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Abstract: Duchenne muscular dystrophy (DMD) is the most common childhood neuromuscular

disorder. It is caused by mutations in the DMD gene that disrupt the open reading frame (ORF)

preventing the production of functional dystrophin protein. The loss of dystrophin ultimately leads

to the degeneration of muscle fibres, progressive weakness and premature death. Antisense

oligonucleotides (AOs) targeted to splicing elements within DMD pre-mRNA can induce the skipping

of targeted exons, restoring the ORF and the consequent production of a shorter but functional

dystrophin protein. This approach may lead to an effective disease modifying treatment for DMD

and progress towards clinical application has been rapid. Less than a decade has passed between the

first studies published in 1998 describing the use of AOs to modify the DMD gene in mice and the

results of the first intramuscular proof of concept clinical trials. Whilst phase II and III trials are now

underway, the heterogeneity of DMD mutations, efficient systemic delivery and targeting of AOs to

cardiac muscle remain significant challenges. Here we review the current status of AO-mediated

therapy for DMD, discussing the pre-clinical, clinical and regulatory hurdles and their possible

solutions to expedite the translation of AO-mediated exon skipping therapy to clinic.
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Introduction

Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) is a

fatal, X-linked, neuromuscular disorder

that affects 1 in 3,500 newborn boys.

Patients are typically diagnosed as

toddlers; they develop progressive muscle

weakness and cardiomyopathy and lose

the ability to walk by their early teens.

Unless appropriate standards of care

(including non-invasive ventilation,

glucocorticoid and cardio-protective

treatment) are implemented, premature

death by cardiac or respiratory failure

occurs in the second decade of life (1-3).

DMD is caused by mutations in the DMD

gene that disrupt the open reading frame

(ORF) thus aborting the full translation of

its protein product, dystrophin (4, 5). The

DMD gene comprises 79 exons and the

majority (~65%) of mutations responsible

for DMD are out-of-frame deletions,
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although duplications (~10%), small

mutations including non-sense and splice

site changes (~22%) and deep intronic

mutations (~3%) are also documented (6,

7). Some DMD deletions are more

frequent than others and the gene has

two deletion hotspots (6): the most

commonly mutated region is exons 45–55

followed by exons 2–19.

Dystrophin is located underneath the

sarcolemma and connects the sub-

sarcolemmal cytoskeleton to the

extracellular matrix by binding N-

terminally to cytoskeletal F-actin and to

β–dystroglycan via a cysteine rich domain 

near the C-terminus (8) (Top panel, Figure

1). It contains four main functional units:

an N-terminus, a central rod domain, a

cysteine rich domain and a C-terminal

domain. The central rod domain consists

of 24 spectrin-like repeats and four hinge

domains (9). Dystrophin interacts with

actin at both its N-terminus and via

spectrin-like repeats 11-17; the C-

terminus has also recently been shown to

allosterically affect actin binding (10). The

cysteine rich domain binds to β-

dystroglycan (BDG) (11-15) and the C-

terminal domain is required for binding to

syntrophin (16) and dystrobrevin (17).

These and other sarcolemmal proteins

such as the sarcoglycans are components

of the dystrophin associated glycoprotein

complex (DGC). Dystrophin and the DGC

play an important role in stabilising the

muscle fibre against the mechanical forces

of muscle contraction by providing a

shock-absorbing connection between the

cytoskeleton and the extracellular matrix.

Loss of dystrophin leads to disruption of

the complex, which results in

inflammation, increased intracellular

calcium influx, muscle degeneration and

replacement of muscle with adipo-fibrous

tissue (4). In addition, dystrophin plays a

role in signalling and is associated with

members of the stretch-activated calcium

channels; their mislocalisation and

dysfunction in dystrophic muscle

contributes to disease progression (18).

Spectrin repeats 16 and 17 within the

central rod domain, encoded by exons 42–

45, are also required for binding to

neuronal nitric oxide synthase (nNOS) (11,

12, 19). nNOS regulates the blood flow in

skeletal muscle (20); disruption of this

pathway may contribute to DMD

pathogenesis by inducing paradoxical

vasoconstriction during exercise (21).

Naturally-occurring dystrophin positive

“revertant fibres” (isolated or less

commonly small clusters of fibres strongly

positive for dystrophin) and “traces”

(fibres expressing very low levels of

dystrophin at the sarcolemma) occur in

more than 50% of the muscle biopsies of

DMD patients (22). Revertant fibres

represent a very small percentage of the

total fibres, in which somatic mutations or

stochastic alternative splicing events of

the dystrophin pre-mRNA lead to exon

skipping, the restoration of the ORF and

consequent expression of dystrophin (23,

24). Revertant dystrophins are correctly

localised to the sarcolemma and associate

with other DGC proteins, suggesting a

retained function (25, 26). Revertant

fibres have been well characterised in the
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mouse model of DMD, the mdx mouse

(24, 27, 28). Whilst traces have not been

described in the mdx mouse, they are

present in approximately a third of DMD

patients (22) and may represent up to

25% of the total muscle fibres (29). The

molecular mechanism of trace dystrophin

expression remains to be elucidated, but

it is thought to be at least in part different

from that of revertant fibres. For example,

traces can express different dystrophin

epitopes than the surrounding revertant

fibres (22).

Becker muscular dystrophy

Mutations in the DMD gene are also

responsible for a milder disorder, Becker

muscular dystrophy (BMD), a disease with

an extremely variable spectrum of

severity ranging from patients with

walking difficulties in their late teens or

early twenties, to the majority of

individuals in whom ambulation is

preserved into late adulthood and who

have an essentially normal lifespan (30).

DMD and BMD mutations differentially

affect the DMD gene: in DMD the

mutations disrupt the reading frame,

while mutations that cause BMD maintain

the ORF (31, 32) leading to the production

of an internally deleted dystrophin

protein. The size of the deletion does not

correlate with the severity of the disease,

as long as the reading frame rule is

maintained (33-40), and provided crucial

domains of dystrophin such as the β-

dystroglycan binding site are not removed

by the deletion. While the central and

distal rod domain is less vital for function

(35), (some patients missing these

domains only have very mild disease

manifestations such as myalgia and

muscle cramps, and mild weakness), in

frame deletions that affect the binding of

dystrophin to other proteins such as

cytoskeletal actin or β-dystroglycan result 

in a severe phenotype (41, 42).

The existence of revertant fibres in DMD

and the occurrence of mildly affected

BMD individuals with in-frame deletions

suggest that it is feasible to modify

splicing by exon skipping (Figure 1) and

induce the production of functional

dystrophin in DMD patients, as long as

crucial domains of dystrophin are not

disrupted. Artificially restoring the ORF in

this way is thus an attractive therapeutic

strategy for DMD, as approximately 70%

of DMD patients have mutations

amenable to exon skipping (43).
Figure1 Exon skipping principle. (Next page) Upper panel:

Schematic representation of dystrophin mRNA (in-frame exons

are represented as square boxes, out-of-frame exons round or

arrow boxes). Normal splicing of these exons produces

dystrophin protein (pictured immediately below) retaining

functional protein-binding domains and correctly localised to

the sarcolemma (see section of control muscle stained with

anti-dystrophin antibody Dys2). Lower panel: representation of

dystrophin pre-mRNA highlighting the differences in splicing

between a Del48-50 DMD patient (left) and a Del48-51BMD

patient (right). The DMD deletion disrupts the open reading

frame (ORFs) which results in unstable mRNA and the absence

of functional dystrophin protein in muscle sections. In the BMD

patient the deletion maintains the ORF and generates the

production of an internally deleted dystrophin isoform that

retains the critical amino and carboxyl terminals and Cysteine -

rich domains. The ORF can be corrected by forced skipping of

exon 51 by directing antisense oligonucleotides to sequences

within exon 51 or to neighbouring intronic regions. Exon 51

skipping restores the ORF, generating a dystrophin equivalent

to that of the BMD patient. Insert table: Theoretical

applicability of single exon skipping in a series of DMD

deletions.
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Table 1 Comparison between the two leading candidates for exon 51 skipping.SC = subcutaneous; IV = intravenous; IM =

intramuscular

PRO051/GSK2402968 AVI-4658/ETEPLIRSEN

Company Prosensa/GlaxoSmithKline AVI-BioPharma

Type
2’O-methyl phosphorothioate

(2'OMe)
Phosphorodiamidate

morpholino oligomer (PMO)

Backbone structure

Size and sequence
20 mer

(TCAAGGAAGATGGCATTTCT)

30 mer
(CTCCAACATCAAGGAAGATG

GCATTTCTAG)

Delivery
SC IV

Plasma protein binding
Backbone binds to serum

proteins
No

Serum half life
<4 h to 28 days (44, 45) 1.62 to 3.60 hours (46)

Max non-toxic dose in patients:
Proteinuria seen in all patients

at 6mg/kg (44)
Not reached (46)

Max tested non-toxic dose in
mice:

?
960mg/kg (47)

Max tested non-toxic dose in
primates:

?
320mg/kg (47)

Orphan drug
Yes Yes

SYSTEMIC TRIAL REPORTED RESULTS*

Total number of patients 12 (44) 19 (46)
Pre-

treatment
Post-

treatment
Pre-

treatment
Post-treatment

Maximum reported
dystrophin-positive fibres Not done 100% 5% 55%

Maximum dystrophin signal
intensity to control muscles by

immunofluorescence
Not done 15.6% 11% 27%

Maximum dystrophin protein
level to control muscles by

western blotting
Not done Not done 5% 18%
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Antisense oligonucleotide-mediated exon

skipping

Antisense oligonucleotides (AOs) targeted

to splicing elements represent the most

clinically advanced therapeutic tools

developed to induce dystrophin exon

skipping (48, 49). AOs are typically 20–30

nucleotides in length, and complementary

in sequence to regions of the pre-mRNA

transcript (50). While several AO

chemistries exist, the two AOs in clinical

development for DMD are 2’O-methyl

phoshophorothioate oligoribonucleotide

(2’OMe) and phosphorodiamidate

morpholino oligomers (PMO), (Table 1)

and (51, 52) for a detailed review. 2’OMe

AOs bind to albumin, showing high plasma

concentrations and long half-lives (45);

this might be an advantage as PK studies

indicate a longer persistence in blood

compared to PMO (up to 28 days as

opposed to less than 4 hours); however

binding to protein has been shown to

trigger activation of the immune system,

anaphylaxis, hypotension, or

antiarrhythmic effects in preclinical and

clinical studies (53). PMOs are not

metabolised and are resistant to

endonucleases (54); they are rapidly

eliminated from the bloodstream as they

are uncharged and do not bind serum

proteins, which is likely why they have not

been associated with the side effects

mentioned for the 2OMe clinical studies.

Both AOs have proven successful in pre-

clinical mouse models (55-58) and as far

as the PMO is concerned, also the more

severe dog model (59), in which systemic

delivery has resulted in dystrophin protein

production (60, 61) and physiological

improvement (58) of skeletal muscle.

Clinical progress

Both PMO (AVI-4658/eteplirsen) and

2’OMe (GSK-2402968) AOs targeting exon

51 (which will restore the ORF in the

largest group of DMD patients (13%))

have proven successful at inducing local

dystrophin expression in pivotal proof-of-

concept intramuscular clinical trials (62,

63). Recently, systemic studies using the

two different AO chemistries have been

completed (Table 2) (44, 46),

demonstrating that AO therapy for DMD is

indeed safe and well tolerated with no

significant drug-related adverse events.

Both studies reported significant

dystrophin restoration in a dose-

dependent manner as determined by

western blotting and

immunohistochemistry, with levels of

dystrophin approaching 20% of normal

levels in the PMO study.

The outcome of randomised placebo-

controlled studies of both eteplirsen and

GSK-2402968 is expected in 2012 and

further studies are planned. Table 2

summarises the design of both completed

and ongoing ClinicalTrials.gov registered

studies correct at the time of publication.

In addition, AOs for exons 45, 52, 53 and

55 are undergoing pre-clinical

development by GSK whilst AVI

BioPharma is developing PMOs targeting

exons 45, 50 and 53. Plans to extend trials

of systemically-delivered AOs to non-

ambulant boys are also underway for

exon 51 skippable patients (both with

eteplirsen and GSK2402968).
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Completed Ongoing

Intra-muscular Systemic Systemic

Study drug AVI-4658
(Eteplirsen)

PRO051 (GSK-
2402968)

AVI-4658
(Eteplirsen)

PRO051 (GSK-
2402968)

AVI-4658
(Eteplirsen)

PRO051 (GSK-
2402968)

PRO051 (GSK-
2402968)

PRO051 (GSK-
2402968)

PRO051 (GSK-
2402968)

PRO051 (GSK-
2402968)

PRO044

ClinicalTrials.gov
identifier

NCT00159250 Netherlands
trial register:
NTR712

NCT00844597 EudraCT
number: 2007-
004819-54

NCT01396239 NCT01153932 NCT01462292 NCT01254019 NCT01128855 NCT01451281
(parent study:
NCT01462292)

NCT01037309

Phase I/II I/II I/II I/II II II II III I n/a I/II

Study design Single-blind,
placebo-
controlled, dose-
escalation

Single dose open-label,
dose-escalation

open-label,
dose-escalation

Randomised,
double-blind,
placebo-
controlled,
multiple Dose

Randomised,
double blind,
placebo
controlled

Randomised,
double blind

Randomised,
double blind

Double-blind,
escalating dose,
randomized,
placebo-controlled

n/a Non-randomised,
open label

Chemistry PMO 2’OMe PMO 2’OMe PMO 2’OMe 2’OMe 2’OMe 2’OMe 2’OMe 2’OMe

Number of patients 7 4 19 12 12 54 54 180 32 85 18

Target exon 51 51 51 51 51 51 51 51 51 51 44

Ambulant/Non
Ambulant

Ambulant Ambulant Ambulant Ambulant Ambulant Ambulant Ambulant Ambulant Non-ambulant Ambulant Ambulant

Delivery IM (EDB) IM (TA) IV Subcutaneous IV Sub-cutaneous Sub-cutaneous Sub-cutaneous Subcutaneous Sub-cutaneous Subcutaneous &
I.V (1.5, 5mg/kg)

Dose 0.09 and 0.9 mg 0.8 mg 0.5, 1, 2, 4, 10,
and 20 mg/kg
body weight

0.5, 2, 4 and 6
mg/kg body
weight

30, 50 mg/kg
body weight

6 mg/kg body
weight

3, 6 mg/kg body
weight

6 mg/kg body
weight

3, 6, 9 & 12 mg/kg
body weight

3, 6 mg/kg body
weight

0.5, 1.5, 5, 8, 10,
12 mg/kg body
weight

Frequency of
administration

Single Single Weekly Weekly Weekly Weekly & twice
weekly

Weekly Weekly Single Weekly Weekly

Duration 3-4 weeks 4 weeks 12 weeks 12 weeks 24 weeks 24-48 weeks 24 weeks 1 year 5 weeks 24 weeks 5 weeks

Primary outcome
measure

Safety Adverse events Safety Safety Dystrophin
positive fibers

Efficacy 6 minute walk
distance test

Efficacy Pharmacokinetics MRI changes in
skeletal muscle

Safety,
tolerability,
pharmacokinetics
& dystrophin
expression

Start Date October 2007 2006 January 2009 2008 July 2011 September
2010

October 2011 December 2010 July 2010 September
2011

December 2009

Completion date March 2009 2007 December 2010 2011 June 2012
(estimated)

September
2012
(estimated)

April 2013
(estimated)

December 2012
(estimated)

November 2011 2012
(estimated)

December 2012
(estimated)
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(Previous page) Table 2 Summary of completed

and on-going exon skipping clinical trials for DMD

IV = intravenous; IM = intramuscular

Current challenges

In-vitro optimisation of novel AOs

Systematic screening for AO targets has

already identified targets for most of the

79 dystrophin exons (64-66), but there is

variability in the processes used to design

and evaluate target AOs. For example,

variations in the cell type for in vitro

studies, transfection reagents, time of

evaluation and quantification of skipped

product (64, 67-69) make inter-study

comparisons difficult. Despite the fact

that bioinformatic tools (70-73) can

provide optimal target areas for AO

binding, and help rank AO sequences

according to their predicted bioactivity

(43, 65), empirical analysis in-vitro is

always necessary to confirm the suitability

of the sequence (69). Importantly,

restoration of dystrophin expression can

only be shown in differentiated myotubes

derived from patients’ cells as dystrophin

is only expressed in myotubes and not in

myoblasts. Ideally, cells from several

patients holding different amenable

deletions should be used to test the

efficacy of an AO, as the intronic

breakpoints differ between patients and

might affect splicing efficiency (74).

Primary myoblasts derived from DMD

muscle biopsies can be difficult to expand

in culture (75, 76) and the extent of

myogenic differentiation of DMD

myoblasts is often low (77, 78). Similar

levels of differentiation would be required

for quantitative comparison of the

efficacy of the same AO on cells from

patients with different mutations. In

order to improve the proliferative capacity

of human myoblasts so that large

numbers of cells are available for replicate

experiments, techniques to immortalise

human myoblasts have been developed

(79).

A less invasive alternative to the use of

muscle biopsies to prepare satellite cell-

derived myoblasts, are fibroblasts

prepared from a skin biopsy. Fibroblasts

can be induced to differentiate into

myotubes by forced expression of the

myogenic regulatory factor MyoD (80).

However, the levels of DMD transcripts in

myotubes derived from fibroblasts can be

low and the variable extent of myogenic

differentiation should be controlled for in

comparative experiments.Transgenic

mice, harboring the entire human DMD

locus, may be used to test antisense

oligonucleotides (64, 67, 81-83).

However, these mice also carry the mouse

dystrophin gene and have no skeletal

muscle pathology.

Outcome measures

A validated set of clinical outcome

measures for ambulant DMD patients is in

use in the ongoing phase II and III clinical

trials. Future trials on non-ambulant

patients pose a further challenge where

robust measurements of upper limb

strength and function in late disease stage

are required. While clinical outcome

measures are needed to demonstrate
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functional improvement, biochemical

outcome measures (BOMs) are required

to monitor AO efficacy. However, critical

differences in the methodology used

between the different research centres

are of concern. Standardised BOMs are

essential in order to reliably compare the

efficacy of the different chemistries and

dosing regimens. Specifically, the most

reliable methods for quantification of

both exon skipping and dystrophin

restoration must now be established

through initiatives such as the TREAT-

NMD registry of outcome measures for

neuromuscular disorders

(www.researchrom.com/) and from on-

going international collaborative studies

aiming to cross-validate standard

operating procedures. The outcomes of

these should be the standardisation of

methodology across centres that could be

presented to regulatory authorities as the

preferred BOMs in future clinical trials.

The efficacy of exon skipping is measured

at both the RNA and protein level. Nested

RT-PCR is traditionally used to assess and

quantify (semi-quantitatively) AO efficacy

at the RNA level (84, 85). To detect

transcripts using this method, it is

necessary to use up to 70 PCR cycles after

which linearity is lost and it is therefore

not possible to accurately quantify the

percentage of exon skipping. Thus several

quantitative methods are currently in

development such as qRT-PCR using highly

specific TaqMan assays for skipped and

total dystrophin targets. The advent of

digital PCR and micro fluidic technology

enables the high throughput analysis of

patient RNA. For example, exon skipping

could be assessed by measuring changes

in mRNA decay pre and post treatment

using TaqMan assays that cover all 79

dystrophin exons. Such a platform, the

FluiDMD, has recently been described

which simultaneously analyses 85 TaqMan

assays recognising 76 out of 78 DMD exon

junctions (86).

As the aim of AO-mediated exon skipping

is to restore dystrophin production,

reliable methods to quantify dystrophin

expression are vital. The presence of

dystrophin traces and revertant fibres in

DMD muscles (22) makes it essential to

compare treated muscles with a pre-

treatment biopsy of the same patient, in

order to accurately distinguish and

quantify AO-mediated dystrophin protein

production (87). The two most commonly

used methods are western blotting and

immunostaining (46, 87, 88).

Consideration should be given to the

antibodies to be used, which must be

sensitive, specific and have an epitope

appropriate for the dystrophin exons

retained following exon skipping.

As muscle biopsies are invasive and

sample a single muscle, there are

limitations in their use to monitor

response to therapy and efforts are being

made to identify non-invasive biomarkers

to monitor DMD disease progression.

Studies aimed at validating the role of

magnetic resonance imaging (89) and

spectroscopy as well as serum or urine

biomarkers such as small non coding RNAs

(such as miRNA) are currently underway

both in animal models and in clinical
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studies; it is hoped that these will reduce

the need for muscle biopsies (90).

Functionality of the de novo dystrophin

protein

Whilst the primary outcome measure of

the completed systemic trials was clinical

safety, the GSK-2402968 study also

reported a modest improvement in the 6-

minute walk test which is encouraging

(44). From a biochemical perspective, data

from both the intramuscular and systemic

eteplirsen trials further indicate that the

internally deleted dystrophins generated

by exon skipping in different patients are

indeed functional, as they led to the

restoration of proteins of the DGC (46,

91). Additional evidence of functional

improvement is provided by a reduction in

cytotoxic T cells within treated muscle

biopsies (46); this is promising considering

that the pre-symptomatic induction of

inflammatory cascades and the invasion of

muscle by immune cells is one of the

earliest pathways induced in dystrophin

deficient muscle and is thought contribute

to DMD pathology (92, 93). However, the

possibility of an immunological reaction

both against revertant and novel

dystrophin epitopes remains a possibility

(94) and presents a new issue to address

in future clinical trials that will require the

assessment of any pre-existing

immunological response to dystrophin

epitopes in patients prior to their

inclusion in a clinical trial, as well as any

post-treatment response to the newly-

generated dystrophin protein (94).

Some mild or asymptomatic BMD patients

naturally express the dystrophin proteins

that we aim to produce by exon skipping

(32). A recent study correlated dystrophin

and dystrophin-associated protein

expression with disease severity in a

cohort of BMD patients (26). The amount

of dystrophin, nNOS and BDG correlated

to clinical severity and BMD patients with

deletions equivalent to those created by

exon 51 skipping have higher dystrophin

levels than either those with large multi-

exon deletions, or those harbouring exon

53 skippable deletions (26). These findings

demonstrate the therapeutic potential of

the protein that will be generated by exon

51 skipping trials whilst the functionality

of other dystrophins, especially those with

larger internal deletions, is less clear (43,

95-97).

Variability of response

The completed AO-mediated exon

skipping clinical trials have revealed a high

degree of variability in patient response,

even between patients harbouring the

same deletions (46). These findings

suggest that the variability is unlikely to

be due to inter-patient differences in

stability of the resultant protein,

immunological response, or the

pharmacodynamics of the PMO (46).

However, it has been suggested (46) that

differences in the genetic background,

such as intronic deletion breakpoints,

differences in the efficiencies of mRNA

splicing, or differences in the vascular

access of the AO to individual muscles

may contribute to the variable response.
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An important future goal must be to

understand the mechanisms behind this

variability and why some patients respond

better to treatment than others.

Interestingly studies in the mdx mouse

with both PMO and 2’OMe and in the

GRMD dog using PMO have identified

similar variability in response, even in the

same animal, when different muscles

were studied (61, 98-100). This- indirectly-

points towards stochastic events involved

in delivering the AO to skeletal muscle

rather than a genetic difference, although

more studies are needed to elucidate the

mechanism responsible for the observed

variability and whether this variability may

be reduced after long-term treatment as

indicated by studies on the mdx mouse

(98).

Next generation AOs

Although extremely high-doses of PMO

without modification can induce

dystrophin rescue in mdx cardiac muscle

(101), unmodified AOs are largely

unsuccessful at inducing exon skipping in

the heart and they do not cross the blood

brain barrier (56, 58). This is important

given that cardiac complications are

observed in up to 90% of DMD patients

(102) and that 1/3 of DMD patients suffer

cognitive impairment related to the

deficiency of dystrophin in the brain (103,

104). One approach to improve AO

targeting to cardiac muscle is the direct

conjugation of cell penetrating peptides to

AOs which improves AO delivery to

skeletal (105-112) and cardiac mdx mouse

muscles (111, 113-115); however the

toxicology of these conjugates has yet to

be ascertained. The fact that the

dystrophin protein is thought to have a

long half-life should increase the

possibility of achieving and maintaining

therapeutically-relevant dystrophin

protein levels with weekly or longer

dosing intervals

Regulatory hurdles

The regulatory process for developing AOs

to skip other dystrophin exons is at

present cumbersome as each new AO is

considered a novel drug and requires the

full battery of genotoxicity, rodent and

non-human primate acute and chronic

toxicity studies (reviewed in (116)). This

stringent assessment of safety is of

paramount importance, considering that

there has been little experience in dosing

individuals with AOs at high doses and for

durations exceeding 1 year (and

theoretically for a lifelong therapy).

Nevertheless, the current studies have not

reported severe drug related adverse

events; in addition most of the toxicity

related to AOs derives not from the

individual sequences but from the chronic

chemical load which is therefore largely

backbone but not sequence specific. It is

hoped that the positive clinical experience

gained from the exon 51 skipping studies

and hopefully also from other exons will

allow us to gather additional information

so that in the future these compounds

could obtain class approval and follow a

more informed and streamlined

regulatory process.
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Conclusions

Preclinical and clinical studies using two

different chemistries have demonstrated

the potential of antisense oligonucleotide-

mediated DMD exon skipping to modify

the progression of DMD. If progress in

this field continues at the pace of the last

decade, treatment for common DMD

mutations may soon be feasible. If no

sequence-specific toxic effect is found,

treatment of rare mutations could follow

as regulatory hurdles are overcome.

Furthermore this approach could treat

nonsense mutations or other frame-

shifting mutations located in in-frame

exons that could be removed by skipping

a single exon. The clinical development of

next generation AOs that effectively

target cardiac as well as skeletal muscle

will provide a significant quality of life

improvement for patients.
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