months and with a 6-month grace period, then
the optimal regime was given by x = 460 (with 10-year AIDS-free survival of 0.8603, which is
0.0054 less than under the optimal regime if CD4 counts were observed monthly and with no
grace period). Local smoothing under either method led to a slightly different optimal regime
of x = 470, with corresponding 10-year AIDS-free survival of 0.8601. The minimum acceptable

regime was x = 410 (0.8569), again with no change under local smoothing.

Summary

The simulation of these large RCTs has highlighted some important results. We have seen that
the measurement error in CD4 counts may be large, and that large numbers of patients are
required for precise estimation. In addition, it is clear that sufficient follow-up time is required
in order to see differences between the regimes. In these data, the AIDS-free survival rates are
broadly similar at high CD4 counts. In a population with regular treatment-naive CD4 decline,
monthly observed CD4 counts and no grace, the optimal regime is given by = = 360 (after
smoothing). As discussed above, decreasing the frequency of observed CD4 counts substantially

raised the optimal regimes, whereas increasing the grace period had less of an effect.
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4.3.4 Results: single large observational study
Summary of baseline characteristics and treatment

Summaries of the baseline characteristics and treatment for the n = 100,000 patients in the
single large observational study, after expansion to the three regimes given by = 200, 350, 500,
are shown in Table 4.8, both unweighted and after applying weights (truncated at maximum
20; note this is for a population with regular treatment-naive decline, monthly observed CD4
counts and no grace period). The baseline results were similar to those from the RCT (see Table
4.3). The median follow-up time (censoring when no longer compliant with a given regime) was
longer after weighting, at 55 versus 27 months for the z = 200 regime, and 4 versus 2 months
for the x = 500 regime, as we would anticipate since we are upweighting those patients who
remain uncensored to account for those who have been censored.

The median time of treatment initiation was typically longer after weighting and more
comparable with that from the RCT, for example at 33 months after weighting versus 24 without
weighting for the x = 200 regime (compared to 37 months in the RCT; Table 4.3), although was
not noticeably different for the z = 500 regime (2 months with or without weighting, compared
to 3 months in the RCT). Similarly, the observed and true CD4 counts at treatment initiation
were higher under all three regimes after weighting, compared to no weighting, making them
more comparable to those in the RCT, although still somewhat lower for the x = 500 regime.
The post-treatment slopes moved in different directions after weighting, but in all cases moved
closer to those seen under the RCT.

Looking at the distribution of true CD4 counts over time, in the absence of weighting (Figure
4.14) and comparing to that from the RCT (Figure 4.6), we do not see the initial decline in CD4
under the 200 regime, we see an initial increase under the 350 regime and for the 500 regime
we see a big initial increase followed by a sharper decline. In contrast, after the application of
weights (truncated at maximum 20; Figure 4.15), the plots much more closely resemble those
from the RCT.

Of the 16,773 patients who were observed to initiate treatment in compliance with at least
one regime, 1534 (9%) and 153 (1%) initiated treatment in compliance with 2 and 3 regimes,
respectively. Those patients who initiated in compliance with all three regimes tended to have
low true baseline CD4 counts, with median 335 (IQR 295, 392) cells/mm?, and the observed
CD4 count was by definition > 500 cells/mm? at baseline but then plummeted soon after, with
93% of those patients initiating in the next month.

Figure 4.16 shows compliance over time, by whether on or off treatment, for the three regimes
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Regime given by =

200 350 500
Baseline
Observed CD4 count, cells/mm3 525 (513, 537) 525 (513, 537) 525 (513, 537)
True CD4 count, cells/mm? 525 (457, 598) 525 (457, 598) 524 (456, 597)
Annual slope, square-root scale 1.10 (0.77, 1.44)  1.10 (0.77, 1.44)  1.10 (0.77, 1.44)
Follow-up in compliance with regime
Follow-up time, months 27 (12,64) 10 (4,31) 2 (1,5)
55 (24,120) 60 (9,120) 4 (1,120)
Treatment
N patients observed to initiate 8887 (9%) 6786 (7%) 2938 (3%)
treatment
Time to initiation, months!* 24 (13,43) 8 (4,20) 2 (2,4)
39 (19,54) 10 (4,23) 2 (2,4)
Observed CD4 count at 169 (146,186) 289 (248,321) 361 (288,423)
initiation, cells/mm3/ 174 (158,188) 309 (278,330) 385 (335,437)
True CD4 count at 284 (248,323) 413 (369,461) 458 (388,526)
initiation, cells/mm?!! 278 (248,315) 424 (381,471) 478 (414,541)
Initial annual slope after 3.39 (2.12,4.66)  2.83 (1.56,4.08) 2.62 (1.30,3.85)
initiation, square-root scalelb?  3.88 (2.09,4.68)  2.78 (1.51,4.06)  2.50 (1.24,3.78)
Annual slope one year after 0.38 (0.27,0.49)  0.04 (-0.08,0.15)  -0.07 (-0.22,0.10)
initiation, square-root scalelb?  0.40 (0.29,0.51) 0.01 (-0.10,0.12) -0.12 (-0.26,0.03)
Percentage of follow-up time 17% 25% 37%
spent on treatment 47% 79% 89%

Table 4.8: Simulation study 1 (large observational study): summary of baseline characteristics
and treatment for n = 100,000 patients, after expansion to the three regimes given by = =
200, 350 and 500 (population with regular treatment-naive CD4 decline, CD4 counts observed
monthly and no grace period). However, patients who initiated treatment in the first month
while by definition observed CD4 count was > 500 cells/mm? were immediately censored from
all regimes, and therefore these summary statistics are based on the 99, 108 patients who were
not immediately censored. Results in regular text are based on unweighted data; those in italics
are after weighting (with truncation at maximum 20). Unless otherwise stated, values are n
(%) for categorical variables and median (interquartile range) for continuous variables. Of note,
no true CD4 counts were truncated at 0 cells/mm?®, and approximately 1, 2 and 2% of true
CD4 counts were truncated at 1000 cells/mm?® on the regimes given by = = 200, 350 and 500
respectively. [1] In those patients who were observed to initiate treatment. [2] As assigned at
treatment initiation.
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Figure 4.14: Simulation study 1 (large observational study): true CD4 count over time (median,

interquartile range and 5/9

5th

percentiles) for the n = 100, 000 patients, after expansion to each

of the three regimes given by = = 200, 350 and 500, with no weighting (population with regular
treatment-naive CD4 decline, CD4 counts observed monthly and no grace period).
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Figure 4.15: Simulation study 1 (large observational study): true CD4 count over time (median,
interquartile range and 5/95t" percentiles) for the n = 100, 000 patients, after expansion to each
of the three regimes given by = 200, 350 and 500, after application of weights (truncation
at maximum 20; population with regular treatment-naive CD4 decline, CD4 counts observed
monthly and no grace period).
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Regime

500 160 (91%) | 27 (44%) | 29 (14%) | 39 (5%) 54 (0%) 61 (0%) 62 (2%) 63 (2%) 60 (0%) 55 (2%)

Figure 4.16: Simulation study 1 (large observational study): compliance over time of n =
100,000 patients with the three regimes given by x = 200, 350 and 500, by whether on or
off treatment. The table shows the numbers of observed AIDS or death events in each 12
month period, and the percentage of those events that occurred while the patient was still off
treatment. If patients reached AIDS or death while uncensored, then they were removed from
the risk set, but those censored were carried forward for all time to illustrate the cumulative
impact of censoring.

given by x = 200, 350 and 500 (if patients reached AIDS or death then they were removed from
the risk set, but those censored were carried forward to illustrate the cumulative impact of
the censoring; note that no weighting has been applied here). As expected, the predominant
censoring on the 200 regime was due to early initiation of treatment, before CD4 count was
observed to drop below 200 cells/mm?, whereas on the 500 regime, the vast majority of patients
were censored due to remaining off treatment when their CD4 count was first observed to drop
< 500 cells/mm3. The higher number of events in the regimes defined by lower z is clear. Across
all regimes, the proportion of events happening on treatment increased over time, simply due

to more patients initiating treatment.
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Frequency of  Grace  Approach Regime given by =

observed CD4  period, 200 350 500
count, months months
1 1 RCT 0.8278 0.8657 0.8587

Obs 1 0.8298 0.8653 0.8581

Obs 2 0.8285 0.8647 0.8460

3 RCT 0.8232 0.8642 0.8581
Obs 1 0.8282 0.8640 0.8584

Obs 2 0.8282 0.8638 0.8508

3 1 RCT 0.7926 0.8616 0.8614
Obs 1 0.8051 0.8631 0.8559

Obs 2 0.8120 0.8643 0.8589

3 RCT 0.7861 0.8600 0.8612
Obs 1 0.7975 0.8583 0.8630

Obs 2 0.7989 0.8622 0.8635

Table 4.9: Simulation study 1: comparison of the 10-year AIDS-free survival from the RCT with
n = 1,000,000 patients per regime and as estimated by two large observational studies with
n = 100,000 patients per regime (different starting seeds; population with regular treatment-
naive CD4 decline and CD4 counts observed every 1 or 3 months, and with grace periods of 1
or 3 months).

Outcome results

The 10-year AIDS-free survival, as estimated by weighted Kaplan-Meier, was 0.8298, 0.8653
and 0.8581 on the regimes given by x = 200, 350 and 500, respectively, matching to two decimal
places the results obtained from the equivalent RCT with regular treatment-naive CD4 decline,

monthly observed CD4 counts and no grace period.

Precision of results In order to look at the variability in the results, we also considered
similar large observational studies with CD4 counts observed every 3 months and 3-month grace
periods, and then we repeated each of these (different starting seed). The results illustrate the
variability which remains in the estimates despite the large sample size (Table 4.9), reassuring
us that any differences between the results from the large observational studies and the RCTs

are consistent with sampling variability and do not show any evidence of bias.

4.3.5 Results: 1000 realistically-sized observational studies

We simulated 1000 observational studies each with 3000 patients, considering the regimes = =
200, 210, ...,500. For illustration, the Kaplan-Meier estimates for the 10-year AIDS-free survival
from the first 12 simulations for the population with regular treatment-naive CD4 decline,
monthly observed CD4 counts and no grace period (m = 1) are shown in Figure 4.17, with
the locally-smoothed estimates overlaid. Of note is the variability in the estimates within and

between plots, and that the optimal regime is quite frequently at the highest value of x, namely
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Figure 4.17: Simulation study 1 (small observational studies): estimated probability of surviving
AIDS-free for 10 years by regime, for the first 12 of the simulated datasets, as estimated by
Kaplan-Meier and locally smoothed (population with regular treatment-naive CD4 decline and
CD4 counts observed monthly, and with no grace period).

500.

When CD4 counts were observed monthly, the raw Kaplan-Meier estimates yielded means
and medians which were fairly close to, though slightly higher than, the optimal regime deter-
mined from the equivalent RCT (for example, with no grace period, the mean was 374 compared
to the optimal regime of 360 from the RCT; Table 4.10). Of note, a peak in the histograms
of the raw Kaplan-Meier estimates was visible at z = 500, probably due to the optimal regime
under some of those simulations being given by « > 500 (Figure 4.18). The standard deviations
were large, at 71-77 across the different grace periods. In particular, extending the grace pe-
riod from 1 to 6 months reduced the SD by only 9%. Across all grace periods, the percentage
of optimal regime estimates which were lower than the minimum acceptable regime from the
equivalent RCT was 13%.

The local smoothing and pooled logistic regression approaches yielded fairly similar results
to each other, but with means, medians and standard deviations typically higher than under
the raw Kaplan-Meier approach (for example, with no grace period, the standard deviations
were 85 and 89, respectively; Table 4.10). It is apparent from the histograms that this is due to
the optimal regime frequently being estimated at the maximum range of x, namely 500 (Figure

4.18).
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CD4 Approach  Summary Grace period, months
freq., 3 6
months
1 RCT Optimal regime (MA) 360 290) 360 (290) 370 (300)
Raw KM  Mean (SD) 374 (77) 375 (73) 379 (71)
Median (%<RCT MA) 370 3%) 370 (13%) 375 (13%)
Smoothed Mean (SD) 383 5) 381 (81) 390 (76)
KM Median (%<RCT MA) 380 (14%) 380 (13%) 390 (11%)
Pooled Mean (SD) 374 9) 378 (86) 387 (80)
logistic?  Median (%<RCT MA) 370 21%) 370 (14%) 375 (11%)
3 RCT Optimal regime (MA) 410 40) 410 (350) 420 (360)
Raw KM  Mean (SD) 395 0) 418 (57) 420  (60)
Median (%<RCT MA) 400 3%) 420 (12%) 430 (16%)
Smoothed Mean (SD) 405 (73) 426  (62) 428  (62)
KM Median (%<RCT MA) 410 (21%) 430 (12%) 430 (15%)
Pooled Mean (SD) 402 (76) 424 (66) 430 (63)
logistic?  Median (%<RCT MA) 400 (24%) 420 (15%) 420 (14%)

Table 4.10: Simulation study 1: results from the 1000 simulated observational studies. Popula-
tion with regular treatment-naive CD4 decline, with CD4 counts observed every 1 or 3 months,
and grace periods of 1, 3 or 6 months. RCT results shown are the optimal and minimum accept-
able regimes (after local smoothing applied). Results shown from the observational studies are
the mean, standard deviation and median of the estimated optimal regimes, and the percent-
age of estimated optimal regimes that were less than the minimum acceptable regime from the
equivalent RCT. KM=Kaplan-Meier. MA=minimum acceptable. SD=standard deviation. [1]
Local smoothing procedure applied to the Kaplan-Meier estimates. [2] Pooled logistic regression

applied to the raw data. See text for further details on all these methods.
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When the CD4 counts were observed every 3 months, we know that the optimal regimes as
determined by the RCTs are higher, and this was reflected in the observational study simulation
results (Table 4.10 and Figure 4.19). Similar patterns with respect to the results of the equiv-
alent RCTs were seen as when the CD4 counts were observed monthly. However, the results
from the local smoothing and pooled logistic regression approaches were slightly improved, with
means and medians closer to the optimal regime from the equivalent RCT and smaller stan-
dard deviations, although this was probably due to the range of z over which the AIDS-free
survival rates were broadly constant being smaller (higher minimum acceptable regimes, and
the maximum of the range at 500).

Of note, under both CD4 observation frequencies, longer grace periods were associated with
slightly higher mean and median optimal regimes and slightly lower standard deviations, as we

would anticipate.

Inference under assumption of no grace period

For each CD4 count observation frequency, Table 4.11 shows the performance (bias, mean
square error (MSE), and relative efficiency (RE) with reference to the pooled logistic regression
approach with no grace period) of the different approaches and grace periods, assuming that the
inference of interest is under no grace period (m = 1). Under monthly observed CD4 counts,
the biases under all approaches were all > 0, indicating overestimation of the optimal regime.
As anticipated, there was a trend towards greater bias, but smaller MSE and RE, with longer
grace periods. The raw Kaplan-Meier approach consistently performed better than the other
two approaches, related to the smaller variances (see the standard deviations in Table 4.10).
When CD4 counts were observed every 3 months, we saw broadly similar patterns, except
for two key differences. Firstly, the bias, MSE and RE all tended to be smaller, compared to
when CD4 counts were observed monthly. Under all three approaches, with no grace period
the bias was negative (indicating underestimation of the optimal regime). Secondly, there was
no clear benefit of permitting a 6-month compared to 3-month grace period, since the bias

increased under all approaches and the MSE and RE were either broadly similar or larger.

Summary

In this example, due to the large measurement error in CD4 count and the broadly constant
10-year AIDS-free survival rates at higher CD4 counts, a single analysis with a realistic sample
size may yield an estimate quite "far" from the optimal regime. In particular, the estimates

tended to be biased towards higher regimes. Although lacking precision, the raw Kaplan-
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CD4 count Approach Grace period, months

frequency, 1 3 6
months
1 Raw KM Bias 14 15 19

MSE 6149 5543 5386

RE 0.75 0.67 0.64

Smoothed KM Bias 23 21 30
MSE 7733 6932 6711

RE 0.91 0.82 0.74

Pooled logistic?!  Bias 14 18 27
MSE 8084 7692 7112

RE 1 (ref) 0.93 0.81

3 Raw KM Bias -15 8 10
MSE 5099 3273 3644

RE 0.84 0.55 0.61

Smoothed KMl Bias -5 16 18
MSE 5388 4066 4135

RE 0.92 0.66 0.65

Pooled logistic?l  Bias -8 14 20
MSE 5874 4537 4333

RE 1 (ref) 0.75 0.68

Table 4.11: Simulation study 1: bias, mean square error (MSE) and relative efficiency (RE)
when comparing the results from the observational studies with grace periods of 1, 3 or 6 months,
compared to the equivalent RCT but with no grace period (m = 1). Note that the variance
under each scenerio is given by the square of the standard deviation in Table 4.10. Population
with regular treatment-naive CD4 decline and CD4 counts observed every 1 or 3 months. RCT
results after least square smoothing applied. KM=Kaplan-Meier. [1] Local smoothing procedure
applied to the Kaplan-Meier estimates. [2] Pooled logistic regression applied to the raw data.
See text for further details on all these methods.
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Meier approach performed best overall, since the smoothed Kaplan-Meier and pooled logistic
regression approaches frequently estimated the optimal regime at the upper bound of the set of
regimes under consideration (namely, at x = 500).

Of note for the CASCADE analyses, when CD4 counts were observed every 3 months,
permitting a grace period of 3 months may not result in a large bias for the estimation of the
optimal regime in the absence of a grace period, and may offer benefits in terms of greater
precision. Extension to a 6-month grace period may not offer any additional advantages. If
a grace period is permitted for the purposes of potentially increase precision, then under the

inference of no grace period, there will naturally be bias towards higher regimes.

4.4 Simulation study 2

4.4.1 Motivation

The results of the first simulation study reported above naturally raised the question of whether
in a scenario where the optimal regime is more distinct (that is, the outcome-by-regime curve
is less flat and has a clearer peak) and with a greater number of patients, the application of
dynamic MSMs to the observational data would yield results closer to those of the equivalent
RCT. We therefore repeated the simulation study above, but with a larger number of patients
and artificially enforcing a greater penalty for early and late treatment initiation, with respect
to CD4 count, to create an outcome-by-regime curve with a more distinct peak for the optimal

regime.

4.4.2 Methods

As in the first simulation study, we simulated large RCTs and a large number of realistically-
sized observational studies. The study was conducted in exactly the same way as the first, except
for three differences. Firstly, we increased the number of patients in the observational studies
to n = 7000, which, within computational limitations, is closer to the size of other observational
studies investigating applying dynamic MSMs to look at the effects of HIV treatment (Cain et al.
(2010); Young et al. (2011); these used prevalent rather than incident cohorts like CASCADE
and therefore had access to greater numbers of patients). Secondly, we applied a penalty for
early or late treatment initiation, with respect to CD4 count (see below). Lastly, we performed
500 rather than 1000 observational study simulations, to reduce computational time and because

the interpretations were fairly clear even with this smaller number of simulations.
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Penalty for early or late treatment initiation

We reduced the CD4 slope from one year after treatment initiation, if treatment was initiated
when true CD4 count was < 300 or > 400 cells/mm3. This penalty was a fixed linear function
of true CD4 count at treatment initiation, with the new slope S; on the square-root scale given
by:
Sy — 1.2+ 0.004R? if R? < 300
Sy =1 S if B2 > 300 and < 400
Sy +1.2—0.003R? if R? > 400

where, as previously, R? is the true CD4 count at treatment initiation and Sy is the CD4 slope
on the square-root scale from one year after treatment initiation. This equates to a reduction
in Sy by 0.4 and 0.3 if the true CD4 count at treatment initiation was 200 and 500 cells/mm?,
respectively. Note that this function is continuous at all values of CD4 count (with change-points

at 300 and 400 cells/mm?).

4.4.3 Results: the randomised trials
Optimal regimes

Figure 4.20 clearly shows that the 10-year AIDS-free survival by regime curves were less flat and
had clearer peaks, as intended. Under the scenario where CD4 counts were observed monthly,
the optimal regimes under grace periods of 1, 3 and 6 months were 290, 300 and 310, respectively
(with 10-year AIDS-free survival probabilities on those optimal regimes of 0.8559, 0.8533 and
0.8490, respectively; Table 4.12). There were no changes under smoothing, except for the grace
period of 1 month, where the optimal regime was 300 under both local smoothing methods
(with very similar 10-year AIDS-free survival probabilities).

When CD4 counts were observed every 3 months, the optimal regime was given by = = 350,
regardless of the length of the grace period, although with poorer 10-year AIDS-free survival with
longer grace periods (Table 4.12). However, there were some differences under local smoothing,
with the optimal regimes being given by = = 340 and 350 with no grace period (m = 1) when
smoothing by least squares and weighting, respectively, and x = 360 under both local smoothing
methods for grace periods of both 3 and 6 months. The reason for few if any differences in the
optimal regimes across the different grace periods is probably due to the AIDS-free survival
by regime curves having clearer peaks, resulting from the penalties imposed for early or late

treatment initiation with respect to CD4 count (Figure 4.20).
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CD4 count  Grace Optimal regime Minimum acceptable regime
frequency, period,
months months
1 1 290 (0.8559) 270 (0.8530)
300 (0.8557) -
300 (0.8557) -
3 300 (O 8533) 270 (0.8498)
6 310 (0.8490) 280 (0.8454)
3 1 350 (O 8521) 310 (0.8476)
340 (0.8517) -
350 (0.8518) -
3 350 (0.8493) 320 (0.8455)
360 (0.8489) -
360 (0.8489) -
6 350 (0.8453) 330 (0.8418)
360 (0.8448) -
360 (0.8448) -

Table 4.12: Simulation study 2 (RCTs): optimal and minimum acceptable regimes in popula-
tions different CD4 count observation frequencies and grace periods (regular treatment-naive
CD4 decline). For each scenario, the first line gives the results with no local smoothing, and the
second and third lines show the results under local smoothing using least squares and weight-
ing, respectively (the smoothed results are only shown if the optimal differs from that under
no smoothing). Values in brackets are the estimated probabilities of surviving AIDS-free to 10
years under that regime.
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Frequency of observed CD4 counts, months

Regime given by x

Figure 4.20: Simulation study 2 (RCTs): probability of surviving AIDS-free to 10 years by
regime, across different CD4 count observation frequencies and grace periods (population with
regular treatment-naive CD4 decline). Note that probabilities were only plotted if > 0.78 to
preserve a common scale. Horizontal line drawn at 0.84 to aid comparison between plots.

Minimum acceptable regimes

The minimum acceptable regimes were given by z = 270, 270 and 280 under grace periods of
1, 3 and 6 months, respectively, when CD4 counts were observed monthly (Table 4.12). The
corresponding figures were 310, 320 and 330 when CD4 counts were observed every 3 months.

There were no changes under either local smoothing method.

4.4.4 Results: the observational studies

Under both CD4 count observation frequencies, all approaches performed somewhat better com-
pared to the first simulation study, in particular with smaller standard deviations and smaller
percentages of estimated optimal regimes being less than the minimum acceptable regime from
the equivalent RCT (Table 4.13). This was most noticeable for the pooled logistic regression
approach. This is illustrated in the histograms, which were much more centred on the optimal
regime from the equivalent RCT, as we would expect in this scenario where there is a more
defined optimal curve (Figures 4.21 and 4.22).

When looking at inference under the assumption of no grace period, the most noticeable
difference compared to the first simulation study was the reduction in MSE across all scenar-

ios, related to the reductions in variances (Table 4.14; see also standard deviations in Table
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CD4 Approach  Summary Grace period, months
freq., 1 3 6
months
1 RCT Optimal regime (MA) 300 (270) 300 (270) 310 (280)
Raw KM Mean (SD) 314 (52) 316 (42) 321 (38)
Median (%<RCT MA) 300 (15%) 310 (11%) 320 (10%)
Smoothed Mean (SD) 312 (49) 315 (40) 321 (37)
KM Median (%<RCT MA) 300 (10%) 310 (6%) 320 (7%)
Pooled Mean (SD) 303 (44) 308 (33) 315 (27)
logistic?  Median (%<RCT MA) 290 (6%) 300 (2%) 310 (1%)
3 RCT Optimal regime (MA) 340 (310) 360 (320) 360 (330)
Raw KM  Mean (SD) 363 (53) 363 (41) 372 (39)
Median (%<RCT MA) 350 (12%) 360 (12%) 370 (9%)
Smoothed Mean (SD) 365 (54) 361 (38) 372 (40)
KM Median (%<RCT MA) 350 (10%) 350 (8%) 370 (8%)
Pooled Mean (SD) 361 (52) 357  (36) 369 (33)
logistic?  Median (%<RCT MA) 360 (11%) 350 (6%) 370 (6%)

Table 4.13: Simulation study 2: results from the 1000 simulated observational studies. Popula-
tion with regular treatment-naive CD4 decline, with CD4 counts observed every 1 or 3 months,
and grace periods of 1, 3 or 6 months. RCT results shown are the optimal and minimum accept-
able regimes (after local smoothing applied), Results shown from the observational studies are
the mean, standard deviation and median of the estimated optimal regimes, and the percent-
age of estimated optimal regimes that were less than the minimum acceptable regime from the
equivalent RCT. KM=Kaplan-Meier. MA=minimum acceptable. SD=standard deviation. [1]
Local smoothing procedure applied to the Kaplan-Meier estimates. [2] Pooled logistic regression

applied to the raw data. See text for further details on all these methods.
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CD4 count Approach Grace period, months

frequency, 1 3 6
months
1 Raw KM Bias 14 16 21

MSE 2919 2045 1890

RE 1.38 090 0.74

Locally-smoothed KM?l  Bias 12 15 21
MSE 2594 1832 1808

RE 1.24 081 0.70

Pooled logisticl’! Bias 3 8 15
MSE 1982 1123 955

RE 1 (ref) 0.54 0.38

3 Raw KM Bias 23 23 32
MSE 3380 2202 2573

RE 1.06 0.62 0.57

Locally-smoothed KMP!  Bias 25 21 32
MSE 3604 1873 2578

RE 1.10  0.53  0.58

Pooled logisticl®! Bias 21 17 29
MSE 3124 1561 1908

RE 1 (ref) 0.48 0.40

Table 4.14: Simulation study 2: bias, mean square error (MSE) and relative efficiency (RE)
when comparing the results from the observational studies with grace periods of 1, 3 or 6
months, compared to the equivalent RCT but with no grace period (m = 1). Note that the
variance under each scenerio is shown in Table 4.10. Population with regular treatment-naive
CD4 decline and CD4 counts observed every 1 or 3 months. RCT results after least square
smoothing applied. KM=Kaplan-Meier. [1] Local smoothing procedure applied to the Kaplan-
Meier estimates. [2] Pooled logistic regression applied to the raw data. See text for further
details on all these methods.

4.13). The pooled logistic regression approach performed consistently better than the other
approaches, with smaller bias, MSE and RE. As before, permitting a 3-month grace period led
to improvements in the MSE and RE, compared to no grace period (m = 1). When CD4 counts

were observed 3-monthly, there was no clear benefit in allowing a 6-month grace period, due to

increases in the MSE across all approaches (the larger biases outweighed the gains in efficiency).
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4.5 Application to CASCADE

A number of previous researchers have attempted to estimate the optimal time to initiate
treatment in HIV-infected persons with respect to CD4 count, as outlined in section 1.5. While
these studies have typically benefited from a greater sample size than we have available in
CASCADE, we have the advantage of a seroconverter, as opposed to seroprevalent, cohort. The
pros and cons of our approach are discussed further in chapter 5.

The work of our first simulation study with realistic CD4 count trajectories (section 4.3)
indicated that in populations where CD4 counts are observed every 3 months, permitting a
grace period of 3 months may not result in a large bias for the estimation of the optimal regime
in the absence of a grace period, and may offer benefits in terms of greater precision. Extension
to a 6-month grace period may not offer any additional advantages. Therefore we used the
CASCADE data to estimate the optimal regime in terms of when to initiate treatment with
respect to CD4 count, in those with CD4 counts > 500 cells/mm?, allowing a 3-month grace
period for treatment initiation. We used the second approach of Cain et al. (2010) where uniform

treatment initiation across the grace period is assumed, as was applied in the simulation studies.

4.5.1 Methods
Treatment regimes

We used the treatment regimes considered in the simulation studies, that is, defined by z =
200, 210, ...,500. However, as we have seen in previous chapters, 15% of the 1082 treatment
initiations observed in our population of 3382 patients occurred in the first month following
study entry. Since by definition all patients had CD4 count >500 cells/mm? at that time, none
of these treatment initiations would be compliant with any of the treatment regimes given by
x = 200, 210, ..., 500 and so would all be censored, resulting in a substantial loss of information.
Therefore, we considered incorporating an additional regime defined as “initiate treatment im-
mediately following study entry”, since it has some clinical meaning with respect to our entry
criteria (namely, first CD4 count > 500 cells/mm? within 1-5 years after seroconversion). While
all our results are based on this large number of regimes, for clarity we will sometimes present
summaries of the data for just the key regimes given by = = 200,350,500 and “initiate im-
mediately”. Note that our immediate treatment initiation regime has a different meaning to
immediate initiation at first observed CD4 count, regardless of the CD4 count level; our results

refer only to the subpopulation who have a first observed CD4 count > 500 cells/mm?3.
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Weight estimation

We used the treatment models as determined under the different strategies of chapter 2 to
estimate the weights. As indicated in section 4.2, it is not trivial to stabilise the weights while
permitting a grace period with m > 1, and the stabilised weights are not guaranteed to increase
the precision, therefore we used non-stabilised weights throughout. When using grace periods,
the “probabilities” in the numerator of the non-stabilised weights may be < 1 (including while
the denominator is equal to 1), therefore the non-stabilised weights may be < 1, in contrast to
non-stabilised weights under standard MSMs. However, the value of the numerator is a simple
function of the interval of the grace period, and therefore will not suffer from extreme values;
with a grace period of 3, it will have a lower bound of 1/3 (see section 4.2.2). Therefore, rather
than truncating the outer percentiles, we truncated the upper 1%, which was typically close to
the value of 20 used in the simulation studies. Of note, the only difference between strategies
Ia and II/IIT of chapter 2 was the degree of truncation, therefore with this blanket truncation
across all strategies there was no longer any difference between these strategies and they are

presented here as one.

AIDS-free survival

As in the simulation studies, we estimated survival using Kaplan-Meier methods, with and
without local smoothing, and also using pooled logistic regression models. We obtained both
weighted and unweighted estimates, to look at the impact of the weighting.

To smooth the Kaplan-Meier estimates, we used the same approach as in the simulation
studies, but only across the range z = 200 to 500; the immediate treatment initiation regime
estimates were left unchanged.

In the pooled logistic regression models, time was included as a 5 knot spline as in chapter
2, and categorised as 0-<0.5, 0.5-<1, 1-<2 and >2 years for the interaction with regime (Cain
et al., 2010). Regime was included as a 4 knot spline for values = = 200 to 500, with knots at
the 5, 35, 65 and 95" percentiles (Harrell, 2001) which translated to = given by 210, 290, 380
and 490, and a separate indicator was used for the immediate treatment initiation regime. Of
note, the non-stabilised weights adjust for the time-dependent as well as the time-independent
covariates, therefore it was not necessary to include the baseline covariates in the outcome
model. We directly predicted survival from the pooled logistic regression models; the resulting
survival curves are analogous to the standardised survival curves of chapter 2.

As we have seen in the simulation studies, it is important to allow long follow-up when
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seeking to optimise dynamic treatment regimes. However, of course we were limited by the
observed follow-up in our population of CASCADE patients (median 2.3 years), therefore we

focussed on the AIDS-free survival at 3 and 6 years.

Interval estimation

95% confidence intervals were estimated by bootstrap with resampling stratified by country

(500 repetitions).

Censoring

“Usual” censoring may be incorporated using weights as in previous chapters, but based on the
results from those chapters we would expect this to make little difference in practice, and so

was not incorporated here.

4.5.2 Results

We used the same dataset of 3382 patients as throughout the thesis, but, as in chapter 3, 26
patients were censored in the second month of follow-up, and therefore those patients contributed

to the weight estimation only and not the outcome estimations.

Compliance with treatment regimes

In the absence of a grace period, 2325, 2072 and 1438 patients remained compliant throughout
their follow-up with the regimes given by = = 200, 350 and 500, respectively. Incorporating a
3-month grace period, 2356, 2166 and 1538 patients were compliant with those three regimes,
respectively. Overall, permitting a 3-month grace period, 35% of the 1082 observed treatment
initiations were compliant with at least one regime given by x = 200,210, ...,500, and 20%
initiated treatment immediately. Therefore, incorporating the regime of immediate treatment
initiation meant that 55% of the observed treatment initiations were in compliance with at least
one regime. Of note, 20% of the treatment initiations were at a CD4 count which had been
carried forward for more than 3 months, therefore were censored due to the treatment initiation

being beyond the permitted grace period.

Treatment initiations across the grace period

Table 4.15 illustrates the treatment initiation patterns across the grace period for those observed

treatment initiations which were compliant with each of the four regimes given by x = 200,
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Interval of the Regime

grace period x =200 350 500 Imm

1 46 (63%) 51 (40%) 42 (41%) 161 (75%)
2 18 (25%) 46 (37%) 30 (29%) 33 (15%)

3 9 (12%) 29 (23%) 30 (29%) 22 (10%)

Total 73 (100%) 126 (100%) 102 (100%) 216 (100%)

Table 4.15: Application to CASCADE: pattern of treatment initiation across the grace period,
for those observed treatment initiations which were in compliance with the regimes given by
x = 200, 350, 500, and immediate treatment initiation. Values are the number of treatment
initiations in a given interval of the grace period which were in compliance with the given regime
(% of total number of treatment initiations across the grace period which were in compliance
with the given regime). Imm=immediate treatment initiation regime.

350, 500 and immediate treatment initiation. A higher percentage of patients who initiated in
compliance with regime z = 200 initiated in the first interval of the grace period (63%) compared
to those who initiated in compliance with regimes = = 350 or 500 (40 and 41%, respectively).
This pattern is as we may expect, since at lower CD4 counts clinicians and patients may be
keen to initiate treatment sooner, whereas at higher CD4 counts they may not be concerned
about a small delay. However, a large percentage of patients who initiated in compliance with
the immediate treatment regime did so in the first interval of the grace period; this is probably
related to the definition of that regime. Of note, the first approach of Cain et al. (2010) would
only upweight those patients who waited until the last interval of the grace period after their
CD4 count had first dropped below the given threshold to initiate. For the regime given by
x = 200 in particular, this subset of patients is unlikely to be representative of the remainder

of the patients who initiated earlier in the grace period.

Weights

Summaries of the weights are presented in Table 4.16; of note, these are non-stabilised weights
therefore we no longer expect the mean to be close to 1. The maxima of the untruncated weights
were between 135 and 361 for the strategies Ia to V, and were much larger under strategies VI
and VII (1044 and 42034, respectively). After truncation of the upper 1% of the weights, the
maxima were between 14 and 17 across all strategies. The means of the truncated weights
ranged from 1.542 under strategy V to 1.606 under strategy Ib. The standard deviations were

around 2.

AIDS-free survival

Overall, 103, 89, 55 and 15 AIDS or death events were observed in patients remaining compliant

with the regimes given by x = 200, 350, 500 and immediate treatment initiation. Of these, only
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Strategy No truncation Truncation of upper 1%

Mean (SD) Range Mean (SD) Range

Ta/I/II 1745 (3.557) 0.33, 135 1.604 (2.011) 0.33, 15
Ib 1.743 (3.569)  0.33, 172 1.606 (2.028) 0.33, 16
v 1.767 (4.595)  0.33, 342 1.587 (2.102) 0.33, 17

A% 1.742 (4.591)  0.33, 361 1.542 (1.785) 0.33, 14
VI 1.779 (4.349) 0.33, 1044 1.601 (2.082) 0.33, 16
VII 1.810 (45.30) 0.33, 42034 1.570 (2.023) 0.33, 16

Table 4.16: Application to CASCADE: summary of the estimated weights from each of the
different strategies. SD=standard deviation.

2,7, 4 and 11, respectively, occurred following treatment initiation. Of note, the 4 events which
occurred while treatment-naive and in compliance with the immediate treatment initiation
regime all occurred during the 3-month grace period (none initiated treatment before the event;
all patients still had CD4 counts over 500 cells/mm? therefore these events were also included
in the events while treatment-naive for the regimes given by x = 200, 350 and 500).

Figure 4.23 illustrates the probability of surviving AIDS-free to 6 years from study entry for
the regimes given by x = 200, 350, 500 and immediate initiation, unweighted and weighted based
on the different weight estimation strategies (under the raw Kaplan-Meier approach). Overall,
there was little difference between the weight estimation strategies; all showed some greater
separation between the AIDS-free survival curves compared to the unweighted estimation. There
appeared to be little difference between the treatment regimes given by z = 200 and 350,
except a suggestion of poorer AIDS-free survival on the regime x = 350 at later times, perhaps
contrary to what we might expect. Immediate treatment initiation appeared to be preferable
when considering AIDS-free survival to 6 years, compared to delaying treatment to any of the
three CD4 count thresholds considered (except perhaps under strategy VI).

Looking instead at the AIDS-free survival curves predicted from the pooled logistic regression
models (Figure 4.24), there was again greater separation between the regimes for the weighted
compared to the unweighted curves. Similarly to the raw Kaplan-Meier AIDS-free survival
curves, there was little difference between the regimes given by x = 200 and 350. In contrast
to the raw Kaplan-Meier curves, there was a suggestion that waiting until the CD4 count is
first observed to drop < 500 cells/mm? may be preferable in terms of 6-year AIDS-free survival
compared to immediate treatment initiation, at least under strategies IV, V, VI and VII.

For illustration and focussing on the time-points of 3 and 6 years, Tables 4.17 and 4.18 show
the estimated AIDS-free survival at those times, respectively, under the different weighting
strategies and estimation approaches, for the four regimes given by x = 200, 350, 500 and

immediate treatment initiation.
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Figure 4.23: Application to CASCADE: probability of remaining alive & AIDS-free to 6 years,
estimated using the raw Kaplan-Meier approach, under the different weight estimation strategies
(and with no weighting), for the four regimes given by z = 200, 350 and 500, and immediate
treatment initiation.
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Figure 4.24: Application to CASCADE: probability of remaining alive & AIDS-free to 6 years,
estimated using the pooled logistic regression model approach, under the different weight esti-
mation strategies (and with no weighting), for the four regimes given by = = 200, 350 and 500,
and immediate treatment initiation.
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Approach Regime
Strategy 200 350 500 Imm

Raw KM
Unweighted  0.957 (0.946,0.967) 0.961 (0.949,0.971) 0.968 (0.955,0.978) 0.991 (0.973,1.000)
Ta/I1/111 0.956 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.983) 0.995 (0.984,1.000)
Ib 0.955 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.984) 0.995 (0.984,1.000)
v 0.958 (0.948,0.967) 0.963 (0.951,0.974) 0.977 (0.969,0.984) 0.996 (0.989,1.000)
A% 0.959 (0.949,0.968) 0.963 (0.950,0.973) 0.976 (0.967,0.983) 0.995 (0.985,1.000)
VI 0.949 (0.931,0.963)  0.957 (0.934,0.972) 0.975 (0.965,0.982) 0.997 (0.990,1.000)
VII 0.947 (0.923,0.964) 0.959 (0.939,0.973) 0.975 (0.965,0.982) 0.996 (0.989,1.000)

Smoothed KM
Unweighted 0.957 (0.946,0.967) 0.961 (0.950,0.971) 0.968 (0.955,0.978) 0.991 (0.973,1.000)
Ta/II/TIT 0.956 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.983) 0.995 (0.984,1.000)
Ib 0.955 (0.942,0.966) 0.960 (0.942,0.973) 0.977 (0.968,0.983) 0.995 (0.984,1.000)
v 0.958 (0.948,0.967) 0.963 (0.951,0.973) 0.977 (0.969,0.984) 0.996 (0.989,1.000)
A% 0.959 (0.949,0.968) 0.963 (0.950,0.973) 0.976 (0.967,0.983) 0.995 (0.985,1.000)
VI 0.949 (0.931,0.963) 0.957 (0.933,0.972) 0.975 (0.965,0.982)  0.997 (0.990,1.000)
VII 0.947 (0.923,0.964) 0.959 (0.938,0.973) 0.975 (0.965,0.982) 0.996 (0.989,1.000)

Pooled logistic
Unweighted  0.959 (0.949,0.967) 0.961 (0.950,0.970) 0.966 (0.954,0.974) 0.974 (0.957,0.988)
Ta/I1/111 0.955 (0.942,0.965) 0.957 (0.942,0.968) 0.970 (0.957,0.980) 0.985 (0.974,0.994)
Ib 0.955 (0.941,0.965) 0.958 (0.943,0.969) 0.970 (0.958,0.980) 0.986 (0.974,0.994)
v 0.957 (0.946,0.965) 0.959 (0.946,0.968) 0.971 (0.957,0.981) 0.984 (0.973,0.994)
A% 0.957 (0.946,0.966) 0.959 (0.946,0.968) 0.972 (0.961,0.980) 0.984 (0.972,0.993)
VI 0.949 (0.931,0.962) 0.955 (0.940,0.967) 0.970 (0.958,0.979) 0.981 (0.964,0.992)
VII 0.947 (0.921,0.963) 0.957 (0.943,0.968) 0.969 (0.957,0.978) 0.983 (0.967,0.993)

Table 4.17: Application to CASCADE: AIDS-free survival at 3 years, estimated by the three
approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression, under
the different weight estimation strategies (and with no weighting), for the four regimes given
by z = 200, 350 and 500, and immediate treatment initiation. Values in brackets are 95%
bootstrap confidence intervals. Imm=immediate treatment initiation regime.
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Approach Regime
Strategy 200 350 500 Imm

Raw KM
Unweighted  0.906 (0.880,0.931) 0.891 (0.858,0.921) 0.920 (0.881,0.957) 0.938 (0.882,0.980)
Ta/I1/111 0.914 (0.889,0.936) 0.891 (0.842,0.932) 0.923 (0.871,0.966) 0.951 (0.896,0.989)
Ib 0.914 (0.888,0.936) 0.891 (0.842,0.932) 0.924 (0.875,0.966) 0.950 (0.894,0.989)
v 0.912 (0.885,0.937) 0.893 (0.842,0.934) 0.929 (0.878,0.971) 0.960 (0.909,0.992)
A% 0.911 (0.884,0.936) 0.893 (0.845,0.931) 0.937 (0.899,0.969) 0.952 (0.891,0.990)
VI 0.906 (0.881,0.931) 0.885 (0.835,0.926) 0.929 (0.882,0.967) 0.938 (0.858,0.991)
VII 0.907 (0.877,0.930) 0.890 (0.839,0.930) 0.924 (0.869,0.967) 0.943 (0.870,0.991)

Smoothed KM
Unweighted 0.906 (0.880,0.931) 0.890 (0.857,0.921) 0.920 (0.881,0.957) 0.938 (0.882,0.980)
Ta/II/TIT 0.914 (0.889,0.936) 0.885 (0.837,0.924) 0.923 (0.870,0.966) 0.951 (0.896,0.989)
Ib 0.914 (0.888,0.936) 0.886 (0.837,0.924) 0.924 (0.873,0.966) 0.950 (0.894,0.989)
v 0.912 (0.885,0.937) 0.883 (0.839,0.926) 0.929 (0.878,0.971) 0.960 (0.909,0.992)
A% 0.911 (0.884,0.936) 0.886 (0.844,0.924) 0.937 (0.898,0.969) 0.952 (0.891,0.990)
VI 0.906 (0.881,0.931) 0.881 (0.833,0.921) 0.929 (0.882,0.967) 0.938 (0.858,0.991)
VII 0.907 (0.877,0.930) 0.886 (0.837,0.923) 0.924 (0.867,0.967) 0.943 (0.870,0.991)

Pooled logistic
Unweighted 0.907 (0.883,0.926) 0.905 (0.878,0.927) 0.924 (0.893,0.947) 0.900 (0.846,0.946)
Ta/I1/111 0.903 (0.873,0.927) 0.884 (0.842,0.919) 0.926 (0.872,0.962) 0.926 (0.877,0.967)
Ib 0.903 (0.872,0.927) 0.885 (0.843,0.919) 0.928 (0.875,0.963) 0.927 (0.876,0.967)
v 0.900 (0.870,0.925) 0.889 (0.845,0.922) 0.932 (0.877,0.967) 0.916 (0.860,0.970)
A% 0.899 (0.866,0.924) 0.890 (0.851,0.923) 0.938 (0.902,0.964) 0.914 (0.854,0.967)
VI 0.892 (0.852,0.925) 0.886 (0.847,0.921) 0.935 (0.892,0.964) 0.911 (0.835,0.965)
VII 0.888 (0.845,0.922) 0.891 (0.850,0.925) 0.931 (0.882,0.964) 0.916 (0.845,0.967)

Table 4.18: Application to CASCADE: AIDS-free survival at 6 years, estimated by the three
approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression, under
the different weight estimation strategies (and with no weighting), for the four regimes given
by z = 200, 350 and 500, and immediate treatment initiation. Values in brackets are 95%
bootstrap confidence intervals. Imm=immediate treatment initiation regime.
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Figure 4.25: Application to CASCADE: AIDS-free survival at 3 years by regime, estimated by
the three approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression,
across the different weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime. The estimates for the immediate treatment initiation regime are
staggered to aid clarity.

Optimal regimes at 3 and 6 years

We now consider the whole range of the regimes, to determine the optimal regime as defined
by 3- and 6-year AIDS-free survival.

Comparing all the treatment weighting strategies and estimation approaches, it is clear that
the optimal regime with respect to 3-year AIDS-free survival is immediate treatment initiation
(Figure 4.25, and with 95% confidence intervals in Figures 4.26, 4.27 and 4.28 for the raw Kaplan-
Meier, smoothed Kaplan-Meier and pooled logistic regression model approaches, respectively).
The curves were broadly similar across all the different strategies and approaches, although the
unweighted curves tended to underestimate somewhat the AIDS-free survival at regimes given
by higher x.

Considering the 6-year AIDS-free survival probabilities, we saw quite different shapes in the
AIDS-free survival by regime curves (Figure 4.29). Contrary to what we might expect based on
the realistic simulation study (section 4.3) and the known benefits of treatment at CD4 counts
< 350 cells/mm?, there appeared to be a trough at regimes given by intermediate 2 (300 to 400).

Similarly to the 3-year AIDS-free survival estimation, immediate treatment initiation appeared
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Figure 4.26: Application to CASCADE: AIDS-free survival at 3 years by regime, with 95%
bootstrap confidence intervals, as estimated by the raw Kaplan-Meier approach, across the
different weight estimation strategies (and under no weighting). Imm=immediate treatment
initation regime.
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Figure 4.27: Application to CASCADE: AIDS-free survival at 3 years by regime, with 95%

bootstrap confidence intervals, as estimated by the smoothed Kaplan-Meier approach,

across the different weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime.
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Figure 4.28: Application to CASCADE: AIDS-free survival at 3 years by regime, with
95% bootstrap confidence intervals, as estimated by the pooled logistic regression model
approach, across the different weight estimation strategies (and under no weighting).

Imm=immediate treatment initation regime.
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Figure 4.29: Application to CASCADE: AIDS-free survival at 6 years by regime, estimated by
the three approaches of raw Kaplan-Meier, smoothed Kaplan-Meier or pooled logistic regression,
across the different weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime. The estimates for the immediate treatment initiation regime are
staggered to aid clarity.

to be the optimal choice under the raw and smoothed Kaplan-Meier approaches, although the
confidence intervals overlapped considerably with those of the other regimes (Figures 4.30 and
4.31). However, under the pooled logistic regression approach, the point estimates for the 6-year
AIDS-free survival tended to be lower on the immediate treatment initiation regime, compared
to for example the regime given by x = 500; although, once again the confidence intervals
overlapped considerably (Figure 4.32). The greater uncertainty is due to less uncensored follow-
up to 6 years.

The optimal regimes based on these results are shown in Table 4.19, along with the mini-
mum acceptable regimes. Across most scenarios, the optimal regime was immediate treatment
initiation, although, when considering 6-year AIDS-free survival, the pooled logistic regression
model approach yielded optimal regimes of = 500 across all but one weighting strategy. Of
note, the raw and smoothed Kaplan-Meier estimated optimal regimes were unlikely be different
when the optimal regime for the former was immediate treatment initiation, since the smooth-
ing was only performed over the range x = 200 to 500, and the immediate treatment initiation

estimates were left unchanged.
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Figure 4.30: Application to CASCADE: AIDS-free survival at 6 years by regime, with 95%
bootstrap confidence intervals, as estimated by the raw Kaplan-Meier approach, across the
different weight estimation strategies (and under no weighting). Imm=immediate treatment
initation regime.
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Figure 4.31: Application to CASCADE: AIDS-free survival at 6 years by regime, with 95%
bootstrap confidence intervals, as estimated by the smoothed Kaplan-Meier approach,

across the different weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime.

225



Unweighted la/ti/ni

[{e}
1
\
\
\
\
—————
. ©
Il
|
|
\
)
),
f
l
|
\
\
——e—-

~— e
.85 85 \\\//
8 8
T T T T T T T T T T T T T T T T
200 250 300 350 400 450 500 Imm 200 250 300 350 400 450 500 Imm
Ib v
1 14
(%]
- T - T
3 95 T 951 T
[J] —_—— ’,// [ Y (P _-- |
> | - | ] *
© 9 | .9 |
o —— - = — -~
= ~= Ve \-s‘\ - -
@ 85 >~ 85 ~~_~"
S
Y ] i
8 8 T T T T T T T T 8 T T T T T T T T
= 200 250 300 350 400 450 500 Imm 200 250 300 350 400 450 500 Imm
(@]
=
=
S \% Vi
5 1 1
(%]
“—
o J - T | - T
> .95 _ o I .95 - ’/,/’ |
E 9 P |+ 9 _ +
© / 7~ !
o /‘\\\_ // J- /"—~\\ V4 |
ne_ 85 =~ 85 ~~_" !
8 8
T T T T T T T T T T T T T T T T
200 250 300 350 400 450 500 Imm 200 250 300 350 400 450 500 Imm
Vil
1
951 =T
9 _ I
TN s
85/~ N~ 1
8]
T T T T T T T T
200 250 300 350 400 450 500 Imm
Regime, x

Figure 4.32: Application to CASCADE: AIDS-free survival at 6 years by regime, with 95%
bootstrap confidence intervals, as estimated by the pooled logistic regression approach,
across the different weight estimation strategies (and under no weighting). Imm=immediate
treatment initation regime.
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Time-point Raw KM Smoothed KM  Pooled logistic
Strategy
3 years
Unweighted Imm (0.991)  Imm (0.991) Imm (0.974)
[a/I/III  Imm (0.995) Imm (0.995)  Imm (0.985)
b Imm (0.995) Imm (0.995)  Imm (0.986)
1AY Imm (0.996)  Imm (0.996) Imm (0.984)
\Y% Imm (0.995) Imm (0.995) Imm (0.984)
VI Imm (0.997)  Imm (0.997) Imm (0.981)
VII Imm (0.996)  Imm (0.996) Imm (0.983)
6 years
Unweighted Imm (0.938) Imm (0.938) 500 (0.924)
- - 480 (0.920)
[a/I/II  Imm (0.951) Imm (0.951)  Imm (0.926)
- - 490 (0.922)
Ib Imm (0.950)  Imm (0.950) 500 (0.928)
- - 490 (0.924)
v Imm (0.960)  Imm (0.960) 500 (0.932)
- - 490 (0.928)
v Imm (0.952) Imm (0.952) 500 (0.938)
- - 490 (0.934)
VI Imm (0.938) Imm (0.938) 500 (0.935)
- - 490 (0.931)
VII Imm (0.943) Imm (0.943) 500 (0.931)
- - 490 (0.928)

Table 4.19: Application to CASCADE: optimal and minimum acceptable regimes with respect
to 3- and 6-year AIDs free survival. The first row for each time-point/strategy shows the
optimal regime, and the second shows the minimum acceptable regime (if different to the optimal
regime). Recall, the minimum acceptable regime is defined as that given by lowest = which has
< 0.005 poorer AIDS-free survival compared to under the optimal regime. Values in brackets
are the estimated probabilities of surviving AIDS-free to that time-point under that regime.
Imm=immediate treatment initiation regime. KM=Kaplan-Meier.
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Minimum acceptable regimes at 3 and 6 years

Due to the relatively large observed higher 3- and 6-year AIDS-free survival under the immediate
treatment initiation regime, there were typically no other regimes which met the stringent
criterion for acceptability (no worse than 0.5% poorer AIDS-free survival). However, where the
estimated optimal regime was given by z = 500 (when considering 6-year AIDS-free survival
under the pooled logistic regression approach), the regime given by x = 490 met this criterion

for acceptability (Table 4.19).

4.6 Discussion

4.6.1 Methodological findings

In this chapter, we have explored the optimisation of pre-defined treatment regimes using dy-
namic MSMs, via the clinical question of when to initiate treatment with respect to CD4 count
in HIV-infected persons. As outlined in section 4.1.1, these methods are best approached via
the concept of the RCT which one would ideally conduct (Cain et al., 2010; Hernén et al.,
2008). This enables the correct framing of the question to be addressed using the observational
data. We have demonstrated via simulations of large RCTs and observational cohorts that, with
sufficient data and under the standard assumptions (section 1.2.4), these methods yield the cor-
rect answers. However, in our clinical example where there are large natural fluctuations and
measurement error in the biomarker CD4 count which defines the dynamic treatment regimes,
and where the event (AIDS or death) rates are low, a great deal of uncertainty is present. This
was evident in our large simulated observational studies of 100,000 participants, and even to
some extent in the simulated RCTs of 31 million individuals. We have reinforced the current
view that large collaborative clinical cohorts are required to answer such causal questions.

A related issue encountered in our simulation study based on a realistic scenario (simula-
tion study 1) was that the outcome used to determine the optimum regime, that is, 10-year
AIDS-free survival, was broadly constant at high values of CD4 count, the time-dependent co-
variate used to define the regimes x. This is encouraging in terms of support for current HIV
treatment guidelines, which typically recommend treatment initiation at CD4 counts of around
350 cells/mm?, and also reassuring for patients and clinicians, in that the optimal timing of
treatment initiation may not be critical before the CD4 count drops to around that threshold.
However, in terms of the application of these methods, the lack of a clear “peak” and hence

optimal regime means that, under any single analysis, the method may yield an estimate quite
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“far” from the optimal regime, as illustrated by the individual simulations (Figures 4.18 and
4.19). Consideration of the shape of the AIDS-free survival curve by regime as estimated by
the raw Kaplan-Meier approach helped our understanding of the data, and indeed when the
curve was so “flat”, we found that this approach outperformed the pooled logistic regression
approach. Our second simulation study illustrated that with a clearer “peak” (and a greater
number of patients), the methods perform better, and in this case the pooled logistic regression
approach outperformed the others. Therefore, in general, we would recommend that both the
raw Kaplan-Meier and pooled logistic regression approaches are applied, and urge caution in
the interpretation of optimal regimes, which should be done with regard to the shape of the
optimal criterion-by-regime curve and recognising that the precision may be low.

If broadly constant AIDS-free survival rates at regimes defined by higher & were observed in
real data, then clinically this “flatness” could be interpreted in different ways: at the expense of
a small increase in AIDS or death, treatment could be delayed a little past the optimal regime,
perhaps to the minimum acceptable regime, to preserve resources which could perhaps be more
beneficially used in other areas, for example HIV prevention, or simply to preserve treatment-
free time for the patient, which might have benefits in terms of toxicity and preserving future
treatment options (delaying failure or resistance). Conversely, encouragement of treatment
initiation slightly earlier than the optimal regime could have population advantages by reducing
transmission risk; recently there has been a stronger interest and support in treatment as
prevention (Cohen et al., 2011). As many HIV-infected persons worldwide who need treatment
under the current treatment guidelines are not receiving it, earlier treatment initiation may be
a luxury affordable only in high-income countries. Even then, timely treatment initiation is
dependent on individuals presenting for care early in infection.

Of note, the issues discussed above may apply to other disease areas, if those areas have
similar measurement error associated with the time-dependent covariate used to define the
dynamic treatment regimes, low event rates, and/or ranges of the dynamic regimes across
which the outcome is broadly constant.

The recent extension of these methods to incorporate grace periods is one attempt to address
the more limited data typically available (Cain et al., 2010). This enables use of a greater number
of observed treatment initiations, potentially resulting in less censoring and hence greater power.
However, these extensions have been rarely applied in practice (Cain et al., 2010; Young et al.,
2011), and their implications in realistic scenarios have not previously been explored. CD4

count observation frequencies and grace periods are clearly interrelated, since less-frequently
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observed CD4 counts or longer grace periods may both result in CD4 counts dropping to lower
levels while awaiting treatment initiation, and such lower levels are associated with higher risk
of AIDS or death. We focussed initially on monthly observed CD4 counts as a first step, for
pedagogic purposes to develop understanding of the methods and ensure they were working
as anticipated before progressing to (perhaps more realistically) less-frequently observed CD4
counts. The choice of 3-monthly CD4 counts was driven by the typical visit schedule followed
in resource-rich settings, and as observed in our subset of CASCADE patients. In resource-
limited settings, 6-monthly measurement of CD4 counts may be more common. We found that
in populations with less frequent measurement of CD4 counts, or faster treatment-naive CD4
decline, the optimal CD4 count for treatment initiation was higher and the AIDS-free survival
rates were lower, even on the optimal regime, as we might expect.

The treatment-naive CD4 decline and CD4 count measurement frequency will in general be
fixed in a given population; while the CD4 count frequency could be reduced by ignoring those
recorded at intermittent time-points which do not fit into that schedule, this would surely only
be for exploratory purposes since would typically reduce precision. In contrast, the grace period
may be varied for analysis, and in the simulation of the observational studies, we considered
the grace periods as a step in the analysis only, not the data generation. The minimum length
of the grace period may only be limited by the observed data (for example, if the grace period
was set as 1 day then there may be no patients compliant with any regime). There is no upper
restriction to the length of the grace period, though of course the results must be interpreted
accordingly; very lengthy grace periods may only serve to blur the distinction between regimes
and are unlikely to be of much clinical relevance. We firstly used no grace period (m = 1),
and extensions to 3- and 6-month grace periods corresponding to the CD4 count observation
frequencies considered, and as used by other researchers (Cain et al., 2010; HIV-CAUSAL
collaboration, 2011; Kitahata et al., 2009; Shepherd et al., 2010). As one may expect, we
found, via the large realistic RCT simulations, that lengthening the grace period typically led
to poorer 10-year AIDS-free survival. Although similar AIDS-free survival rates at 10 years
could be achieved with grace periods up to 6 months, compared to no grace period (with CD4
counts observed 1- or 3-monthly), the optimal regime had to be raised accordingly.

There is a different aspect to grace periods which must be considered, aside from being
a way of potentially reducing censoring of otherwise non-compliant treatment initiations: to
permit a grace period is to ask a different question. T'wo main approaches have previously been

defined (Cain et al., 2010); under the first approach, the regimes are defined by “do not initiate
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treatment before the CD4 count is <z cells/mm?, and do initiate exactly m months after the
CD4 count first drops below x cells/mm? if treatment has not already been initiated in the first
m — 1 months of the grace period”. Under the second approach, regimes are defined as “initiate
treatment within m months after the CD4 count first drops before z cells/mm?, such that there
is a uniform probability of starting in each of the months 1,2,...,m”. Different methods of
estimation must be applied to these two approaches. While previous applications have focussed
on the first approach (Cain et al., 2010; HIV-CAUSAL collaboration, 2011; Shepherd et al.,
2010), this involves upweighting the potentially small and unrepresentative subset of patients
observed to initiate in the last interval of the grace period. In addition, we have seen in the
CASCADE data that the treatment initiation pattern across the grace period may differ by
regime, with patients less likely to delay until later in the grace period if already at low CD4
counts. Therefore, we applied the second approach.

Of course, either approach should strictly then be interpreted in the appropriate context,
both of which may be somewhat baffling to health care providers and patients. Both approaches
may perhaps be loosely interpreted by clinicians who first observe a patient’s CD4 count to drop
below the given threshold x as “start treatment within the next m months”. In fact, clinicians
and patients alike may prefer this extra time in order to prepare for the initiation of treatment
which will be life-long. Alternatively, the grace period may be ignored entirely and the dynamic
regime simply interpreted as treatment initiation when CD4 count is first observed to be below
the given threshold x. Public health policy makers may be keen to know the effect of such
an interpretation. Via the simulation of small observational studies, we have investigated the
bias-variance trade-off in permitting a grace period for the purposes of potentially increasing
efficiency, at the risk of inducing bias for the inference of interest under no grace period. We
found that under 3-monthly observed CD4 counts, permitting a 3-month grace period was
beneficial over no grace period, in terms of increasing precision slightly with minimal penalty in
terms of bias, but that the bias induced by extending to a 6-month grace period outweighed the
gain in precision. We therefore recommend that a 3-month grace period be used in observational
studies in similar resource-rich settings, which are likely to have a comparable CD4 observation

frequency, but further research may be required for other settings.

4.6.2 Clinical findings

In light of the results from the simulation studies, we permitted a 3-month grace period to apply

these methods to our CASCADE population, and consider that the resulting optimal regime
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may be interpreted in the absence of a grace period, rather than precisely as per the somewhat
complicated definition above.

A large proportion of patients were observed to initiate treatment immediately; this may
in part be due to the nature of the study entry (all patients had a clinic visit). We were able
to define a treatment regime to capture these treatment initiations, which otherwise would
have been censored, since immediate treatment initiation has some meaning with respect to
our study entry criteria (namely > 500 cells/mm3, at the first CD4 count within 1-5 years
after seroconversion). We found under most scenarios that immediate treatment initiation
was preferable, although perhaps delaying until CD4 count was observed to drop below 500
cells/mm?® might offer some benefit. We cannot rule out the possibility that the subset of
patients who initiated treatment immediately may be somewhat different to the remainder of
the patients, although we did control for a number of confounders via the weights. While the
subset of CASCADE patients included in these analyses were a selected subset, they are likely
to constitute the population in whom the choice of when to start treatment uniquely applies;
often patients who present later do so because of clinical symptoms and so in whom treatment is
indicated. Of note, the pooled logistic regression approach predicted somewhat lower AIDS-free
survival for the immediate treatment regime, especially at 6 years. The reasons for this are
not clear. In addition, we observed a slight increase in the estimated 6-year AIDS-free survival
for the regimes given by very low z (close to x = 200), compared to regimes around x = 350
to 400; the reason for this is not clear but there may be some residual confounding. Further,
the results from the simulation studies illustrate the inherent uncertainties in these data. The
shape of the curves derived from the pooled logistic regression models, when compared to those
from the raw Kaplan-Meier approach, reassured us that the parameterisations we chose (for
example, four knot spline for regime) were adequate.

Reassuringly, we found broadly consistent results across the different weighting strategies
as determined in chapter 2, all suggesting clearer distinction in terms of AIDS-free survival
between the regimes compared to without weighting. Of note, the uncertainty introduced in
applying the estimated weights was visible in the somewhat “jagged” appearance of the weighted
AIDS-free survival by regime curves, compared to the unweighted ones, particularly at 6 years.
For brevity in this chapter we did not compare the effects of different weight truncations, but
we know from chapter 2 that this will in general yield different results.

Our findings are broadly consistent with previous studies, in that early treatment initiation

may be beneficial but that the differences in AIDS-free survival or overall survival are very small
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at regimes given by high CD4 count. Due to this issue, combined with large measurement error
in CD4 count and low event rates, we have demonstrated via the simulation studies that it is
quite plausible for two studies with the order of thousands of participants to yield somewhat
different estimated optimal regimes, even if the underlying distributions are the same. As an
example, the HIV-CAUSAL collaboration (2011) allowed a 6-month grace period and estimated
the optimal regime to be given by x = 500 in the set they considered (xz = 200 to 500), but
emphasised that the overall survival was very similar for regimes given by = = 300 to 500.

As outlined in section 4.2.4, it is possible to look at interactions of regime with baseline
covariates, in order to tailor optimal treatment regimes to specific patients, but given the lack

of power in our subset of CASCADE patients, it was not possible for us to address this.

4.6.3 Limitations

We considered regimes defined by 10 cells/mm?® categories of CD4 count. This could lead to
censoring of intermittent treatment initiations. For example, if a patient’s nadir observed CD4
count to date was 489 cells/mm?® and treatment was initiated in response to a subsequent ob-
served CD4 count of 483 cells/mm?, then this treatment initiation would be censored under all
regimes given by x = 200, 210...,500. In our CASCADE population, this occurred in 32 pa-
tients, but 12 of those 32 treatment initiations were permitted when allowing a 3-month grace
period. The alternative would be to use a finer categorisation of CD4 count, the most extreme
being defining regimes by 1 cell/mm? categories. This would not only be extremely computa-
tionally challenging, but the clinical relevance is questionable, given the known biological and
measurement variation in CD4 count. Conversely, coarser categorisation of CD4 count could be
applied, for example defining regimes by 150 cells/mm3 categories, but this would result in the
censoring of many observed treatment initiations. Therefore, the 10 cells/mm? categorisation
was considered to be a good compromise (Cain et al., 2010).

One of the implications of the large measurement error incorporated into the simulations,
and no doubt present in the CASCADE data, meant that large proportions of the observed
treatment initiations were censored from all regimes due to initiation at a CD4 count above the
nadir (lowest to date). If CD4 counts declined linearly while treatment-naive (in the simulation
studies, this means in the absence of Brownian motion and measurement error), this censor-
ing would no longer occur. By permitting a grace period, we captured a greater number of
the treatment initiations, although relatively large proportions were still censored. Alternative

approaches, such as requiring two CD4 counts below the given threshold z for treatment initia-
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tion, could perhaps help reduce the number of censored treatment initiations, and perhaps help
mitigate to some extent the large measurement error, although would emulate to some extent
what the grace periods are attempting to do. In addition, if confirmation of CD4 counts was not
consistently performed in an observational study, then enforcing this in the analysis is unlikely
to be beneficial. Given the large measurement errors evident in CD4 counts, such censoring
of treatment initiations are inevitable. This was particularly visible in the RCT simulations,
where patients often initiated treatment at random low observed CD4 counts while the true
CD4 count (that is, incorporating Brownian motion but in the absence of measurement error)
was much higher. However, this measurement error is likely to reflect what occurs in practice.

The simulation study models were based on previous modelling using CASCADE data.
When treatment was initiated at high CD4 counts, the resulting mean slope from one year after
initiation onwards was negative, due to the strong negative correlation indicated previously
between CD4 count at treatment initiation and long-term slope thereafter. It may be that, in
the data on which the previous modelling was performed, this correlation was driven by patients
who were observed to initiate treatment early but subsequently stopped treatment (including,
for example, in trials looking at short-course treatment in primary infection; SPARTAC Trial
Investigators (2011)). Therefore, the overall decline in CD4 count from one year after treatment
initiation observed in these data and hence incorporated into our simulation models may in fact
be a consequence of those patients typically being off therapy subsequently. The implications of
this are that we may have underestimated the benefit of early treatment initiation, with respect
to CD4 count, assuming that treatment is continued once initiated. However, one could argue
that this may mimic what would happen in practice, whereby patients feeling well may not
be motivated to take their medications, or having to take treatment over such long periods of
time may increase the cumulative risk of side effects, hence leading to poorer adherence. Of
note, if a penalty for early treatment initiation had not been incorporated via this negative
correlation, and CD4 counts increased continuously on treatment (or at least to some plateau),
then it would always be optimal to initiate treatment immediately.

The determination of optimal treatment regimes is heavily dependent on time. When the
regimes are defined by a biomarker which is on average monotonely decreasing, sufficient time
must be allowed to pass for the biomarker to decrease and hence differences in the outcome
emerge between the regimes. This is of particular importance when the patients enter the study
with similar levels of the biomarker, as in both our simulation studies and analysis of CASCADE

data. We considered follow-up to 10 years under the simulation studies, but the optimal regimes
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may have been different if longer follow-up was considered. This is illustrated in Figure 4.8: if
we had only considered up to 5 years, then the regime given by z = 500 would be preferable to
that given by x = 350; this was reversed by 10 years. We also saw in our CASCADE population
that different optimal regimes would be determined depending on whether 3- or 6- year follow-
up was considered. We were only able to consider up to 6 years for defining the optimal regime,
due to limited follow-up, but it may be that longer follow-up would indicate different optimal
regimes. In addition, other metrics, for example a CD4- or quality of life-based metric (Robins
et al., 2008; Shepherd et al., 2010), or restricted mean survival (Royston and Parmar, 2011),

may well yield different optimal regimes.

4.6.4 Summary

We have investigated the impact of several aspects, perhaps most importantly grace periods,
on the estimation of dynamic treatment regimes, and applied these methods to our CASCADE
population. In our clinical setting, where CD4 counts were measured 3-monthly, permitting a
3-month grace period may offer efficiency benefits, with low bias, but lengthening to 6 months
increased the bias substantially. In our population of CASCADE patients, immediate treatment
initiation appeared to be most beneficial in terms of 6-year AIDS-free survival; with respect to
the pre-specified regimes defined by CD4 count, treatment initiation when CD4 counts were
first observed to drop < 500 cells/mm? was preferable delaying until CD4 counts were observed
to drop further. In the next and final chapter, we discuss these results in relation to those from

other chapters.
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Chapter 5

Discussion

In this final chapter, we outline the main contributions of this research to the field of causal
estimation, and in particular make comparisons across the three types of MSMs and draw some

conclusions. We discuss some limitations and outline potential future work.

5.1 Construction of weights

Our first contribution to the application of MSMs for causal estimation is the development
of a simple algorithm for the construction of the inverse probability of treatment weights.
This process has been framed as a series of well-defined decisions, helping ensure transparency.
This approach should enable future researchers to more clearly understand the steps involved
and perhaps help identify reasons for any observed differences in estimated effects between
studies. We have shown how a range of plausible strategies for constructing inverse probability
weights may arise from these decisions. In our example, estimating the effect of treatment
on time to AIDS or death in HIV-infected persons in CASCADE, these strategies consistently
demonstrated a beneficial effect of treatment, although the point estimates and precision varied
somewhat across the strategies. We recommend that researchers use a range of estimated
weights to check the sensitivity of the results to their assumptions. Of course, other choices or
strategies to those presented here are possible.

In addition, we have illustrated how a variable such as country or centre, across which
broadly constant treatment effects may be expected, can be used in different ways. Firstly, sep-
arate treatment models, one for each country or centre, may be used to estimate the weights,
although in our example we found this tended to be less efficient. Secondly, interactions between
treatment and the country or centre covariate may be used to explore whether there is hetero-

geneity in the estimated treatment effect across different strata of that covariate. If so, this
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could either be a true phenomenon, or may indicate that there remains residual confounding

which has not been adequately captured by the weights.

5.2 Estimation of optimal dynamic treatment regimes

The second contribution of this work is related to the optimisation of dynamic treatment regimes
using dynamic MSMs, and in particular jointly assessing the impact of grace periods (permit-
ted delay for treatment initiation) and varying measurement frequencies, and evaluating the
performance of these methods in realistically-sized observational studies. We recommend that
both the (raw) Kaplan-Meier and pooled logistic regression model approaches are applied, and
that the resulting estimated optimal dynamic treatment regimes are interpreted with respect
to the shape of the outcome-by-regime curve and the precision.

Via the simulation of large realistic RCTs, we found that if CD4 counts are observed less
frequently then the (true) optimal regime may be substantially higher, that is, given by earlier
treatment initiation at higher CD4 counts. This has implications for the generalisability of
results from both randomised trials and observational studies. For example, the findings from
a randomised trial addressing the issue of when to start treatment with respect to CD4 count
in a resource-rich setting, where CD4 counts are typically measured 3-monthly, may not be
applicable to resource-limited settings, where CD4 counts are usually measured less frequently.
Lengthening the grace period also indicated higher optimal regimes, but not to the same extent
as CD4 count observation frequency. However, it is worth noting that, under the higher optimal
regimes with CD4 count observation frequencies or grace periods of up to 6 months, the 10-year
AIDS-free survival rates were similar to those under the optimal regimes with monthly observed
CD4 counts and no grace period.

Via the simulation of corresponding realistically-sized observational studies (n = 3000), with
CD4 counts observed 3-monthly, we found that permitting grace periods of up to 3 months in
our clinical setting may offer benefits in terms of increased precision, at little expense of bias,
for the estimation of the optimal dynamic treatment regime under no grace period, which may
be easier to understand and implement in practice. However, for longer grace periods of 6 or
12 months, the bias induced outweighed the gain in precision. Across the different length grace

periods considered, the efficiency gains were perhaps smaller than might have been anticipated.
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5.3 Methodological comparison across the different MSMs

To our knowledge, this is the first time that standard, history-adjusted and dynamic MSMs have
systematically been applied to the same data. Our third contribution is to examine differences
between these approaches, and present a strategy and rationale for applying all three methods

when interest lies in identifying optimal dynamic treatment regimes.

5.3.1 Weights

As highlighted in previous chapters, the principles of weight estimation are the same across the
different types of MSM, although the weights finally applied are somewhat different. In particu-
lar, the weights used in the HAMSMs for the comparison of immediate versus no treatment may
be considered inverse probability of censoring, rather than treatment, weights, since patients
who initially deferred but subsequently initiated treatment are censored at treatment initiation
and no longer contribute follow-up. A common cause of large weights under the standard MSMs
is due to treatment initiations when the probability of treatment initiation is low, therefore,
depending on the question asked, these large weights may no longer be used in the HAMSMs,
hence potentially resulting in more stable weights, and perhaps more efficient estimation. Fur-
ther, unlike standard MSMs, the stabilisation of the weights for the HAMSMs may be performed
using time-updated (trial-baseline rather than true-baseline) covariates, potentially increasing
efficiency.

The weight estimation for the dynamic MSMs with no grace period is also broadly simi-
lar to that applied for the standard MSMs. However, large weights arising from persons who
persistently remain off treatment despite low CD4 counts will automatically no longer be in-
corporated, if there is no such pre-specified treatment regime under which that behaviour is
permitted. Again, this may result in more stable weights and potentially more efficient estima-
tion.

When incorporating a grace period in dynamic treatment regimes, adjustments must be
made to the numerator of the weights, and different adjustments are required depending on the
approach, related to different interpretations of the corresponding regimes. In order to avoid
upweighting a potentially small and unrepresentative subset of patients who initiated in the
last interval of the grace period, we applied an approach which assumes uniform treatment
initiation across the grace period. Whilst this assumption may never exactly hold, moderate
deviations from it are unlikely to have as large an impact in many applications as upweighting

the small subset of people who initiated treatment in the last interval of the grace period. We
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recommend investigating the observed distribution of treatment initiations over the grace period

when applying these models.

5.3.2 Data expansion

One of the least transparent and potentially most influential steps in causal modelling is de-
termining adequate weights; our algorithm was deliberately designed to delineate the choices
required in this process. Once this step has been performed, the model fitting of the standard
MSM follows fairly simply. The history-adjusted and dynamic MSMs have added complexity,
requiring expansion of the data. This may be limited by computational capabilities, particularly

for dynamic MSMs if a relatively large number of treatment regimes are to be compared.

5.3.3 Artificial censoring

After the data expansion required for the history-adjusted and dynamic MSMs, appropriate
(artificial) censoring must be performed based on the observed history and compatibility with
regimes. This is fairly straightforward under the HAMSMs, since the compatibility depends
only on treatment. However, this step is more complex for the dynamic MSMs, since the
censoring process depends on the relationship between regime, time-dependent CD4 count and
treatment. Of note, in our example, the dynamic MSMs censor all treatment initiations which
are not at the nadir (lowest to date) CD4 count (although with grace periods may permit
delayed treatment initiation); this is not the case for HAMSMs, and therefore for this reason
HAMSMs may potentially benefit from increased precision.

The censoring process is yet more complex for the dynamic treatment regimes if grace periods
are incorporated, since patients must be allowed until the end of the grace period to initiate
treatment, after it is indicated by the regime and time-dependent CD4 count, before applying
any censoring due to non-initiation of treatment.

Of note, in our example, we found that incorporating weights for censoring due to LTFU or

irregular CD4 count measurements had little impact on the estimated treatment effect estimates.

5.3.4 Strategy for causal estimation using MSMs

In summary, if one wishes to estimate optimal dynamic treatment regimes using dynamic MSMs,
we recommend first implementing standard and history-adjusted MSMs. While standard and
history-adjusted MSMs ask a different question compared to that addressed by dynamic MSMs,

the reasons for our recommendation are: (i) to be satisfied that adequate weights have been
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estimated, (ii) to demonstrate an effect of treatment in the population under study, and (7i7)
to gain understanding of the relationship between treatment and the time-dependent covariates
of interest.

Whilst standard MSMs are limited to the estimation of static treatment regimes, the weight
construction process is the same, and assessing the adequacy of the weights is substantially
easier, since it is straightforward to obtain stabilised weights, whose sum should be close to 1.
Further, if there is no evidence of a direct benefit of treatment, then the questions posed by
optimal dynamic treatment regimes, for example relating to when to start treatment, may have
little relevance.

The benefits of the additional complexity of HAMSMSs are that treatment effect modifications
by time-dependent covariates may be addressed. While the role of CD4 count in HIV disease
epidemiology and treatment is well known in our example, the application of HAMSMs could aid
identification of potential covariates for defining dynamic treatment regimes. Dynamic MSMs

are considerably more complex to implement, and are computationally demanding.

5.4 Clinical comparison across the different MSMs

There are several comparisons which can be made across the application of standard, history-
adjusted and dynamic MSMs to our CASCADE population, although it is important to recognise
the differences between the three approaches and interpret the results in the light of these
differences.

Standard MSMs estimate an “average” treatment effect, attempting to emulate a sequential
randomised trial whereby patients at each given time-point who were previously treatment-naive
are randomised to initiate treatment or not. The treatment effect estimate is averaged across
these sequential randomisations, that is, averaged across “sequential trials” with different follow-
up times on and off treatment, and different CD4 counts at treatment initiation. For example,
at later time-points, those patients initiating treatment will typically have lower CD4 counts,
in whom we may expect to see a greater benefit of immediate treatment. Further, our primary
models assumed an instantaneous and constant effect of treatment, regardless of the time spent
on treatment. This assumes that current treatment is a good measure of treatment history.

HAMSMs similarly estimate an “average” treatment effect, but the (trial-baseline) CD4
count at treatment initiation is directly adjusted for in the model, and we condition on treat-
ment history (patients must be previously treatment-naive to contribute to a new “trial”).

Therefore, the treatment effect estimate may differ from that obtained under the standard
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MSMs. We can incorporate an interaction into the history-adjusted models to explore treat-
ment effect modification by CD4 count. The resulting estimates are interpreted as the effect
of immediate versus no treatment given CD4 count, conditional on having survived AIDS-free
and off treatment to that time.

In contrast, dynamic MSMs estimate the cumulative effect of each regime defined by CD4
count. That is, the regimes are defined by treatment initiation when CD4 count is first observed
to drop below a given threshold, and so also depend on CD4 count history beyond the current
value (namely, the nadir). In addition, while we may anticipate that the effect of immediate
versus no treatment given a CD4 count of z cells/mm? estimated from a HAMSM is most
comparable to the dynamic regime given by x = z, this dynamic regime is somewhat different:
it is defined by treatment initiation when the CD4 count is observed to drop below z cells/mm3,
and indeed could be substantially lower. In addition, we permitted 3-month grace periods under
the dynamic treatment regimes, meaning that the CD4 count at treatment initiation may be
even lower, although in practice we observed relatively minimal impact of such grace periods
on the estimated optimal regimes in the simulation studies.

Having taken heed of these differences, it is informative to compare the estimates across the

three approaches, since we might expect broad consistency.

5.4.1 History-adjusted and standard MSMs

The estimated ORs for the effects of immediate versus no treatment initiation under the
HAMSMs were somewhat smaller (further from one) than the estimated effects of treatment
under the standard MSMs (estimated ORs of around 0.2-0.3 under the HAMSMs compared to
around 0.4-0.5 under the standard MSMs). This may be because the HAMSMs adjust for CD4
count at treatment initiation, and treatment history, unlike the standard MSMs.

Of note, excluding those with trial-baseline CD4 counts < 100 cells/mm? in the HAMSMs
did not materially affect the estimated treatment effect, therefore this reassures us that the

results from the standard MSMs were not unduly influenced by these “treatment refusers”.

5.4.2 Dynamic and history-adjusted MSMs

Under the history-adjusted modelling, we saw evidence of a greater benefit of treatment at
lower CD4 counts, with stronger estimated treatment effects at lower trial-baseline CD4 counts
< 350 cells/mm3. At higher CD4 counts, there was limited evidence of a benefit of treatment,

and, comparing the ORs and associated confidence intervals, there was no significant difference
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between the effects of treatment for patients with trial-baseline CD4 counts of > 500 versus
350 — 499 cells/mm3. For example, under strategy Ia, the estimated ORs were 0.06, 0.38, 0.98
and 0.72 for CD4 counts < 200, 200—, 350— and > 500 cells/mm3, respectively. The evidence
from the dynamic MSMs suggested that the optimal time to initiate treatment, in order to
maximise 6-year AIDS-free survival, was immediately at study entry, or at least when CD4
counts were first observed to drop < 500 cells/mm?, rather than further delay treatment.
Considering the AIDS-free survival rates, for illustration only under weighting strategies
Ia/II/III and based on the pooled logistic regression model approach, the estimated 6-year
AIDS-free survival probabilities were 0.90 (0.87, 0.93), 0.88 (0.84, 0.92), 0.93 (0.87, 0.96) and
0.93 (0.88, 0.97) under the regimes given by = = 200, 350, 500 and immediate treatment initi-
ation, respectively. The confidence intervals overlap considerably, suggesting that the absolute
benefits from early treatment initiation are likely to be small, and the results are probably not
inconsistent with those from the HAMSMs. The lower 6-year AIDS-free survival rate under
the regime given by = = 350 was seen consistently across the different weighting strategies and
estimation approaches, but it does not concur with evidence from RCT's nor the results from our
HAMSMs; we know that treatment initiation around CD4 counts of 350 cells/mm? is beneficial,
compared to delay. The reasons for this apparent discrepancy are not clear, but this may illus-
trate a potential issue with few treatment initiations remaining uncensored after applying the
artificial censoring process required for the dynamic MSMs. The evidence from our simulation
studies based on real data, albeit a different population from the subset of CASCADE patients
considered here, suggests that any potential benefits of early treatment initiation are likely to
be small, and the AIDS-free survival probabilities may be very similar across high CD4 counts.
In addition, the simulation studies indicated that the large measurement error in these data

may be problematic.

5.4.3 Dynamic and standard MSMs

Lastly, we can compare the estimated 3- and 6-year AIDS-free survival rates from the standard
and dynamic MSM chapters, for illustration in strategy la only. The 3-year AIDS-free survival
under immediate treatment initiation was 0.97 (0.96, 0.98) under the standard MSM, compared
to 1.00 (0.98, 1.00) and 0.99 (0.97, 0.99) under the dynamic MSM with the raw Kaplan-Meier
and pooled logistic regression model approaches, respectively. At 6 years, the corresponding
estimates were 0.95 (0.93, 0.97), 0.95 (0.90, 0.99) and 0.93 (0.88, 0.97). Of note, the precision

of these estimates was slightly poorer under the dynamic compared to standard MSMs.
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Although the regime given by = = 200 from the dynamic MSM setting is not the same as the
regime of No treatment from the standard MSM approach, we may expect broadly similar results
given that few patients should remain off treatment with CD4 counts < 200 cells/mm3. At 3
years, and considering again only strategy Ia for illustration, the estimated AIDS-free survival
rates were 0.95 (0.94, 0.96) under no treatment as estimated from the standard MSM, and
0.96 (0.94, 0.97) under regime = = 200 as estimated from the dynamic MSM (for both the raw
Kaplan-Meier and pooled logistic regression model approaches). At 6 years, the corresponding
estimates were 0.91 (0.89, 0.94), 0.91 (0.89, 0.94) and 0.90 (0.87, 0.93), respectively. Therefore

the estimates and confidence intervals are very similar.

5.4.4 Summary

In conclusion, the results across all three approaches appear to be consistent, given the available

precision.

5.4.5 In perspective

There have been a number of recent observational studies investigating when to start treatment
in patients with HIV infection (HIV-CAUSAL collaboration, 2011; Kitahata et al., 2009; When
to Start Consortium, 2009; Writing Committee for the CASCADE Collaboration, 2011). The
overall suggestion from these studies is that early treatment initiation, with respect to CD4
count, may be optimal, but that the benefits of initiating at such high CD4 counts may be small
in absolute terms (as discussed in section 1.5 and summarised in Table 5.1). Our results concur
with these findings. These potentially small benefits should be balanced against the possible
risks, which may not be captured in large observational studies which for pragmatic reasons
collect a limited set of data, such as the development of drug resistance leading to more limited
treatment options over the long-term. A large randomised trial is required to provide a more
precise and unbiased estimate of the effect of earlier treatment across a range of prospectively
evaluated outcomes, including those often not captured well in observational cohorts, such as
serious non-AIDS events (see below). The START trial (INSIGHT (2009); EudraCT number
2008-006439-12) is currently underway to determine whether immediate initiation of treatment
in patients with CD4 counts > 500 cells/mm? is superior to deferral of treatment initiation
until CD4 count drops to 350 cells/mm?, however results are not expected until 2016. A major
advantage of observational data is that it is possible to explore a broad range of dynamic

regimes using causal methods; due to patient and resource limitations, it would not be feasible
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to randomise patients to the wide spectrum of regimes which we have been able to consider
here.

More recently, illnesses which were not originally considered to be directly associated with
HIV infection, such as cardiovascular disease, have been recognised as a significant morbidity
burden in HIV-infected persons, particularly following the SMART trial (SMART Study Group
et al., 2006). However, information relating to serious non-AIDS events are not currently
captured by CASCADE therefore we were unable to address this. It may be important to
incorporate such information in future studies, and indeed such events are a component of the
primary endpoint for the START trial.

At the population level, there may be additional benefits of earlier treatment initiation in
terms of reduced transmission (Cohen et al., 2011). A further aspect which has not been con-
sidered, but would of course be of great interest to policy-makers, is the cost-effectiveness of
earlier treatment initiation. Analysis of an RCT in a resource-limited setting (Haiti), com-
paring treatment initiation at CD4 counts between 200 — 350 cells/mm? versus deferring until
< 200 cells/mm?, found that early treatment reduced mortality by 75% and was cost-effective

(US$2050 per years of life saved, <3 times the gross product per capita; Koenig et al. (2011)).

5.5 Limitations and potential extensions

5.5.1 Our CASCADE population

Our population was constructed to capture patients early in HIV infection, where there is the
greatest potential for early intervention and thus greatest potential benefit from early treatment.
CASCADE participants have well-estimated dates of HIV seroconversion, and incorporating
only those persons with CD4 counts > 500 cells/mm?® within 1-5 years after seroconversion at
entry to the analysis meant that we did not include fast progressors who would be likely to
start treatment anyway. While this led to the exclusion of approximately 11,000 patients, this
ensured that our population may be considered the most appropriate in which to answer the

question of when to initiate treatment, and in particular whether early initiation is beneficial.
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Other recent work in this area has made use of seroprevalent cohorts, the benefit of which
are the typically greater sample sizes (HIV-CAUSAL collaboration, 2011; Shepherd et al., 2010).
These approaches include patients with no history of CD4 count below a given threshold, from
the time when their CD4 count is first observed to be below this threshold. The treatment
effect estimates from such studies might be considered to be closer to those which would be
observed if such regimes were implemented in practice, where patients rarely present soon after
infection, and therefore may be more pragmatically appropriate. In contrast, our estimates from
the seroconverter cohorts may be considered to be closer to the true effects of different regimes
defined by CD4 count thresholds, under a “best case” scenario where patients are identified soon
after infection. Of note, the HIV-CAUSAL collaboration (2011) saw similarly large reductions
in their patient numbers to us when restricting for the purposes of investigating causal effects
(from > 30,000 to 8392 participants).

Shepherd et al. (2010) considered, as a sensitivity analysis, restricting to patients with a first
CD4 count > 500 cells/mm?, which resembles our approach. The authors discuss the advantages
and disadvantages of this, compared to their original approach as above. Clearly, a disadvantage
is the ultimate restriction of patients to those with an observed CD4 count > 500 cells/mm3,
which substantially limited the sample size in their seroprevalent cohort. The advantage of
restricting to patients with an initial high CD4 count is to control for variation at the start of
the trial. For example, if a patient entered the original analysis of Shepherd et al. (2010) with
a CD4 count of 349 cells/mm? and initiated treatment immediately then this patient would be
compliant with all regimes given by x > 350. Therefore, attempting to distinguish between
the regimes given by higher = suffered from limited power in their analysis. In our approach,
a patient would only be compliant with regimes z = 350 and 500 (and intermediate regimes)
if their observed CD4 count dropped from > 500 cells/mm? to < 350 cells/mm?, in response
to which treatment was initiated; such patients are atypical. Further, their original approach
compares patients compliant with the z = 350 regime who were never eligible for regime z = 500
(for example, a patient who remains treatment-naive after a first CD4 count of 400 cells/mm3),
with those compliant with the x = 350 regime but who were (or still are) eligible and compliant
with the z = 500 regime (for example, a patient who remains treatment-naive after a first CD4

count of 550 cells/mm?); in practice these patients may not be comparable.
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5.5.2 Power

As discussed above, our stringent inclusion criteria led to only approximately 3000 CASCADE
participants being included in our analyses. Our simulation studies have shown that the appli-
cation of dynamic MSMs in such sample sizes to estimate optimal dynamic treatment regimes
is likely to suffer from low power. In addition, our study based on CASCADE data suffered
somewhat from limited follow-up. This is particularly pertinent to the application of the dy-
namic MSMs; as discussed in section 4.6.3, sufficient follow-up is necessary in order to be able

to distinguish between the effects of different regimes on the outcome of interest.

5.5.3 Other dynamic treatment regimes

The focus in this thesis, and the majority of previous studies in this area (Hernan et al., 2006;
HIV-CAUSAL collaboration, 2011; Robins et al., 2008; Writing Committee for the CASCADE
Collaboration, 2011), has been on whether to initiate treatment early at CD4 counts of around
500 cells/mm?® or later (lower). This is for pragmatic reasons, in that people rarely present for
care earlier (with higher CD4 counts) and indeed it has recently been shown that nearly half
of individuals have CD4 counts < 500 cells/mm? within just one year of seroconversion (Lodi
et al., 2011). However, it may be that the optimal time to initiate with respect to CD4 count is
above 500 cells/mm3. If we had further restricted to patients with baseline CD4 counts above
a higher threshold, then we would have had an even smaller subset of patients (upper quartile
baseline CD4 count was 788 cells/mm?). In their original analysis, Shepherd et al. (2010) did
use a higher threshold, of 750 cells/mm3, but in a sensitivity analysis found broadly consistent
results when they applied an upper limit of 500 cells/mm3.

The definition of dynamic treatment regimes need not be limited to just one time-dependent
covariate. Time-independent covariates, such as sex or age, could be easily incorporated via
interactions with treatment, as outlined in section 4.2.4, although we had limited power to ad-
dress this. Further, other time-dependent covariates could be incorporated, such as HIV RNA
levels or clinical events. For example, D Ford (personal communication, 25 March 2011) in-
corporated both previous clinical events and observed CD4 count to define dynamic treatment
regimes related to switching from first- to second-line ART, and investigated their effects on
mortality in HIV-infected persons in resource-limited settings. However, in our study, develop-
ment of AIDS was part of the endpoint and therefore by definition could not be incorporated
into the dynamic treatment regime. It has been shown in high-income settings that, in patients

with CD4 counts > 350 cells/mm3, higher levels of HIV RNA are known to be associated with
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higher risk of AIDS and non-AIDS events (Reekie et al., 2011), but typically the only covariate
consistently used in the treatment decision-making process would be CD4 count, in line with
clinical guidelines (Gazzard and on behalf of the BHIVA Treatment Guidelines Writing Group,
2008; Panel on Antiretroviral Guidelines for Adults and Adolescents, 2009), therefore the value
of extending the dynamic regime definition to include HIV RNA levels in our setting is not
clear. Other disease areas may naturally have more complex regimes. For example, Taubman
et al. (2009) incorporated a range of factors, such as BMI, exercise, alcohol and diet, to define

a set of regimes and examine their collective impact on coronary heart disease.

5.5.4 Other causal methods

Other approaches such as the g-formula or g-estimation of SNMs could be used for the estimation
of causal effects of treatment. Regardless of the method employed, such estimation in the
presence of time-dependent confounding requires the assumption of no unmeasured confounders.
This is similar to any observational analysis, except here this extends to time-dependent as well
as time-independent confounders. All approaches also require correctly-specified models.

G-estimation of SNMs has the potential to be more efficient than MSMs and with fewer
parametric assumptions than the g-formula (Daniel et al., 2011), but SNMs are less robust
to model misspecification and are not intuitive to use. MSMs more closely resemble standard
methods and so the implementation and interpretation of results using these models is more
straightforward. For example, the hazard ratios obtained via the MSMs may be more familiar
than the results from the AFT SNMs proposed in section 1.2.2. However, MSMs require the
assumption of positivity, that is, at all levels of the covariate and treatment history, there
is a non-zero probability of the possible future treatments (Cole and Herndn, 2008). This
is not a requirement for g-estimation of SNMs nor the g-formula. In addition, the artificial
censoring process required for the application of dynamic MSMs may result in the censoring of
many treatment initiations, and hence potential loss of power. While the g-formula can easily
incorporate highly complex dynamic regimes, it is computationally intensive and perhaps most
useful when a small number of dynamic regimes are to be compared.

It should be noted that there are similarities between the application of the g-formula and
the observational simulation studies we performed. Recall (section 1.2.1) that there are three
steps to applying the g-formula: the first step is to estimate the parameters of the conditional
distributions of each of the current covariates and the outcome, given covariate and treatment

history; the second step requires simulation of a cohort based on the estimated distributions and
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the treatment regime of interest; lastly, the simulated cohort is used to estimate the outcome
under that treatment regime. For our observational simulation studies, we a priori defined
the covariate, treatment and outcome distributions, which were conditional on covariate and
treatment history. We then simulated a cohort using those distributions, similarly to the second
step of the g-formula. However, in our simulation studies, consideration of the treatment regime
of interest was not applied at this step, but rather after expansion of the simulated cohort, by
censoring patients when no longer compliant with each regime. The final step of our simulation
studies was to estimate the outcome, as in the third step of the g-formula, except that inverse
probability weighting was applied to account for the potentially informative censoring of non-
compliant patients. In addition, estimation of the outcome is performed separately for each
regime under the g-formula, whereas the dynamic MSMs allow us to model the outcome across

all regimes at once.

5.6 Final conclusions

Causal methods provide an opportunity to address many questions from observational studies,
which it would otherwise not be possible to consider without potentially suffering major bias
due to time-dependent confounding. It is infeasible to conduct sufficient randomised controlled
trials to address all these questions. However, we have shown that answers from causal analyses
may depend strongly on their implementation in ways which may not be obvious to a casual
reader, particularly when attempting to compare results across different studies. Researchers
conducting such analyses should be aware of these limitations and present multiple sensitivity

analyses to delineate the effect of their assumptions on the results.
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Appendix A

Theory for simulation study

A.1 Conditional multivariate Normal distribution

A.1.1 Theorem

x1
Let z = be a Normally-distributed n-dimensional random vector, where x1 and xo have
Z2

dimensions p and ¢ respectively (p + ¢ = n). Denote the mean vector and variance-covariance

matrix for x by:

Y11 212
W= i and ¥ =
Mo 2?2 Y2

Then the conditional distribution of xzo given x1 = a is also Normally-distributed with mean

vector and variance-covariance matrix given by:

Pojp = M2t ShEi (e — )
and Bgp = Y2 — U151 01

See for example Wang (2006) for proof.

A.1.2 Application of theorem for CD4 trajectory: simulating slope after

treatment initiation, given CD4 count at treatment initiation

As in the main text, R is the square-root true CD4 count at treatment initiation, and S7 and S
are the slopes during the first year and from one year after treatment initiation respectively. Our

model states that these three are jointly Normally-distributed with mean vector and variance-
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covariance matrix given by:

2
KR OR OR,S1 OR,S2
_ — 2
K= Hsy and ¥ = OR,5: s, 051,52
2
/’I/SQ O'R?S2 0-51752 USQ

Therefore, the conditional distribution of S; and Ss given R = p is also Normally-distributed

with mean vector given by:

IU‘Sl i OR,S: 1

O,T(P — f19)
/’LSQ OR,S R
and variance-covariance matrix:
2
051 05155 UR,Sl 1
9 - UT OR,S, OR,Sy
05152 O-SQ JR,SQ R
2 2
0g, 0818 1 OR.5 OR,510R,S>
- T2
2 o 2
05,5, 0%, B\ ORSiORS,  ORg,

A.1.3 Application of theorem for Brownian motion: simulating W (t;) given

W(t1)

Time was split into monthly intervals, therefore let ¢; = to — 1/12. Then we have:

Var[W(tl)} = o0t1 = 5t2(1 — 1/12t2)
Va’l“[W(tQ)} == (Stg
ty —1/12
corr[W (t1), W(t2)] = =+/1—-1/12t9
(ta — 1/12)t5
cov[W (1), W(t2)] = /(1 —1/12t5) 0ty (1 — 1/12t3) 6to = Oty (1 — 1/12t)
and so W(tz) given W(t1) = w is Normally-distributed with mean vector simply w, since

Var|[W(t1)] = cov[W(t1), W (t2)], and variance-covariance matrix given by:

_— [bt2(1 — 1/126))* 6
2T St (1—1/12ty) 12
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Appendix B

Example code

Here we provide some example code for estimating standard, history-adjusted and dynamic
MSMs using Stata (StataCorp, 2009). The data are set up with one observation per patient per
time period (month). Some key variables are defined in Table B.1. Throughout the code, text

in brackets such as <xxx> indicates insertion of the variables xxx as appropriate.

B.1 Standard MSMs

*** WEIGHT ESTIMATION

* DENOMINATOR

/* fit treatment model for denominator of weights, in periods up to and
including treatment initiation */

noi xi:logistic trt <time covariates> <baseline covariates> ///
<time-dependent covariates> if period<=initperiod|initperiod>=.

gen insample=e (sample)

/* predicted probability of treatment based on the denominator model; after
treatment initiation, pr(trt)=1 */

predict pred ptrt if insample

replace pred ptrt=1 if initperiod<. & period>initperiod

* predicted probability of OBSERVED treatment based on the denominator model

Variable name Description

patient Unique patient identifier

period Time period

trt Indicator for being on treatment in a given period

initperiod Period in which the patient initiated treatment
(missing if not observed to initiate treatment)

event 1 Lagged event indicator

Table B.1: Definition of key variables.

253



gen ptrt denom=pred ptrt*trt+(l-pred ptrt)* (l-trt)

drop pred ptrt

* NUMERATOR

noi xi: logistic trt <time covariates> <baseline covariates> if insample

* predicted probability of treatment based on the numerator model

predict pred ptrt if insample

replace pred ptrt=1 if initperiod<. & period>initperiod

* predicted probability of OBSERVED treatment based on numerator model

gen ptrt num=pred ptrt*trt+(l-pred ptrt)*(l-trt)

drop pred ptrt

/* at each point, probability of treatment/censoring history is product to
that point. Last record will have predicted probability of treatment
missing (since trt=missing then), but don’t use last period anyway since
always looking at Y (k+1l). Keep original probabilities for use in the
history-adjusted and dynamic MSM work */

gen ptrt denomORIG=ptrt denom

sort patient period

by patient: replace ptrt denom=ptrt denom*ptrt denom[ n-1] if n>1

by patient: replace ptrt num=ptrt num*ptrt num[ n-1] if n>1

* WEIGHTS

* non-stabilised

gen weightns=1/ptrt denom

* stabilised

gen weights=ptrt num/ptrt denom

*** QUTCOME ESTIMATION

* using the stabilised weights (note, untruncated)

noi xi: logistic event 1 trt <time covariates> <baseline covariates> ///

[pw=weights], robust cluster (patient)

B.2 HAMSMs

*** DATA EXPANSION

/* if a patient has X intervals of follow up, then need 1 copy of first
interval, 2 copies of the second, ..., and X copies of the last. Then
for each patient, have 1 trial starting at each month */

gen int exp=period+l

/* BUT for looking at effect of initiate vs defer, once patient has

initiated treatment, don’t need further "trials" */
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replace exp=initperiod+l if period>initperiod

/* because of the way the data is set up, trt will be missing for each of
the last records, therefore don’t actually want to consider that a new
trial, and we’re assuming the any censoring weighting has already been
sorted out */

replace exp=exp-1 if trt>=.

expand exp

drop exp

sort patient period

* eg trial=12 means the trial starting at month 12 onwards

by patient period: gen int trial= n-1

* trial time

gen trialtime=(period/12)-trial/12

replace trialtime=0 if trialtime<0.00001

/* for each trial, the treatment regime (or randomisation, rx) is
determined by the trt in the first period*/

sort patient trial trialtime

by patient trial: gen byte rx=trt[l]

/* the "baseline" covariates are those at the start of that trial, ie in
the first period */

foreach var of varlist <trial-baseline covariates> {
by patient trial: gen b_ ‘var’=‘var’ [1]

}

/* flag for censoring due to initiation of treatment after deferring in
first period of the trial (won’t include any records from that
initiation onwards [including the one where initiate]) */

gen byte censdef=trt==1 & rx==

* generate indicator for the records to be used in the models

gen byte inmodel=(rx==0 & trialtime>0 & (period<=initperiod | initperiod>=.))

*** WEIGHT ESTIMATION

* NUMERATOR

noi xi: logistic trt <time covariates, for trial and trial-time> ///
<true-baseline covariates> <trial-baseline covariates> if inmodel==

/* trt weights only applied from the second month (ie period=1) onwards,
since in the first month (period=0), that’s when the "randomisation" is
determined; so trt weights should be =1 in the first month. Also
treatment weights should be missing after initiation in patients

"randomised’ to defer, and treatment weights should be =1 for patients
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"randomised’ to initiate (just treatment weights applied to those
"randomised’ to defer) */

* predicted probability of treatment based on the numerator model

predict pred ptrt if e (sample)

* predicted probability of OBSERVED treatment based on the numerator model

gen ptrt numHA=pred ptrt*trt+(l-pred ptrt)* (l1-trt)

drop pred ptrt*

* DENOMINATOR

* same as for standard MSMs, with some adjustments below

gen ptrt denomHA=ptrt denomORIG

/* at each point probability of treatment history is product to that point,
OVER PATIENT/TRIAL. In first month of each trial, set =1, and after
treatment initiation in patients who initially Deferred, make treatment
probabilities missing, and in patients ’randomised’ to initiate, set
treatment weights =1 */

replace ptrt denomHA=1 if trialtime==0|rx==

replace ptrt numHA=1 if trialtime==0|rx==

replace ptrt denomHA=. if censdef==

replace ptrt numHA=. if censdef==

sort patient trial trialtime

by patient trial: replace ptrt denomHA=ptrt denomHA*ptrt denomHA[ n-1] if n>1

by patient trial: replace ptrt numHA=ptrt numHA*ptrt numHA[ n-1] if n>1

* WEIGHTS

gen weightnsHA=1/ptrt denomHA

gen weightsHA=ptrt numHA/ptrt denomHA

*** QUTCOME ESTIMATION

noi xi: logistic event 1 rx <time covariates, for trial and trial-time> ///
<true-baseline covariates> <trial-baseline covariates> [pw=weightsHA] ///

if censdef==0, robust cluster (patient)

B.3 Dynamic MSMs

*** DATA EXPANSION

* apply program dynexpr - see below

*** WEIGHT ESTIMATION

* if wish to stabilise the weights (only if no grace period):

noi xi: logistic censreg <time and regime rx modelled flexibly> ///

<baseline covariates> if (time<=censregtime | censregtime>=.)
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predict pred pcens if e(sample)

gen puncens=l-pred pcens

replace puncens=0 i1f censregtime<. & time>censregtime

sort patient rx time

by patient rx: replace puncens=puncens*puncens|[ n-1] if n>1

* apply program dynwt - see below

*** QUTCOME ESTIMATION

/* the rx and time covariates should be flexibly modelled, and include
interactions; the results can then be used to predict and plot survival */

noi xi: logistic event 1 <rx and time covariates> if censreg==0 ///

[pw=weightnsDYN], robust cluster (patient)

B.3.1 Program dynexpr
This program expands the data into one record per patient per regime (per time period).

prog def dynexpr

vers 10.1

syntax, cdédvar (string) =xu(integer) x1 (integer) xj(integer) m(integer) ///
[approach (integer 0) immed]

/* Expansion for dynamic MSM based on regimes defined by CD4 (given by
variable cdédvar) as: xl(xj)xu. Note: should have already fit treatment
denominator models and got Pr (observed treatment|time-dependent
covariates) in each interval
- m = grace period (l=no grace period)

- approach = approach 1 or 2 of Cain et al 2010, if using a grace period
with m>1
- immed should be specified if want to consider a regime of immediate

treatment initiation */

qui {
noi dib "dynexp: expansion based on ‘x1’ (‘xj’) ‘xu’ [‘immed’]"
noi dib "GRACE PERIOD = ‘m’ (l=no grace period); approach ‘approach’"
* checks

assert ‘xl’<‘xu’

assert ‘m’>=1

assert ‘approach’==0 if ‘m’==1

assert ‘approach’==1]‘approach’==2 if ‘m’>1

* expand the dataset, with variable rx representing faux randomisation

compress
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local nreg=(‘xu’-‘x1")/'xj" + 1
if "‘immed’"!="" local nreg=‘nreg’+l
confirm integer number ‘nreg’
expand ‘nreg’
sort patient time
local i=1
gen rx=0
assert ‘cd4var’<10000 if ‘cd4var’<.
local rxlist="'x1’('xj’") ‘xu’"
if "immed’"!="" local rxlist="‘rxlist’ 10000"
foreach x of numlist ‘rxlist’ {
by patient time: replace rx=‘x’ if n==‘i’
local i=‘i’+1
}
* indicator for when eligible for treatment initiation according to regime
gen elig trt=(‘cdd4var’<rx)
sort patient rx time
by patient rx: replace elig trt=sum(elig trt)
replace elig trt=1 if elig trt>1 & elig trt<.
assert elig trt==0|elig trt==
/* grace variable (if applicable) =1 for first eligible interval, 2 for
second, ..., m for mth; missing outside of the grace windows */
if ‘m’>1 |
sort patient rx time
by patient rx: gen grace=1 if elig trt==1 & ( n==1 | n>1 & ///
elig trt[ n-1]1==0)
local k=2
while ‘k’<='m’ {
by patient rx: replace grace=‘k’ if grace[ n-‘k’+1]==1 & n>‘k’-1
local k=‘k’+1
}
assert grace>=1 & grace<='m’ 1if grace<.
assert elig trt==1 if grace<.
}
* censor if initiate before eligible
gen censreg=(trt==1 & elig trt==0)
gen _censregind=censreg

/* censor 1f initiated too late
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- no grace period: if did not initiate in first eligible interval
- grace period: if did not initiate in (by) mth eligible interval
(since once on always on, can just look forward to mth) */

if '‘m’==1 replace censreg=1l if trt==0 & elig trt==

if ‘m’>1 replace censreg=1l if trt==0 & elig trt==1 & grace=='‘m’

replace censregind=2 if censreg==1 & censregind==

* remain censored after first censored from regime

sort patient rx time

by patient rx: replace censreg=sum(censreq)

replace censreg=1l if censreg>l & censreg<.

assert censreg==0]|censreg==

lab var censreg "cens, noncomp with dyn regime"

sort patient rx time

by patient rx: egen censregind=max(_censregind)

replace censregind=0 if censreg==

drop _censregind

assert censregind==0|censregind==1|censregind==

lab def censregindlab 1 "early" 2 "late"

lab val censregind censregindlab

* when censored

sort patient rx time

by patient rx: gen censregtime=time if censreg==1 & ///
(n==1 | n>1 & censreg[ n-1]==0)

by patient rx: egen censregtime=max( censregtime)

drop censregtime

} /* end of qui */

end

B.3.2 Program dynwt

This program estimates the weights, assuming that the denominator probabilities within each
time period have already been derived (and the numerator probabilities, if using stabilised

weights).

prog def dynwt

vers 10.1

syntax, m(integer) approach(integer 0) [stab]
/* - m indicates the grace period length

- approach indicates the approach as per Cain et al 2010
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- specify stab option if wish to stabilise the weights - only possible

here with approach 1 */

qui {

assert ‘approach’==1| ‘approach’==

if ‘approach’==2 assert "‘stab’"==""

gen ptrt denomDYN=ptrt denomORIG

/* if have grace period, AND APPROACH 1, then no-one is censored in the
first m-1 intervals of the grace period, irrespective of whether
initiated treatment or not; therefore force DENOMINATOR probabilities

=1 there */

if ‘approach’== replace ptrt denomDYN=1 if grace>=1 & grace<'m’ & grace<.

/* if have grace period, AND APPROACH 2, then need to amend the numerator
of the weights during the grace period. Haven’t taken inverse of
treatment probabilities yet therefore multiply by (throughout grace
period, including m): 1/[1/(m+1-3)]=(m+1-j) where initiate,
1/[1-{1/ (m+1-3) }]=(m+1-j)/(m-j) if don’t initiate. NB this will create
infinity (=missing) in mth grace period if treatment not initiated
there, but doesn’t matter since that (and all subsequent) interval (s)
will be censored and so won’t have weights anyway. No change if after
treatment initiation - interval-specific-weights there will be =1
(check for this just below) */
if ‘approach’==2 {
sort patient rx time
by patient rx: replace ptrt denomDYN= ///
ptrt denomDYN* (‘m’+l-grace)/ ('‘m’-grace) if grace<. & trt==

by patient rx: replace ptrt denomDYN=ptrt denomDYN* (‘m’+l-grace) ///
if grace<. & trt==1 & ( n==1 | n>1 & trt[ n-1]==0)

/* note that the ’'probabilities’ here may be >1 after adjustment of
the numerator of the non-stabilised weights with grace period and

under approach 2 - so the non-stabilised weights may be <1 */

/* probability of remaining uncensored at each time point (while
uncensored) is the product of probabilities; this multiples over
time when censored too but doesn’t matter since we won’t take inverse
for weights there */

sort patient rx time

by patient rx: replace ptrt denomDYN=ptrt dnomDYN*ptrt denomDYN[ n-1] ///

if n>1
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* weights

gen weightnsDYN=1/ptrt denomDYN if censreg==0

if "‘stab’"!="" gen weightsDYN=puncens/ptrt denomDYN if censreg==
} /* end of qui */

end
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