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Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be
at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than
of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of
life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or
sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food,
and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor
in the reduction of mortality rate by DR in this species.
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Introduction

Dietary restriction (DR), the extension of life span by
reduction of nutrient intake without malnutrition, is often
used as a benchmark comparison for interventions that
extend life span [1–3]. Since McCay’s pioneering experiments
in rats 70 years ago [4], some form of food restriction has
been shown to increase life span in commonly used model
organisms such as yeast [5,6], nematodes [7], fruit flies [8,9],
and mice [10], along with many species less often used for
laboratory research such as water fleas, spiders, fish (see [3]
for review), and dogs [11]. Preliminary data also suggest that
DR may extend life span in nonhuman primates [12,13] and
potentially give health benefits in humans [14]. Despite the
finding that restricting diet increases longevity in such a
diversity of species, the mechanisms responsible remain to be
fully elucidated in any of them. It is therefore as yet unclear
whether these mechanisms are evolutionarily conserved
across taxa or if instead life extension during DR is an
example of convergent evolution.

DR is often termed ‘calorie restriction’ because, in rodents,
daily calorie intake per se has been implicated as the key
determinant of life span, with the source of these calories (i.e.,
carbohydrate, protein, or fat) being considered irrelevant [1].
Evidence for this point of view came from two types of
experiment on rats: (1) restriction of calorie intake without
reduction of protein intake resulted in life-span extension
[15]; (2) no life-span extension was seen in rats fed isocaloric
diets in which either the fat or mineral components had been
reduced [16]. However, in other experiments, rats fed
isocaloric diets with altered nutritional composition [17,18]
or reduced protein [19] showed life-span extension. Further-
more, reducing just one amino acid (methionine) increases
life span in both mice (R. Miller, personal communication)
and rats [20]. Hence, it seems that reducing the level of
ingested calories may not always be critical for life-span
extension by DR in rodents. Here we address this issue in the
fruit fly Drosophila melanogaster.

Results

DR can be applied in Drosophila by the simultaneous
dilution of the nutrients in a standard sugar yeast (SY) food

medium [9] in which the yeast is the only source of protein
and lipid. As food concentration declines from maximum, life
span first increases in response to DR, becoming greatest at
an intermediate food concentration, before declining due to
starvation at lower concentrations [9,21]. We tested the
separate effects of sugar and yeast on life span at the
concentrations that maximise life span (DR) and under full
feeding (control).

Feeding Rates of Flies on Different Food Types
Because flies may respond to changes in dietary composi-

tion by altering their feeding behaviour, thereby potentially
compensating, we determined the effect of food composition
on the amount of time that the flies spent feeding on
different diets. Varying the proportions of sugar or dead
yeast fed to adult Drosophila females did not have a significant
effect on feeding behaviours (Figure 1; p . 0.01 in all cases,
chi-squared test, Bonferroni adjustment for multiple com-
parisons). A significant difference was seen on day 17 (chi-
squared, p= 0.0068) with flies on DR yeast/control sugar food
eating less. However, this difference was in the opposite
direction to that expected if flies on low-nutrient diets
compensated by increasing feeding rates. Hence, the flies did
not compensate for decreased nutrient content of the food
medium by increasing the time that they spent feeding.

Caloric Content of Dead Yeast/Sucrose
Values for yeast biomass components were taken from

Lange and Heijnen [22] and estimations of the caloric content
of protein, carbohydrate and lipid from Southgate and
Durnin [23]. This allowed estimation of the caloric content
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per gram of sucrose and autolysed yeast powder, the only
sources of nutrients in the Drosophila food medium. These
values were 4 kcal/g sucrose and 4.02 kcal/g autolysed yeast
powder. Since these values are virtually identical, changing
either the sugar or yeast content of the foods between the DR
and control concentrations generated food types with similar
caloric values but with different nutritional compositions (see
Table 1).

Life Span of Female Drosophila Given Foods of Different

Caloric Value
Life span of female Drosophila was extended much more by

reduction of yeast from control to DR concentration than by
the equivalent reduction in sugar (Figure 2; Table 2), and
median life span therefore did not correlate with caloric
content of the food medium to which the flies were exposed

(Figure 3). In two independent experiments, reducing yeast
concentration from control to DR levels whilst keeping sugar
levels constant significantly increased life span (p , 0.0001 in
both cases, log-rank test). Lowering caloric content to the
same extent by reducing sugar from control to DR levels
increased life span at DR yeast levels in both experiments (p
, 0.0001 in both cases, log-rank test), but the effect on
median life span was much less than that of changing yeast
levels (Figure 3; Table 2). Reducing sugar from control to DR
concentrations whilst keeping yeast at control levels signifi-

Figure 1. Feeding Rates of Female Drosophila on Food Media with

Different Nutrient Concentrations

Feeding rates were recorded by direct observation as the proportion of
time flies spent on the surface of the media with their proboscis
extended and touching the food (y-axis). Replicate measurements of the
proportion of females feeding versus those not feeding were recorded
during a 2-h period on the days shown. No significant different was seen
between flies fed different diets on days 3, 7, 11, and 24 as assessed by
chi-squared tests (p . 0.01, Bonferroni correction for multiple
comparisons). There was a significant difference in feeding rates on
day 17 (p = 0.0068) with flies on the DR yeast/control sugar media eating
less. These data show that Drosophila does not exhibit compensatory
feeding behaviour for the DR regime imposed.
DOI: 10.1371/journal.pbio.0030223.g001

Table 1. Nutritional Composition and Caloric Content of Experimental Food Types

Food Type Nutritional

Content

(Grams of

Components per

Litre Water)

Estimated

Protein

(g/l)

Estimated

Carbohydrate

(g/l)

Estimated

Lipid (g/l)

Estimated

Caloric

Content

(kcal/l)

DR SY 65 g Y, 65 g S 27.755 89.96 5.59 521.17

DR yeast/control Sugar 65 g Y, 150 g S 27.755 174.96 5.59 861.17

Control yeast/DR Sugar 150 g Y, 65 g S 64.05 122.6 12.9 862.7

Control SY 150 g Y, 150 g S 64.05 207.6 12.9 1202.7

Food media were based on standard sucrose/yeast (SY) media as described in [9]. Y, autolysed yeast powder; S, sucrose. Estimations of yeast biomass components are taken from [22] and estimations of the calorific content of protein,

carbohydrate, and lipids are taken from [23]. This gives values of 4 kcal/g sucrose and 4.02 kcal/g yeast.

DOI: 10.1371/journal.pbio.0030223.t001

Figure 2. Survivorship (lx) Analysis of Life Span of Female Drosophila on

Different Food Regimes

Colour/Symbol of the curves shows yeast level while the line type
represents sugar levels in the respective foods. (A) and (B) are
independent repeats. In both cases, changing caloric content of the
food by altering yeast levels had a much greater effect on life span than
that seen when the same change in caloric content was brought about
by manipulating sugar levels.
DOI: 10.1371/journal.pbio.0030223.g002
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cantly increased life span in experiment 1 (p , 0.0001, log-
rank test), but again the effect on median life span was much
less than that of changing yeast levels (Figure 3; Table 2).
Reducing sugar from control to DR concentrations whilst

maintaining yeast at control levels increased median life span
in experiment 2 (Figure 3), but the effect on life span was not
significant (p . 0.05, log-rank test).

Effect of Bacteria on Response of Life Span to Diet
To test if different levels of bacteria in the food medium

could account for effects of nutrient composition on life
span, we tested the effect of an antibiotic. The addition of the
antibiotic tetracycline to the food media did not have a
significant effect on life span on either control or DR food
medium (Figure 4, p . 0.05; log-rank test in each case), and
the life-span extension seen when sugar and yeast levels were
reduced from control to DR concentrations was therefore not
blocked or modified by the addition of antibiotic to the food
medium.

Effects on Mortality of Switching Yeast and Sugar
The effect of DR on mortality in Drosophila is acute; within

48 h flies switched between DR and control diets adopt the
mortality rates characteristic of flies chronically exposed to
the nutritional regime that the switched flies have joined [24].
We therefore measured the acute effects on mortality of
switching the yeast and sugar components of the diet
separately. When yeast was switched, mortality rates re-
sponded similarly to the responses to switches between
control and DR SY food medium. Forty-eight hours after
being switched from control SY medium to DR yeast/control
sugar medium at day 25, flies were no more likely to die than
those maintained on DR yeast/control sugar medium
throughout adulthood (Cox regression; p = 0.22; n DR
yeast/control sugar chronic group = 626; n switch group =
475; risk ratio = 0.96 [95% confidence interval fCIg: 0.91,
1.02]) (Figure 5A). In the reciprocal switch, flies moved from
DR SY medium to control yeast/DR sugar medium showed a
rapid increase in mortality rate, although this did not quite
reach the level seen in flies that had been on control yeast/DR
sugar medium throughout adult life (Cox regression; p , 0.05;
n control yeast/DR sugar chronic group = 480; n switch group
= 668; risk ratio = 0.88 [95% CI: 0.83, 0.93]) (Figure 5A).
In contrast, switching of sugar had no significant effect on

mortality. From 48 h after being switched from control SY
medium to control yeast/DR sugar at day 25, no significant

Figure 3. Plot of Median Life Span of Female Drosophila against the

Estimated Caloric Content of the Food Medium

(A) and (B) represent independent repeats. Red arrows link pairs of food
types where differences in caloric content are due to different yeast
concentrations. Blue arrows link pairs of food types where differences in
caloric content are due to different sugar concentrations. Green arrow
links food types where differences in caloric content are due to both
different sugar and yeast concentrations. Life span is extended to a
greater extent per calorie by reducing yeast concentration from control
to DR levels than by reducing sugar. This is in contrast to what would be
predicted if calorie intake were the key mediator of life-span extension
by DR in fruit flies.
DOI: 10.1371/journal.pbio.0030223.g003

Figure 4. Effect of Tetracycline on Life Span of Female D. melanogaster.

The addition of the antibiotic tetracycline to the food media did not have
a significant effect on life span at either control or DR concentration food
media.
DOI: 10.1371/journal.pbio.0030223.g004

Table 2. Median and Maximum Life Span of Flies Fed Different
Food Media as Adults

Food Type Median

Life Span

(Days)

Maximum

Life Spana

(Days)

Median

Life-Span

Extension

Relative to

Control SY

DR SY 42, 48 54, 58 82.6%, 60.0%

DR Y, control S 38, 43 52, 56 65.2%, 43.3%

Control Y, DR S 25, 35 38, 48 8.7%, 16.7

Control SY 23, 30 37, 48 —

Y, autolysed yeast powder; S, sucrose. aMaximum life span is the median life span of the longest lived 10% of

individuals. In each case, the pairs of values represent results of two independent repeats (experiments 1 and 2,

respectively).

DOI: 10.1371/journal.pbio.0030223.t002
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difference was seen between the mortality of switched flies
and the unswitched group maintained on control SY medium
(Cox regression; p = 0.34; n control SY = 427; n switch group
= 440; risk ratio = 0.97 [95% CI: 0.91, 1.04]) (Figure 5B).
Similarly, flies switched to DR yeast/control sugar from DR SY
medium at day 25 did not show increased mortality in
comparison to unswitched controls (Cox regression; p = 0.41;
n DR group = 615; n switch group = 676; risk ratio = 0.98
[95% CI: 0.93, 1.03]) (Figure 5B). A second experiment that
was terminated 4 d after the switch in diet gave the same
result (see Figure S1). These data show that the rapid switch in
mortality rates upon changes between DR and control food
medium are overwhelmingly attributable to the yeast rather
than to the sugar component of the diet.

Discussion

Life Span Is Not Related to Calorie Intake
Flies fed food media with very similar caloric content

showed marked differences in their life spans (see Figure 3).
This finding is in direct contrast to what would be predicted
if ingested calories were the key mediator of life span in D.
melanogaster and demonstrates that the nutritional composi-
tion of the diet affects life-span extension by DR in this
species. Reduction in the concentration of either sugar or
yeast levels increased life span (see Figures 2 and 3). However,
the magnitude of the effects on life span when the caloric
content of the food was changed via altering yeast concen-
tration far exceeded that seen when calories were changed to
the same extent via manipulation of sugar levels, suggesting
that protein/lipid levels have a greater effect on Drosophila
survival than does carbohydrate. The differing effect of sugar
and yeast on mortality in Drosophila could occur if different
pathways sense nutrients during DR, possibly with different
outputs affecting life span. Sir2 [25,26], Rpd3 [27], the insulin/
IGF-like signalling [28], and target of rapamycin pathways [29]
have all been implicated in mediating the response of life
span to DR in Drosophila, with the latter two suggested to
interact in the fly to control growth in response to nutrient
levels [30]. The role of these and other candidate pathways in
mediating the response of life span to specific nutrients
should be investigated further. Sugar and yeast could affect
mortality rates differently if they differentially modulate
metabolic or other processes that increase risk of death.
Experimentally increased reproduction has been shown to

decrease life span in a variety of species [31–35] and the level
of dietary yeast and egg production are positively correlated
in Drosophila [8,9]. Therefore an obvious hypothesis as to why
there is a greater response of life span in Drosophila to changes
in yeast than in sugar is that the increased mortality on
control yeast levels represents the cost of reproduction,
which correlates with yeast intake and not with sugar.
However, since life-span extension via DR in Drosophila
occurs normally when egg production or vitellogenesis are
blocked either by X-irradiation or genetically [36], the greater
response of life span to changes in yeast is not directly
attributable to the reduction of reproductive output.
Furthermore, although the magnitude of the response to
DR in male Drosophila is less than that of females [21], males
do live longer if nutrient levels are reduced, and they show
the same rapid changes in mortality as females when dietary
regime is changed [24], yet they do not suffer the high costs of
producing eggs on high yeast.

Rapid Changes in Mortality in Response to DR Are
Attributable Solely to Yeast Content
DR acts acutely to extend life span in Drosophila; it does not

slow the accumulation of irreversible damage with age [24].
Flies subjected to DR for the first time in midlife rapidly
become no more likely to die than those that have been under
DR throughout adulthood [24]. We investigated the roles of
the sugar and yeast components of the diet in producing this
rapid change in mortality rate in flies switched between DR
and control conditions. When flies previously subjected to
control SY food were switched to DR yeast levels, there was a
rapid (within 48 h) drop in mortality rates to those seen in the
flies chronically exposed to DR yeast/control sugar food (see

Figure 5. The Acute Effects on Age-Specific Mortality in Drosophila of

Changes in Nutritional Content of the Food Midway through Life

Vertical line represents switch day. Mortality trajectories were truncated
when n , 40.
(A) Switching between control and DR yeast (Y) diets midway though life
results in rapid changes in age-specific mortality rates within 48 h similar
to those seen previously for whole food dilutions [24]. Control yeast
intake caused no irreversible damage since flies switched from control
yeast to DR yeast at day 25 rapidly became no more likely to die than
those flies given DR yeast levels throughout adulthood. Flies with a
history of DR yeast levels showed rapid increases in mortality rate when
moved to control yeast levels at day 25, but mortality rates did not
become as high as those of flies that had been maintained on control
yeast levels permanently.
(B) Changing caloric intake to the same extent via changes to sugar (S)
levels rather than yeast did not cause rapid changes in mortality rate.
Despite flies chronically fed control sugar and DR yeast having increased
mortality rate compared to the DR control, switching from DR to control
sugar late in life did not increase mortality rate.
DOI: 10.1371/journal.pbio.0030223.g005
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Figure 5A). A similar rapid increase in mortality rates was
seen when flies exposed to DR food were switched to control
yeast levels (Figure 5A), although, as seen previously using
whole food dilutions [24], a history of low yeast gave slight
protection to female Drosophila moved to control yeast late in
life.

However, when caloric content of the food given to flies
was changed to the same extent midway though life by
changing sugar rather than yeast levels, no change in
mortality rate was seen (Figure 5B). Therefore the acute
mortality ‘switch’ phenotype in response to dietary restric-
tion is attributable to changes in the level of the dietary yeast
alone. That chronically reducing sugar intake of flies can
extend life span, yet reducing sugar intake late in life does not
cause rapid changes to mortality rates, suggests the delete-
rious effects of sugar may occur mainly early in adult life. The
mortality trajectories in Figure 5 support this conclusion, by
showing that the lowering of mortality rate in response to
sugar is most obvious early in the trajectory, when mortality
rates in all groups of flies are low. More work is needed using
accurately defined media to investigate this effect. Rapid
reductions in mortality rate have been seen previously in
Drosophila by altering the intake of yeast only [37]. However,
the results of the previous study differ from those here in that
reduced mortality was achieved by increasing the nutrient
intake of flies that had previously been deprived of yeast,
rather than by reducing the nutrient intake of control-fed
flies.

Feeding Rates of Flies on Different Food Types
Unlike in rodents, where DR can be achieved by directly

reducing the quantity of food eaten in comparison to animals
given ad libitum access [1], DR is achieved in Drosophila by
reducing the quality (nutrient concentration) of the food
given to the flies [9] with the quantity maintained in excess of
that which they can consume. Despite the fact that fecundity
correlates with food medium concentration [9], it has been
suggested that flies may be able to compensate when faced
with reduced nutrients by increasing feeding rates, and
therefore they may not be dietarily restricted [38]. However,
our results suggest that flies on low-quality media do not
compensate by eating more, as measured by time spent on the
food with the proboscis extended. It is possible Drosophila can
alter the rate of food uptake per unit time that the proboscis
is extended, in which case our indirect measurements would
not detect these changes. More direct approaches to quantify
feeding rates require radio-labelling the food [39] or the
addition of coloured food dye [40], with uptake rates assessed
upon short-term exposure to labelled food. However, our
own unpublished observations show that flies moved to fresh
food medium display elevated feeding behaviour that is
unrepresentative of the steady-state situation and that leads
to a highly nonlinear relationship between time and uptake
of the food label. We hence used the behavioural measure
described here, which better represents the normal feeding of
the flies. Our feeding assay results, in combination with the
reduced fecundity seen as food nutrient concentration is
reduced, suggest that diluting the food medium results in a
co-ordinate reduction in the intake of nutrients in Drosophila
and therefore is a robust protocol for DR in this species.

Effect of Tetracycline on Life Span
It has been suggested that higher nutrient concentrations

in fly food may lead to higher proliferation rates of bacteria
on the media, which in turn could increase mortality of D.
melanogaster in a mechanism that is unrelated to ingestion of
different amounts of nutrients [38]. If this were the case then
we would expect that (1) flies fed antibiotics would live
longer, and (2) the life-span extension seen when nutrient
concentration is reduced would be blocked when antibiotics
are present. Tetracycline did not extend the life span of flies
in our experiments, nor did it block the DR response,
meaning either that reduced bacterial challenge is not the
mechanism by which diluting food media extends life span in
Drosophila, or that the relevant microorganisms are tetracy-
cline resistant.

Conclusions
The response of Drosophila life span to nutrition is not

governed by calories, but rather by specific nutritional
components of the food. This finding represents a departure
from the generally accepted model in rodents, where it has
been suggested that the level of calorie intake per se, not the
source of calories, is critical for life-span extension [1]. The
apparent disparity between the factors in the diet that affect
life span in fruit flies and rodents leads to two possible
conclusions. First, the mechanisms by which these organisms
respond to food shortage could be different. Second, the
long-held view that calorie intake is the critical variable in the
response of mammalian life span to DR may require further
evaluation.
Despite some reports in the literature that DR did not

extend life span [38,41,42], the overwhelming majority of data
support the idea that DR in some form extends life span
across diverse taxa. However, it is still unknown if life-span
extension under DR is achieved through common mecha-
nisms in different species. A case for conservation of the
mechanisms by which DR extends life span can be made from
evolutionary considerations. It has been suggested that,
during times of famine, diversion of resources away from
reproduction towards somatic maintenance will increase the
chances of an organism surviving to more plentiful times and
thus increase long-term reproductive success [43–46]. The
selective advantage of shifting resources from reproduction
to maintenance when food is restricted could be the ‘‘public’’
factor shared between diverse organisms. However, the
mechanisms by which extension of life span is achieved could
be an example of convergent evolution, producing the same
plasticity of life span in response to food shortage through
mechanisms at least to some extent specific to different
organisms, dependent upon their diet, experience of food
shortages, and life history. More work is needed to elucidate
the precise relationship between the composition of the diet
and life span in different organisms, including mammals. Our
results suggest that it may be possible to obtain the full
extension of life span by DR by reducing critical nutrients in
the food without any reduction in overall calorie intake.

Materials and Methods

Fly stocks and husbandry. The wild-type stock used in all
experiments was collected in Dahomey (now Benin) in 1970 and has
since been maintained in large population cages with overlapping
generations on a 12:12-h light:dark cycle at 25 8C. This culturing
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method has been shown to maintain life span and fecundity at levels
similar to those in freshly collected flies [47].

Feeding rates of flies on different food types. To measure feeding
rates in Drosophila we observed behaviour of age-matched, once-
mated Dahomey females on each of the four food types. This
approach was adopted in preference to direct quantification of
ingested food [40] because DR flies transiently elevate their feeding
rate following transfer onto new food (unpublished observations). In
the present assay, 30 female flies were individually allocated to a vial
containing either control SY, control Y/DR S, DR Y/control S, or DR
SY and placed at 25 8C overnight to adopt their undisturbed pattern
of feeding. The following day, 1 h after lights on, observations were
taken for a 2-h period, and flies were scored as eating if they were on
the food with their proboscis extended and touching the food
surface. During this time, 360 observations of flies in each treatment
were made (12 observations of 30 flies) except on day 24 when 18
observations were made of each treatment set. The final data are the
proportion of flies feeding out of the feeding opportunities given
(total observations). Differences between treatments at a given time
point were assessed using the chi-squared test.

Effect of tetracycline on life span. Tetracycline is a general
antibiotic that inhibits ribosomal translocation and acts on both
Gram-positive and negative bacteria [48]. A tetracycline solution was
made up in 70% ethanol and added to the food media after it had
been boiled and cooled to 60 8C. The final concentration of
tetracycline in the media was 0.025% weight/volume [49], five times
more than that used when tetracycline resistance is utilised as a
selectable marker for bacterial transformation [50]. The wild-type
stock Dahomey is infected by the cytoplasmic bacteria Wolbachia
(unpublished). A 0.025% tetracycline solution is sufficient to remove
bacteria such as Wolbachia from Drosophila stocks if fed to larvae [49]
and can suppress Wolbachia in other insects when fed to adults only
[51]. Therefore flies fed tetracycline media as adults may not only
have reduced exposure to external microorganisms on the food
surface compared to controls, but may also have reduced Wolbachia
infection. Seven millilitres of food was poured into 30-ml glass vials
and the life span of flies measured with 92–101 flies per treatment
and 10 flies per vial. Fresh food was prepared once a week and flies
moved onto new media three times per week.

Life span experiments. Experimental flies were raised at a standard
density of 400–450 eggs per 200-ml bottle [52] on standard SY
medium (1,000 ml distilled water, 100 g autolysed yeast powder, 100 g
sucrose, 20 g agar, 30 ml Nipagin (100 gl–1), 3 ml propionic acid).
Adults were collected over a 24-h period and transferred without
anaesthesia to fresh SY food for 48 h and allowed to mate. Females
were then collected using light CO2 anaesthesia and assigned
randomly to the food regimes (Table S1). All experiments were done
with mated females. Flies were kept on 35 ml of food at an initial
density of 100 individuals per 200-ml bottle and transferred without
anaesthesia to fresh food every 2–3 d. Deaths were scored 5–6 d a
week and initial sample sizes (n0) were calculated as the summed

death and censor observations over all ages. To minimise any density
effects on mortality, two bottles within cohorts were merged when
the density of flies reached 50 6 10. To standardise the effects of
parental age on offspring fitness [53], parents of experimental flies
were of the same age and reared at a constant density.

Statistical analysis. Age-specific mortality (lx) was estimated as lx
=�ln(px), where px is the probability of an individual alive at age x�1
surviving to age x [54]. log-rank tests [55] were used for survivorship
analysis. All statistical analysis was performed using JMP. 5.0
statistical software (SAS Institute Inc., Cary, North Carolina, United
States).

Supporting Information

Figure S1. The Acute Effects on Age-Specific Mortality in Drosophila
of Changes in Nutritional Content of the Food Midway through Life

Vertical line represents switch day. Experiment was terminated 4 d
after the switch.
(A) Similar to the experiment shown in Figure 5, switching between
control and DR yeast (Y) diets midway though life results in rapid
changes in age-specific mortality rates within 48 h similar to those
seen previously for whole food dilutions [24].
(B) Changing caloric intake to the same extent via changes to sugar (S)
levels rather than yeast did not cause rapid changes in mortality rate.

Found at DOI: 10.1371/journal.pbio.0030223.sg001 (839 KB TIF).

Table S1. Sample Sizes and Treatments

These represent the number of flies switched between treatments (i.e.,
n25) and were sampled from the original chronic controls (control SY
or DR SY) and censored from the life-span data of these treatments at
day 25.
Found at DOI: 10.1371/journal.pbio.0030223.st001 (27 KB DOC).
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