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Abstract 

 

Developing a bioprocess model can not only reduce cost and time in process 

development, but now also assist the routine manufacturing and guarantee the 

quality of the final products through Quality by Design (QbD) and Process 

Analytical Technology (PAT). However, these activities require a model based 

process design to efficiently direct, identify and execute optimal experiments for the 

best bioprocess understanding and optimisation. Thus an integrated model based 

process design methodology is desirable to significantly accelerate bioprocess 

development. This will help meet current urgent clinical demands and also lower the 

cost and time required. This thesis examines the feasibility of a model based process 

design for bioprocess optimisation. A new process design approach has been 

proposed to achieve such optimal design solutions quickly, and provide an accurate 

process model to speed up process understanding.  

 

The model based process design approach includes bioprocess modelling, model 

based experimental design and high throughput microwell experimentation. The 

bioprocess design is based on experimental data and a computational framework 

with optimisation algorithm. Innovative model based experimental design is a core 

part in this approach. Directed by the design objectives, the method uses D-optimal 

design to identify the most information rich experiments. It also employs Random 

design and Simplex to identify extra experiments to increase the accuracy, and will 

iteratively improve the process design solutions.  

 

The modelling and implementation method by high throughput experimentation was 

first achieved and applied to an antibody fragment (Fab’) precipitation case study. A 

new precipitation model based on phase equilibrium has been developed using the 

data from microwell experimentation, which was further validated by statistical tests 

to provide high confidence. The precipitation model based on good data accurately 
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describes not only the Fab’ solubility but also the solubility of impurities treated as a 

pseudo-single protein, whilst changing two critical process conditions: salt 

concentration and pH. The comparison study has shown the model was superior to 

other published models. The new precipitation model and the Fab’ microwell data 

provided the basis to test the efficiency and robustness of the algorithms in model 

based process design approach. The optimal design solution with the maximum 

objective value was found by only 5 iterations (24 designed experimental points). 

Two parameterised models were obtained in the end of the optimisation, which gave 

a quantitative understanding of the processes involved. The benefit of this approach 

was well demonstrated by comparing it with the traditional design of experiments 

(DoE). 

 

The whole model based process design methodology was then applied to the second 

case study: a monoclonal antibody (mAb) precipitation process. The precipitation 

model was modified according to experimental results following modelling 

procedures. The optimal precipitation conditions were successfully found through 

only 4 iterations, which led to an alternative process design to protein A 

chromatography in the general mAb purification platform. The optimal precipitation 

conditions were then investigated at lab scale by incorporating a depth filtration 

process. The final precipitation based separation process achieved 93.6% (w/w) mAb 

yield and 98.2 % (w/w) purity, which was comparable to protein A chromatography.  

 

Polishing steps after precipitation were investigated in microwell chromatographic 

experimentation to rapidly select the following chromatography steps and facilitate 

the whole mAb purification process design. The data generated were also used to 

evaluate the process cost through process simulations. Both precipitation based and 

protein A chromatography based processes were analysed by the process model in 

the commercial software BioSolve under several relevant titre and scale assumptions. 

The results showed the designed precipitation based processes was superior in terms 

of process time and cost when facing future process challenges. 
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Chapter 1.  Introduction 

 

1.1 Perspective and motivation 

 

In the past three decades, the world has witnessed rapid growth and significant 

transformation in biotechnology, not only in biological areas involving genomics, 

cell and protein engineering, but also in the engineering field for bioprocess 

manufacturing, such as large-scale fermentation and downstream optimisation 

(Titchener-Hooker et al., 2008). A considerable number of candidate therapeutic 

proteins promising lucrative returns for biotech companies, increases the need for 

successful large-scale protein production. Meanwhile, the pressures for new low-cost 

and faster pharmaceutical production also arise from various other aspects, such as 

unsatisfied market needs, growing competition between companies and economic 

constrains of healthcare systems worldwide (Gottschalk, 2003). These needs 

inevitably place great pressure on typically expensive and time-consuming 

bioprocess development, mainly focusing on upstream fermentation and downstream 

purification.  

 

With the successful scaling-up of bioreactor size up to 20,000L (Farid, 2007) and 

dramatical protein concentration improvement in cell culture broth from 5-50 mg/L 

to in excess of 5 g/L nowadays, downstream purification bioprocesses are being 

gradually identified as the crucial limiting step in biopharmaceutical development 

(Aldington and Bonnerjea, 2007; Birch and Racher, 2006; Rito-Palomares, 2008; 

Titchener-Hooker et al., 2001). Since the technological advances in downstream 

have failed to keep up with upstream productivity increase, 50-80% of the total 

manufacturing cost for one biotherapeutical product is from purification and 

polishing processes (Lowe et al., 2001). As a result, many manufacturers and 

researchers are exploring different technologies and platforms to reduce cost by such 

methods as decreasing the number of purification steps.  
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However, for a potential biotherapeutical product, the downstream bioprocess 

development is not only costly considering the capital investment and manpower, but 

also time limited. The process development is normally set up in pre-clinical trails 

and needs scaling-up, optimising and successfully transferring to multi-scale 

commercial manufacturing facilities under Good Manufacturing Practice (GMP) 

before clinical trial phase 3 and authority inspection can be implemented (Nfor et al., 

2009). Once the manufacturing process has been reported to a regulatory body in a 

clinical trial dossier or market authorisation application, it is very difficult and 

complicated to change any operation and specification later unless there are 

abundant evidences to convince the regulatory authority that the safety, quality and 

efficacy of the product are equivalent, or better in the modified processes (Food and 

Drug Administration (FDA), 1995a, 1996). Moreover, sponsors take great risks with 

possible failure in clinical trials and marketing authorisation approval, with overall 

18-29% historical success rate (Steinmeyer and McCormick, 2008), which is a large 

cost impediment.  

 

The current downstream process development method normally initialises the 

bioprocess design by investigating several conditions in laboratory or pilot plant 

scale studies, and then scales up to large scale production in a general purification 

platform. This method invests much time, capital and efforts to design and optimise 

bioprocesses at both scales, but in the end may achieves little understanding and few 

improvements, because the process optimisation highly depends on experiences and 

lacks a proper design approach. Therefore, a systematic process design and 

development strategy at an early stage is extremely necessary to investigate 

bioprocesses, and so achieve manufacturing optimisation in a rapid and inexpensive 

way.  

 

1.2 Downstream recombinant human antibody purification platform 

 

Recombinant human antibodies are playing an important role in the pharmaceutical 
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industry with many successful applications including infectious diseases, cancer and 

autoimmune diseases, etc. In 2004, half of the new biopharmaceutics that were 

granted market approval in the USA and Europe were antibody-based products (Li et 

al., 2005). It is predicted that the monoclonal antibody products will have a large 

market share in pharmaceuticals and keep a significant growth rate in the near 

decade (Farid, 2007; Sommerfeld and Strube, 2005). Thus the downstream 

bioprocess development in biopharmaceutical industry mainly focuses on human 

antibody purification from mammalian cell culture.  

 

Although the sequence of amino acids is different from one antibody to another, the 

structure of protein shares a basic biological framework and has some unique regions, 

e.g. Fc region. However, it is impossible to define a truly generic purification 

process for any antibody without knowledge of the operating conditions change 

(Kelley et al., 2009), but based on the similar characteristics of human antibodies, a 

purification platform with a similar sequence of bioprocesses can be achieved. 

 

Currently, the general downstream purification platform for monoclonal antibody 

(mAb) consists of several chromatographic steps, starting with protein A affinity 

capture (Gottschalk, 2008; Lowe et al., 2001; Shukla and Thommes, 2010). Then the 

product is further polished by ion exchange chromatography and other processes 

such as ultrafiltration and virus inactivation (Sommerfeld and Strube, 2005). Using a 

platform approach has several advantages including greater harmonisation of process 

quality control and facility management in various manufacturing sites and better 

understanding for different products in the biopharmaceutical industry (Nfor et al., 

2009). However, it is exactly the practical difficulties of bioprocess design and 

optimisation in this platform at the development stage that cause the cost and time 

problems mentioned above.  
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Figure 1.1 A general platform for downstream antibody purification. 
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1.2.1 Protein A affinity chromatography 

 

As shown in Figure 1.1 (Shukla et al., 2007), the general platform starts with a 

clarified cell culture broth. A typical protein A chromatographic procedure needs the 

column equilibrated by neutral pH buffer first and then the cell free feedstock loaded 

under neutral pH conditions. The monoclonal antibody binds to the protein A ligand 

on the resin when the feedstock passes through the column. Most impurities flow 

through the column and will be washed out in the following washing steps. The 

antibody will be recovered by eluting in an acidic buffer, e.g. pH 3.5 sodium citrate 

buffer (Ghose et al., 2007). Since the solution is in an acidic buffer, it is relatively 

convenient to subsequently inactivate the virus (Phillips et al., 2007).  

 

Protein A chromatography is the base of this platform, which is widely adopted in 

industrial commercial antibody production (Titchener-Hooker et al., 2008). However, 

there are several drawbacks to this technique. First of all, the cost of this process is 

very high due to low binding capacity, expensive resin and large volumes of buffer 

consumption (Ghose et al., 2007; Lowe et al., 2001). Considering that the 

requirement of purified antibody will significantly increase in the near future, the 

only solution is to increase the diameter of chromatographic column until the 

physical constraints, around 2m (Gottschalk, 2008) or invest in additional protein A 

chromatography plants, both of which will dramatically increase capital investment 

requirement (Kelley, 2007; Werner, 2004).  

 

Due to the recent advances in upstream, high antibody titres at 5 g/L or more can be 

achieved in the future (Wurm, 2004). Meanwhile, the impurities, such as host cell 

protein (HCP), aggregates and DNA etc., also increase due to longer fermentation 

time, which may cause potential problems in protein A chromatography, e.g. easy 

blockage or pressure drop (Roque et al., 2007; Shukla et al., 2005). Secondly, the 

procedures of chromatography require several cycle phases in different buffer 

solutions. Long processing times including cleaning and regeneration, the 
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preparation and storage of large volumes of solution create a time bottleneck in 

manufacturing (Ghose et al., 2007; Shukla et al., 2007). Moreover, any leakage of 

protein A ligand from the purification step poses the potential risk to patients, and so 

requires extensive analysis and extra purification steps to remove it (Sommerfeld and 

Strube, 2005). 

 

Although protein A chromatography has several drawbacks as mentioned above, it is 

still the most favoured process in the industry due to its high selectivity by affinity 

and relatively fixed, robust operation conditions (Roque et al., 2007). In the early 

development stage, with limited time and feedstock, protein A chromatography is 

currently the first choice for antibody purification because of its robustness and 

efficiency. However, once the process capacity requirement is more than protein A 

chromatography can provide in the future high titre, large scale mAb production, an 

extremely large number of protein A chromatographic purification cycles will be 

needed. It significantly increases either process time and/or cost per batch, which 

may make protein A chromatography too expensive to be considered in the platform. 

Thus alternative capturing processes will be preferred and investigated in future 

process development activity as early as possible rather than protein A 

chromatography. 

 

1.2.2 Polishing chromatography and other purification processes 

 

Several polishing steps (Figure 1.1), such as cation and anion exchange 

chromatography (IEX), follow after initial affinity capture in the platform to further 

remove impurities, e.g. host cell protein (HCP), genomic DNA etc, in order to 

achieve quality requirements set by regulatory authorities (Li et al., 2005; Shukla et 

al., 2007). In contrast to robust protein A chromatography, process development for 

IEX and other chromatographic processes is very complex. Although the binding of 

antibodies or other proteins to IEX is basically due to ionic interactions, the type of 

resins, ligands, buffer conditions and the property of the protein can influence the 
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process significantly (Gagnon, 2007; Yamamoto et al., 1983). The operation mode, 

e.g. binding-elution or flow through mode, step elution or gradient elution, and 

operation conditions, such as flowrate, also need careful investigations during 

process development (Ishihara and Yamamoto, 2005). Moreover, the scale-up 

development from lab or pilot scale to manufacture scale needs full examination and 

validation (Kaltenbrunner et al., 1997; GE Healthcare, 2009b). Sometimes, tradeoffs 

are needed as the optimal conditions found in lab scale can not be achieved in 

industrial scale, for instance, the optimal flowrate found in small scale exceeds 

critical velocity in large scale chromatography.  

 

Besides ion exchange chromatography (IEX), many other separation techniques, 

such as hydrophobic interaction chromatography (HIC), absorption membrane 

filtration, gel filtration chromatography and ultrafiltration, are available and 

incorporated in polishing step (Nfor et al., 2008). Selecting proper candidate 

polishing processes from various available bioprocesses to form a reasonable 

sequence and subsequently screening operation conditions are complicated and time 

consuming. This part of development is normally achieved through large amounts of 

experiments and combining with researchers’ experience and prior knowledge. Thus, 

a proper design method should be proposed to rationalise the bioprocess selection, 

the sequence of unit operations and operation conditions while minimise the time 

and materials requirement. Then whole polishing processes rather than a single 

process should be evaluated based on the overall performance.  

 

1.2.3 Alternative processes to reduce chromatographic steps in platform  

 

As already mentioned, downstream process development faces extra challenges from 

sophisticated upstream technology. The successful increases in cell culture titre make 

the downstream chromatographic process rate limiting, since all chromatography 

processes have limited upper capacity and can not be operated continuously (Shukla 

et al., 2007). 
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Currently, several non-chromatographic bioprocesses are being investigated and 

improved with the intention to replace one or two chromatographic steps, especially 

the low throughput protein A chromatography (Przybycien et al., 2004; Thommes 

and Etzel, 2007). Polyelectrolytes were successfully used by McDonald et al. (2009) 

for selective antibody precipitation. Ma and his co-workers (2010) then 

demonstrated polyamines precipitation as an alternative antibody separation process. 

Some researchers have evaluated the potential use of aqueous two phase systems 

(Andrews et al., 1996; Azevedo et al., 2009; Rosa et al., 2010) in antibody 

purification using PEG and salt solutions. High-performance tangential flow 

filtration (HPTFF) with absorption membranes also emerged as a new technology 

that enabled the antibody separation (Mohanty and Ghosh, 2007; Reis et al., 1999). 

All these innovative processes can achieve good antibody separation and the results 

were quite comparable to that of affinity separation.  

 

However, these processes are relatively less generic for any antibody than protein A 

chromatography due to their non-affinity mechanism. If there is one possible 

alternative process to replace protein A chromatography in the platform for future 

large scale purification, the process and the operation conditions will have to be 

defined and optimised case by case in most circumstances. Therefore, the material 

specificity caused by different alternative capturing processes will require more 

intensive, rapid downstream process development and evaluate capturing and 

following polishing steps as a whole at the early stage concerning quite broad 

aspects, from the selection and sequence of processes to individual operation 

condition optimisation (Nfor et al., 2008).  

 

1.2.4 Quality considerations in development and manufacture 

 

For therapeutic antibody production, it is very important to address the quality and 

safety of the products, mandatorily required by regulatory bodies. Previously, the 

strict quality requirements and effort were mainly focused on manufacturing rather 
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than process development, quality controlled by specifications rather through 

understanding. Now both the regulatory authorities and industries desire the quality 

by design (QbD) concept which was initiated by the FDA and widely accepted in the 

industry (Yu, 2007). It is a comprehensive approach to product development and life 

cycle management with the following elements: design and developing processes, 

identifying critical quality attributes, process parameters and sources of variability 

(FDA, 2006). A thorough understanding of process parameters impacts and 

interactions on product quality should be obtained on a defined design space in the 

process development phase (Kelley et al., 2009). 

 

It is an important change from the current regulatory view and efforts to guarantee 

the quality, efficacy and safety of the therapeutic products as early as possible 

(European Medicines Agency (EMA), 2000). In most cases, a mathematical equation 

or model, no matter whether derived from theory or purely empirical, is highly 

beneficial in the early bioprocess development in order to predict, control and 

analyse quality effects (Yu, 2007; Rathore, 2009). Nevertheless, currently there is no 

general condition or model which can be directly applied to different bioprocesses 

and products. Even under the same purification platform, the purification conditions 

and processes are still developed for one product and may vary significantly between 

each other. Therefore, a general systematic approach is urgently needed in order to 

develop and establish the relationship between the critical process parameters (CPP) 

and critical quality attributes (CQA) (ICH, 2008) while appreciating the differences 

of different products and their effects. 

 

1.3 Existing solutions for bioprocess development 

 

The issues mentioned above are widely recognised by researchers, so that various 

approaches have been designed and applied, with the aim to solve the problems or 

fulfil the requirements to accelerate downstream bioprocess development. These 

approaches include bioprocess modelling, experimental design and high throughput 
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technology (Carrier et al., 2010; FDA, 2004; Lee and Gilmore, 2006; Mandenius and 

Brundin, 2008; Milavec et al., 2002; Nfor et al., 2009).  

 

1.3.1 Bioprocess modelling 

 

1.3.1.1 The benefits of process modelling 

 

Conventionally, process designs and improvements in industrial processes are 

achieved by trial and error methods, i.e. by empirical methods guided by intuition 

and experience. In this way, luck is an essential element of success and the method 

gives little insight into the processes involved (Simutis et al., 1997). Even a few 

years ago modelling has not been considered as an important element for industrial 

practice but was mainly used by academics. This is because it requires enormous 

efforts and resources to achieve an accurate bioprocess model.   

 

Recently, modelling has attracted more attention from industry (Velayudhan and 

Menon, 2007). The main driving force behind this transition is the emerging 

requirements from Quality by Design (QbD) and Process Analytical Technology 

(PAT), highly suggested by regulatory bodies, such as US FDA and The International 

Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH). These concepts and technologies aim to 

utilise mathematical modelling methods to enhance the understanding of 

complicated bioprocesses in pharmaceutical manufacturing, with the long term 

benefits for companies to develop and design processes more quickly, carry out 

online analysis with risk management and facilitate batch release (Mandenius and 

Brundin, 2008).  

 

Several pharmaceutical companies have applied modelling to processes and gained 

benefits arising from their utilisation (Chhatre et al., 2011; Jimenez-Gonzalez and 

Woodley, 2010; Oatley et al., 2005; Rohner and Meyer, 1995). For instance, Lonza, a 
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Swiss company, found modelling very helpful to indentify the most cost-effective 

operation mode, and it also helped to develop and practice an adequate process 

control system (Vasic-Racki et al., 2003). Statistical or mathematical models, such as 

chromatography general rate model, now coupled with a powerful modern computer 

and special designed software, e.g. COMSOL (Fang, 2010), are far more effective in 

process design and productivity optimisation than conventional trial and error 

pathway (Banga, 2004; Van Impe, 1996; Schubert et al., 1994; Simutis et al., 1997).  

 

The performance of a process sometimes, depends strongly on the operation of a few 

key unit operations (Gosling, 2005). If a mathematical model can describe the 

performance characteristics of one key operation with known input and control 

parameters, it will significantly reduce the number of experiments, which not only 

decrease the expense but also reduce the development time. That is exactly the 

classical and essential aim of the establishment of a bioprocess model. Now, besides 

its function in cost and time reduction, in the framework of QbD and PAT, the 

bioprocess model developed in the early research and development stage can go 

beyond the laboratory to benefit the routine manufacturing and guarantee the quality 

and safety of the final products. 

 

1.3.1.2 Current modelling methods 

 

Developing a bioprocess model is not an easy task, which itself is time-consuming 

and may involve complicated non-linearity computation due to the properties of 

biomaterials. An ideal process model should represent the process properties in a 

quantitative way and be able to predict the process results accurately and precisely 

by computational analysis and optimisation algorithms (Datta and Sabiani, 2007). 

However, an ideal model may not always exist and much effort is needed to develop 

in most cases due to the extremely complex biosystem. Moreover, a model may not 

be based on the fundamental science; in other words, it may be a totally empirical 

model based on quantitative conditional parameters.  
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Figure 1.2 Process modelling flowchart. 
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1.3.1.2.1 Traditional modelling procedure 

 

Figure 1.2 shows the traditional modelling flowchart. It starts by proposing a model 

structure according to the developer’s knowledge and aims. The model can be 

proposed based on theories, when the mechanism of process is well understood and 

can be described by mathematical equations, such as an enzyme kinetic model 

(Michaelis and Menten, 1913). In engineering practice, it is quite common to build 

an empirical process model, when the process mechanism is unknown or too 

complicated to form a mathematical relationship. If there is a relatively simple 

mathematical equation which can then fit the data, it will be used to describe the 

process, for instance, Cohn’s precipitation equation (Cohn, 1925). The third 

approach is to propose a hybrid model. A hybrid model is a mathematical equation 

combining the mechanistic knowledge with correlations of an empirical nature for 

aspects that are not yet fully understood (Galvanauskas et al., 2004). No matter 

which type of model is used, the model needs experimental data to fit and regress the 

parameters. The model fitting results will be evaluated and validated by statistical 

tests. Normally, it needs modifications or correlations to fine tune the differences 

between initial proposed structure and real experimental data often by few iterations.  

 

Although the flowchart is quite simple and straightforward, the real difficulties of 

initial model proposal and the following model modifications can complicate the 

modelling activities and requires the model developer to have good mathematical 

background. Another drawback of this conventional modelling procedure is that the 

model does not interact readily with experiments. The experimental data may not be 

sufficient in the number or quality for modelling. It is also the concern of 

experimental design, which will be discussed later, that how to design experiments in 

order to obtain effective information and achieve maximum process understanding 

with minimum experimental number. 
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1.3.1.2.2 Innovative artificial neural network modelling 

 

In order to simplify or solve the problems of model proposal and modification, 

artificial neural network (ANN) with hybrid process models can be used. The 

structure of the neural network based process model may be considered generic, in 

the sense that a specific initial model and its determination based on prior experience 

or mechanistic knowledge are not required (Massimo et al., 1991; Montague and 

Morris, 1994). ANN model is made up with highly interconnected layers of simple 

‘neuron-like’ nodes, which act as non-linear processing elements within the network. 

An attractive property of ANN is that given the appropriate network topology, they 

are capable of learning and characterising non-linear functional relationships through 

experimental data.  

 

The ANN based model is particularly useful in applications where the complexity of 

the data or task makes the design of such a function by hand impractical. It can be 

applied to modelling, especially time series prediction, sequential decision-making 

and data mining. Combining hybrid models with ANN is an advanced method to be 

used with either full mechanistic models or full empirical equations (Zorzetto et al., 

2000). It works very well in many applications and gives more accurate modelling, 

optimisation and process control (Rivera et al., 2007; Schubert et al., 1994).  

 

However, one significant weakness of ANN is that it requires a great amount of data 

to get the algorithm trained and it relies heavily on computers and software. This 

requirement creates a real dilemma especially for bioprocess development. In the 

early development stage, the design and optimisation method should reduce the time 

and material usage as much as possible. Moreover, when considering extra variables 

or when trying to apply the model to other similar biosystems, it needs training again, 

which is still time consuming and costly, without giving any valuable information 

from a previous model. The application area of this method is thus restricted to a 

system, which is able to provide thousands of data cheaply and rapidly, and only 
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some specialised personnel can understand the algorithms. Probably this is the 

reason why there is, as far as we know, not much applications of this technique in the 

real bioprocess industry yet (Galvanauskas et al., 1998). 

 

1.3.1.3 Existing bioprocess models and research 

 

There are several bioprocess models widely applied in downstream process 

development. Wong et al. (1996) applied a classic centrifuge model based on Stokes’ 

Law to describe the centrifugal processing for inclusion bodies separation from E. 

coli. This model is also used to understand the tubular bowl centrifuge by Jain et al. 

(2005) with the help of CFD software. The general rate model proposed by Gu (1995) 

is frequently used in chromatography research for modelling and optimisation. 

However, the coefficients in the model require extra isotherm studies to provide, 

based on the regression of empirical isotherm models, e.g. Langmuir adsorption 

model. Not all models can be directly used for the bioprocesses, though they have 

been well developed and validated. Kuehner et al. (1996) proposed a precipitation 

model based on thermodynamic theory with several thermodynamic parameters. It 

successfully explained the precipitation in a scientific way, but hardly had 

applications in the engineering field due to a lack of accurate parameters for a real 

complex feedstock. In contrast, other two empirical models developed by Niktari et 

al. (1990) and Habib et al. (2000) respectively can be utilised in the precipitation 

process with only a few engineering based parameters.  

 

If there is no process model structure available and meanwhile it is also impossible 

to create a new process model quickly, the current way is to make a temporary 

polynomial model based on statistical design of experiments (DoE) and thus achieve 

understanding and design through that polynomial equation. Although many 

published papers use DoE (Lee and Gilmore, 2006; Massimo et al., 1991) to model 

and optimise a bioprocess successfully, building a general pragmatic process model, 

which covers full range of all critical conditions in the process, still requires huge 
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efforts to collect experimental data, which is normally labour-intensive and costly. 

Therefore, the models available in the bioprocess industry are normally limited to 

certain design space or operations, e.g. Cohn’s precipitation equation works well in a 

relatively high salt concentration range rather than low salting-in range. Especially, 

any polynomial models from DoE highly depend on the design space (typically a 

small space) and thus cannot be used to predict outside the original design range 

even under the same process with same materials. This is the reason why these 

polynomial equations are considered as temporary models rather than validated 

process models.  

 

1.3.2 Experimental design 

 

Bioprocesses are complex systems with various parameters and outputs, which need 

much effort to investigate the relationship between results and conditions. Initially, 

the experimental design and optimisation were achieved by trail and error methods 

or other empirical design based on intuition and previous experiences (Simutis et al., 

1997). This empirical approach depends highly on experimental designer’s 

knowledge and involves large uncertainty. Another disadvantage is that it hardly has 

an insight into the interactions between each parameter nor be able to achieve a 

satisfactory tradeoff while multiple objectives for one bioprocess exist (Sendin et al., 

2006). 

 

The aim of experimental design is to extract the most information possible from the 

minimum of elaborately designed experiments in the case of limited time and 

resources (Atkinson, 1996; Fedorov, 1971; Pukelsheim, 1993). It normally 

investigates the mathematical relationships between inputs and outputs combining 

with the purpose to optimise the system in most case (Karlin and Studden, 1966). 

Although the concept of this methodology and mathematical fundamentals have 

been well demonstrated and known for nearly eighty years (Box and Lucas, 1959; 

Fisher, 1932, 1935; Kiefer, 1959; Yates, 1959), it has not been widely used in 
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research until about thirty years ago with the advance of computers (Steinberg and 

Hunter, 1984). During these years, this methodology shows its benefits in nearly all 

science and engineering fields, such as pharmacology (Lewis et al., 2005), electricity 

engineering (DeVoe and Pisano, 1997), chemical engineering or known as 

chemometrics (Lazic, 2004), clinical trials (Fleiss, 1999), and even has applications 

in finance and marketing (Kuhfeld et al., 1994). However, cases in downstream 

purification processes are still very rare due to the complication of bioprocesses 

(Atkinson and Tobias, 2008). 

 

1.3.2.1 Statistical DoE design 

 

Among all well developed experimental design methods, statistical DoE is the most 

useful systematic approach to obtain and analyse information-rich data. DoE has 

been adopted and applied to sciences and engineering in quite broad fields, including 

bioprocesses (Mandenius and Brundin, 2008). It is more helpful for bioprocesses, 

which normally lacks an accurate mathematical model and has high noise levels in 

experimental data due to biological materials variation, interactions among variables 

and complex biochemical reactions (Lee and Gilmore, 2006).  

 

Statistical DoE is a group of experimental design methods developed by statistical 

analysis. A design in which every setting of every factor appears with every setting 

of every other factor is a full factorial design and normally expressed using the 

notation Ik, where I is the number of factor level and k is the number of factors 

(Montgomery et al., 2005; Montgomery, 2008). However, even if the number of 

factors and its levels in a design is small, for example, 5 factors with only 2 levels 

each, it still requires 3225 =  runs. Therefore, a fractional factorial DoE was 

designed and adopted, which was a carefully chosen fraction of the complete 

factorial experiment runs (Box and Hunter, 1961). It reduces the number of 

experiment runs, particularly when both the number of factors and levels are high 
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(Gunst and Mason, 2009). Compared to full factorial experiments, the fractional 

factorial experiments may have some disadvantages such as less precision in the 

parameter estimates, and main effects and interaction effects are indistinguishable.  

 

The response surface methodology (RSM) is also a derived statistical-based DoE 

with the power to predict the shape of the response surface for a system with several 

3-D or contour figures (Anderson and Whitcomb, 2005). This method was first 

introduced by Box and Wilson in 1951 (Box and Wilson, 1951). RSM is very useful 

when the system response is non-linear. The traditional method involves a small 

design to fit the first-order model in the first stage. Then central composite designs 

(CCDs) with face-centred are utilised to fit second-order or even higher degree 

polynomial equations efficiently without challenging the estimation of the first-order 

linear effects (Gilmour, 2006). The DoE approach together with RSM provides an 

understanding of the bioprocess within a useful region in more depth (Chhatre et al., 

2011) and helps bioprocess development from media optimisation (Gheshlaghi et al., 

2005; Torres-Bacete et al., 2005) to antibody production (Garcia-Arrazola et al., 

2005). 

 

However, all statistical DoE generate empirical models only, in the most form of a 

polynomial equation without any physical understanding. They are based on 

statistical calculation with all parameters estimated. When there are many parameters 

and the design space is very large, statistical DoE will waste much effort in 

exploring uninteresting area and also produce equations which may not be 

appropriate, though empirical models are exceptionally useful in describing 

processes in which the mechanisms are extremely complex and incompletely 

understood as in most biological processes (Lee and Gilmore, 2006). Another 

disadvantage is that they can not predict the process performance outside the design 

space since it creates an empirical equation only in the defined space. 

 

In the early development of bioprocess downstream purification, massive variables 
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or wide design space need evaluating while especially, time and feed are always 

limited. The normal timeline for the early stage process development is around 5 

months (Jones et al., 2010) and the available material will be just 100 g to 1 kg from 

a small cell culture batch, for example, a 500 L scale bioreactor (Glynn et al., 2009; 

Coffman et al., 2008). Under such circumstances, a set of full design DoE with a 

large number of experimental runs is not feasible meanwhile a set of small DoE is 

not efficient to extract enough information from bioprocesses and achieve full 

understanding. 

 

1.3.2.2 Optimal experimental design based on models 

 

Optimal experimental design is a mathematical design methodology based on 

models. It was first introduced by Fisher (1935), then explored and extended by 

Kiefer (1959) and Box et al. (1959). The design methodology can be simplified 

when the model it is based on is a polynomial equation and gives the same design as 

above DoE design. However, it is more powerful than DoE design from a 

mathematical point of view. It allows to design experiments for any process 

containing discrete, continuous or both types of variables with a linear or nonlinear 

profile, no matter whether the model is mechanism based, hybrid or empiric (Ford et 

al., 1989). It also can be applied to discrete or irregular design space in some 

constrained or dynamic processes, where DoE cannot work at all (Atkinson, 1996). 

 

The theory is initiated by choosing a set of experiments to accurately estimate the 

parameters in a model (Atkinson and Hunter, 1968). Thus the model is solely 

mathematically oriented rather than process performance oriented. The optimal 

experimental design itself is not considered as a direct optimisation technique but an 

important part of the modelling activity. However, because an accurate model can 

provide information for process optimisation, the optimal design which aims to make 

model more accurate actually promotes the process design and optimisation in an 

indirect way. Combining with optimisation algorithms, it can obtain useful 
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information from statistically or mathematically designed experiments to improve 

model, parameters and achieve optimisation at the same time (Franceschini and 

Macchietto, 2008). The methodology has broad applications in engineering (Box, 

1966; Box and Draper, 1971; Galvanauskas et al., 1998), e.g. kinetic parameters 

estimation, to sciences (Harnett et al., 2008; Paterno, 1999), even in the social 

development science (Gregoire, 1998; Sarndal et al., 1978). The information 

extracted through model based optimal experimental design can be thus used for 

model parameter estimation (Watts, 1994), model validation (Franceschini and 

Macchietto, 2007) or process optimisation (Levisauskas et al., 2003). 

 

The mathematical principle of model based optimal experimental design is to make 

the determinant of the parameters variance-covariance matrix as small as possible 

(Franceschini and Macchietto, 2008). There are several criteria and algorithms to 

minimise the variance-covariance matrix as follows (Montgomery, 2008; Pukelsheim, 

1993): 

D- optimality: minimise the generalised variance of the parameter estimators; 

A- optimality: minimise the average variance of the parameter estimators; 

G- optimality: minimise the maximum variance of the predicted values; 

V- optimality: minimise the average variance of the predicted values. 

 

Among these several design criteria, D-optimal design (Box, 1966; Box and Draper, 

1971) is the most used algorithm to construct model based optimal experimental 

design (Mitchell, 1974; Cook and Bachtsheim, 1980; Papalambros and Wilde, 2000) 

due to its generality in parameter estimation and computational efficiency, which 

will be detailed in a later chapter. 

 

Most downstream bioprocesses are developed based on known biochemical and 

biophysical interactions, which, in theory, can be mathematically modelled through 

an appreciation of the reaction mechanisms, e.g. mass balances, hybrid grey box or 

even black box (Papalambros and Wilde, 2000). These process models, which 
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contain a priori knowledge for the specific bioprocess, can be used by an elaborate 

model based optimal design algorithm to reduce not only the feedstock and time 

required but also facilitate the process improvement and understanding 

(Galvanauskas et al., 1998). 

 

Galvanauskas et al. (1998) proposed a sequential design method shown in Figure 1.3. 

They changed the traditional batch mode in the optimal design to a continuous 

sequential mode. They started to design the first experiment with a process model 

and some priori knowledge. The results were analysed and regressed to the model. 

Then the design required iteration of model based experimental design, experiment 

execution and data analysis. When the preset objective was achieved, the iteration 

was terminated and design was completed. This method promoted the interplay 

between data and model, which further reduced the time and number of experiments. 

This design method was applied successfully in several bioprocess operations, such 

as E. coli fermentation and homogenisation (Chung et al., 2000; Galvanauskas et al., 

1998; Middelberg et al., 1992; Souza et al., 2008). The method benefits from the 

prediction power of the model to obtain potential design candidates and on the other 

hand, the potential design candidates provide new experimental data for the model 

improvement. Therefore, the method and the final design are highly dependent on 

the correctness and robustness of the initial chosen model.  

 

There are two obvious disadvantages. One is that it needs a correct model, which 

may not be available in some cases. Another disadvantage is that model based 

optimal experimental design is always computationally intensive due to the 

mathematical algorithm used and the complexity of model. Currently, for the 

applications in downstream bioprocesses, the difficulty in modelling a bioprocess 

and the complex computation required are the main limitations because most 

bioprocesses need nonlinear or even differential models. They may be too 

complicated to have a suitable and tractable mathematical model or computation 

algorithm.  
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Figure 1.3 The flowchart of sequential model based optimal experimental design. 
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However, these limitations can be effectively overcome by developing advanced 

mathematical tools and more powerful computer technologies. Since both regulatory 

authorities and industries increasingly emphasise the benefits of bioprocess 

understanding and modelling, it is foreseen that optimal experimental design will 

play an important role in future bioprocess development. 

 

1.3.2.3 Other experimental design 

 

There are other non-mathematical experimental design techniques such as 

randomised designs, which are applied to one primary interest factor or variable 

through random assignments. Taguchi designs, the main idea of which is to test the 

system tolerance, are used to find the robust operation conditions (Rao et al., 2008). 

Simplex search is widely used when considering a mixture design subjected to a 

constraint (Morgan et al., 1990) and demonstrated its ability in optimising 

bioprocesses (Al-mhanna et al., 2010; Chhatre et al., 2011). Many papers have been 

published for the successful utilisation of these designs to improve processes and 

obtain very good results (Gohel et al., 2006; Weuster-Botz, 2000).  

 

These methods are powerful because they can identify the optimal operation 

conditions without involving any model or regression equations but give poor insight 

into how the process performance changes in the vicinity of the solution due to their 

objective orientated design. Therefore, most of these methods are unable provide an 

understanding of the bioprocess even after successfully completing process 

optimisation. In the biological industries, regulations restrict the freedom of the 

engineer to alter a process design. It is thus quite crucial that the process engineer 

knows how the process responds in the vicinity of the optimal solution so as to 

determine how best to achieve the desired robust solution when subject to process 

uncertainties and changes (Zhou and Titchener-Hooker, 2003). Moreover, all 

industries and regulatory bodies now focus on Quality by Design (QbD) and so pay 



 49

significant attention to the importance of bioprocess understanding (Chhatre et al., 

2011; Shah et al., 2010). These designs will not be sufficient to meet the future 

requirements alone. However, they can be used as supplemental designs in 

bioprocess design activities to provide extra information.   

 

1.3.3 High throughput technology 

 

High throughput technology had its breakthrough in the late 1990s (Bensch et al., 

2005) due to the invention and development of fully automated liquid handling 

systems. It is a powerful platform for analytical and high-throughput screening 

experimentation especially in the fields of biology and chemistry (Lye et al., 2003; 

Micheletti and Lye, 2006). With the help of robotics and computer software, high 

throughput technology allows a researcher to conduct and analyse thousands of 

biological, chemical or pharmacological tests at a same time with minimum material 

requirement using 96, 384 or even 1536 microwell plates (Hertzberg and Pope, 2000; 

Titchener-Hooker et al., 2008). 

 

This is now widely used in the biopharmaceutical industry to address many issues, 

from drug discovery to bioprocess development, and specifically valuable at the 

early stages of development and at low cost (Carrier et al., 2010; White, 2000). 

Merck applied this method in preclinical researches (Rodrigues, 1997) and Genetech 

used it in stable cell line generation (Torres et al., 2009). Technology providing 

companies also investigated and utilised this platform, for example, GE Healthcare 

and DSM developed a combinatorial protein-ligand library and evaluating affinity 

tags based on high throughput screening (Cawse, 2001; De Vries and Lefort, 2008). 

 

Downstream protein purification development involves several separation steps with 

a significant number of variables to be tested. It should definitely benefit from the 

application of high throughput technology by providing variable screening and 

process understanding to speed up bioprocesses development. Using microwell 
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experiments also makes the minimal material consumption possible at the early 

phase (Nfor et al., 2009). Several researchers have already well demonstrated its 

power in developing downstream purification processes, such as chromatography 

screening (Coffman et al., 2008; Kelley et al., 2008; Kramarczyk et al., 2008), 

microfiltration (Jackson et al., 2006) and precipitation (Knevelman et al., 2010).  

 

However, high throughput technology has it own challenges. The findings from the 

microwell experimentation should be able to predict the larger scale processes. 

Depends on the process investigated, the efforts of scaling up development may vary 

(Marques et al., 2010). Some bioprocess conditions may need correlation once 

scaling-up to pilot scale, for example, optimising mixing speed in cell culture reactor 

from microwell shaking speed (Micheletti et al., 2006). For some dynamic system 

such as chromatography, it is naturally difficult to scale down flowrate or pressure to 

test in a microwell system. Although there are some innovative devices created for 

handling this issue, such as PhyNexus tips (Chhatre et al., 2009) or Atoll columns 

(Lye et al., 2009; Wiendahl, 2008), it still needs extra tools, e.g. a correlation model, 

to scale up and predict large scale performance successfully (Bergander et al., 2008; 

Kaltenbrunner et al., 1997).  

 

Another issue comes from the large amount of high throughput experimental data 

obtained with the consideration of data mining, information extraction and 

understanding (Diller and Hobbs, 2004). Due to its parallel capacity to test many 

variables, hundreds or even thousands of data points can be produced in a short time. 

It needs some mathematical tools, e.g. a mathematical model based algorithm, to 

design the experiments efficiently and then analyse the results rapidly and 

meaningfully after experimentation (Malo et al., 2006; Zhou and Titchener-Hooker, 

1996). These tools are now encouraged by regulatory bodies, such as the FDA, 

through Process Analysis Technology (PAT) and Quality by Design (QbD) initiatives, 

to obtain the understanding of crucial process parameters and address their impact on 

the product quality attributes (Chhatre and Titchener-Hooker, 2009; Nfor, 2009).  
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1.4 A combination approach for bioprocess development and optimisation 

 

All solutions mentioned above have the ability to accelerate a particular bioprocess 

development and achieve optimisation, if some optimisation algorithms are used. 

However, many of the researchers mentioned above applied only one of these 

methods alone to solve some specific problems in the process rather than a combined 

solution to facilitate process understanding and optimisation.  

 

Now, the benefits of combination are being recognised by several researchers. 

Titchener-Hooker et al. (2008) proposed the following flowchart, Figure 1.4, to give 

a pioneer concept, which combined scale-down devices, e.g. microwell plates, with 

mathematical models to predict process scale performance (Willoughby, 2006). Salte 

et al. (2006) successfully used this approach to optimise the conditions for separating 

high density cell broth. Ma (2010) applied modelling and ultra scale-down shear 

filtration system to develop large scale diafiltration process.  

 

However, the approach may need two potential improvements. First, it needs a 

proper feedback loop between modelling and scale-down experiments. A similar 

iteration as in Figure 1.3, between the model and experiments will be very helpful. 

The model based experimental design has the capability to not only produce a better 

experimental plan for scale-down experiments, but also enhances the modelling. 

Second, a scale-up method or process analysis is also required. Although this 

concept is a ‘top-down’ design rather than a ‘bottom-up’ design (Willoughby, 2006), 

it still needs a scale-up method or analysis to link and predict the performance of 

process at different scale.  
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Figure 1.4 A process design and optimisation approach based on the combination of 

scale-down experiments and bioprocess modelling.  
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1.5 Research objectives 

 

From the straightforward view of the biochemical engineering and based on previous 

research mentioned above, an efficient and cost-effective method for downstream 

purification processes design and optimisation is extremely important and desirable. 

This thesis examines these needs by focusing on the precipitation process, with the 

objectives as follows:  

 

1. To present an integrated model based process design methodology for downstream 

bioprocess optimisation, combining process modelling, model based experimental 

design and high throughput experimentation to enable faster bioprocess development 

and optimal process identification.  

 

2. To provide a bioprocess modelling procedure facilitated by high throughput 

experimentation. This will be carried out by applying the process modelling 

procedure in Fab’ precipitation and also increase process understanding. The newly 

developed precipitation model will provide the mathematical equation for following 

studies. 

 

3. To apply integrated model based process design in Fab’ precipitation to find the 

optimal operation conditions based on the previous proposed precipitation model and 

microwell data. A comparison with the traditional DoE method will be used to 

evaluate the integrated model based process design methodology. 

 

4. To transfer and test the generality of the integrated model based process design 

methodology to a different product process: a mAb precipitation system. Then the 

optimal conditions found at microwell scale will be scaled up at lab scale to examine 

the precipitation and following up solid-liquid separation. 
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5. To select and screen the potential polishing chromatography processes in 

microwell plates after the precipitation and use the whole process cost analysis to 

evaluate the effectiveness of precipitation based purification processes.  
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Chapter 2.  Materials and Methods 

 

2.1 Materials 

 

2.1.1 Feed materials 

 

2.1.1.1 Fab’ feedstock 

 

E. coli W3110 (ATCC 27325) was designed and donated by UCB-Celltech (Slough, 

UK). It had pTTOD A33 IGS2 plasmid encoded with tetracycline resistance and 

A33 antibody fragment (Fab’) DNA sequence. The E. coli cells were produced with 

a fed-batch mode in a 20 Litre fermenter (Sartorius Stedim, UK). The Fab’ was 

expressed and accumulated intracellularly. The fermentation protocol and medium 

composition were detail described by Bowering et al. (2002). Cells were then 

harvested by centrifugation in an Eppordorf 5810R centrifuge (Eppendorf GmbH, 

Germany) at 12,000 rpm for 2 hours. For pilot scale fermentation, E. coli cells were 

then harvested in CSA-1 disc-stack centrifuge (Westfalia Separator AG, Oelde, 

Germany). It was operated at 9800 rpm, room temperature with an inlet flow rate 50 

L/h. The cell paste was collected in 500 g each lot and stored in a -70 oC freezer 

(New Brunswick Scientific, UK).  

 

For one set of experiments, the same Fab’ homogenate from one cell paste lot was 

used. Before each set, fresh Fab’ homogenate was produced and stored in a +4 oC 

fridge for at most one week. Frozen E. coli cells were resuspended in 10 mM pH 7.0 

phosphate buffer at 40% (w/w) and homogenised in APV Lab 40 Homogeniser 

(APV homogeniser GmbH, Lubeck, Germany) at 750 bar, three passes. Then the 

homogenised solution was centrifuged in an Eppendorf Centrifuge 5810R 

(Eppendorf GmbH, Germany) at 12,000 rpm for 2 hours. The clarified Fab’ 

homogenate supernatant was collected and stored in the fridge as feedstock. 
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Pure Fab’ solution was purified by MabSelect Hitrap 1ml column in AKTA Basic 

with UniCorn 5.1 software (GE Healthcare, Sweden). The column was equilibrated 

in 20 mM, pH 7.4 sodium phosphate loading buffer with 1 ml/min flowrate. The 

clarified Fab’ homogenate was buffer exchanged to loading buffer and applied to 

column. 20 ml loading buffer and further 5 ml loading buffer with 10% (v/v) 

isopropanol was used to wash the column. The pure Fab’ solution was eluted by 100 

mM, pH 3.5 sodium citrate buffer at 1ml/min. The elution was stored in a +4 oC 

fridge after pH was neutralised by 50 µl per 1 ml elution 1 M pH 9.0 Tris buffer 

immediately. 

 

2.1.1.2 mAb cell culture 

 

The CHO cyo1 cell line was developed and authorised by Lonza (Slough, UK) for 

culturing in the department of Biochemical Engineering, UCL. A recombinant 

humanised IgG4 type monoclonal antibody (mAb), pI 7.4 to 7.8 determined by 

isoelectric focusing gel, was expressed extracellular by this CHO cyo1 cell line.  

 

The seed CHO cells were stored in the liquid nitrogen with 10% (v/v) DMSO. 

Before mammalian cell culture, the frozen CHO cells were revived and passaged in 

50 ml flask, incubated at 5 % (v/v) CO2, 37 oC for two generations. The CHO cells 

were then cultured in CD CHO Medium in a 20 Litre fermenter (Sartorius Stedim, 

UK) by a fed-batch mode. CD CHO Medium AGT with 100 g/L glucose was used as 

the feed solution to keep glucose concentration at 2 g/L in the culture. Glucose 

concentration and cell viability was analysed every day and recorded to monitor the 

CHO cell culture. pH, oxygen and the addition of antifoam were controlled by 

fermenter automatically according to preset value. Cell culture was harvested at 

mAb concentration around 1 g/L. It was then processed at 10,000 rpm by Eppendorf 

Centrifuge 5810R for 30 min and then filtered through a 0.22 mm filter (Millipore 

Limited, Dundee, UK). The detailed fermentation protocol can be referred to 

Galbraith et al. (2006). 
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The clarified cell culture was stored in a -70 oC freezer. For each set of experiments, 

the same batch of cell culture was used. During experiments, clarified cell culture 

was defrosted and then concentrated to around 2 g/L mAb using 5 kDa concentration 

tubes (Millipore Limited, Dundee, UK). The concentrated material was diluted by 

PBS to required mAb concentration in the following studies. 

 

2.1.2 Chemicals 

 

Sodium monobasic phosphate, sodium dibasic phosphate, sodium acetate, sodium 

glycine, PEG 6000 and ammonium sulphate et al. were purchased from Sigma 

Chemical Co. Ltd. (Dorset, UK). All chemicals were reagent grade. Ethanol and 

other HPLC solution were HPLC analysis grade. CHO cell culture medium: CD 

CHO Medium and CD CHO Medium AGT were brought from Invitrogen (Paisley, 

UK). 

 

2.1.3 Antibody standard 

 

Fab’ and mAb standard were produced by two chromatographic steps. The first 

process was protein A chromatography. MabSelect Hitrap 5ml column (GE 

Healthcare, Sweden) was equilibrated in pH 7.4, 0.15 M sodium chloride, 20 mM 

sodium phosphate buffer with 1 ml/min flowrate on AKTA Basic (GE Healthcare, 

Sweden). The feedstock was buffer exchanged to pH 7.4 loading conditions in 

Millipore 5 kDa concentration tube (Millipore Limited, Dundee, UK) and loaded 

onto the column. Three column volume loading buffer was followed to wash the 

column and one column volume loading buffer with 10% (v/v) isopropanol was used 

to wash out hydrophobic impurities. Then, bound protein, Fab’ or mAb, was eluted 

by 100 mM, pH 3.5 sodium citrate buffer at 1ml/min, with immediately adding 50 µl 

per 1 ml elution 1 M pH 9.0 Tris buffer to neutralise and protect antibody. Loading, 

washing, elution and fraction collection were executed and monitored by AKTA 

Basic with Unicorn software (GE Healthcare, Sweden). A gel filtration column was 
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used for the second step purification. 60 ml Superdex 200 (GE Healthcare, Sweden) 

was packed in a XK 16/40 column (GE Healthcare, Sweden). The protein A elution 

pool from above step was conditioned by 20 mM sodium phosphate buffer, 0.15 M 

sodium chloride pH 7.0 buffer. After the gel filtration column was connected to 

AKTA Basic and equilibrated for 120 minute at 1 ml/min flowrate, the conditioned 

post protein A solution was applied to column and the main antibody peak was 

collected as the standard.  

 

2.2 Methods 

 

2.2.1 High throughput precipitation 

 

The Fab’ precipitation was carried out in ABgene 96 deep microwell plates  

(Epsom, UK) by Packard MultiPROBE II HT EX (Packard BioScience Company, 

Meriden, US). The liquid handling robot was controlled by WINPREP software with 

process programmed and volume information provided by preset Excel file. During 

liquid transfer, 200 µl and 1 ml conductive disposable robotic tips (Tecan Group Ltd., 

Switzerland) were used by arms of the multiprobe to avoid contamination.  

 

Acetate buffer was used for pH from 4.5 to 5.5 and phosphate buffer was used for 

pH 6.0 to 8.0. The precipitation conditions chosen were pH from 4.5 to 8.0 with 

intervals of 0.5 and ammonium sulphate concentration from 0 mol/L to 3.0 mol/L 

with interval 0.2 mol/L for pure Fab’ solution and interval 0.3 mol/L for clarified 

homogenised solution. 1.2 M sodium acetate and acetic acid were prepared as stock 

solution. Robot aspired different volume of stock solution to form 150 µl buffer with 

required pH. 1.2 M sodium monobasic phosphate and sodium dibasic phosphate 

were also prepared and used to form pH buffer. The final buffer concentration in 

each precipitation system was 100 mM due to 12 times dilution by salt solution, 

feedstock and water. 4 M ammonium sulphate solution was prepared as salt stock 

solution with pH adjusted to required condition by sulphuric acid and ammonia. The 
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corresponding volume of salt stock solution and water will be respectively taken to 

each microwell to give designed salt concentration. 300 µl feedstock was then 

dispensed into microwell to start precipitation. The total volume of small-scale 

precipitation was 1.8 ml, including salt solution, pH buffer, distilled water and Fab’ 

solution. The precipitation plate was mixed on Eppendorf thermomixer (Eppendorf 

GmbH, Germany) at 600 rpm, room temperature for 2 hours with a lid on to prevent 

evaporation during incubation. The plate was then centrifuged in Eppendorf 

Centrifuge 5810R at 4000 rpm for 15 mins. Clear supernatant was transferred to 

Agilent 96 HPLC micro-well plate on Agilent HPLC 1200 series system (Agilent 

Technologies, Stockport, UK) for analysis. 

 

The mAb precipitation was carried out in the 96 microwell filter plate with 0.45 µm 

Durapore membrane (Millipore Limited, Dundee, UK) by Tecan robot (Tecan Group 

Ltd., Switzerland). Since the mAb formed lipid-like precipitate, it required higher 

mixing speed and only filtration can successfully separate solids from liquid. The 

precipitation conditions chosen were pH from 5.0 to 8.5 with an interval of 0.5, 

ammonium sulphate concentration from 0 mol/L to 2.2 mol/L with an interval of 0.2 

mol/L and PEG percentage from 0% to 22% (w/w) with an interval of 2%. Acetate 

buffer was used for pH 5.0 to 5.5 and phosphate buffer for pH 6.0 to 8.5. The total 

volume of small-scale precipitation was 250 µl, including salt solution or PEG 

solution, 20 mM pH buffer, distilled water and mAb solution. 25 µl pH buffer was 

first aspired from 200 mM stock solution and added into each microwell, followed 

by required volume of precipitant, either from 4 M ammonium sulphate stock 

solution or 40% (w/w) PEG stock solution, and water. The microwell plate was then 

mixed in the Eppendorf thermomixer for 15 mins to avoid unevenly distributed 

solution before dispensing 50 µl feedstock. The precipitation plate was incubated at 

20 oC with a microwell lid on and mixed in Eppendorf thermomixer at 1000 rpm for 

2 hours. Then microwell plate was centrifuged at 4000 rpm in the Eppendorf 

Centrifuge 5804R for 15 min with a 96 microwell receive plate underneath. Clear 
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permeate was transferred to Agilent 96 micro-well plate for HPLC and other 

analysis. 

 

2.2.2 Lab scale precipitation 

 

Lab scale precipitation used only mAb feedstock and was executed in 500 ml or 1 L 

Duran bottles. The one cut precipitation was carried out at pH 8.5, 1.6 M ammonium 

sulphate based on the microwell precipitation results. 250 ml precipitant solution, 

including 200 ml 4 M ammonium sulphate, 50 ml 200 mM pH 8.0 phosphate buffer, 

was pre-mixed and added slowly into 250 ml mAb feedstock. The initial mAb 

concentration was designed to have three different concentration, 1.2 mg/ml, 1.75 

mg/ml and 2.3 mg/ml respectively, in order to investigate the effect of initial 

concentration. The solution was mixed on a magnetic stirrer (Bibby Scientific, 

Dunstable, UK) with a stir bar in the bottle at 1000 rpm for 1 hour. The solution was 

collected for later filtration. 

 

The two cut precipitation was firstly carried out at pH 4.0, 1.2 M ammonium 

sulphate. The total volume and procedure were the same as above one cut 

precipitation, except pH 4.0, 200 mM sodium acetate buffer used instead. The initial 

mAb concentration was 1.2 mg/ml. After 1 hour, the solution was filtrated through 

CUNO Zeta plus EXP 90 sp filter (0.2 - 0.5 µm) (3M Purification Inc., Bracknell, 

UK) at 15 psi. Permeate solution was collected for second step precipitation. 450 ml 

permeate was conditioned to pH 8.5, 1.6 M ammonium sulphate by adding 45 ml pH 

8.5, 4 M ammonium sulphate and 5 ml pH 8.5 200 mM phosphate buffer. It was then 

mixed on a magnetic stirrer with a stir bar at 1000 rpm for 1 hour again. The final 

solution was used for filtration later. 

 

2.2.3 Membrane filtration 
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The membrane filtration was performed on various pore sizes of filter membranes: 

0.2 µm, 0.45 µm, 1.2 µm and 5.0 µm on the XX15 047 filter holder (Millipore 

Limited, Dundee, UK). The mAb solution from previous lab scale one cut 

precipitation was loaded to filters by a vacuum pump. The loaded volume was 

recorded for capacity measurement when transmembrane pressure increased to 20 

psi. Permeates were collected for analysis to calculate product recovery and loading 

capacity on different pore size membranes. Then two times volume of the recorded 

loading volume of pH 8.5, 1.6 M ammonium sulphate was used to washing the 

membrane and brought out remaining solution. After washing, pH 7.0 PBS solution, 

which had the same volume of loading volume, was used to resuspend the protein 

solids on the membrane and filtered through the membrane. The resuspension was 

recycled through the membrane for three times in order to dissolve mAb throughout. 

All solutions were collected and for further analysis. 

 

2.2.4 Depth filtration 

 

During depth filtration, mAb solution from lab scale precipitation was used for the 

studies. CUNO Zeta plus EXP 05 sp filter (3M Purification Inc., Bracknell, UK), 

which has a large pore size range from 1.8 µm to 10.0 µm, and CUNO Zeta plus 

EXP 30 sp filter (0.5 µm - 2.0 µm) were coupled to form a 0.5-10 µm depth filter 

system. The same loading capacity test was carried out as the above membrane 

filtration. 100 ml precipitation solution was filtered through this depth filter system 

by applying 20 psi pressure in nitrogen. In the washing step 100 ml same salt 

concentration and pH condition solution without mAb passed through and washed 

the depth filters. A second washing, same as the first one flushed the remaining first 

washing liquids outside the filter. Then 100 ml pH 7.0 PBS solution was used to 

resuspend and washed out the mAb solid in the depth filters by recycling through 

filter for three times. An extra 50ml PBS was followed to strip all remaining mAb 

and other molecules from the filters. All solutions were collected for further analysis. 
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The second depth filtration for two cut precipitation solution was the same as that of 

one cut precipitation except the solution had been already filtered through a CUNO 

Zeta plus EXP 90 sp filter in the first cut. Two processes were shown in Figure 2.1 

flowchart. 

 

2.2.5 Depth filtration improvement 

 

In the improved experiments, the same solution and procedures were carried out 

until the end of washing step. Then gradient resuspension was adopted using 

ammonium sulphate solutions from 1.2 mol/L to 0.7 mol/L with an interval of 0.1 

mol/L at pH 8.5. During resuspension, 100 ml ammonium sulphate solution from the 

highest concentration to the lowest concentration passed through depth filters 

sequentially. Finally, 100 ml PBS was used to strip all remaining proteins from the 

filters.  

 

In fraction collection, the same procedures were carried out before resuspension. 100 

ml 1.1 M ammonium sulphate at pH 8.5 was continuously passed through depth 

filters. Each 10 ml filter through resuspended solution was collected in Falcon tubes 

(Falcon Plastics, Los Angeles, US). The filter through solution, washing and 

resuspension solutions were all collected. 

 

 

 

 

 

 

 

 

 

 



 63

 

 

 

 

 

 

 

 

 
 

Figure 2.1 The flowcharts of two precipitation and filtration processes. Left: one cut 

precipitation; Right: two cut precipitation.  
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2.2.6 High throughput chromatography 

 

The high throughput chromatography studies were carried out in the 96 microwell 

filter plate with 1.2 µm Durapore membrane (Millipore Limited, Dundee, UK) by 

Tecan robot (Tecan Group Ltd., Switzerland). After each incubation, mixing, 

washing and elution, the filterplates were centrifuged at 4000 rpm for 10 mins in an 

Eppendorf Centrifuge 5804R (Eppendorf, Cambridge, UK) to separate supernatant. 

The supernatant was collected by 96 microwell collection plates stacked beneath. 

The solution was analysed by HPLC and other analytical methods. All experiments 

were performed at room temperature. 

 

2.2.6.1 CEX resin and binding screening 

 

In the CEX resin screening, four CEX resins were evaluated to identify the optimal 

salt concentrations and pH for loading and elution. The four resins evaluated were 

Fractogel EMD SO-3 (M) (Merck KGaA, Germany), UNOsphere S (Bio-Rad, US), 

Capto S and SP Sepharose FF (GE Healthcare, Sweden). The Tecan system 

dispensed 100 µl different types of resin from 20% (v/v, in 20% (v/v) ethanol 

solution) stock slurries into designed microwells. For the following procedures, 250 

µl solution was always added into each microwell. 

 

Before the loading experiments, each resin was equilibrated with buffer at designed 

conditions. The conditions chosen were pH from 4.0 to 6.0 by 5 mM sodium citric 

buffer with appropriate sodium chloride concentration to form 1, 5, 10 ms/cm 

conductivity. The stock buffer solutions were made in pairs with one containing only 

5 mM pH buffer and the other containing 1 M NaCl in the same pH buffer. The 

designed conditions were generated by mixing these stock solutions according to the 

salt concentration ratio into the microwell plates. The resin in the microwell was 

equilibrated by mixing the microwell plates on Eppendorf thermomixer for 15 



 65

minutes at 1200 rpm. Then supernatant was removed by centrifugation and 

equilibrium stage was repeated by three sequential cycles. 

 

The mAb solution, after prepared by ammonium sulphate precipitation and 

resuspension, was concentrated to around 5 mg/ml and dialysed into 5 mM pH 7.0 

sodium phosphate buffer by 5 kDa centrifugal concentration tubes (Millipore 

Limited, Dundee, UK). In loading phase, 200 µl loading buffer was first dispensed 

into microwell and then 50 µl mAb solution was added to obtain 1 mg/ml mAb final 

concentration. Then the microwell was incubated on an Eppendorf thermomixer for 

half an hour at 1200 rpm. The supernatant was separated by centrifuge and collected 

in 96-microwell collection plate.  

 

A washing step was carried out by applying 250 µl loading buffer to each microwell 

with 15 minutes mixing and centrifuging supernatant for three times repeats. The 

elution step followed by dispensing 250 µl 1 M sodium chloride, with the same pH 

as loading conditions to contact resin. The plates were mixed half an hour on 

Eppendorf thermomixer at 1200 rpm. Supernatant was centrifuged and collected for 

further analysis. 

 

2.2.6.2 HIC resin binding screening and gradient elution 

 

In the HIC resin screening, four HIC resins were evaluated: Phenyl Sepharose 6 Fast 

Flow high sub, Butyl Sepharose 4 Fast Flow, Butyl-S Sepharose 6 Fast Flow and 

Butyl Sepharose High Performance, all from GE Healthcare, Sweden. The loading 

conditions screening procedures were same as CEX resins screening. The conditions 

chosen were pH from 6.0 to 8.0 by 20 mM phosphate buffer and ammonium 

sulphate at 1.0, 1.1 and 1.2 mol/L respectively. Concentrated mAb solution was 

conditioned to the required salt concentration at certain pH by salt stock solution and 

pH buffer with around 1 mg/ml mAb final concentration in loading stage. 

 



 66

After loading and three times washing, 300 µl elution solution was dispensed into 

each microwell and mixed for 15 minutes on Eppendorf thermomixer at 1200 rpm 

before centrifuging. The conditions of elution solutions had the decreasing 

ammonium sulphate concentration from 1.0 mol/L to 0.2 mol/L with an interval of 

0.2 mol/L while had the same pH as the load pH. The gradient elution required five 

cycles with permeates collected each time. A final strip of 300 µl 10 mM phosphate 

buffer was used to wash out the residual molecules and complete studies. All filtered 

through solutions were collected and analysed. 

 

2.2.6.3 AEX resin and flow through studies 

 

Capto Q (GE Healthcare, Sweden) was used in anion exchange chromatography 

flow through mode. The conditions screened were pH from 4.0 to 7.0 by 5 mM 

sodium citric buffer and appropriate sodium chloride concentration to form 1, 5, 10 

and 15 ms/cm conductivity. 1 mg/ml mAb solution was buffer exchanged to required 

loading conditions by 5 kDa centrifugal concentration tubes (Millipore Limited, 

Dundee, UK). After 20 µl resin in each microwell was equilibrated for 15 minutes in 

designed loading buffers with three cycles. 300 µl mAb solution was then dispensed 

into each microwell. The microwell plates were placed on Eppendorf thermomixer at 

1200 rpm 15 minutes for solution-resin contact. The microwell plate was centrifuged 

and the supernatant was collected. The unbound mAb and impurities were analysed 

by HPLC and other analytical methods. 

 

2.2.7 Lab scale chromatography 

 

2.2.7.1 Protein A chromatography 

 

Pre-packed 1 ml HiTrap MabSelect column (GE Healthcare, Sweden) and 

self-packed MabSelect column were used in protein A purification process for 

different scale. 20 ml MabSelect resin was packed in a XK16/20 column (GE 
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Healthcare, Sweden). The packing protocol followed the procedures in GE 

Healthcare MabSelect manual (GE Healthcare, 2011). AKTA basic was used to 

connect columns and control purification steps. 5 column volumes of loading buffer 

was applied to MabSelect column first. The conditions of loading buffer were pH 7.4, 

20 mM sodium phosphate with 0.15 M sodium chloride. The antibody feedstock was 

buffer exchanged to pH 7.4 loading conditions and loaded to column at 1ml/min 

flowrate. 5 column volumes loading buffer was followed to wash the column and 1 

column volume loading buffer with 10% (v/v) isopropanol was used to wash out 

hydrophobic contaminates. The antibody bound to resin was then eluted by by 100 

mM, pH 3.5 sodium citrate buffer at 1ml/min, with immediately adding 50 µl 1 M 

pH 9.0 Tris buffer per 1 ml elution to neutralise and protect antibody. Fraction 

collection was used to collect elute with 1 ml each tube for 1 ml column and 5 ml 

each tube for 20 ml XK16 column. Collected elution at main peak was kept together 

in +4oC fridge.  

 

The column was then flushed with three column volumes of elution buffer until the 

UV 280 signal kept stable at UV base line. It was then equilibrated by five column 

volume equilibrium buffer for next sample running. For storage, 20 % (v/v) ethanol 

solution was used to sterilise the column and store the resin.  

 

2.2.7.2 Gel filtration chromatography 

 

60 ml Superdex 200 (GE Healthcare, Sweden) was packed in a XK 16/40 column 

(GE Healthcare, Sweden). The resin was poured into column and then distilled water 

was pumped through column at 1 ml/min for 2-3 hours until the levels of the bed 

was stable. Increased flow rate to keep pressure at 480±20 kPa for 45 minutes. 

Mounted the flow adaptor and adjusted to the gel bed surface (GE Healthcare, 2010). 

The running buffer was pH 7.0, 0.15 M sodium chloride, 20 mM sodium phosphate 

buffer. The gel filtration column was connected to AKTA Basic (GE Healthcare, 

Sweden) and equilibrated for 120 minute at 1 ml/min flowrate before each sample 
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run. The samples were exchanged to the same conditions as loading buffer. 0.6-1 ml 

each sample was injected into column by injection valve on the AKTA. The 

operational flowrate was 1 ml/min and total time for one sample was 90 minutes. 

The column regeneration and cleaning was the same as MabSelect column. 

 

2.2.8 Analytical methods 

 

2.2.8.1 Fab’ HPLC analysis 

 

The Fab’ concentration in the samples were measured by a 1 ml protein G HiTrap 

column (GE Healthcare, Sweden) connected to an Agilent 1200 series HPLC system 

(Agilent Technologies, UK). The equilibrium and loading buffer was pH 7.4, 20 mM 

sodium phosphate. 100 μL sample was injected into column with an autosampler. 

The sequence and methods were pre-programmed in HPLC software Chemstation. 

The elution buffer was pH 2.5, 20 mM Glycine-HCl buffer. UV 220 nm signal was 

recorded and used to measure the peak area of Fab’. The Fab’ concentration was 

calculated based on a calibration curve, which was generated by several Fab’ 

concentration samples, range from 0 mg/ml to 1.2 mg/ml, diluted from Fab’ standard. 

All samples were centrifuged at 1,000 rpm for 10 minutes and transferred to Agilent 

96 microwell plates before loaded to HPLC. The flow rate of HPLC was kept at 2 

ml/min with upper pressure 85 bar limit. Total analysis time is 16 minute with Fab’ 

peaking at around 3 minute. 

 

2.2.8.2 Bradford total protein assay 

 

Bradford protein assay was used to analyse the total protein concentration in the 

samples. BSA standard and Bradford protein assay kit were bought from 

Sigma-Aldrich (Dorset, UK). PBS was used to dilute samples and worked as blank. 

All samples were diluted to be in 0-40 µg/ml range, which was the standard and 

assay working range. 1 ml of standards, controls and samples were transferred to 
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cuvettes and then 1 ml Bradford reagent was added. Each cuvette was well mixed 

and covered from light for 10 minutes at room temperature (Bradford, 1976). Both 2 

ml cuvette and transparent 96 microwell plates, if samples were transferred from 

cuvettes, can be used to take samples and tests at UV 595 nm. The total protein 

concentration was then calculated based on corresponding calibration curves, 

depending on which method was used. 

 

2.2.8.3 mAb HPLC analysis 

 

The mAb concentration were also measured by a 1 ml protein G HiTrap column (GE 

Healthcare, Sweden) connected to an Agilent 1200 series HPLC system (Agilent 

Technologies, UK). The buffer system was the same as that of Fab’. 50 μL sample 

was injected into column with an autosampler. The sequence and methods were also 

pre-programmed in HPLC software Chemstation. UV 280 nm signal was recorded 

and used to measure the peak area. The mAb concentration was calculated based on 

a calibration curve, which was generated by several mAb concentration samples, 

range from 0 mg/ml to 1.5 mg/ml, diluted from mAb standard. Before samples being 

loaded into HPLC, they were transferred to 96 microwell filtration plates and 

centrifuged at 1,000 rpm for 10 minutes. The permeates were transferred to Agilent 

96 microwell plates for HPLC. The flow rate of HPLC was kept at 2 ml/min with 

upper pressure 85 bar limit. Total analysis time is 6 minute with mAb peaking at 

around 2.9 minute. 

 

2.2.8.4 Impurities analysis 

 

The overall impurities included host cell protein, cell culture media protein and other 

impurities. These impurities were measured by HPLC at UV 280 nm as the first flow 

through peak. The original feedstock, either Fab’ or mAb, was used as the standard. 

Several samples diluted from standard were made according to different dilution 

rates. The Bradford total protein assay was used to measure the total protein 
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concentration in each diluted sample. The impurities concentration for each sample 

was calculated by subtracting the corresponding Fab’ or mAb concentration from the 

total protein in that sample. The calibration curve was then regressed from the 

impurities concentration and HPLC peak area. The regression goodness of fit had 

R-square at 0.99 and random sample tests were validated by Bradford assay. 

 

2.2.8.5 DNA quantification 

 

The Picogreen method was used for DNA quantification. The Picogreen kit, DNA 

standard and Molecular grade water were bought from Invitrogen (Invitrogen, UK). 

The standard was diluted into two concentration ranges: high range 1 ng/ml - 1000 

ng/ml and low range 25 pg/ml - 25,000 pg/ml. Two calibration curves were made 

due to high or low DNA concentration range. The standards and samples were 

diluted by TE buffer within 100 pg/ml to 1000 ng/ml range to a final volume of 1.0 

ml in tubes with all tips, tubes sterilised. 1.0 ml Picogreen reagent was added to each 

sample and incubated for 5 minutes at room temperature, protected from light. 200 

µl of each sample was transferred to transparent microwell plate and the plate was 

read by Safire 2 microplate reader (Tecan Group Ltd., Switzerland) at standard 

fluorescein wavelenths (excitation ~480nm, emission ~520nm) (Invitrogen, 2008). 

DNA concentration in the samples was then calculated based on corresponding 

calibration curve. 

 

2.2.8.6 Host cell protein Elisa 

 

CHO HCP was analysed by Cygnus HCP ELISA kit 3G (Cygnus Technologies, US). 

Molecular grade water was bought from Invitrogen (Invitrogen, UK). All samples 

were diluted within 1 ng/ml to 100 ng/ml range. 100 µl anti-CHO:HRP antibody was 

transferred into each well and then pipetted 50µl of standards, controls and samples 

into each well. Covered and incubated the microwell plate at ~180rpm for 2 hours at 

room temperature. Washed each well with 350 µl wash solution for 4 washes. 
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Pipetted 100 µl TMB substrate into each well and incubated at room temperature for 

30 minutes. Then pipetted 100 µl stop solution and read absorbance at 450/650nm by 

Safire 2 microplate reader (Tecan Group Ltd., Switzerland). Host cell protein 

concentration was then calculated from the CHO HCP calibration curve using 

standards provided in the Cygnus kit. 

 

2.2.8.7 Aggregates, monomer and half antibody analysis 

 

The aggregates, monomer and half antibody were analysed by a TSKgel G3000 

SWXL column (Tosoh Ltd, Japan) on Agilent 1100 HPLC (Agilent Technologies, 

UK). The molecule weight separation range of column was 10 kDa to 500 kDa. The 

running buffer was pH 7.0, 20 mM sodium phosphate buffer with 0.15 M sodium 

chloride. All samples were filtered through 0.22 µm filter before loading to column. 

The loading concentration was around 1 mg/ml and flowrate at 1 ml/min with total 

running 17 minute. The three peaks came out in the sequence of aggregates (7.2 

minute), monomer (8.2 minute) and half antibody (10.3 minute). The UV 220nm 

peak area was recorded and percentages of each component were calculated by 

Chemstation software.  

 

2.2.8.8 Protein structure analysis by Circular Dichroism (CD) 

 

Protein structures were analysed by CD on AVIV CD spectrometer 400 (Biomedical 

Inc., USA). The machine was switched on after 15 minutes of liquid nitrogen 

cooling. After 1 hour of lamp warming up, software AVIV model 400 MxC was 

opened to set wave length and control analysis. The sample concentration was 

around 1 mg/ml and had at least 85 % (w/w) purity. All samples were buffer 

exchanged to pH 7.0, 20 mM phosphate buffer. Clean cuvettes were washed by 

ethanol, then ultrapure water and dried before being loaded by samples. The 

wavelength 200 nm to 280 nm was used to scan the secondary structure of proteins 

in the samples. Absorbance was recorded and plotted by software.  
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2.2.8.9 Protein electrophoresis by SDS-PAGE and IEF 

 

Protein samples were also analysed and characterised by electrophoresis. Novex 

Tris-Glycine precast 8-16% SDS-PAGE gels, SDS-PAGE buffer kit and See Blue 2 

marker were bought from Invitrogen (Invitrogen, UK). 20 µl each sample with 

loading buffer was loaded into gel well and run at 125 V for 90 minutes. Then the 

gel was stained for one hour by Coomassie blue G-250 (Bio-rad, US) after rinsing by 

ultrapure water three times. After stain, gel was kept in ultrapure water and a photo 

was taken when gel was clear.  

 

Novex pH 3.0-10.0 IEF gels, buffer kit with IEF marker were bought from 

Invitrogen (Invitrogen, UK). 20 µl each sample was loaded to well and run at 100 V 

for 60 minutes, then 200 V for another 60 minutes (Invitrogen, 2011). The IEF gel 

was first fixed by 12 % (v/v) TCA for 30 minutes after eletrophorsis. Then the 

washing and stain step were the same as above SDS gel. A photo was taken after 

protein bands were shown on the gel clearly. 

 

2.2.8.10 Measurement of conductivity 

 

The conductivity of samples and buffers was measured by a conductivity meter 

(Jenway, UK) at room temperature (20°C). 

 

2.3 Modelling and data processing methods 

 

2.3.1 Data normalisation 

 

In order to eliminate the errors in model parameter estimation caused by different 

dimensions and orders of variables, the experimental conditions of pH and salt 

concentration for protein precipitation, were scaled to 0-1 range by following scaling 

equation:  
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λscaled =
λreal − λL

λU − λL

,                           (2.1) 

where scaledλ is the scaled value, realλ is the real value, Lλ is the real value at low limit, 

and Uλ is the real value at upper limit. 

 

Fab’ or mAb concentration in feedstock and impurities concentration were also 

normalised to the highest value of antibody concentration or impurities concentration. 

The initial concentration was not used in normalisation because there was a 

salting-in effect. The maximum concentration of target antibody and impurities 

during salting-in was regarded as the true protein concentration in the solution. In the 

reality, the true concentration was difficult to obtain, thus the maximum 

concentration in the whole set of data was used as the closest value to the upper limit 

concentration in equation (2.1).  

 

2.3.2 Least squares regression 

 

Least squares regression was used to determine the parameters and the objective of 

this method was to find a set of parameters to maximise R2 in the following 

equations: 
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where expy is the experimental value, modely is the value calculated by model, expy is 

the average of all experimental values.  
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Model parameters were estimated by ‘lsqcurvefit’ function with initial coefficient 

provided in matrix in MatLab (The MathWorks Inc., R2009b). The quality of 

parameter estimation was assessed by equation (2.2). The higher R2, the better the 

parameter estimation was. When R2 was larger than 0.90, the model regression 

would be acceptable and the model was considered as good quality. 

 

2.3.3 Validation and statistic tests 

 

9 DoE experiments under the same operation space were carried out to validate the 

model. When validating bioprocess models, it is not recommended to use error 

percentage to evaluate models because the range of bioprocess data may be very 

wide even after scaled or transformed, which will introduce mathematical error. 

Thus, statistical tests should be utilised to validate new model, no matter how good 

is the fitting of the data was in the regression step.  

 

However, there are several unusual problems for bioprocess model validation. First 

of all, the number of samples used for validation is normally small e.g. 9 samples in 

this case, due to various reasons, such as high cost and long time of generating data. 

Secondly, the distribution of most bioprocess data is normally unknown or the data 

is hardly transformed to any known distribution, e.g. standard normal distribution 

(Goffaux and Wouwer, 2005). Statistically, the normal distribution can be assumed 

only when the number of samples is very large, normally more than 30 (Lamprecht, 

2005). Therefore, for small validation group with unknown distribution, it is of great 

risk to use paired t-test due to high probability to fail.  

 

There exist two solutions for this type of validation. One solution is to use Wilcoxon 

signed-rank test (Wilcoxon, 1945) for few samples in paired data. The other is to 

analyse validation samples together with previous regression data by paired t-test 

since the whole data set can be roughly considered as the normal distribution when 

sample number is large than 30. For Wilcoxon signed-rank test, 2-tailed significance 
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> 0.05 can be regarded as validation passed. For paired t-test, sig. > 0.05 can be 

considered as the null hypothesis that there is no difference between experimental 

data and model calculated value is accepted (Schiff and D’Agostino, 1996).  
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Chapter 3. Model based process design for bioprocess optimisation: 

methodology 

 

3.1 Introduction 

 

Biopharmaceutical development is becoming more time consuming and expensive 

due to the difficulties in bioprocess design and optimisation (Karlsson et al., 2004). 

Therefore, a systematic approach should be proposed to effectively tackle these 

difficulties and achieve optimised design efficiently. With the current techniques 

available, this promising approach should combine bioprocess modelling, model 

based experimental design incorporated with high throughput technology, under the 

framework of process optimisation to give a breakthrough for efficient bioprocess 

development. 

 

The microwell-scale method can speed up the acquisition of process information, but 

alone it is rarely adequate to predict the overall production performance where a 

model will help (Titchener-Hooker et al., 2001). When bioprocess models exist but 

the material complexity precludes determination of key parameters, a model based 

experimental design with microwell experimentation can provide experimental data 

sufficiently and quickly covering the conditions needed (Nfor et al., 2009; Ziegel, 

2003). Automation and the application of advanced computer software also make the 

iteration between experimental data and data analysis possible, and encourage the 

innovative model based experimental design by sequential feedback, which will 

significantly accelerate the experiments (Charaniya et al., 2008; Chernoff, 1959; 

Massimo et al., 1992). The interactions between these methods will bring mutual 

benefits and achieve better effects than the sum of effects of each method applied 

alone.  

 



 77

In this chapter, a systematic model based process design methodology for 

downstream bioprocess optimisation, integrating process modelling, model based 

experimental design and high throughput experimentation will be proposed and 

developed to enable faster bioprocess development and optimal process 

identification. The aims are to provide an efficient design methodology for 

bioprocess optimisation based on process model with minimum cost, to achieve a 

good understanding of process and to obtain detailed information to support QbD by 

generating accurate models in the end of design.  

 

3.2 Integrated model based process design methodology development 

 

3.2.1 Strategy and method overview  

 

In this proposed integrated design, the interaction between three methods is the core 

strategy and decides the success of this methodology, shown in Figure 3.1. In this 

core strategy, each individual method receives information from other method while 

also gives out its results to the next method as a mutual benefit loop from the start of 

objectives input until the completion of optimisation. The information update and 

communication among different methods promotes information sharing and better 

process understanding.  

 

Model based experimental design with an optimisation tool is a method that uses a 

theoretical or empirical model and guided by process performance objectives during 

design in order to achieve efficient and robust optimisation for an unexplored 

bioprocess unit operation (Galvanauskas et al., 1997). Thus this model based 

approach can be regarded as an optimisation procedure, which starts with restricted 

knowledge and aims to find the optimal process in a fast way.  
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Figure 3.1 The core strategy of an integrated model based process design and 

optimisation approach. 
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Figure 3.2 The whole flowchart for an integrated model based process design and 

optimisation approach. 
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Inspired by the flowchart in Figure 1.4, a whole process for this integrated model 

based process design methodology is developed and proposed, shown in Figure 3.2. 

It starts with choosing target bioprocess, through two crucial development stages in 

microwell plates utilising the core strategy and then scaling up to complete the 

process design. It can be regarded as a systematic approach for any bioprocess 

development starting with microwell scale and support scaling up by providing 

information. When polynomial equations are used, the design approach is the same 

as the commonly adopted DoE process design, while it can also be customised by 

using self defined models. The detailed steps are explained in following paragraphs.  

 

3.2.2 Define bioprocess and objectives 

 

First of all, the target bioprocess should be defined and ensure the following 

procedures in the design can be successfully executed. Each process development 

has one or more objectives. Therefore, it is quite important to define the objectives 

and tradeoffs between objectives considering some factors such as cost, model 

precision and time before the method starts. The objective may be described as a 

quantitative function in the most cases, but the other forms also exist. Since it is 

process performance oriented, this method should be very effective and efficiently. 

 

3.2.3 Modelling or model selection 

 

Select or develop a quantitative model based on a priori knowledge or previous 

literature data. The initial model can be a mechanistic or empirical model with some 

adjustable coefficients. For the modelling based on microwell experimentation, the 

procedures are nearly the same as those in Figure 1.2, except the experiments are 

carried out in microwell plates. High throughput experimentation is able to provide 

sufficient data for modelling, which is the most significant benefit of adopting this 

experimental platform. The detailed modelling procedure and flowchart will be 

explained in Chapter 4 with a modelling case study as a sample.  
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At this stage, if there are many established models available, it is not necessary to 

carry out modelling. However, the constraints and uses of all models should be 

assessed and project objectives will be the primary criteria. Moreover, the model 

structure may be modified according to current experiment facilities and industrial 

interests. Great attention must be paid to the statistical tests for model, because the 

quality of model selected in this step influences the following procedures. 

 

3.2.4 Model based process development 

 

In this step, it starts from a chosen model or a model developed, which contains 

some priori knowledge in its mathematical structure and initial parameters. However, 

they are definitely not accurate at the beginning and need updating all the time 

through optimisation. Thus a mathematical algorithm based on this model will be 

adopted to design the next set of experiments to collect new information and update 

the model with material specific experimental data. As the model becomes more 

accurate, the optimisation will be completed once the defined objective achieved, e.g. 

obtaining high model regression confidence. For the sake of time and effects, 

sequential design will be the most efficient method (DeGroot, 1962; Robbins, 1952). 

Therefore, a sequential model based experimental design is adopted and illustrated in 

Figure 3.3.  

 

After the process design objectives are defined, the design and optimisation process 

starts with a chosen model and the best initial parameter guess. In most case, the best 

initial parameters are hardly available when facing a brand new process or a new 

biological feedstock. In order to obtain general information of the process, a set of 

initial DoE experiments covering all design space is recommended. The data from 

these preliminary experiments will quickly update the priori knowledge with 

accuracy to certain extent. Then the design procedure enters into a sequential design 

loop.  
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Figure 3.3 Sequential model based experimental design flowchart. 
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At the beginning of each loop, a set of experimental design is given by model based 

design algorithm based on currently best knowledge. Following experiments will be 

carried out according to design and data is feedback into the loop by analysis and 

model updating. Only a small number of information rich experiments selected by 

algorithm will be executed during each loop and once the objectives are achieved, 

the procedure terminates. Statistic tests will be used to judge whether model is 

accurate or not as one of the primary objectives in the algorithm. The effectiveness 

and efficiency of this approach are highly depends on the model based algorithm, 

which is illustrated in details as following. 

 

3.2.4.1 D-optimal experimental design 

 

In the model based methodology, the accuracy of model is the most important 

because it will give the insights of process and also facilitate optimisation. The 

accuracy highly depends on the model parameters, the generalised variance of which 

should be minimised. It is the reason why D-optimal experimental design is adopted 

as the core algorithm in this approach.  

 

Suppose there is a mathematical model describing a bioprocess with following 

equation: 

),( βxfy =                               (3.1) 

where y is a 1×n matrix of observations, x is a mn× matrix of conditions,β is k 

coefficients to be estimated. 

 

If equation (3.1) is expanded by a Taylor’s series (Abramowitz and Stegun, 1970) at 

initial parameter 0β , it is then transformed to: 
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equation (3.2) becomes 

XBZ = .                          (3.6) 

 

It is well known that the best estimated parametersβ
)

will be obtained through the 

least squares estimation by minimising squares of Z (Atkinson and Hunter, 1968; 

Box and Draper, 1971; Mitchell, 1974; Papalambros, 2000).The variance-covariance 

matrix of β
)

is expressed as: 

21)()var( σβ −′= XX
)

                     (3.7) 

whereσ is the standard deviation of the experimental error and regarded as a normal 

distribution with zero mean value. It is inherited from the specific experimental 

system and usually is unknown but constant. 

 

A correct and accurate model must have a very small value of equation (3.7), which 

means a big value of the determinant XX ′ from mathematical calculation (Atkinson 

and Hunter, 1968; Box and Draper, 1971). Hence, D-optimal design was developed 

to choose some experimental conditions, which can maximise XX ′ . Since the 

invention of D-optimal design, many researchers had published several algorithms to 

select conditions (Cook and Bachtsheim, 1980). The first design algorithm (Fedorov, 

1969; Kiefer, 1971) only managed to compute approximate D-optimal design due to 
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the poor computer ability at that time. Later, Fedorov (1972), Mitchell and Miller 

(1970) and Wynn (1972) improved the approximate design by exchange algorithms, 

which began with a set of n points non-singular design and exchange the one design 

point in the XX ′ each time in order to achieve its maximum with fixed n point 

number. Mitchell (1974) further presented a multi-points exchange algorithm for 

constructing ‘D-optimal’ designs under the fixed number of experiments in 1974.  

 

However, as the sequential experimental design will be adopted, the number of 

experiments is no longer fixed and increases in each loop. The D-optimal design 

utilised in the method is constructed based on that of Mitchell’s and then modified to 

enable the number of design points to increase, as shown in Figure 3.4. 

 

The algorithm starts the design in a sequential loop with n existing conditions. The 

first design to initialise the loop is from the DoE design in Figure 3.3. For a valid 

D-optimal design, the value of n should be at least one more than the degree of 

freedom, e.g. for a two variables model, 3≥n . The following sub loop is used to 

search a set of experimental designs, which increases the new XX ′ most. The value 

of k depends on the designer’s decision on how many new experiments to be carried 

out in the next run. It should be an integer number at least equal one, and can be 

adjusted to different number in each loop according to detailed experimentation plan.  

 

Nevertheless, the computation of XX ′ is very complicated from a mathematical 

view because the model used is normally a multi-variable, nonlinear equation. 

Searching k points to maximise XX ′ itself is a mathematical optimisation process, 

the complexity and computation time of which significantly increases with the 

number of k and the nonlinear extent of the model increase. Due to the practical 

consideration for experimentation, this computation should be as simple as possible 

to make waiting time short during each loop. Therefore, in this study, k is fixed and 
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equals one in each loop with the extra consideration of keeping the total experiment 

number as small as possible. In order to avoid matrix singularity, no repeat condition 

will be selected by algorithm. It is very reasonable even from the viewpoint of 

experimentation, that only new conditions will be carried out and analysed rather 

than repeating when facing limit material and time. Following Figure 3.4, at the end 

of each loop, k conditions will be output for the next experiments until the objectives 

in Figure 3.3 achieved. 
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Figure 3.4 D-optimal experimental design flowchart for sequential design with k 

conditions chosen each time. 
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3.2.4.2 Optimisation and random design 

 

The main purpose of D-optimal design is to correct the model parameters by 

elaborated experimental design and update the model with real results. For the 

purpose of process optimisation, it is a slow and indirect approach since the 

D-optimal algorithm is only responsible for finding informative rich points rather 

than the optimal point for process.  

 

Therefore, mathematical optimisation based on the model, which is highly objective 

orientated, is adopted in a parallel design form alongside with D-optimal design. In 

each experimental loop, the experimental conditions, which give the maximum 

objective value according to the current updated model, will be selected as an extra 

point into the next set of experiments. For some complex models, predicted local 

maximum points can also be chosen for the next experiments together with the 

above global maximum point in order to avoid local optimisation (Mitchell, 1974).  

 

In this case, each loop, only one point which has maximum model predicting 

objective value is output by algorithm. This optimisation is straight forward because 

the predicted maximum point can be quickly pointed out and easily validated in the 

next run. However, two difficulties exist: (1). There are various operation limits in 

the real bioprocess, for example, the sensitivity of pH meter is 0.1 pH value. Hence, 

the conditions based on mathematical solution need to be rounded to the nearest 

available experimental point. It will not like numerical solution that always gives 

different values each time. It may continuously give one repeat maximum point 

when the model parameters are approaching accuracy after only one or two runs of 

D-optimal design. (2). It has the same problem as many other optimisation 

algorithms that it may be trapped in a local optimisation point (Rodriguez-Fernandez 

et al., 2006; Sacks et al., 1989) and needs an effective mechanism to jump out.  
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Therefore, a random design is introduced to solve above problems. Once the 

maximum point predicted by model repeats within existing conditions, at which the 

experiments have already been carried out, or repeats with the point selected by 

other algorithms in the same loop, a random point is selected within unexplored 

design space instead of maximum condition point. The random point will be 

generated by a pseudo-random number generator in the MatLab software (Karnopp, 

1963; Salcedo et al., 1990) and then be scaled and transformed to output 

corresponding conditions. It not only solves the repeating maximum condition point 

problem, which may cause the algorithm into a dead loop before achieving real 

optimisation, but also provides the extra information for global optimisation (Lee et 

al., 1999). Although the total number of experiments will slightly increase, it is a 

recommended tradeoff for better global optimisation in a nonlinear system.   

 

3.2.4.3 Simplex  

 

Simplex algorithm is not a model based method and only relies on real experimental 

results (Morgan et al., 1990) to iteratively drive the experimentation by the objective 

function to find the optimal point. The efficiency and accuracy of Simplex highly 

depend on the process it is investigating and the choice of the starting points 

(Chhatre et al., 2011). In this study, Simplex is modified and incorporated parallel 

with model based design based on following considerations: (1). The existing 

conditions pool can be reused by Simplex in parallel design form without increasing 

the workload in real experiments. It only slightly increases the total computation 

time by seconds, which can be completely ignored if compared to real time-cost 

experiments. (2). It is a direct search method and may extract information, which 

may complement the experiments from model based algorithm, e.g. direct 

comparison of real results or the trend of objective value. The information itself will 

also be a validation evidence for model based design. (3). Combining two different 

algorithms together using the same sample pool can achieve mutual benefits and 

accelerates each other. Inspired by mutation principle in genetic algorithm (Goldberg, 
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1989), the information exchange between two algorithms effectively avoid local 

maximum by preventing designed experiments becoming too similar or even 

repeating under one algorithm. If the information brought by other algorithm is 

richer than the next point designed by current algorithm, the design procedure will 

leap and speed up by using information rich point instead.  

 

The sequential modified Simplex algorithm was used in this study (Morgan et al., 

1990; Nelder and Mead, 1965). For a process with n variables, the Simplex needs 

n+1 points to run and decide the next point according to its rules. Figure 3.5 shows 

the illustration of Simplex algorithm based on a two variables design, which needs 

three points to form a triangle (Morgan et al., 1990). The initial set of three points 

will be chosen from the DoE design. Three maximum points will be chosen so 

Simplex will be started at relatively high value level, reducing the time to optimal 

point as much as possible. After sorting points by value, the point will be either the 

best (B), worst (W), or next to worst (N) (Nelder and Mead, 1965). The next point 

(R) is defined as the reflection away from W across the BN line. After the value of R 

was evaluated, one of following routes can be taken, shown in Figure 3.5 (Chhatre et 

al., 2011; Morgan et al., 1990): 

 

1. If R>B, an expansion occurs to point E, half length of WR away from R in the 

WR direction. If E>R, next three points are EBN. If not, RBN will be chosen. 

2. If N<R<B, BRN. 

3. If W<R<N, a contraction will take place to point CR, one quarter length of WR 

away from R in the RW direction. 

4. If R<W, a internal contraction will give point Cw, one quarter length of WR 

away from W in the WR direction. 

5. If the new contraction point CR is better than R or Cw is better than W, it will 

replace W in the new triangle. 

6. If no point can be found to be better than W in any case, R’ will be reflected 

away from N across the BW line instead.  
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Figure 3.5 Flowchart of Simplex algorithm for 2 variables. 
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The new points selected will enter the next iteration of Simplex until optimisation is 

achieved. Since the algorithm is not case-specific and not model based, it can be 

used as the supplement design method to D-optimal algorithm to identify a good 

operating location. 

 

3.2.4.4 Information exchange and algorithm integration 

 

Since there are three different algorithms, how to share information and integrate 

them to form a core model based algorithm is the crucial step of this design 

methodology. For D-optimal design and optimisation/random design, incorporating 

with Simplex and exchanging information are relatively easy. Including the results 

of all points designed by Simplex when updating model will pass extra information 

to these design algorithms through updated model. Although the points selected by 

Simplex in most case are not ‘D-optimal’, the mathematical fundaments of 

D-optimal design and optimisation will not be influenced or changed by putting 

these points into XX ′ .  

 

However, it is a huge challenge for Simplex modification. The normal sequential 

Simplex starts with n+1 points (Morgan et al., 1990; Nelder and Mead, 1965), where 

n is number of variables, while in this case, it deals with a pool containing too many 

points. The original Simplex progresses by using points designed by itself only all 

the time and lacks a mechanism to exchange information with other non Simplex 

designed points. Therefore, the Simplex algorithm is modified to be able to exchange 

the points given by other algorithms, as shown in Figure 3.6.  

 

The three points chosen for each Simplex loop are from an existing point pool, for 

example, in this study, the first three points are selected from the initial DoE set. It 

also avoids the point selection problem in the traditional Simplex, such as starting 

points are too close to each other or degenerated. During each loop, the criteria are to 
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select three points with the largest objective values. Choosing the largest value 

points helps to facilitate optimisation by reducing the iterations during hill climbing 

compared to a start with very low value points. If the starting points are linear, the 

fourth largest point in the pool will replace the third one to guarantee Simplex 

beginning with a triangle.  

 

In each loop, the information exchange happens by deciding which three points will 

be used in current Simplex design from the existing point pool or last Simplex loop. 

The main selection method created (In the flowchart, system variable number n=2) 

is that at the beginning of each loop, the three points {B, N, W} from last Simplex 

run will compare with three largest points {X1, X2, X3} from existing point pool. 

There are three pathways as following: 

 

1. If they are same, which means the points from other algorithms are not large 

enough to change Simplex pathway, therefore, Simplex will run with {B, N, W}. 

2. If they are not same and at least one point in {X} has larger value than the second 

best point N in the original simplex points {S}, the information from other algorithm 

is thought to be valuable enough to terminate current Simplex loop and to start a new 

Simplex search by using these new points. A new set of three maximum points will 

be selected from a combining points group {S}U{X}.  

3. If they are not same but no point in {X} is larger than the value of point N, the 

three points will not be replaced and the procedure still follows pathway 1. 

 

After the points are exchanged in above pathways, these selected points will still 

follow the conventional Simplex in Figure 3.5 (Morgan et al., 1990; Nelder and 

Mead, 1965). However, one thing worth noting is that the new design point Y from 

this Simplex loop may already existed in the point pool, which means the conditions 

were already explored by other algorithms before. In this case, the value will 

automatically evaluated by software and feedback to Simplex algorithm to form 

iterations until a non repeat point designed, shown in the bottom part of Figure 3.6. 
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Figure 3.6 Modified Simplex experimental design flowchart with points exchange at 

each loop. 
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By this selection method, the points from previous two algorithms: D-optimal and 

optimisation/random design are able to enter into Simplex loop and externally 

change the direction of Simplex search. If the objective values of those points are 

smaller than current points used in Simplex, the Simplex will not be interrupted and 

continues as the results of Simplex are currently superior to other parallel algorithms. 

Once the point found by D-optimal design, optimisation or random design having 

larger value than the second best point in current Simplex, the worst point in the 

Simplex will be abandoned and replaced by this better point, which speeds up the 

approach and avoid local maximum.  

 

3.2.4.5 Step summary 

 

If linking all algorithms together, the full flowchart is illustrated in Figure 3.7. The 

initial DoE provides the first design for the following algorithms. Based on the DoE 

experimental data, the algorithm is divided into two different pathways. One is based 

on the direct search Simplex, the other is based on the mathematical model. The 

model based branch also utilised two different design methods. The D-optimal is 

used to make the model parameters more accurate and the optimisation is used to 

optimise and validate the model within each loop. When the algorithm is not 

working due to some repeat points, the alternative random design is used to 

minimise the risk of sticking to the local maximum point due to model or the 

improper initial guess. On the other hand, the modified simplex will select points 

from a pool of experimental results offered by D-optimal design, optimisation / 

random design and Simplex itself. This makes Simplex more efficient by jumping 

from low value direct to high objective value point, which eliminates several 

iterations in the normal Simplex. Three design methods are based on different 

theories but using the same dataset. This kind of parallel designs will extract and 

utilise the most information from experimental data while still work in an overall 

sequential framework. 
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Figure 3.7 Model based experimental design flowchart with all three algorithms. 
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3.2.5 Larger scale process and improvements 

 

After the optimal operation conditions found in microwell experiments, it should be 

tested and improved at larger scale. In this step, the differences between microwell 

scale and larger scale are mainly focused on, e.g. technical feasibility. If it is possible, 

the whole purification processes should be evaluated by current data, models and 

process design software based on the cost and process time as soon as possible. 

These issues will be explained in details in Chapter 6 and Chapter 7 respectively 

with flowcharts and applications in a mAb purification process development. 

 

3.2.6 Results assessed by objectives 

 

If the objectives have been achieved by the main algorithm, this process design is 

completed. The design will give both the improved model and the best experimental 

results, or maybe even an improved experimental system with new equipments and 

materials if an optional loop for equipment improvement was executed. 

 

3.3 MatLab programming 

 

The algorithms were then programmed in MatLab (The MathWorks Inc., R2009b) 

by one main design algorithm and 11 sub-function files, as shown in Appendix 1. 

The initial coefficients, conditions and results of existing points are required to input 

into the program to initialise the algorithm. The program will automatically display 

the conditions of points for the next experimental set with other information, e.g. 

current maximum objective value and SD2 in each loop after computation and wait 

until new experimental data are input to start the next loop.  

 

The current interface requires the response from researchers. However, the MatLab 

codes can be modified to output conditions to Tecan software in order to implement 

high throughput experimentation automatically and receive results in excel files 
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directly from analytical instruments, such as HPLC. Therefore, full automatic 

process development according to preset algorithms without researchers on site can 

be achieved in the future if hardware and software can be integrated successfully.  

 

3.4 Conclusions 

 

This model based process design approach has been developed to reduce both the 

cost and time during process development. The core strategy is to integrate 

bioprocess modelling, model based experimental design and high throughput 

experimentation together to achieve fast process development that directly addresses 

the data analysis challenges on microwell experimentation. It iteratively designs the 

experiments, carries out process modelling with updated data to improve the 

accuracy of process model and promotes process optimisation till the final solution is 

found.  

 

The model based experimental design and optimisation was the main step in the 

process design approach. The conventional D-optimal design was modified by 

considering the practical experimental constraints. A feasible sequential D-optimal 

design method was developed to make the complicated matrix determinant 

optimisation manageable. Optimisation was introduced into the algorithm to find 

optimal solution as well as provide extra useful experimental points. Random design 

was also incorporated to prevent dead loop and local optimisation. Simplex was 

modified to select the most useful points from a point pool before running into the 

next design directly. Most importantly, a complicated information sharing method 

integrated these different algorithms together. The method is able to find information 

rich and optimal points based on model and steer away from the local optimal 

solution through non model based algorithms.   

 

The model based process design method thus provided a framework to link high 

throughput experimentation with effective data analysis in an integrated fashion. It 
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has the potential to achieve fast development for a complex bioprocess with fewer 

experiments but better process understanding. 
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Chapter 4.  Bioprocess modelling: a case study in Fab’ 

precipitation facilitated by high throughput microwell scale 

experimentation 

 

4.1 Introduction 

 

From Chapter 3, process modelling is one of the key elements in the model based 

process design method. Establishing or selecting a model structure is required before 

the design algorithm and optimisation can be applied. The accuracy of the model 

structure will influence the effectiveness of the method. However, bioprocess 

modelling faces several issues such as biological complexity, the scarcity of data etc, 

which impose great challenges to traditional modelling (Afima, 1982; Riel, 2006). A 

systematic modelling approach is needed to achieve system level understanding of 

complex bioprocesses based on mathematical models (Bailey, 1998; Marquardt, 

1996). Therefore, in this chapter, a bioprocess modelling and implementation 

method by high throughput experimentation will be demonstrated by using Fab’ 

precipitation as an example. The key elements of modelling: how to derive the 

model structure from theory, how to simplify the model based on biological property 

assumptions and how to validate the model, will be presented. The developed model 

will also be used to examine the effectiveness of model based design algorithm in 

the next chapter. 

 

4.2 Bioprocess modelling in protein precipitation 

 

4.2.1 Precipitation background 

 

Protein separation using differences of protein solubility to precipitate components is 

a technique widely used in the biotechnology industry due to ease of operation and 
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clean products in the later refining stages (Thommes and Etzel, 2007). As 

ammonium sulphate does not denature protein and has very high salting out effect, it 

is extensively used to separate protein from complex solutions (Cheng et al., 2006; 

Cohn et al., 1946; Foster et al., 1976). Currently, it is very attractive that alternative 

processes can be used to replace chromatography or even to reduce the number of 

chromatography steps (Ma et al., 2010). Therefore, in the early stage of the 

purification, a primary separation, such as protein precipitation, may be prudent and 

welcome to prepare a relatively clearer and less contaminated solution to lower the 

work burden for further expensive and complicated chromatography purification 

processes. 

 

In the aqueous solution, protein molecules are considered as charged poly-ions. 

During precipitation, the solubility of protein depends primarily on process 

conditions including pH, salt concentration and temperature (Knevelman et al., 

2010). In order to optimise the precipitation process operation, a good understanding 

of the impact of these conditions on the behaviour of protein is needed. For 

industrial scale process engineering and design purpose, a protein precipitation 

model that directly links protein solubility with critical operating conditions is 

beneficial. This can support industrial process development and further quality 

control, e.g. scale-up, predict process optimal conditions and provide information for 

online process control (Kell and Sonnleitner, 1995).  

 

4.2.2 Previous protein precipitation modelling 

 

The first attempt to model the protein solubility was by Cohn (1925). His log-linear 

equation gives a very simple but general relationship between the soluble protein 

concentration and ionic strength in the solution, but Cohn’s equation only accurately 

describes the protein behaviour over a high salt concentration range. Melander and 

Horvath (1977) then improved Cohn’s empirical equation by linking hydrophobic 

effect with thermodynamical parameters such as hydrophobic surface and tension. 
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However, their work focused on thermodynamic theory and the improved model 

shed little light on the bioprocess operation and design. Agena et al. (2000) proposed 

a thermodynamic approach based on the UNIQUAC model to describe protein 

solubility by protein activity coefficients. Ruppert et al. (2008) went further in 

modelling protein behaviour and used the polynomial relationship proposed by 

Winzor et al. (2001) between protein activity coefficients and osmotic second virial 

coefficients. Both models required protein activity data which had to be gained 

through extra experiments. Chiew et al. (1995) and Kuehner et al. (1996) proposed 

theoretical thermodynamic equations to predict protein solubility with molecule 

radius and surface parameters. These models work quite well in a defined simple 

system with all physical properties known such as lysozyme-salt solution.  

 

However, problems arise when applying these above thermodynamical-based models 

to real bioprocess. For example, fermentation broth is complex and contains not only 

target protein, but also various impurity components such as DNA, host cell proteins, 

whose thermodynamical information is not available. The models based on 

thermodynamics are thus limited in the use of process design and control as the 

parameters representing thermodynamical properties for complex processing 

material are unknown. 

 

Niktari et al. (1990) and later, Habib et al. (2000) proposed modified empirical 

exponential models to describe the traditional sigmoid shape of the precipitation 

curve. The empirical equations link predictions with process conditions directly. 

Nevertheless, these models have a disadvantage that they lack the fundamental 

understanding. In addition, although it has been reported that pH can make a strong 

impact on protein precipitation, such an impact has not been considered in the 

models. Temperature is another variable that influences protein precipitation. 

However, most proteins are sensitive to temperature, so a fixed temperature will be 

applied during industrial precipitation process, typically at low temperature to 

prevent protein denature. 
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Figure 4.1 The flowchart of the modelling approach by high throughput 

experimentation. 
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4.3 Precipitation modelling objectives and flowchart 

 

This modelling research is to propose and validate a protein precipitation model that 

uses bioprocess conditions as inputs and predicts the protein solubility for complex 

multi-components materials such as a clarified protein solution after harvest step. 

Figure 4.1 shows the flowchart of the modelling approach in this case study. The 

model will be developed based on theoretical phase equilibrium and use two process 

conditions, pH and salt concentration, as model variables in order to achieve an 

improved process understanding for process operation and design. The structure of 

the model will be examined by two different feedstock, a pure fragment of antibody 

(Fab’) solution and a clarified Fab’ solution from E. coli homogenate to determine 

how well the model can describe the Fab’ and impurity solubility in both feedstock. 

The massive data required to regress will be provided by high throughput microwell 

precipitation. The model will be validated by experimental data and statistical tests 

will be used to evaluate the quality of the model. The model regression and 

evaluation will be supported by MatLab programs. If the statistic tests fail, the model 

needs modification and iterates with experimental data through modelling loop. The 

predictions of the model will also be compared with four empirical models where pH 

will be introduced as an extra variable (Cohn, 1925; Habib et al., 2000; Niktari et al., 

1990). 

 

4.4 Phase equilibrium based protein precipitation model 

 

Protein precipitate has been thermodynamically regarded as a pure crystal since the 

solution has only protein and salt (Chiew et al., 1995; Kuehner et al., 1996; Winzor 

et al., 2001). However, for proteins in the fermentation broth or other complex 

biological materials, the precipitation will not form pure crystal but an amorphous 

mixture (Arakawa and Timasheff, 1985; Shih and Prausnitz, 1992). Arakawa and 

Timasheff (1985), Shih and his co-workers (1992) treated the precipitation as a 

distribution between a light liquid phase (supernatant) and a dense liquid phase 
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(precipitation). Therefore, the proposed model in this thesis will be developed based 

on the phase equilibrium for the target protein in a multi-component solution: 

edense phaskelight phas ProteinProtein ⎯→← ,                  (4.1) 

where k is the kinetic rate. When two phases are in equilibrium, the chemical 

potentials of protein must be equal:  

dl μμ = ,                             (4.2) 

where lμ is the chemical potential for liquid phase and dμ is the chemical potential 

for dense phase. Based on equation (4.1) and (4.2), it became 

dddlll rCRTrCRT ⋅+=⋅+ lnln oo μμ ,                 (4.3) 

where lC is the protein molar concentration in the light phase, dC the protein molar 

concentration in the dense phase, lr the protein activity coefficient in the light phase, 

dr the protein activity coefficient in the dense phase, R the ideal gas constant, T the 

temperature, o
lμ the protein standard chemical potential in the light phase, o

dμ the 

protein standard chemical potential in the dense phase. 

 

Equation (4.3) can be rearranged as 
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Suppose Vl is the light liquid phase volume, Vd the dense phase volume, CT the 

maximum protein concentration in the solution and VT the total solution volume with 

the assumption that there is no volume change during precipitation. Then,  

dlT VVV += ,                          (4.5) 

TTddll VCVCVC ⋅=⋅+⋅ .                     (4.6) 

Introduce equation (4.5) and (4.6) into equation (4.4) and transform it to 
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In the processing, dense phase volume is very small compared to the total volume 

due to relatively low protein concentration, so it is reasonable to assume that 1≈
T

l

V
V . 

However, 
T

d

V
V  depends on the protein properties in the materials and also the 

process conditions. According to prior knowledge, the dense phase volume in most 

precipitation cases will increase with salt concentration and reach a nearly constant 

level at high salt concentration. It will also change with pH and depend on all 

components in the material, probably without an apparent isoelectric point (pI). In 

this case, pH was assumed to have only a simple linear effect on the 

multi-components precipitation. Considering the salt effects, the trend of 
T

d

V
V  in real 

experiments was very similar to the shape of Michaelis-Menten enzyme kinetic 

model (Michaelis and Menten, 1913). Thus, it is proposed that 
T

d

V
V is represented by 

an empirical equation of salt concentration and pH with the same structure as above 

model as follows: 
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where a1,b1,c1,d1 are coefficients to represent the effect of pH and salt concentration 

on 
T

d

V
V . By arranging equation (4.8), 
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where sC is the salt molar concentration, δχβα ,,, are the lumped parameters and 

will be estimated by real experimental data. 

 

In 1943, Kirkwood (1943) found protein activity coefficient in a multi-component 

solution is a simple function of the concentrations of all solute species. Long and 
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Mcdevit (1952) further justified protein activity coefficient can be assumed by a 

log-linear function: 

∑
=

+=
n

i
iissp CkCkr

1

log ,                      (4.10) 

where ks is the salt activity coefficient, ki the components activity coefficient, iC the 

other component concentration in the solution.  

 

In a multi-component solution containing biomolecules and salt, the protein activity 

coefficient is dominantly affected by salt concentration. The other effects caused by 

biomolecules can be regarded as constant due to their very low molar concentrations. 

Therefore in the liquid phase, the second part of equation (4.10) can be represented 

by a constant. In the dense phase, the concentration of salt is considered not 

changing much while other molecules still have no or little effects, hence the overall 

protein activity coefficient can be regarded as a constant at all time. From the above 

assumptions equation (4.10) provides, 
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where w1, w2 and w3 are the constants, ks is the coefficient. 

 

Equation (4.11) was a modification of Kirkwood’s equation (4.10). However in 

some case, the protein property and its main interaction with salt will depend on the 

type of salt so equation (4.11) may need the second order or even higher order of salt 

concentration term to describe the strong effect of salt concentration on the change 

of protein activity coefficient (Kirkwood, 1943). In this study, only first order term 

was used in the model. The higher order model will be considered only if the first 

order one fails to work. 
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In 1985, Arakawa and Timasheff (1985) published a theoretical protein precipitation 

model for a single component, which gave following theoretical chemical potential 

equation, 

∫ ∂∂−+=
− m

mT
w dmmRTIBIAZ

RT 0 3,32
2,22

2
)/()303.2/1()1/( μ

μμ oo

,  (4.12) 

where o
2μ  is the protein standard chemical potential in the solution, o

w,2μ  the 

protein standard chemical potential in the water, Z the net charge of the protein, I the 

ionic strength, m3 the salt molar concentration, R the gas constant, T the temperature, 

A, B the coefficients.  

 

The second differential term can be approximated by a first order term of salt 

concentration sC⋅φ , as 
2,32 )/( mTm∂∂μ is an empirical constant over a wide range of 

salt concentrations, especially in salting-out range (Arakawa and Timasheff, 1985). 

As proteins are sensitive to thermal damage, so the process usually is operated at a 

low fixed temperature. Although increasing temperature will facilitate precipitation, 

it will also denature targeted protein and require large energy input in large scale 

precipitation. Therefore, the temperature was not considered as a variable in this 

study. All the experiments were carried out at room temperature and RT thus can be 

regarded as a constant in the equation (4.12). 

 

Since ionic strength is defined as: 

∑ ⋅= 2

2
1

ii ZCI ,                       (4.13) 

where Ci is the molar concentration of ion i, and Zi is the charge number of that ion. 

For a neutral salt, such as ammonium sulphate, I is linear proportional to square 

root of salt concentration sC , according to equation (4.13). As protein surface net 

charge is a function of pH without a general mathematical model, Z2 in equation 

(4.13) was assumed to be described and approximated by a second order pH 
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polynomial equation. Therefore, equation (4.12) can be simplified into a function of 

salt concentration and pH with the similar structure: 
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w CCCpH
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)/()( 2,22
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           (4.14) 

where ηγϕφ ,,, are lumped coefficients. 

 

Under the assumptions that the salt concentration in the dense phase is very small 

and does not change much, which means the value of equation (4.14) for dense 

phase protein will be considered as a coefficient without bulk salt concentration and 

pH influence, above assumptions giving 

κ
η
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φμμμμμμ

+
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,  (4.15) 

where κηγϕφ ,,,, are lumped coefficients. 

 

The second term mainly describes the protein salting-in effect at low salt 

concentration. At high salt concentration, this phenomena does not exist or the effect 

is very small compared to the first term in equation (4.15) (Arakawa and Timasheff, 

1985). To simplify the calculation, the second term was rearranged to be expressed 

by pH effect, which is dominated described by a simplified second order polynomial 

function of pH effect only, and the salt effect at low concentration range, which is 

separated from this term and lumped into the first term to give: 

s
s

s CpHpH
C

CpH
ξρνσ

η
γϕ

++⋅+⋅≈
+

⋅−⋅ 2
2)(

,          (4.16) 

where ξρνσ ,,, are coefficients. 

 

Combine equation (4.9), (4.11), (4.15) and (4.16) together, the model in equation 

(4.7) becomes: 
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where a, b, c, d, f, g, h, i are lumped coefficients. 

 

This model is able to describe the strong nonlinearity of the precipitation surface due 

to its sigmoid structure. All parameters in the equation (4.17) are lumped and thus it 

is difficult to predict their values or limit their ranges. However, according to prior 

knowledge and modelling assumption, parameters a and i should have positive 

values and ss CpHhCgf ⋅⋅+⋅+  term also be positive. At low salt concentration, 

the exponential expression in the model is not a dominate effect and thus the 

decrease of dense phase volume caused by salting-in effect, which makes the value 

of 
T

d

V
V  smaller, explains the protein concentration increase. At high salt 

concentration, the second term which contains an exponential expression will have a 

much larger value than one, ignore value 1 in the denominator and thus this model is 

similar to the exponential structure of Cohn’s equation. 

 

4.5 Model comparison 

 

In order to evaluate the capability of this new model, it is useful to compare the 

model with three published models, Cohn’s (1925), Niktari’s (1990) and Habib’s 

(2000) models plus a polynomial model. For the process design purpose, all selected 

models were modified to contain pH factor by introducing a second order 

polynomial expression of pH to substitute model coefficients without changing the 

model structure, in order to link protein solubility directly to operating variables.  

 

Expansion on Cohn’s equation is 

sCdpHcpHba
S
S

⋅−⋅+⋅+= 2
2

222
0

ln .               (4.18) 
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Expansion on Niktari’s equation is 

2
333)(1

1

2
333

pHfpHeds

pHcpHba
Cy

⋅+⋅+

⋅+⋅+
+

= .           (4.19) 

Expansion on Habib’s sigmoid model is 
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A second order polynomial equation with interaction terms is used to represent the 

conventional two factors polynomial model in DoE: 

pHCfpHeCdpHcCbay sss ⋅⋅+⋅+⋅+⋅+⋅+= 5
2

5
2

5555 ,       (4.21) 

where y is Fab’ concentration in the supernatant, S/S0 is the percentage of Fab’ 

concentration in the supernatant to the Fab’ concentration in the feedstock, and 

others are parameters. 

 

4.6 Results and discussion 

 

The phase equilibrium based model structure, equation (4.17), was used to describe 

the Fab’ solubility in pure Fab’ solution and clarified homogenate with regarding to 

pH and ammonium sulphate concentration. As the focus of this study was on 

investigation of accurate precipitation model, a relevantly large data set was needed 

for model accuracy and thus the brute-force design method for experimental design 

was adapted. Then a nonlinear least square method was used to estimate the 

parameters in the model. The accuracy of the model, equation (4.17), and the other 

models, equation (4.18), (4.19), (4.20) and (4.21) was measured by R2. In addition, 

statistical tests such as F-test and t-test were used to establish and validate the new 

model and parameters.  
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4.6.1 Model parameters for pure Fab’, Fab’ in clarified homogenate and impurities 

 

In total, 119 experiments were carried out for pure Fab’ solution and 79 experiments 

for clarified homogenate. The normalised pure Fab’ concentration shown in Figure 

4.2.(a) slightly increased at salting-in phase and then gradually decrease with salt 

concentration, showing the same pattern as many previous pure protein precipitation 

curves (Arakawa and Timasheff, 1985; Cohn, 1925). The main difference between 

the two feedstocks was the salting-in behaviour. For the clarified homogenate shown 

in Figure 4.2.(b), when salt concentration was low, Fab’ concentration was 

significantly affected by other components in the solution and its concentration was 

dramatically altered compared to that of pure Fab’ solution. Under the unfavourable 

conditions, e.g. low pH and low salt concentration, the Fab’ concentration was only 

40% of the highest concentration. Compared with the impurity solubility, shown in 

Figure 4.2.(c), the same phenomena existed. It may be explained that the low Fab’ 

concentration at certain conditions, while it was not pure solution, was probably 

caused by the co-precipitation between Fab’ molecule and other impurity proteins, 

the solubility of which were dramatically changed by pH at low ionic strength (Akita 

and Nakai, 1993; Bramaud et al., 1997). When the salt concentration increased, the 

salting out effects dominated, and thus the solubility was the same as that of pure 

Fab’ solution.  

 

These experimental data sets were then used to develop the pure Fab’ precipitation 

model based on equation (4.17). The estimated parameters were shown in Table 4.1 

and R-square value was 0.975, which indicated a very good match between the 

model and the experimental data. The F-test value of the model fitting was 624.81, 

indicating that 95% confidence of model accuracy was achieved. Figure 4.2 also 

showed the model prediction surfaces. The model can describe flexibly both the 

salting-in and salting-out features of the concentration surface without the cost of 

losing accuracy at any phase, except for a few stray points probably caused by 

experimental errors. 
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Figure 4.2 The predicted surfaces provided by simplified model equation (4.17), 

with real experimental results (dots): (a) pure Fab’ solution; (b) Fab’ in clarified 

homogenate; (c) impurities in clarified homogenate. 
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 Parameters 
 a b c d f g h i 

R2 F-test value

Pure Fab’ 7.97  1.62 0.53 -5.30 1.15 -1.05 0.16 0.03  0.975  624.81  
Fab’ in clarified 

homogenate 
7.61  -6.60 4.34 -4.27 1.04 -0.75 21.12 0.002  0.972  320.36  

Impurities  5.51  -7.88 5.03 -3.43 1.32 -0.41 20.60 0.01  0.945  172.68  

Table 4.1 Parameters, F-test value and R2 value of developed model using equation 

(4.17) for pure Fab’ precipitation, Fab’ precipitation in clarified homogenate and 

impurities precipitation. 

 

To examine the generality of the model structure, the model was then assessed by 

applying to Fab’ precipitation in clarified homogenate, where multi-components 

exist. The parameters of pure Fab’ model were used as the initial guess for this new 

fitting. The estimated parameters were also shown in Table 4.1 and R-square value 

was 0.972, which was very similar to that of pure Fab’ model. The F-test value of 

model fitting was 320.36, which was smaller than that in pure Fab’ model. However, 

these measures indicated that the model was also accurate with 95% confidence. The 

predicted Fab’ concentration surface was shown in Figure 4.2.(b). It can be seen that 

Fab’ solubility in the clarified homogenate was predicted well by the model in 

general. Nevertheless, there was a slight discrepancy between predicted solubility 

and experimental data at low pH range as well as very low salt concentration. As the 

exposure to these conditions can cause the formation of soluble high molecular 

weight aggregates and/or insoluble precipitate (Shukla et al., 2007), it is very 

difficult to be predicted with no theoretical model available.  

 

To further explore the quality of the model, the model was assessed by applying to 

describe impurities precipitation, where a mixture of proteins was treated as an 

assumed pseudo-single molecule with average characters of all proteins in the 

solution, e.g. average electronic charges and hydrophobic behaviour (Mahadevan 

and Hall, 1992). 79 experiment data from impurities precipitation in clarified 

homogenate were used for parameters estimation. The results were given in Table 
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4.1 and the R-square value was 0.945, which was lower than that of Fab’ models. 

The F-test value of the model was 172.68. These measures showed the model was 

accurate with 95% confidence. The predicted impurity concentration surface was 

shown in Figure 4.2.(c). The geometrical pattern in real data points and model 

predicted surface were slightly different, especially at high salt concentration region. 

The difference was caused by the simplification of a mixture of proteins into a 

pseudo-single protein. Although the impurities were regarded as a pseudo-single 

molecule with average values of all mixture, in reality, different protein will have 

different sensitivity to salt and pH (Hoskins et al., 1996). Conditions may 

dramatically affect one protein with no great effect on other molecules (Mahadevan 

and Hall, 1992). Thus, the assumed average properties of a pseudo-single molecule 

were not constant under all conditions, especially for extreme conditions, e.g. low 

pH or high salt concentration.  

 

4.6.2 Model modification  

 

It has been demonstrated that the new model can represent the experimental data 

with good quality. However, there were nine parameters in the equation (4.17) and 

the model exhibits a high level of nonlinearity. Generally, a simple model is more 

useful than a complicated one for application in processes operation and design 

(King et al., 2007). To simplify the model is also beneficial for computation, since 

the higher number of parameters, the longer computing time and the less accuracy. 

The t-test for individual parameters in the model can be used to evaluate and decide 

if a parameter is necessary. If a parameter fails the t-test, it is neither accurate nor 

needed (Freedman, 2005). After carrying out t-test for each parameter, the 

parameters f, g and h in the upper part of 
T

d

V
V  have failed t-test in all three models. 

Therefore, let the upper part equal to one for model simplification by considering 

T

d

V
V  as a ratio and thus the model can be simplified to 
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The simplified model, equation (4.22), was developed for pure Fab’, Fab’ in clarified 

homogenate and impurities in clarified homogenate by using the experimental data 

sets again and the parameters were shown in Table 4.2. The R-square values were 

evaluated and were a little lower than the previous ones, but all tests still showed the 

models had excellent statistic confidence. All parameters passed t-tests with 95% 

confidence.  

 

 Parameters 
 a1 b1 c1 d1 f1 

R2 F-test value

Pure Fab’ 8.21  1.49 -1.08 -5.34 0.03 0.973  1037.82 
Fab’ in clarified 

homogenate 
9.46  -3.16 2.19 -4.60 0.005 0.937  308.28  

Impurities  7.02  -5.01 3.70 -3.51 0.02 0.914  195.48  

Table 4.2 Parameters, F-test value and R2 value of modified model using equation 

(4.22) for pure Fab’ precipitation, Fab’ precipitation in clarified homogenate and 

impurities precipitation. 

 

Replacing the parameters in equation (4.22) with the corresponding values in the 

Table 4.2, all three models showed the similar trends. When salt concentration was 

low (<0.2 mol/L), the value of exponential term was small and changed little while 

the 
sCf +1

1  term dominated and changed rapidly. It described the salting in 

phenomenon at low salt concentration (Arakawa and Timasheff, 1984). When salt 

concentration was higher, e.g. in salting out range, the value of exponential term 

dominated due to large value of parameter a1, while the effect of 
sCf +1

1  term was 

small. It explained the protein salting out with the similar mathematical structure as 

Cohn’s equation at high salt concentration (Cohn, 1925). The values of parameters 
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linking with pH varied relatively little. The parameter of second order pH term for 

impurities, c1, was the largest with the fact that impurity concentration was 

influenced the most by the pH in all three materials. The effect of pH at neutral pH 

range was very small due to the small parameter value and its second order structure. 

However, extreme pH conditions would have large effects according to the models, 

describing the protein concentration changes in the experiments at extreme pH 

conditions (Petrucceli and Anon, 1996). 

 

4.6.3 Model validation 

 

9 DoE experiments under the same operation space were carried out to validate the 

model, as shown in Table 4.3. When validating bioprocess models, it was not 

recommended to use error percentage to evaluate models because the range of 

bioprocess data may be very wide even after scaled or transformed, which will 

introduce mathematical error (Hancock et al., 1988). Thus, statistical tests should be 

utilised to validate new model, no matter how good the fitting of the data was in the 

regression step (Hills and Leslie, 2003; Mayer and Butler, 1993).  

 

Conditions 
Pure Fab’ 
(mg/ml) 

Fab’ in clarified homogenate
(mg/ml) 

Impurities in homogenate
(mg/ml) 

Salt pH
Real 
value 

Model
value

Real 
value 

Model 
value 

Real 
value 

Model 
value 

0.6 5.0 0.122  0.128 0.181  0.187  1.229  1.336  
1.8 5.0 0.075  0.064 0.067  0.056  0.464  0.646  
3.0 5.0 0.000  0.007 0.000  0.003  0.272  0.095  
0.6 6.5 0.117  0.125 0.188  0.197  1.601  1.481  
1.8 6.5 0.054  0.057 0.059  0.074  0.658  0.899  
3.0 6.5 0.000  0.006 0.000  0.004  0.197  0.168  
0.6 8.0 0.127  0.122 0.185  0.205  1.307  1.573  
1.8 8.0 0.060  0.051 0.094  0.094  1.193  1.144  
3.0 8.0 0.000  0.005 0.000  0.006  0.301  0.284  

Table 4.3 Validation DoE with real experimental value and model predicting value 

for pure Fab’, Fab’ in homogenate and impurities. 

 



 118

However, there are several unusual problems for bioprocess model validation. First 

of all, the number of samples used for validation is normally small, e.g. 9 samples in 

this case, due to various reasons, such as high cost of materials and long time of 

experimentation. Secondly, the distribution of most bioprocess data is normally 

unknown or the data is hardly transformed to any known distribution, e.g. standard 

normal distribution (Goffaux and Wouwer, 2005). Statistically, the normal 

distribution can be assumed only when the number of samples is very large, 

normally more than 30 (Lamprecht, 2005). Therefore, for small validation group 

with unknown distribution, it is of great risk to use paired t-test due to high 

probability to fail.  

 

There exist two solutions for this type of validation. One solution is to use Wilcoxon 

signed-rank test (Wilcoxon, 1945) for few samples. The other is to analyse 

validation samples together with previous regression data by paired t-test since the 

whole data set can be roughly considered as the normal distribution when sample 

number is large than 30. For Wilcoxon test, 2-tailed significance > 0.05 can be 

regarded as validation passed. For paired t-test, sig. > 0.05 can be considered as the 

null hypothesis that there is no difference between experimental data and model 

calculated value is accepted (Schiff and D’Agostino, 1996). Table 4.4 shows the test 

results for equation (4.22) with t-test sig. > 0.05 and Wilcoxon 2-tailed significance 

> 0.05 (from SPSS calculation) in all three materials. It demonstrates the simplified 

model passed validation with strong statistical confidence (95 %).  

 
 Pure Fab’ Fab’ in clarified homogenate Impurities 

t-test value 1.201 1.220 -0.198 
sig. (2-tailed) 0.232 0.227 0.843 

Wilcoxon 2-tailed sig. 0.767 0.086 0.515 

Table 4.4 Results with 9 samples Wilcoxon signed-rank test and all samples paired 

t-test results for modified model using equation (4.22).  
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4.6.4 Model comparison 

 

The experimental data sets were also used to estimate the parameters in the four 

models described by equations (4.18), (4.19), (4.20) and (4.21). Table 4.5 presented 

the R-square and the F-test values for all four compared models in different 

feedstock. The predicted Fab’ and impurity concentration surfaces by the four 

models were shown in Figure 4.3 to Figure 4.6 respectively. A large difference 

between predicted surface and experimental data was observed for all three models 

based on Cohn’s equation in Figure 4.3.(a), (b), (c). Due to its linear model structure, 

Cohn’s equation can not describe protein salting-in effect at low salt concentration in 

multi-components solution (Curtis et al., 2002) as all statistical tests failed with all 

R-square values below 0.80.  

 

Nitark’s expansion model and Habib’s expansion model can fit quite well in pure 

Fab’ precipitation, shown in Figure 4.4.(a) and Figure 4.5.(a), with R-square value 

0.956 and 0.971, F-test value 402.72 and 400.30 respectively. However, these 

models for Fab’ precipitation in multi-components solution and impurities 

precipitation were poor, shown in Figure 4.4.(b), (c) and Figure 4.5.(b), (c). The 

R-square values and F-test values of these two models shows less good quality of 

model and less predicting capability, particularly for impurity precipitation. Besides, 

both models did not consider pH effect originally and a second-order polynomial 

expression for pH expansion may not effectively describe the real complicated 

impacts.  

 
 Cohn’s equation Niktari’s model Habib’s model Polynomial model

 R2 F-test R2 F-test R2 F-test R2 F-test 
Pure Fab’ 0.795 148.53 0.956 402.72 0.971 400.30  0.950  433.74 

Fab’ in clarified 
homogenate 

0.621 40.88 0.795 46.55 0.864 48.78  0.825  68.90 

Impurities  0.721 64.50 0.859 73.03 0.877 54.48  0.858  88.00 

Table 4.5 R2 and F-test values for all four compared models. 
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Theoretically, the polynomial model has the most flexibility to fit data. However, the 

same results were obtained as previous two models, shown in Figure 4.6. The model 

in pure Fab’ precipitation was quite good with R-square value 0.95, but the models 

for Fab’ precipitation in multi-components were less good as R-square was less than 

0.90 in non-ideal solution. Moreover, at high salt concentration, the predicted 

concentration surface of the polynomial model was below zero, which also occurred 

in Habib’s model. Therefore, both models were quite misleading because the 

predicted value below zero had no physical meaning. In order to solve this problem, 

the parameters in these models can be adjusted at the cost of losing accuracy at other 

conditions. The polynomial model was considered as not adequate to give good 

fitting in clarified homogenate precipitation. The higher order polynomial model 

may be more accurate but will inevitably introduce more parameters, complicate 

computation and have little physical meanings. 
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Figure 4.3 The predicted surfaces provided by Cohn’s model equation (4.18) with 

real experimental results (dots): (a) pure Fab’ solution; (b) Fab’ in clarified 

homogenate; (c) impurities in clarified homogenate. 
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Figure 4.4 The predicted surfaces provided by Nitark’s model equation (4.19) with 

real experimental results (dots): (a) pure Fab’ solution; (b) Fab’ in clarified 

homogenate; (c) impurities in clarified homogenate. 
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Figure 4.5 The predicted surfaces provided by Habib’s model equation (4.20) with 

real experimental results (dots): (a) pure Fab’ solution; (b) Fab’ in clarified 

homogenate; (c) impurities in clarified homogenate. 
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Figure 4.6 The predicted surfaces provided by polynomial model equation (4.21) 

with real experimental results (dots): (a) pure Fab’ solution; (b) Fab’ in clarified 

homogenate; (c) impurities in clarified homogenate. 



 125

4.7 Modelling procedure and limitation 

 

The results well demonstrated this modelling procedure incorporating with high 

throughput experimentation was better than traditional modelling procedure, as a 

large amount of data for modelling can be produced in a short time and few materials 

required (Nfor et al., 2009). With more data output, it made the accuracy of 

bioprocess model much more possible even in a complex system. The most difficult 

thing in modelling was still the mechanic model development starting from theories, 

which really required sufficient understanding of the process. The large amount of 

data collected created a challenge for mathematical and statistical algorithm (Katare 

et al., 2004). A proper algorithm should be able to analyse data, validate model and 

help to modify model through modelling and high throughput experimentation loop 

shown in Figure 4.1.  

 

High throughput experimentation platform collaborating with mathematical 

algorithm also has a potential application in empirical model setting up but requires 

more advanced software to execute model selection and regression (Pfeifer et al., 

2010). The limitation of this method is that the model developed by microwell 

technique needs scaling up and validating in large scale process. In order to scale up, 

extra large scale experimentations are needed to provide data support and the model 

may need correlation in some case (Micheletti et al., 2006). However, this method is 

still faster and requires less time and cost than traditional modelling procedure 

without the help of high throughput technology. 

 

4.8 Conclusions 

 

Phase equilibrium based models have been developed and modified using parameter 

t-tests. The model equation (4.22) can precisely describe the precipitation surface of 

pure Fab’ and Fab’ in clarified homogenate with two variables, salt concentration 

and pH. The model structure based on single protein can be applied to a protein in 
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multi-components as well as a pseudo-single molecule such as impurities with 

slightly reduced quality.  

 

The results showed the modified model equation (4.22) can predict Fab’ 

precipitation in pure Fab’ solution very well without failing any regression statistical 

tests. When applied to clarified homogenate with multi-components present, the 

model demonstrated excellent robustness and passed all of the regression statistical 

tests. Even when applied further to impurities in clarified homogenate, the accuracy 

of the model prediction was only slightly reduced but was still within the acceptable 

statistical confidence of 95%. In addition, the model developed was superior to the 

four existing models published, further indicates the suitability of the model. 

 

The model structure was generic to any protein solution precipitation and allowed 

the researchers to modify the model structure according to the first principle based 

on. The fact that it worked well for Fab’ and impurities in clarified homogenate 

showed this model can be used to predict precipitation outputs and conditions in 

order to obtain a low cost precipitation step as an alternative to protein A based 

chromatography process (Przybycien et al., 2004). It could also be used to define a 

pre-purification step for the chromatographic routine by reducing the burden of high 

impurity concentration to avoid plugging of affinity columns (Peram et al., 2010). 
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Chapter 5. Model based process development and experimental 

design at microwell scale: a case study in Fab’ precipitation 

 

5.1 Introduction 

 

When facing a complex nonlinear bioprocess with limited time and cost, there are 

two efficient strategies based on different concepts in order to achieve good 

understanding and promote process development. One is to reduce the volume of 

each experiment and thus increase the number of experiments, e.g. high throughput 

experimentation. The other available approach is, in the contrast, to reduce the 

number of experiments by a well-planned experimental design, such as model based 

experimental design. It seems there is a conflict between two methods and it is 

impossible to apply them together in a process simultaneously. However, the 

fundamental idea behind them is exactly same, that is to squeeze abundant 

information by using limited materials in a constrained situation. Through this 

concept, optimal conditions can thus be found because an optimisation procedure for 

bioprocesses normally starts with some limited priori knowledge with a defined 

objective e.g. maximum yield, and aims to achieve the final process optimality 

rapidly with increasing understanding (Galvanauskas et al., 1998).  

 

Therefore, in this chapter, the third step, model based process development, in 

previous proposed methodology (Figure 3.2) will be tested with the combination of 

above two strategies. The process development procedure will follow the flowchart 

in Chapter 3, Figure 3.3, in order to illustrate the capability of this model based 

design and optimisation method. It will be applied to a case study: downstream Fab’ 

precipitation processes using the precipitation model developed and validated in 

previous Chapter 4. Then it will be compared with traditional DoE design and 

optimisation methodology to understand its powers and limitations. 
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5.2 Case study: Fab’ precipitation 

 

In order to investigate the quality and efficacy of the proposed model based 

experimental design and optimisation for bioprocesses, a Fab’ precipitation by 

ammonium sulphate at different pH value was used as a case study to provide an 

evaluation based on real experimental data. The following precipitation model, 

which was developed in Chapter 4, will be used both for Fab’ concentration and 

impurity concentration calculation: 
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where Tl CC is the predicted normalised protein concentration in the supernatant, 

sC is normalised salt concentration and a, b, c, d, f are parameters. 

 

The system inputs are salt concentration and pH value with Fab’ value and impurity 

value calculated by equation (5.1) in normalised values respectively, while the 

objective of the process design is to find an optimal process condition for Fab’ 

primary capture based on an equation of purity ratio and yield as following: 

ionconcentratsaltratiopurityyieldbFavalueObjective ⋅−⋅+′⋅= 1.06.04.0 ，(5.2) 
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C
C

 are the normalised concentration in the supernatant for Fab’ and 

impurities respectively, salt concentration in equation (5.2) is in normalised value. 
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In the precipitation process, the product can either be recovered from the soluble 

phase or the solid phase. As the precipitation is normally used as the first capturing 

step to collect solids, the product recovery yield from solids should be larger than 

70%, which is %30
'

' <
FabT

Fabl

C
C

 in equation (5.3) and (5.4). Otherwise, the soluble 

phase supernatant will be collected, when %30
'

' >
FabT

Fabl

C
C

. So the yield and purity ratio 

equations have two expressions according to the criteria whether the Fab’ remaining 

in the solution is more than 30% of overall Fab’ concentration or not. The objective 

function will have a tradeoff between yield, purity ratio and conditions. The target 

yield was defined to be more than 70% and the weight of yield in objective function 

is 0.4. The purity ratio has a weight of 0.6 in equation (5.2) because it aims to 

achieve both high primary recovery and certain extent purification during this 

bioprocess. The negative value of 0.1 for salt concentration in the equation (5.2) is 

designed as the penalty term, which attempts to use as little salt as possible in the 

process.  

 

Experimental data of Fab’ and impurities precipitation was provided from previous 

Chapter 4 in the same normalised form. The clarified homogenate experiments were 

done by brute-force design and thus the whole dataset was available to give 

comparison during methodology tests. However, the experimental design algorithm 

will only acquire the data at designed point from above dataset and the final result 

will be compared with overall real surface. Because the real experiments have 

minimum operation space, e.g. 0.5 interval for pH, while the algorithm based on 

model is numerical method, which will give floating number, the points given will 

be automatically rounded to the nearest available experiments points in the MatLab 

code. This may slightly slow down the computation time of the model based process 

design but will not cause serious problems.  
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In this case, a set of DoE with nine points was used as start points, shown in Table 

5.1. Both Fab’ and impurities data will be fitted to the precipitation model (5.1), 

which will give one model for Fab’ and another for impurities. Therefore, after the 

DoE initialisation in the algorithm, the following designs, such as D-optimal design, 

will give two points respectively during each loop due to two sets of parameters, one 

for Fab’, the other for impurities.  

 
Initial DoE Validation DoE 

Experiment No.
Salt (M) pH Salt (M) pH 

1 0.6 5.0 0.0 4.5 
2 1.8 5.0 1.5 4.5 
3 3.0 5.0 3.0 4.5 
4 0.6 6.5 0.0 6.0 
5 1.8 6.5 1.5 6.0 
6 3.0 6.5 3.0 6.0 
7 0.6 8.0 0.0 7.5 
8 1.8 8.0 1.5 7.5 
9 3.0 8.0 3.0 7.5 

Table 5.1 The conditions of initial DoE design and validation DoE used in model 

based algorithm.  

 

Another set of validation DoE from whole dataset is used to calculate variance (SD2) 

between real data and the model predicted value, also shown in Table 5.1. The 

termination criteria of design algorithm is set as the SD to be lower than 0.05 (5%) 

in the optimisation procedure for normalised dataset. The real maximum objective 

point will be given by full dataset plotting and compared with the final maximum 

point found by algorithm when it terminates. When all three SDs for Fab’, impurities 

and objectives are less than pre-set accepted value, the algorithm terminates and the 

procedure of design and optimisation is completed. The initial parameters are from 

the pure Fab’ regression in Chapter 4, shown in Table 5.2.  
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Parameters 

 
a b c d f 

Pure Fab’ 8.21 1.49 -1.08 -5.34 0.03 

Table 5.2 Parameters from pure Fab’ model regression, which was used as initial 

parameters for model based design. 

 

5.3 Results and discussion 

 

5.3.1 The real experimental surfaces 

 

The real surfaces of pure Fab’ solution, Fab’ in clarified homogenate and impurities 

in clarified homogenate were plotted in Figure 5.1 (a), (b) and (c) respectively 

according to the experimental results from Chapter 4. These real surfaces can be 

compared with the predicted surface in each loop of following model based design 

and optimisation algorithm, though not in a quantitative way.  

 

The real objective surface was calculated based on equation (5.2) using clarified 

homogenate results from Chapter 4 and plot in Figure 5.1.(d). It also offered the 

ground to compare and evaluate the design and optimisation algorithm. The 

objective surface was quite fluctuated and the optimal area was identified around salt 

0.7, pH 0.7-1.0 in normalised value, the real value of which was salt 2.1M, pH 

7.0-8.0 with maximum objective value 1.219. The objective surface showed high 

nonlinearity because it was the mathematical calculation from equation (5.2) based 

on Fab’ and impurities results. No simple model was able to describe this surface 

directly and thus its optimisation highly depended on two precipitation models and 

algorithms adopted. 
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Figure 5.1 The protein solubility surfaces from experimental results: (a) pure Fab’ 

solution; (b) Fab’ in clarified homogenate; (c) impurities in clarified homogenate; (d) 

the objective surface based on clarified homogenate. 
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5.3.2 Model based design and optimisation 

 

5.3.2.1 The first run 

 

The surfaces predicted by model were really inaccurate due to lack of information in 

the first run, shown in Figure 5.2. The predicted Fab’ solubility surface in Figure 5.2 

(a) was not accurate with a sharp drop at normalised salt concentration 0.3, while the 

real solubility surface started to decrease at 0.3 but with a less steep slop until 0.8, 

shown in Figure 5.1 (b). Comparing Figure 5.2 (b) with Figure 5.1 (c), the surfaces 

of impurity solubility had the similar trend but lost the details. These surfaces were 

the predicted results from the regression of the initial DoE and parameters. The large 

gap between predicted value and real experimental results showed that a simple set 

of DoE was not accurate enough to investigate a complex bioprocess, especially in a 

non linear system (raw data of each validation run shown in Appendix 3). The SD2 

for Fab’ and impurities models were 0.1799 and 0.0537 respectively, shown in Table 

5.3. Although the values of SD2 were larger than 5%, the models were initialised by 

the general information from DoE and then the parameters in the models will be 

adjusted by D-optimal designs.  

 

Comparing the predicted objective surface in Figure 5.2.(c) with the real objective 

surface in Figure 5.1 (d), the objective surface calculated from the first run algorithm 

was completely wrong. It showed the optimal area located at low salt concentration 

range. Mathematically, the SD2 for objective surface was very large at 0.4624 and 

the value of the optimal point predicted was 4.949, nearly 4 times of the real one, 

shown in the Table 5.3. It was mainly caused by the inaccurate Fab’ precipitation 

model obtained above. Thus, the algorithm continued and four extra points were 

designed by algorithm for next experiments, also shown in the Table 5.3. 
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Figure 5.2 The predicted protein solubility surfaces from the 1st run: (a) Fab’ in 

clarified homogenate; (b) impurities in clarified homogenate; (c) the objective 

surface. 
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5.3.2.2 The second run 

 

The results from the four experiments designed in the first run (Table 5.3) were input 

into the algorithm and started the second run of model based design. The information 

offered by these extra four experiments was quite rich and changed the surface 

dramatically, shown in Figure 5.3. The objective surface (Figure 5.3.(c)) had the 

same pattern as the real surface with only 13 sample points (9 DoE points plus 4 new 

points), although the detail information was still not accurate enough. The predicted 

precipitation surfaces (Figure 5.3.(a) and Figure 5.3.(b)) started to show the 

conventional sigmoid curve with certain pH effects on the slops of surfaces. 

However, due to the lack of the information at the low salt concentration, the model 

can only predict the solubility value decreasing at the beginning and can not 

demonstrate the salting in phase, if compared to the real surfaces in Figure 5.1. The 

objective SD2 value decreased significantly to 0.0171 with predicted maximum 

value at 1.176 (Table 5.3), which meant the models were greatly improved by just 

one run of D-optimal design.  

 

5.3.2.3 The third run 

 

Another four points were designed based on the current knowledge following the 

second run and repeated in a same point given by both Fab’ D-optimal design and 

impurities D-optimal design (Table 5.3). In this case, the next set of experiments had 

only three new experiments. The data were feedback to the algorithm and surfaces 

were plotted in Figure 5.4. In this run, the information extracted from last run design 

brought in small changes on the models particularly in the low salt concentration 

area and the SD2 for Fab’ solubility model slightly decreased. Thus the design and 

optimisation continued.  
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Figure 5.3 The predicted protein solubility surfaces from the 2nd run: (a) Fab’ in 

clarified homogenate; (b) impurities in clarified homogenate; (c) the objective 

surface. 
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Figure 5.4 The predicted protein solubility surfaces from the 3rd run: (a) Fab’ in 

clarified homogenate; (b) impurities in clarified homogenate; (c) the objective 

surface. 
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Figure 5.5 The predicted protein solubility surfaces from the 4th run: (a) Fab’ in 

clarified homogenate; (b) impurities in clarified homogenate; (c) the objective 

surface. 
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5.3.2.4 The fourth run 

 

The experimental points designed from the third run started to locate at the low salt 

concentration area. It was mainly driven by D-optimal design, which tried to make 

the parameters more accurate. The optimisation algorithm gave the point around the 

real maximum point (salt concentration 2.1 and pH 8.0). Simplex still iterated 

around the maximum area due to the relatively small operation windows, in which 

required very few points to leap to the possible maximum region.  

 

The predicted surfaces were shown in Figure 5.5. Because the points at low salt 

concentration were introduced into the data, both precipitation surfaces began to 

have the same salting in phase, but the information was not accurate enough by only 

two points thus the objective surface gave the inaccurate pattern at low salt 

concentration range, which demonstrated high pH and low salt concentration would 

give the best results. The SD2 values for precipitation models decreased due to more 

accurate parameters regressed except SD2 value for the objective surface, but none of 

them hit the criteria set before (Table 5.3). Therefore, a new set of four points was 

given and all points produced by model algorithm were focusing on the low salt 

concentration area while Simplex was not influenced by inaccurate model 

parameters and still jumping around the real optimal area. 

 

5.3.2.5 The fifth run 

 

After inputting the latest four point results, the predicted surfaces were shown in the 

Figure 5.6. Compared with the surfaces in Figure 5.1 correspondingly, the predicted 

surfaces were very close to the real brute force experimental surfaces. Both 

precipitation surfaces showed the salting in effects and salting out effects perfectly 

and also demonstrated pH factor on the solubility. The objective surface (Figure 

5.6.(c)) had the correct pattern and the surface around low salt concentration also 

gave the right trend.  
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Figure 5.6 The predicted protein solubility surfaces from the 5th run: (a) Fab’ in 

clarified homogenate; (b) impurities in clarified homogenate; (c) the objective 

surface. 
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The SD2 shown in Table 5.3 had already achieved the termination criteria with all 

values lower than 0.05. Since the information of protein behaviour at low salt 

concentration added into model, the SD2 of two models significantly decreased to 

less than 0.01, which also lowered the SD2 of objective surface to 0.0063. The 

maximum point was found at pH 7.5, salt concentration 2.1M, which was the real 

optimal operation condition. Predicted maximum objective value was 1.109, while 

the real value was 1.219, less than 10 % variation. Although the algorithm still gave 

four next experimental points, the optimisation was achieved and the model 

produced through this procedure had the best accurate parameters to describe both 

precipitation processes with only totally 24 experimental points (9 DoE points plus 

15 points designed by four runs of model based algorithm). 

 

Fab’ 
d-optimal

Impurities 
d-optimal 

Optimal 
point / 
random 

Simplex
Run 
No. 

Salt 
(M) 

pH
Salt 
(M) 

pH 
Salt 
(M)

pH
Salt 
(M)

pH

SD2 
Fab’ 

SD2 
Impurities 

SD2 
Objective 

Maximum 
value 

1 0.9 6.0 1.2 4.5 0.9 8.0 2.4 7.5 0.1799 0.0537 0.4624 4.949 
2 1.5 4.5 1.5 4.5 1.8 7.5 2.7 6.5 0.1006 0.0584 0.0171 1.176 
3 0.0 4.5 0.3 4.5 2.1 8.0 2.1 6.0 0.0961 0.0588 0.0226 1.088 
4 0.0 8.0 0.0 7.0 0.0 7.5 2.4 5.0 0.0759 0.0442 0.0497 1.307 
5 0.0 5.5 0.0 5.0 2.1 7.5 1.8 4.5 0.0016 0.0061 0.0063 1.109 

Table 5.3 The conditions designed by model based algorithm in each run and the 

SD2 values with the maximum value at predicted optimal point.  

 

5.3.3 Comparison with traditional DoE design 

 

The 9 points DoE (Table 5.1) which used as the initial design in above algorithm 

was used again for the traditional DoE method comparison. The data were regressed 

to a second order polynomial equation and response surfaces were plotted in Figure 

5.7. The traditional polynomial model used in DoE design was not sufficient to 

predict the dramatically change of the real surfaces. The predicted objective surface, 

shown in Figure 5.7 (c), had no detailed information as being obtained through 
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above algorithm. Both the value of optimal point and the trend towards the optimal 

area were far away from the correct one. Even the precipitation surfaces, which were 

relatively continuous and smooth in the real situation, had poor prediction from the 

model. Form the predicted objective surface, the next round DoE will design 9 

points to explore a small design space at low pH and high salt concentration, which 

will further lose the chance to find the global maximum point. Therefore, the widely 

used sequential DoE with second order polynomial equation was of quite risk to be 

utilised to investigate the optimal point with a complex objective function and only 

few points providing information (Box, 1970). 

 

Apparently, it is not fair enough to use only 9 or 18 points DoE to compare with a 

method using 24 points. Then, the same 24 points, which were used to extract 

information and support optimisation in above model based algorithm, were utilised 

subsequently in a new polynomial fitting in order to compare the efficacy of two 

methods fairly.  

 

All predicted surfaces were shown in Figure 5.8. The results were much better than 9 

points polynomial fitting in Figure 5.7. Surfaces had the same trends and pattern as 

the real surfaces. However, the detailed information was less provided than model 

based algorithm using the same set of experiments. As shown in Figure 5.8.(a) and 

Figure 5.8.(b), the predicted precipitation surfaces deceased continuously without 

limits, which caused negative concentration in predicted Fab’ surfaces. The 

misleading negative value had no physical meaning in real process and casted doubts 

on whether a traditional DoE design and following methods have the capacity to 

describe a bioprocess correctly. The predicted objective surface in Figure 5.8.(c) 

suggested a direction to the optimal area outside of the operation windows, which 

gave a misleading judgement that the optimal process should be carried out at salt 

concentration and pH as high as possible. It definitely missed the real optimal area 

and may require more following studies at a new operation area.  
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Figure 5.7 The predicted protein solubility surfaces from polynomial DoE (9 points): 

(a) Fab’ in clarified homogenate; (b) impurities in clarified homogenate; (c) the 

objective surface. 
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Figure 5.8 The predicted protein solubility surfaces from polynomial DoE (24 

points): (a) Fab’ in clarified homogenate; (b) impurities in clarified homogenate; (c) 

the objective surface. 
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5.4 Conclusions 

 

In this chapter, it was well demonstrated how to start with a process model structure 

to successfully find the optimal point in a Fab’ precipitation process. The new model 

based design and optimisation method only requires 24 experimental points in 5 runs 

to locate the maximum point according to the objective value. The conventional DoE, 

which was widely used in the experimental design and optimal search in quite broad 

fields, was not powerful to describe and optimise this nonlinear bioprocess 

accurately. It missed the optimal area using the same set of experimental points. At 

the end of the algorithm, accurate mathematical models were also given by the 

algorithm to characterise the bioprocess with SD2 values less than 5 %. 

 

The new design methodology showed better effects to speed up optimal conditions 

identification and bioprocess characterisation in the early process development. Not 

only the optimisation can be achieved successfully with few experiments, validated 

process models were also provided after the completion of optimisation, which can 

be utilised to further support some regulatory requirements or recommends, such as 

QbD. The only drawback of this algorithm was that it required at least one model to 

describe the bioprocess. However, considering more and more importance was 

emphasised on bioprocess modelling, this algorithm was very useful for the future 

optimisation of various bioprocesses, which can greatly reduce the cost, labour and 

material requirement in the development phase.  
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Chapter 6.  Model based process design for bioprocess optimisation: 

a case study in alternative mAb purification process development  

 

6.1 Introduction 

 

The advances in mammalian cell culture development have made large scale 

monoclonal antibody production with 5 g/L or higher titres possible (Low et al., 

2007). This efficiency in cell culture increasingly presents challenges to achieve 

economic downstream purification processes of antibodies considering the strict 

safety and quality requirement set by the regulator. The biological material 

containing monoclonal antibody produced from mammalian cell culture has complex 

impurities including impurity proteins, host genomic DNA, endotoxin and other 

potential hazards such as allergy molecules (Wurm, 2004). For therapeutic 

antibodies, these impurities must be removed and the residual impurities in the 

product must be controlled to an extremely low level to ensure the safety of the drug 

(FDA, 2001). Current practice relies on a general mAb purification platform, which 

is typically of three chromatographic steps starting with protein A chromatography, 

to produce high quality drugs (Shukla et al., 2007). Affinity protein A 

chromatography is the most effective step in downstream antibody purification and 

may achieve up to 95% purity in one single step, depending on the compositions of 

feedstock (Shukla et al., 2007; Sommerfeld and Strube, 2005; Roque et al., 2007).  

 

However, when handling large scale higher titers feedstock, protein A 

chromatography has its own disadvantages (Gottschalk, 2008). The significant 

increase of mAb titre in the feedstock requires large volume of expensive protein A 

resin to capture antibody due to the relatively low binding capacity of resin. 

Nevertheless, the volume of the column is practically limited due to the reduced wall 

support in the large diameter column and the physical properties of the beads, both 

of which will slow the flow rate by increasing pressure drop (Stickel and Fotopoulos, 
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2001). As protein A chromatography is operated in the batch mode, the only solution 

is to increase the number of column and purify feedstock in parallel, which will 

demand a large initial capital investment and higher operation cost. Currently, 

although many efforts focus on protein A chromatography improvements, such as 

increasing the resin binding capacity or beads rigidity (Hober et al., 2007), or on 

membrane chromatography, the manufacture cost will still be high due to a large 

number of processing cycles, high concentrations of column-fouling materials such 

as cell debris or lipids, and more frequent use of harsh cleaning agents (Tugcu et al., 

2008). Therefore, an economical process which is able to reach nearly the same 

quality results of protein A chromatography or able to significantly reduce the 

bioburden of feedstock before applied to protein A chromatography, as well as easy 

to scale up and fit into currently manufacturing platform, is extremely desirable 

(Shukla and Thommes, 2010). 

 

In this chapter, the model based process design method will be used to find optimal 

mAb precipitation conditions at microwell scale experimentation. The model 

structure developed for Fab’ precipitation in Chapter 4 will be used to examine how 

well the model structure can be transferred to a different protein and test the 

generality of the process design method in another precipitation process. In order to 

further examine the precipitation at process scale, the lab scale precipitation 

followed by solid-liquid filtration separation will be developed and key process 

performance, e.g. yield, purity, will be studied. 

 

6.2 Methodology 

 

Protein precipitation has been widely used in biotechnology for example, in blood 

product fractionations (Cohn et al., 1940; Cohn, 1941; Edsall, 1947). Recently, 

polyelectrolytes e.g. PEG and short-chain fatty acids also became useful precipitants 

for purifying protein or removing impurities, especially in mAb purification (Atha 

and Ingham, 1981; Ingham, 1990; Ma et al., 2010; McDonald et al., 2008). The 
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precipitation process can be continuously operated at very large scale e.g. thousands 

litre, with relatively low cost and thus is well suited to high titre biological feedstock 

(Glatz et al., 1986; Knevelman et al., 2009; Starvrinides et al., 1993). The operation 

time will be short due to the fast reaction with continuous operation. The facility 

requires only simple cleaning and easy maintenance. Another advantage of 

precipitation is the effect of concentration, which need fewer buffers and cleaning 

reagents, making the manufacturing process more economic (Glatz et al., 1986; 

Starvrinides et al., 1993). In this study, the potential of protein precipitation as an 

alternative approach for mAb recovery with the intention to eliminate expensive 

protein A chromatography in the primary recovery step will also be investigated. 

 

In order to develop this process, the systematic model based process design approach 

proposed in Chapter 3 was adopted, shown in Figure 6.1 (same as Figure 3.2), which 

was well demonstrated in Chapter 4 and Chapter 5 by a Fab’ precipitation case study 

at microwell scale. The mAb precipitation process was first developed and optimised 

through modelling and model based design in microwell format. Then the designed 

process was investigated at lab scale. In order to be applied to lab scale, process 

modification and improvements were necessary during these procedures, for 

example, finding a proper lab scale solid-liquid separation process. The possible 

improvements were tested and evaluated based on real results since no model was 

available for technical feasibility tests.  
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Figure 6.1 The whole process development and optimisation flowchart for mAb 

process design. 
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6.2.1 Process objectives 

 

The objective of this study was to design and optimise a precipitation based mAb 

purification process. The process was selected from two precipitation systems with 

ammonium sulphate and PEG 6000 as precipitant respectively. Then it was further 

evaluated as an alternative mAb capturing step in the general purification platform. 

Therefore, working as the initial primary recovery process, the mAb yield was 

emphasised as the main target while the purity should be as high as possible. Similar 

to the objective equation (5.2) in Chapter 5, the mAb yield was set to be more than 

70% recovered from solids, otherwise collect mAb from supernant. The 

corresponding objective value, yield and purity were calculated as following: 

ionconcentrattprecipitanpurityyieldmAbvalueObjective ⋅−⋅+⋅= 1.06.04.0 (6.1) 
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mAbTmAbl CC is the normalised concentration in the supernatant for mAb, mAblC and 

impulC are the real concentration in the supernatant without normalisation for mAb 

and impurities respectively, mAbCT and impuTC are the maximum concentration for 

mAb and impurities in the solution respectively, precipitant concentration is in 

normalised value for both ammonium sulphate and PEG. 

 

Since the yield has already a constraint of more than 70% in equation (6.1), the 

weight of yield was designed as 0.4, with the weight of purity at 0.6. The third term 

in equation (6.1) was the penalty term for the precipitant used in order to minimise 

the reagents used in the process. This objective function was used to optimise the 
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mAb precipitation process in the following microwell experiments by using model 

based experimental design algorithm, which has been developed in Chapter 3, as 

shown in Figure 3.7.  

 

The mAb yield and final product purity in lab scale studies were investigated in 

more detail according to FDA quality requirements. The contaminants, such as 

impurity proteins including CHO host cell protein (HCP) and residual DNA were 

tested during lab scale precipitation and filtration in order to further optimise and 

evaluate this process. The optimised results were also compared with a standard post 

protein A chromatography solution based on the mAb yield, purity, HCP and DNA 

removal. The results and comparison elucidated whether the precipitation would be 

effective or not as an alternative approach in monoclonal antibody purification. 

 

6.2.2 Microwell modelling 

 

The next step in this case study was the mAb precipitation evaluation and 

precipitants selection. However, precipitation was not a highly selective approach. 

Its performance was influenced by many factors, particularly the feed material 

composition, pH and precipitant concentration (Kuczewski et al., 2010). The optimal 

conditions may vary substantially for different antibodies. When facing this type of 

investigation, high throughput experimentation was very useful due to its rapid 

process, simultaneously multifactor screening and little material requirement. 

Knevelman et al. (2010) had already demonstrated mAb precipitation in microwell 

plates by high throughput screening for pH, PEG and initial mAb concentration 

conditions. Previous Fab’ case study in Chapter 4 and Chapter 5 also proved the 

feasibility of microwell precipitation. Therefore, the microwell scale mAb 

precipitation can be used as an applicable rapid platform in this model based process 

design to facilitate the development in this study. 

 

The precipitation model developed for Fab’ in Chapter 4 was transferred and applied 
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to mAb precipitation system. The precipitation model was based on the equilibrium 

phase and was generic to any precipitation. However, as mentioned before, the 

coefficients of the model depended on the specific material composition and should 

be estimated again by experimental data. Then the model and parameter should be 

judged and validated by statistic tests, as the flowchart in Figure 4.1. Therefore, if a 

new protein was used, the specificity of the material may change the significance of 

the coefficients in the model and thus may change the structure of the model, due to 

protein properties, such as the sensitivity to the salt or pH. A preliminary experiment 

using pure material was an easy and prudent step to collect the information of model, 

whether the model needed modification or simplification due to the new material, 

and also to give the best initial coefficient guess of the model for complex feedstock. 

Because the precipitation model developed in Chapter 4 was based on the first 

principle, the model structure can be modified according to the precipitation theory 

and the observed real experimental data. A set of pure mAb precipitation in 

microwell was used as the preliminary experimental study for the initial model 

structure evaluation and initial parameter guess for the following model based 

experimental design in mAb cell culture. 

 

6.2.3 Model based mAb precipitation development and optimisation 

 

In order to select the best precipitant and operating conditions, two sets of microwell 

precipitation were carried out using a clarified cell culture containing mAb with 

ammonium sulphate and PEG respectively at various concentration/percentage and 

pH, designed by model based experimental design algorithm. The mAb precipitation 

model with the initial coefficients, which was found from the study in 6.2.2, was 

used in the model based experimental design. Same as the design method in Chapter 

5, one DoE set was used as the initial input and another set of independent DoE was 

used as validation dataset, shown in Table 6.1 and Table 6.2, for ammonium sulphate 

and PEG respectively. The criterion for either initial DoE or validation DoE selection 

was to cover all design space as much as possible or cover the most interested area. 
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Therefore, all initial DoE designs adopted in this study used the points located 

around the whole design space due to the design space was relatively small. The 

validation DoE sets used different pH conditions and relatively small salt 

concentration range in ammonium sulphate precipitation as the preliminary study 

showed high salt concentration range was more promising in process development. 

For PEG precipitation, both DoE set covered the whole design space as no prior 

knowledge were available about which range was more useful. 

 
Initial DoE Validation DoE 

Experiment No.
Salt (M) pH Salt (M) pH 

1 0.0 5.5 0.6 5.0 
2 1.0 5.5 1.4 5.0 
3 2.0 5.5 2.2 5.0 
4 0.0 7.0 0.6 6.5 
5 1.0 7.0 1.4 6.5 
6 2.0 7.0 2.2 6.5 
7 0.0 8.5 0.6 8.0 
8 1.0 8.5 1.4 8.0 
9 2.0 8.5 2.2 8.0 

Table 6.1 The conditions of initial DoE and validation DoE used in model based 

algorithm for mAb precipitation by ammonium sulphate.  

 
Initial DoE Validation DoE 

Experiment No. PEG percentage 
(% w/w) 

pH 
PEG percentage 

(% w/w) 
pH 

1 0 5.5 0 5.0 
2 10 5.5 10 5.0 
3 20 5.5 20 5.0 
4 0 7.0 0 6.5 
5 10 7.0 10 6.5 
6 20 7.0 20 6.5 
7 0 8.5 0 8.0 
8 10 8.5 10 8.0 
9 20 8.5 20 8.0 

Table 6.2 The conditions of initial DoE and validation DoE used in model based 

algorithm for mAb precipitation by PEG.  
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The algorithm developed in Chapter 3, same as the Fab’ case study in Chapter 5, 

gave four designed conditions for the next experiments in each run. PEG and 

ammonium sulphate precipitation had its own separate optimisation routine. The 

next set of experiments was then executed by Tecan in microwell plates and results 

were feedback to algorithm. The primary termination criterion was same as that in 

Chapter 5, which required variance (SD2) for any models and objective values were 

all lower than 0.05 (5%). An extra requirement was added once the primary 

termination criterion was reached. The new requirement was that if the real 

maximum point was not changed by consequent three runs, the algorithm will be 

terminated in order to avoid repeated design because in this case, unlike that in 

previous Fab’ case study, there was no real objective surface based on a whole 96 

microwell plate to compare with the predicted value. The algorithm was objective 

value orientated based on equation (6.1), (6.2) and (6.3) with the aim of process 

optimisation. The objective values were compared between two precipitation 

systems and only the precipitant with optimal conditions which achieved the 

maximum objective value was selected for later process study at lab scale.  

 

6.2.4 Process development at lab scale and improvements 

 

Subsequently, lab scale precipitation was executed based on the results of microwell 

precipitation optimisation. The following strategy was to select a feasible 

solid-liquid separation to retain the mAb in solids from the liquid or separate the 

impurity solids from the solution containing mAb. Solid-liquid separation by 

filtration was investigated in this study. Membrane pore size and process capacity 

were firstly screened due to lack of precipitation particle size information. A depth 

filtration system was chosen and designed to intercept the mAb solids on the proper 

pore size membrane. Thus the mAb solids can be washed by buffer to remove 

residual impurties and then resuspended by PBS buffer to recover mAb. The yield 

and purity of this process were evaluated and compared with those in protein A 

chromatography process. 
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Since more analytical results were available in lab scale precipitation, such as DNA 

and HCP assay, several innovative procedures, inspired by chromatography process 

e.g. intermediate washing, were adopted in lab scale precipitation and filtration to 

achieve higher purity in the final products. In order to evaluate these factors which 

can not be investigated in microwell studies, the further lab scale optimisation and 

improvements were mainly based on the experimental results without any model 

involved. 

 

6.3 Results and discussion 

 

6.3.1 Microwell modelling and design 

 

In this preliminary experiment, pure mAb was precipitated in microwell plates by 

ammonium sulphate in pH 5.0-8.0. The mAb solubility surface was shown in Figure 

6.2. The simplified Fab’ precipitation model in Chapter 4, equation (4.22)  
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with the Fab’ coefficients as the initial coefficient guess for mAb was applied to 

mAb precipitation results to regress the model. However, the R-square was only 0.83 

with two coefficients failed parameter t-test. This meant the mAb had a different 

sensitivity to salt and pH. The parameter d1 in the equation (4.22) failed the t-test, 

which means it was insignificant. Therefore, it can be the first parameter removed 

from model (4.22) to modify the precipitation model. 

 

According to the t-test, the coefficient for the second order pH effect also had poor 

t-test value, suggesting the second order pH term was not needed. It can also be 

observed from Figure 6.2 that the pH did not have the same strong effect in mAb 

precipitation as in Fab’ precipitation, so a linear pH term for the exponential function 
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was adopted to describe the trend. As mentioned in Chapter 4, the protein activity 

coefficient function (4.11), was simplified with only the first order of salt 

concentration in Fab’ case. While the mAb precipitation showed the protein had a 

stronger reaction to the salt concentration than Fab’, a second order salt 

concentration term was necessary to be added into model to describe the strong salt 

effect. Therefore, equation (4.22) was modified as following for mAb precipitation: 
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Compared with equation (4.22), the second order pH term was replaced by the 

second order salt concentration term to show the differences between Fab’ and mAb 

sensitivity to salt and pH.  

 

The coefficient values and test value were validated and shown in Table 6.3 and 

achieved both above 95% confidence in t-test and F-test. 

 
 Parameters 
 a1 b1 c1  f1 

R2 F-test value

Pure mAb -4.97 0.58 10.00 3.09 0.916 145.1  
t-test value (confide.) -4.42 (99%) 2.47 (95%) 7.04 (99%) 4.15 (99%) P>F 0.000 (99%)

Table 6.3 Parameters, F-test value and R2 value of mAb precipitation model using 

equation (6.4).  

 

6.3.2 High throughput mAb precipitation development and optimisation 

 

6.3.2.1 Optimisation for ammonium sulphate precipitation 

 

The model equation (6.4) and the coefficients from pure mAb precipitation were 

used to initialise the model based design algorithm. Figure 6.3 shows the predicted 

surface from the new precipitation model in the first run. The subsequent 

experimental conditions and SD2 were listed in Table 6.4. The SD2 values were all 



 157

smaller than 0.05, which proved the models for mAb precipitation and impurities 

were quite accurate after only one run in model based design method.  

 

As in this study, there was no brute-force design dataset to compare the real surface 

with predicted surface, the algorithm continued until the second termination criteria 

achieved (raw data of each validation run shown in Appendix 3). Figure 6.4 and 

Figure 6.5 show the next two runs results with the designed points and SD2 values in 

Table 6.4. There were only slightly improvements in SD2 values, and the predicted 

surfaces changed little. The maximum points found by algorithm were listed in Table 

6.5. Since the 2nd run, salt concentration 1.6 M and pH 8.5 were selected as the 

conditions for maximum point three times. Hence the algorithm terminated at the 

end of the 4th run. The predicted maximum objective value by model was 0.698, 

while the real objective value was 0.721, a little higher than the predicted value. 

Total 21 points were evaluated in this optimisation procedure. 

 

mAb 
d-optimal 

Impurities 
d-optimal

Optimal 
point / 
random 

Simplex
Run 
No. 

Salt 
(M) 

pH 
Salt 
(M) 

pH
Salt 
(M)

pH
Salt 
(M)

pH

SD2 
mAb

SD2 
Impurities 

SD2 
Objective 

Maximum 
value 

1 1.6 8.5 2.2 8.5 1.8 6.5 1.6 6.5 0.0360 0.0012 0.0119 0.669 
2 1.2 5.0 2.2 5.0 1.8 8.5 2.2 6.0 0.0567 0.0011 0.0119 0.695 
3 1.4 8.5 0.0 5.0 0.6 7.5 1.6 7.0 0.0303 0.0010 0.0097 0.694 
4 1.4 5.0 2.2 8.0 2.0 7.5 1.8 5.0 0.0311 0.0008 0.0099 0.698 

Table 6.4 The conditions from model based experimental design algorithm in each 

run and the SD2 values at predicted optimal point (ammonium sulphate).  

 
Maximum point from algorithm Salt (M) pH Objective value 

1st run 2.0 5.5 0.669 
2nd run 1.6 8.5 0.721 
3rd run 1.6 8.5 0.721 
4th run 1.6 8.5 0.721 

Table 6.5 The conditions at maximum point objective values (ammonium sulphate).  
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Figure 6.2 The predicted surfaces provided by modified precipitation model (6.4) 

with real experimental data shown in dots. 
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Figure 6.3 The predicted protein solubility surfaces from the 1st run (ammonium 

sulphate): (a) mAb; (b) impurities; (c) the objective surface. 
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Figure 6.4 The predicted protein solubility surfaces from the 2nd run (ammonium 

sulphate): (a) mAb; (b) impurities; (c) the objective surface. 
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Figure 6.5 The predicted protein solubility surfaces from the 3rd run (ammonium 

sulphate): (a) mAb; (b) impurities; (c) the objective surface. 
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6.3.2.2 Optimisation for PEG precipitation 

 

The same procedure was applied to PEG precipitation, which aimed to compare and 

select the best precipitant (raw data of each validation run shown in Appendix 3). 

The model (6.4) and initial guess from preliminary ammonium sulphate precipitation 

were used and the results showed the algorithm was quite flexible and the model fit 

well in PEG precipitation system. The SD2 values after the 1st run were all lower 

than 0.01, as shown in Table 6.6. The designed experimental conditions in each run 

were also all listed in Table 6.6. In the 1st run and 4th run, both D-optimal designs 

gave repeat points, which reduced the total experiments points used. However, it 

took five runs to terminate the algorithm as the conditions of maximum point at PEG 

14% (w/w) and pH 8.5, shown in Table 6.7 was found at 3rd run and kept for three 

times. Therefore, the total experiment point number was 23 in this case. The model 

predicted objective value at the optimal condition was 0.602, while the real objective 

value was 0.655.  

 

mAb 
d-optimal 

Impurities 
d-optimal 

Optimal 
point / 
random 

Simplex 
Run 
No. 

PEG 
(%) 

pH 
PEG 
(%) 

pH 
PEG 
(%)

pH
PEG 
(%)

pH

SD2 
mAb

SD2 
Impurities 

SD2 
Objective 

Maximum 
value 

1 14 5.0 14 5.0 16 8.5 10 8.0 0.0047 0.0041 0.0014 0.593 
2 8 5.0 12 5.0 14 8.5 10 7.5 0.0046 0.0046 0.0014 0.646 
3 10 5.0 20 5.0 14 7.0 12 7.5 0.0038 0.0041 0.0011 0.620 
4 0 5.0 0 5.0 8 8.5 2 8.5 0.0018 0.0036 0.0004 0.607 

Table 6.6 The conditions from model based experimental design algorithm in each 

run and the SD2 values at predicted optimal point (PEG). 
Maximum point from algorithm PEG (%) pH Objective value 

1st run 0.0 8.5 0.590 
2nd run 14 5.0 0.614 
3rd run 14 8.5 0.655 
4th run 14 8.5 0.655 
5th run 14 8.5 0.655 

Table 6.7 The conditions at maximum point objective values (PEG). 
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Figure 6.6 The predicted protein solubility surfaces from the 1st run (PEG): (a) mAb; 

(b) impurities; (c) the objective surface 
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Figure 6.7 The predicted protein solubility surfaces from the 2nd run (PEG): (a) mAb; 

(b) impurities; (c) the objective surface. 
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Figure 6.8 The predicted protein solubility surfaces from the 3rd run (PEG): (a) mAb; 

(b) impurities; (c) the objective surface. 
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Figure 6.9 The predicted protein solubility surfaces from the 4th run (PEG): (a) mAb; 

(b) impurities; (c) the objective surface. 
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Figure 6.6 to Figure 6.9 show the predicted surfaces in PEG precipitation at each run. 

The surfaces changed slightly in each run but the SD2 kept decreasing due to more 

information added to make model accurate.  

 

The objective value at maximum point in PEG system was smaller than that in 

ammonium sulphate precipitation system. If compared the impurities surfaces, the 

results demonstrated that ammonium sulphate has more selective effects than PEG in 

this feedstock. When mAb was nearly precipitated in solid phase, the concentration 

of impurities in ammonium sulphate precipitation, shown in Figure 6.5 (b), only 

decreases 30%, while it decreased around 60% in PEG precipitation, shown in 

Figure 6.9 (b). It showed that ammonium sulphate precipitation would have higher 

purity in final product under the same mAb yield percentage, which was also proved 

by the objective values. Therefore, the optimal conditions 1.6 mol/L ammonium 

sulphate at pH 8.5 was preferred with 97.6 % yield and 67.3 % purity at microwell 

scale, and applied in later lab scale experiments. 

 

6.3.3 Lab scale experiments of mAb precipitation with filtration 

 

Since the conditions found in above study precipitated mAb out into solids, a 

solid-liquid separation process, which can capture solids and then recover the mAb 

solids, has been investigated in lab scale process development. In this step, dead-end 

membrane filtrations were first carried out with different pore size to test the 

capacities and screen the proper pore size. In order to recovery all mAb, the smallest 

pore size filter was required to keep all solids on the membrane, while in reality, the 

particle size of mAb precipitant was probably a normal distribution (Aucamp et al., 

2005; Shih et al., 1992). In filtration, the relatively large particles will easily block 

the membranes and the low capacity of the process will become the bottleneck of 

downstream purification, shown in Table 6.8. Moreover, it was observed that the 

particle size of protein colloids was apparently affected by initial mAb concentration, 

the profile of other impurties in the feedstock, precipitation time, mixing speed and 
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ways of mixing (George and Wilson, 1994; Grabenbauer and Glatz, 1981; Tsao et al., 

1951). Currently, there is no clear and general explanation or model between particle 

size and these variables. Therefore, in order to achieve higher capacity and a robust 

process, depth filters were adopted. The CUNO Zeta plus EXP 05 sp filter, which 

has a large pore size, coupled with CUNO Zeta plus EXP 30 sp filter intercepted the 

mAb solids in a broad size range (0.5-10 µm) based on the membrane pore size 

studies. 

 
mAb concentration in 

feedstock (g/L) 
Membrane filter 
pore size (µm) 

mAb capacity on 
membrane (g⋅m-2) 

Transmembrane flux 
(L⋅min-1⋅m-2) 

0.2 4.27 1.015 
0.45 5.52 1.321 1.20 
1.2 9.43 1.915 

1.75 5.0 9.41 1.194 
2.30 5.0 9.32 1.234 
1.20 0.5 - 10.0* 86.83 39.40 

Table 6.8 Pore size sieving results. * depth filters coupled to form 0.5 - 10.0 µm 

range. 

 

Table 6.8 shows the results of dead-end membrane filtrations with different pore size. 

For the feedstock with initial mAb concentration at 1.2 mg/ml, the filter with pore 

size of 5.0 µm did not successfully separate the solids and liquid (protein solids 

passing through membrance were observed). Some particles were much smaller than 

5.0 µm and passed through the membrane easily. With the pore size of 1.2 µm, the 

membrane was efficient to hold all mAb solids with the capacity of 9.43 g/m2 while 

smaller pore size membrane, 0.2 µm and 0.45 µm, had lower processing capacity.  

 

For higher mAb concentration feedstock, mAb molecules had more chance to 

aggregate with each other and probably form large particles (McPherson et al., 1999). 

Both 1.75 mg/ml and 2.30 mg/ml mAb feedstock were tested and the separation of 

both feedstock after precipitation can be operated on a 5.0 µm membrane filter 

without mAb penetrating through the membrane.  



 169

However, the capacity of the 5.0 µm membrane for two high concentration feedstock 

did not increase very much as anticipated. This probably was caused by the 

maximum capacity of dead-end filtration itself as it was always around 9.4 g mAb 

/m2 using any different concentration feedstock and different membrane pore size. 

All the dead-end filtration had low capacity and the transmembrane flux in the 

experiments was very low, shown in the Table 6.8. It was impossible to scale up and 

design a bioprocess based on such a low flux. In depth filtration with pore size from 

0.5 to 10.0 µm, both the capacity and flux significantly increased. The maximum 

capacity was 86.83 g mAb /m2 with 39.40 L⋅min-1⋅m-2 operational flux (~2400 

L⋅m-2⋅h-1), which was feasible for scale up and further bioprocess design. 

 
mAb 

concentration 
in feedstock 

(mg/mL) 

Membrane 
filter pore 
size (µm) 

mAb 
loaded 
(mg) 

mAb 
recovered 

(mg) 

Yield 
(% 

w/w)

Total protein in 
resuspension 
(mg including 

mAb) 

Purity (% 
w/w) 

1.20 1.2 2.93 2.47 84.3 4.56 54.2 
1.75 5.0 2.80 2.67 95.4 3.04 88.0 
2.30 5.0 9.37 8.16 87.1 8.75 93.3 
1.20 0.5 - 10.0* 59.82 58.01 97.0 68.56 84.6 

Table 6.9 mAb yield and purity in filtration studies. * depth filters coupled to form 

0.5 - 10.0 µm range. 

 

The mass balance data from above studies were also summarised in Table 6.9. For 

1.2 g/L feedstock, 1.2 µm filter had the lowest yield and purity due to several 

reasons. Small pore size filter may have better effect to hold protein solids than 5 µm 

filter but in the washing step, fewer impurities were washed away due to the same 

reason. The low yield was attributed to the resuspension step. It was less efficient to 

dissolve mAb solids completely in the buffer on small pore size membrane in a short 

time and brought them through filter, while in 5.0 µm filter, the mAb can be quickly 

recovered and pass through the filter even in the form of fine particles, e.g. 1.0 µm 

diameter particles.  
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From Table 6.9, the best result for membrane filtration was 95.4 % yield and 88 % 

purity. The results from depth filter were more promising, achieving 97 % yield and 

around 85 % purity. Although the same condition in microwell achieved 97.6 % 

yield, which were better than any lab scale results, the lab scale results were still 

comparable to those of micro scale considering the protein lost and the complexity in 

lab scale process. The purity at lab scale was higher than that in microwell studies, 

which was 67.2 %. It may be casued by the same reason as explained in previous 1.2 

µm membrane filtration results since the pore size in microwell filter plate was only 

0.45µm and the mircowell precipitation did not have a washing step. Due to the 

structure of depth filter, depth filtration can capture mAb solids more efficiently than 

membrane as demonstrated by above results. High flow rate made washing step 

more throughout with less impurities remaining. It also made resuspension step 

easier and provided high recovery yield (Low et al., 2007). Therefore, the depth 

filtration was selected as the separation process at lab scale.  

 

6.3.4 Process improvement 

 

In order to further improve the purity, some innovative steps were introduced after 

precipitates captured in the depth filters. In resuspension step, gradient resuspension 

and fraction collection were utilised to further enhance the purity. Figure 6.10.(a) 

shows the results of gradient resuspension from ammonium sulphate concentration 

1.2 M to 0.7 M. It was obvious that salt concentration at 1.1-1.2 mol/L was enough 

to dissolve mAb from filter and kept some impurity proteins in solids. The 

resuspenion buffer with its salt concentration lower than 1.1 M only increased the 

impurities and lowered the final purity. It was better than PBS resuspension since 

PBS has a much lower salt concentration than 1.0 mol/L which dissolved and 

introduced more impurties into final solution.  

 

Fraction collection data was shown in Figure 6.10.(b). As the salt precipitation was 

not a highly selective process, the resolution between impurty peak and mAb peak 
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was not as good as expected. With mAb concentration peaking at 30 ml fraction 

volume, impurity concentration was also increasing. After 7th fraction collection 

(70ml), there was nearly no mAb in the solution while impurty concentration was 

quite stable in the fractions. Therefore, the first six fractions of 1.1 M resuspension 

were collected and the result was improved to 97.3% yield and 88.2% purity.  

 

6.3.5 Host cell protein (HCP), DNA removal with a two cut precipitation process 

 

6.3.5.1 HCP removal 

 

Although the yield and overall purity by above precipitation process were reasonably 

good, the results from HCP analysis demonstrated simple one cut precipitation can 

not compete with protein A chromatography. The HCP in the feedstock was 242, 465 

ng/mg mAb (ppm), post precipitation solution 90, 407 ng/mg mAb (ppm) and 

protein A elution pool 403 ng/mg mAb (ppm), as shown in Table 6.10. Previous 

researches on CHO HCP by several researchers (Arunakumari and Wang, 2008; 

Glynn, 2008) proved that HCP levels decreased with salt concentration increasing 

and lower pH precipitated more HCP (Mao et al., 2010). The one cut precipitation 

precipitated HCP together with mAb and thus increased the HCP levels in the final 

solution.  

 

 mAb yield (w/w) Purity (w/w) 
HCP (ng/mg 
mAb, ppm) 

DNA (ng/ml) 

Feedstock 100% 28.4% 242, 465 6, 592 

Post protein A 92.4% 95.7% 403 11 

One cut 
precipitation 

97.3% 88.2% 90, 407 256 

Two cut 
precipitation 

93.6% 98.2% 8, 737 15 

Table 6.10 The comparison between protein A chromatography, one cut precipitation 

and two cut precipitation. 
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Figure 6.10 (a) The UV absorption of mAb and impurities in gradient resuspension 

procedure; (b) The UV absorption of mAb and impurities in 1.1 M ammonium 

sulphate fraction collection procedure. 
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Figure 6.11 The HCP concentrations in mAb precipitation system under different salt 

concentration and pH conditions. 
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In order to achieve better purity and particularly focus on HCP, a set of preliminary 

studies were carried out to investigate the possibility of HCP reduction, shown in 

Figure 6.11. It showed that pH 4.0 and 1.2 mol/L ammonium sulphate precipitated 

nearly half of HCP and some other impurities, while kept mAb in the feedstock. 

Although 1.4 mol/L ammonium sulphate at any pH conditions would precipitate 

more HCP, the mAb would also be precipitated and thus significantly lower the yield. 

Therefore, a two cut precipitation process was preferred to eliminate some HCP first. 

The first precipitation conditions were pH 4.0 and ammonium sulphate 1.2 mol/L to 

reduce the HCP amount in the feedstock. After CUNO Zeta plus EXP 90 sp filter, the 

HCP precipitates and other impurity solids were retained in the filter. The positive 

charge of the membrane also helped to absorb soluble negative charged HCP 

molecules and further reduced the HCP level as a bonus (Prashad and Tarrach, 2006; 

Shukla et al., 2007; Yigzaw et al., 2008).  

 
  HCP (ng/mg mAb, ppm) DNA (ng/ml) mAb yield (%) 

Feedstock 242,465 6,592 100 
After 1st depth filtration 105,891 4,354 98.1 

Table 6.11 The HCP, DNA concentration and mAb yield after the first filtration in a 

two cut precipitation process. 

 

Through this simple flow through procedure, the remaining HCP level in the solution 

decreased to 105,891 ng/mg mAb (ppm) with only less than 2% mAb loss, shown in 

Table 6.11. Then the same processes were carried out as those in the above studies 

(6.3.3 and 6.3.4). The final overall yield of mAb was 93.6% with purity dramatically 

increasing to 98.2%, very competitive to standard one step protein A chromatography, 

which achieved 92.4% yield and 95.7% purity using the same feedstock (Table 6.10). 

HCP level was 8, 737 ng/mg mAb (ppm), which was still higher than that in the 

protein A elution, but ten times less than previous result in the one cut precipitation 

procedure.  
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6.3.5.2 DNA removal 

 

The DNA in the initial precipitation system was 6, 592 ng/ml (Table 6.10). After one 

cut precipitation, it was 256 ng/ml in the resuspension solution, nearly 25 times more 

than the 11 ng/ml DNA remaining in the protein A elution (Table 6.10). This was 

caused by the material of the depth filters, which was positive charged cellulose. 

DNA in the feedstock was normally negative charged and bound to the membrane. 

In resuspension step, the bound DNA was released into the final solution. While in 

the two cut precipitation, the first filter worked as the anion membrane 

chromatography, bound and reduced the DNA amount in the solution (Prashad and 

Tarrach, 2006; Yigzaw et al., 2008). Therefore, the DNA concentration reduced 

around 35% to 4,354 ng/ml after the first filtration (Table 6.11) and the final DNA 

concentration in the two steps processes decreased to 15 ng/ml (Table 6.10), which 

matched the quality of post protein A chromatography solution. 

 

6.3.6 Protein property analysis and comparison 

 

Although the precipitation process was successfully developed and scaled up with 

comparable yield and purity to standard protein A chromatography process, the 

protein property should be analysed and kept in nature active configuration. Figure 

6.12 shows the CD results of three final mAb products. The salt precipitation is 

generally considered as a reversible process, which can be reversed by low ionic 

strength buffer without denaturing the protein (Manning et al., 1989). The protein 

secondary structure of mAb can be considered as in natural form by salt precipitation 

compared to protein A pH 3.5 elution (mAb standard) in Figure 6.12. The difference 

between precipitation resuspension and protein A pH 3.5 elution may come from the 

purity, as the resuspension used was from one cut precipitation, which had purity 

only around 89%. The impurities in the solution will interfere the CD results (Kelly 

et al., 2005). However, protein A chromatography has a potential risk to denature the 

mAb at low pH elution, e.g. pH 2.5, well demonstrated in Figure 6.12.  
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Figure 6.12 The CD curves of precipitation resuspension, protein A pH 2.5 elution 

and protein A pH 3.5 elution respectively. 
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Figure 6.13 IEF gel image. Lane 1 and Lane 4: Marker; Lane 2 and Lane 3: 

feedstock; Lane 5: precipitation resuspension; Lane 6: protein A pH 3.5 elution; 

Lane 7: protein A pH 2.5 elution.  
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Figure 6.14 8-16% SDS-PAGE image. Lane 1: feedstock; Lane 2: filter through after 

desalting; Lane 3: 1st wash; Lane 4: 2nd wash; Lane 5: resuspension from one cut 

precipitation, mAb at 155 kDa band; Lane 6: strip; Lane 7: concentrated 

resuspension; Lane 8: protein A pH 3.5 elution. 

 

 

 

 

 

 

 

 

 



 179

 

 

 

 

 

 

 

 

 

 

Figure 6.15 8-16% SDS-PAGE image. Lane 1: feedstock; Lane 2: one cut 

precipitation: filter through; Lane 3: one cut precipitation: wash; Lane 4: one cut 

precipitation: resuspension; Lane 5: two cut precipitation: solution after 1st filtration; 

Lane 6: two cut precipitation: filter through; Lane 7: two cut precipitation: wash; 

Lane 8: two cut precipitation: resuspension; Lane 9: protein A pH 3.5 elution. 
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The same phenomenon can also be observed in IEF gel, as shown in Figure 6.13. 

The precipitation resuspension and the protein A pH 3.5 elution shown the same pI 

mAb band as that in the feedstock, while the protein A pH 2.5 elution apparently 

showed that the mAb structure was denatured with different surface charges so that 

the molecules can not be focused to a fixed band (Prats, 2010). 

 

Figure 6.14 shows the SDS-PAGE gel of one cut mAb precipitation compared with 

post protein A solution. The precipitation process really separated intact mAb 

efficiently from contaminating proteins compared with feedstock. Because 

precipitation was not a selective process, post precipitation solution still 

demonstrated some impurities background in the SDS gel, while post protein A 

solution lane had cleaner and distinct bands. The lower band at around 98 kDa, 

which existed in both processes, was considered as a mAb relative fragment or half 

mAb from SDS-PAGE sample preparation as the following size exclusion 

chromatography did not show the peak at this molecule weight.  

 

Figure 6.15 shows the results of both one cut precipitation and two cut precipitation. 

The initial precipitation and the 1st filtration, shown in Figure 6.15 Lane 5, did not 

change the components very much compared to feedstock, shown in Lane 1. 

Although the HCP Elisa results showed that nearly half of HCP (Table 6.11) is 

removed from this step, it can not be observed from SDS-PAGE gel due to their 

relatively low concentration. The resuspension from the two cut precipitation (Lane 

8) has cleaner background than that from one cut precipitation (Lane 4), proved by 

the purity in Table 6.10 with 98.2% to 88.2%. Lane 8 is quite similar to Lane 9, 

protein A pH 3.5 elution (mAb standard), which can also be expected from the purity 

data in Table 6.10. 

 

6.3.7 Size exclusion chromatography and aggregation 

 

The results from gel filtration column also proved the efficiency of protein 
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precipitation, which was shown in the Figure 6.16. The feedstock result, Figure 

6.16.(a), shows several peaks besides the main mAb peak at around 30ml. The one 

cut precipitation was not capable to remove the first high molecule weight peak 

(Figure 6.16.(c)) and that was probably the reason why its purity was only around 

88%. Two cut precipitations was able to eliminate that impurities peak, shown in 

Figure 6.16.(d), and matched the result of protein A chromatography (Figure 

6.16.(b)). 

 
 Aggregates (%) Monomer (%)  Half antibody (%)

Protein A 3.5 elution 0.85 94.53 4.61 
One cut precipitation resuspension 1.34 94.93 3.72 
Two cut precipitation resuspension 0.32 96.31 3.37 

Table 6.12 The aggregates, monomer and half antibody percentage in three 

processes. 

 

Table 6.12 shows the results of aggregates, monomer and half antibody in three 

solutions analysed by Tosch TSKgel G3000 SWXL column. Both precipitation 

processes had less half antibody percentage in the final solution than protein A 

chromatography. As the Figure 6.16.(c) shows that one cut precipitation resuspension 

had an aggregate peak at 20 ml, this solution really had a high aggregate percentage 

(1.34%) than other two solutions. In the two cut precipitation process, the initial 

precipitation and filtration also reduced aggregates to 0.32% in the final solution. 

Normally, the aggregates, which are high molecule weight components, are much 

easier to be precipitated out in relatively low salt concentration (Arakawa and 

Timasheff, 1985) and thus separated by the following 1st depth filtration. That is 

probably the reason why two cut precipitation solution has low aggregates 

percentage. 
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Figure 6.16 Size exclusion chromatography results: (a) feedstock; (b) protein A pH 

3.5 elution; (c) one cut precipitation resuspension; (d) two cut precipitation 

resuspension. mAb (MW 155 KDa) peaks at 30 ml. 
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6.4 Conclusions 

 

The model based process design method was successfully applied in this mAb 

precipitation case study. The Fab’ precipitation model was first evaluated by 

preliminary mAb precipitation data, modified based on the first principles and then 

updated by microwell experimental data. Two sets of precipitations by ammonium 

sulphate and PEG respectively were optimised through the model based 

experimental design and optimisation method proposed in Chapter 3. The 

optimisation was completed after only a few iterations, requiring very few 

experiments. Strong statistic evaluations in the algorithms ensured the accuracy of 

the model and supplied more key conclusions on the bioprocess. The best precipitant 

was thus selected and the optimal conditions were found by comparing the objective 

values predicted by the updated models. The results provided the basis for following 

lab scale depth filtration studies. The study further proved the effectiveness of a 

model based procedure that integrated bioprocess modelling, model based 

experimental design and high throughput experimentation. This approach had the 

capacity to rapidly design and develop a precipitation based mAb purification 

process starting at microwell scale.  

 

This study also provided more detailed insights into the mAb precipitation and 

demonstrated the possibility of precipitation to replace protein A chromatography in 

the initial capture step after cell culture harvest. With further improved procedures 

adopted in lab scale, such as two cut precipitation, high mAb yield with acceptable 

purity process can be achieved, which were comparable to protein A chromatography 

process. The normal platform for mAb production will carry out IEX after the initial 

protein A chromatography capture step (Shukla et al., 2007). Considering the 

robustness and separate capacity of IEX, the remaining impurities in resuspension 

such as HCP, probably will be further separated (GE Healthcare, 2006, 2008; Smith 

et al., 1998). The final product utilising new precipitation based platform has the 

potential to achieve the same quality of the product following traditional protein A 
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chromatography platform. Under the same quality requirement from FDA, the high 

process capacity of precipitation and the low cost (Honig and Kula, 1976; 

Knevelman et al., 2010; Niederauer and Glatz, 1992) will make it a very promising 

alternative monoclonal antibody purification approach to protein A chromatography 

in the future. 
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Chapter 7. Bioprocess scale up assessment based on high throughput 

chromatographic experiments and whole process analysis: a case 

study in precipitation based mAb purification process development 

 

7.1 Introduction 

 

The potentials of precipitation process as an alternative to protein A chromatography 

has been demonstrated in Chapter 6 in terms of yield and impurities removal. To 

truly understand whether precipitation can be used at manufacturing scale, the whole 

process evaluation for both processes including capacity and cost analysis should be 

carried out and compared. The conclusion will be drawn from the results of whole 

process assessment. Therefore, in this chapter, a rapid whole process evaluation 

approach combining high throughput chromatographic screening and cost of goods 

(COG) analysis will be proposed. The effectiveness of precipitation will be further 

assessed by this approach and compared with protein A chromatography from a 

whole process view. 

 

7.2 Polishing process development and whole process analysis 

 

Currently, chromatography processes are the main workhorses in the general 

purification platform for monoclonal antibody. It normally starts with affinity protein 

A chromatography, followed by two or more polishing chromatographic steps 

(Shukla et al., 2007). Ion-exchange chromatography (IEX), both anion and cation, 

hydrophobic-interaction chromatography (HIC) and other chromatographic 

processes, e.g. Ceramic Hydroxyapatite or anion membrane, are commonly utilised 

techniques in downstream polishing steps (Fahrner, 2001; Ghosh and Wang, 2006; 

Knudsen et al., 2001; Li et al., 2005). The aims of polishing steps are to reduce the 

remaining impurity molecules, such as host cell protein (HCP), aggregates, DNA, 

and leached protein A if using protein A chromatography in the primary capture step, 
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to a safe level, which can be accepted and approved by regulatory bodies (FDA, 

2001; Gagnon, 2007; Gottschalk, 2008).  

 

However, the development of a polishing chromatographic process is very 

challenging due to limited overall development time but very long experimental time 

for an individual test and need to explore great amount of variables and large 

parameter space (Bensch et al., 2005; Coffman et al., 2008). The conventional 

methods for a chromatography step development utilise scale down columns, 

pre-packed or self packed, to optimise process conditions by dozen runs and then 

keep the parameter values, e.g. column height, or ratio to scale up (Keener et al., 

2008; Kelley et al., 2008). Therefore, even the development in a small to lab scale 

makes heavy demands for feed material and long timescale studies. This restriction 

inhibits the fully understanding of chromatography process with still relatively large 

space unexplored, and thus results in the final process is actually not fully optimised 

from technical or economic aspects (Chhatre and Titchener-Hooker, 2008).  

 

In the current purification platform, the affinity protein A chromatography can easily 

achieve up to 95% purity in one step and also very high yield during the initial 

capture step (Roque et al., 2007; Shukla et al., 2007; Sommerfeld and Strube, 2005). 

The following polishing step development is relatively robust with very small stream 

variation from the initial capture step and thus can achieve process harmonisation in 

a board range of products under the same platform. Nevertheless, as mentioned in 

previous chapters, the low capacity and high cost limit its further application in large 

scale and high titre antibody purification (Gottschalk, 2008; Przybycien et al., 2004; 

Shukla and Thommes, 2010). Several alternative processes, e.g. aqueous two-phase 

extraction, precipitation and HPTFF, are recently explored by many researchers 

(Andrews et al., 1996; Etzel, 2008; Knevelman et al., 2010; Ma et al., 2010; 

McDonald et al., 2008; Rosa et al., 2007) to replace affinity chromatography and 

form a non protein A chromatography platform (Przybycien et al., 2004).  
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These new processes have certain capacity to separate antibody from other 

impurities, but the final materials are normally not as pure as post protein A 

chromatography solution due to less selectivity (Conley et al., 2011; Low et al., 

2007). Moreover, the conditions of final materials after these innovative processes, 

such as pH, ionic strength, and the purity of the solution may be various for each 

product. It means that in the most cases, the following polishing step needs to be 

individually developed, not only the conditions of the bioprocess but also the proper 

operation selection and sequence (Follman and Fahrner, 2004; Ghose et al., 2008; 

Conley et al., 2011). The disadvantage of any alternative approach is that it hardly 

has harmonised techniques or knowledge sharing between different product lines 

unless a general rapid developing and evaluation solution is designed to tackle this 

complex task with the ability to accommodate various different starting materials.  

 

Besides the technical feasibility analysis, the whole process economics should also 

be analysed based on the experimental results as early as possible, even before the 

development of full scale operation (Mustafa et al., 2004). The purification platform 

may not be changed, of course, if the whole process containing the alternative 

process needs more polishing steps or time than protein A based platform to achieve 

the same quality standard, even though the new unit operation is very successful and 

a great cost saver (Farid, 2008; Kelley, 2007). The new alternative platform will be 

adopted only if it is superior to the traditional protein A chromatography platform 

overall when facing the future upstream development and quality challenges, either 

in saving cost or reducing time or both (Farid et al., 2006; Farid, 2008). 

 

Currently, high throughput screening is a reasonable and powerful technique to 

handle such a complicated task, considering the huge efforts needed for the selection 

of chromatography types, resins and conditions screening, which was well 

demonstrated in many researchers’ work (Bergander et al., 2008; Coffman et al., 

2008; Kelley et al., 2008; Rege et al., 2006).  
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In this chapter, the effectiveness of precipitation developed in Chapter 6 as an 

alternative process to protein A chromatography in current platform was assessed 

from a whole process view by the application of high throughput screening (HTS) in 

rapid chromatographic process development of polishing steps and a cost of good 

(COG) analysis by a commercial software. 

 

7.3 Methodology 

 

The aim of this study is to propose and assess a rapid technical and cost analysis 

method for evaluating an alternative platform design in the early stage. Under this 

circumstance, the needs to evaluate whether there are any polishing steps available to 

follow the new alternative process and whether they are able to form a reasonable 

and cost-friendly platform are urgent. Because the downstream purification process 

is not the results of only one unit operation but the combination of several 

bioprocesses, it is very worthwhile to evaluate the impact of new alternative process 

replacement from a whole process prospective before any further development, such 

as scale up to very large scale. It will reduce the risk of the process development and 

minimise the cost in case that the new developed bioprocess can not be well 

incorporated into whole purification processes or not economical at all for whole 

processes operation in the term of time, cost or labour.  

 

However, this kind of risk management concept creates a paradox. The information 

needed to support the judgement normally requires a large number of experiments 

results from all processes in the new platform, while in the reality, it is almost 

impossible to provide enough detail information from the second or third process 

when the first one is still under developing. Therefore, a rapid high throughput 

screening method for early stage whole process analysis with very few material 

requirements was proposed as shown in Figure 7.1.  
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Figure 7.1 The flowchart for early stage rapid whole process analysis based on high 

throughput screening. 
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It starts with the product stream from alternative process, the resuspension from 

depth filters in this case. The high throughput screening experiments are used to 

collect the data for technical feasibility analysis. If there is no feasible process, the 

benefit of alternative process can not be realised. If the following up processes are 

feasible, the process simulation by using process software, such as BioSolve, is 

performed to carry out whole process economics analysis for both protein A based 

processes and the alternative processes. The cost analysis will provide quantitative 

data whether the alternative process is favourable or not. The HTS, technical 

feasibility analysis, process simulation and whole process economics analysis will be 

described in details and the results will provide the data to assess the benefits of 

alternative process in real term to give the insights. 

 

7.3.1 HTS and technical feasibility analysis 

 

With extremely limited material available in the early stage, high throughput 

screening is the best technology to provide evaluation data. HTS requires only 

several millilitres processing material to run the essential experiments for the 

technical feasibility analysis. It is not intended to conduct full process investigation. 

In this study, ion exchange chromatography and HIC were the candidate polishing 

processes for selection. In order to simplify the analysis of Host Cell Protein (HCP) 

and other impurities, the resuspension solution from one cut precipitation was used. 

This preparation had relatively spiked impurities compared to two cut resuspension 

in Chapter 6, which can be easily and rapidly analysed by HPLC instead using HCP 

Elisa. The resins types, binding conditions and capacity were rapidly evaluated on 

96-microwell filter plates packed with resins by DoE designs. Binding-elution, flow 

through modes and gradient elution will also be tested in microwell filter plates with 

the technique developed by Coffman and his co-workers (Coffman et al., 2008; 

Kelley et al., 2008).  

 

The technical analysis was based on the real experimental results from above studies 
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according to selectivity, capacity, yield and purity. Although the concentration of 

material was not optimised, it at least represented one typical stream, which was 

sufficient to carry out feasibility studies. The yield or purity in the microwell studies 

may be further optimised in the column based process (Kato et al., 2005), but the 

HTS data provided practical information on selectivity and capacity (Kelley et al., 

2008) as well as the possible operation mode and the sequence of steps (GE 

Healthcare, 2006; Rege et al., 2006). The main target is to evaluate the separation of 

mAb and HCP, since the results from Chapter 6 showed the HCP in precipitation 

process was the main concerns compared to protein A chromatography. The potential 

processes will be selected as candidates of the next stage for further whole process 

economics analysis. If there is no process able to complete the polishing steps, the 

traditional protein A chromatography based platform will still be used, no matter 

how successful the precipitation purification process was. 

 

7.3.2 Whole process simulation and economics analysis 

 

Once there are several possible polishing processes, the combination of alternative 

process and the selected candidate polishing steps will be assessed in the commercial 

process simulation software BioSolve with integrated whole process models and a 

cost data base, developed by Biopharm Services UK. Because the information of 

large scale process was not available at this stage, most purification process 

parameters would be assumed based on the literatures and existing data base in the 

software, which was collected from real industrial processes and updated by 

Biopharm Services. Part of the assumptions were made based on above high 

throughput screening data, e.g. binding capacity, as the best estimator for large scale 

process (Bergander et al., 2008; GE Healthcare, 2006), if necessary, and used in 

simulation to give cost of goods analysis for this product.  

 

The possible alternative platform would be compared with traditional protein A 

platform by cost and time evaluation. The software calculated not only the cost and 
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time for individual process but also for the whole process under cGMP conditions 

based on the input initial mAb concentration and scale. The proper size and number 

of vessels, bioreactors and columns were automatically decided by the software once 

the process flow sheet and process parameters were input. Different product titres 

and manufacturing scales were tested in the software to provide a full assessment 

according to various production capacity and future trends. If the platform based on 

the new alternative process did not have the advances in cost and time saving, the 

new bioprocess development would be terminated as the protein A platform was still 

superior. Otherwise, the new process was worth to be scaled up and optimised to 

replace the current platform. 

 

7.4 Results and discussion 

 

7.4.1 High throughput screening and technical feasibility studies 

 

7.4.1.1 CEX resins and binding capacity screening 

 

The first set of HTS experimentation evaluated a CEX chromatography process for 

the binding conditions of mAb in a post precipitation solution. As the pI for mAb is 

7.4-7.8 (Figure 6.13), the protein was predicted to bind to the CEX resins at low pH 

and the operation model would be binding-elution (Ghose et al., 2008). The 

screening results for four CEX resins, which were designed to identify the optimal 

salt concentration and pH for binding, were shown in Figure 7.2.  

 

Capto S resin, shown in Figure 7.2.(a), had the lowest binding capacity among all 

four resins. The maximum binding capacity at pH 4.0 was only 1 mg/ml, and nearly 

no binding in other conditions. Figure 7.2.(b), (c), (d) demonstrated the binding 

capacity of UNOsphere S, Fractogel EMD SO-3 (M) and SP Sepharose FF 

respectively. The trends of all three resins were similar, that the binding capacity 

decreased when pH and conductivity increased, which was the typical results of 
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CEX screening (Stein and Kiesewetter, 2007; Gagnon, 2007). However, the mAb 

binding capacity was very low in all resins. The maximum capacity achieved was 

only around 8 mg/ml at pH 4.0, 1 -1cmmS ⋅ by UNOsphere S. As the mAb was loaded 

into each microwell for far more than 20 mg per ml resin challenge and the normal 

capacity for CEX resins will be around 100 mg/ml (Bio-Rad, 2000; GE Healthcare, 

2006; Kelley et al., 2008), the above results demonstrated this mAb was not suitable 

to process by CEX binding-elution mode due to its low throughput.  

 

It was considered as a quite special case result as the pure mAb solution, which was 

purified by standard protein A chromatography, was also tested with the nearly same 

poor results (data was not shown). This phenomenon was probably caused by the 

unusual properties of mAb, such as hydrophobicity or structures (Burgess, 1987; GE 

Healthcare, 2006). Since the binding mode failed due to low mAb binding in all 

resins, the flow through mode was considered. 

 

The impurities binding results were shown in Figure 7.3 and these results limited the 

application of CEX flow through mode. The results for Capto S were not as expected, 

as shown in Figure 7.3.(a), that neither impurities nor mAb bound to resin very well. 

The results from other three resins were very close (Figure 7.3.(b) to Figure 7.3.(d)), 

that nearly half impurities were flowed away in loading phase while the remaining 

bound to the resin, around 40% to 50% in all conditions. These results predicted the 

flow through mode using the later three resins was able to lower the impurities by 2 

fold, but it was not enough for a polishing step. Therefore, cation exchange 

chromatography failed the feasibility analysis.  
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Figure 7.2 The screening studies of mAb binding capacity for four CEX resins: (a). 

Capto S; (b). UNOsphere S; (c). Fractogel EMD SO-3 (M); (d). SP Sepharose FF. 
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Figure 7.3 The impurity binding results for four CEX resins: (a). Capto S; (b). 

UNOsphere S; (c). Fractogel EMD SO-3 (M); (d). SP Sepharose FF. 
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7.4.1.2 HIC resins and binding capacity screening with gradient elution 

 

In the HIC screening, it was designed to find the conditions for mAb binding and 

elution in four resins. Since HIC normally has low binding capacity, typically around 

30 mg/ml for mAb, and the elution conditions are the main factors to separate 

components (GE Healthcare, 2009; Machold et al., 2002; Queiroz et al., 2001), the 

focus of this screening was to find the optimal elution conditions within four resins 

rather than the optimal binding conditions to achieve maximum binding capacity. 

 

In the challenge of 29 mg mAb to 1 ml HIC resin tests, mAb was completely bound 

to the resin in all conditions for Phenyl 6, Butyl 4 and Butyl high performance. Only 

Butyl-S 6 had relatively low binding capacity, shown in Figure 7.4. Low pH at 6.0 

and low salt concentration 1.0 M ammonium sulphate was not enough to allow 

strong hydrophobic interaction between mAb molecules and resin ligands. By 

increasing pH and salt concentration in the loading phase, the binding capacity for 

Butyl-S 6 also increased to the same levels as the capacity of other three resins, 

which was expected as Butyl-S 6 was the weakest hydrophobic interaction resin 

among these four resins (From GE Healthcare technical information). 

 

The gradient elution was then carried out and all results from four resins in nine 

loading conditions each were demonstrated in Figure 7.5. In Figure 7.5.(a), the 

strong hydrophobic binding property of Phenyl 6 resin caused the mAb peaked at 

relatively low salt concentration, from 0.6 to 0 M. Even the 0 M strip can not 

completely elute all mAb from the strong bound resin. The yield of mAb through 

binding mode using Phenyl 6 was not satisfied due to large amount of mAb lost. The 

impurity normally had strong binding ability and eluted later than monomer mAb 

(Jiang et al., 2010). In Figure 7.5.(b), it was shown that impurity peak started at 0.2 

M and the same as mAb, most of them still bound to the resin. Therefore, the 

resolution between mAb peak and impurity peak was not good enough. Considering 

the probably poor mAb yield, Phenyl 6 resin was not suitable for polishing step.  
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Figure 7.4 Binding capacity of Butyl-S 6. 
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Figure 7.5.(c) showed the mAb elution peak in Butyl 4 resin. As Butyl 4 was one of 

the weak HIC resins, the mAb elution peak came earlier than Phenyl 6 between salt 

concentrations 1.0 to 0.4 M. The impurity elution peak shown in Figure 7.5.(d) 

appeared in higher salt concentration than that in Phenyl 6. It started at 0.6 M and 

peaked at 0.2 M. Although there were still some impurities remained in the resin, if 

the elution condition was well chosen, e.g. salt concentration 0.4 M, pH 7.0, nearly 

95% mAb yield and a relatively good separation can be achieved.  

 

Figure 7.5.(e) and Figure 7.5.(f) showed the results from Butyl high performance, 

which gave high resolution and was recommended by GE healthcare as the ideal 

resin for intermediate and final purification steps. The mAb elution peak was in the 

middle range of salt gradient, with mAb started to elute at 0.8 M and completed at 

0.2 M. The impurity peak was narrower and sharper than that in Butyl 4 elution and 

peaked at 0.2 M. Compare the results from Butyl 4 and Butyl high performance, 

latter one really had better resolution to separate mAb peak from impurity. If 0.3 M 

salt concentration was chosen as one step elution condition, Butyl high performance 

resin will have the most promising separation ability with higher mAb yield and 

better resolution than Butyl 4 resin, shown in Figure 7.6.  

 

The elution results from Butyl-S 6 (Figure 7.5.(g) and (h)) seemed to prove again 

that this resin has the weakest hydrophobic interaction between mAb molecules and 

ligand. As shown in Figure 7.4, some conditions had relatively low binding capacity. 

Therefore, in Figure 7.5.(g), the mAb elution curves at these loading conditions did 

not show a complete peak even at high salt concentration elution. Other elution 

curves shown the mAb eluted at around 0.8 M with sharp peaks. However, the 

impurity elution curves demonstrated Butyl-S 6 was not able to separate impurity 

and mAb at all. The impurity also peaked at high salt concentration, around 0.8 M 

and had a quite wide salt concentration range.  

 

In these screening studies, initial salt concentration in the loading conditions did not 
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show large difference in binding capacity and following elution peaks. Although pH 

normally was not considered as a big factor in HIC, the mAb elution curves in 

Figure 7.5 had an obvious common phenomenon for all four resins, that pH 8.0 

binding conditions had strong hydrophobic effects than low pH as the elution peaks 

at these loading conditions came later than other conditions. This may be caused by 

the pI of mAb, which is around 7.4, since the protein will show more hydrophobic 

when approaching pI (Carta and Jungbauer, 2010; Queiroz et al., 2001). The 

impurity elution curves did not demonstrate any pH or salt concentration effects 

from loading conditions. Therefore, HIC separation in this case highly depended on 

how the interaction between mAb and resins changed with conditions and how much 

difference from impurity-resin interaction during elution phase. From the screening 

results, the Butyl high performance resins with proper elution conditions would be 

selected as the potential polishing process. 
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Figure 7.5 Gradient elution screening of Phenyl 6 (a, b), Butyl 4 (c, d), Butyl high 

performance (e, f) and Butyl-S 6 (g, h). Symbol represents loading conditions: solid 

triangle (up): pH 8.0, salt 1.2M; diamond: pH 8.0, salt 1.1M; solid diamond: pH 8.0, 



 201

salt 1.0M; square: pH 7.0, salt 1.2M; solid square: pH 7.0, salt 1.1M; triangle (up): 

pH 7.0, salt 1.0M; solid triangle (down): pH 6.0, salt 1.2M; star: pH 6.0, salt 1.1M; 

solid star: pH 6.0, salt 1.0M. Dots are data points and curves are extrapolated by 

MatLab. 

 

 

 

 

 

 

 

 

 
 

Figure 7.6 The gradient elution graph for Butyl high performance with loading 

conditions pH 7.0, salt 1.1 M.  
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7.4.1.3 AEX resin and flow through screening 

 

Anion exchange chromatography in a flow through mode was frequently used to 

remove impurities in the downstream polishing steps (Shukla et al., 2007). The 

impurity proteins, such as CHO HCP, were generally more acidic than mAb (Jin et 

al., 2010; Stein and Kiesewetter, 2007). Therefore, these impurities may be removed 

by binding to AEX resin in a pH condition lower than mAb pI. AEX process was 

also utilised to remove residual DNA and leached protein A in affinity 

chromatography platform (Low et al., 2007; Shukla and Thommes, 2010).  

 

Shown in the Figure 7.7.(a), as the pH in the loading conditions were all lower than 

mAb pI, the yield of mAb were all above 90%. Yield increased towards pH 7.0 

because when it is close to mAb pI, fewer charges on the surface of mAb decreased 

the binding ability. Conductivity did not show very strong effects on the mAb 

binding to resins. The impurity remove surface was illustrated in Figure 7.7.(b). 

Contrary to mAb yield, conductivity had a significant effect on impurity remove. 

Low conductivity promoted the binding between Capto Q resins and impurities with 

80% removal rate at high pH, while high conductivity lowered the rate nearly 25% in 

all conditions to around 50%. Higher pH had a slight positive influence on binding 

due to the impurities have more negative charges at higher pH range.  

 

This initial screening of the AEX flow through conditions showed a Capto Q 

chromatography step after salt precipitation was also very promising to be a 

polishing process with high mAb recovery yield and impurities remove percentage. 

The possible operation conditions would be at pH 7.0 and low conductivity range.  
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Figure 7.7 The condition screening studies of Capto Q resin in flow through mode: 

(a) mAb yield percentage; (b) impurities remove rate.  
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7.4.2 Whole process simulation and cost of goods analysis 

 

7.4.2.1 Process flow sheet and operating conditions 

 

According to the previous technical feasibility studies, two downstream purification 

processes were designed, shown in Figure 7.8. One was the protein A 

chromatography based processes and the other was the precipitation based processes. 

Two purification processes would be compared based on the time and cost. 

 

In platform (a), it started with the conventional protein A chromatography as the first 

capture step. Since the cation exchange chromatography failed in the previous 

microwell studies, the second main purification step would be a binding-elution 

mode hydrophobic interaction chromatography (HIC). Between the first and the 

second chromatography steps, a buffer exchange process was needed to condition 

the feedstock to the required operating conditions (mainly salt concentration). The 

final step was an AEX flow through chromatography.  

 

In platform (b), the previous developed two cut precipitation will replace the protein 

A chromatography. It started with the first solubilisation and the first depth filtration 

to remove the impurity protein and HCP, described in Chapter 6. Then the second 

precipitation and depth filtration would be carried out. The second depth filtration 

was different from the normal depth filtration process, since it had a mAb capacity 

limitation and needed washing, resuspension steps. Therefore, the depth filtration 

model in the software was modified to reflect these innovative changes. The 

following two steps were the same as those in platform (a). 
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Figure 7.8 Two downstream purification processes: (a) protein A chromatography 

platform; (b) precipitation based platform. 
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The detailed information of operating conditions was listed in Table 7.1. Two levels 

of mAb concentration: 5 g/L and 10 g/L and three manufacturing scales: 1,000 L, 

10,000 L and 100,000 L were assumed as the initial conditions to investigate the 

impact of concentration and scales. In the small scale, the small chromatography 

column was selected to minimise the capital cost with the target one chromatography 

cycle. For the large scale, the biggest column was chosen to maximise the capacity 

of each cycle in order to reduce operating time. The values for linear velocity, 

binding capacity and other parameters came from manufacture manuals or previous 

experiments. The salt stock solution added in solubilisation or buffer exchange steps 

and precipitation was 4.0 M ammonium sulphate. All materials were conditioned to 

required pH by buffer exchange before each process, which was not shown in both 

process flow sheets. It was assumed that these processes caused little process and 

cost difference in both platforms and thus can be ignored in comparisons. 

 

In precipitation platform, depth filtration was the crucial process. In order to reduce 

process time, three filtration racks with a maximum 30 filters capacity each rack 

were used, according to the information of current available equipments and filters, 

provided by main suppliers (3M Cuno, Millipore and Pall). The largest filter with 2.8 

m2 is applied and the maximum reuse number for filter was assumed as 5. From the 

lab scale results in Chapter 6, the filter capacity in the second depth filtration was 

assumed as 85 g mAb/m2, which meant each depth filtration rack has a maximum 

capacity. Once the maximum capacity was achieved, the filters should be washed 

and then resuspended to release the capacity. Therefore, the second depth filtration 

worked like a chromatography process, requiring several cycles to process one batch 

materials. From the flux results in Chapter 6, the maximum flux can be around 2,400 

L⋅m-2⋅h-1, if the linear scale up was adopted. Low flux resulted in greater capacity 

and longer filter life span (3M Cuno, 2007), but longer process time. While in the 

software calculation, the flux used in both depth filtrations was set at 1600 L⋅m-2⋅h-1, 

which was the upper limit of optimal flux recommended by the depth filter supplier 

(3M Cuno, 2008).  
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Protein A chromatography Solubilisation in precipitation platform 
column diameter 200 cm* salt volume add (%) 30 
bed height 20 cm   
bed volume 627 L* 1st depth filtration 
linear velocity 300 cm/hr flux 1600 LMH 
dynamic binding capacity 30 g mAb/L filter area 2.8 m2 

elution volume 2.5 CV 
number of filter 
racks 

3 

resin max reuses 200 number of filters 30 
   
Buffer exchange in protein A chromatography platform Precipitation 
salt volume add (%) 27.5 salt volume add (%) 16.7 
   

Hydrophobic interaction chromatography 2nd depth filtration 
column diameter 240 cm* flux 1600 LMH 
bed height 20 cm filter area 2.8 m2 

bed volume 905 L* 
number of filter 
racks 

3 

linear velocity 200 cm/hr number of filters 30 
dynamic binding capacity 30 g mAb/L filter capacity 85 g mAb/m2 
elution volume 2.5 CV   
resin max reuses 50  
 

Anion exchange chromatography 
column diameter 240 cm* 
bed height 20 cm 
bed volume 905 L* 
linear velocity 150 cm/hr 
dynamic binding capacity 75 g mAb/L** 

resin max reuses 50 

* The maximum size of one 
chromatography column to handle large 
scale materials. For the small scale, the size 
will be adjusted by the software to the most 
economical size.  
** In the flow through mode, very few 
mAb will bind to the resin and the value 
here indicates the maximum mAb loaded to 
column in each cycle.  

Table 7.1 Details of two mAb purification processes operation conditions. 

 

7.4.2.2 Cost of goods and process time comparisons 

 

Table 7.2 shows the cost and time analysis of protein A chromatography purification 

platform based on two mAb titres and three scales. It has been already pointed out by 

several researchers (Farid, 2007; Werner, 2004) that low titre and small production 

scale caused high cost per gram product. It can be noticed that the cost decreased 

from 23.1 US $/g to 11.3 US $/g when mAb mass increased 200 times from 5,000 g 
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to 1,000,000 g. However, processing time increased from 20 hours to 270 hours, 

which was nearly 11 days. It was impossible to process a batch for 11 days in a real 

production, which meant the manufacturer needed invest probably three more sets of 

purification facility to reduce one purification shift to less than 3 days at very large 

scale. Calculated by software, the cost and throughput did not increase when the 

processes were operated at very large scale, e.g. 100,000 L, while the process time 

and capital still increased with mAb titre. It was caused by the physical volume 

limitation of a protein A chromatography column, which can not be scaled up any 

more once its maximum capacity was exceeded by the process scale. The only 

solution was to build more chromatographic facilities, which inevitably increased the 

cost and capital.  

 
Protein A chromatography platform MAb 

concentration 
(g/L) 

Volume 
(L) 

Cost (US 
$/g) 

Batch 
time (hr) 

Batch per 
year 

Throughput 
(Kg/Year) 

Capital (US 
$M) 

5 1,000 23.1 20 376 1,527 37.1 
10 1,000 19.3 20 376 3,054 52.1 
5 10,000 14.3 26 376 15,270 78.1 

10 10,000 13.5 41 376 30,540 81.2 
5 100,000 11.3 147 94 38,175 103.9 

10 100,000 11.3 270 47 38,175 118.6 

Table 7.2 Protein A chromatography purification processes costs and time analysis. 

 

Table 7.3 shows the cost and time analysis of precipitation based purification 

platform, in order to compare the results to protein A chromatography platform in 

Table 7.2. The trends of cost and process time against the titre and process scale 

were observed as same as those in Table 7.2. The unit operation cost of a 

precipitation process normally depended on the scale, which was more volume, more 

cost as it required more salt to precipitate mAb. That was why the cost of 10 g/L, 

10,000 L process was slightly lower than that of 5 g/L, 100,000 L process in the 

overall cost calculation. At low titre and small scale, the precipitation based platform 

did not have any advantages in cost and time, if compared with protein A 
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chromatography based platform. While the titre and scale increased, precipitation 

showed its cost and time saving abilities. At very large scale, the cost and time were 

reduced by 22% (11.3 US $/g compare with 8.8 US $/g) and 26% (270 hours 

compare with 199 hours) respectively. Since precipitation process had no physical 

limitation, the throughput would increase when more capital was invested, 

demonstrated in Table 7.3.  

 
Precipitation based platform MAb 

concentration 
(g/L) 

Volume 
(L) 

Cost (US 
$/g) 

Batch 
time (hr) 

Batch per 
year 

Throughput 
(Kg/Year) 

Capital (US 
$M) 

5 1,000 23.2 23 376 1,579 31 
10 1,000 17.5 23 376 3,159 45.1 
5 10,000 12.8 26 376 15,796 67.1 

10 10,000 10.3 34 376 31,592 81.5 
5 100,000 11.1 113 94 39,490 106.2 

10 100,000 8.8 199 62 52,094 114.4 

Table 7.3 Precipitation based purification processes costs and time analysis. 

 

The results sufficiently showed that precipitation based purification platform was 

quite comparable to protein A chromatography based platform. When the upstream 

produces high titre at large scale cell culture, precipitation based platform is more 

preferable than the traditional protein A chromatography platform, due to its low cost 

and large throughput. However, in this designed processes, the second depth 

filtration had a batch mode operation, which was the bottleneck in whole processes. 

The nearly 200 hours for processing 10 g/L, 100,000 L cell culture was largely 

contributed by the second depth filtration process. It highly depended on the filter 

capacity and flux. If higher filter capacity and flux can be achieved, the operating 

time will be much shorter. 

 

7.5 Conclusions 

 

In this chapter, a HTS development and analysis technique was demonstrated in 
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order to select and design polishing chromatographic steps quickly based on a post 

precipitation mAb solution. Four CEX resins with both binding and flow through 

mode were evaluated. It showed the CEX was not able to purify the solution further 

and thus saved the cost and time for large scale CEX studies. Four HIC resins were 

also investigated by binding and gradient elution mode. The separation effects can be 

clearly demonstrated in elution profiles. The best resin and conditions would be 

selected to be further investigated in lab scale studies. Capto Q AEX was also tested 

in a flow through mode, which showed good polishing results.  

 

The automatically HTS can rapidly assess the suitability of a downstream 

purification process with regards to binding capacity and impurity removal. The 

experiments carried out in microwell plates required small amount of feedstock and 

resins with huge data produced in one set, far more efficiently than typical 

chromatographic development. However, they are not the complete replacement of a 

laboratory scale column study. The lab scale tests with the resins and conditions 

chosen from HTS experimentations still need quite a lot conditions to be investigated 

in column study because HTS can not predict the optimal pressure, flowrate and 

DBC etc. The HTS studies can provide useful information on processes selection and 

conditions screening, which can be used as the starting point for later scale up and 

column studies.  

 

Combining the HTS technical feasibility study results with the process simulation 

software based on whole process models will give a quick judgment and analysis on 

which bioprocess is needed and how to form a purification platform to purify current 

feedstock by little cost and research work. In this study, whole process analysis 

showed that at relatively small scale (1,000 L), both processes had similar unit 

production cost. However, with the increase of the scale, the precipitation based 

process was cheaper and the unit production cost reduced 20-30 %. It is also noticed 

that the operation time at large scale for protein A chromatography based process 

was 35 % longer than precipitation based process, which was a major concern in 
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future large scale production. The whole process analysis showed the new 

precipitation process developed in Chapter 6 was able to be incorporated into a 

feasible platform providing a low cost and faster approach for future large scale mAb 

production than current protein A chromatography platform.  
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Chapter 8. Conclusions and future work 

  

8.1 Conclusions  

 

The overall objective of this research was achieved by the successful development of 

a model based process design and optimisation methodology for downstream 

bioprocess. This can significantly reduce the development time and cost in the early 

stage. The new model based process design method has been proposed with three 

main components in an integrated optimisation framework: bioprocess modelling, 

model based experimental design and high throughput experimentation. These 

components worked with each other iteratively in a loop of receiving, analysing and 

passing useful process information. This combination approach was more effective 

to reduce material consumption in process design than the application of traditional 

DoE design in a nonlinear bioprocess system. The integrated design methodology 

has been applied to two protein precipitation case studies and proved its 

effectiveness for process design and optimisation.  

 

The model based process design started with the bioprocess modelling steps. The 

modelling step not only helped to understand the bioprocess through a quantitative 

equation but also provided the basis for the following model based experimental 

design and optimisation. The general approach for bioprocess modelling was 

designed to develop a reliable model from the process mechanism or empirical data, 

regressed by high throughput microwell experimental results, which was then to be 

validated by statistical tests. Compared to the conventional modelling procedure, this 

generic approach was faster and produced a more accurate process model due to the 

massive number of data points provided from the microwell studies. This also 

accelerated the loop of model modification.  

 

A Fab’ precipitation system with ammonium sulphate concentration and pH as 
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operation conditions was then used as the first case study to test this modelling 

procedure in microwell plates. A precipitation model based on phase equilibrium was 

proposed to describe this Fab’ precipitation. Microwell precipitation provided a full 

set of data for modelling development and enabled statistical validation after 

modification. The newly developed model can accurately describe not only the 

solubility of pure Fab’ and Fab’ in the clarified homogenate, but also can be applied 

to impurities, considered as a pseudo component. The model showed superiority 

over other existing models, including the widely used polynomial equation from 

DoE method, judged by statistical tests values. Since the model was based on the 

theory of precipitation, the model can be transferred to other precipitation systems 

after the training and parameterisaton by real data. However, the significances of the 

parameters in the model should be fully evaluated by statistical tests based on the 

new data and modified if necessary in any new precipitation environment or system. 

The validated precipitation model can also be used to test the following model based 

experimental design algorithm. 

 

In the core step of the whole process design methodology, model based experimental 

design adopted three different algorithms to achieve mutual benefits and accelerate 

model accuracy and process optimisation. D-optimal design was the driving force of 

model accuracy due to its power to choose the information rich points to 

parameterise model and minimise regression errors. A key contribution of this 

D-optimal design work was that the new sequential design reduced the computation 

efforts. Optimisation was carried out by predicting the maximum or optimal points in 

each design loop for the next run of experiments. This optimisation was achieved by 

simulation method based on experimental conditions. Random and a modified 

Simplex design provided extra points to work as an error preventing function, in case 

the algorithm was trapped in a local optimum or became deadlocked. This innovative 

experimental design algorithm avoided the disadvantages of each design method 

when used alone in the traditional experimental design. Combining them together 

and working in a parallel mode in one design loop can facilitate optimisation without 
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increasing time and cost. The overall sequential design structure and high throughput 

experimentation further reduced the development time significantly and promoted 

the interplay between algorithms and experiments. 

 

The same Fab’ precipitation system was used as the test base for the model based 

experimental design algorithm evaluation. It was initialised by a DoE design in the 

clarified homogenate feedstock precipitation. The real results were continuously 

feedback to the algorithm to make the model more accurate and design the next 

experimental runs. Accurate models and the optimal point were found efficiently 

after only 5 iterations. The error between predicted value and real experimental data 

was in the acceptable range. This approach was compared with current widely used 

DoE with a second order polynomial regression method. The results showed that the 

new model based experimental design and optimisation method required fewer 

experiments but gave better predictions and without missing the real optimal area. 

 

The whole methodology was then applied and tested in a second case study: a mAb 

precipitation process. The pure mAb precipitation preliminary studies provided 

sufficient data for precipitation model modification and the initial parameterisation, 

which is the necessary procedure for any existing model transfer from one reaction 

to another. After the proper model has been selected, the model based experimental 

design utilised the modified mAb precipitation model with the best initial guess from 

a pure mAb system to design and search the optimal point for the mAb precipitation 

process. Two precipitation reagents: ammonium sulphate and PEG, were used and 

both systems were simultaneously optimised by the algorithm in microwell plates. 

The optimal points in the two reaction systems were rapidly located with only a few 

iterations. The ammonium sulphate precipitation system with the optimal operational 

conditions was selected by comparing two precipitation systems based on the 

maximum objective value at the optimal conditions. The mAb precipitation models 

were also evolved to accurate models during this design procedure with very small 

SD2 values when the iteration were completed, and providing sufficient information 
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for the process understanding. 

 

The next step was to test the process at larger scale based on the results of above two 

steps in the design methodology. The optimised microwell results were then 

investigated at lab scale in order to design a bioprocess based on precipitation for an 

alternative mAb purification platform to replace the conventional protein A 

chromatographic route. Depth filtration with innovative separation procedures was 

adopted following precipitation to efficiently separate solids containing mAb from 

supernatant with most impurities remaining in solution. Filter capacity and flux 

proved the engineering feasibility for precipitation at large scale production and the 

results were comparable to those at microwell scale. The further study for some 

specific impurities, HCP and DNA, required process modification. Therefore, a two 

cut precipitation was introduced to eliminate more HCP and DNA to match the 

protein A chromatographic process. The first precipitation and depth filtration 

reduced the concentration of HCP, aggregates and DNA in the mAb feedstock. mAb 

was precipitated out in the second step precipitation and then retained, washed and 

resuspended in the second depth filtration process. The yield and purity were very 

comparable to protein A chromatographic process without denaturing mAb. 

 

A rapid evaluation approach for whole purification processes was further proposed 

with the help of results from microwell and lab scale processes to carry out the 

whole process technical feasibility tests for precipitation based mAb purification 

processes and cost of goods analysis as early as possible. Microwell 

chromatographic experimentation provided the platform for a quick technical 

feasibility test. The commercial software BioSolve gave a whole process cost 

analysis based on the results from microwell screening and the process model in the 

software. Hydrophobic interaction chromatography (HIC) in binding-elution mode 

and anion exchange chromatography (AEX) in flow-through mode were selected as 

two potential candidate processes for polishing steps according to the high 

throughput screening results. Then a precipitation based purification platform was 
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compared with the traditional protein A chromatography based platform using the 

same mAb feedstock, assuming that the same properties were as those tested in the 

microwell studies. Various titre and scales of feedstock were set in the software to 

assess the cost and time of the two different purification platforms. The results 

showed that the alternative purification platform based on the precipitation had the 

ability to lower cost and reduce process time in high titre and large scale production, 

which was also the trend of the upstream cell culture. Therefore, in the near future, 

the precipitation based purification platform has the potential and advantages to 

replace the conventional protein A chromatography platform with large 

manufacturing capacity.  

 

8.2 Future work 

 

8.2.1 Applications of model based process design in dynamic systems 

 

The model based process design methodology has the potential to be used in any 

bioprocess when a model exists or modelling can be carried out. In this thesis, two 

precipitations have a static nonlinear model due to the relatively simple mechanism 

behind these precipitations. The method has proved its power and capability to 

design and optimise this type of process. However, some bioprocesses, such as 

chromatography, have a more complicated dynamic model, e.g. general rate model, 

to predict the behaviour and results of the process with certain feedstock. An 

extension of the model based process design method in this thesis to dynamic 

systems is needed to find the solution from dynamic equations. As currently there is 

no well established method to design and optimise a dynamic process, it is very 

worthwhile to apply this integrated methodology to investigate its performance in 

the dynamic bioprocess. 

 

8.2.2 Whole process design and optimisation 
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The model based process design method developed in this thesis has demonstrated 

its ability in a single unit operation design and optimisation. However, the 

downstream purification platform is normally composed of several bioprocesses. In 

most cases, tradeoffs between different processes and objectives are required when 

expanding to whole process optimisation. The ultimate aim is to achieve whole 

process design and optimisation, which cannot be simply achieved by adding 

together all designs based on the single unit operation.  

 

However, if each unit operation in the whole purification process is able to be 

described by one or several mathematical models, the whole process can be 

described by a group of process models with multiple design space and constraints. 

The ability of the methodology in whole process design and optimisation based on a 

group of process models should be assessed and evaluated in future work.  

 

8.2.3 Scale up modelling and prediction 

 

In this thesis, all model based design and optimisation was based on the high 

throughput experimentation. However, it is quite difficult to predict the process 

performance at large scale due to lack of scale up model to link the high throughput 

experimentation results and large scale results. Knowledge including fluid dynamics, 

is heavily involved in this type of modelling activity.  

 

Some bioprocesses, such as chromatography, works significantly differently at small 

scale and large scale, which is mainly limited by the instrument, e.g. no flowrate 

conditions to be analysed in mircrowell plates. Therefore, carrying out scaling up 

modelling for those bioprocesses requires new experimental designs or instruments 

to test these conditions throughout. The benefits of scale-up modelling is that once 

the proper models for process operation and scale up are available, the model based 

process design methodology can directly carry out process design and optimisation 

for large scale process based on these models with the small scale experimentation. 
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It will further accelerate the development of downstream purification processes. 

 

8.2.4 Improve precipitation and depth filtration 

 

Some other precipitants, such as PEI, or the combination of different precipitants, e.g. 

PEG with NaCl, should be investigated to understand more about the relevant 

process of precipitation and the possibility of better selective precipitation. The 

conditions, e.g. pH, salt types, of the washing buffer in the second depth filtration 

should also be screened to further reduce HCP in the solution. From the engineering 

aspects, various depth filters should be screened to study whether there are any 

improvements in filter capacity and flux. Increasing capacity and flux is the crucial 

step in the second depth filtration steps. It is anticipated that this will reduce the 

operation times. Moreover, other separation processes, especial continuous 

operations, should be evaluated to find whether they are able to improve the current 

batch mode mAb recovering depth filtration to a continuous mode separation process, 

which is more suitable in large scale processing. 
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Appendix 1. Matlab codes for Model-based process design algorithm 

 

1. Seachalgorithm.m 

 
% This will be the overall algorithm for model-based,greedy and simplex 
% methods (This version 1.0 only for model-based, greedy/random test.  
% simplex will be corporated in later version due to its too complicated code) 
  
fprintf(‘This algorithm is based on D-optimal design, greedy/random search and 
modified simplex\n’) 
fprintf(‘Specific for precipitation model with five parameters\n’) 
fprintf(‘Designed by Yu Ji, Biochemical Engineering Department, UCL\n’) 
fprintf(‘*************************************************************
******************************************************************\n’
) 
% title complete 
fprintf(‘This algorithm is for Fab AS precipitation with fixed design space\n’) 
fprintf(‘Salt from 0M to 3M with step 0.3, pH from 4.5 to 8 with step 0.5. All value 
normalized to 0-1\n’) 
fprintf(‘Designspace is written in the code, if want to use new space, change value or 
use ‘‘input’’ phrase replace this ‘‘fprintf’’ phrase\n’) 
fprintf(‘Input require initial coefficients for both Fab and impurities model in 1x5 
matrix format\n’) 
fprintf(‘Existing conditions in [salt concentration, pH] format\n’) % real data used in 
following algorithm are index, need convert  
fprintf(‘Corresponding results at that conditions in [Fab, impurities] format\n’) % 
data need convert due to following algorithm 
fprintf(‘*************************************************************
******************************************************************\n’
) 
% initial input 
coeff1=input(‘Initial Fab coefficient in 1x5 matrix form [x,x,x,x,x...]\n’); 
coeff2=input(‘Initial impurities coefficient in 1x5 matrix form [x,x,x,x,x...]\n’); 
excondition=input(‘Existing conditions in a matrix form [x,y;x,y;...], real pH and salt 
concentration, not normalized, at least six points\n’); % real value 
exdata=input(‘Results corresponding to exconditions in matrix form 
[x1,x2;x1,x2;x1,x2;..] fab data first and impurities data second\n’); % input data 
% designspace is a normalized matrix for reaction conditions with first 
% column salt and second pH 
ph=(4.5-4.5)/3.5:0.5/3.5:(8-4.5)/3.5; 
salt=(0-0)/3.0:0.3/3.0:(3-0)/3.0; % give normalized value in matrix form to give 
designspace matrix 
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[x,y]=meshgrid(salt,ph); % for surface function 8x11 matrix 
condition1=[0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7,3]; 
condition2=[4.5,5,5.5,6,6.5,7,7.5,8]; 
for i1=1:1:8 
    for j1=1:1:11 
        designspace((i1-1)*11+j1,:)=[condition1(j1),condition2(i1)]; 
    end 
end  
designspace(:,1)=designspace(:,1)./3; 
designspace(:,2)=(designspace(:,2)-4.5)./3.5; % covert to normalized value 
% convert excondition to conditions by index number 
excondition(:,1)=excondition(:,1)./3; 
excondition(:,2)=(excondition(:,2)-4.5)./3.5; 
[a1,b1]=size(excondition); % a1=n, the number of initial experiments which also 
equals to the number of exdata 
for i2=1:1:a1 
    for j2=1:1:88 
        if excondition(i2,:)==designspace(j2,:) % find the corresponding condition 
            conditions(i2)=j2; % give index 
        end 
    end 
end 
realresults=zeros(88,2); % initial results for fab and impurities data 
objresults=zeros(88,1); % initial results for objective function value 
for i3=1:1:a1 
    n=conditions(i3); % find the index of that condition 
    realresults(n,:)=exdata(i3,:); % store data at realresults matrix in corresponding 
index 
    objresults(n)=objectivefun(realresults(n,1),realresults(n,2),designspace(n,:)); % 
store objresults according to real data and index in the designspace 
    sortmatrix(i3,:)=[n,objresults(n)]; % store in sort matrix for following sort in 
initial simplex points choose step 
end 
% all data convert to required format in the following algorithm 
ctrlnum=1; 
reflection=0; 
reflectindex=[0,0]; 
spenum=0; % initial value for simplex 
exva=[0,0]; % initial value for sorting, format as sortmatrix one row 
% choose points from the inital set without linearity 
for i4=1:1:a1-1 
    for j4=1:1:a1-1 
        if sortmatrix(j4,2)>sortmatrix(j4+1,2) 
            continue; 
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        else exva=sortmatrix(j4,:); 
             sortmatrix(j4,:)=sortmatrix(j4+1,:); 
             sortmatrix(j4+1,:)=exva; 
        end 
    end 
end % famous bubble sorting algorithm, the largest value on the top of matrix, with 
first column is index number and second is objvalue 
% take two largest points out and one lowest point (the steepest increase) and store 
other index in one matrix 
candidatepoints=[sortmatrix(1,1);sortmatrix(2,1);sortmatrix(a1,1)]; % the largest 
first 
for i5=1:1:a1-3 
    remindex(i5)=sortmatrix(i5+2,1); % store remaining sorted index for random 
choose in following case 
end 
% following check linearity using loop, if linear, change the third with 
% the second lowest point to get the faster and so on repeat until no 
% longer linear 
lopnu=0; % initial value for linear loop in case repeat need to give index 
linnum=1; % control value for loop 
while linnum==1 
    linnum=linearcheck(candidatepoints,designspace); % ******need 
linearcheck.m, return 1 means linear, 0 means no linear 
    if linnum==0 
        break; % no linear 
    elseif linnum==1 
        lopnu=lopnu+1; % index count increases one 
        if lopnu==a1-2 % means all points checked and all in the same line 
            fprintf(‘All points on the same line, close and restart program, use 
another set of data\n’) 
            break; % break, but still need a stop sentence after while loop(do not 
coded due to very rare case), in this algorithm, once happen, need mannually close 
        else candidatepoints(3)=sortmatrix(a1-lopnu,1); % the next lowest index 
        end 
    end 
end 
% all parameters needed in the following algorithm completed 
% model based algorithm requires two coefficients, conditions in index 
% matrix,designspace with normalized data in matrix 
% coefficients regression will happen before model based algorithm but 
% still remains in the loop, it requires excondition and exdata (the final  
% of the loop will store new conditions and data to this two matrix) 
%****************main algorithm modules starts here to three different 
%function, which can be replaced by other module function if possible, or 
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%only use one or two modules. 
loopctronum=1; % initial loopctronum 
while loopctronum==1 % loopctronum is used to control loop, when 0 stop, The stop 
criteria: 
    % 1. all points searched, 2. simplex stops due to linear or small area, 
    % 3. achieve the required level, in this case, mannually stop by input 
    % loopctronum=0, 4. some break in the unpredictable case. 
    % the first will be regress function, which should be specificed by the 
    % model and range of parameter, in this model, the fifth parameter 
    % should be limited positive 
    coeff1=coreg(coeff1,excondition,exdata(:,1)); % **********program in 
coreg.m 
    coeff2=coreg(coeff2,excondition,exdata(:,2)); % **********program in 
coreg.m 
    
[nexdopt1,dmatrixvalue1,nexrandom1]=doptimal(coeff1,conditions,designspace); % 
nextpoint from Fab 
    
[nexdopt2,dmatrixvalue2,nexrandom2]=doptimal(coeff2,conditions,designspace); % 
nextpoint from impurities 
    
[nexpoigreedy,maxvalue,nexrandom3,objvalue,modelvalue1,modelvalue2]=greedyse
arch(coeff1,coeff2,conditions,designspace); % nextpoint from greedy/random search 
    % the following loop was used for surface plot but in reality, the 
    % existing poits value should replace the model calculated value to 
    % show half reality and remaining model based value, otherwise, the 
    % model based surface will totally show a different pattern 
    [ncon1,ncon2]=size(conditions); % get the size of matrix 
    for replanum=1:1:ncon2 
        indexforreal=uint8(conditions(replanum)); % give index 
        
objvalue(indexforreal)=objectivefun(realresults(indexforreal,1),realresults(indexforr
eal,2),designspace(indexforreal,:)); % give real objvalue according to real data 
        modelvalue1(indexforreal)=realresults(indexforreal,1); 
        modelvalue2(indexforreal)=realresults(indexforreal,2); 
    end % after this loop model based data at existing points are replaced by real 
value according to experiments, this will cause the following surface plot not smooth 
    for ynum=1:1:8 
        for xnum=1:1:11 
            objsurface(ynum,xnum)=objvalue((ynum-1)*11+xnum); % make into 
surface matrix with 8x11 specific for objective value 
            fab(ynum,xnum)=modelvalue1((ynum-1)*11+xnum); % make into 
surface matrix with 8x11 specific for fab value 
            tot(ynum,xnum)=modelvalue2((ynum-1)*11+xnum); % make into 
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surface matrix with 8x11 specific for impurities value 
        end 
    end 
    
[nextsimpoint,reflection,reflectindex,ctrlnum,spenum,candidatepoints]=nextsimplex(
candidatepoints,conditions,designspace,ctrlnum,spenum,reflection,reflectindex,objva
lue); % simplex, due to it requires real 
    % objvalue replacing model calculated value. 
    % ctrlnum,spenum,reflection,reflectindex initialized before loop,and 
    % keep updated in internal loop or points select algorithm in the end 
    % of this algorithm before a new loop starts. designspace is a fixed 
    % matrix. candidatepoints will be updated in points select algorithm, 
    % and conditions keep all carried out experiments index in it when loop 
    % goes on. reflectindex,ctrlnum,spenum,nextsimpoint,objvalue will be 
    % required in points select algorithm with real data inputed at 
    % nextsimpoint condition 
    % ***above algorithm gives nextsimpoint from simplex 
    % objvalue updated in line 124, 
    i6=1; % for skip and store nextpoint 
    nexpoint=[0]; addpoint=[0]; % initial nexpoint&addpoint as a zero matrix to 
avoid remaining value from last run 
    
%11111111111111111111111111*************************************start 
doptimal module by Fab and impurities, with two new 
    % points 
    if nexdopt1==0 
        if nexrandom1==-1 
            fprintf(‘No d-optimal points for Fab, all points used\n’); % end pharse 
            loopctronum=0; 
        else 
            nexpoint(i6)=nexrandom1; % give nexpoint(1) index 
            i6=i6+1; 
        end 
    else    nexpoint(i6)=nexdopt1; % give nexpoint(1) index 
            i6=i6+1; 
    end % finish Fab doptimal point 
    if nexdopt2==0 
        if nexrandom2==-1 
            fprintf(‘No d-optimal points for impurities, all points used\n’); % end 
pharse 
            loopctronum=0; 
        else 
            nexpoint(i6)=nexrandom2; % give nexpoint(2) index, if nexdopt does 
not exists, i6=1 here. in this case it will not happen, so always i6=2 
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            i6=i6+1; 
        end 
    else    nexpoint(i6)=nexdopt2; % give nexpoint(2) index 
            i6=i6+1; 
    end % finish impurities doptimal point 
    % 
222222222222222222222***********************************************
**start greedy/random module by objvalue, with one 
    % points from model max or random 
    if nexrandom3==-1 
        fprintf(‘No max points for objective value, all points used\n’); % end 
pharse 
        loopctronum=0; 
    elseif nexrandom3==0 % max point available without repeat 
           nexpoint(i6)=nexpoigreedy; % give index to nexpoint(3) 
           i6=i6+1; 
    else nexpoint(i6)=nexrandom3; % give random index to nexpoint(3) 
         i6=i6+1; 
    end 
    % finish greedy/random point 
    % 
333333333333333333**************************************************
* 
    % start simplex module by objvalue and candidatepoints, nexpoint input 
    if nextsimpoint==-1 % small area or repeat with all existing points 
       fprintf(‘No simplex point due to small area,ignore following next point from 
simplex search\n’); % end pharse 
       loopctronum=0; 
       nexpoint(i6)=nexpoint(1); 
    else nexpoint(i6)=nextsimpoint; 
    end % finish simplex point     
    % check repeat and then output 
    [b2,a2]=size(nexpoint); % get the row number of nexpoint 
    nexcon=[0,0]; % initial nexcon for loop 
    for i7=1:1:a2 
        nexcon(i7,:)=designspace(nexpoint(i7),:); %conditions in normalized value 
    end  
    nexrealcon=zeros(a2,2); % initial value 
    nexrealcon(:,1)=nexcon(:,1).*3; % convert to real salt concentration 

nexrealcon(:,2)=nexcon(:,2).*3.5+4.5; % real ph value 
% find the real max from existing conditions, the max value existing, 

    % not from model but from excondition,exdata, 
    [exi,exj]=size(exdata); % find the total number of existing points 
    maxobjreal=0;maxrealind=0; 
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    for nreali=1:1:exi   
tobjvalue(nreali)=objectivefun(exdata(nreali,1),exdata(nreali,2),excondition(nreali)); 
        if tobjvalue(nreali)>maxobjreal 
            maxobjreal=tobjvalue(nreali); 
            maxrealind=nreali; 
        end 
    end % find the max index and objvalue 
    predimax(1,:)=designspace(nexpoigreedy,:); % model predicted max conditions 
    predimaxcon(1,1)=predimax(1,1).*3;  
    predimaxcon(1,2)=predimax(1,2).*3.5+4.5; 
    curmax(1,:)=excondition(maxrealind,:); % current max conditions 
    curmaxcond(1,1)=curmax(1,1).*3; 
    curmaxcond(1,2)=curmax(1,2).*3.5+4.5; 
    cmi=uint8(curmaxcond(1,1)/0.3+1); 
    cmj=uint8((curmaxcond(1,2)-4.5)/0.5+1); 
    fprintf(‘The next point from Fab d-optimal is              salt %f pH 
%f\n’,nexrealcon(1,1),nexrealcon(1,2)); 
    fprintf(‘The next point from impurities d-optimal is    salt %f pH 
%f\n’,nexrealcon(2,1),nexrealcon(2,2)); 
    fprintf(‘The next point from greedy/random search is       salt %f pH 
%f\n’,nexrealcon(3,1),nexrealcon(3,2)); 
    fprintf(‘The next point from simplex search is             salt %f pH 
%f\n’,nexrealcon(4,1),nexrealcon(4,2)); 
fprintf('The max predicted objective value from model is             %f at 
conditions salt %f pH %f\n',maxvalue,predimaxcon(1,1),predimaxcon(1,2)); 
    fprintf('The max current objective value  is             %f at conditions 
salt %f pH %f\n',objsurface(cmj,cmi), curmaxcond(1,1),curmaxcond(1,2)); 
    figure (1) 
    surface(x,y,fab); 
    figure (2) 
    surface(x,y,tot); 
    figure (3) 
    surface(x,y,objsurface); 
    [sfab,stot,sobj]=validcalculate(fab,tot,objsurface); % give value of derivation 
    fprintf(‘The derivation value for Fab, impurities and objective value is \n Fab: 
%f  impurities: %f  Objvalue: %f\n’,sfab,stot,sobj); 
    for i8=1:1:a2-1 
        for i9=i8+1:1:a2 
            if nexpoint(i9)==nexpoint(i8) % repeat 
                nexpoint(i9)=0; % 0 value repeat point 
            end 
        end 
    end 
    n2=1; % initial value for remove repeat 
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    for i10=1:1:a2 
        if uint8(nexpoint(i10))==0 
        else addpoint(n2)=nexpoint(i10); 
             n2=n2+1; 
        end 
    end % addpoint was used for adding to conditions and get results 
    [b3,a3]=size(addpoint); % get the row number of all point without repeat 
    addcon=[0,0];  % inital value for loop 
    for i11=1:1:a3 
        addcon(i11,:)=designspace(addpoint(i11),:); %conditions in normalized 
value 
    end  
    addrealcon=zeros(a3,2); % initial matrix 
    addrealcon(:,1)=addcon(:,1).*3; % convert to real salt concentration 
    addrealcon(:,2)=addcon(:,2).*3.5+4.5; % real ph value 
    inputsure=0; addresults=[0,0]; % initial value for following loop 
    while inputsure==0 % input wrong number, reinput 
        for i12=1:1:a3 
            fprintf(‘Next point salt %f pH 
%f\n’,addrealcon(i12,1),addrealcon(i12,2)); 
            addresults(i12,:)=input(‘Input Fab and impurities results at that point 
in [Fab, impurities] format\n’); 
        end 
        fprintf(‘Is the data correct? correct=1, no=0\n’); 
        inputsure=input(‘Input correct value  ‘); 
    end 
    [a4,b4]=size(excondition); % find how many runs have done 
    % add new points to excondition,exdata and conditions, coeff1 & 2 are 
    % updated by loop. designspace does not change 
    for addi=1:1:a3 
        realresults(uint8(addpoint(addi)),:)=addresults(addi,:); % give to 
realresults for loop plot purpose 
        excondition(a4+addi,:)=addcon(addi,:); % in normalized value adding 
        exdata(a4+addi,:)=addresults(addi,:); % results adding 
        conditions(a4+addi)=addpoint(addi); % in index form adding 
        
objvalue(uint8(addpoint(addi)))=objectivefun(realresults(uint8(addpoint(addi)),1),re
alresults(uint8(addpoint(addi)),2),designspace(uint8(addpoint(addi)),:));  
    end % updated by new results 
    % 
********************************************************************
**start simplex points select algorithm 
    
[candidatepoints,ctrlnum,spenum,reflection,reflectindex,loopctronum]=simpointsele
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ct(candidatepoints,conditions,addpoint,realresults,designspace,ctrlnum,spenum,refle
ction,reflectindex,nextsimpoint,objvalue,loopctronum); 
    % for full version here need a evaluation program according to results 
    % and change loopctronum value to stop the loop******************* 
end 
 
2. Objectivefun.m 
 
% This code is used to calculate the objective function in greedysearch for 
% optimization, modelvalue1 is fab, modelvalue2 is impurities. The 
% criteria will be specified 
% if yield(i,j)<0.7 
% obj(i,j)=0.4.*yield(i,j)+0.6.*pf(i,j)-0.1.*(j-1)*0.1; 
  
function objvalue=objectivefun(modelvalue1,modelvalue2,designspace) % 
designspace will not be matrix in this function 
fab=modelvalue1; 
tot=modelvalue2; 
if fab>0.3 
    objvalue=0.4.*fab+0.6.*fab./tot-0.1.*designspace(1); 
else objvalue=0.4.*(1-fab)+0.6.*(1-fab)./(1-tot)-0.1.*designspace(1); 
end 
end 
 
3. Linearcheck.m 
 
% This code is used to check the linearity of candidatepoints or in any  
% other case, if linear return 1, if not, return 0 
  
function linnum=linearcheck(candidatepoints,designspace) 
bpoint=designspace(candidatepoints(1),:); 
npoint=designspace(candidatepoints(2),:); 
wpoint=designspace(candidatepoints(3),:); 
a=npoint-bpoint; 
b=wpoint-bpoint; 
matxdetermintant=det([a;b]); 
if matxdetermintant==0 
    linnum=1; 
else linnum=0; 
end 
end 
 
4. coreg.m 
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% This code is used for parameters regression for precipitation model with 
% the fifth parameter limited positive 
  
function coeff=coreg(coeff,excondition,exdata) % excondition nx2 matrix in 
normalized value, exdata nx1 matrix, different from the main algorithm 
% coeff will be updated in this algorithm 
n=0; % number for stop regress in case that the coeff(5) can not be positive 
coeff=lsqcurvefit(@ppmodel,coeff,excondition,exdata); % lsq regress, better 
algorithm can be used here 
while coeff(5)<0 
    coeff(5)=rand(1); % random give value between [0,1] 
    n=n+1; % account 1 more 
    if n==20 % 20 loop to stop 
        break 
    else coeff=lsqcurvefit(@ppmodel,coeff,excondition,exdata); % repeat regress 
until the right coeff comes out 
    end 
end 
end 
 
5. doptimal.m 
 
% This code is used as a part of new combining methods for (n+1) d-optimal  
% design choose from candidate points in the designspace 
% The input will be 1. model coefficients, 2. design space in matrix format 
% according to the experiments and interval steps, 3. the model functions 
% which depends on the model used, which is changable, 4. data alreday used 
% including conditions and results 
% symbol: coeff, designspace(defined by model and experiments), interstep 
% (information contained in design space), modelname(for model function,  
% in the first case study two variables precipitation model), conditions 
% it can be change to other two factor model such as polynomial equation 
% and if upgrade the code to three or four variables it will therotical works  
% with the number of variables also changed in corresponding code (simplex) 
% The output should be conditions where d-optimal gives max, d-efficiey 
% maybe ok to give out as a optional judge value 
% In some case, there is no d-optimal max point (any extra point added 
% into d-matrix will decrease dmatrix value, matrix size n), use random 
% search 
% in optional methods, delete the min. conditions to (n-1) matrix and then 
% exchange two conditions to (n+1) matrix. thus this code will give two 
% point extra, then the following loop need change the existing conditions 
% and simplex point choice criteria, which is more like mitchell sequential 
% exchange d-optimal method 
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% symbol: nexdopt, dmatrixvalue,deffic(optional, not programmed in this case) 
% nexrandom(same as greedysearch.m store random information) 
% function file used in this function dmatrix.m 
  
function [nexdopt,dmatrixvalue,nexrandom]=doptimal(coeff,conditions,designspace) 
%%% when nexrandom=0, means d-optimal design is availabel, otherwise, random 
search. the only exception is nexrandom=-1, which means, all points are used 
% conditions are index number, in order to use in dmatrix calculation, need 
% convert to real normalized conditions in designspace 
[a,b]=size(conditions); 
[a1,b1]=size(designspace); 
realcon=[0,0]; % initial value 
for i=1:1:b 
    j=uint8(conditions(i)); % let j=index number, which show the conditions in 
designspace 
    realcon(i,:)=designspace(j,:); 
    designspace(j,:)=2; % let corresponding space have one special value, which 
can be recongized as existing points in later algorithm,since normalized to 0-1, 2 is 
ok to use 
end % this loop convert realcon matrix with real conditions 
inidmat=dmatrix(coeff,realcon); % give d-optimal matrix according to realcon 
matrix & coefficients &****** dmatrix.m file need programed according to model 
chosen****** 
tempdmatvalue=det(inidmat’*inidmat); % give the template d-matrix the initial 
value used for the next (n+1) search 
num=0; % give the num initial value zero for index number, it will store the max 
dmatrix conditions index in the following code 
for ii=1:1:a1 
    if uint8(designspace(ii,1))==2  % 2 means that points existing in the realcon, 
thus skip this ii to next  
        onepoidmatrix(ii)=0; % matrix in order to store dmatrix at that point is 
zero, can not be used for sorting since maybe the real matrix is less than zero 
        continue; 
    else 
        tempcon=realcon; % let tempcon has the realcon value (transfer existing 
conditions to tempcon matrix ax2, in precipitation case) 
        tempcon(a+1,:)=designspace(ii,:); % let tempcon has one more conditions 
from candidate points (n+1) matrix 
        tempdmatrix=dmatrix(coeff,tempcon); % give (n+1) matrix form to 
tempdmatrix by adding iith designspace into the new d-matrix 
        onepoidmatrix(ii)=det(tempdmatrix’*tempdmatrix); % store new dmatrix 
value to corresponding index number matrix onepoidmatrix, if not the new point, 
that index store 0 in above ‘if’ pharse 
        if onepoidmatrix(ii)>tempdmatvalue 
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            tempdmatvalue=onepoidmatrix(ii); % let tempdmatvalue always store 
the max (n+1) dmatrix value 
            num=ii; % store the index in the num 
        end 
    end 
end % after whole loop, onepoidmatrix store all det value at that point adding, num 
store the max index, if no point adding can give larger dmatrix value, num=0 
if num==0 % start random search, in some cases, it can be change to other d-optimal 
methods or even g-, a- optimal methods, in this case for simple, random search 
    nexdopt=0; % no option for d-optimal 
    dmatrixvalue=det(inidmat’*inidmat); % existing dmatrix value 
    repn=1; %initial value for random search   
    jj=0;  % if all points used, jj=a1;let nexrandom=-1 
    while repn==1 %loop for random search until no repeat point comes out or no 
candidate points (very rare situation), in this case, give nexrandom value -1 
        if jj==a1   % which means all points used 
           nexrandom=-1;break; % while loop break with three value returned 
        else 
        nexrandom=randi(a1,1); % random choose an integer from designspace 
conditions 
        repn=reptest(conditions,nexrandom); % chech whether new point is also 
repeated 
        jj=jj+1; % add one for each loop 
        end 
    end % after this while loop, one random point will be choose or give 
nexrandom=-1 
else nexdopt=num; % let num value to nexdopt output 
     dmatrixvalue=onepoidmatrix(num); % return the new dmatrix value 
     nexrandom=0; % 0 means no random search. 
end 
end 
 
6. greedysearch.m 
 
% This code is used as a part of new combining methods for greedy/max 
% search with random search following when repeat happens 
% The input will be 1. model coefficients, coeff1 fab, coeff2, impurities  
% 2. design space in matrix format according to the experiments and interval  
% steps, 3. the model functions which depends on the model used, which is  
% changable. 4. Data already used 
% symbol: coeff, designspace(defined by model and experiments), interstep 
% (information contained in design space), modelname(for model function,  
% in the first case study two variables precipitation model), conditions 
% it can be change to other two factor model such as polynomial equation 
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% and if upgrade the code to three or four variables it will therotical works  
% with the number of variables also changed in corresponding code (simplex) 
% The output should be the max point conditions with value  
% symbol: nexpoigreedy, maxvalue,nexrandom(when max point repeat in the loop) 
% function file used in this function ppmodel.m and reptest.m, 
% objectivefun.m 
  
function 
[nexpoigreedy,maxvalue,nexrandom,objvalue,modelvalue1,modelvalue2]=greedysea
rch(coeff1,coeff2,conditions,designspace) %%% when nexrandom=0, means new 
max point design is availabel, otherwise, random search. the only exception is 
nexrandom=-1, which means, all points are used 
% designspace always use ixj matrix, i=n experiments, j=number of 
% variables, it is not easy for surface plotting, but good for model value 
% calculation and easy for upgrade to higher order 
[a,b]=size(designspace); % a,b get value of i and j 
tempmax=-1; % tempmax used to store template max value produce in the following 
loop. Since the ppmodel range from 0 to 1, so initial =-1. for other models change 
value. 
num=0; % num used to store template max condition index number in the following 
loop. 
for i=1:1:a % this loop used to find the greedy/max point in all designspace 
    modelvalue1(i)=ppmodel(coeff1,designspace(i,:)); % calculate model1 value at 
certain coeff and i row conditions,fab 
    modelvalue2(i)=ppmodel(coeff2,designspace(i,:)); % calculate model2 value at 
certain coeff and i row conditions,tot  
    % ppmodel will be function file contains required model structure, in 
    % ****** this model file need program in ppmodel.m file *********** 
    % this case, precipitation model with five parameters, for other use, 
    % it should be changed, i.e. polynomial equation 
    objvalue(i)=objectivefun(modelvalue1(i),modelvalue2(i),designspace(i,:)); % 
**** objectivefun.m should be programed **** 
    if objvalue(i)>tempmax % max algorithm to compare and store template max 
value and index number 
        tempmax=objvalue(i); 
        num=i; 
    end % after all i=1:1:a loop, tempmax will be the max value in all design space 
and num will be the corresponding condition index 
end % since all model value were calculated, it can be used for further study, i.e. find 
all local and global points as candidate points for design, which requires rigor  
    % changes in simplex algorithm (the basic choice will be the same, but 
    % need consider the code for filter all local points, maybe by second 
    % order differential?) 
% after the max points found out, need check the repeat, whether it is 
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% already in the existing design points contained in conditions 
% conditions had better to be index matrix (ix1), i=n experiments (it is easy to deal 
with, the real conditions can be reversed from designspace) 
% if max point repeat, which happens frequently in the small design space 
% with large loop number, change to random search. if no repeat, output num 
% to nexpoigreedy with maxvalue. 
repn=reptest(conditions,num); % repeat check function, if repeat return 1, if not, 
return 0  % ****** this need program in reptest.m file *********** 
nexrandom=0; % initial value 
if repn==0 
    nexpoigreedy=num; % give index value for conditions 
    maxvalue=tempmax; % give model value for evalutation. i.e. model accuracy, 
error=realvalue-maxvalue 
    nexrandom=0; % 0 means no random search.  
else 
    nexpoigreedy=num; % still give index value for conditions 
    maxvalue=tempmax; % still give model value for evalutation. i.e. model 
accuracy, error=realvalue-maxvalue 
    j=0; % used in following while loop in the case of all points are used. 
    while repn==1 % loop for random search until no repeat point comes out or no 
candidate points (very rare situation), in this case, give nexrandom value -1 
        if j==a   % which means all points used 
           nexrandom=-1;break; % while loop break with three value returned 
        else 
        nexrandom=randi(a,1); % random choose an integer from designspace 
conditions 
        repn=reptest(conditions,uint8(nexrandom)); % chech whether new point is 
also repeated 
        j=j+1; % add one for each loop 
        end 
    end 
end 
end 
 
7. nextsimplex.m 
 
% This code used for simplex algorithm incorporating in the new combining 
% algorithm. Dealing with internal loop and external loop together. The 
% main loop is the same as v2 version 
% input will be changed from v2 to include all the information in the case 
% that in the following code requires full data assess except model 
% structure and coefficients(that is not necessary in simplex). The input 
% will be all existing conditions in index matrix, with all results in 88x2 
% matrix, then can be transformed to simplex using objective surface matrix 
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% 88x1 with no existing conditions at value zero. ctrlnum and spenum were 
% used to control the switch in the loop at different cases. The search 
% design space was also required. extra informatoin including last run of 
% three points simplex and reflection points in the comparsion, these 
% information need updated each run both in internal loop or external 
% loop. the return value will be the index number of next point, when break 
% happen, the index value will be negative for main algorithm to 
% recognize,the last run of three point with reflection 
% index,ctrlnum,spenum (if applicable), 
  
function 
[nextsimpoint,reflection,reflectindex,ctrlnum,spenum,candidatepoints]=nextsimplex(
candidatepoints,conditions,designspace,ctrlnum,spenum,reflection,reflectindex,objva
lue) 
% candidatepoints will be three candidate points for this run simplex in 
% index format, data sorted; conditions will be all existing conditions in index 
format; 
% excondition existing conditions in normalized nx2 matrix; exdata existing 
% results in nx2 matrix corresponding to excondition and conditions; 
% designspace 88x2 matrix in normalized value; ctrlnum control value for 
% loop; spenum special case control number, lastrun will store previous one 
% run simplex three points from candidatepoints, reflection will be store 
% the reflect point when the ctrlnum=1 exists,objvalue will be 88x2 
% matrix contain all existing conditions objective value 
repn=1; % initial value for loop, =0 means loop close and output value or end whole 
simplex search due to e.g. linearity 
repnc=1; % initial value for NW exchange to prevent dead loop, when repnc>7 
break; 
expanobj=0; 
reflectobj=0; % two initial value for the loop following 
for i=1:1:3 
    indexnum=candidatepoints(i); % point index, first always the best point, 2nd 
the next to best, the third worst point 
    candidobj(i)=objvalue(indexnum); % get relevant obj value for later 
comparsion 
    point(i,:)=designspace(indexnum,:); % get real conditions from corresponding 
designspace 
end % after this loop point matrix store real conditions for three candidate points 
while repn==1 % when repn==0, means no repeat or break by following break 
sentence 
% according to ctrlnum do simplex algorithm 
outrange=1; % inital value for outrange loop, =0 means not out range 
     while outrange==1 
           if ctrlnum==1 % which means all points are new and start normal 
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reflective point search 
              temppoi=point(1,:)+point(2,:)-point(3,:); % give tempoi value since 
need check range and steps, after that convert to index and transfer value to 
nextsimpoint 
           elseif ctrlnum==2 % which means expansion step 
              temppoi=(3.*point(1,:)+3.*point(2,:)-4.*point(3,:))./2; 
           elseif ctrlnum==3 % external contraction 
              temppoi=(3.*point(1,:)+3.*point(2,:)-2.*point(3,:))./4; 
           elseif ctrlnum==4 % internal contraction 
              temppoi=(point(1,:)+point(2,:)+2.*point(3,:))./4; 
           elseif ctrlnum==5 % special case for repeat and all 1,2,3,4 fail 
              temppoi=point(1,:)+point(2,:)-point(3,:); % in this case, the 
point(3,:) will be N 
              ctrlnum=1; % use it as new start but with spenum be the mark 
           end % after this if-end, the simplex point for next given, following 
check three things 1. out of range? 2. choose the nearest integer step point. e.g. pH 
4.15 to 4.0 3.check the repeat in conditions 
           % first convert to real pH and salt condition 
           % specifical case pH 4.5-8.0, step 0.5; salt 0-3 step 0.3 
           realx=3*temppoi(1); % x is salt 
           realy=3.5*temppoi(2)+4.5; % y is pH    
        if realx>3|realx<0|realy>8|realy<4.5 
           if ctrlnum==1 
              ctrlnum=3; % change to contraction 
              reflectobj=-1; % when out of range, objective value of reflection 
point will be a very small number 
           elseif ctrlnum==3 
                  ctrlnum=4; % change to internal contraction 
           elseif ctrlnum==2 
                  temppoi=reflection; % reflection will be in 1x2 matrix same as 
one row in designspace 
                  realx=3*temppoi(1); % x is salt 
                  realy=3.5*temppoi(2)+4.5; % y is pH  
                  realconx=round(realx*10)/10; 
                  realcony=round(realy*2)/2; % round to the nearest floating 
number for salt is to 0.1,for pH is to 0.5 
                  num=(realcony-4.5)/0.5*11+(realconx-0)/0.3+1; % floating 
number for chozen point 
                  num=int8(num); % change to integer for matrix index use 
                  expanobj=-1; % give -1 means out of range 
                  ctrlnum=1; % once expansion out of range use R as new 
points 
                  outrange=0; 
           end 
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        else  
           % ****all following for round to the nearest point and convert to 
index**********  
           realconx=round(realx*10)/10; 
           realcony=round(realy*2)/2; % round to the nearest floating number for 
salt is to 0.1,for pH is to 0.5 
           num=(realcony-4.5)/0.5*11+(realconx-0)/0.3+1; % floating number for 
chozen point 
           num=int8(num); % change to integer for matrix index use 
           if ctrlnum==1; 
               reflection=designspace(num,:); % if ctrlnum=2,3,4, reflection and 
reflectindex will be the same as input, while ctrlnum=1,no reflection input, except 
ctrlnu=2 and outrange or special case 
               reflectindex=num; 
           end % store reflection when new reflection given 
           outrange=0; 
           % **** above finish index change 
        end 
     end % above finish outrange loop with a index point in the boundary given 
  % following code for repeat check,first should check whether repeat with 
  % candidatepoints, which means simplex is too small or maybe at the end 
  % of iteration due to gather at one local or global point 
  repn=reptest(candidatepoints,num); % check whether repeat with candidate points 
  if repn==1 % repeat 
      BN=point(1,:)-point(2,:); % vector BN 
      BW=point(1,:)-point(3,:); % vector BW 
      angNBW=acos(dot(BN,BW)/norm(BN)/norm(BW)); % calculate angle  
      area=0.5*sin(angNBW)*norm(BN)*norm(BW); % triangle NBW area 
      if area<0.5/7*0.1 
          nextsimpoint=-1; 
          break; % -1 means too small area, either simplex go to end or need new 
point from outsider 
      else  
           if repnc>7 % in case dead loop repeat the NW exchange 7 times, break 
              nextsimpoint=-1; % same as small area 
              break; 
           else exchangepoint=point(2,:); % exchange the NW 
                point(2,:)=point(3,:); 
                point(3,:)=exchangepoint; 
                ctrlnum=1; % new loop with BWN points 
                repnc=repnc+1; % each time count one more 
           end 
      end 
  else repn=reptest(conditions,num); % chech whether repeat with existing points 
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      if repn==1  
          % divert to five consequence 
          previousdata=objvalue(num); % get the repeat objvalue for comparsion 
          if spenum==1 % spenum=1 means special case 
              ctrlnum=5; % special case, no matter what ctrlnum go to 5 
              spenum=0; % del spenum mark, if no repeat, mark remains to 
output 
          end 
          if ctrlnum==1 % repeat when ctrlnum=1 without special case, but may 
coma from 2 with expanobj=-1 
              if expanobj==-1 % deal with expanobj=-1 case 
                  point(3,:)=point(2,:); 
                  point(2,:)=point(1,:); 
                  point(1,:)=designspace(num,:); 
                  expanobj=0; % reset value once done 
                  ctrlnum=1; % new run with RBN 
              else % real ctrlnum=1 case, four following consequences 
                  if previousdata>candidobj(1) 
                     ctrlnum=2; % into expansion mode,same points, same 
reflectindex 
                  elseif 
previousdata<candidobj(1)&&previousdata>candidobj(2) 
                         point(2,:)=designspace(num,:); 
                         ctrlnum=1; % into new loop with BRN 
                  elseif 
previousdata<candidobj(2)&&previousdata>candidobj(3) 
                         ctrlnum=3; % contraction, same points, same 
reflectindex 
                  else ctrlnum=4; % internal contraction, same points 
                  end 
              end 
          elseif ctrlnum==2 % repeat when ctrlnum=2,outrange problem solved in 
1 special case 
              if previousdata>objvalue(reflectindex) 
                  ctrlnum=1; 
                  point(3,:)=point(2,:); 
                  point(2,:)=point(1,:); 
                  point(1,:)=designspace(num,:); % new loop EBN 
              else ctrlnum=1; 
                  point(3,:)=point(2,:); 
                  point(2,:)=point(1,:); 
                  point(1,:)=designspace(reflectindex,:); % new loop RBN 
              end 
          elseif ctrlnum==3 % repeat when ctrlnum=3,special case when 
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reflectobj=-1, R point out of range 
              if reflectobj==-1 % defined by line 59 
                 reflectobj=0; % reset once done 
                 ctrlnum=1; % new BNCr loop sort by next line 
                 
point=sortpoint(candidatepoints(1),candidatepoints(2),num,objvalue,designspace);  
              else % real ctrlnum=3 case with R in the range 
                  if previousdata>objvalue(reflectindex) 
                     ctrlnum=1; % new loop with BNCr sorted by next line 
                     
point=sortpoint(candidatepoints(1),candidatepoints(2),num,objvalue,designspace); % 
***********code for sort three points 
                  else ctrlnum=5; % entry into special case 
                       point(3,:)=point(2,:); 
                       point(2,:)=designspace(num,:); % kick out W point, N 
become the lowest 
                       spenum=1; % mark 
                  end 
              end 
          elseif ctrlnum==4 % repeat when ctrlnum=4, no special case 
              if previousdata>candidobj(3) 
                  ctrlnum=1; % new loop with BNCw sort by next line 
                  
point=sortpoint(candidatepoints(1),candidatepoints(2),num,objvalue,designspace); 
              else ctrlnum=5; % entry into speical case 
                  point(3,:)=point(2,:); 
                  point(2,:)=designspace(num,:); % kick out W point, N become 
the lowest 
                  spenum=1; % mark 
              end 
          elseif ctrlnum==5 % when mark exists, all 1,2,3,4 become ctrlnum 5, 
with new loop BCr or BCw with N reflective point sorted  
              ctrlnum=1; 
              
point=sortpoint(candidatepoints(1),candidatepoints(2),num,objvalue,designspace); 
          end 
      else repnc=1; % no repeat, repnc get initial value 
           nextsimpoint=num; % when repn=0,num the next simplex point index 
      end 
  end 
end 
% the initial candidatepoints may be change due to existing points, the final step is to 
find the current candidatepoints and output 
for ii=1:1:3 
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    for jj=1:1:88 
      if designspace(jj,1)==point(ii,1)&&designspace(jj,2)==point(ii,2) 
         candidatepoints(ii)=jj; 
      end 
    end 
end 
end 
 
8. validcalculate.m 
 
% this code is used to calculate the derivation between model based value 
% and real value in a 9 DoE validation mode (points fixed as modelling validation 
parts) 
  
function [sfab,stot,sobj]=validcalculate(fab,tot,objvalue) 
% for 8X11 matrix, corresponding position is (1,1) (1,6) (1,11) 
%                                   (4,1) (4,6) (4,11) 
%                                   (7,1) (7,6) (7,11)  
validmatrix=zeros(8,11); 
validmatrix(1,1)=1.021160116; 
validmatrix(1,6)=0.764229739; 
validmatrix(1,11)=1.00447783; 
validmatrix(4,1)=0.640376318; 
validmatrix(4,6)=0.546911361; 
validmatrix(4,11)=0.997322858; 
validmatrix(7,1)=0.942834051; 
validmatrix(7,6)=0.575906734; 
validmatrix(7,11)=1.023508504; 
validfab=zeros(8,11); 
validfab(1,1)=0.107116053; 
validfab(1,6)=0.433502454; 
validfab(1,11)=0; 
validfab(4,1)=0.593506604; 
validfab(4,6)=0.452633809; 
validfab(4,11)=0; 
validfab(7,1)=0.831231493; 
validfab(7,6)=0.485283396; 
validfab(7,11)=0; 
validtot=zeros(8,11); 
validtot(1,1)=0.1931851; 
validtot(1,6)=0.405882959; 
validtot(1,11)=0.148305348; 
validtot(4,1)=0.883690382; 
validtot(4,6)=0.653060399; 
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validtot(4,11)=0.139566425; 
validtot(7,1)=0.817147341; 
validtot(7,6)=0.674327245; 
validtot(7,11)=0.170707744; 
sfab=0; 
stot=0; 
sobj=0; 
for i=1:1:8 
    for j=1:1:11 
        if validmatrix(i,j)==0 
        else sfab=sfab+(validfab(i,j)-fab(i,j))^2; 
             stot=stot+(validtot(i,j)-tot(i,j))^2; 
             sobj=sobj+(validmatrix(i,j)-objvalue(i,j))^2; 
        end 
    end 
end 
sfab=sfab/9; 
stot=stot/9; 
sobj=sobj/9; 
end 
  
9. simpointselect.m 
 
% This code is used to select the next run of candidatepoints for simplex 
 % in the main algorithm.   
  
 function 
[candidatepoints,ctrlnum,spenum,reflection,reflectindex,loopctronum]=simpointsele
ct(candidatepoints,conditions,addpoint,realresults,designspace,ctrlnum,spenum,refle
ction,reflectindex,nextsimpoint,objvalue,loopctronum) 
 ctn=1; % initial value for following loop 
    if nextsimpoint==-1 
        fprintf(‘Simplex loop terminated due to small area, probably objective 
achieved\n’); 
        fprintf(‘Do you want to continue a new run simplex? Y=1,N=0\n’); 
        ctn=input(‘Input Y/N value\n’); 
        if ctn==0 
           loopctronum=0;  
        elseif ctn==1 % start a new set of simplex, in this case use random choose 
from existing points in conditions matrix 
            loopctronum=1; % loop continue 
            [a5,b5]=size(conditions); 
            rechnum=1; % in case random choose all repeat, rechnum=0 means 
successfully choose the new set, so loop stop 
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            while rechnum==1 
            newcandid=randi(b5,9,3); % random choose 9 group of three points 
            
[candidatepoints,rechnum]=randomstart(newcandid,designspace,objvalue,conditions
); % ******the file select three max area points sorted to start new set simplex from 
existing points 
            end 
            ctrlnum=1; 
            reflection=0; 
            reflectindex=[0,0]; 
            spenum=0; % initial value for simplex 
        end 
    else bobj=objvalue(candidatepoints(1)); 
         nobj=objvalue(candidatepoints(2)); 
         wobj=objvalue(candidatepoints(3)); 
         if reflectindex==0 
            reflpoiobj=0; % when reflectindex does not exists, give its objvalue 
zero; 
         else reflpoiobj=objvalue(reflectindex); 
         end % get all the value for the following code 
         % the real objective value at simplex point 
         % first crossover then if no crossover simplex orginal loop 
         simindex=nextsimpoint; 
         
resuvalue=objectivefun(realresults(simindex,1),realresults(simindex,2),designspace(
simindex,:));          
         % get other crossover points with objvalue and index. 
         % a3 is the number of points added, in the case of nextsimpoint 
         % does not equals to -1,theoretically there are always four points, except 
all points run out, in this situation, algorithm will wrong 
         % notice, when repeat, a3 will be less than four but always no 
         % less than one. special case: all four points are the same one 
         % including one given by simplex 
         [a6,b6]=size(addpoint); % get the number of points add 
         for i=1:1:b6 
             addobj(i)=objvalue(addpoint(i)); 
         end 
         cronum=1; % initial value for points crossover, 1 means use old run 
simplex points, 0 means new simplex with extra points introduced by other methods  
         if b6==1 
             cronum=1; 
         elseif b6==2 
             if addobj(1)>nobj 
                 cronum=0; 
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             end 
         elseif b6==3 
             if addobj(1)>nobj|addobj(2)>nobj 
                 cronum=0; 
             end 
         elseif b6==4 
             if addobj(1)>nobj|addobj(2)>nobj|addobj(3)>nobj 
                 cronum=0; 
             end 
         end % total four situations % in this case, once the extra one point 
objvalue is larger than the second simplex point, new simplex loop starts, otherwise, 
continue old simplex loop 
         if cronum==1       
            if spenum==1 
               spenum=0; 
               ctrlnum=1; 
               reflectindex=0; 
               reflection=[0,0]; 
               
newchanmatrix=[candidatepoints(1),objvalue(candidatepoints(1));candidatepoints(2)
,objvalue(candidatepoints(2));simindex,resuvalue]; 
               exchange1=[0,0]; 
               for i=1:1:2 
                   for j=1:1:2 
                      if newchanmatrix(j,2)>newchanmatrix(j+1,2) 
                      else exchange1=newchanmatrix(j+1,:); 
                           newchanmatrix(j+1,:)=newchanmatrix(j,:); 
                           newchanmatrix(j,:)=exchange1; 
                      end 
                   end 
               end % sort by buble algorithem with index also changed 
according to the objvalue 
               
candidatepoints=[newchanmatrix(1,1),newchanmatrix(2,1),newchanmatrix(3,1)]; % 
give new candidatepoints by sort BR’Cr or Cw 
            else 
                if ctrlnum==1 
                   if resuvalue>bobj 
                       ctrlnum=2; 
                   elseif resuvalue<bobj&&resuvalue>nobj 
                       candidatepoints(3)=candidatepoints(2); 
                       candidatepoints(2)=simindex; 
                       ctrlnum=1; 
                   elseif resuvalue<nobj&&resuvalue>wobj 
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                       ctrlnum=3; 
                   elseif resuvalue<wobj 
                       ctrlnum=4; 
                   end 
                elseif ctrlnum==2 
                    if resuvalue>reflpoiobj 
                       candidatepoints(3)=candidatepoints(2); 
                       candidatepoints(2)=candidatepoints(1); 
                       candidatepoints(1)=simindex; 
                       ctrlnum=1; 
                    else candidatepoints(3)=candidatepoints(2); 
                         candidatepoints(2)=candidatepoints(1); 
                         candidatepoints(1)=reflectindex; 
                         ctrlnum=1; 
                    end 
                elseif ctrlnum==3 
                    if resuvalue>reflpoiobj 
                       
candidatepoints=sortpoint2(candidatepoints(1),candidatepoints(2),simindex,objvalue
); %********new function file a little change from sortpoint 
                       ctrlnum=1; 
                    else candidatepoints(3)=candidatepoints(2); 
                         candidatepoints(2)=simindex; 
                         ctrlnum=5; 
                         spenum=1; 
                    end 
                elseif ctrlnum==4 
                    if resuvalue>wobj 
                       
candidatepoints=sortpoint2(candidatepoints(1),candidatepoints(2),simindex,objvalue
); %********new function file a little change from sortpoint 
                       ctrlnum=1; 
                    else candidatepoints(3)=candidatepoints(2); 
                         candidatepoints(2)=simindex; 
                         ctrlnum=5; 
                         spenum=1; 
                    end 
                end % ctrlnum=5, spenum must be 1, so do not need this 
conditions in this if phrase 
            end 
         else % start crossover 
             
newsortmatrix=[candidatepoints(1),objvalue(candidatepoints(1));candidatepoints(2),
objvalue(candidatepoints(2));candidatepoints(3),objvalue(candidatepoints(3))]; % 
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matrix for sorting with first index, second objvalue 
             for i9=1:1:b6 
                 newsortmatrix(3+b6,:)=[addpoint(b6),objvalue(addpoint(b6))]; 
             end % add all points together 
             exchange2=[0,0]; % initial value for sorting 
             for i=1:1:2+b6 
                  for j=1:1:2+b6 
                     if newsortmatrix(j,2)>newsortmatrix(j+1,2) 
                     else exchange2=newsortmatrix(j+1,:); 
                          newsortmatrix(j+1,:)=newsortmatrix(j,:); 
                          newsortmatrix(j,:)=exchange2; 
                     end 
                  end 
             end % with index sorted, largest one in the first row 
             
candidatepoints=[newsortmatrix(1,1),newsortmatrix(2,1),newsortmatrix(3,1)]; % get 
index for the first three largest points 
             reflection=[0,0]; 
             reflectindex=0; 
             spenum=0; 
             ctrlnum=1; % reset to initial parameters for crossover simplex loop 
         end 
    end 
 end 
  
10. dmatrix.m 
 
% This code was used to make dmatrix according to coeff and realcon based 
% on specific model. In this case, the model used is the developed 
% precipitation model with five parameters.  
% Exchangable algorithm due to the model, so this is specific for 
% precipitation model 
  
function dmatx=dmatrix(coeff,realcon) % dvalue is a matrix nx5, n is the same as the 
rows of realcon, and 5 comes from the model paremeters 
x=realcon(:,1); % separate realcon to x matrix, in this case, salt concentration, in 
normalized value 0-1 
y=realcon(:,2); % separate to y matrix, in this case, pH 
[a,b]=size(realcon); % get the size of realcon, a equals to n 
for i=1:1:a 
    
minielement=1./(x(i)+coeff(5)).*exp(coeff(1).*x(i)+coeff(2).*y(i)+coeff(3).*y(i).*y(
i)+coeff(4)); % calculate minielement for dmatrix 
    melement=-1.*((1+minielement).^(-2)).*minielement; % 2nd minielement for 
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dmatrix 
    dmatx(i,1)=melement.*x(i); % column one 
    dmatx(i,2)=melement.*y(i); % column two 
    dmatx(i,3)=melement.*y(i).*y(i); % column three 
    dmatx(i,4)=melement; % column four 
    dmatx(i,5)=melement.*(-1./(coeff(5)+x(i))); % column five 
end 
end 
     
11. reptest.m 
 
% this function used for judge whether the point is repeated or not in the 
% existing conditons, return value 1 means repeat, 0 means no repeat 
  
function repn=reptest(conditions,num) 
% conditions will be ix1 matrix, num will be the index num 
[n,m]=size(conditions); % get i value 
for j=1:1:m 
    if uint8(conditions(j))==uint8(num) 
        repn=1;break; 
    else repn=0; 
    end 
end 
end 
 
12. ppmodel.m 
 
% this is the model file which contains model structure 
% this file is used to calculate model value and also for parameter 
% regression 
  
function modelvalue=ppmodel(coeff,conditions) % five coefficients in coeff, 1x5 
matrix 
x=conditions(:,1); % x is salt concentration in normalized value 
y=conditions(:,2); % y is pH in normalized value 
modelvalue=1./(1+(1./(coeff(5)+x)).*exp(coeff(1).*x+coeff(2).*y+coeff(3).*y.*y+co
eff(4))); 
end 
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Appendix 2. Calibration curves 

 

1. Fab’ HPLC calibration curve 
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2. Bradford calibration curve 
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3. mAb HPLC calibration curve  
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4. Fab’ solution impurity HPLC calibration curve  
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5. mAb solution impurity HPLC calibration curve  
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6. Picogreen DNA calibration curve  
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7. CHO host cell protein calibration curve  
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The CHO HCP Elisa protocol provided by Cygnus Technology recommended the 

calibration curve was regressed by polynomial fitting rather than linear regression. 

 
 
 
 
 
 
 
 
 
 



 277

Appendix 3. Raw data for Fab’ and mAb validation 
 

1. Fab’ validation data 

 
Validation DoE Real value 
Salt (M) pH Fab'  (mg/ml) Impurity  (mg/ml) Objective value 

0 4.5 0.181 1.228 1.021 
1.5 4.5 0.067 0.465 0.764 
3 4.5 0.000 0.272 1.004 
0 6 0.188 1.601 0.640 

1.5 6 0.059 0.658 0.547 
3 6 0.000 0.197 0.997 
0 7.5 0.185 1.307 0.943 

1.5 7.5 0.094 1.193 0.576 
3 7.5 0.000 0.301 1.024 
  1st run 

Salt (M) pH Fab'  (mg/ml) Impurity  (mg/ml) Objective value 
0 4.5 0.224 1.438 1.109 

1.5 4.5 0.000 0.592 1.271 
3 4.5 0.000 0.084 0.931 
0 6 0.224 1.553 1.057 

1.5 6 0.000 0.861 1.566 
3 6 0.000 0.154 0.960 
0 7.5 0.224 1.625 1.028 

1.5 7.5 0.000 1.152 2.211 
3 7.5 0.000 0.288 1.023 
  2nd run 

Salt (M) pH Fab'  (mg/ml) Impurity  (mg/ml) Objective value 
0 4.5 0.217 1.497 1.047 

1.5 4.5 0.097 0.633 0.824 
3 4.5 0.004 0.078 0.909 
0 6 0.214 1.589 0.992 

1.5 6 0.075 0.909 0.460 
3 6 0.003 0.144 0.942 
0 7.5 0.218 1.635 0.994 

1.5 7.5 0.102 1.136 0.540 
3 7.5 0.005 0.237 0.975 
  3rd run 

Salt (M) pH Fab'  (mg/ml) Impurity  (mg/ml) Objective value 
0 4.5 0.211 1.505 1.015 

1.5 4.5 0.097 0.690 0.764 
3 4.5 0.004 0.078 0.910 
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0 6 0.213 1.596 0.988 
1.5 6 0.121 0.928 0.762 
3 6 0.005 0.147 0.935 
0 7.5 0.216 1.641 0.982 

1.5 7.5 0.135 1.165 0.717 
3 7.5 0.006 0.249 0.973 
  4th run 

Salt (M) pH Fab'  (mg/ml) Impurity  (mg/ml) Objective value 
0 4.5 0.024 0.328 1.021 

1.5 4.5 0.097 0.690 0.764 
3 4.5 0.004 0.062 0.905 
0 6 0.030 0.643 1.182 

1.5 6 0.103 1.008 0.600 
3 6 0.005 0.153 0.935 
0 7.5 0.033 0.797 1.307 

1.5 7.5 0.109 1.154 0.573 
3 7.5 0.006 0.214 0.959 
  5th run 

Salt (M) pH Fab'  (mg/ml) Impurity  (mg/ml) Objective value 
0 4.5 0.024 0.328 1.021 

1.5 4.5 0.097 0.690 0.764 
3 4.5 0.001 0.039 0.908 
0 6 0.143 1.194 0.799 

1.5 6 0.114 1.067 0.638 
3 6 0.004 0.151 0.940 
0 7.5 0.186 1.389 0.943 

1.5 7.5 0.129 1.218 0.663 
3 7.5 0.005 0.216 0.963 

 

2. mAb validation data by ammonium sulphate precipitation 

 
Validation DoE Real value 

Salt (M) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0.6 5 0.378 0.943 0.478 
1.4 5 0.358 0.945 0.417 
2.2 5 0.004 0.805 0.627 
0.6 6.5 0.392 0.984 0.490 
1.4 6.5 0.340 0.897 0.402 
2.2 6.5 0.005 0.761 0.620 
0.6 8 0.396 0.997 0.494 
1.4 8 0.203 0.927 0.224 
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2.2 8 0.000 0.807 0.645 
  1st run 

Salt (M) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0.6 5 0.413 1.014 0.511 
1.4 5 0.155 0.919 0.160 
2.2 5 0.000 0.750 0.621 
0.6 6.5 0.426 1.024 0.526 
1.4 6.5 0.202 0.934 0.222 
2.2 6.5 0.000 0.772 0.630 
0.6 8 0.435 1.033 0.535 
1.4 8 0.251 0.948 0.284 
2.2 8 0.000 0.793 0.639 

  2nd run 

Salt (M) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0.6 5 0.427 1.010 0.528 
1.4 5 0.119 0.909 0.585 
2.2 5 0.000 0.746 0.620 
0.6 6.5 0.432 1.021 0.533 
1.4 6.5 0.140 0.928 0.139 
2.2 6.5 0.000 0.772 0.630 
0.6 8 0.436 1.031 0.536 
1.4 8 0.163 0.945 0.169 
2.2 8 0.000 0.797 0.640 

  3rd run 

Salt (M) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0.6 5 0.438 1.010 0.542 
1.4 5 0.202 0.910 0.224 
2.2 5 0.000 0.763 0.627 
0.6 6.5 0.437 1.021 0.538 
1.4 6.5 0.187 0.927 0.202 
2.2 6.5 0.000 0.777 0.632 
0.6 8 0.434 1.030 0.535 
1.4 8 0.172 0.943 0.181 
2.2 8 0.000 0.800 0.642 

 

3. mAb validation data by PEG precipitation 

 
Validation DoE Real value 

PEG (%) pH mAb Impurity (mg/ml) Objective value 
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(mg/ml) 
0 5 0.429 1.038 0.481 

10 5 0.210 0.867 0.217 
20 5 0.000 0.550 0.569 
0 6.5 0.426 1.017 0.481 

10 6.5 0.350 1.055 0.349 
20 6.5 0.003 0.445 0.545 
0 8 0.435 1.094 0.481 

10 8 0.295 1.060 0.291 
20 8 0.000 0.638 0.589 

  1st run 

PEG (%) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0 5 0.463 1.071 0.512 
10 5 0.279 0.875 0.295 
20 5 0.005 0.482 0.550 
0 6.5 0.467 1.090 0.513 

10 6.5 0.286 0.911 0.297 
20 6.5 0.005 0.524 0.558 
0 8 0.470 1.108 0.514 

10 8 0.292 0.944 0.300 
20 8 0.006 0.567 0.567 

  2nd run 

PEG (%) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0 5 0.463 1.106 0.507 
10 5 0.279 0.869 0.295 
20 5 0.000 0.466 0.552 
0 6.5 0.467 1.118 0.510 

10 6.5 0.286 0.895 0.299 
20 6.5 0.000 0.496 0.557 
0 8 0.470 1.129 0.512 

10 8 0.295 1.060 0.291 
20 8 0.000 0.527 0.564 

  3rd run 

PEG (%) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0 5 0.451 1.103 0.496 
10 5 0.277 0.894 0.290 
20 5 0.000 0.464 0.551 
0 6.5 0.461 1.115 0.504 

10 6.5 0.293 0.919 0.304 
20 6.5 0.000 0.495 0.557 
0 8 0.470 1.127 0.512 
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10 8 0.295 1.060 0.291 
20 8 0.000 0.526 0.563 

  4th run 

PEG (%) pH 
mAb 

(mg/ml) 
Impurity (mg/ml) Objective value 

0 5 0.430 1.100 0.476 
10 5 0.210 0.867 0.217 
20 5 0.000 0.550 0.569 
0 6.5 0.454 1.112 0.497 

10 6.5 0.298 0.927 0.309 
20 6.5 0.001 0.516 0.560 
0 8 0.474 1.123 0.516 

10 8 0.295 1.060 0.291 
20 8 0.001 0.546 0.566 

 


