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Abstract

Malware programs (e.g., viruses, worms, Trojans, etc.) are a worldwide epidemic.

Studies and statistics show that the impact of malware is getting worse. Malware

detectors are the primary tools in the defence against malware. Most commer-

cial anti-malware scanners maintain a database of malware patterns and heuristic

signatures for detecting malicious programs within a computer system. Malware

writers use semantic-preserving code transformation (obfuscation) techniques to

produce new stealth variants of their malware programs. Malware variants are

hard to detect with today’s detection technologies as these tools rely mostly on

syntactic properties and ignore the semantics of malicious executable programs.

A robust malware detection technique is required to handle this emerging security

threat.

In this thesis, we propose a new methodology that overcomes the drawback of ex-

isting malware detection methods by analysing the semantics of known malicious

code. The methodology consists of three major analysis techniques: the develop-

ment of a semantic signature, slicing analysis and test data generation analysis.

The core element in this approach is to specify an approximation for malware

code semantics and to produce signatures for identifying, possibly obfuscated but

semantically equivalent, variants of a sample of malware. A semantic signature

consists of a program test input and semantic traces of a known malware code.

The key challenge in developing our semantics-based approach to malware variant

detection is to achieve a balance between improving the detection rate (i.e. match-

ing semantic traces) and performance, with or without the effects of obfuscation

on malware variants. We develop slicing analysis to improve the construction of

semantic signatures. We back our trace-slicing method with a theoretical result

that shows the notion of correctness of the slicer. A proof-of-concept implemen-

tation of our malware detector demonstrates that the semantics-based analysis

approach could improve current detection tools and make the task more difficult

for malware authors. Another important part of this thesis is exploring program

semantics for the selection of a suitable part of the semantic signature, for which

we provide two new theoretical results. In particular, this dissertation includes a

test data generation method that works for binary executables and the notion of

correctness of the method.
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Chapter 1

Introduction

1.1 Motivation

Nowadays a large number of personal computers, which are used by businesses,

government agencies and individuals, are connected to the Internet. Most of these

personal computers run commercial operating systems, such as Microsoft Win-

dows and Mac OS, and free operating systems, such as Linux; studies have shown

that these systems are an attractive target for computer hackers and criminals

who develop malware [Sym03]. Malware is a generic term that describes all types

of malicious executable programs (e.g. viruses, spyware, Trojans and worms).

Malicious software poses a serious threat to the integrity and security of personal

data and computer systems. Unfortunately, malware has turned into a profitable

business for malware authors and their customers. Malware authors often sell ma-

licious software toolkits to their inexperienced customers, who can quickly create

new customised malicious code variants. For instance, in 2009, nearly 90,000 ma-

licious files were identified to be unique variants of malicious files produced by the

Zeus family toolkit [Sym10]. These tens of thousands of new malicious variants

are then used to launch attacks, where each variant may only be targeted at a

single machine. Thus, the problem of the wide spread of malicious software is

likely to continue to grow in the future, as malware writers use new techniques to

create more variants of their malicious software.

Many organisations around the globe suffer significant financial losses due to the

rise in malware distribution and the weakness of security tools in place. A new

study of 45 business corporations revealed that the cost of coping with malware

15
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attacks ranges from $1 million to $52 million per year per company [Pan10]. Ac-

cording to Sophos [Sop11], the “Stuxnet” worm, which targeted Iran’s sensitive

nuclear program computers, was one of the most advanced pieces of malware code.

Before it performed its malicious functionality, Stuxnet was able to copy its own

code into the machine’s system and to hide itself from Anti-virus (AV) scanners

by making code alterations. Variants of the Stuxnet malware could be a possible

threat to other nations’ infrastructure, as stated by the Congressional Research

Service (CRS) [KRT10]:

“A successful broad-based attack on the US, using new variants of

the Stuxnet weapon, could do enough widespread damage to critical

infrastructure.”

Malware detectors use a combination of anti-malware techniques, such as virus sig-

nature scanners and heuristic methods, to defend against malicious software. Most

current commercial AV tools rely on a database of syntactical patterns or regular

expressions that characterise known malware variants. Anti-virus companies very

often update their databases whenever an unknown malware variant is encountered

in the wild. From 2006 to 2009, the number of signatures created for new malware

variants doubled every year [Sym10]. This figure is consistent with the overall ob-

servation that new malware variants are created using techniques that change the

appearance but preserve the underlying functionality or behaviour of each mal-

ware variant. Recent studies conducted by AV companies [Pan10], demonstrate

that current commercial AV products using traditional approaches such as pattern

or heuristic-based detection are no longer effective in defending against malware

threats. Thus, extracting and using semantic features that are preserved across

variants of malware is the key to a robust malware detector.

In the next section (Section 1.2), we present the research problem we attempt to

tackle in this thesis and discuss the research challenges we face. In Section 1.3,

we present the proposed solution for the research challenges. In Section 1.4, we

present our contributions. In Section 1.5, we discuss the scope and limitations of

our solution. In Section 1.6, we outline the structure of this thesis.
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1.2 Problem Definition and Challenges

Recent AV security reports [Sym10, Sop10, Sop11] show that malware continues to

grow and replicate at alarming rates. AV lab experiments [Pan10] demonstrate the

weakness of commercial anti-malware software in detecting new variants of known

malware programs. Existing countermeasures that use pattern signatures, be-

havioural heuristics or the reputation approach, analyse known malware instances

and extract properties such as syntactical and usage patterns. The extracted prop-

erties are used as signatures for detection. For instance, Norton examines captured

malware variants and includes byte sequences of malicious instructions in its huge

database of malicious programs [Nac10]. Each signature represents the variant

code of a single malware class. Thus, most new variants with a different appear-

ance (fingerprint) are undetected by current detection tools until new signatures

are developed for them.

Malware writers improve their tactics in circumventing commercial security prod-

ucts with advanced variants of malicious programs. In the last few years, it is

evident that after a new malware family is created and distributed for infection,

many different variants of the same family are generated by applying syntactic code

transformations such as packing and obfuscation techniques. Program transforma-

tion involves transforming program statements or instructions into semantically

equivalent code with different syntax [Mor01, Nac97, SF01]. Therefore, malware

writers with the aid of code transformation techniques are able to produce sev-

eral new instances of malicious software, which are undetectable by most current

detection methods. Therefore, major improvements in current malware detec-

tion techniques are required to tackle new transformed variants of malware. One

new tactic to improve malware detection is to capture a semantic property of the

malware and to detect different malware variants using that property.

In this thesis, we attempt to develop a new method to automatically detect (possi-

bly) obfuscated variants of a malware using properties of code semantics as signa-

tures from the known malware sample. The advantage of using a semantics-based

detection approach is that semantic signatures are more generic and, thus, a sin-

gle signature can be used to detect multiple variants, manually or automatically

produced from the same malware program.

To tackle the detection of malware variants using a semantics-based approach, we

face the following challenges:
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• The first fundamental challenge is that the correct selection of a semantic

signature for describing the behaviour of a malicious program has a great

impact on the strength and efficiency of a semantics-based malware detec-

tor. Current techniques for malware signature generation extract syntac-

tical patterns from the malware code as features to look for in suspicious

files. Anti-malware detectors that incorporate these techniques have a fast

detection phase but they suffer from high numbers of false positives – iden-

tifying benign programs as malicious – and as new malware variants alter

their syntax these detectors are prone to higher false negative rates.

• The second challenge is the construction of a semantics-based detector that

is resilient to code obfuscation. Because most new variants are created using

various common code obfuscating techniques, a detector must be robust

in dealing with a possibly obfuscated malware variant. Dealing with code

obfuscations, by using de-obfuscation methods for handling different effects

of obfuscations on code variants, may lower the performance of a detector

and strengthen malware writers’ evasion techniques. A more generic method

is required in which a detector focuses on the core semantics of a malicious

program that are not associated with obfuscation effects.

• The third fundamental challenge is the automation and the effectiveness of

a semantics-based detector. A detector that relies on semantic signatures of

code as its main form of detection of unknown instances of a malware class,

has to be automatic and fast in creating semantic signatures and in identi-

fying and classifying unknown variants of the malicious code with minimal

false alarms (i.e., false positive and false negative rates).

1.3 Proposed Solution

In an attempt to deal with the above mentioned research challenges for developing

a semantics-based approach, our solution tackles each challenge and takes the

following form.

• Challenge 1: In an attempt to address the first challenge, we select a seman-

tic signature of a known malware program that doesn’t depend on irrelevant

details in the program syntax (which may be introduced by code obfuscat-

ing transformations). A semantic signature of a malware class must contain
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the necessary semantic features that allow a detector to identify and clas-

sify syntactically transformed variants of the malware. That is, a semantic

signature has to describe unique semantic characteristics that exist across

variants of a malware class. In Chapter 5 we propose a novel type of mal-

ware semantic signature, which is created based on the information of the

code evaluation. A semantic signature of a malware program represents the

approximate behaviour of the malware, which may be similar across seman-

tically equivalent variants of the same malware. Moreover, we introduce test

data generation for malware executables as a technique to identify the ap-

proximate behaviour from a known malware sample and to extract semantic

signatures. Our technique works for executables and it explores the con-

trol flow graph of a program to identify a set of test inputs that guarantees

to traverse a particular set of program execution paths, called feasible pro-

gram paths. The test inputs can then be used to improve the construction

of semantic signatures. Our conjecture is that no matter how new variants

of a malware program alter their code, as long as they behave in a similar

way, their semantic signatures do not change. Chapter 6 presents the tech-

nique and the developed algorithms backed by the correctness proof of the

technique.

• Challenge 2: Our idea is for a semantics-based detector that can use the

existing semantic signatures of known malware samples to perform its anal-

ysis of a suspicious executable program regardless of whether the program

is obfuscated or not. To this end, we extract a test input for a known ma-

licious code using a random test input generator, which may describe the

malicious functionality of the code. Then, during the detection phase, the

semantics-based detector simulates the execution of the candidate malware

variant, using a random test input from the semantic signature, to capture

the semantic details, i.e. trace semantics, and determine whether the seman-

tic details of the code contain a known semantic signature. This approach

is generic in the sense that it can handle any variant of a known malware

program as long as it preserves the code semantics. Chapter 5 presents our

semantic simulator for evaluating code variants using the semantic signature

of known malware. Using experimental results, the chapter further illus-

trates that our approach is resilient to a common set of malware obfuscating

transformations.
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• Challenge 3: In an attempt to tackle the challenge of the automation and the

effectiveness of a malware detector, we introduce a method that may improve

both the generation of semantic signatures and the detection of new malicious

code variants in the presence of code obfuscations. In Chapter 4 we introduce

trace slicing as an automated method for extracting fine-grained sub-traces

(semantic characteristics) from the simulation traces of malware code as part

of the signature. Chapter 4 also presents a trace-slicing algorithm and its

correctness proof. This step may produce smaller traces, closer to traces of

the original (or unobfuscated) malware, improving both the speed and rate

of the detection phase as the experimental results of Chapter 5 demonstrate.

Moreover, to have a practical detector, we implement the detection phase as a

separate step from the signature generation phase, which deals with malware

variant candidates and implements a mapping algorithm. Chapter 5 presents

our method of matching semantic signatures. The chapter further presents a

proof-of-concept prototype system for the semantics-based approach backed

by results that highlight its performance and detection rates.

By tackling the three challenges for semantics-based malware detection, this dis-

sertation takes an important step in developing a robust and effective approach

for malware variant detection.

1.4 Contributions

We introduce methods to improve the automatic detection and analysis of mali-

cious program variants via the semantic analysis of code. Towards this goal, we

make the following contributions in this dissertation:

1. Specification of a semantic signature for malware. We define an ab-

stract machine language and its syntax as a target language for malware

code. We present a definition of trace semantics for malware programs

(Chapter 4). This specification allows the construction of semantic signa-

tures and the automatic detection of malware variants (Chapter 5).

2. Trace-slicing algorithm. We describe and prove an algorithm for comput-

ing correct sub-traces from an executable program trace (Chapter 4). Trace
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slices may improve the construction of semantic signatures of a malware vari-

ant by handling a class of malware code obfuscating transformations. We

set up an implementation to show its practical use as a trace slicer for Intel

x86 binaries. Then we incorporate an implementation of the algorithm into

our semantics-based detector prototype (Chapter 5).

3. Semantics-based malware variant detection algorithm. We present

a general architecture for detecting variants of a known malware sample

(Chapter 5). It consists of a static analyser, trace slicer and a semantic

trace-matching algorithm. The static analyser, called Semantic Simulator,

is developed to construct semantic signatures for known malware and to

capture semantic traces for candidate malware variants. The matching al-

gorithm compares semantic signatures to detect subsequent malware vari-

ants. An experimental evaluation of the prototype on a collection of mal-

ware samples (in the presence of obfuscated code) shows the effectiveness of

our approach in detecting variants of a malware sample. The experimental

results confirm that automatically generated semantic signatures using the

trace-slicing method may enhance the performance of the detection phase in

terms of speed and accuracy. Also, the results highlight the capabilities of

our detector as a classification tool for malware samples.

4. Test data generation method. We present a general testing method for

extracting a set of test inputs in executable programs (Chapter 6). An al-

gorithm, developed for an abstract machine language code, approximates a

program by identifying a set of feasible program paths with program inputs

that can be used to generate semantic signatures for program variant detec-

tion. A correctness proof is presented for the algorithm, which guarantees

that a given feasible program path is traversed via the computed program

test input.

1.5 Scope and Limitations

Since malware attacks are targeted at many different types of computer systems,

a single panacea that can handle all malware threats in every environment may

be impossible. We develop an approach, presented in this dissertation, under the

following limitations:
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• New malware variants on personal computers. Our approach for de-

tecting malware programs cannot be the solution to the malware detection

problem, as this problem is undecidable and malware writers increasingly

armour their new malware generations with stronger evasion techniques.

However, our approach focuses on handling the problem of detecting new,

zero-day variants of already analysed malware programs. Also, this research

aims to develop a detection system that examines suspicious files on one

important environment, a personal (local) computer.

• Dynamic code generation techniques. Our approach cannot handle

malicious programs that incorporate dynamic code generation techniques.

If a malicious binary, for example, contains encrypted commands within its

data segment or commands received at runtime via network communication

with the malware master (e.g. a command-and-control server), our tool

would fail to capture its semantics and, hence, would be unable to identify

correctly its semantic signature.

• Current static analysis tools. Our approach operates under the assump-

tion that most malicious executables can be handled by off-the-shelf static

tools (e.g. packers and disassemblers) to unpack and disassemble the code

and extract an approximate control flow graph. The robustness and effi-

ciency of our approach directly depends on the static analysis techniques

that are integrated into it [MKK07b]. In other words, our semantics-based

technique to extract and detect malware signatures is as effective as the

static analysis methods it is developed upon.

1.6 Thesis Overview and Structure

The core idea of the proposed method of malware variant detection is that the

semantic signature reflects the unique characteristic of a known malware. A se-

mantic signature is a pair consisting of a program input and a set of semantic

traces. A semantic trace represents a sequence of execution contexts (i.e. register

and memory states). The program input of a known malware can be used to simu-

late the execution of a program and to generate a simulation trace. The approach

attempts to identify malware variants by reasoning about their behaviour during

the simulation rather than how the syntactic structure of the code is represented.



Chapter 1. Introduction 23

We implemented a semantics-based detector exploiting the semantic signature to

justify this idea. The goal of the detector is to see if the set of semantic traces

in the malware signature is contained within the generated semantic traces of the

program under test. The first phase of the detector produces a random input

and generates a simulation trace for a known malware. With respect to different

program registers and memory locations that have been defined in the trace, a

set of backward slices of the trace is produced at the end of the trace. As code

obfuscation may introduce some irrelevant operations before the malware performs

its intended operations, all the registers and memory locations that are defined in

the trace are selected as the slicing criteria at the end of trace. Two abstraction

steps are implemented on the trace to produce a set of semantic traces. The

first abstraction removes states that contain duplicate execution contexts and the

second abstraction discards information about the command syntax. The second

phase of the detector simulates a suspicious code with the same input as a known

malware to produce a semantic trace. The detector searches, through a trace-

matching step, the semantic trace of the suspicious code to see if these semantic

slices can be found. That is, for each slice in the signature, the matching step

measures the similarity between the slice and the semantic trace.

Note that our technique only generates trace slices for a known malware sample and

compares them against the semantic trace of a suspicious program. This may be

computationally more efficient than producing and comparing dependence graphs

as exact graph or subgraph matching, i.e., graph or subgraph isomorphism, is

computationally expensive when comparing a large number of graphs; both graph

and subgraph isomorphism are NP problems (and subgraph isomorphism has been

proven to be NP-complete)[GJ90].

Finally, with our test data generation algorithm, a set of test data can be produced

for an executable code. The idea behind this method is that a set of test inputs may

represent different program paths through a malware sample and hence, produce

a more representative malware signature.

The rest of this thesis is organised as follows.

• Chapter 2. We present the malware problem and its definitions. We present

code obfuscation theory, recalling several code obfuscation techniques used in

generating malware variants. Also, the theoretical limitation of the malware

detection problem is discussed.
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• Chapter 3. We discuss related work in the areas of malware detection and

analysis. The chapter provides the background from which this thesis is

developed.

• Chapter 4. We present our abstract machine language (AAPL) and de-

fine trace semantics. Also, we describe the design, the correctness proof

and implementation of the trace-slicing algorithm. We discuss the strengths

and limitations of the trace slicer with respect to malware code obfuscating

techniques.

• Chapter 5. We present our matching algorithm for identifying similar se-

mantic details for (possibly obfuscated) malware variants using semantic sig-

natures. We present our architecture for a semantics-based detector, which

incorporates a semantic simulator (SemSim). SemSim takes an abstract ma-

chine code (AAPL), evaluates its commands using a given test input and

collects program traces. As a proof-of-concept malware detection tool, we

implement a malware variant detector and conduct four different experiments

to evaluate our approach. The experiments are based on the construction of

semantic signatures for a single test input of each malware sample.

• Chapter 6. We describe our testing method for exploring program be-

haviour through identifying program inputs (test data) for feasible program

paths within the control flow graph of a program. We extend an existing

test data generation method, called the dynamic domain reduction tech-

nique. The extended method automatically identifies test data for input

variables of AAPL programs. We prove that our algorithm for computing

test data for executables is correct.

• Chapter 7. We summarise our work, and highlight directions for future

work.
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Background

In this chapter, we introduce the basic terms and definitions of the malware prob-

lem that we address in the thesis. In Section 2.1 we introduce the malware terms

that are used in the research community. Section 2.2 gives the definitions of code

obfuscation, recalling several malware obfuscation techniques used in generating

new malware variants. In Section 2.3 we discuss the theoretical limitation of the

malware variant detection problem.

2.1 The Malware Problem

2.1.1 Basic Terms

The term malware refers to any malicious software that could intentionally perform

malicious tasks on a computer system or on networked systems. The following

covers some basic definitions of the malware problem:

• A virus is a program that is designed to replicate itself and to spread from

one machine to another using an infected (carrier) host program. That is

a malicious program copies itself into a benign program. Once an infected

program is executed, the virus starts its functionality, infects and damages

the machine. Thus, viruses attempt to spread and infect within the infected

machine.

25
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• A Trojan horse is a program that is believed to be useful but which has a

harmful intention towards the host machine. Some hidden part of this type

of malware contain a malicious payload that may exploit or damage the

host system. Also, Trojan horses can be spyware because of their malicious

actions such as the unauthorised collection of a user’s data.

• A worm is another type of malware that uses malicious code to propagate

from one host to another in a networked system without user intervention

– other malware types require external actions. A worm may have greater

impact; it can execute harmful actions such as a denial of service attack

on a network of computer systems or can use system resources for illegal

purposes. A comprehensive description of these malware and other types

can be found in [Szö05].

• Malvertising is the use of a malicious advertising program that targets a

website by placing an advertisement alongside the standard set of ads in

the website. A malvertising program conceals the malicious activities of

its ads to evade detection. Malware writers use malvertising programs to

scam website visitors into buying fake anti-virus software in order to resolve

non-existent malware infections on victims’ machines [Sop11].

• A bot is a malicious program that controls an infected machine; usually a

bot is connected through the Internet with a large-scale botnet (i.e. a bot

network). A botnet of infected machines can be easily controlled by a single

attacker (bot master), who can send malicious commands to launch attacks

to other machines or websites connected to the Internet.

• A False Positive is generated when a benign file is identified as malware

because a match is found.

• A False Negative is generated when a scanned file is a malware file because

no match is found.

• A Malware detector is a program that analyses a file (an executable binary

object or a source code) and identifies whether the file is malicious. Thus,

a malware detector is a function F that takes a program file as an input p

and returns either yes if the input is believed to be malicious, or no if the

input file is believed to be benign, i.e. F : P → {yes, no}. Current detectors,

including commercial detection tools, use features of malicious programs as

signatures to identify malware. Malware features are extracted either from
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the byte sequences in the case of malware executable binary files or from

the instruction (program command) sequences in the case of malware source

code files. The byte signature is constructed from the machine code repre-

sentation, i.e. a sequence of hexadecimal code. The instruction signature is

composed of heuristic information (e.g. the frequency of a sequence of sys-

tem calls or instructions found in the code) about the malicious operations

contained in the analysed code. In Chapter 3 we discuss several approaches

proposed for constructing and detecting malware signatures. The main ob-

jective of deploying a malware detector is to prevent malware attacks on

(local) computer machines by inspecting incoming files before they execute.

The main drawbacks of current detection programs are that they are not

resilient to malware obfuscation because they are prone to generating false

positives and false negatives when tackling obfuscated malware variants. In

the remainder of this chapter we present a partial list of common malware

obfuscation techniques used for generating new hard-to-detect variants.

2.1.2 Malware Categories and Behaviour

Most malware families have similar behaviour and properties, which the majority

of scanners use as signatures to detect malware variants. For instance, one of the

properties of a worm is self-replication – a worm tries to spread by simply copying

itself to a host machine through the communication channels of other infected

machines. On the other hand, a virus will attempt to spread by a carrier such as

an infected file or a media drive. In the following we will examine some common

environments and the behaviour of malware.

Malware Environments. In order for malware to perform its malicious func-

tionality and to infect other victims, some components or resources should exist.

Malware writers usually develop their code for a particular operating system. For

instance, Win32 viruses are effective against Microsoft Windows and may not

work on other operating systems. Moreover, a malware may require that some

particular applications are running on the victim system in order to be effective.

For example, some virus attacks are only effective if a scripting language such as

Microsoft VB script or JavaScript (.vbs, .js, etc.) files can execute on the local

machine.
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Means of Infection. Malware uses common methods of transmission between

computer systems. One of the traditional methods, and the easiest, of transmit-

ting malicious programs is via external media such as USB devices and memory

disks; however, the rate of spreading malware using this method is considered low

compared to other methods such as through networked systems. Malware writers

find networked computer systems an excellent environment to replicate and spread

their viruses and worms; therefore, inadequate security on a network means that

a large number of systems are vulnerable to malicious attacks. Another means of

malware infection between computer systems is electronic mail (e-mail). Malicious

code can spread easily as a file attachment sent with an e-mail message to as many

as possible e-mail users. This type of spreading mechanism requires only a little

effort from malware writers to make successful attacks. E-mail-based malware

falls into two categories: mailer and mass mailer malware. The first category uses

mail software such as Microsoft Outlook; the list of e-mail addresses on the host

machine is used by the virus to e-mail itself to other users. The second category

uses its own SMTP engine to send malicious code to many e-mail addresses.

Malicious Behaviour. Each malware type has its own malicious intention or

behaviour towards the infected machine. This behaviour is developed as program

code and embedded within the malware payload. Thus, by examining a virus pay-

load we can determine its malicious behaviour and the threat it poses to computer

systems. Some common payload types are: Denial of Service (DoS), information

theft and bandwidth flooding. DoS attacks make various services on a computer

system unavailable for some period of time. The second type of payload compro-

mises the security of the infected machine by stealing sensitive information such

as user keystrokes and passing it to its master. Bandwidth flooding attacks occur

when a malware payload contains commands to generate a large volume of traffic,

which stop the machine from utilising its network bandwidth.

2.2 Background on Code Obfuscation

Obfuscation techniques transform a program into a variant that is hard and time-

consuming to understand and reverse engineer with current analysis tools. In

general, a code obfuscation technique consists of a set of transformation functions

that aims to maximise the obscurity of the new program but preserves the seman-

tics of the original program. In the malware world, there are several transformation



Chapter 2. Background 29

functions that can be applied to obfuscate malicious programs, including dead and

irrelevant code insertions, equivalent code replacements and data encodings, etc.

Section 2.2.1 covers the general notion of code obfuscation and Section 2.2.2 inves-

tigates several existing techniques used by malware writers to produce obfuscated

malware variants with some examples.

2.2.1 The Notion of Code Obfuscation

Collberg et al. [CTL97, CTL98] presented the first formal definition of the obfus-

cation problem. They stated that a transformation function T maps a program P
to a new program P ′ such that P ′ is resilient to deobfuscation and P ′ contains the

same behaviour as P . Collberg et al. put obfuscation transformations into three

categories:

• Lexical Transformations modify information that is related to the struc-

ture of the program, e.g. by renaming identifiers, changing or removing de-

bugging information and comments. This type of obfuscation transformation

can also be used to protect the intellectual property rights of software.

• Control-flow Transformations make changes to the control flow of the

program, e.g. through code reordering and jump insertion, and through the

insertion of opaque predicates. The results of these transformations are hard

for a deobfuscator to compute.

• Data Transformations obfuscate data and data structures in the program,

e.g. variable-splitting transformations that split a single variable into two or

more variables with new operations to produce an equivalent result to the

original variable.

2.2.2 Common Malware Obfuscating Techniques

Malware writers develop their malicious code in such a way that a malware detector

may not be able to detect it. Since many commercial anti-virus scanners look

for common malicious behaviour and syntactic characteristics, malware authors

deploy new evasive techniques to hide the true intentions of their malicious code

and to generate new instances of their malicious programs. Each new variant of
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a particular malware can be produced automatically (or manually) by applying

obfuscating transformation techniques to the current malware code. A survey of

malware obfuscation techniques is presented in [YY10]. We first present the types

of obfuscated malware and then we discusses common techniques used to generate

new malicious variants.

Stealth. The malware hides the actual changes it made to the system and

shows clean data to the scanner. For instance, when an anti-virus program scans

for infected areas of a disk, the virus provides an ideal state of the system without

any infection.

Encryption. This evasion method is used to hide the presence of malware

by encrypting the payload. This type of malware usually consists of a constant

decryptor, an encryption key and the encrypted payload. Since the actual malware

behaviour or functionality is encrypted, malware detectors find it difficult to detect

the malicious code. The malware creates a copy of itself by encrypting its payload

with a new encryption key, so that the new payload looks different to the original

malware payload. However, encrypting malware always uses the same decryptor

to create malware variants; malware detectors may use this as a signature to detect

this type of malware.

Oligomorphic. A malware that uses this evasion technique encrypts its pay-

load in the same way as encrypting malware but the malware can change its

decryptor to create different copies of itself [Szö05]. The detection of oligomorphic

malware is very hard when using the decryptor as a signature and it requires a

close analysis of the malware decryptor generator.

Polymorphic. Malware of this type is equipped with the same evasion tech-

nique as the other malware discussed previously; however, it contains an encrypted

body with several copies of the decryptor (polymorphic decryptor). When creating

new instances, the malware uses different encryption keys in different instances so

in each instance the malware body looks completely different from other variants.

For example, some viruses such as Win32/Coke variants contain a polymorphic

decryptor, which implements multiple layers of encryption over the body. Other

viruses such as Win32/Crypto variants use random encryption techniques to get

different versions of the decryptor [SF01]. Also, some polymorphic viruses apply

obfuscation techniques to only their decryptor to evade detection. For instance,

the decryptor code may be reordered by placing jump instructions or inserting

garbage code to change the malware signature whilst preserving its semantics.
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1 : push eax

2 : dec esi

3 : add [eax],al

4 : or al,[eax]

5 : add [eax],al

6 : push 0x0

7 : cmp al,[eax]

8 : pop esp

9 : add bl,dh

10 : xchg edi,eax

(a)

1 : dec esi

2 : push eax

3 : jmp 7

4 : cmp al,[eax]

5 : pop esp

6 : jmp 12

7 : add [eax],al

8 : push 0x0

9 : or al,[eax]

10 : add [eax],al

11 : jmp 4

12 : xchg edi,eax

13 : add bl,dh

(b)

Figure 2.1: x86 assembly language code fragment of the Mobler worm, de-
veloped for Win32 operating systems (a). Code reorder obfuscation applied to

a code variant of Mobler (b).

The detection of this malware type requires emulating the polymorphic decryptor

(PD) behaviour and then generating PD signatures.

Metamorphic. In order to further evade detection, malware writers have ex-

tended the above mentioned malware types by applying code obfuscation to the

entire malware body. A metamorphic virus does not contain a decryptor and a

constant data part, instead it consists of a single program code that can replicate

into a completely different variant of the malicious code [Szö05]. It is difficult to

detect this type of malware because with every malware evolution the signature

used for detection needs to be completely different.

Description of Malware Obfuscations

Several different variants of malware can be generated by using one or several of

the following (partial list of) common malware obfuscation techniques:
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1 : push eax

2 : nop

3 dec esi

4 : add [eax],al

5 : nop

6 : or al,[eax]

7 : jmp 12

8 : mov [ebp-0x18],esp

9 : mov [ebp-0x14],0x4010e0

10 : and eax,0x1

11 : mov [ebp-0x10],eax

12 : add [eax],al

13 : push 0x0

14 : cmp al,[eax]

15 : nop

16 : pop esp

17 : add bl,dh

18 : xchg edi,eax

Figure 2.2: Garbage insertion obfuscation applied to the fragment of the
Mobler code in Fig. 2.1 on the preceding page (a).

• Code reordering. This technique changes the order of code instructions.

It can be applied to independent instructions where their order in the mal-

ware body do not affect other instructions (i.e. there are no data or control

dependencies between other code fragments). Unconditional branches (e.g.

jump instructions) may be inserted, if necessary, to preserve the original ex-

ecution order. Also, an opaque predicate command may be used to indicate

the correct flow of control within the code. An opaque predicate is a con-

dition that always returns True or False but which cannot be determined

statically. Thus, code reordering allows the creation of new variants that are

syntactically different from but semantically similar to the original malware

code. Figure 2.1 on the preceding page shows an example of code reordering

obfuscation. Note that each jump instruction in this example will point to

the next instruction, thus, the modified code will still run just like the origi-

nal code. Code reordering makes the task of handling obfuscated code more

challenging for syntactic scanners.
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1 : push eax

2 : sub esi,1

3 : add [eax],al

4 : or al,[eax]

5 : add [eax],al

6 : xor ebx,ebx

7 : cmp al,[eax]

8 : mov esp,ebx

9 : add bl,dh

10 : xchg edi,eax

Figure 2.3: A variant produced by applying equivalent code replacement
obfuscation to the fragment of the Mobler code in Fig. 2.1 on page 31 (a).

• Garbage insertion. Malware writers introduce this obfuscation technique

as a way of creating new variants from existing malware. The technique in-

serts irrelevant instructions into a program, which do not affect the original

behaviour of the program. For instance, a new variant can be generated by

adding a fragment of code (i.e. garbage code) that will not be reachable dur-

ing the execution of the malware program. Unconditional jump instructions

allow the correct execution order to be retained and bypass all fragments

of garbage code. Also, a sequence of nop instructions (e.g. the x86 NOP

command) can be inserted anywhere in the code; they modify the syntac-

tic signature of the variant but keep the semantics unchanged. There are

other instruction sequences that are difficult for static analysis to identify as

garbage code. For instance, inserting and retrieving dummy values through

the stack or memory do not alter the original behaviour of the program but it

make harder to reverse engineer the obfuscation. The example in Figure 2.2

illustrates this technique.

• Equivalent Code Replacement. This obfuscation technique replaces in-

structions with other instructions that preserve the semantics of the original

code and creates a new program variant. This obfuscation technique involves

a set of transformation rules that contain equivalent instruction sequences

to replace one instruction sequence with another. Since the x86 assembly

language provides a large set of instructions for programmers, a low-level op-

eration can be implemented with several implementations using a different
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1 : push ebx

2 : dec esi

3 : add [ebx],al

4 : or al,[ebx]

5 : add [ebx],al

6 : push 0x0

7 : cmp al,[ebx]

8 : pop esp

9 : add bl,dh

10 : xchg edi,ebx

Figure 2.4: A variant produced by applying variable renaming obfuscation
to the fragment of the Mobler code in Fig. 2.1 (a).

set of instructions. For instance, the Intel x86 memory addressing modes

provide flexible access to memory and registers, allowing one to easily ma-

nipulate data. This instruction set flexibility allow malware authors to pro-

duce new obfuscated malware variants. However, for an automatic detection

of this obfuscation, a static analysis tool would need to maintain a set of

rewriting rules to transform code variants into a canonical form for signa-

ture matching. Figure 2.3 shows an example of equivalent code replacement

obfuscations.

• Variable Renaming. This obfuscation technique replaces program identi-

fiers (e.g. registers, labels and constant names) throughout the code, but the

code is equivalent in terms of semantics. The implementation of this tech-

nique is expensive in the sense that it requires static def-use and liveness

(identifying which variables are live at each point in a program) analyses of

program identifiers. Thus, to lower the cost, malware authors use this tech-

nique to generate code variants based on a few selected program registers

and branch labels [Szö05]. An example of this technique is shown in Fig. 2.4.

• Code and Data Encapsulation. This method is also known, as code

packing [MKK07b, Kuz07]; malware writers use packer tools such as the

UPX packer to reduce the size of their malicious code, generally through

compression. Thus, these tools are used to protect and hide malware variants

from static analysis tools and scanners when they are distributed. According
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to PandaLabs [Pan08], 78% of new malware variants were developed using

this new technique in order to evade detection.

2.3 Theoretical Limitations

Fred Cohen first introduced one of the few solid theoretical results in the study of

computer virology. In particular, Cohen presented a formal definition of a com-

puter virus based on the Turing machine model of computation, and demonstrated

that the problem of detecting viruses is undecidable [Coh87]. That is, no detector

can perfectly detect all possible viruses. Cohen proved also that the detection

problem due to the evolution of viruses from known viruses is undecidable, mean-

ing that detection of (obfuscated) malware variants of known malware code is

undecidable. Chess and White [CW00] applied formal computability theory to

viruses and virus detection, showing that there are computer viruses which no

algorithm can detect, even under a somewhat more liberal definition of detection.

Despite these theoretical limitations, which show that the problem of detecting

malware is, in general, impossible, it could be the case that developing detection

systems that handle a class of malware is a possible (partial) solution [YHR89].

Thus, the malware detection research community has begun to propose detection

schemes that try to tackle the problem of detecting polymorphic and metamorphic

malware variants.
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Literature Review

Current commercial anti-malware tools are constantly challenged by the increased

frequency of malware outbreaks. Several malware analysis and detection ap-

proaches have been proposed to minimise the distribution of malicious programs.

However, malware writers deploy new techniques such as obfuscation and alter-

ing program behaviour [KKSV10] in order to create new, undetectable, malicious

programs that evade state-of-the-art detectors. We provide, through selective ref-

erence to some of the literature, a clearer understanding of the existing malware

detection techniques. Malware detection approaches presented in the literature

are based on various analysis strategies that are common in computer software

analysis, i.e. static, dynamic and hybrid. Moreover, we propose classifying existing

malware detection approaches into five broad categories:

• Signature-based

• Behaviour-based

• Heuristic-based

• Model checking-based

• Semantics-based

Before reviewing the development of malware detection research, we categorised it

into three tiers. Research into the detection approach is placed at the top level of

the hierarchy, followed by research into input representations and analysis types.

36
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Figure 3.1: A three-tier hierarchy diagram of malware-detection research.

Input representations are the intermediate representation formats of malware pro-

grams produced as inputs to the malware detectors. The analysis type divides

detection techniques into three groups: static, dynamic and hybrid. Figure 3.1

shows our three-tier hierarchy for malware-detection research. Our analysis in

this chapter of the existing malware detection research is based on this hierarchy.

We cover the malware detection research hierarchy in the next two sections: Sec-

tion 3.1 covers some input representations and the analysis types that are used

in research. Then, we discuss several recent techniques in malware detection in

Section 3.2. Section 3.3 covers some research into malware analysis techniques.

We conclude this chapter, Section 3.4, with a discussion of the surveyed literature.
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3.1 Input Representations and Analysis Types

3.1.1 Input Representations

Malware programs and their malicious behaviours are transformed into a suitable

form that can be used as the input parameter to an analysis or detection tool.

Input representations of malicious programs are used to capture various syntac-

tical or semantic properties of the input code, and can be used to classify and

detect malware families and their variants. Various reverse-engineering methods

are deployed to perform abstraction of programs at different levels (i.e syntactic

and semantic) of malware analysis. We cover some input representations of mal-

ware that are widely used in recent malware analysis and detection methods, such

as control and data flow graphs, byte and instruction sequences, and system call

sequences, abstract models and runtime execution traces.

• Instruction and Data Sequences. The byte representation of a specific

sequence of instructions and data are extracted from a malware file (referred

to as the string signature). This signature is typical of the malware but not

likely to occur in benign programs. Most current anti-virus tools use this type

of signature to scan and detect malicious programs. The signatures exactly

match the corresponding malware sample and, hence, they are prone to a

high number of false negatives (for new syntactically transformed variants

of the malware).

• N-grams. An n-gram is a subsequence of n consecutive tokens in a stream

of tokens. N-gram analysis has been applied to many text and speech pro-

cessing tasks [JM08], and is well understood and efficient to implement. By

converting a string of bytes in a malware executable into n-grams, it can be

embedded in a vector space to efficiently distinguish between malicious and

benign files by comparing the streams of bytes.

• Application Programming Interfaces. API calls and system events are

interface methods that a host operating system (OS) provides for running

processes (programs) to request OS services, such as creating a file, opening

a network socket, etc. Thus, a sequence of system or API calls within an

executable program could be used to describe its activity or behaviour and,

hence, detect malicious programs.
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• Abstract Models. An abstract model is a set of specifications describing

the desired security properties of the system. Usually, specifications in mal-

ware analysis and detection systems are produced to represent the malicious

behaviour of a malware program. A specification is expressed in a suit-

able temporal logic formula such as Linear Temporal Logic (LTL) [BM09] or

Computation Tree Predicate Logic (CTPL) [KKSV10]. An abstract model

allows the description and detection of a large set of known malware variants

using a single specification formula.

• Control Flow and Program Dependence Graphs. CFGs and PDGs

(including data and control dependence graphs) represent the semantic struc-

tures of programs. A suspicious program is detected as a malware variant if

the malware variant CFG has a subgraph that is isomorphic to the CFG of

the suspicious program [GBMKJYM07, AHJD10].

• Program Traces. A trace is an abstracted form of program semantics that

expresses the malicious behaviour of malware. Program traces are gener-

ated at runtime or statically using all possible program paths. A database

of abstract traces that represents malicious behaviour can be used to hold

signatures for malware detection [PCJD07, BGM10].

3.1.2 Analysis Types

• Static. Static analysis discovers information about program control and

data flows and other statistical features (executable formats, instruction op-

code and library signatures) without actually executing the program. The

main method used in the static analysis of malware is reverse engineering.

Several reverse-engineering techniques are applied to extract input represen-

tations of a malware executable binary.

• Dynamic. Dynamic analysis requires executing the program that is be-

ing analysed and monitoring its execution in a real or a virtual machine

environment. This provides actual information about the control and data

flow, which can be used to extract more precise and accurate abstractions

of program code. Dynamic analysis suffers from the execution overhead and

provides information about a particular execution of a malware program for

a given set of inputs. CWSand-box [WHF07] and TTAnalyze [BKK06] are

dynamic analysis-based tools developed for analysing malware.
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• Hybrid. Hybrid analysis is a mixed approach where the abstraction of

malware produced by static analysis is refined by executing portions of the

malicious code. Hybrid analysis can be performed at the source level by static

analysis, which then passes information about the program to the dynamic

analysis phase for detection. Hybrid analysis can improve the understanding

of malware behaviour and, hence, may reduce false positive rates.

3.2 Detection Approaches

We will focus on the strengths and drawbacks of some new and interesting ap-

proaches to malware detection that have recently been proposed in the literature.

This section surveys several proposed detection techniques for the five different ap-

proaches to malware detection: signature-based, behaviour-based, heuristic-based,

model checking and semantic-based. It seeks to gain a general feel for the sort

of work that is being undertaken for these five approaches and to see whether

there are promising applications or theoretical ideas. Moreover, it is an attempt

to identify the trends in this field.

Before we review the detection approaches in the following subsections, we will list

and describe survey papers in this field of research. They were selected to provide

a good survey of the current state of the research in this area and to give several

different facets of the malware detection problem.

An overview of malware detection techniques is presented in [IM07]. This survey

paper examines 45 malware detectors and classifies them into three different mal-

ware detection approaches: anomaly, signature and specification based. Patcha

and Park[PP07] give a comprehensive survey of two malware detection systems:

intrusion detection and anomaly detection techniques. The authors describe the

generic architectural design of intrusion and anomaly detection systems. They

highlight three main detection techniques for malware attacks in computer net-

works and systems: statical, data-mining and rule-based techniques. The authors

suggest that building a hybrid system that consists of both anomaly and signature

techniques could reduce the number of false alarms. Filiol et al. [JDF08] describe

a new taxonomy of two main families of behavioural malware detectors. The au-

thors classify and describe 29 proposed techniques that use simulation-based and

formal verification methods. The survey considers four key points: data-collection
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mechanisms, data interpretation, the adopted model and the decision process im-

plemented within a detection system. The main idea of this survey is that the

identification of functionality is a common principle in the different techniques

examined. [SWL08] surveys data-mining techniques for malware detection using

file features. The techniques are examined according to the features extracted

from the binary program, an analysis of the technique (i.e. whether it is static

or dynamic) and the detection type deployed (i.e. misuse or anomaly detection).

The paper gives hierarchical categories for the 19 surveyed techniques. Glezer et

al. [SMEG09] proposed a new taxonomy for categorising detection techniques of

new malware variants using a machine-learning approach. The authors provide a

comprehensive review of malware detectors that use machine-learning classifiers

on static file features extracted from malicious executables. Their taxonomy has

three dimensions: the file representation method, the feature selection method and

the classification algorithm. The static features discussed in the paper are byte

n-grams, OpCode n-grams and function-based features. The paper suggests that

such a framework for detecting new instances of malware in executable files should

combine multiple classifiers for various types of file feature in order to achieve a

high accuracy in detection. In [RRZ+09], 48 malware detection techniques were

reviewed and analysed for improving the capability of Intrusion Detection Systems

(IDS). Furthermore, a new categorisation, called the Hybrid-Malware Detection

Technique (Hybrid-MDT), of malware detection techniques was proposed. Hybrid-

MDT consists of two hybrid techniques: the hybrid signature-anomaly technique

and the hybrid specification-anomaly technique. Both techniques in Hybrid-MDT

were proposed in an attempt to overcome the weaknesses found in the signature-

based, anomaly-based and specification-based techniques. [FSR09] reviewed detec-

tion techniques in the literature for one type of malware: the botnet. This survey

paper identifies four classes of techniques: signature-based, anomaly-based, DNS-

based and data-mining-based. It highlighted proposed detectors in each class and

gave a brief comparison of botnet detection techniques.

A significant amount of research has appeared in the professional literature over

the last ten years addressing the problem of malware detection. Almost over 330

research papers have been published since 2001 in 12 computer security confer-

ences (i.e. the IEEE Symposium on Security and Privacy, the Symposium on Re-

cent Advances in Intrusion Detection, the Annual Computer Security Applications

Conference, the ACM Conference on Computer and Communications Security, the
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Annual Network and Distributed System Security Symposium, the USENIX Se-

curity Symposium, the European Symposium on Research in Computer Security,

the IEEE Communications Society/CreateNet International Conference on Secu-

rity and Privacy for Emerging Areas in Communication Networks, the Conference

on Detection of Intrusions and Malware and Vulnerability Assessment, the ACM

Symposium on Information, Computer and Communications Security, the Inter-

national Conference on Applied Cryptography and Network Security and the Sym-

posium on Usable Privacy and Security). The papers presented in this overview

were selected from various yearly conferences on computer and information secu-

rity. We will focus on the most relevant (and recent) papers for each approach and

aim to provide the background from which we will develop our thesis. Table 3.1

on the following page gives detailed information about the five malware detection

approaches.

3.2.1 Signature-based Detection

Signature-based detection is based on investigating suspicious code and gathering

information in order to characterise any malicious intent of the malware. The

main objective of this approach is to extract specific byte sequences of code as

signatures and to look for a signature in suspicious files. An excellent overview

of signature-based detection approach is provided in [IM07]. Most of today’s

commercial anti-virus scanners use a collection of signatures to detect malicious

programs [SF01]. That is, the suspicious code is compared with a unique sequence

of program instructions or bytes. If the signature is not found in the file, then

the file is considered to be not malicious. A database of signatures has to be

maintained continuously by manually analysing new variants of malware using

static, dynamic or both analysis methods [SF01]. Therefore, one of the limitations

of the signature-based detection approach is that it requires human intervention to

update the database with new signatures. Moreover, Christodorescu et al. [CJ04]

showed that the authors of metamorphic malware can easily defeat signature-based

detectors by using obfuscation techniques, as discussed in Section 2.2.2. This leads

us to conclude that this detection method is prone to false negatives (failure to raise

alerts); also, as more malicious variants become known, the signature database

grows in size making the false positive (false alerts) issue even more pervasive.

Chouchane and Lakhotia [CL06] extended the traditional string signature method

by using an obfuscation engine signature. This method scans opcode instruction
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Technique Analysis type Input representation Year

Signature-based Approaches

Chouchane and Lakhotia [CL06] static sequence of x86 opcode mnemonics 2006

Karnik et al. [KGG07] static instruction opcode mnemonics 2007

Bruschi et al. [BMM07] static program instructions 2007

Bonfante et al.[GBMKJYM07] static CFG 2007

Cha et al. [CMJ+10] static bit vectors of hashes of files 2010

Behaviour-based Approaches

Rabek et al. [RKLC03] hybrid APIs 2003

Kirda et al. [KKB+06] hybrid browser events and APIs 2006

Bailey et al. [BOA+07] dynamic system events 2007

Collins [Col08] dynamic network protocols events 2008

Aaraj et al. [ARJ08] hybrid regular expressions and data invariants 2008

Heuristic-based Approaches

Zhang et al. [ZYH+07] static n-gram byte sequences 2007

Bose et al. [BHSP08] dynamic TLCK of APIs and system events 2008

Moskovitch et al. [MFT+08] static n-grame of opcode sequences 2008

Griffin et al. [GSHC09] static byte sequence 2009

Shafiq et al. [STMF09] static APIs and .. 2009

Model Checking Approaches

Singh and Lakhotia [SL03] static LTL formulas 2003

Holzer et al. [HKV07] static CFG and CTPL model 2007

Beaucamps and Marion [BM09] dynamic LTL formulas 2009

Kinder et al. [KKSV10] static CTPL formulas 2010

Semantics-based Approaches

Christodorescu et al. [CJS+05] static control-flow graph template 2005

Moser et al. [MKK07a] dynamic input values and CFG paths 2007

Preda et al. [PCJD07] hybrid program trace semantics 2007

Feng and Gupta [FG09] dynamic instruction output 2009

Lee et al. [LJL10] static APIs graph 2010

Table 3.1: Malware detection techniques, their analysis types, input repre-
sentations and year published.

patterns to detect variants of malware generated by a known engine. They de-

signed an engine-specific scoring procedure targeted at the instruction-substitution

technique. Their detector needs only the signature of the specific obfuscation en-

gine and detects malicious variants, which the engine can produce. The method

attempts to alleviate the problem of scanning a byte stream by identifying a set

of instruction opcode sequences and then matching the instruction stream against

the engine signature. However, this technique could be prone to miss true alarms

since the malware engine writer only has to change the form of the engine instance,

not the semantics.
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Karnik et al. [KGG07] extracted a sequence of functions from a disassembled mal-

ware code. Each element in this sequence points to an array of opcode instructions,

which exist in the function. Thus, the signature of a known malware program rep-

resents a sequence of functions and their opcode instruction groups. For a pair

of signatures, the detector computes a cosine similarity measure to determine if

the programs are obfuscated versions of each other. Their approach does not han-

dle the instruction-substitution technique of code obfuscation and no experiments

were presented for evaluating the rate of false positives of the method.

Bruschi et al.[BMM07] proposed a technique that has the ability to take patterns of

malicious behaviour and create a normalised malware as a template for detection.

The main idea of normalisation is to remove the effects of the most well-known

transformation techniques and identify the control flow connections between the

malicious parts of the code. The detector works as follows: first, it performs the

normalisation step on the suspicious program, which may contain some malware

patterns. Second, it generates the inter-procedural control flow graph CFGP , which

specifies all program function connections. Finally, the detector compares the

graph CFGP with the malware template graph CFGM and decides whether CFGM

is actually a subgraph of CFGP . The experimental evaluation of their approach

shows that the detector can detect variants of malware code that contain specific

patterns of instructions in the template. It is obvious that this technique relies on

syntactic patterns of template code to detect malicious programs.

Bonfante et al. produced control flow graphs for assembly x86 programs and

matched them with graphs of known malware programs [GBMKJYM07]. The

graphs represent all paths that might be traversed through a program during its

execution. To remove some classic obfuscation techniques, three graph rewriting

rules are applied to the extracted graphs: instruction nodes are concatenated if

contiguous data instructions have been changed, code is realigned if reordering

jumps have been introduced and any existing consecutive conditional jumps are

merged into a single conditional jump. Their detection technique is based on two

algorithms. The first algorithm searches for isomorphism between the CFGs of

known program m and the program under test p. The second algorithm uses the

reduced CFG of p and tests if m is the reduction of the CFG of p. The two algo-

rithms’ false-positive ratio results against 2278 malware samples were successful

with respect to the size of the CFGs. Algorithms 1 and 2 have a similar detection

accuracy, with 4.5% and 4.4% false positive rates, respectively [GBMKJYM07].
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Metamorphic malware programs are not examined under the proposed detection

method.

Cha et al. describe a network-based system to detect distributed malware files

that uses only a subset of malware signatures [CMJ+10]. The detection system is

based on a text-based pattern matching technique called a Feed-Forward Bloom

Filter (FFBF). Their method works in two steps. First, all files are scanned using

FFBF. The filter outputs (1) a set of suspect matched files, and (2) a subset

of signatures from the signature database needed to confirm that suspect files are

indeed malicious. The system then performs a verification step to eliminate Bloom

filter false positives. The suspect matched files are rescanned using the subset of

signatures and an exact pattern matching algorithm. Two issues are addressed in

this work. First, the technique handles the signature distribution challenges by

producing a smaller subset of signatures from the verification step for matched

malware files. Second, the memory scaling challenge is handled by using a single

FFBF bit-vector to pattern-match input files and another bit-vector for generating

the set of signatures for matched files. The FFBF-generated signatures proved to

be a particularly useful input representation, as opposed to the traditional string

signatures, of input files as the scanning throughput increased by over 2x and using

half as much memory. However, like any other text-based Bloom filter output, the

output pattern subset may contain false positives.

3.2.2 Behaviour-based Detection

Behaviour-based detection techniques aim to reduce the false positive rate gen-

erated during the monitoring stage. A behaviour-based technique monitors and

checks the system to be protected against a given set of requirements and the

security policy. During the learning phase, a behaviour-based detector is provided

with a rule set, which specifies all acceptable behaviour any application can exhibit

within the protected host. The major drawback of behaviour-based detection is

the difficulty of determining the entire set of safe behaviour that a program can

exhibit while running under a protected system. Filiol et al presents a survey of

behaviour-based detection techniques in [JDF08].

Rabek et al. [RKLC03] present a detection method for obfuscated malware that

dynamically injects and generates itself at runtime. The detector uses a static

analysis technique to get details of all relevant system calls embedded in the code,
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such as function names, addresses, and the address instruction followed by each

system call. Also, the detector keeps a record of the return addresses for sys-

tem calls in the code. Then, when a suspicious program is executed, the detector

monitors the behaviour of the executable and ensures that all calls made to the

system services at runtime match those recorded in the first step. The authors

conclude, by a proof of concept study, that their technique ensures that any in-

jected and generated malicious code can be detected when it makes unexpected

system calls. A major drawback of this technique is that when inserting some

irrelevant API calls into a malicious code, the detector may fail to match the new

malicious behaviour with ones kept in the record.

Bailey et al. propose an approach based on the actual execution of malware sam-

ples and observation of their persistent state changes [BOA+07]. The input repre-

sentation that is generated from malware programs is the set of environment state

changes, referred to as a behavioural fingerprint. The behavioural fingerprints

are extracted from the raw event logs during program execution. For instance,

spawned process names, modified file names and network connection attempts are

state changes, which are stored as part of a fingerprint for a known malware pro-

gram. Classes and subclasses of malware are then formed by clustering groups

of fingerprints that exhibit similar behaviour. They produced a distance metric

that measures the difference between any two fingerprints, and used this metric

for clustering. In particular, they utilised the normalised compression distance

(NCD) approach to effectively approximate the overlap in information between

two fingerprints. Then they constructed a tree structure based on a single-linkage

hierarchical clustering algorithm to show the distance between two malware clus-

ters.

Kirda et al. [KKB+06] proposed a novel method for spyware detection that is based

on an abstraction of the characterisation of the behaviour of a popular spyware

family. The method handles spyware applications that use Internet Explorer’s

Browser Helper Object (BHO) and toolbar interfaces to monitor a user’s browsing

behaviour. The method applies a hybrid analysis to binary objects to characterise

and detect specific malicious program behaviour. First, a dynamic analysis tech-

nique is used to expose a suspicious component by simulating user activity. That

is, they dynamically record both the browser events and the Window APIs that

the component calls. Second, a static analysis step is implemented to extract the

control flow graph (CFG) from the disassembled suspicious program. This step ex-

amines particular code regions in the CFG for the occurrence of operating system
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calls. Then their behavioural characterisation is represented as a list of Windows

API calls and browser functions. The characterisation is automatically produced

by identifying the browser functions and Windows APIs performed by malicious

BHOs and toolbars. A total of 51 samples (33 malicious and 18 benign) were

used to evaluate their method. Seven (two benign and five malicious) out of 51

samples were used to develop the behavioural characterisation list. The remaining

samples were considered unknown and were used to validate the effectiveness of

the detection method. All remaining malicious samples were identified malicious

and two benign programs were identified as malicious.

Collins [Col08] introduced the Protocol Graph Detector (PGD) to detect the be-

haviour of a slowly propagating hit-list or topologically aware worms over a net-

work. The detector works by building protocol-specific graphs where each node

in the graph is a host, and each edge represents a connection between two hosts

with a specific protocol. The input representation used in this method is a set of

network protocol events generated by hosts in the graph. The technique is based

on the observation that during legitimate operations over short time periods, the

number of hosts in the graphs is normally distributed and the number of nodes

in the largest connected component of each graph is also normally distributed.

PGD continuously measures the distribution numbers and it detects the presence

of worms when both numbers are beyond their normal range.

Behavioural-based malware detection methods that incorporate hybrid-based anal-

yses for producing and comparing similar behavioural signatures include Aaraj et

al.’s dynamic binary instrumentation-based (DBI) tool [ARJ08]. They used an

isolated testing environment, wherein a suspicious executable code is executed us-

ing a DBI technique. The runtime behavioural pattern of the program is checked

against extensive security policies, which consist of a set of behavioural signatures

of malicious programs. The runtime behavioural pattern is collected in the form

of a hybrid model that represents the program’s dynamic control and data flow

execution traces. They used the same model to express the security policies of

malicious behaviour. Then a suspicious program is extensively tested with the

tool and its behaviour is checked against the model. An automatic input gen-

eration technique based on static analysis and symbolic propagation is deployed

to generate input values. A formal proof to show the correctness of their input

generation technique was not presented.
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3.2.3 Heuristic-based Approaches

Heuristic-based approaches to malware detection deploy several well-known experience-

based and machine learning techniques to search for specific attributes and char-

acteristics for capturing malware variants. Most malware detection systems that

make use of heuristic-based techniques do not need to create, match or maintain

signatures. This approach usually detects an abnormality in the program under

test or the host system where the program will run.

Detecting malware programs using a heuristic-based technique is accomplished in

two phases. The first phase is to train the malware detector. A detector system

must be trained with data in order to capture characteristics of interest. The

second phase is the monitoring or detection phase where the trained detector

makes intelligent decisions about new samples based on training data. Moreover,

there are two methods deployed in the training phase. The first method uses two

classes of data, i.e. both normal and abnormal data. The second method uses a

single class of data, where malware detectors are trained with only one (normal

or abnormal) class. This means the system only needs to be trained with normal

system activity, allowing it to produce a useful output about what activity is

abnormal. The rest of this section briefly outlines some proposed techniques in

the literature that utilise this approach to malware detection. [SWL08] presents

an in-depth survey of proposed methods in this approach.

Zhang et al. [ZYH+07] detected and classified new malicious code based on n-

gram byte sequences extracted from the binary code of a file. They used a se-

lection method called the information-gain to choose the best n-gram byte se-

quence. Then, a probabilistic neural network (PNN) was used to construct several

classifiers for detection. Finally, during the learning step of each classifier, they

produced a single set of decision rules consisting of the individual decision results

generated from each PNN classifier. Three classes of new malicious program files

downloaded from the the VX Heavens computer virus collection website [Hea] and

some Windows benign files were used to evaluate their method. The false and

true positive rate results show a great improvement of the combined PNNs over

the individual PNN classifier of each of the three classes.

Bose et al. [BHSP08] proposed a detection method based on a supervised learning

method, Support Vector Machines (SVMs), for malware variants that increasingly

target mobile handsets. A lightweight temporal pattern classifier for malware
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detection was implemented. The method requires a malicious behaviour signature

database to train the classifier. Each type of malicious behaviour is described in

terms of API calls and events represented by temporal logic of causal knowledge

(TLCK). Thus, a single TLCK signature is used to represent the behaviour of an

entire family of malware including their variants. The database is generated at

runtime by monitoring the API calls and system events from more than 25 distinct

families of mobile viruses and worms. Their evaluation showed that this method

results in very high detection rates (over 96%) and is able to detect new malware

that contain similar behavioural patterns with existing ones in the database.

Moskovitch et al. [MFT+08] present a machine learning method for detecting un-

known malware variants using the operation code (opcode) of the binary code as

the input representation. The set of opcodes is converted into several n-grams

(1, 2, 3, 4, 5 and 6-byte sequences of opcodes), which are used as inputs to the

classifiers. They deployed four commonly used classification engines for detecting

unknown malware files: Artificial Neural Networks (ANN), Decision Trees (DT),

Nave Bayes (NB) and Adaboost.M1. The classifiers were compared and the re-

sults show that DT and ANN outperform NB and Adaboost.M1 by exhibiting

lower false positive rates.

Griffin et al. [GSHC09] present a system that automatically generates string sig-

natures. Each generated string signature is a contiguous 48-byte code sequence

that potentially can match many variants of a malware family. The system uses

two types of heuristics to examine and to find potential candidate signatures.

That is, every 48-byte code sequence in unpacked malware files are inspected us-

ing probability-based and disassembly-based heuristics to find string signatures.

From a large set of benign programs, a pre-computed Markov chain-based model

probability threshold is used to filter byte sequences whose estimated occurrence

in benign programs is above the limit. Further, they refine their string signature

set into a multiple component signature (MCS) set that consists of multiple byte

sequences that are potentially disjoint from one another. Each component in the

MCS set represents a unique signature sequence found in the longest substring that

is common to all malware files that have the sequence. They show that the mul-

tiple component signatures are more effective than single-component signatures,

but the actual runtime performance impact of MCS is unclear.

Shafiq et al. [STMF09] developed a data mining-based framework that automati-

cally extracts distinguishing features from portable executable (PE) files to detect
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previously unknown malware. A PE file is a data structure that encapsulates the

information necessary for the Windows OS loader to execute the wrapped exe-

cutable code. They believe that the structural information contained within PE

files such as dynamic-link libraries (DLLs) and PE section headers have the poten-

tial to achieve high detection accuracy. The proposed detection method consists of

three steps: data extraction (the program input representation), data preprocess-

ing and classification. The input representation is statically extracted as a set of a

large number of features from a given PE file. To improve the training and testing

of classifiers, three well-known data reduction filters are used in step 2. The filters

are Redundant Feature Removal (RFR), Principal Component Analysis (PCA)

and Haar Wavelet Transform (HWT). They evaluated their method with five dif-

ferent data-mining algorithms. Their results on two malware collections, the VX

heavens and Malfease databases, show that the method achieves more than a 99%

detection rate with a less than 0.5% false alarm rate for distinguishing between

benign and malicious executables. Their method is robust with respect to different

polymorphic techniques in PE files but it is not clear if it handles metamorphic

techniques in new malware variants.

3.2.4 Model Checking

Singh and Lakhotia [SL03] introduced a malicious code verifier, which statically

verifies binary executables against a property formula for viruses and worms. The

malicious behaviour of viruses and worms is manually extracted and encoded using

linear temporal logic (LTL) formulas. Each formula is representative of a partic-

ular action by the program. A program action is described by a sequence of one

or more function system calls, connected through a flow relationship. They spec-

ified five functions, which are sufficient to describe the behaviour of a malicious

program. These functions are survey, concealment, propagation, injection and self-

identification. The verifier takes as input the program and a set of behavioural

properties (LTL formula). It explores all possible paths (branches) at each condi-

tional branch instruction in the program. If malicious behaviour is detected, the

execution path of the matched property is returned by the tool. Although their

method statically detects a malicious action in a program, its detection capability

relies on manually formulated LTL formulas.

The work proposed in [HKV07] uses the control flow graph of a program as a

model and defines a set of specifications at the level of assembly instructions. The
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creation of malicious code specifications requires assistance from a user using Com-

putational Tree Predicate Logic (CTPL). The user selects relevant instructions in

the control flow graph that are of particular relevance for program behaviour. The

temporal logic formula uses predicates rather than atomic propositions to repre-

sent assembly instructions and to quantify an instruction’s parameters. In their

model each line of code corresponds to a state model and it is uniquely labelled by

a location. The model checker returns a report to the user if the input program

satisfies the specification. The model-checking tool is PSPACE-complete and it

uses several optimisation techniques to reduce the overhead of verifying the num-

ber of procedures and computing the number of variable assignments. Also, the

disassembled code of a new malware is manually analysed to locate portions of

code that exhibit characteristic malicious behaviour.

In [KKSV10], a malware-detection tool is presented. The tool extends the use

of the new expressive branching time logic formula CTPL to check a model of a

potentially malicious code against known malware specifications. The authors are

able to produce precise specifications as signatures that can match a large class of

functionally related worms; for instance, they show that with one single CTPL for-

mula, several variants of worms can be detected without false positives. The set of

malicious code specifications in this method cover program calls to the system API,

the program stack layout, which can be affected by push and pop instructions, and

program register values at a particular point in a program execution path. The

model produced for an input program consists of a set of Kripke structures, where

each structure represents the control flow of one subroutine. The tool was tested

using 21 worm variants from 8 different families. Two malicious specifications

were developed in CTPL of two portions of known malware. The specifications

were used to verify the input samples. The results showed that the model checker

is able to categorise all variants of the worm families. However, similar to pre-

vious work on model checking, the process of constructing the specifications (i.e.

CTPL formulas) from a fragment of malicious code and the identification and the

extraction of characteristic code sequences from a set of worms requires a major

intervention by a user.

Beaucamps and Marion in [BM09] proposed an approach that considers malware

as a concurrent system interacting with an environment. They extracted malware

traces from execution runs as infinite words and created a trace automaton, which

then compared these using a database of malicious behaviour. The method allows

the detection of similar malicious behaviour in a generic way but the behaviour
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patterns they define for detection do not consider data flow information when

matching trace elements (e.g. system calls). Also, the approach looks at a single

execution run during the detection of malicious behaviour and it does not cover

all possible execution paths in the control flow graph of a program. [KKSV05]

contains an overview of the model checking-based approach to malware detection.

3.2.5 Semantics-based Malware Detection

Semantics-based malware detection is a new approach, which may overcome the

weaknesses of heuristic- or signature-based detection methods by incorporating the

semantics of program statements (instructions) rather than the syntactic proper-

ties of the code. This section investigates some recent preliminary work that han-

dles code obfuscation in malware detection using the program semantics approach.

The preliminary work reviewed in this section shows that the semantics-based ap-

proach has the ability to identify the malicious behaviour of a program hidden

under the cover of obfuscation and can improve the detection of future unknown

malware variants. [PCJD08] contains an overview section of related techniques in

semantics-based detection.

Christodorescu and Jha [CJS+05] presented a semantic-based method for detecting

malicious programs. That is, the malware detector is aware of common malicious

behaviour of malware variants. This work mainly presents two key contributions.

First, specifying a set of malicious behaviour using a template in order to match

it with a malicious code fragment in a program. Second, using a state and an

execution context, which allows the representation of the behaviour of a program

and abstracts away both from registers and the names of constants. Christodor-

escu and Jha show that their semantics-based matching algorithm is resilient to

some code obfuscations, for instance, register renaming and code reordering. The

algorithm looks at the state of the memory after the check in order to determine

if the suspicious program code memory segment matches the template’s memory

segment. This is implemented using def-use pairs; a match can occur if there is

a unique def-use pair both in the template and in the disassembled suspicious

code. However, as it requires an exact match between the template node and pro-

gram instructions, obfuscation attacks using equivalent-instruction replacement

and reordering are still possible. Moreover, because some memory segments of a

suspicious program are more complex than others, the algorithm uses four different

decision functions to determine the state of memory before and after the check.
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Their results show that the semantics-aware approach has zero false positives in

detecting malware.

Moser et al. [MKK07a] introduced a software testing-based tool for discovering

multiple execution paths and generating semantic signatures of malware. Their

tool helps to improve test coverage in malware analysis systems. For a given

set of inputs, the tool executes a malicious program and monitors its runtime

behaviour. The input dependency of the program control flow is examined and

different input values are generated to alter the execution along a specific path.

Then the tool explores the actions generated from the executed path, and if any

malicious action is encountered, the input values along with the path are used

as a semantic signature for the malware. For each new execution path taken, a

snapshot is created of the current process at control flow decision points. The

evaluation shows that the tool was able to successfully identify the behaviour of

malware variants from different malware families, but no sound arguments were

presented to prove the accuracy of their testing coverage technique.

Preda et al. [PCJD07] proposed a formal semantics-based framework for assessing

the resilience to obfuscation of malware detectors. The authors presented an ab-

stract interpretation of trace semantics to characterise malware behaviour and to

incorporate it into their semantic malware detector (SMD). Since malware writ-

ers use obfuscation to generate metamorphic malware variants, the authors con-

sider obfuscation as a transformation of the trace semantics of a malware program

where an obfuscating transformation O : P → P produces a set of transforma-

tions. Moreover, the authors define their notion of semantic trace abstraction so

as to allow discarding of the details changed by the obfuscation while preserving

the maliciousness of the obfuscated program. The authors prove that SMD is

complete and sound with respect to obfuscation O under abstraction α if it de-

tects all obfuscated programs O(P ) that are infected by a malware M (no false

negatives). Preda et al. have two major classifications of obfuscations. The first

class is conservative obfuscation, which covers obfuscation techniques such as code

reordering, opaque predicate insertion, semantic NOP insertion and substitution

of equivalent commands. The process of dealing with this class of obfuscation

is straightforward, the abstraction αc handles common obfuscations listed above

by providing environment-memory traces only of the program. The second class

is non-conservative obfuscations, which deals with the variable-renaming obfus-

cating transformation. Since, with the variable-renaming obfuscation technique

the names of register in the malicious code are changed, the environment-memory
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traces will look different to the original malware traces. Therefore, a canonical

abstraction αυ is introduced to deal with this obfuscation. All register names are

replaced or mapped with a set of canonical names before applying the abstraction

αe between M and P traces.

Much effort has been made to improve the detection of obfuscated malware vari-

ants using dynamic analysis. Feng and Gupta [FG09] presented a malware detector

that uses dynamic signatures to detect obfuscated malware variants. Their dy-

namic signatures are produced from the runtime behaviour of a known malware

program. Each dynamic signature can be extracted from the program runtime

trace by taking a backward slice of the program trace with respect to an API call.

The detector maintains a database of dynamic signatures that are generated from

a set of known malware families. Their evaluation show that the detector can

handle a set of obfuscation techniques, including variable renaming, instruction

reordering, insertion of NOP instructions, control flow alteration and a limited

set of instruction substitutions. However, since the signatures are based on API

syntax, the method fails with techniques that alter API operation syntax.

Another semantic-based detection mechanism for defeating packing and code ob-

fuscation techniques in malware variants was introduced by Lee et al. [LJL10].

They consider the static API call sequences as program semantic invariants. Then

their method abstracts away program instructions and produces a (code) graph

using the API call sequence of a known malware. Code graphs are stored as

semantic signatures and used to compare with new generated graphs of suspi-

cious programs. To evaluate the detection tool, 300 obfuscated malware programs

were generated using the code insertion, code reordering and code replacement

techniques. The results showed that the generated samples were not found by

anti-virus detection tools, but their method was able to detect all of the samples.

However, the method lacks the ability to capture obfuscated malware variants

generated by using equivalent API operations and when introducing meaningless

API calls.

3.3 Malware Analysis Techniques

Malware analysis techniques help to improve the process of understanding the

functionality and the intent of executable code. Anti-malware product developers
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and analysts use a variety of reverse-engineering tools to assist with the analysis

process. Reducing the amount of time necessary to understand the overall program

layout yields large increases in reverse engineering and detection productivity. Ob-

fuscating a program with packers and other code metamorphic tools makes the

analysis more difficult. Several recent research studies have introduced and im-

proved the tools and techniques within malware analysis research. This branch of

malware problem research is based on two main classes of analysis tools: static

and dynamic tools. Static analysis tools include disassemblers (e.g. IDAPro [Res])

and signature scanners (e.g. anti-virus scanners). Dynamic analysis tools include

executable trace and operating system environment monitoring (e.g. virtual ma-

chines [Ora, VMw] and Pin [LCM+05]) and debugging tools (e.g. OllyDbg [Yus]).

Static analysis tools extract and investigate binary code without executing its

instructions. However, dynamic analysis tools can handle more sophisticated mal-

ware programs by monitoring and understanding program execution behaviour.

Using a visualisation method for monitoring program execution and exploring the

overall flow of a program was suggested by Quist and Liebrock [QL09]. They

proposed the VERA architecture, which distills large compiled malware programs

(over 1 million lines of code) and produces a high-level overview of the overall flow

of basic-block portions of a program.

Recent work by Miwa et al. [MME+07] introduced an isolated sandbox for analysing

malware programs. The tool handles anti-virtualisation malware that are capa-

ble of detecting analysing environments (i.e. virtual machines) and it avoids any

impacts to/from the Internet. Mimetic Internet functionality is implemented to

fool detecting mechanisms of malware. The proposed isolated sandbox is a closed

experimental environment that executes anti-virtualisation malware. To recover

from damage caused by executing malware, the tool rebuilds the executing envi-

ronment using a clean image from a disk-image.

Rieck et al. [RHW+08] proposed an automatic classification method of malware

families based on their dynamic behaviour (input representation). Their method

consists of two major machine learning steps. Learning the behaviour of labelled

malware samples is the first step. The second step constructs models that are

capable of classifying unknown variants of sampled malware families while rejecting

the behaviour of benign program files and malware families not considered during

the first step. A large number of malware samples were dynamically analysed using

a sandbox environment and their behaviour (e.g. API calls) collected. Their model
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construction step use the vector space model and bag-of-words model techniques to

create behaviour patterns, which are used later as training data. The method uses

the well-established technique of Support Vector Machines (SVM) as a classifier,

which takes training data of two classes and measures the optimal distance from

them. Their results show that the proposed method can correctly classify 70% of

malware instances that are not detected by anti-virus software.

Purely dynamic behaviour monitoring and analysis methods for malware programs

include FuYong et al.’s MBMAS tool [FDJ09]. They developed an automatic tool

to execute malware programs in an isolated environment, and to monitor five as-

pects of the state of a system: process, file system, registry, port and networks. A

report is produced for a human analyst. To analyse malware behaviour more accu-

rately, the tool deploys a filtering mechanism, which identifies process information

created by the malware, the tool only collects information related to identified

processes.

Roundy and Miller [RM10] developed a hybrid malware analysis method to sim-

plify malware analysis by providing a pre-execution analysis of binary code and a

post-execution analysis of malware behaviour. Their method combines static and

dynamic techniques to construct and maintain the control- and data-flow analyses

that form the interface through which the analyst understands and instruments

the code. It provides a dynamic instrumentation feature to identify new instruc-

tions that are dynamically generated and hidden by obfuscations. Then the CFG

is updated with the captured code and presented to the analyst. The method

works well on self-modifying, packed and obfuscated programs.

3.4 Discussion and Conclusion

The detection approaches and the list of surveyed research present the plethora

of research in the area of malware detection. There are several observations that

can be made about the growing trend in malware detection.

• The traditional signature approach lacks the ability to detect new malware

variants due to the syntactic proprieties used (e.g. byte and instruction se-

quences) in their detection methods. The methods work well for extracting

and matching signatures of loosely structured data; nonetheless, for binary
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executables, these techniques have high overheads in processing structural

data in executable files and they are prone to a high number of false posi-

tives. Our work addresses this deficiency by automatically generating com-

pact semantic signatures using a trace-slicing algorithm. Our trace-slicing

algorithm improves the detection rate (by helping to increase the accuracy

and the performance of matching semantic traces).

• Behaviour detection techniques use very restrictive behavioural specifications

(i.e. normal and malicious behaviour) to detect a large number of malware.

However, this notion of restriction in detection may lead to a high number

of false positives. Most benign programs perform similar operations with

a host system (e.g. making system calls to access OS resources). Thus, in-

formation about a sequence of events (e.g. API calls) of a program is not

enough to determine whether the program is malicious. Also, the complexity

of the approach (e.g. the intensive monitoring of OS and program activi-

ties against a behavioural specification) makes such detectors undesirable

for users to run as it tends to slow down the performance of their computer

systems. Also, this approach requires a security expert to specify the be-

havioural specification (of benign or malware programs), as no automatic

method for generating such specifications is implemented. Our research ad-

dresses this weakness by computing a set of program inputs (as part of the

semantic signature) for discovering multiple program execution paths using

an automatic test data generation algorithm.

• An issue with the heuristic-based approach to developing a machine-learning

malware detector, is that the detector would need to be trained using many

malware programs, which could become infeasible, as well as making the

detector ‘aware’ of specific malware instances rather than a broader general-

isation of what a malware family is. Thus, detectors which are purely based

on heuristics have a very low resilience against new attacks of metamorphic

malware variants. Our approach doesn’t consider (nor is it affected by) the

syntactical structure of a file as it focuses on the semantics of the code to

detect malware variants.

• A novel approach to malware detection using program semantics seems a

promising approach to improve current detection tools. Semantics-based

techniques are very effective in using low-level properties of programs and
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are accurate (few false alarms). This has, therefore, motivated the implemen-

tation of our semantic signature to capture new variants of known malware

and to improve the detection rate.

• The malware analysis approach is a potential method for achieving a com-

plete understanding of new malicious behaviour. Malware analysis tech-

niques may be used primarily as back-end tools that act as good filtering

mechanisms through capturing useful information that security experts need

for most malware. A key feature of analysis techniques is that they allow

security analysts to be selective about the behaviour monitored and about

the granularity of results captured. Most proposed techniques are purely

dynamic and expensive as they try to analyse malicious code incorporating

anti-static analysis features. However, a combination of static and dynamic

analysis might lead to cost-effective and high-performance malware analysis

tools. Our work takes a step toward a hybrid (static-dynamic) approach

in malware analysis by automating malware classification using semantic

simulation of malware code.

• Most malware analysis and detection techniques handle the problem of un-

packing/decrypting malware executables quite well. These techniques as-

sume that the unpacking and decryption processes are self-contained within

malware programs (i.e. decryption and unpacking routines are part of the

code). Our malware-detection system uses unpacking tools to extract mali-

cious payloads.

• Malware detection is similar to other related fields, such as clone detection

and dynamic software birthmarking techniques. However, there are impor-

tant differences. First, clone-detection methods [RC07, LRHK10, PTK11]

analyse programs for similarities, at the syntax level or at the structural

level, between and within large-scale programs. Thus, the clone-detection ap-

proach is not robust to code obfuscation. Dynamic software birthmark tech-

niques identify a software application piracy event by comparing the runtime

behaviour of programs [WJZL09a, CHY11]. Two methods for creating dy-

namic birthmarks have been proposed: a whole program path (WPP)[MC04,

ZSSY08] and application programming interface (API) [TONM04, WJZL09b]-

based birthmarks. The WPP-based birthmark method extracts the dynamic

control flow of a program while the API-based birthmark method uses a se-

quence of recorded API function calls during the execution of a program
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to identify similarities. The WPP-based method is not robust to opaque

predicate obfuscation. The API-based method is robust to code obfuscation

but it is platform dependent and needs to run the program. Second, to our

knowledge, all proposed work on clone-detection and dynamic birthmark

techniques analyse source code (i.e. to find similarities between high-level

software applications). In contrast, our technique analyses malicious binary

executables (i.e. low-level programs) and compares the semantic structures

of the code.



Chapter 4

Trace Slicing

In this chapter, we describe the improvements to our semantic signature genera-

tion and detection approach for malware variants. We introduce trace slicing for

malware executables. We propose a trace-slicing algorithm, which aids the con-

struction of a semantic signature for a known malware variant. From a known

malware variant, a set of semantic traces (trace slices) are produced by applying

our trace slicing. With trace slicing, we may be able to capture slices of the trace

semantics and construct a semantic signature that could improve the detection of

(possibly obfuscated) variants of malware. The proposed trace-slicing algorithm

works on our abstract machine code language AAPL and is based on computing and

updating data dependencies in the trace at simulation time. We use our abstract

machine code language, AAPL, which is introduced in Section 4.1, to represent

malicious code and understand the effects of code obfuscations on both a program

code and its trace, and to apply our trace-slicing method to compute trace slices.

Moreover, our trace-slicing algorithm can be used as a trace slicer for executable

machine code as we show in the implementation section (Section 4.3.5).

Our conjecture is that the trace-slicing method can improve the detection of mal-

ware variants in two ways. First, the trace-slicing algorithm handles some code

obfuscating techniques and abstracts away their effects. Second, it computes a set

of correct trace slices as short semantic signatures for the malware variant detec-

tion algorithm in an attempt to efficiently match against semantic signatures of

a known malware family. Thus, the slicing approach may improve the speed and

accuracy of the malware detector.

In summary, the contributions of this chapter are fourfold:

60
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1. We identify a suitable target low-level language to describe the syntax and

semantics of malware code.

2. We define slicing for the traces that occur in the semantics, and provide a

slicing algorithm for the abstract machine code (AAPL).

3. We introduce the correctness property for the trace-slicing algorithm and

prove the algorithm is correct with respect to the semantics.

4. We provide a prototype implementation of our algorithm, which works on

binary executables and evaluate our algorithm on several real-world binary

executables. A version of this implementation is developed for the AAPL

code and is part of the signature extraction process in Chapter 5.

To fully appreciate this contribution, it is necessary to understand the context in

which we propose to apply the slicing algorithm. The remainder of this chapter

is structured as follows. Section 4.1 presents our low-level programming language

AAPL. Section 4.2 provides an overview of the slicing approach. Section 4.3 gives

the details of our trace-slicing algorithm. The correctness proof of the algorithm

is presented in Section 4.4. Section 4.5 highlights the strengths and limitations of

the algorithm. Section 4.6 describes related research work in the area of dynamic

program slicing and slicing binary executables. Section 4.7 concludes the chapter.

4.1 Programming Language

In this section we introduce our simple Abstract Assembly Programming language

(AAPL), which is used for reasoning about code obfuscating transformations in

malware program variants. Our main objective is to have an intermediate repre-

sentation of assembly programs that aids in supporting various program analysis

approaches such as generating data dependence graphs (DDGs) (presented in Sec-

tion 4.3) and control flow graphs (CFGs) (presented in Chapter 6); moreover, this

approach allows us to investigate the semantic properties of code independently of

the target architecture. This means we can employ source code analysis techniques

on low-level code. The aim of AAPL is to significantly improve code analysis while

preserving code semantics.
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4.1.1 Syntax

Programs written in AAPL consist of a sequence of statements. Every program

statement contains a command C and, optionally, a label L. We define program

registers to be a finite set of assembly registers that represent a small fixed set

of word-sized containers used during program simulation. We define PC as the

program counter register to hold the memory address of the next command to be

executed and SP as the stack pointer register, which points to a region of memory.

Our programming-language semantics are similar to those presented in [CC02] and

[PCJD07], except that our language treats memory addresses as unsigned integer

numbers Z⊥ and assumes they hold either integer values or commands.

Figure 4.1 on the next page describes the programming syntax of AAPL. A pro-

gram P is a set of commands ℘(C). There are two types of command in AAPL,

actions and conditional jump commands. An action command CA may perform

the following: evaluating an expression to a register (R := E ), loading the re-

sult of an expression into a memory location pointed to by a register, performing

the SKIP (i.e. nop) operation, or branching to another part of a program using

unconditional jump commands. An unconditional jump command may perform

jumps based on an expression value, a call by expression value and a return to a

memory location specified by the stack pointer SP . A conditional jump command

CB performs a jump to a location specified by the value of expression E when

the Boolean expression B evaluates to true (e.g. B̂[[B ]] = true). In Figure 4.1

on the following page, we let ρ describe the environment of program registers, in-

cluding the program counter, during program simulation. An environment ρ ∈ E
maps a register to its content value, i.e. ρ : R → Z⊥. Moreover, the memory in

the language describes the actual contents of the program environment. Program

labels L hold the locations of program code in the memory. We let API denote

the set of system calls in the AAPL language and ∀api ∈ API, we have an output

component api.out, which represents the set of registers that are updated when

evaluating a system call. We define a function sys env to map the set of registers

R ∈ api.out to their new (pre-defined) values n after evaluating an API command.

4.1.2 Semantics

The semantics of the programming language is shown in Figure 4.2 on page 64. The

semantics of actions describes how the memory and the environment pair (ρ′,m ′)
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R ::= {PC , SP , r0 , r1 , . . .} (program registers)

API ::= {api1, api2, . . .} (system calls)

E ::= n | L | R | ∗E | E1 op E2 (op ∈ {+,−,×, /, ...})
B ::= true | false | E1 < E2 | ¬B1 | B1 && B2 (boolean expressions)

A ::= R := E | ∗R := E | ∗n := E | ∗(E1 op E2) := E | API (program actions)

| CALL E | RTN | SKIP | JMP E | POP E | PUSH E

C ::= CA := A (action command)

| CB := B JMP E (conditional command)

P ::= ℘(C)

B = {true, false} (truth values)

n ∈ Z (unsigned integers)

C ∈ C (commands)

ρ ∈ E = R→ Z⊥ (environments)

m ∈M = Z→ Z⊥ ∪ C (memory)

ξ ∈ X = E ×M (execution contexts)

S = C×X (program states)

Figure 4.1: Instruction syntax and value domain of the Abstract Assembly
Programming Language (AAPL).

of the next command to be executed in the program is evaluated. The simulation

of program P = ℘(C) (i.e. a set of commands) starts by evaluating the initial

command of P that is specified by the program counter PC in Figure 4.1. PC is a

special register that always points to the memory location of the next command,

to be executed, in the program. That is, a sequence of program commands stored

in the memory are reachable through simulation via memory locations pointed to

by PC . The memory location values are computed during program simulation

and assigned to PC . Thus, PC should hold a valid memory address. For instance,

when executing a call command, the location of the next command in the program

is stored in the stack memory indexed by SP . Also, in the semantics of the return

command (RTN), the program counter retrieves the location of the next command

to be executed from the stack.

The behaviour (i.e, the set of traces) of a program during simulation is described

using the set of execution contexts X , where X = E ×M is a set of pairs each

composed of an environment and a memory of the program being simulated. The
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Semantics of Arithmetic Expressions:

Ê : E×X → Z⊥

Ê[[n]]ξ = n

Ê[[L]]ξ = L

Ê[[R]]ξ = ρ(R)

Ê[[∗E ]]ξ = if (∃n Ê[[E ]]ξ ∈ Z) then m(n); else ⊥

Ê[[E1 op E2]]ξ = if (Ê[[E1]]ξ ∈ Z and Ê[[E2]] ∈ Z) then Ê[[E1]]ξ op Ê[[E2]]ξ; else ⊥

Semantics of Actions:

Â : A×X → X

Â[[SKIP]]ξ = ξ where ξ = (ρ,m)

Â[[R := E ]]ξ = (ρ′,m) where ξ = (ρ,m) and ρ′ = ρ(R 7→ Ê[[E]]ξ)

Â[[∗R := E ]]ξ = (ρ,m ′) where ξ = (ρ,m) and m ′ = m(ρ(R) 7→ Ê[[E]]ξ)

Â[[∗n := E ]]ξ = (ρ,m ′) where ξ = (ρ,m) and m ′ = m(n 7→ Ê[[E]]ξ)

Â[[∗(E1 op E2 ) := E ]]ξ = (ρ,m ′) where ξ = (ρ,m) and m ′ = m(Ê[[E1 op E2]]ξ 7→ Ê[[E]]ξ)

Â[[JMP E]]ξ = (ρ′,m) where ξ = (ρ,m) and ρ′ = ρ(PC 7→ Ê[[E]]ξ)

Â[[CALL E]]ξ = (ρ′,m ′) where ξ = (ρ,m), ρ′ = ρ(PC 7→ Ê[[E]]ξ,SP 7→ SP − 1) and

m ′ = m(ρ(SP − 1) 7→ ρ(PC + 1))

Â[[RTN]]ξ = (ρ′,m) where ξ = (ρ,m) and ρ′ = ρ(PC 7→ m(ρ(SP)),SP 7→ SP + 1)

Â[[PUSH E]]ξ = (ρ′,m ′) where ξ = (ρ,m), ρ′ = ρ(SP 7→ SP − 1) and m ′ = m(ρ(SP − 1) 7→ Ê[[E]]ξ)

Â[[POP E]]ξ = (ρ′,m ′) where ξ = (ρ,m), and

(ρ′,m ′) =

{
ρ′ = ρ(SP 7→ SP + 1),m ′ = m(Ê[[E]]ξ 7→ m(ρ(SP))) if E := ∗E
ρ′ = ρ(SP 7→ SP + 1, Ê[[E]]ξ 7→ m(ρ(SP)), m ′ = m otherwise

Â[[API]]ξ = (ρ′,m) where ξ = (ρ,m) and ρ′ = ρ(R 7→ n), ∀R ∈ API.out and

sys env : API → n

Semantics of Commands:

Ĉ : S → Σ(S) (determines transition relation between program states)

Ĉ[[CA]]ξ = (ξ′,C ′) where ξ = (ρ,m), ξ′ = Â[[A]]ξ and

C ′ =

{
m ′(ρ′(PC )) if A := JMP ∪ CALL ∪ RTN

m(ρ(PC + 1)) otherwise

Ĉ[[CB ]]ξ = (ξ′,C ′) where ξ = (ρ,m), and

(ξ′,C ′) =

 ξ′ = (ρ′,m), ρ′ = ρ(PC 7→ Ê[[E ]]ξ), and

C ′ = m(ρ(Ê[[E ]]ξ)) if B̂[[B ]]ξ = true
ξ′ = ξ,C ′ = m(ρ(PC + 1)) otherwise

Figure 4.2: Semantics of AAPL.

simulation trace of a program is a sequence of program states representing the eval-

uation of the binary executable’s environment (i.e. registers and memory) during

the simulation of the instructions in a program run. More precisely, in AAPL, we

refer to the program execution state and execution trace as the program state and

simulation trace, respectively.

Definition 4.1 (Program State). The program state s ∈ S is a pair s = (C, ξ)
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P :
1 r0:=n

2 r1:=w

3 Loop: (r0 >= 3) JMP Exit

4 *r1:=*r0+4

5 r0:=r0+1

6 r1:=r1+1

7 JMP Loop

8 Exit: JMP End

(a)

tx :
s0 r0:=1, (ρs0 ,ms0)

s1 r1:=2, (ρs1(r0 7→ 1),ms1)

s2 Loop: (r0 >= 3) JMP Exit, (ρs2(r1 7→ 2),ms2)

s3 *r1:=*r0+4, (ρs3 ,ms3)

s4 r0:=r0+1, (ρs4 ,ms4(2 7→ (ms4(1) + 4)))

s5 r1:=r1+1, (ρs5(r0 7→ 2),ms5)

s6 JMP Loop, (ρs6(r1 7→ 3),ms6)

s7 Loop: (r0 >= 3) JMP Exit, (ρs7 ,ms7)

s8 *r1:=*r0+4, (ρs8 ,ms8)

s9 r0:=r0+1, (ρs9 ,ms9(3 7→ (ms8(2) + 4)))

s10 r1:=r1+1, (ρs10(r07→ 3),ms10)

s11 JMP Loop, (ρs11(r17→ 4),ms11)

s12 Loop: (r0 >= 3) JMP Exit, (ρs12 ,ms12)

s13 Exit: JMP End, (ρs13 ,ms13)

(b)

Figure 4.3: A sample program in AAPL and its simulation trace. A sample
program P ; A trace on program input x: n = 1, w = 2

composed of the next command C to be evaluated in the execution context ξ. The

set of states, denoted by S = (C×X ), describes both the program command and

the execution context of the program in each state.

Given a state s ∈ S, the transition function Ĉ(s) provides the set of possible

successor states of s, that is, Ĉ : S → ℘(S ) specifies the transition relation between

states. We let S[[P ]] be the set of states of a program P , then we have S[[P ]] =

X [[P ]] × P . The transitional semantics Ĉ[[P ]] ∈ S[[P ]] → ℘(S[[P ]]) of a program P

is defined as: Ĉ[[P ]](c, ξ) = {(c′, ξ′) ∈ Ĉ((c, ξ)) | c′ ∈ P, ξ′ ∈ X [[P ]]}.
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Definition 4.2 (Simulation Trace). A trace tx ∈ S∗, where S∗ is the set of

finite sequences of states over S, consists of a sequence of states < s0, . . . , sn >

of length |tx| ≥ 1 that has been produced by simulating the program P with a

given program input x at initial state s0 (i.e. x is the initial execution context

ξ0 in which the first command in P is to be evaluated with) such that for all i,

1 ≤ i ≤ n : si ∈ Ĉ(si−1).

That is, for a given state s = (Cs, ξs), Ĉ(s) provides the next program state s ′

by evaluating the program command Cs with the current execution context ξs at

the state s [CC02]. For instance, for the jump command, JMP E , the arithmetic

expression E in the current command must be evaluated and the result is assigned

to the program counter PC that represents the location of the next program com-

mand (i.e. C ′ = m(ρ(PC ))). Figure 4.3 on the previous page shows a fragment

of a malware routine written in AAPL and its single simulation trace tx, which

represents the program syntax, environment and memory evolution. Note that tx

begins with the initial state s0 = (Cs0 , ξs0), where ξs0 = (ρs0(n 7→ 1, w 7→ 2),ms0),

and ends with the final state s13 = (Cs13 , ξs13).

4.2 Overview of Slicing Approaches

Since code obfuscation is used in most new malware instances, collected traces from

malicious code simulation may contain some elements of code mutation, such as

irrelevant code instructions. Therefore, it is less effective to construct a semantic

signature of a malware family from an entire trace of the program simulation when

trying to detect obfuscated variants of the same malware. A possible solution to

this problem is to incorporate a dynamic slicing approach when constructing a

semantic signature from a simulation trace. Dynamic slicing, introduced by Korel

and Laski [KL88], has been available for almost two decades. The idea of this

approach is that program dependencies that are exercised during a program run

are captured precisely and collected in the form of a program dynamic dependence

graph. Then, dynamic program slices are produced by traversing the dynamic de-

pendence graph. Since the objective of dynamic slicing is to determine a relevant

subset of executed program statements that can potentially contribute to the com-

putation of the value of a variable during a program run, short and precise slices

of program traces are desired for producing semantic signatures in malware detec-

tion. Although many different techniques have been introduced in various dynamic



Chapter 4. Trace Slicing 67

slicing algorithms [KY94, BGS+01, Far02, ZGZ03, MM06, HMK06, WR07], there

are two main challenges to adopting these algorithms for our case. First, only lim-

ited efforts have been made in developing a formal guarantee for the correctness

of existing dynamic slicing algorithms [MM06]. Second, conventional algorithms

produce dynamic slices that are usually a subset of the original program code;

however, when producing semantic signatures for malware, our interest lies in

producing trace slices that are a subtrace of the simulation trace and not an ex-

ecutable sub program of the machine code. Therefore, an efficient and provably

correct trace-slicing algorithm for executables that includes dynamic program slic-

ing [KL88, AH90, ADS91b] is required.

4.3 The Trace-Slicing Algorithm

Given a program input x (i.e. initial execution context) and a program P , a

simulation trace tx is generated by simulating P with the input x. The simu-

lation trace tx of a program captures the semantic information of the program

instructions’ evaluations, which can later be used by our slicing algorithm. The

information that the trace holds consists of both the command (the syntax ) trace

and the execution context reference (the semantics) trace. For example, tx =

< s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13 > is a program simulation trace

when the program in Figure 4.3 on page 65 is simulated on the input data (the

initial execution context at s0) n= 1,m= 2. A simulation trace is a sequence of

program states. Notationally, each program state in a trace is subscripted with

its position. We let POSt denote the set of positions of program states S in a

trace t. Also, in order to map a particular position (i.e. a state index) to a state

in t and vice versa, we define two auxiliary functions: State : POSt → S and

Index : S → POSt. The function State allows one to produce the program state

which POSt refers to. The function Index provides the position index POSt of a

state in the trace. Also, we define functions to extract information from states,

i.e. we let Command : POSt → C and Context : POSt → X denote the map-

ping from a position index in the simulation trace t to the command and the

execution context, respectively, if they exist in that particular state. Our trace-

slicing method differs from traditional slicing algorithms found in the literature

[AH90, KL88, MM06], where the control flow graph of the program is statically

analysed. In other dynamic slicing methods [MMS02, MMS03], the program de-

pendence graph (PDG) is constructed as an intermediate program representation



Chapter 4. Trace Slicing 68

to compute dynamic slices. However, the algorithm that we present, Trace Slic-

ing, does not require the computation of either control dependencies or the PDG.

Instead, our trace-slicing algorithm involves the following:

• on-the-fly computation of data dependence edges from the trace, construct-

ing a dynamic data dependency graph (DDG),

• performing the backward slice for a given trace-slicing criterion.

Therefore, the trace slice, which is computed from the program simulation trace, is

the transitive closure of data dependencies in the DDG relevant to the trace-slicing

criterion. The details of our trace-slicing algorithm are presented in the following

subsections.

4.3.1 Capturing Memory References and Assignments

The possible presence of indirect memory accesses (dereferencing) causes complex

data-dependence relationships between states in a simulation trace. In the litera-

ture, many studies have addressed static program slicing for high-level languages

(e.g. C) in the presence of array or pointer variables [CWZ90, HPR89, OSH01,

LB97]. Also, in the area of dynamic program slicing, the approach of Agrawal et

al. uses a dynamic dependence graph to resolve use and def sets in terms of mem-

ory cells and composite variables, and to detect inter-statement dependencies in

C [ADS91a]. The possibility of accessing memory locations using several methods

(i.e. aliasing), in low-level languages such AAPL, makes the computation of variable

definition and use in code statements more difficult. For example, unlike high-level

programming languages, in AAPL a memory location may be accessed at a given

statement using syntactically different indirect access methods, e.g. dereferencing

a memory location via an immediate offset, a register or one or two registers with

an offset.

Therefore, syntactic information is not sufficient because of these methods, and

the set of memory locations that can be accessed through a reference must be de-

termined before the computation of definition-use associations. Moreover, because

an assignment or use through the dereference of a memory location can potentially

use the value of one or two registers, or assign a value to, or use the value of, a

memory location, these memory assignments and uses must be treated differently
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from direct (i.e. syntactic) assignments. A reference to ∗r (the syntax of AAPL

shown in Figure 4.2 on page 64.) is a reference to a register r and a possible

reference to any memory location that r might point to. To capture such effects,

we adopt the technique in [LB97] to develop two cases where memory reference

and memory assignment can be determined for each program state in a trace:

Memory Reference (use)

Suppose we have a statement at position i in a trace such as:

i : r0 = ∗D + n

where n is a constant and ∗D is an operand dereferencing to a memory location

in a program state indexed by i, i.e. msi(D) where State(i) = si = (ρsi ,msi). Let

ruse(D) be a function that returns the set of registers that are used in expression

D to compute the memory location value. To compute the references at i, we take

a union of the memory address computed at runtime m(D) and the set of registers

used in D, ruse(D), that is:

use(i) = msi(D) ∪ ruse(D)

Algorithm 4.1 on page 72 shows the pseudocode for computing the set of registers

and memory addresses used (the registers or memory values are used) in expression

exp at position i in a simulation trace of an AAPL program. The algorithm has

one routine find use, which accepts two input parameters: i and exp. In order

to evaluate the expression exp at trace position i and compute the set of variables

that are used at i, six cases are implemented in the routine. The first two if

conditions (Lines 7 and 10) handle the base cases where the expression is either a

register or a memory address (a dereferenced expression). In the first base case the

routine returns the register as the used variable in the expression. For the second

case, the routine returns the computed memory address and the set of registers

that are used for computing this memory address in the dereferenced expression

∗E. The other cases in the algorithm (Lines 13, 16, 22 and 25) analyse operation,

assignment, branch and boolean expressions using recursive calls. Note that for

an assignment expression, the left-hand expression LE is only evaluated if it is

a dereferenced operand ∗E where the routine ruse(E) (in line 18) is called to

extract the set of registers used in E. Finally, the algorithm returns the list U of
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the registers and memory addresses that are used at exp. Note that Algorithm 4.5

on page 80 (introduced in Section4.3.3) uses the routine find use for definition-use

analysis.

Memory Assignment (define)

Suppose we have a statement at position i in a trace such as:

i : ∗D := r0 + n

This statement computes a value by adding the value of r0 to the constant n. The

result is stored at a memory address specified by D. Thus, the definition in the

statement at i is the memory address computed when the assignment is executed:

def(i) = msi(D)

Algorithm 4.2 on page 73 shows the pseudocode for computing the register or the

memory address defined (the register or memory location value is assigned a value)

in expression exp at position i in a simulation trace of an AAPL program. The

function in Algorithm 4.2 on page 73 accepts two input parameters, i and exp, and

returns the program variable (i.e. a register or a memory address) that is defined for

the given expression exp. The function accepts an assignment expression (in line

4) that consists of a left-hand expression, LE, and a right-hand expression, RE.

Then according to the AAPL syntax in Figure 4.1, two cases are implemented for the

defined program variable, where LE is either a register R or a memory address

ms)i(E). Note that for a memory address, the function returns the computed

memory address dereferenced by E at the current state si. Both Algorithms 4.1 on

page 72 and 4.2 on page 73 will be used to compute the definition-use associations

between states in Algorithm 4.5 on page 80.

Example 4.1. The sets of memory addresses and registers referenced (their values
are used) and defined at each program state in the simulation trace in Figure 4.3
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are as follow:

tx def use

s0 {r0} φ

s1 {r1} φ

s2 φ {r0}

s3 {ms3(r1)} {r0, r1,ms3(r0)}

s4 {r0} {r0}

s5 {r1} {r1}

s6 φ φ

s7 φ {r0}

s8 {ms8(r1)} {r0, r1,ms8(r0)}

s9 {r0} {r0}

s10 {r1} {r1}

s11 φ φ

s12 φ {r0}

s13 φ φ

4.3.2 Preliminary

We present a few definitions that are necessary for our trace-slicing algorithm

(TSAlgo). In these definitions, and throughout the rest of the chapter, we use the

term state nodes to denote program states in a trace. Since our proposed trace-

slicing method could be applied to a program trace that may have been generated

by the simulation of the program, we use simulation trace and execution trace

interchangeably. Also, AAPL uses registers, r (i.e. the environment ρ(r)) and direct

memory locations (i.e. addressing memory locations with an immediate offset,

a register, or a register with an offset) for data manipulations during program

simulation, such as retrieving and storing data from memory.

We use the term data manipulator to denote registers and memory locations that

are used to process the program data.

Definition 4.3 (Data Manipulators). In AAPL, a data manipulator dm is a pro-

gram register or memory location used to perform data definition and manipulation

operations. The value of dm is described as either the environment value, ρ(dm)

in the case of a register, or the memory value m(dm) in the case of a memory

location, as described by the semantics of AAPL shown in Figure 4.2 on page 64.
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Algorithm 4.1: find use(i,exp) finds references in exp at position i in a sim-
ulation trace.

1: Input: A state node index i and
2: expi is an expression at i
3: Output: The set of registers and memory addresses that are used at position i

4: begin find use(i,exp)
5: initialise the set to empty:
6: Ui → {∅}
7: if exp is register then
8: return U → {exp}
9: end if

10: if exp is ∗E (memory address) then
11: return U → msi(E) ∪ ruse(E)
12: end if
13: if exp is E1 op E2 then
14: return U → find use(i,E1) ∪ find use(i,E2)

15: end if
16: if exp is LE := RE (assignment) then
17: if LE is ∗E then
18: U → ruse(E)
19: end if
20: U → U ∪ find use(i,RE)
21: end if
22: if exp is JMP E or CALL E (unconditional jump) then
23: U → find use(i,E)
24: end if
25: if exp is E1 bop E2 JMP E3 (conditional jump) then
26: U → find use(i,E1) ∪ find use(i,E2) ∪ find use(i,E3)

27: end if
28: return U
29: end find use(i,exp)

During program simulation a data manipulator can be defined or used at any point

via a state node (e.g. assignment or memory update operations). We define an

auxiliary function man[[t]]
def
= {data manipulators occurring in t} to provide the set

of data manipulators that are defined and used in a simulation trace. For instance,

the set of data manipulators that occur in tx in Figure 4.3 on page 65 is man[[tx]] =

{r0, r1,ms3(r0),ms3(r1),ms8(r0),ms8(r1)}. In order to capture data dependency

information in a simulation trace, the following definitions are introduced.

Definition 4.4 (Definition Position def(p)). Let def(p) be the set of data manip-

ulators whose values are defined at position p in a simulation trace t.

Definition 4.5 (Use Position use(p)). Let use(p) be the set of data manipulators

whose values are used at position p in a simulation trace t.
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Algorithm 4.2: find def(i,exp) finds definitions at position i in a simulation
trace.

1: Input: A state node index i and an expression exp at i
2: Output: a register or a memory address that is defined in exp at position i

3: begin find def(i,exp)
4: if exp is LE := RE (assignment) then
5: if LE is register then
6: return LE
7: end if

8: if Lexp is ∗E (memory address) then
9: return msi(E)

10: end if
11: end if
12: end find def(i,exp)

Definition 4.6 (Def-clear Path). Given a simulation trace t, and a data manip-

ulator dm ∈ man[[t]], ∀i, k ∈ POSt and i < k. The path < i, ..., k > is a Def-clear

path w.r.t dm iff ∀j ∈< i, ..., k >, dm /∈ def(j).

Definition 4.7 (Recent Definition Position dpi(dm)). For a simulation trace t,

let i∈POSt and dm be a data manipulator dm ∈ man[[t]]. The function dpi(dm)

computes the position of the most recent data definition of dm with respect to any

given point, i, in t. dpi(dm) = k iff ∃ < k, ..., i >, dm∈def(k) and < k + 1, ..., i >

is a Def-clear path or k = 0 (no definition exists for dm).

The most recent definition of a data manipulator dm can be computed as a pro-

gram is simulated (i.e. during the simulation of the program). dpi(dm) allows one

to keep track of positions of state nodes that define dm from any given index i in

a trace. For instance, consider the trace tx in Figure 4.3. The recent definition

position of the data manipulator r0 ∈ man[[t]] from state s12 is dp12(r0) = 9 as r0

is defined at position 9 (i.e. r0 ∈ def(9) in Example 4.1 on page 70), and there

has been no subsequent definition up to position 12.

Definition 4.8 (Dynamic Data Dependence si
ddd→ sj). In a simulation trace t, let

i, j∈POS where i < j and si, sj ∈ t. sj is (directly) data dependent on si iff there

exists a data manipulator dm∈DM in t such that:

• when dm is a memory location dereferenced by operation ∗(A), i.e. dm =

mj(A), then:

1. mj(A) ∪ ruse(A) ∩ use(j) = φ, and
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2. dpj(mj(A))= i or ∃r∈ruse(A), dpj(r)= i

• when dm is a register, i.e. dm = r, then:

1. r ∈ use(j), and

2. dpj(r)= i

Example 4.2. Consider the trace tx in Figure 4.3; some data dependencies be-

tween states can be established using Definition 4.8 as follows:

• s8 is data dependent on s3, s3
ddd→ s8, because the data manipulator ms8(r0)

at index 8 in tx is ms8(r0) ∈ use(8) and dp8(ms8(18)) = 3; note that at state

s3 the memory location ms3(r1) = ms3(2) = m(2) is defined and then it has

been used at state s8, i.e. ms8(r0) = ms8(2) = m(2).

• s3 is data dependent on s0, s0
ddd→ s3, since r0 ∈ ruse(ms3(r0)), r0 ∈ use(3)

and dp3(r0) = 0.

• s7 is data dependent on s4, s4
ddd→ s7, as register r0 ∈ use(7) and dp7(r0) = 4.

Note that the second condition in Definition 4.8 ensures that a data manipulator

is not redefined after position i in the trace. Due to Definition 4.7, the most

recent definitions of program data manipulators are captured during the program’s

simulation.

During the simulation of a program with program input, data dependence edges

and a dynamic data dependence graph can be constructed from the trace and in-

formation gathered (e.g. the recent definition positions of the data manipulators).

Definition 4.9 (Data Dependence Edge). A data dependence edge is an ordered

pair of positions of program states in a trace. A directed edge de is constructed

between a pair of positions of state nodes in a trace, s.t. de=(j, i), iff si
ddd→ sj.

Definition 4.10 (Data Dependence Graph (DDG)). A data dependence graph

is a set of data dependence edges that represents the data dependencies between

state nodes in a program execution trace.

Since we are interested in slicing simulation traces of assembly code, the definitions

below capture the notion of the trace slice.
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Definition 4.11 (Trace-Slicing Criterion (tsc)). Let t be a simulation trace of

an AAPL program P simulated on input x. A trace-slicing criterion is a pair,

tsc=(dm, k), where dm ∈ man[[t]] is a program data manipulator, and k ∈ POSt
is a state node position in the simulation trace t.

Definition 4.12. DDGtsc is the set of data dependence edges obtained from DDG

by computing the backward reachability in DDG from the position specified by

dpk(dm) for dm in the trace-slicing criterion tsc.

Definition 4.13 (Trace Slice). A trace slice of an AAPL program simulation trace

t is a trace t′ that is a projection of t relevant to the value of the slicing criterion

of dm. That is, t′ is t less any state nodes not in DDGtsc.

A desired property of a trace slice is that it preserves the effect of the original

program trace on the data manipulator chosen at the selected point of interest

within the trace. Although any static data slice of a program can be computed by

pure static analysis, the computation of a trace slice requires evaluation informa-

tion. The evaluation information is generated as the program is simulated with a

given program input. This information provides the control flow path the program

follows (while it is under the simulation) to reach the specific state of the program

command in the slicing criterion. Definition 4.13 captures the set of all reachable

program states from position k in the trace t that directly or indirectly affect a

slicing-criterion data manipulator dm in tsc. Thus, the trace slice preserves the

program’s behaviour with respect to dm and removes any irrelevant state nodes

from t, producing a shorter trace slice (a proof of this property is presented in

Section 4.4). This definition will be applied by our algorithm.

4.3.3 Overview of the Trace-Slicing Algorithm

Dynamic slicing algorithms typically first carry out all the static computation of

the control dependencies and then construct the dynamic program dependence

graph (DPDG) to calculate the slice. The generated slices are program state-

ments that may be a subset of the original program [KL88, AH90]. Our goal is

to slice the simulation traces of a program under inspection and to generate a

trace slice that is a subsequence of the original trace. Given a simulation trace t

(produced by the semantic simulator) and for all data manipulators man[[t]], the

semantic trace-based malware-detection system in Chapter 5 makes several calls
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to the trace-slicing algorithm to compute trace slices. That is, in each slicing call,

a criterion tsc = (dm, k) is passed to the slicing algorithm where dm ∈ man[[t]].

Then the set of computed trace slices can be used to construct semantic signatures

for detecting malware variants. Moreover, we observe that the trace captures the

full control flow and data manipulation information of the program’s simulation

for a given input. Therefore, a program trace abstracts away the effect of control

dependencies and contains the complete path followed during the simulation in

which the value of the tsc data manipulator is computed. For this reason, we

propose a precise trace-slicing algorithm that does not perform any static evalu-

ation of control dependencies or construct a PDG. We refer to our algorithm as

the trace-slicing algorithm (TSAlgo).

TSAlgo has two main steps (procedures) when producing a trace slice:

1. The DDG computation (procedure find data dep edge in Algorithm 4.3

on page 78). This step is performed once and the DDG can be used for

all slicing calls. Also, the step can be accomplished either during (on-line)

or after (off-line) the program simulation. In our system (Chapter 5), the

semantic simulator retrieves the simulation trace of a program and the DDG

information is computed once and the DDG is then available for all slicing

calls.

2. The trace-slice computation (procedure compute slice in Algorithm 4.4 on

page 78). Once the DDG is constructed and a call is made by our detec-

tion system, a trace slice is computed from the simulation trace using the

DDG information with respect to a given slicing criterion (Definitions 4.12

and 4.13).

The objective of the procedure find data dep edge in Algorithm 4.3 on page 78

is to establish dynamic data dependence edges between a given state and other

states in a given trace tx. The algorithm accepts two parameters as input: a sim-

ulation trace tx and a state index j for which the algorithm computes dependence

edges. The algorithm starts, in line 9, with a for loop, which extracts the set of

data manipulators that are used in the current position j; it then determines the

positions of the previous states where the data manipulators are defined. Finally,

the algorithm creates a dependence edge, between each state and j, and adds the

edge to the set of dynamic dependence edges DDG in lines 11 and 12.
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The objective of the procedure compute slice in Algorithm 4.4 on the next page

is to compute the backward trace slice t′ for a given simulation trace tx with respect

to a trace slice tsc. The algorithm uses the DDG of the simulation trace, which

is produced by applying Algorithm 4.3 on the following page. The procedure

compute slice sets all states in the trace as not marked and not visited (line 5)

and starts processing the DDG to find outgoing dependence edges from the slicing

criterion position k in tx. The backward traversal in the trace and the creation

of the slice are implemented as a while loop (lines 7 to 13). For each visited

state (through an outgoing data dependence edge) the procedure adds the state

to the slice and marks all states (to be visited later) that can be reached from the

current state. Finally, in line 14, the procedure adds the state that preserves the

final value of the slicing criterion data manipulator in the slice.

TSAlgo employs the dynamic definition-update analysis of the data manipulators

to recover dynamic data dependencies between program states. The algorithm (in

Algorithm 4.5 on page 80, step 1, line 7) performs a dynamic definition-update of

all data manipulators in each state node using the dp() function (Definition 4.7).

This allows the algorithm to compute new data dependencies in a dynamic fashion

from the trace and then to construct the DDG.

The construction of a DDG with dynamic definition-update analysis of data ma-

nipulators allows the production of a precise trace slice for any data manipulator

at any state node position in the trace. For example, if we need a dynamic data

slice for a value of a data manipulator dm at position p in the simulation trace, we

begin traversing the computed DDG from the definition position of dm, which is

recovered from the definition-update analysis (i.e. dpp(dm)). Thus, the algorithm

needs to traverse the simulation trace only once to compute data dependencies

during the computation of any trace slice.

In essence, this algorithm produces a short trace slice that consists of only those

program states in the trace tx that contribute to the computation of the value of

the slicing criterion.

4.3.4 Description of the Trace-Slicing Algorithm

The trace-slicing algorithm processes simulation traces of an assembly-level pro-

gram. For a given trace, it analyses the program state by state and generates the

DDG. Then a slice is computed with respect to the slicing criterion.
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Algorithm 4.3: The construction of DDG in TSAlgo.

1: Input: a simulation trace tx and an index j of a state node in the trace
2: Output: a set of dynamic dependence edges DDG for tx
3: procedure find use in Algorithm 4.1 on page 72.

4: procedure use(i)
5: find all uses in command ci at location i:
6: return find use(i,ci)
7: end procedure

8: begin find data dep edge(j)
9: for all dm∈use(j) do

10: if ∃z = dpj(dm), z ∈ POSt s.t. z < j then
11: create dynamic data dependence edge de=(j, z)
12: DDG→ DDG ∪ {de}
13: end if
14: end for
15: end find data dep edge(j)

Algorithm 4.4: The computation of the slice in TSAlgo.

1: Input: a simulation trace tx, a set of dynamic dependence edges DDG and a trace
slicing criterion tsc = (dm, k)

2: Output: a trace slice t′ for tx

3: begin compute slice()

4: t′ → ∅
5: Set all state nodes in tx as not marked and not visited
6: Set sdpk(dm) ∈ tx as a marked and not visited state
7: while there exists a marked and not visited state in tx do
8: Select marked and not visited state sq ∈ tx
9: Set sq as visited in tx and t′ → t′ ∪ {sq}

10: for all outgoing dep. edges from sq to some state si in DDG s.t. de=(q, i) do
11: find and mark si ∈ tx
12: end for
13: end while
14: Include the state sdpk(dm)+1 that contains the final value of slicing criterion dm
15: t′ → t′ ∪ {sdpk(dm)+1}
16: end compute slice()

During the simulation (in Chapter 5) of the program with program input x, the

execution contexts and commands are stored as state nodes in a simulation trace tx.

As the simulation trace is captured, TSAlgo uses only data dependence relations

that are established between state nodes in the trace for identifying a trace slice.

The data dependence associated with each command in a state is determined when

a state node of the command is processed in the DDG construction step. New

dependence edges between state nodes, are only established when the associated

dynamic data dependence exists. That is, as dependence edges are established,
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the DDG for a particular tx is created. Let us assume that a dynamic outgoing

dependence edge, de, is established from a state node sj at position j with the

existing state node si in the trace tx (i.e. i < j). Then the updated DDG after

identifying de is DDG → DDG ∪ {de}, where de= (j, i). After constructing the

DDG for the trace tx, our algorithm (in step 2, line 14) computes the backward

reachable subgraph with respect to any given tsc, and all state nodes that appear

in the reachable subgraph are contained in the trace slice. That is, the trace slice is

computed by traversing only the relevant dynamic dependence edges in the DDG.

Algorithm 4.5 on the next page shows the pseudocode for the trace-slicing al-

gorithm. It constructs the DDG for a simulation trace tx by computing data

dependence edges between state nodes in tx. Then the algorithm computes the

trace slice for a given slicing criterion (e.g. tsc= (dm, k)). We consider that the

simulation trace is constructed (by our semantic simulator) and it is provided as

an input to TSAlgo. In the first step of Algorithm 4.5 on the following page,

data dependence edges are computed for each state in the trace. This part of

the algorithm is a while loop (lines 9 to 13). On each iteration of the while loop,

a new state node sj is selected and de is computed for j. In line 11, the pro-

cedure find data dep edge(sj) identifies data dependence edges by finding the

state node at position dpj(dm) that defines data manipulator dm, which is used

at position j. The pseudocode of find data dep edge is listed in Algorithm 4.3

on the previous page. If there exists a definition position node dpj(dm) in the

trace tx such that dpj(dm) < j then the procedure creates a dependence edge

de= (j, dpj(dm)) and includes it in the set DDG. The process of identifying data

dependencies for state nodes in a trace and creating dependence edges in the

DDG continues until all states in the trace are processed. Finally, the procedure

compute slice, line 15, performs a backward slice and produces the sequence of

state nodes in tx that are reachable from the slicing criterion via de in the DDG.

In order to include the final execution context of the last evaluated command in

the trace slice, the procedure includes (in the trace slice) the state whose position

in the original trace is one more than the recent definition position of the slicing

criterion data manipulator, i.e. dpk(dm) + 1 (given that tsc= (dm, k)). This en-

sures that the last state in the trace slice preserves the final execution context of

the original trace (the program’s behaviour) with respect to the slicing criterion

data manipulator. The pseudocode of compute slice is in Algorithm 4.4 on the

preceding page.
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Algorithm 4.5: Trace-Slicing Algorithm (TSAlgo).

1: Input: a simulation trace tx and a trace slicing criterion tsc = (dm, k)
2: Output: a trace slice t′

3: procedure find data dep edge(j) in Algorithm 4.3 on page 78.
4: procedure compute slice() in Algorithm 4.4 on page 78.
5: DDG: a set of dynamic dependence edges

6: begin TSAlgo

7: step 1: construct DDG only once.
8: start at index j = 0 in tx:
9: while there exists a state sj in tx do

10: compute data dependence edges for sj :
11: find data dep edge(j)
12: j++
13: end while

14: step 2: for each call (a slicing query made by our detection system) w.r.t tsc =
(dm, k), compute the slice:

15: compute slice()

16: end TSAlgo

Example 4.3. We illustrate the working of TSAlgo with the aid of the sample

AAPL program in Figure 4.3 on page 65 and its simulation trace t in Figure 4.3

on page 65. When Algorithm 4.5 is applied to tx for dm= r0 at position k = 13

and for dm= ∗ r1 at position k = 8 (in a different slicing query), the DDG, and

the trace slices t′ and t′′ are computed (w.r.t. ∗r1 and r0, respectively) as shown

in Figure 4.4 on the following page. The trace slice t′′ for r0 at position 13 in tx

is computed in the following way:

After the initialisation steps in compute slice (lines 4–6 of Algorithm 4.4 on

page 78), all state nodes in the trace are set as not marked and not visited, the

slice set is empty and the algorithm marks the most recent definition node of r0

(i.e. dp13(r0) = 9). After the first iteration of the while loop, t′′ = s9 and the

following state is set as marked and not visited in tx in line 7: this is {s4} because

it is reachable from s9 in the DDG of Figure 4.4 on the following page. After

the second iteration of the while loop in line 7, the slice contains s9; s4 is set as

marked and as a not visited state in tx so far. The following is the outcome of the

remaining while loop iterations of Algorithm 4.4 on page 78:

• After the third iteration: t′′ = < s4, s9 > and marked and not visited state

nodes are tx={s0}.
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)
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)

s′6 r0:=r0+1, (ρs′6 ,ms′6
(3 7→ (ms′3

(2) + 4)))

t′′ :
s′′0 r0:=1, (ρs′′0 ,ms′′0

)

s′′1 r0:=r0+1, (ρs′′1 ,ms′′1
(2 7→ (ms′′1

(1) + 4)))

s′′2 r0:=r0+1, (ρs′′2 ,ms′′2
(3 7→ (ms′′1

(2) + 4)))

s′′3 r1:=r1+1, (ρs′′3 (r0 7→ 3),ms′′3
)

(b)

Figure 4.4: DDG of the program P with respect to tx in Figure 4.3 on
page 65. t′ and t′′ are computed by Algorithm 4.5 on the preceding page w.r.t.
tsc = (∗r1, 13) and tsc = (r0, 8) (i.e. ∗r1 and r0 at positions 8 and 13 in tx,
respectively) (b). Note that the state indices in both slices are renumbered to

reflect the new sequencing in the trace slices.

• After the fourth iteration: t′′=<s0, s4, s9> and marked and not visited state

nodes are tx={φ}.

Finally, to show the final value of the slicing criterion data manipulator r0 is

preserved in t′′, the state which is at position dp13(r0) + 1 = 9 + 1 = 10 (in the

original trace) is included in t′′=<s0, s4, s9, s10>.

4.3.5 Implementation

The objective of the algorithm is to evaluate the trace-slicing algorithm using bi-

nary executables. In Chapter 5, a version of this implementation is developed for

slicing traces of an AAPL program in which the trace-slicing algorithm is incor-

porated into our trace-based malware detection system. In this experiment, we

implemented trace generation, DDG construction (step 1 of TSAlgo) and trace-slice



Chapter 4. Trace Slicing 82

binarybinary
PIN

Trace Collector

Slicing
 Instrumenter

DDG Collector

Trace SliceTrace Slice

Dynamic 

values

Dependence 

information

Instrumented

basic block

Basic block

VM Machine

Figure 4.5: Instrumentation tool infrastructure.

computation (step 2 of TSAlgo) presented in this chapter for malicious binary exe-

cutables. In addition, we also developed implementations of several slicing queries

for the slicing criterion data manipulators in the captured traces.

PIN DBI framework. There are many DBI frameworks; Nethercote [15] dis-

cusses eleven in detail. To carry out this experiment, we use Pin [LCM+05], a

dynamic instrumentation tool, to instrument the input binary programs and col-

lect execution traces. We selected the Pin framework because it is the best known

of the currently available DBI frameworks, and the one that provides the most sup-

port for virtual registers or register re-allocation and memory values. Pin makes

instrumentation tools, which are robust, relatively easy to write and has powerful

instrumentation mechanisms with reasonable performance. Pin is more suitable

for lightweight dynamic binary analysis (DBA) than other popular frameworks,

such as DIOTA [MRD02], Valgrind[Net04] and DynamoRIO [BGA03].

Tool Infrastructure. The experiment was carried out on a Core 2 Duo CPU

2.10 GHz machine with 4 gigabyte RAM and a 120 gigabyte hard disk, running

Ubuntu Linux (kernel 2.6.32-22). Since our algorithm is designed to handle ex-

ecutable malicious programs the malicious code must be instrumented and exe-

cuted. However, the execution of malicious code may cause damage to the host

machine. To make our approach practical, we use a virtual machine (VM) [VMw]

running on the host machine. A virtual machine is a closed environment, so that

the untrusted code is kept in an isolated operating system. The instrumentation

tool analyses a malicious executable in the isolated environment. Thus, the actual

host machine will not be damaged by running the programs. Figure 4.5 shows the
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Program Description
print tokens lexical analyser

gzip compression utility
bzip2 compression utility
flex lexical analyser generator
gap discrete algebra function

lychan virus
rst virus
telf virus

xone virus
binom virus

Table 4.1: Program samples used in the experiment.

main components of our tool. The dynamic profiling component of our system,

based on the Pin profiler, runs an executable program (the input) and collects the

sequence of program states, i.e. program commands that are executed during the

instrumentation and information about the environment of program registers and

memory locations (that are modified by the program commands). With Pin, we

can code our slicing algorithm in a single .cpp file then feed it to Pin to generate

our customised instrumentation tool. The slicing instrument accepts input code

from Pin, instruments it and returns the instrumented binary back to the Pin

framework. The instrumented binary is executed with the support of the slicing

instrumenter. Pin executes the input binary by calling the instrumentation rou-

tine in the instrumenter. The instrumentation routine instruments the basic block

provided and returns the instrumented code to Pin. Then Pin executes the instru-

mented code instead of the original one. Our tool intercepts output system calls

to collect dynamic information, and these are used to augment the execution trace

and to update the dynamic data dependence graph (DDG). Our tool [Alz10b] can

be run under Pin and accepts application binaries (currently, in order to use our

tool with Pin, the binaries have to be produced and run under Linux). The slicing

tool can then perform slicing on the collected trace.

Table 4.1 shows the programs we used for our experimentation. The first five

programs are medium-sized Linux utility programs and the remaining five are ex-

ecutable variants of malware programs (Linux-based viruses) downloaded from the

VxHeavens [Hea] website. The instrumentation program ran the executable pro-

grams and collected the sequences of program states, i.e. program commands that

are executed during the instrumentation and information about the environment

of program registers and memory locations (that are modified by the program
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Program Slicing Queries Slice Size Execution Time
MIN MAX AVG inst t trace t + slice t

print tokens 20 2 32 638 5.98 2.23
gzip 20 1 499 25 3.66 2.58
bzip2 20 2 818 41 6.05 4.15
flex 20 1 679 34 9.04 3.02
gap 20 2 1098 55 12.02 5.07

lychan 20 1 699 35 5.03 3.34
rst 20 3 437 22 5.76 2.51
telf 20 1 139 7 1.81 1.40

xone 20 1 299 15 2.89 1.67
binom 20 1 359 18 3.36 1.93

Table 4.2: Summary of overhead results.

commands). With Pin, we can code our slicing algorithm in a single .cpp file then

feed it to Pin to generate our customised instrumentation tool. Our tool [Alz10b]

can be run under Pin and accepts application binaries (currently, in order to use

our tool with Pin, the binaries have to be produced and run under Linux). The

slicing tool can then collect dynamic data dependence information from the instru-

mented application. For all programs tested in this experiment, the slicing criteria

we chose, at the end of each trace, are the set of defined program registers and

memory addresses (i.e. variables) in the trace. We limited the number of slicing

queries to 20 for each program run.

Improving Execution Time Performance. To reduce the overhead of col-

lecting trace information and the slicing computation, the tool removes program

states (and their instructions) from the trace if they do not contribute to the data

dependency. That is, the instrumentation executes these instructions to update

the flow of the execution and to find the next instruction to be executed, but it

does not include them within the trace and the DDG. Also, due to the presence of

loops, the trace data collection step may require significant space and time to run.

To reduce the time and space overheads, a termination condition is set. Once the

execution of the instrumented program reaches the termination threshold (e.g. the

number of program states recorded is over a threshold, h), the instrumentation

tool stops the instrumentation analysis of the running program. With the current

computing power, we specified the termination threshold to be around h = 1.5

million program state nodes (with their instructions) to be collected and analysed

by the slicing algorithm.
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Figure 4.6: A simulation trace configuration t and its slice t′. Each state
consists of an execution context and a command. States in t with solid and
dotted-line squares represent sliced states and non-sliced states, respectively.

Execution Time Overheads. Table 4.2 on the preceding page shows the over-

head of the implementation on the program examples. For each of the programs,

the slicer had computed 20 distinct trace slices at the end of the program’s exe-

cution. The minimum (MIN), maximum (MAX) and average (AVG) trace slice

sizes that were observed are given in the slice size column. The slice sizes are

measured in terms of program instructions (statements) sliced from the execution

trace. The key components in the implementation that contribute to the execu-

tion time are: inst t, the time required by instrumentation analysis (i.e. executing

program commands and capturing the trace), trace t, the time required by step 1

of TSAlgo (Algorithm 4.5 on page 80) to construct the DDG graph and slice t, the

time required by step 2 of TSAlgo to compute a trace slice. The average total time

required by all three components was around 8.35 seconds, based on an average of

20 executions consisting of 1.5 million program state nodes. In fact, the average

total inst t time for producing the same number of state nodes without trace t

and slice t was 5.57 seconds. Thus, running all three components increases the

average total (execution) time by 50% compared to running only the first com-

ponent (inst t). We believe that this incurred time is acceptable and does not

impose a severe limitation on a module within a semantic malware detector.
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4.4 Correctness of the Trace-Slicing Algorithm

Given a trace t of a program P simulated with a program input x, the trace slice

t′ is generated by applying TSAlgo on t with respect to a slicing criterion tsc.

The conjecture of the correctness property states that our trace-slicing algorithm

produces a correct trace slice (i.e. t′ is a correct slice of t with respect to tsc) if the

observable behaviour in the simulation of program commands in the trace slice is

similar to the observable behaviour in the simulation of the original program for

the slicing-criterion data manipulator dm. That is, the semantic values of dm in

t and t′ during the simulation are consistent.

The correctness proof of Algorithm 4.5 on page 80 is based on a given trace t∈S∗,
and its slice t′. We present some definitions for the correctness proof:

Definition 4.14 (n-sequence Directed Trace). The n-sequence directed trace t is

a trace that consists of ordered program states, with n > 1. t = ({s0, ..., sn−1},→)

where t ` si → si+1 for any i ∈ [0, n− 2].

That is, within a trace t, only one transition ‘→’ can occur from one state to

another such that each state in the n-sequence directed trace has only one outgoing

transition edge and one incoming transition edge. Thus, a transition edge has one

source state and one destination state. Figure 4.6 on the previous page depicts

a trace configuration and the transitions between its states. Also, we let si ⇒ sk

be the reflexive transitive closure of multiple state transitions ‘→’ taken between

states si and sk in t, i.e. si ⇒ sk if there exists sj ∈ t s.t. si → sj → sk. Also, in

order to distinguish between state transitions that are produced by sliced states

(t′) and the ones produced by non-sliced states in t, we use the following two

labels:

• t ` s c→ m if t ` s→ m, c = cmd(s) and s ∈ t′

• t ` s •→ m if t ` s→ m and s /∈ t′

• t ` s •⇒ s′ if for all si ∈ <s . . . s′> such that si
•→ si+1 (reflexive transitive

closure of all non-sliced state transitions)

• t ` s c⇒ m if there exists s′ ∈ t such that t ` s •⇒ s′, and t ` s′ c→ m.
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Example 4.4. Given a simulation trace configuration and its slice t′ in Figure 4.6

on page 85, then the state transition from s0 to s1 is labelled with the instruction

command c0, t ` s0
c0→ s1 since s0 is included in the slice. Also, there exists a

multiple state transition t ` s1
•⇒ s3 between non-sliced states s1 and s3. However,

the multiple transition state between s1 and s4 is labelled with c3 since s3 ∈ t′ and

t ` s3
c3→ s4.

Definition 4.15 (Sliced State Successor SSuc()). Let t be an n-sequence directed

trace, and i, q ∈ POSt. Let si, sq ∈ t where si = (ci, ξi) and sq = (cq, ξq). Let t′

be a trace slice of t. sq is the successor of si in the trace t, SSuc(si) = sq iff

∃ < i, .., q >∈ t where i ≤ q such that sq ∈ t′ and for all j ∈ i, ..., q − 1, sj /∈ t′.

Example 4.5. Consider the trace t in Figure 4.6 on page 85. SSuc(s1) = SSuc(s2) =

{s3}, SSuc(s4) = {s5} and SSuc(s6) = {∅}. But for states that are in the slice,

SSuc(s3) = {s3}, SSuc(s0) = {s0} and SSuc(s5) = s5.

Note that every state in the trace slice s ∈ t′ is the sliced state successor of itself,

i.e. SSuc(s) = s.

Definition 4.16 (Weak Simulation). Given two simulation traces t and t′, a binary

relation � is a weak simulation of t by t′ if ∃si∈ t and ∃s′g∈ t′ and whenever si � s′g
and SSuc(si) = sj then ∃s′q ∈ t′ s.t. sj � s′q and SSuc(s′g) = s′q.

Definition 4.16 describes a relation between states in a trace t and its slice t′ with

respect to a slicing criterion. If a state has a sliced state successor in t then it

corresponds to the same sliced state successor in t′.

Definition 4.17 (Relevant Data Manipulators). In a simulation trace t, let i, k∈
POSt, and i < k. Also, let < i, ..., k > be a state index sequence in t where

s= (ci, ξi) ∈ t, and n= (ck, ξk) ∈ t are program states in t. Moreover, let t′ be a

trace slice of t. ∀sj in t where i ≤ j ≤ k, we define RDM(sj), the set of relevant

data manipulators of state sj, such that dm∈RDM(sj) iff there exists a state m∈ t′,
z = Index(m) and cz = ck s.t. dm∈use(k), but ∀j∈ i, ..., k − 1, dm /∈ def(j).

Example 4.6. Consider the trace tx in Figure 4.3 on page 65 and its slice t′

in Figure 4.4 on page 81, the sets of relevant data manipulators Rt and Rt′ are
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computed for each state in t and t′, respectively, as follows:

tx Rt t′ Rt′

s0 {ms0(1)} s′0 {ms′0
(1)}

s1 {ms1(1), r0} s′1 {ms′1
(1), r0}

s2 {ms2(1), r0, r1} s′2 {ms′2
(1), r0, r1}

s3 {ms3(1), r0, r1} s′3 {ms′3
(2), r0, r1}

s4 {ms4(2), r0, r1} s′4 {ms′4
(2), r0, r1}

s5 {ms5(2), r0} s′5 {ms′5
(2), r0, r1}

s6 {ms6(2), r0, r1} s′6 {r0, r1}

s7 {ms7(2), r0, r1}

s8 {ms8(2), r0, r1}

s9 {r0, r1}

s10 {φ}

s11 {φ}

s12 {φ}

s13 {φ}

Next Lemma 4.1 shows that whenever SSuc(s) = SSuc(s′) where s ∈ t and s′ ∈ t′

then both states s, s′ have the same set of relevant data manipulators.

Lemma 4.1. Assume that trace slice t′ produced by TSAlgo (Algorithm 4.5 on

page 80) on t (in Figure 4.6 on page 85) is closed under
ddd→, and that each state s in

a trace has at most a single slice successor, i.e. 0 ≤ |SSuc(s)| ≤ 1. Let states si ∈ t
and sv ∈ t′ be such that SSuc(si) = SSuc(sv), then we have RDM(si) = RDM(sv).

Proof When SSuc(si) = ∅, there is no sliced state successor in t and, hence, no

sliced state in t′, and, thus, RDM(si) = RDM(sv) = ∅. Otherwise, there exists a

command {c} such that SSuc(si) = SSuc(sv) = {s} such that cmd(s) = c.

First let dm ∈ RDM(si) be given; ∃so ∈ t such that so ∈ t′ with dm ∈ use(o), and

a subsequence < i, ..., o>∈ t such that if s exists (with k = Index(s)) in the path

<i, ..., o> in t and s 6= so then dm /∈ def(k). Since SSuc(si) = {n}, n must occur

somewhere in <i, ..., o> (Definition 4.15); we now infer that dm ∈ RDM(n).

Next, let dm ∈ RDM(n) be given (where j = Index(n)); ∃so ∈ t such that so ∈ t′

with dm ∈ use(o), and a path <j, ..., o> in t, such that if n occurs in <j, ..., o>

and n 6= so then dm /∈ def(j). Since SSuc(si) = {n}, ∃ a path < i, ..., j > such

that if s exists in < i, ..., j > and s 6= n then s /∈ t′. To establish RDM(si), it

is sufficient to show that if s occurs in < i, ..., j > and s 6= n then dm /∈ def(k).
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Assume the contrary, then the path < i, ..., j > contains at least s, but for that s

we would have s
ddd→ so and, thus, s ∈ t′, which is a contradiction.

Example 4.7. Consider the states s6 ∈ tx in Figure 4.3 on page 65 and s′5 ∈ t′

in Figure 4.4 on page 81. SSuc(s6) = {s8} and SSuc(s′5) = {s′5} where cmd(s8) =

cmd(s′5). We have RDM(s8) = RDM(s′5) = {m(2), r0, r1}. Note that m(2) =

ms6(2) = ms6(2)

Next, in Lemma 4.2, we want to show that for any non-sliced state transition
•→ in a trace t, the values of the relevant data manipulators before and after

the transition are unchanged. Since a data manipulator is either a register or a

memory location, we define an auxiliary function valsi(dm) to represent the value

of dm, where si is a state at index i in a simulation trace:

valsi(dm) =

{
ρsi(dm) if dm is a register

msi(dm) if dm is a memory location

Lemma 4.2. Assume that t′ produced by TSAlgo on a trace t is closed under
ddd→,

and that each state in t has at most one sliced state successor. If there exists

a state transition t ` si
•→ sv and SSuc(sv) 6= ∅, then for all dm ∈ RDM(si),

valsi(dm) = valsv(dm).

Proof From t ` si
•→ sv and SSuc(sv) 6= ∅ we infer that si /∈ t′ and there exists

n ∈ t such that SSuc(si) = SSuc(sv) = {n}. By Lemma 4.1, RDM(si) = RDM(sv).

Next, let dm ∈ RDM(si); since si /∈ t′ we infer that dm /∈ def(u), where u =

Index(n) in t, which shows that valsi(dm) = valsv(dm).

Example 4.8. Consider states s6, s7 ∈ tx in Figure 4.3 on page 65 where t `
s6

•→ s7. Also, from Example 4.7 we have RDM(s6) = {m(2), r0, r1} and ∀dm ∈
RDM(s6) we have vals6(dm) = vals7(dm).

Definition 4.18 (Relation r). Let t, t′ be execution traces, i ∈ POSt, j ∈ POSt′
where si=(ci, ξi)∈ t and s′j =(c′j, ξ

′
j)∈ t′. We define si r s

′
j to hold iff:

1. SSuc(si) = s, SSuc(s′j) = s′ such that s = s′, i.e. cmd(s) = cmd(s′)

2. ∀dm∈RDM(si), valsi(dm)=vals′j(dm)

Example 4.9. Consider states s9 ∈ tx in Figure 4.3 on page 65 and s′′2 ∈ t′′x in

Figure 4.4 on page 81, where t′′x is a trace slice of tx w.r.t tsc = (r0, 8), s9 =
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(ξs9 , cs9) and s′′2 = (ξs′′2 , cs′′2 ). We have cs9 =c′′s2 and vals9(r0)=vals′′2 (r0) and hence

s9 r s
′′
2.

The following lemma allows us to extend the relation r to cover the non-sliced

states in t.

Lemma 4.3. Let t be a simulation trace and assume that t′ is closed under
ddd→.

Also, let si, sj ∈ t and s′q ∈ t′. If si r s
′
q and t ` si

•→ sj, where SSuc(sj) 6= ∅, then

sj r s
′
q.

Proof By assumption, there exists a state from t that is included in the sliced

trace, i.e. s ∈ t′, such that SSuc(sj) = s; from t ` si
•→ sj we infer that si /∈ t′

and that SSuc(si) = s. From si r s
′
q we also infer that SSuc(s′q) = s′q, and that

RDM(si) = RDM(sj) = RDM(s) = RDM(s′q) (by Lemma 4.1). Also, from si r s
′
q,

for all dm ∈ RDM(s) we have valsi(dm) = vals′q(dm) by Lemma 4.2, which shows

that sj r s
′
q.

Example 4.10. Consider states s6, s7, s8 ∈ tx in Figure 4.3 on page 65 and s′5 ∈ t′

in Figure 4.4 on page 81. Let s6 r s
′
5 (Definition 4.18) and t ` s6

•→ s7. Since

SSuc(s7) = {s8}, cmd(s8) = cmd(s′5) and ∀dm ∈ RDM(s7) = {ms7(2), r0, r1} we

have vals7(dm) = vals′5(dm), and thus s7 r s
′
5.

The following lemma shows that whenever there is a relation r between a sliced

state in t and a state in the trace slice of t, their destination states have a relation

r. That is, whenever we have a transition from a sliced state to a state in t and

the source state is in relation r with a state in the slice, there will be a similar

transition in the slice in which the destination states of both transitions have the

same relation r.

Lemma 4.4. Let t be a simulation trace and assume that t′ is closed under
ddd→.

Also, let si, sj ∈ t and s′q ∈ t′. If si r s
′
q and t ` si

c→ sj, where c = cmd(si), then

there exists s′v such that sj r s
′
v, SSuc(s

′
v) = s′v and t′ ` s′q

c→ s′v.

Proof From t ` si
c→ sj we infer that si = s ∈ t′ and thus SSuc(si) = s. From

si r s
′
q we infer that SSuc(s′q) = s′q, and cmd(si) = cmd(s′q) and by Lemma 4.1

we have RDM(si) = RDM(s′q). Also for all dm ∈ RDM(si), valsi(dm) = vals′q(dm)

and we also infer that for all dm ∈ use(i), valsi(dm) = valsq(dm). Thus, the sliced

state s′q contains the same values of dm as the original trace state si, and since
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cmd(si) = cmd(s′q) = c then the outcome of their commands, c, is the same. Next

we show that given dm ∈ RDM(sj), it holds that valsj(dm) = vals′v(dm). This can

be shown in two cases:

• If dm ∈ def(i), and since cmd(si) = cmd(s′q) = c then ∃E s.t. c = (dm :=E),

thus si+1 = Ĉ[[dm := E]]ξi and s′q+1 = Ĉ[[dm := E]]ξq. From si
c→ sj and

s′q
c→ s′v, we infer that valsj(dm)=valsi+1

(dm) and vals′v(dm)=vals′q+1(dm),

and thus valsj(dm)=vals′v(dm).

• If dm /∈ def(i), then dm ∈ RDM(si), and the claim follows from ∀dm ∈
RDM(si) : valsi(dm) = vals′q(dm) since valsj(dm) = valsi(dm) = vals′q(dm) =

vals′v(dm).

Example 4.11. Consider the states s1, s2 ∈ tx in Figure 4.3 on page 65 and

s′1, s
′
2 ∈ t′ in Figure 4.4 on page 81. Let s1 r s

′
1 (Definition 4.18) and t ` s1

c1→ s2

(since s1 is a sliced state) and t′ ` s′1
c1→ s′2. We have SSuc(s2) = s3, SSuc(s′2) = s′2

and cmd(s3) = cmd(s′2). From Example 4.6, RDM(s2) = {m(1), r0, r1} and for all

dm ∈ RDM(s2), the values produced in dm in tx and t′ in Figures 4.3 on page 65

and 4.4 on page 81, respectively, are similar, i.e. vals2(dm) = vals′2(dm) and, thus,

s2 r s
′
2.

The following theorem proves the correctness of the slicing algorithm.

Theorem 4.1. Let si, st ∈ t and s′q, s
′
v ∈ t′ where i, l ∈ POSt, q, v ∈ POSt′ and t′

is the slice produced by TSAlgo on t with w.r.t. a slicing criterion. Assume that

t′ is closed under
ddd→. Whenever si r s

′
q, and t ` si

c⇒ st, the relation r is a weak

simulation (Definition 4.16).

Proof From t ` si
c⇒ st we infer that there exists < i . . . k > (k ≥ i) such that

sk
c→ sl, and for all j ∈ < i . . . k − 1 > we have sj

•→ sj+1, sj /∈ t′, and thus

SSuc(sj) = sk ∈ t′. By Lemma 4.4 and from sk
c→ sl we infer that there exists

s′v ∈ t′ where q ≤ v such that st r s
′
v. Then with t ` sj

•→ sj+1, we can apply

Lemma 4.3 to infer that for all states at j from <i . . . k−1> we have sj r s
′
q.

Example 4.12. The trace slice computed in Figure 4.4 on page 81 for data manip-

ulator ∗r1 in the trace in Figure 4.3 on page 65 is not ‘executable’ in the sense that

it does not correspond to an execution, but we can produce an ‘executable’ program

P ′ from the trace slice via extraction of the set of commands P ′ from the trace slice
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P ′ :
1 r0:=n

2 r1:=m

3 *r1:=*r0+4

4 r0:=r0+1

5 r1:=r1+1

6 *r1:=*r0+4

7 r1:=r1+1

(a)

t′x :
s′0 r0:=1, (ρs′0 ,ms′0

)

s′1 r1:=2, (ρs′1(r07→ 1),ms′1
)

s′2 *r1:=*r0+4, (ρs′2(r17→ 2),ms′2
)

s′3 r0:=r0+1, (ρs′3 ,ms′3
(2 7→ (ms′2

(1) + 4)))

s′4 r1:=r1+1, (ρs′4(r07→ 2),ms′4
)

s′5 *r1:=*r0+4, (ρs′5(r17→ 3),ms′5
)

s′6 r1:=r1+1, (ρs′6 ,ms′6
(3 7→ (ms′2

(1) + 8)))

(b)

Figure 4.7: The program P ′ is produced by extracting the command sequence
from the trace slice t′ in Figure 4.4 on page 81 (a); a simulation trace t′x of P ′

on input x : n=1,m=2 (b). Note that at final state s′ ms′7
(3 7→ (ms′6

(2) + 4))
where ms′6

(2) = ms′5
(2) = ms′4

(2 7→ (ms′3
(1) + 4)).

in Figure 4.4 on page 81. Then, we execute the program P ′, shown in Figure 4.7,

with the same program input (n= 1,m= 2) used to run the original program and

generate tx, as shown in Figure 4.7. The generated simulation trace (a projection)

t′x agrees with the original trace (i.e. tx in Figure 4.3 on page 65) for the values of

the slicing criterion. Thus, we claim that we have the correct sub-trace if we can

execute the program projection from the given input and the sub-trace agrees with

the original trace for the values of the slicing-criterion data manipulator at the

corresponding program point. Therefore, the observable behaviour of the trace of

program P ′ is similar to the observable behaviour of the original trace of Figure 4.3

on page 65, with respect to the slicing criterion.

4.5 Strengths and Limitations of the Trace Slic-

ing Algorithm

The main motivation for our TSAlgo is to counter the effects of code obfuscations

on simulation traces of malware variants and to improve the detection rate using

short trace slices in the malware signature. Thus, the construction and match-

ing of semantic signatures is enhanced and a malware detector will have fewer

false-negative results in detecting obfuscated malware variants. This can be ac-

complished by removing the effects of the obfuscation techniques (deobfuscation)
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and capturing the true semantics of program traces using slicing. Thus, the power

of our TSAlgo algorithm relies on its ability to handle malware-obfuscating trans-

formations. We discuss below the set of obfuscating transformations that are used

to generate new malware variants and which the TSAlgo algorithm can handle;

we call this set TSAlgo-handled obfuscations. TSAlgo-handled obfuscations are

code transformations that add new (syntax) code lines to create new program

variants while preserving the data dependence structure of the original program.

Code reordering : this obfuscation technique is commonly applied on independent

commands where their order in the code does not affect other commands. The ex-

ecution order of commands can be maintained using unconditional jumps. Thus,

new variants of the program can be created with the same semantics but different

syntax. Garbage insertion: this transformation technique introduces commands

that have no semantic effect on the program execution. The main objective of the

technique is to create new program variants that preserve the original program

semantics but contain different syntax. Equivalent functionality : this obfuscation

technique replaces commands with other equivalent commands that perform the

same operations as the original code. Variable renaming is an obfuscation tech-

nique used by malware writers to obfuscate their code and to produce new malware

variants by simply changing registers and variable names in the program. To deal

with variable-renaming obfuscation, TSAlgo can be applied to all possible data

manipulators in a given simulation trace to produce a set of trace slices. Opaque

predicate: a predicate whose value (True or False) is known, by the malware writer,

a priori to a code transformation but is hard to determine by examining the ob-

fuscated code [CTL97]. This technique obfuscates the program control flow and

makes it difficult to analyse statically.

Limitations. The TSAlgo algorithm has some limitations. The slicing algorithm

is not resilient with respect to data obfuscation techniques. Introducing new data

dependencies between program registers and memory locations is an obfuscation

technique that cannot be handled by our TSAlgo algorithm (TSAlgo-unhandled

obfuscation class) and thus, generated trace slices may not be efficient in improv-

ing the detection rate. This transformation technique obfuscates a program by

creating dependencies between variables by rewriting assignments or introducing

new ones [CTL97, MDT07]. For instance, malware writers may use this technique

to split a register into two registers or to transform a register r0 into the expression

r1∗r0+r2 where r1 and r2 contain dummy constant values. Thus, this technique

increases the number of data dependencies in the obfuscated variant so that the
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O(P ) :
1 r0:=n

2 r1:=m

3 Loop: (r0 >= 3) JMP Exit

4 *r1:=*r0+4

5 r0:=r0+1

6 r1:=r0+r1

7 r1:=r1+1

8 r1:=r1-r0

9 JMP Loop

10 Exit: JMP ...

    

6

1210

543

13 14 15

1817

7 8

16

9

2

1

11

Figure 4.8: An obfuscated code variant of program P in Figure 4.3 on page 65
and its DDG after applying data obfuscations.

trace slices have different semantics compared with the trace slices of the malware

parent. The example in Figure 4.8 illustrates this transformation technique.

4.6 Review of Related Work

Dynamic slicing has been extended from the traditional slicing techniques for

debugging programs [AIP04] to a wider set of applications such as dynamic slicing

for concurrent programs [MKM+06, RLG02] and software testing [KY94]. The

dynamic slicing approach takes into consideration only one execution history of

a program when computing a slice. Thus, it may significantly reduce the size

of the slice as opposed to the approach of static slicing. To present all of the

dynamic program slicing approaches would be beyond the scope of this chapter.

A survey of dynamic program slicing techniques and applications can be found in

[XQZ+05, Tip94].

For dynamic slicing techniques that depend on an execution trace, the computed

dynamic slice is a subset of the original program. Korel et al. [KL88, KL90] ex-

tended Weiser’s static slicing algorithm [Wei81] to the dynamic approach. They

incorporated the execution history of a program as a trajectory to find the state-

ments that actually affect a variable at a program point. Thus, the resulting
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slices are more compact and precise than the program slices proposed by Weiser.

Agrawal and Horgan [AH90] provided a novel approach for computing dynamic

program slices via program dependence graphs (PDGs). Their algorithm uses the

reduced dynamic dependence program (RDDP) where a new node is created if it

introduces a new dependence edge with other existing nodes in the RDDP. How-

ever, different occurrences of the same node cannot be distinguished in RDDP.

None of the above mentioned slicing methods provide a way to capture the dy-

namic values of variables in a program slice without at least re-executing the

program slice. Instead, our approach extracts a trace slice from an simulation

trace. The computed slice preserves the semantics of the execution trace of the

original program.

Zhang et al. [ZGZ03, ZGZ05] present a dynamic slicing technique that depends

on a recorded execution history. Their limited preprocessing (LP) algorithm per-

forms some preprocessing to first augment the record with summary information

and then it uses demand driven analysis to extract dynamic control and data de-

pendencies from the augmented record. In this sense, our approach is similar to

the approach of Zhang et al. In our approach, the data dependence information

can be computed on-the-fly during program simulation and is not used to find

control dependencies or to augment the execution trace, but it is mainly used to

construct the DDG.

In terms of slicing binary executables, it is hard to find practical slicing solutions

for binary executable programs in the literature. The existing techniques proposed

in the literature perform static slicing only. Cifuentes and Fraboulet use intrapro-

cedural slicing for handling indirect jumps and function calls in their binary trans-

lation framework [CF97]. Debray et al. [DEMDS00] and Kiss et al. [KJLG03]

presented methods for the interprocedural static slicing of binary executables.

However, these approaches require the extraction of static data dependence infor-

mation from a control-flow graph (CFG). Instead, our slicing algorithm does not

rely on a CFG but it computes information from a simulation trace. Bergeron

et al. [BDEK99] propose a static slicing technique for analysing assembly code

to detect malicious behaviour. Their approach compares program slices against

behavioural specifications (e.g. a set of API signatures) to detect potentially mali-

cious code. However, since their method is purely based on signatures of function

calls and the sequence of commands, it lacks the ability to handle certain obfusca-

tion techniques such as code reordering and equivalent functionality. Probably the

most similar approach to ours is the work presented in [FG09]. Feng and Gupta
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developed a virus detector based on dynamic backward slices of system API traces.

Their algorithm uses dynamic data dependence graphs of a system function call

as the intermediate representation of the program. However, the slices produced

by their algorithm are subsets of the program. Also, they use a statement-based

graph as their virus signature that depends on the syntax of the instructions and

the data dependency information between the instructions. Instead, our slicing

algorithm computes a trace slice that is a subsequence of a simulation trace and

preserves the semantic details of the trace. Also, we prove that our trace-slicing

algorithm produces a correct trace slice.

4.7 Conclusion

In this chapter we have presented a trace-slicing algorithm for machine code. The

method supports the process of capturing semantic details of trace slices as part

of a malware signature for detecting (obfuscated) malware variants. Equally im-

portantly, a correctness property is developed and our slicing method is proved

to be correct with respect to the property. Trace slicing in this context has two

roles: to reverse engineer the effect of obfuscations on the trace and to produce

a small trace slice of the simulation trace of a malicious program for efficient

signature construction. As a result, detection of malware variants using precise

semantic signatures can be improved in terms of speed and accuracy (i.e. fewer

false negatives). Our implementation has shown that our TSAlgo may be efficient

in computing trace slices within the context of generating and matching signatures

of program variants.



Chapter 5

Semantic Trace-based Detector

The malicious behaviour of a malware family is the fundamental qualifying char-

acteristic of all its variants [Coh87, Szö05]. Malware variants generated via code

obfuscation can easily change the original syntactical structure of the code and

evade syntactic malware detectors. This chapter introduces the approach and im-

plementation of a semantic trace-based malware detector. A semantic trace-based

detector is based on the idea of incorporating semantic information about the sim-

ulation traces of executables to detect malware variants. The detector consists of a

static analyser and a semantic trace-matching algorithm. The semantic-based de-

tector uses semantic traces of malicious code as a semantic signature to detect code

variants. A static analyser evaluates program instructions and generates semantic

traces of executables; we call it the Semantic Simulator (SemSim). A semantic

trace-matching algorithm uses the SemSim architecture to match semantic traces

of malware.

We use the observation that the semantics of program traces represent the effects

of malware behaviour. The malicious functionalities of a particular malware code

are implemented in its variants, each of which has a different syntactical appear-

ance in the binary code. Our malware detector uses the semantics of the trace

to determine whether a given program is a variant of known malware. That is,

for a specific malware program to be detected as a variant of a malware, the se-

mantic characteristics of the malware family are consistently presented in their

semantic trace information. Our hypothesis is that trace semantics matching is an

excellent basis for a malware detector to successfully detect obfuscated variants

that belong to the same malware family. We describe a matching algorithm for

97
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identifying similar semantic details for malware variants using semantic traces.

We present SemSim for processing program instructions and generating semantic

information of the program simulation as a trace. Furthermore, our trace-based

malware detector uses trace-slicing algorithm (presented in Chapter 4) and sim-

plification functions (presented in Section 5.1) to construct semantic signatures of

known malware variants.

The contributions of this chapter include:

• A specification of the semantic signature. A semantic signature of

a known malware variant consists of a set of semantic traces and a test

input. A semantic signature is used to match variants of the malware. The

construction of a semantic signature requires the use of the trace-slicing

method and trace simplification functions.

• A method to match the semantic traces in signatures of code vari-

ants. The approach is a program algorithm TraceMapping that uses the

program environment and memory domains (i.e. (E ,M), defined in Chap-

ter 4), a semantic simplification step and a program state matching method.

• A static analyser for simulating the execution of code. The SemSim

architecture statically evaluates a program’s execution, computes the in-

structions and collects a finite simulation trace. The architecture consists of

two main steps. First, the malicious code is translated into our intermediate

language AAPL and we refer to this step as “input extraction”. Second, the

known malware code is evaluated and a pair of semantic trace and program

input is produced. The outcome of the simulation analysis is an approxima-

tion of the program execution behaviour with respect to a program input,

which is used to build a signature for code-variant detection.

• A prototype of a semantic trace-based malware detection system

for binary executables. We have designed and implemented a prototype of

a malware detector based on trace semantics. The prototype malware variant

detector uses a single signature of a known malware, which consists of a pair

of a program test input and a set of semantic traces. The evaluation of the

system on real-world and obfuscated malware samples shows that our static

analyser (SemSim) together with the semantic trace matching algorithm are

effective in detecting real-world and new obfuscated variants of malicious

code and in avoiding false positives.
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When generating a semantic signature for a known malware sample, SemSim pro-

duces a random program input to evaluate the malware program and generate a

simulation trace. The trace-based malware detection system implements TSAlgo

(Chapter 4) to slice a simulation trace and produce a set of traces for the construc-

tion of a malware signature. The rest of this chapter is organised as follows. An

overview of the detection system architecture is given in Section 5.1. In Section 5.2,

a method of matching semantic traces with code variants and their algorithms are

discussed. The discussion of our static analyser architecture is divided into two

sections; Section 5.3 presents the input extraction of malicious executables and

Section 5.4 presents the semantic simulator. Section 5.5 details the implementa-

tion prototype and the experimental results. Section 5.6 concludes the chapter.

5.1 Overview of the Detection System

To determine whether a given executable program is a variant of a malware family

(or a known malware program), we must extract the semantic signatures of the

program and the known malware. Once a semantic signature is produced, a de-

tector can then identify the malware variant. This section presents the definitions

for the semantic signature for malware detection and the semantic trace-based

malware detector (Section 5.1.1). Also, the architecture of the detection system is

introduced (Section 5.1.2).

5.1.1 Defining Semantic Signatures

For an AAPL program P , a simulation trace (Definition 4.2 on page 66) can be

produced by simulating P . We present our semantic simulator in Section 5.4 which

takes a program P (a candidate malware variant) and a program input x to gen-

erate a simulation trace: semsim : (P, x)→ t. During a simulation of a program,

most instructions in the code are responsible for producing data and assigning it

to specific registers or memory locations. The produced data is important for the

malware program to accomplish its functions (e.g. copying a piece of code into a

memory region, calling system functions, etc.). Thus, any manipulation can reveal

some of the behaviour (i.e. the semantics) of the malicious program [YHR89]. Our

matching method, presented in Section 5.2, looks for the semantic information

(of the evaluated code) in the produced trace without considering the syntactical
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changes introduced by some obfuscations. In other words, most of the super-

fluous instructions that are introduced in a malware variant to thwart the static

signature- or pattern-based detection techniques, do not affect the semantics of the

malicious code. Thus, our detection technique extracts semantic signatures from

simulation traces of known malware variants and uses them to detect unknown

variants.

The semantic signature we develop is in the form of a pair consisting of a set

of semantic traces and a corresponding test input. We use the test input from a

known malware signature to simulate a suspicious malware variant and to produce

a simulation trace. Matching between a semantic trace and an entire simulation

trace of a suspicious binary executable will be an expensive task. However, to

have an efficient and acceptable detection method, we extract a more compact

representation of the trace semantics of malware using the trace-slicing method

and trace simplifications (presented in Definitions 5.1 and 5.2), which we call

semantic traces. A semantic trace is a simple representation of a simulation trace

that is produced by simulating program instructions with a given program input.

As we will show in Section 5.2, the detection method, which we refer to as semantic

trace matching, benefits from the trace representation and it can match variants

of malware under the presence of code obfuscation transformations. The following

are the definitions that are used in the steps we take to generate our semantic

signatures of known malware programs.

We define a simplification function αsem that removes any state from a given trace

t that does not change the environment or memory of program variables (i.e. the

environment E and memory M of program registers and memory locations).

Definition 5.1 (Semantic simplification αsem). Given a simulation trace t ∈
S∗, t =< s0, . . . , si > of a program P where 0 ≤ i < |t|, si = (csi , ξsi) and

ξsi = (ρsi ,msi), the function αsem : S∗ → S∗ removes program states si from t

that have no semantic effects during the simulation of P :

αsem(t) =


siαsem(t′) if i ≥ 0, t = sit

′, ρsi 6= ρsi+1
, mi 6= msi+1

αsem(t′) if i ≥ 0, t = sit
′, ρsi = ρsi+1

, mi = msi+1

< > if t =< > (empty trace)

The following simplification function, αe, takes a simulation trace and retains only

the information about the execution contexts of the trace:
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Definition 5.2 (Execution Context simplification αe). Given a simulation

trace t =< s0, . . . , si > where 0 ≤ i < |t| and si = (csi , ξsi), the function αe

removes all information about commands that are simulated and produces only

execution contexts of t:

αe(t) =

{
ξsiαe(t

′) if t = (csi , ξsi)t
′

< > if t =< > (empty trace)

Definition 5.3 (Semantic Traces). A semantic trace of a program P is produced

by applying the simplification αe to a simulation trace t of P , i.e. t′ = αe(t). We

use the term semantic states to denote the elements in the semantic trace (i.e. the

execution contexts).

Now we present our semantic signature, which is produced by applying the trace-

slicing algorithm and the simplification functions on a simulation trace. Given a

simulation trace of length k and for all data manipulators that have been defined in

the trace (i.e. ∀dm ∈ man[[t′]], dpk(dm) 6= ∅ (not empty) (Chapter 4)), our trace-

based malware detector uses TSAlgo to compute trace slices with respect to the

data manipulators. Thus, the trace-slicing algorithm, given in Chapter 4, accepts

several slicing queries from the detector where each query consists of a slicing

criterion tsc = (dm, k) and produces a trace slice, TSAlgo : (dm, k)→ slice. Then

the command information are removed from the set of trace slices to form the

semantic traces. We create a semantic signature for a known malware program

by including the set of semantic traces, denoted by τ , of slices with the program

input x of the simulation trace t.

Definition 5.4 (Semantic Signature). Given a known malware variant M and

a program input x ∈ I, a semantic signature is a pair of simplified, sliced traces

and a program input that is produced by the following steps:

1. Generate a simulation trace t of the malwareM with x, semsim : (M, x)→ t,

and k = |t| − 1.

2. Apply the simplification αsem on the trace t, αsem : t→ t′.

3. Slice the simulation trace and produce a set of trace slices, slices: ∀dm ∈
man[[t′]], dpk(dm) 6= ∅, tsc = (dm, k), TSAlgo : (t′, tsc)→ slices

4. Apply the simplification αe on the set slices to produce semantic traces,

αe : slices→ τ .
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5. Then a semantic signature of M is

sig = (τ, x)

Mapping Semantic Traces Given a known malware program M , its semantic

signature sig = (τ, x), a suspicious program P and the semantic trace of P , tp,

that is produced using the program input x from sig, we say that P is a variant

of M if τ is contained in tp. In particular, for the execution context updates

(states) in each semantic trace in the known malware program signature we look

for corresponding semantic states in tp, ∀t ∈ τ , where t is mapped to tp such that

t ⊆ tp; i.e. a sub-trace inclusion match in which for each t we identify whether the

sequence of nodes (the evolution of execution contexts) in τ exists in tp. Moreover,

to show the effectiveness of the semantic signatures, we use a single semantic trace

(i.e. produced only by applying the abstraction functions on the simulation trace)

for a known malware to match against semantic traces of suspicious programs. We

developed an algorithm that takes a pair of semantic traces and determines if one

trace of a suspicious program corresponds semantically to the other trace (of a

known malware program). We use the algorithm to iteratively map the semantic

traces (the slices) in the set τ to tp. The method is discussed in Section 5.2.

Malware Variant Detector Our malware detection system, which includes

three phases: simulation, signature generation and mapping semantic traces, acts

as a malware variant detector MD. The detector takes as its input a signature

sig = (τm, x) of a known malware program M and a suspicious program P and it

determines whether P may be a variant of M :

MD(sig, P ) =

{
yes if ∀t ∈ τm, t is contained in tp

no otherwise

5.1.2 The Architecture of the Detection System

In developing the trace-based detection system, which can process executable bi-

naries, extract semantic signatures and identify malicious code variants, we built

an architecture with three main components: an input extractor, semantic simu-

lator and signature analyser. Figure 5.1 on page 104 shows the architecture of the

trace-based malware variant detection system.
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Signature Analyser. This component determines whether the semantic sig-

nature, generated by the simulator, contains the signature of a malware family.

Thereby, the analyser determines if the input program is a variant of a previ-

ously known malware. The analyser maintains and uses a database of malware

signatures. This component runs a signature-matching algorithm based on se-

mantic trace mapping and program variants comparison. Details can be found in

Section 5.2

Input Extractor. This component transforms an executable binary object into

an AAPL code representation. An AAPL program is an intermediate form of the

extracted assembly program of the input. We define the syntax and semantics

of AAPL in Chapter 4 (Section 4.1). The binary executable is disassembled into

assembly code using off-the-shelf disassembler tools. We implemented a program

called asm2aapl, which translates an assembly program into an AAPL program.

Different assembly code syntax such as in Intel and AT&T assembly languages

can be represented in AAPL. Section 5.3 discusses the details of our translator.

Semantic Simulator. This component takes AAPL code, evaluates its instruc-

tions and generates semantic traces. The simulator evaluates the program based

on a set of states (a random program input) for the program environment (i.e.

initial memory and register values, system call return values). We include a pro-

cedure to generate a random program input for each known malware signature.

Section 5.4 describes the simulator in detail.

5.2 Signature Matching

The signature analyser in Figure 5.1 on the next page implements the signature-

matching mechanism. Trace mapping and program variant comparison are two

algorithms that we developed for signature matching.

5.2.1 Mapping Semantic Traces

The objective of the mapping process is to automatically identify a correspon-

dence between program states (nodes) of two semantic traces. The two semantic

traces are produced by collecting the simulation traces of two program variants.
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Figure 5.1: The architecture of the Trace-based Malware Detection System.
The outcome of the system is either “yes” for a successful detection of a mal-

ware variant or “no” otherwise.

We assume that the variants of the program were created by applying semantics-

preserving program transformations [CTL98]. In establishing a map between a

pair of semantic traces it is our objective to provide an algorithm that produces

complete and correct results. By complete, we mean that our algorithm finds as

many true mappings as possible and by correct, we mean the algorithm finds only

true mappings as we show later in the evaluation section (Section 5.5), that our de-

tector reports no false positives (i.e. no benign programs are detected as malicious)

and few false negatives (i.e. a file from a malware family is misidentified).
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Our method uses the known malware signature and a semantic trace produced

from a suspicious code variant. The method establishes a correspondence between

the program states by examining the semantic details of individual states in both

traces. The mapping process has three main steps:

Semantic simplification. Our matching method begins by using the simpli-

fication function αsem (Definition 5.1) to remove redundant program states (i.e.

execution contexts) in a semantic trace of a suspicious program. During the sim-

plification step, if a state (e.g. si) is found to contain similar semantic details (i.e.

execution contexts) as the next state (i.e. si+1) in the sequence (i.e. trace) then

the state si will be abstracted away from the trace.

State matching. For each given program state in the trace, the semantic value

is produced, i.e. the execution context. The semantic values are used to compare

two program states, so as to identify potential mappings or exclude mappings of

states.

Trace mapping. Given a pair of ordered sets of unique program states, we in-

troduced an iterative algorithm to establish mappings between the states (nodes).

For each state in the first set (the semantic trace of a known malware), the algo-

rithm identifies a correspondence candidate state in the other set (the semantic

trace of a suspicious program). We consider that the semantic trace of a known

malware m is contained in the trace of a suspicious program m′ if a large number

of semantic states (nodes) in the trace of m are matched with states in the trace

of m′. We use the outcome of the trace-mapping step to measure the similarity

percentage between the pair of traces. With the similarity measure, we can dis-

tinguish between matched and unmatched traces during the signature-matching

phase.

Next, we will discuss the details of how the semantic values of program states are

used in the state-matching step. Then we discuss the details of the trace-mapping

algorithm.

5.2.1.1 State Matching

Before we present our algorithm for mapping a pair of semantic traces from two

program variants, we introduce the matching step between a pair of program exe-

cution contexts, which we call semantic states. A semantic state is a simplification
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of a program state that contains only the information about the execution context

(after applying the simplification function αe to a simulation trace), i.e. a semantic

state s = ξs ∈ X where s = ξs = (ρs,ms). The mapping algorithm establishes

mappings between two semantic traces based on the successful matches of states.

When the state-matching step matches a pair of semantic states, it essentially

compares the semantic values produced by both states. The semantic values pro-

duced by a state can either represent an environment value ρ or memory value m.

Since our mapping step deals with semantic traces of obfuscated program variants,

program syntax, i.e. commands, may be altered and also some program variables

may be replaced with different ones. Thus, establishing an exact match between

semantic states is unlikely to succeed. Therefore our state-matching step uses the

results computed from individual instructions and ignores command syntax such

that the derived semantic results can be easily matched even if program obfusca-

tions have affected the corresponding instructions. For semantic traces with long

state sequences, it is unlikely to map traces based on semantic results of states

that do not correspond to each other. However, there is a chance of false (i.e.

coincidental) mappings between a pair of semantic traces with very short state se-

quences. Thus, to avoid such false mappings, our state-matching method consists

of the following semantic components of the execution context:

Environment values (ρ ∈ E). To match the environments of semantic states,

the environment values are extracted from states and represented as single values

ρ ∈ E . Each environment of a semantic state s returns a single value (ρs), which

represents the evaluated data value of a data manipulator (i.e. the output) at that

particular state. For instance, the output of the semantic state which corresponds

to the evaluation of the instruction POP r7 is the environment value of r7, i.e.

ρ(r7); the pop command retrieves the data from the stack into the r7 register.

When matching a pair of semantic states, we look for a match in the evaluated

data values of both states. Given two states s1 and s2 with their output data

values ρ1 and ρ2, respectively, we consider that s1 matches s2 if the value of ρ1 is

equal to the value of ρ2.

Memory values (m ∈ M). When we match memories of semantic states, we

are unlikely to find true matches of memory addresses between states of semantic

traces of both variants. That is because the memory locations of two program

variants may vary at runtime. Also, matching the offsets of the memory address

of both variants may not be effective in finding matches because we assume that
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programs might incorporate dynamic code generation and code reordering tech-

niques to execute new code with a different memory layout (i.e. offset). Therefore,

memory values m ∈ M are used to establish matches between corresponding se-

mantic states instead. For instance, the output of the instruction *r1:=r2+m is

the data m(r1) stored at the memory address specified by the operand r1. Mem-

ory addresses are only used to obtain the memory values of data manipulators in

states where memory updates have been performed. The memory match step is

performed between a pair of semantic states that have updated (outputted) mem-

ory values. The comparison generated values in M can be performed in the same

fashion as that for values in E.

5.2.1.2 Trace Mapping

This section describes the trace-mapping algorithm and how the algorithm es-

tablishes mappings between a pair of semantic traces of a known malware and

a candidate malware variant. As stated at the start of the chapter, the goal is

to map two trace variants of a malware where another variant may have been

produced via some code transformations (obfuscation). Semantics-preserving pro-

gram obfuscations can have significant effects on program syntax. In particular,

obfuscating transformations may rename program registers, add irrelevant com-

mands to the original program, e.g. garbage, system call and opaque predicates,

or some transformations may split, reorder or merge commands. Table 5.1 on the

following page contains some code transformation techniques deployed in creating

new program variants.

Figure 5.2 on page 109 illustrates obfuscation effects on program syntax. In this

figure each program command is labelled by a letter. New commands that have

been introduced in the program variant are labelled with the obfuscation that was

used to create them. Corresponding commands in the original and obfuscated

variants are labelled, for example, as g and g′, respectively. We use subscripts

to show the correspondence between one command in one variant and multiple

instructions in the other variant. Figure 5.3 on page 110 shows the generated

simulation traces of the program variants p and p′ with respect to program input

x = (5, 6). Note that due to the obfuscation effects on p′, the simulation trace

t′x of p′ contains more states than the trace tx of the original program. However,

with our trace-mapping method, a match could be established between a pair of

semantic traces of two program variants.
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Label Category Obfuscation

gi Garbage insertion {} → {C}
sc System call {} → {api}
op Opaque predicate {} → {P T/F}
ec Equivalent command {op} → {ōp}
rr Register renaming {Rx} → {Ry}
cs Command split {C} → {Cx, Cy}
cm Command merging {Cx, Cy} → {Cxy}
cr Command reorder {(Cx, Cy)} → {(Cy, Cx)}

Table 5.1: Obfuscating transformations.

Algorithm 5.1 on page 112 is our trace-mapping algorithm (TraceMapping), which

was developed to identify mappings between the semantic traces of two variants of

a program that use malware obfuscating transformations. Given a pair of semantic

traces (tm, tm′) for two program instances m and m′, the algorithm begins by

first generating two ordered lists of semantic states worklistA and worklistB by

applying the semantic simplification αsem on tm and tm′ , respectively. For instance,

Figure 5.4 on page 111 shows the semantic traces tp and tp′ that are produced

by applying the simplification functions αe and αsem on the simulation traces in

Figure 5.3 on page 110. Note that after applying αsem on t′x of the obfuscated

program variant, the program states cr1, cr2 and op1 are removed from tp′ . Then

the algorithm begins to establish a correspondence between the semantic states

(elements in the lists) by examining the semantic information in the semantic

traces of the two malware variants. The output values of the semantic states in

each trace, tp and tp′ , are extracted and shown in Figure 5.4 on page 111. The

matching in Algorithm 5.1 on page 112 consists of a single pass over worklistA

and for each element in worklistA a corresponding matching state in worklistB is

determined, and the Mappedlist is appended with the matched pair. A semantic

check between a pair of elements is performed by calling the state-matching

procedure in step 15 in Algorithm 5.1 on page 112, which is an implementation

of the state-matching algorithm presented in Section 5.2.1.1. The trace-mapping

(TraceMapping) algorithm used is a form of sub-trace inclusion match, in which for

the known malware program’s semantic trace tm, the algorithm identifies whether

the sequence of semantic states in tm occurs in the candidate malware variant

trace tm′ , i.e. tm ⊆ tm′ , possibly with the interpolation of irrelevant semantic
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p :
a r0:=n

b r1:=m

c r2:=r1 ⊕ r1

d r3:=r1+r0

e r2:=r1+9

f r4:=r3-r2

g JMP . . .

(a)

p′ :
rr1 r10:=n

cr1 JMP rr2

gi1 r22:=r11+1

op1 P T JMP cm

rr2 r11:=m

gi2 r22:=r11+1

ec r2:=0

cr2 JMP op1

d′ r3:=r11+r10

e′1 r2:=9

e′2 r2:=r11+r2

rr2 r4:=r3-r2

g′ JMP . . .
(b)

Figure 5.2: A sample program (a) and its variant (b), after applying program
obfuscation techniques from Table 5.1.

states introduced by obfuscation artefacts. Figure 5.5 on page 111 shows the

mappings between the corresponding program states in semantic traces tp and tp′

of the program variants (in Figure 5.2). Since a malware signature contains a set

of semantic traces (slices) τm, the trace-mapping algorithm is applied to determine

if each trace in τm is contained in the semantic trace of a suspicious code tp. Next

(in Section 5.2.2) we define a function to measure the degree of similarity between

two semantic traces and determine if a program is a variant of a known malware

with respect to a single semantic trace.

5.2.2 Program Variant Comparison

Given a program input x, we assume that for two semantically equivalent program

variantsm andm′ (possibly an obfuscated variant ofm), thatm ≡ m′ ifm′ exhibits

the same behaviour as m and m′ has already produced more program states than

m for the input x. Thus, the semantic trace t′m of m′ contains more states than

the semantic trace tm ∈ τm of m. We consider that the semantic trace of m is a

subsequence of m′, i.e. a large number of semantic states (nodes) in tm are matched

with states in tm′ . We define the term similarity percentage function between two
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tx :
a r0:=5, (ρa,ma)

b r1:=6, (ρb(r0 7→ 5),mb)

c r2:=r1⊕r1, (ρc(r0 7→ 5, r1 7→ 6),mc)

d r3:=r1+r0, (ρd(r0 7→ 5, r1 7→ 6, r2 7→ 0),md)

e r2:=r1+9, (ρe(r0 7→ 5, r1 7→ 6, r2 7→ 0, r3 7→ 11),me)

f r4:=r3-r2, (ρf (r0 7→ 5, r1 7→ 6, r2 7→ 0xf, r3 7→ 6 + 5),mf )

g JMP . . ., (ρg(r0 7→ 5, r1 7→ 6, r2 7→ 0xf, r3 7→ 0xb, r4 7→ 4),mg)

t′x :
rr1 r10:=5, (ρrr1 ,mrr1)

cr1 JMP rr2, (ρcr1(r10 7→ 5),mcr1)

rr2 r11:=6, (ρrr2(r10 7→ 5),mrr2)

gi2 r22:=r11+1, (ρgi2(r10 7→ 5, r11 7→ 6),mgi2)

ec r2:=0, (ρec(r10 7→ 5, r11 7→ 6, r22 7→ 7),mec)

cr2 JMP op1, (ρcr2(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0),mcr2)

op1 PT JMP cm, (ρop1
(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0),mop1

)

d′ r3:=r11+r10, (ρcm(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0),mcm)

e′1 r2:=9, (ρe′1(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0, r3 7→ 0xb),me′1
)

e′2 r2:=r11+r2, (ρe′2(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 9, r3 7→ 0xb),me′2
)

rr2 r4:=r3-r2, (ρrr2(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0xf, r3 7→ 0xb),mrr2)

g′ JMP . . ., (ρg(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0xf, r3 7→ 0xb, r4 7→ 4),mg)

Figure 5.3: tx and t′x are simulation traces of programs p and p′, respectively,
(in Figure 5.2 on the preceding page); both traces are generated using program

input x = (5, 6) for n and m, respectively.

given semantic traces to determine the percentage of matched nodes between two

given semantic traces as

similarity percentage = |mappedlist|/|t|

where mappedlist is the set of mapped states between two given semantic traces in

Algorithm 5.1 on page 112, and t is the semantic trace of the known (unobfuscated)

program variant, e.g. m. For instance, for the mappings established between the

pair of semantic traces in Figure 5.5 on the following page, the number of matched

state pairs, i.e. |mappedlist|, is 6 and the length of tp of the (unobfuscated) pro-

gram variant is |tp| = 7. Thus, the similarity percentage of mapping semantic

traces of p and p′ is 85.7%. In the case of using a single semantic trace in the

signature of a known malware (see Section 5.5.2.1), we consider a program to

be a variant of a malware program if the similarity percentage of mapped states
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tp semantic state output:(ρ,m)
a (ρa,ma) (5,−)

b (ρb(r0 7→ 5),mb) (6,−)

c (ρc(r0 7→ 5, r1 7→ 6),mc) (0,−)

d (ρd(r0 7→ 5, r1 7→ 6, r2 7→ 0),md) (0xb,−)

e (ρe(r0 7→ 5, r1 7→ 6, r2 7→ 0, r3 7→ 0xb),me) (0xf,−)

f (ρf (r0 7→ 5, r1 7→ 6, r2 7→ 0xf, r3 7→ 0xb),mf ) (4,−)

g (ρg(r0 7→ 5, r1 7→ 6, r2 7→ 0xf, r3 7→ 0xb, r4 7→ 4),mg) (−,−)

tp′ semantic state output:(ρ,m)
rr1 (ρrr1 ,mrr1) (5,−)

rr2 (ρrr2(r10 7→ 5),mrr2) (6,−)

gi2 (ρgi2(r10 7→ 5, r11 7→ 6),mgi2) (7,−)

ec (ρec(r10 7→ 5, r11 7→ 6, r22 7→ 7),mec) (0,−)

d′ (ρcm(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0),mcm) (0xb,−)

e′1 (ρe′1(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0, r3 7→ 0xb),me′1
) (9,−)

e′2 (ρe′2(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 9, r3 7→ 0xb),me′2
) (0xf,−)

rr2 (ρrr2(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0xf, r3 7→ 0xb),mrr2) (4,−)

g′ (ρg(r10 7→ 5, r11 7→ 6, r22 7→ 7, r2 7→ 0xf, r3 7→ 0xb, r4 7→ 4),mg) (−,−)

Figure 5.4: The semantic traces tp and tp′ are generated by applying αe and
αsem to tx and t′x, respectively, of Figure 5.3 on the preceding page. An output

of each semantic state (ρ,m) is extracted for mapping program states.

a fc gb ed

rr2cm e′2rr1 gi2 e′1 g′rr2 ec

Figure 5.5: Mapping program states of trace variants in Figure 5.4. Since
there are no values produced at program state g, a map with its corresponding

program state in tp′ could not be established.

between their semantic traces in the semantic trace mapping is above a certain

similarity threshold k,

k ≤ similarity percentage ≤ 100
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Algorithm 5.1: TraceMapping(t,t′) maps semantic traces of two program
variants.

1: Input: a pair of semantic traces t and t′ of a known malware program and a
suspicious program, respectively.

2: Output: a list of pairs of mapped program states mappedlist
3: procedure state-matching is described in Section 5.2.1.1
4: αsem is presented in Definition 5.1
5: first index(l) returns the first index in list l
6: worklistA: an ordered list of unique program states
7: worklistB: an ordered list of unique program states

8: begin TraceMapping(t,t′)
9: perform semantic simplification process on both traces t and t′:

10: worklistA→ αsem(t)
11: worklistB → αsem(t′)
12: set all elements in worklistA as unvisited:
13: i = first index(worklistA)
14: while worklistA[i] 6= empty do
15: j = first index(worklistB)
16: while worklistB[j] 6= ⊥ and match = false do
17: if state-matching(worklistA[i],worklistB[j]) then
18: match = true
19: mappedlist→ mappedlist ∪ {(worklistA[i], worklistB[j])}
20: end if
21: j++
22: end while
23: if match = false then
24: set index i to unmapped in worklistA:
25: end if
26: i++
27: end while
28: end TraceMapping(t,t′)

where k represents a large percentage of (desired) state mappings between a pair of

semantic traces. Moreover, when comparing a suspicious program using a malware

signature that contains a set of semantic traces, we apply TraceMapping and

calculate the similarity percentage between each trace in the signature and the

semantic trace t′m of a suspicious program. That is, we consider m′ is a variant

of m if ∀tm ∈ τm, the similarity percentage of tm (w.r.t t′m) is above threshold

k. The prototype implementation and results section (Section 5.5) discusses the

selection process for k. In the ideal case, we would expect to have a 100% mapping

(similarity) from tm to tm′ where (|tm| ≤ |tm′|) for two semantically equivalent

program variants. However, this case is rarely achievable and it is illustrated by the

example in Figure 5.5 on the previous page and demonstrated by the experimental
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Figure 5.6: Implementation of the input extractor module. Solid-line boxes
represent off-the-shelf tools.

results in Section 5.5. The reason is that a program variant might be altered by

obfuscation techniques that introduce new instructions.

5.3 Input Extraction

Figure 5.6 shows the basic blocks of our automatic input extractor module (IEM),

which is a three-stage process. First, the program has to be prepared for disas-

sembly (e.g. by removing dynamic packing or decrypting the code) so that the

potentially malicious binary code is exposed. Then, the resulting binary code is

passed to a disassembler to produce assembly code. Third, the assembly code

detail is abstracted and an AAPL representation of the code is generated. The

first two steps of IEM are implemented using existing tools whereas for the third

step, we developed a translator (called asm2aapl), which transforms assembly in-

structions into a simple form of AAPL commands. This step abstracts away some

simple obfuscation operations and creates a file in a format that is acceptable for

the semantic simulator.

5.3.1 Binary Code Extraction

Malware writers use executable packing tools to hide their malicious code from

anti-malware scanners. According to some anti-virus (AV) reports [Symantec,

BitDefender], code-packing techniques (i.e. compression and encryption) are used

in 75% of all malware executables. Executable packing tools such as Ultimate

Packer for eXecutable (UPX) [upx10] and FSG [fsg] compress the binary pro-

gram in order to save bandwidth or memory space. These tools compress/encrypt
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a binary executable and append an extraction/decryption routine to the com-

pressed/encrypted object file. The packer routine is activated at runtime when

it decompresses/decrypts the original object code. With a packed binary file, we

need to unpack it first and get hold of the original binary object representation.

A packed file can be processed by either of two methods: the first method is to

execute the packed file and, thus, allow the packer routine to unpack and to out-

put the original executable file. The second method is to use packing tools. We

prefer to use the second method as it is a more efficient and reliable way to unpack

malware samples. We have selected the UPX packer tool, as it is one of the most

commonly used packers in wild malware variants [Res08, SVBY10].

5.3.2 Code Disassembly

Once the binary file has been unpacked and the original suspicious executable is

obtained, the machine-level code can be extracted (i.e. disassembled). In general,

there are two main approaches for disassembling binary executables. The first

approach is a linear sweep where the disassembler decodes every sequence of binary

code in the file in a strict sequence, starting at the entry point of the program,

assuming that each sequence of binary code (i.e. instruction) is aligned to the next.

The second approach, which is called recursive traversal, decodes each basic block

of instructions and determines the control flow of the program by decoding the

target address of each branch instruction. In our implementation, IDAPro [Res]

is used to disassemble the binary executable of the suspicious file. IDAPro is a

state-of-the-art recursive traversal disassembler, which deploys several heuristics

and library (API) signatures to resolve imported kernel calls.

Note that extracting a correct syntactical representation of disassembled code can

heavily impact upon any malware detection methods based on static analysis. This

is because some code obfuscation techniques introduced at this level can hinder

successful disassembly. For instance, Linn and Debray [LD03] introduced various

anti-disassembling obfuscation methods that are specifically designed to make the

disassembly of executable code more difficult. Handling such anti-disassembly ob-

fuscations is possible but our method does not. Moreover, from our observations

of existing malware variants, we believe the use of these advanced obfuscations in

malware is currently minimal. The majority of executable virus, trojan and worm

variants are not distributed with any anti-disassembling obfuscation techniques
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Figure 5.7: Implementation of asm2aapl translator module.

besides the use of executable packers. Thus, we assume that malware code is pro-

duced either by compiling a high-level code using an industry standard compiler

or by writing the program in a standard assembly language, and, thus, in both

cases we assume current disassemblers are able to process the produced code suc-

cessfully. Thus, our approach (and any static approach) is limited to what existing

static analysis tools (e.g. disassemblers) provide.

5.3.3 asm2aapl: a Translator

The asm2aapl translator is an important step in our IEM process, it is designed so

that it gives a semantically equivalent simple code of a disassembled executable.

The objective of the translator is to analyse assembly code and generate AAPL

code, which represents the machine-level operations in a simple and intuitive form.

We view this step as a way to transform a given assembly code, which may in-

clude simple superfluous commands, into a simple, canonical representation that

captures the semantics of program operations and is expressive of a large set of

assembly programming instructions. By having malicious executables with dif-

ferent syntactic formats translated into normal form representations, we believe

that our detection approach can be leveraged to capture semantic traces and to

detect malware variants. Figure 5.7 shows the components of the translator. The

source code of the translator can be found in [Alz10a]. The asm2aapl translator

consists of four stages: lexical analysis, syntactic analysis, semantic analysis and

AAPL code generation. All four stages are written in Python and extensive use is

made of the Pyparsing Python class library, version 1.5.5 [McG]. We describe our

implementation of the four stages in detail as follows.
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Lexical and Syntactic Analyses. The first and second stages are a standard

process of scanning the input file, generating a sequence of tokens and an abstract

syntax tree (AST). Both stages are implemented using the Pyparsing module,

which features a set of classes to construct grammar rules. The Pyparsing classes

are straightforward to use as an alternative to the lex/yacc approach or the use

of regular expressions. During the lexical analysis stage, each line of the source

file is tokenised with the help of Pyparsing into two token types: instruction and

label. Comments are stripped out and labels and assembler directives are used

to build a symbol table. The output of the first stage is a list of line tokens.

Each element in the list represents a sequence of tokens describing the types and

values for the corresponding line of the input file. The list is then processed

during the second stage (syntactic analysis) to resolve instructions, labels, data

and register formats and to produce an abstract syntax tree of the parsed code.

The syntactic analysis stage performs a “top–bottom” approach to parse the token

list and retains syntactic information, such as procedure labels, and the start

and end boundaries of data. During this stage, the translator can generate error

messages for unrecognised syntax, which then can be handled by identifying the

syntax and incorporating suitable AAPL syntax. The output of the second stage

is an abstract syntax tree (AST).

Semantic Analysis and Code Generation. This component contains a set of

semantics-preserving translation rules, which are used to examine the AST and

extract the semantic details of the assembly instructions. That is, the component

applies semantic rules to each instruction and annotates the AST with semantic

information, which is used by the next step to generate AAPL code. The purpose of

this stage of the translator is to examine the AST produced by the previous stage

and to define a canonical form of the input code in AAPL syntax; by canonical we

mean a standard representation. Specifically, we are interested in producing an

AAPL representation of the machine-level code with the following information:

• Registers, variables and datatype information (e.g. base and pointer types)

• Data assignment operations

• Instructions for arithmetic and bitwise operations

• Instructions for operations over the stack

• Control flow operations (e.g. call, return, loop, conditional, unconditional

jump commands)
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Assembly Instructions AAPL Instructions

401438: inc edx

401439: cmp edx,0x64

40143c: jne 0x40142a

40143e: mov eax,DWORD PTR [esi]

401440: mov edx,DWORD PTR [eax]

401442: mov DWORD PTR [esi],edx

401444: pop esi

401445: pop ebx

401446: ret

401447: nop

401448: mov DWORD PTR [eax],eax

40144a: mov DWORD PTR [eax+0x4],eax

40144d: ret

40144e: mov eax,eax

401450: push ebx

401451: push esi

401452: mov esi,edx

401454: mov ebx,eax

401456: call 0x4013f8

40145b: test eax,eax

40145d: jne 0x401464

40145f: xor eax,eax

401438: r6 = r6 + 1

401439:

40143c: ( r6 != 0x64 ) jmp 0x40142a

40143e: r17 = *r4

401440: r6 = *r17

401442: *r4 = r6

401444: pop r4

401445: pop r3

401446: rtn

401447: skip

401448: *r17 = r17

40144a: *(r17 + 0x4) = r17

40144d: rtn

40144e: r17 = r17

401450: push r3

401451: push r4

401452: r4 = r6

401454: r3 = r17

401456: call 0x4013f8

40145b:

40145d: ( r17 != r17 ) jmp 0x401464

40145f: r17 = r17 ^ r17

Figure 5.8: A fragment of an assembly .asm file and its AAPL file from the
Bho (win32) virus code.

• Instructions for operations over the environment (e.g. system calls)

Special instructions (i.e. system instructions) for optimisation and control opera-

tions over the processor (CPU) are not handled by our tool. System instructions,

such as halt – halting processor, are implemented to manage and control the pro-

cessor’s functionalities [Int90, Int]. Also, the multimedia (MMX) instruction set

(and MMX registers) are not covered in our AAPL syntax. The MMX is an exten-

sion to Intel’s standard instruction set and it is implemented to greatly increase

performance of the execution of programs related to digital signal processing and

graphics processing applications. Our tool deals with malicious programs that

are possibly variants of known malware code which do not in general incorporate

MMX instruction set. However, our tool can be amended to handle MMX in-

structions as malware authors could use this technology to enhance their future

malware variants [Sop09].

Figure 5.8 shows a fragment assembly code of the Bho virus variant in x86 Intel

format (i.e. IA-32) and its translation into AAPL. Note that each line in the as-

sembly code may represent a valid instruction. Each line of code is divided into

three distinct columns or fields, as in the fragment in the figure. The first, second
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and third columns (from left to right) in the assembly code represent labels, oper-

ations and the operands of the instructions, respectively. Labels are optional and

are used to represent the locations (or names) for a section of code or data. Labels

are preserved in the AAPL code. The translation process of the assembly code that

appears in Figure 5.8 on the previous page seems intuitive, but generating the

AAPL form of an assembly code requires the construction of a set of formal rules.

We implemented translation rules based on the Intel Architecture (IA-32, Intel

Syntax) [Int]. Table 5.2 on the following page gives a subset of the translation

rules for assembly instructions.

We map assembly registers (33 registers for Intel Architecture 32-bit (x86) [Int])

into a table of AAPL registers. For instance, we map the general-purpose regis-

ter eax to r17 where number 17 corresponds to eax in the register table. The

datatype information of AAPL instruction operands are designed to accommodate

32 bit unsigned integers (i.e. DWORD unsigned values) as contemporary Intel proces-

sors are oriented toward operations over 32-bit numbers. Note that we could have

one-to-one, many-to-one and one-to-many instruction translations. A one-to-one

translation occurs when a single AAPL instruction corresponds to one assembly

instruction. A many-to-one translation occurs when several (more than one) in-

structions in the AAPL code correspond to one instruction in the assembly code.

For instance, in Figure 5.8 on the previous page, two assembly instructions at

labels 401439 and 40143c are translated to a single “normal” AAPL instruction

i.e.

{cmp edx,0x64; jne 0x40142a} → {( r6 != 0x64 ) jmp 0x40142a}

Since the above two assembly instructions (cmp, jne) together subtract the operands

without changing their values and branch to the target location 0x40142a if the

flag register is not set, the translator generates the AAPL conditional instruction

that provides equivalent semantics to the jump operation.

The code generation stage takes the processed AST, the generated semantic infor-

mation and stores the AAPL instructions in a file. For the code and data segments

of a program, all data are stored in the same sequence as they appeared in the

source code.
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Rule Semantics asm → AAPL

r1 Load the effective address in
m to reg.

lea reg,m → reg:=m

r2 Load the data to or from the
register, memory or imme-
diate operand.

mov dst,src → dst:=src

r3 Add data to or from reg or
m or imm.

add dst,src → dst:= dst + src

r4 Sets each bit of dst to the
result of an exclusive or op-
eration of the corresponding
bits of the two operands.

xor dst,src → dst:=dst & src

r5 Load the result of multiply-
ing al by reg or m to ax.

mul src → r40:=r10×src

r6 Compare and jump if equal. cmp dst, src

je target

→ (dst==src) jmp target

r7

Exchange data between reg-
isters or between a register
and the memory.

xchg dst,reg →
r18:=reg

reg:=dst

dst:=r18

r8

Divide the accumulator
and its extension (edx,eax)
by the divisor src (32-bit).
Load the quotient and the
remainder to eax and edx’s
extension, respectively,
where edx is r6 and eax is
r17.

div src →

r6:=r6<<32

r6:=r6 | r17

r17:=r6/src

r6:=r6-r17

Table 5.2: Application of the translation rules (partial list) of assembly in-
struction syntax to AAPL code. Note that reg, m and imm denote a register,
operand located in memory and immediate operand (constant), respectively.

5.4 Semantic Simulator (SemSim)

The semantic simulator (SemSim) is a program which statically evaluates AAPL

code, and produces the effects of the code evaluation in a form of a semantic

trace. The simulator is a software tool that simulates the execution of a malicious

program and captures the outcome of a simulated execution without harming or

contaminating the host system. The simulator tool is based on AAPL operations.

The abstract machine-level (AAPL syntax is presented in Figure 4.1 on page 63)
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Semantic TraceSemantic TraceAAPL FileAAPL File
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               Environment list
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Generator
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Figure 5.9: Architecture of SemSim. In the signature-generation step, Sem-
Sim takes an AAPL file as an input and outputs a trace and a program input;
In the detection step, SemSim takes an AAPL file and a program input as an

input and outputs a trace as an output.

approach is chosen for the development of the semantic simulator because it par-

ticularly fits the purpose of evaluating executable malicious code and capturing its

approximate semantics. Most malware variants are reproduced and distributed as

executable objects; thus, an effective approach in detecting malicious code variants

would be to produce and examine suspected machine-level code. Since AAPL code

is an approximate representation of the malicious executable program under test,

the goal of our semantic simulation approach is to handle the intermediate repre-

sentation (e.g. AAPL) of executables and to perform simulations of the program

execution and to generate semantic traces from the simulations. Our semantic

simulator takes a known malware program during the signature generation step

(i.e. AAPL code) as input and simulates the code based on a random configuration

of program variables. At the end of the simulation process of a known malware,

SemSim generates a set of semantic traces and a program input as a semantic

signature of the known malware program. However, during the detection phase,

SemSim accepts, as an input, a candidate malware variant and the program input

that is part of the signature of a known malware. Figure 5.9 shows the architecture

of SemSim and its input and output parameters for the signature-generation and

detection steps.
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In order to process the AAPL program input and compute semantic traces, the

semantic simulation (SemSim) tool comprises three main modules: the evaluation

module, a simulation environment and trace collection.

The Evaluation Module (EM) EM includes a set of evaluative procedures,

which process AAPL program commands, and a procedure to generate program

inputs. The evaluative procedures implement the evaluation rules of the AAPL

commands; the semantics are shown in Figure 4.2. The AAPL command set that is

handled by our semantic simulator includes commands for data assignment, arith-

metic, boolean and program control operations. Moreover, a variety of addressing

modes typically available for use in an assembly language are also implemented for

AAPL command evaluation in the tool. Table 5.3 on page 123 lists the formats of

the addressing modes that can be used for AAPL code. For each AAPL command

to be evaluated, EM performs the following steps:

1. Find the values of program data manipulators which are used (read) by the

command (Algorithm 5.2 on page 124)

2. Identify the command type (i.e. conditional or action command)

3. Evaluate the command according to its semantics (Figure 4.2 on page 64)

4. Update the program environment and memory lists

5. Update the program input list (Algorithm 5.3 on page 125)

6. Update the PC register to contain the location of the next command to be

evaluated

The objective of Algorithm 5.2 on page 124 is to compute the current values of pro-

gram input data manipulators that are required to simulate program commands in

EM. The main procedure in the algorithm is find dm value; it accepts four input

parameters: a command c (to be simulated), the current program environment

list, the program memory list and program input list x of the simulation trace t.

The procedure is invoked each time a command is to be evaluated (in Step 5 in

Algorithm 5.4 on page 126). For each given program command c (instruction), the

procedure find dm value computes the value of each data manipulator dm that

is used (read) in c. First, the procedure finds all the program input data manip-

ulators that are referenced in the command c and store them in the list use list
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(line 9). Then the algorithm (in a for loop) computes the current value for each

data manipulator in use list and stores these values in the list value list (lines 12

to 26). If dm has already been defined during the simulation, then the procedure

returns the value of dm from the current program environment or memory in the

case of a register or a memory address, i.e. in lines 13 and 19, respectively. How-

ever, if a program input data manipulator has no previous defined value, i.e. dm

has not been defined since the start of the program simulation, then the proce-

dure gets a new generated value (by procedure compute value, in line 29) and

initialises dm in the current environment or memory with the new value, lines 16

and 22, respectively.

In procedure compute value (in Algorithm 5.2 on page 124), the computation

of a new value for an undefined program input data manipulator can be per-

formed under two cases: first (in line 30), if the simulation is performed during

the signature-generation step (i.e. constructing a semantic signature for a known

malware program) then the new value is generated by calling a random data gen-

erator, get random value, in Algorithm 5.3 on page 125. Second (in line 33),

if the simulation is performed during the detection step, then the new value is

extracted from the program input x of the given malware signature (procedure

get program input() in Algorithm 5.3 on page 125). The simulation terminates

if list x is empty and no values can be provided to evaluate the candidate program

variant. The program under the detection step is considered a benign file with

respect to the malware signature used.

The objective of Algorithm 5.3 on page 125 is to provide the value of a program

input data manipulator for Algorithm 5.2 on page 124. The algorithm consists of

two main procedures: get random value (in line 3) and get program value (in

line 11). The algorithm takes and updates a list. A program input x is treated as a

list, consisting of a sequence of values. The procedure get random value generates

a random 32-bit unsigned integer (stored as hexadecimal) value n and appends n to

the program input list x (e.g. x.append(n)). Thus, at the end of the simulation run

of a known malware program, SemSim outputs the program input list x as a part

of the semantic signature of the malware. During the detection step, the procedure

get program value in Algorithm 5.3 on page 125 extracts (and removes) the first

input value n, as required by find dm value, from x (e.g. x.remove(n)). As

we discuss potential approaches that could defeat our approach in Section 5.5.3,

creating a new malware variant that contains new irrelevant program variables

could consume the signature program input values. Thus, during the detection
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Addressing mode Example

Immediate addressing r1=4

Memory addressing r2=*(r3+8)

Indirect addressing r4=*r5

Register addressing r6=r7+r8

Table 5.3: Supported addressing modes in the semantic simulator.

phase the detector may not be able to extract the correct simulation trace for the

variant as the input values are used by irrelevant variables.

The Simulation Environment Module (SE) The simulation environment

module consists of the program memory list M, the program environment list E
and a function to simulate API system calls. SE maintains the lists M and E
and interacts with the evaluation module by providing EM with specific semantic

information (values) related to the operands (e.g. program registers, stack pointer

and memory locations) and commands being evaluated. The system environment

(sys env) function is implemented to simulate the system (kernel) calls (APIs) and

their outputs. That is, sys env takes a system call command as an input, checks its

input parameters and returns a set of default values Val for the command output

parameters. Let API denote the set of system calls in the AAPL language. For all

system calls api, we have an output component api.out, which represents the set

of registers that are modified when evaluating an api command. The semantics of

an api command is described in Chapter 4 in Figure 4.2 on page 64. SE produces

a set of possible output values for pre-specified system services. That is, when

the semantic simulator evaluates a system call, SE checks the corresponding input

parameters (registers) that are associated with the system call and returns outputs

to EM. A partial list of system calls and their input and output parameters that

are implemented in SE are shown in Table 5.4 on page 125.

The Trace Collection Module (TC) TC monitors the simulation process and

captures information produced by the evaluation module. When a code sample

is simulated in SemSim, the evaluated information (i.e. a pair of command and

execution context) is captured and added to the simulation trace. Figure 5.4

illustrates how the above components are combined into an iterative algorithm

that allows us to provide semantics-based static simulation of program executables.

The key feature of this algorithm is that program commands in the program path
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Algorithm 5.2: find dm value(c) finds the current values of program data
manipulators used in the program command c with respect to current execu-
tion context (ρ,m).

1: Input: command c to be evaluated, current program environment list ρ ∈ E , current
program memory list m ∈M, program input list x of simulation trace t

2: Output: returns the current values of dm to be used (read) in c
3: procedure find use is presented in Algorithm 4.1 on page 72
4: procedure get random value is presented in Algorithm 5.3 on the next page
5: procedure get program input is presented in Algorithm 5.3 on the following page
6: begin: find dm value(c)
7: for a given program command c (to be evaluated) at position i in t:
8: find all data manipulators (use list) that are used (read) in c at i:
9: use list = find use(i,c)

10: initialise the list of program input values to empty:
11: value list→ ∅
12: for all dm∈use list do
13: if dm is a register then
14: if ρ(dm) = φ then
15: compute a value for dm in the program environment:
16: ρ(dm→ v | v = compute value())
17: end if
18: value list→ value list ∪ ρ(dm)
19: else if dm is a memory address then
20: if m(dm) = φ then
21: compute a value for dm in the program memory:
22: m(dm→ v | v = compute value())
23: end if
24: value list→ value list ∪m(dm)
25: end if
26: end for
27: return value list
28: end: find dm value(c)

29: procedure compute value()

30: if signature generation step then
31: generate a random value and append x

32: v = get random value()

33: else if detection step then
34: extract a program input value from x

35: v = get program input()

36: end if
37: return v
38: end procedure

are semantically evaluated, the control flow is updated, and only updates to the

trace are recorded.
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System calls Input Output

sys write r3,r6,r17 r6

sys sethostname r3,r15,r17 r17

sys munmap r3,r15,r17 r17

sys ftruncate r3,r15,r17 r17

sys read r3,r6,r15,r17 r6

Table 5.4: A sample of system calls and their I/O parameters (AAPL registers)
implemented in SE for simulating system interactions in a program.

Algorithm 5.3: get random value() and get program value() updates
program input list x with input values for Algorithm 5.2 on the preceding
page.

1: Input: program input list x is used to append and remove a program input value
during signature generation and detection step, respectively.

2: Output: update x and return a value n

3: procedure get random value()

4: this procedure is invoked during the signature generation step to select a random
value for a new program input in x.

5: a data manipulator dm has no value in the current program environment.
6: generate a random value for dm and append the value to x:
7: n→ a random hexadecimal number
8: x.append(n)
9: return n

10: end procedure

11: procedure get program value()

12: this procedure is invoked during the detection step.
13: the procedure extracts (removes) the first input value n from the program input list

x:
14: if ∃n ∈ x then
15: x.remove(n)
16: return n
17: else
18: there exist no values in x and the simulation (the detection step) terminates.
19: end if
20: end procedure

It is possible that the program under simulation may contain a loop or condi-

tional jump operation that may force the simulation to evaluate the program for

a very long time (or infinite time). This will increase the overhead of collecting

trace information. To handle this situation, the TC module triggers the simulator
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Algorithm 5.4: Sketch of the AAPL code simulation algorithm.

1. Load the program into the environment memory

2. Set the label _start as the entry point of the program

3. Load the (valid) address of an instruction line, else

terminate the simulation

4. Parse the instruction line from the memory

5. Evaluate the command at the current line

6. Update the simulation trace with the current program state

7. Compute the valid address of the next point in the program

8. Return to step 3

to terminate the evaluation process if the number of program instructions evalu-

ated so far exceeds a certain limit; we discuss the selection of the threshold for

terminating a program simulation in Section 5.5.1.

For each known malware program that has already been captured and identified,

the TC module generates a semantic signature from the recorded trace. Semantic

signature generation is realised by simulating the execution of the sample program

with a random program input and generating a simulation trace. Then this trace

is sliced by the trace slicer with respect to the set of program data manipulators

defined in the trace. For each data manipulator, the slicer performs a backward

slice from the recent definition position (Definition 4.7 on page 73 in Chapter 4)

of the data manipulator in the trace. The trace slicer applies the trace-slicing

algorithm (Algorithm 4.5 on page 80 in Chapter 4) and produces a set of compact

traces as part of the semantic signature of the malware. To avoid identifying

a benign executable program as a malicious variant of a malware family, i.e. to

minimise the number of false positives in the detection process, the set of traces

within the signature is reduced by removing ineffective traces. An ineffective trace

is a sub-trace that contains fewer semantic states and, hence, is likely to produce

false positive matches. Trace slices with a length above a predefined threshold are

considered to be part of the semantic signature (e.g. we set the acceptable trace

length to 20 program states as a minimum sequence of states in a trace).
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5.5 Prototype Evaluation

Four experiments were conducted with the semantic trace detection system. The

objective of the experiments was to evaluate the effectiveness of the proposed tech-

nique to produce semantic signatures and use them to detect program variants in

a malware family. The semantic simulator and the signature analyser are mod-

ules implemented in Python, along with an input extraction component, forming

our malware detector tool. In this section, we discuss details of the prototype

implementation, experimental results and the limitations.

5.5.1 Prototype Setup

The implementation and deployment of the system prototype is realised through

Python classes. The semantic simulator (SemSim) [Alz11] was developed under

Python 2.4.3. The detection system (i.e. asm2aapl, SemSim and the signature

analyser) can be flexibly installed on various operating systems. During the ex-

perimental evaluation of the prototype, it was successfully deployed over diverse

distributions of Linux, namely Debian, Ubuntu and CentOS. The semantic simu-

lator is a two-pass AAPL program simulator. During the first pass, each instruction

line of the source code is tokenised with the help of Pyparsing [McG]. The Py-

parsing module classes are used to construct the AAPL grammar directly in the

simulator module. Comments are stripped out and instruction labels are used to

build register, memory and branch tables. The output of the first pass is a list of

parsed tokens for each instruction of AAPL code and the program tables (registers

and symbol table, memory table and label-branch table). During the second pass,

the evaluation process handles the instruction list and the tables to evaluate the

commands and to generate the trace output for the simulator.

To avoid a very long simulation process when an infinite loop is encountered,

the termination threshold k is defined and set to k = 10, 000 (maximum number

of program instructions to be evaluated) for a simulation run. This allows us

to manage the computing resource and lower the time and space overhead. All

experiments were performed on a machine running an Ubuntu Linux OS, with an

Intel Core 2 Duo processor, and 4 GB of RAM.
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5.5.2 Evaluation

Many malware variants are created with common functionalities, but with dif-

ferent syntactical appearances in an attempt to avoid detection by AV tools. We

evaluate our prototype malware detector against real-world malware variants. Sev-

eral samples of malware and variants can be retrieved from the Internet. For

the experiments, we collected two types of malware variants from the VxHeav-

ens [Hea] website: viruses and worms. These malware samples were developed for

the Windows and Linux operating systems. Originally, the total number of mal-

ware examples considered was around 62 programs (from 12 malware families);

the assembly code of 24 of the samples could not be generated as the off-the-shelf

tools (i.e. UPX and IDAPro) failed to handle the binaries. Of these, the UPX

packer could not successfully unpack 16 of the packed malware files to recover the

binary code. For the other eight excluded programs, IDAPro failed to identify

the functions or produced incorrect function-start addresses in the binary code.

A further 12 of the extracted binary programs produced no or short simulation

traces (e.g. < 10 states) when they were simulated using the input test generated

from their family and so we had to exclude them as the sizes of their semantic

traces were insufficient for detection. Thus, ten malware families were used for

the experiments, consisting of 26 malicious programs. Table 5.5 on page 133 lists

the malware variants that were used to test our detector. These families (out of

12) were considered because (random) test input cases were successfully gener-

ated during the signature-generation step (using Algorithm 5.2 on page 124) for

the malware programs (i.e. known variants) of each family. Also, a collection of

benign executable programs were used to test the system for false positives. The

goals of the evaluation were:

• to extract semantic signatures that can be used to match in-the-wild variants

from the same malware family;

• to demonstrate that the detector can detect new obfuscated malware variants

using the existing semantic signatures of their families;

• to show that the detector produces few false positives when running on benign

programs; and

• to demonstrate that the detector is able to classify malware samples accord-

ing to their families.
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Performance Complexity. During the signature-generation phase, the method

requires O(N) space to store the simulation trace and O(N2) space to store the

dynamic data flow information (DDG), where N is the length of the trace. A

single trace slice from a DDG can be extracted in O(N) time and a semantic trace

can be produced (i.e. applying the abstraction functions) in O(n). During the

detection phase, the complexity of the method consists of the time complexity

of producing a semantic trace from a simulation trace and the time required to

match the trace against a single trace signature. The complexity of applying the

abstraction functions can be calculated as being of O(N) of the simulation trace.

Matching the trace with a signature trace of length M requires O(M.N). When

applying the matching step using a signature with a set of traces (slices) against

a semantic trace of a suspicious program, the time complexity is proportional to

the number of traces and the size of each trace in the signature.

5.5.2.1 Signature Extraction

The process of producing semantic signatures from the input program consists of

the following steps. First, the semantic simulator evaluates an input program (a

known malware), generates a random program input and outputs the simulation

trace of the program simulation. The semantic simplification step reduces the trace

to eliminate any duplicate states within it. Then the trace is sliced using the trace

slicer. The simulation trace is sliced into a set of traces. At the end of the trace

collection process, a data dependence graph (DDG) is constructed using TSAlgo

algorithm (step 1 in Algorithm 4.5). Then for each data manipulator dm defined in

the trace, a call is made to TSAlgo (step 2 in Algorithm 4.5 on page 80) to compute

a trace slice with respect to dm at the end of the simulation trace. The final

step is to abstract away command syntax from each state within the trace slices.

The output of the syntax simplification forms the set of semantic traces, which is

paired with the input program to form a signature of the known malware program.

Figure 5.10 illustrates the process of extracting the semantic traces from a sample

malware program, Binom, using a program input x = (64, 20, 21a, 120, 1f4). The

set of semantic traces is extracted from the simulation trace produced by the

simulator. A signature is represented as a pair of a program input and a set of

semantic traces. Figure 5.10 on page 131(a), Step 1, shows a fragment of the

collected trace from the simulation. In Figure 5.10 on page 131(b), Step 2, the

simplification function αsem has been applied to the simulation trace and two
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program states (states 4 and 8) have been removed from the trace. In Figure 5.10

on the following page(c), Step 3, the trace has then been sliced with respect to the

defined program registers, r17, r3 and r7 at position (state) 13 in t. Finally, in

Figure 5.10 on the next page(d), Step 4, a semantic trace has been produced by

removing the trace syntax from the slices. The total number of states of the Binom

simulation trace is 926. It took 460 milliseconds to produce the semantic traces

(slices) at the end of the simulation. The set of semantic traces in the signature

of Binom consists of 12 traces and the average number of states in each trace slice

is 34. In general, the longer the collected trace, the more time it takes to extract

semantic traces and construct the signatures.

However, to evaluate the effectiveness (speed and detection rates) of semantic

signatures produced by the trace-slicing algorithm, we created and used another

set of signatures that incorporate semantic traces, which are produced without

applying the trace-slicing algorithm. We call these signatures, “sig-wo-slice”. That

is, a sig-wo-slice signature consists of a program input and a semantic trace; the

semantic trace in a sig-wo-slice signature is produced after applying the semantic

(αsem) and context (αe) simplifications to a simulation trace. Figure 5.11 on

page 132 shows a fragment of the semantic trace that is a part of the sig-wo-slice

signature of the Binom family.

5.5.2.2 Detection of In-The-Wild Variants

We used variants from ten malware families (groups of different malware). We used

five variants of Bho, three variants of Binom, Mobler and Rst, and two variants

of Echo, Grip, Lychan, Synk, Tefl and Xone. Each of them has many instances

in the wild, ranging in size from 8 kB to 4.4 MB. For each malware family we

calculated a single semantic signature from an early variant of the malware and

used the signature for detecting the malware variants. For instance, Binom.a is

the first instance of the virus Binom, thus, we considered it as a known malware

program and used it to generate the signature for the whole family and tested

other Binom variants against it.

We analysed each known malware program using our semantic simulator. We ap-

plied the same steps of the signature-generation process to generate the signatures

(i.e. pairs of a program input and a set of semantic traces) of all ten malware

families. We then applied the simulator with the program input, comparing the
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-- STATE 1 --

PUSH r7, (r7=21a)

-- STATE 2 --

r7 =r1, (r7=21a,r1=64)

-- STATE 3 --

r1 = r1 - 0x8, (r7=64,r1=64)

-- STATE 4 --

CALL 80482b4, (r7=64,r1=5c)

-- STATE 5 --

PUSH r7, (r7=64,r1=5c)

-- STATE 6 --

r7= r1, (r7=64,r1=5c)

-- STATE 7 --

PUSH r3, (r7=5c,r1=5c,r3=20)

-- STATE 8 --

CALL 80482bd, (r7=5c,r1=5c,r3=20)

-- STATE 9 --

POP r3, (r7=5c,r1=5c,r3=20)

-- STATE 10 --

r3 = r3 + 0x17b3, (r7=5c,r1=5c,r3=80482b9)

-- STATE 11 --

PUSH r17, (r7=5c,r1=5c,r3=8049a6c,r17=120)

-- STATE 12 --

r17= *(r3-0x4), (r7=5c,r1=5c,r3=8049a6c,r17=120,

0x1813=1f4)

-- STATE 13 --

SKIP, (r7=5c,r1=5c,r3=8049a6c,r17=1f4,0x1813=1f4)

-- STATE 14 --

...

(a) Step 1: A simulation trace t generated by Sem-
Sim.

-- STATE 1 --

PUSH r7, (r7=21a)

-- STATE 2 --

r7 =r1, (r7=21a,r1=64)

-- STATE 3 --

r1 = r1 - 0x8, (r7=64,r1=64)

-- STATE 5 --

PUSH r7, (r7=64,r1=5c)

-- STATE 6 --

r7= r1, (r7=64,r1=5c)

-- STATE 7 --

PUSH r3, (r7=5c,r1=5c,r3=20)

-- STATE 9 --

POP r3, (r7=5c,r1=5c,r3=20)

-- STATE 10 --

r3 = r3 + 0x17b3, (r7=5c,r1=5c,r3=80482b9)

-- STATE 11 --

PUSH r17, (r7=5c,r1=5c,r3=8049a6c,r17=120)

-- STATE 12 --

r17= *(r3-0x4), (r7=5c,r1=5c,r3=8049a6c,r17=120,

0x1813=1f4)

-- STATE 13 --

SKIP, (r7=5c,r1=5c,r3=8049a6c,r17=1f4,0x1813=1f4)

-- STATE 14 --

...

(b) Step 2: A trace produced after applying αsem

to t.

-- STATE 7 --

PUSH r3, (r7=5c,r1=5c,r3=20)

-- STATE 9 --

POP r3, (r7=5c,r1=5c,r3=20)

-- STATE 10 --

r3 = r3 + 0x17b3, (r7=5c,r1=5c,r3=80482b9)

-- STATE 12 --

r17= *(r3-0x4), (r7=5c,r1=5c,r3=8049a6c,

r17=120,0x1813=1f4)

-- STATE 13 --

SKIP, (r7=5c,r1=5c,r3=8049a6c,r17=1f4,

0x1813=1f4)

-- STATE 7 --

PUSH r3, (r7=5c,r1=5c,r3=20)

-- STATE 9 --

POP r3, (r7=5c,r1=5c,r3=20)

-- STATE 10 --

r3 = r3 + 0x17b3, (r7=5c,r1=5c,r3=80482b9)

-- STATE 11 --

PUSH r17, (r7=5c,r1=5c,r3=8049a6c,r17=120)

-- STATE 3 --

r1 = r1 - 0x8, (r7=64,r1=64)

-- STATE 6 --

r7= r1, (r7=64,r1=5c)

-- STATE 7 --

PUSH r3, (r7=5c,r1=5c,r3=20)

(c) Step 3: Trace slices (from left to right) wrt r17, r3 and r7, respectively at state 13 in t.

-- STATE 7 --

(r7=5c,r1=5c,r3=20)

-- STATE 9 --

(r7=5c,r1=5c,r3=20)

-- STATE 10 --

(r7=5c,r1=5c,r3=80482b9)

-- STATE 12 --

(r7=5c,r1=5c,r3=8049a6c,

r17=120,0x1813=1f4)

-- STATE 13 --

(r7=5c,r1=5c,r3=8049a6c,r17=1f4,

0x1813=1f4)

-- STATE 7 --

(r7=5c,r1=5c,r3=20)

-- STATE 9 --

(r7=5c,r1=5c,r3=20)

-- STATE 10 --

(r7=5c,r1=5c,r3=80482b9)

-- STATE 11 --

(r7=5c,r1=5c,r3=8049a6c,

r17=120)

-- STATE 3 --

(r7=64,r1=64)

-- STATE 6 --

(r7=64,r1=5c)

-- STATE 7 --

(r7=5c,r1=5c,r3=20)

(d) Step 4: The set of semantic traces τ of Binom after abstracting the trace syntax.

Figure 5.10: The extraction process of a fragment of the semantic
traces (part of the signature) of the Binom family, where the randomly
generated program input x = (64, 20, 21a, 120, 1f4) for data manipulators

r1, r3, r7, r17 and 0x1813, respectively.

generated semantic trace t′ of each malware variant against the signature of the

known malware. In the comparison step, for each semantic trace t (slice) in the

set we applied the matching algorithm (TraceMapping in Figure 5.1 on page 112)

between t and t′, calculated the similarity percentage and determined if the pair

of the traces established a match. We observed that the similarity between two

matchable traces (i.e. traces that are generated from malware variants) is above
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-- STATE 1 --

(r7=21a)

-- STATE 2 --

(r7=21a,r1=64)

-- STATE 3 --

(r7=64,r1=64)

-- STATE 5 --

(r7=64,r1=5c)

-- STATE 6 --

(r7=64,r1=5c)

-- STATE 7 --

(r7=5c,r1=5c,r3=20)

-- STATE 9 --

(r7=5c,r1=5c,r3=20)

-- STATE 10 --

(r7=5c,r1=5c,r3=80482b9)

-- STATE 11 --

(r7=5c,r1=5c,r3=8049a6c,r17=120)

-- STATE 12 --

(r7=5c,r1=5c,r3=8049a6c,r17=120,0x1813=1f4)

-- STATE 13 --

(r7=5c,r1=5c,r3=8049a6c,r17=1f4,0x1813=1f4)

-- STATE 14 --

...

Figure 5.11: A fragment of the semantic trace in the sig-wo-slice signature
of the Binom family from the simulation trace in Fig. 5.10(a).

70% while the similarity between two different traces (i.e. generated from two dif-

ferent programs) is below 45%. Therefore, we set the threshold (k) as 70% to

distinguish between matched and unmatched semantic traces. Finally, we consid-

ered a malware variant as detected if the similarity between each t and t′ exceeds

70%, i.e. if all semantic traces in the malware signature are matched with the se-

mantic trace of the variant. For nine out of the ten malware families, the detector

matched all of the variants to the correct family. One variant of the Bho family

did not match the family signature, so its signature was stored in the semantic

signature database as a different malware family. Nonetheless, we have shown that

our detector is able to match malware variants from the same family using one

semantic signature.

Running times for the different phases of the tool are shown in Table 5.6 on

page 134 and are reasonable for a prototype and suggest that real time improve-

ments can be achieved with an optimised implementation. We also used the sig-

wo-slice signatures of the malware families in our detector on the same variants

and measured the similarity and running time results in order to compare them

with the results obtained using the semantic signature.

Table 5.7 on page 134 shows a summarised comparison of the two sets of results.

The similarity results of both types of signatures have the same detection rates, i.e.
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File name Size Type Operating system
Binom.a 20 kB virus Linux
Binom.b 20 kB virus Linux
Binom.c 20 kB virus Linux
Bho.a 4.1 MB virus Windows
Bho.b 4.2 MB virus Windows
Bho.c 4.4 MB virus Windows
Bho.d 4.2 MB virus Windows
Bho.e 4.2 MB virus Windows
Echo.a 8.0 kB virus Windows
Echo.b 56.0 kB virus Windows
Grip.a 116 kB virus Windows
Grip.b 140 kB virus Windows
Lychan.a 12 kB virus Linux
Lychan.b 15 kB virus Linux
Mobler.h 1.1 MB worm Windows
Mobler.i 748 kB worm Windows
Mobler.g 836 kB worm Windows
Rst.a 314 kB virus Linux
Rst.b 314 kB virus Linux
Rst.c 314 kB virus Linux
Synk.a 8.0 kB virus Windows
Synk.b 8.0 kB virus Windows
Tefl.a 56.0 kB virus Linux
Tefl.e 48.0 kB virus Linux
Xone.a 12.0 kB virus Linux
Xone.c 12.0 kB virus Linux

Table 5.5: Malware variants in the wild.

the tested variants can be detected using either type of signature. Nonetheless, in

terms of the precision and accuracy of a detection outcome, the similarity results of

matching malware variants using semantic signatures are much more accurate than

when using sig-wo-slice signatures. For instance, for the Grip family, the similarity

rate for matching using the sig-wo-slice signatures of its variants is 45.7%, which is

very low. Whereas, with semantic signatures, Grip variants were detected with an

average similarity of over 85%. Overall, using semantic signatures, the detection

rates are 30% more accurate than with sig-wo-slice signatures. For the average

running time results, the cost of producing semantic signatures is longer due to

the slice computation. In this evaluation, the running time ratio of sig-wo-slice to

semantic signatures is approximately 5:7. However, the time of matching traces

in the semantic signatures case is faster by 26% (on average) compared to the
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Malware Running time (msec) Total Detection
Simulation Abst. and slicing Matching time

Bho 61232.5 234.9 158.9 61.63 s 80%
Binom 7534.2 460.0 170.0 8.16 s 100%
Echo 6029.0 685.1 204.9 6.92 s 100%
Grip 34621.3 430.0 302.1 35.35 s 100%
Lychan 6322.1 900.0 92.0 7.314 s 100%
Mobler 49549.6 394.9 2098 52.04 s 100%
Rst 82371.7 398.6 268.7 83.05 s 100%
Synk 2672.0 238.8 73.5 2.98 s 100%
Tefl 3412.0 190.0 260.0 8.16 s 100%
Xone 2894.0 311.0 310.0 8.16 s 100%

Table 5.6: Results of evaluating our detector on 26 real-world malware vari-
ants.

Malware sig-wo-slice signatures semantic signatures
Similarity Time1 Similarity Time1 Time2

Bho 64.6% 197.3 97.4% 158.9 393.8
Binom 67.3% 534.0 86.1% 170.0 630.0
Echo 72% 473.6 100% 204.9 890.0
Grip 45.7% 630.0 85.3% 302.1 732.1
Lychan 90% 930.0 89.7% 92.0 992.0
Mobler 65% 1230.0 93.3% 2098 2492.0
Rst 75.3% 289.3 98.3% 268.7 677.2
Synk 82.0% 293.7 91.5% 73.5 312.3
Telf 85% 358.0 98% 260.0 450.0
Xone 61% 421.7 81% 310.0 621.0
1Time to match the signatures. 2Time to abstract, slice and match.

Table 5.7: Comparison of the similarity and running time (in msec) for de-
tecting malware variants using semantic signatures and sig-wo-slice signatures.

running time for sig-wo-slice signatures. We believe that the cost of the slicing

computation is an up-front cost in the signature generation process and it does

not relate to the detection performance (cost).

Table 5.6 shows the results of our experiments comparing malware families against

their variants. From this experiment, we observed that the similarity rate of match-

ing a malware family’s semantic traces (in the signature) with its variants’ traces

varies between 70% and 100%. The average similarity between a malware family

and its variants is 92.7%. Also, for each malware variant, we achieved 100% detec-

tion (i.e. no false negatives) using the trace semantics signatures of the malware

family, with the exception of the Bho malware family where one out of the five
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code variants was not detected. We believe that this (false negative) occurred due

to the fact that the semantic signature contains a single program input, which

was ineffective in capturing parts of the semantics of this particular variant, and,

hence, the detector could not match the variant semantic trace against the seman-

tic traces in the signature.

5.5.2.3 Detection of Obfuscated Variants

For each malware family in Table 5.6 on the previous page, we created new code

variants by applying the following code obfuscation techniques (see Table 5.1 on

page 108): code reordering (cr), garbage code insertion (gi), equivalent command

replacement (ec), system call insertion (sc), simple command split (cs) of one in-

struction into two instructions and register renaming (rr). The code reordering

(cr) transformation was implemented by moving some parts of the code to a dif-

ferent location and using jump instructions to the new code locations. The code

insertion (gi) transformation inserts an irrelevant sequence of instructions into a

program. We considered two types of code insertion: first, adding a sequence of

SKIP instructions and second, adding simple sequences of operations. We con-

sidered three types of operations: arithmetic and bitwise operation commands,

assignment operation commands and adding a sequence of PUSH and POP instruc-

tions, which push a value onto the stack and then pop the same value into an

irrelevant register. For the equivalent command (ec) replacement transformation,

we replaced XOR instructions with MOV instructions whenever an operand is XOR-

ed with itself; a move command loads zero to the destination operand. Also, we

replaced INC and DEC instructions with ADD by one and SUB by one instructions,

respectively. For register renaming (rr) transformations, we replaced at most three

general-purpose registers in a program with different general-purpose registers that

did not already exist in the program, if possible. For the command split (cs) trans-

formation, we replaced a MOV instruction with ADD and SUB instructions where a

move command must load a constant value (const) into either a register (reg)

or a memory location (m). That is, mov reg/m, const is transformed into two

instructions: xor reg/m,reg/m and add reg/m,const. For system call insertion

(sc), we inserted API calls of the following types: file or device open (sys open)

and close (sys close) calls, make directory (sys mkdir) calls and file truncate

(sys ftruncate) calls.
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Malware Transformation type FN
cr gi ec rr sc cs all

Rst Y Y Y Y N Y Y 1
Bho Y Y Y Y N Y N 2
Synk Y Y Y Y N Y Y 1
Mobler Y Y Y Y Y Y Y 0

Table 5.8: The detection results of a set of obfuscated variants of four mal-
ware families. Y and N denote whether the detection was successful or unsuc-
cessful, respectively. FN (False Negative) denotes the number of undetected

variants.

Also, an instance of each piece of malware was generated using all of the techniques

together (we labelled it with all). To perform the evaluation, first, we applied

our semantic simulator tool to the set of new variants of each malware (seven

obfuscated variants) using the program input from the malware signature. Then

we used the detector to test the semantic traces of the new variants against the

database of existing malware family semantic traces. Table 5.8 shows the results of

the experiment for detecting obfuscated malware variants. Our detector identified

all of the new variants generated using the code obfuscations with the exception

of the system call insertion obfuscation. System call instructions, such as those

used in this evaluation, alter the environment of an executing program by writing

into particular special registers and, hence, altering the semantics of the malicious

code variant. Thus, this shows that our detector cannot deal with new malware

variants that contain different (altered) semantics from the known malware.

5.5.2.4 False Positives

We performed the same evaluation process with a set of benign executables. That

is, for each malware family signature in the database, the benign programs were

simulated using the program input from the signature and their semantic traces

were examined by our detector to measure the false positive rate. We used ten

programs, with sizes ranging from 10 kB to 2 MB, which are standard executable

programs for the Linux operating system. For each benign program, we computed

the matching similarity of the benign code against the whole database of malware

signatures created for the malware families in Section 5.5.2.2. Our detector pro-

duced no false positives, that is, our approach successfully identified all programs

as benign and none of their semantic traces matched the malware database.
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Malware Similarity
File1 File2 File3 File4

Bho 22.0% 17.0% 95.0% 0.0%
Binom 29.0% 16.1% 28.2% 38.3%
Echo 8.0% 100% 0.0% 15.0%
Grip 1.0% 0.0% 0.0% 79.0%
Lychan 0.0% 9.0% 4.5% 44.0%
Mobler 4.6% 7.4% 32.0% 8.2%
Rst 100% 18.3% 5.3% 3.0%
Synk 0.0% 10.4% 45.0% 3.0%
Telf 23.0% 40.0% 0.0% 0.0%
Xone 30.0% 0.0% 5.0% 0.0%

Table 5.9: The similarity rates of randomly selected variants (File1, File2,
File3 and File4) compared to the semantic traces (in signatures) of the malware
families. All four files were successfully classified by our tool to be variants of

Rst, Echo, Bho and Grip, respectively.

5.5.2.5 Classification of Malware Variants

We examined the general classification performance of our approach. We used

the signature database of malware families that were generated in Section 5.5.2.1.

Also, we randomly selected four different malware variants from the real-world

malware variants in Table 5.5 and labelled them as File1, File2, File3 and File4.

We then applied the detector to each of the four files and recorded the similarity

rates. Table 5.9 shows the percentage match for the semantic traces of the tested

files against the traces in the signatures of the malware families. For File1, the

highest similarity result is 100%, which means that File1 is a variant of the Rst

malware family. The highest similarity rate for File2 is 100% and it is classified

as a variant of the Echo malware family. File3 is classified as a variant of the Bho

family and its similarity rate is 95.0%. File4 is classified as a member of the Grip

family. Our tool correctly assigned all files to their malware families.

5.5.3 Prototype Limitations

We now discuss several potential approaches that may defeat and the limitations

of the current prototype that may limit its detection and classification effective-

ness. Because our tool simulates suspicious samples with program inputs from the

malware signature, it may be susceptible to a technique where irrelevant variables
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are introduced in the code. For instance, during the detection phase, inserting

instructions with irrelevant input variables (e.g. registers and memory references)

can consume the program input list (of the given malware signature) and hence,

shift the order of the input. The simulation of a variant with this technique can

be affected and the original program variables would be assigned to incorrect in-

put values. Also, because our technique relies on execution context updates (i.e.

value updates) to match semantic traces, changes to a few states in the traces,

such as inserting some garbage instructions that contain the same values later

in the trace are likely to influence the matching results. However, developing

new variants using such a technique of inserting operations with new input vari-

ables may alter the semantics of the program. That is, producing semantically

equivalent but syntactically significant different variants using this technique is a

difficult task for malware authors. In terms of the limitations of the tool, one way

to evade the current prototype’s detection is to prevent the tool from extracting

a malicious portion of the binary code by applying packers to the new malware

variants’ code. Our tool incorporates UPX as a tool to handle packed or hid-

den malware code; however, like most existing unpack tools, it is by no means

complete. One way to address this problem is to employ several dynamic unpack

tools, e.g. OllyBonE [Ste07] and Saffron [Val07]. Also, our tool rely on IDAPro to

identify function-start locations and data structure addresses. As a result when

the code is being simulated, if some computed values are used as indirect reference

by a jump command to a function (a portion of the code) or a data structure in

the memory, then the tool fails to determine the target instruction. In conclusion

and future work chapter (Chapter 7), we suggest a more thorough approach that

could mitigate this problem using a hybrid technique.

5.6 Conclusion

We have introduced a semantic trace-based approach for detecting variants of

malware that increasingly evade traditional signature- and heuristics-based ap-

proaches. AV tools must cope with various obfuscation techniques deployed in

generating new unknown malware variants. Effective semantic matching of mal-

ware is an important feature of today’s anti-malware tools. We have developed a

static-based semantic simulator that evaluates malicious low-level programs and

generates semantic signatures. That is, a semantic signature describes semantics
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for variants of a malware family including any new obfuscated variants. This en-

ables a malware detector to have a compact database of semantic signatures. We

have implemented the semantic matching on top of the simulator for computing

the similarity of semantic traces of a malware and its variants. In order to handle

obfuscation effects within the trace semantics, we used the semantic trace slicer to

produce small traces as candidate semantic signatures for the matching step. Our

evaluations of both malware samples and obfuscated variants of malware demon-

strated that our semantic signature approach to malware variant detection not

only produces very high detection rates but is also able to detect new variants of

malware using the existing signature sets in the database without generating false

positives.



Chapter 6

Test Data Generation for

Malware Executables

As we noticed in Chapter 3, preliminary research work [PCJD07, FG09, LJL10]

suggests that a semantic-based approach to malware detection has the potential

to overcome various weaknesses of current and traditional approaches in detecting

unknown malware variants.

The uniqueness and the quality of the semantic signatures depend on the cap-

tured simulation traces. That is, the behaviour of a program is determined from

simulation runs of the program paths. However, when the semantic signature of a

program is produced from a single simulation run, it is possible that much of the

semantic information cannot be observed. This might cause the semantic signa-

ture matcher to fail to detect a variant of a malware family. A possible solution to

this problem is to adapt the test coverage of the program under analysis. To this

end we seek a method of generating tests from program control flow paths. We

extend the test data generation method, proposed by Offutt et al. [OJP99], called

dynamic domain reduction (DDR). Our extended method automatically gener-

ates test data for input data manipulators of AAPL programs. This approach is a

promising method for computing test cases by generating a set of semantic signa-

tures for improving the detection of obfuscated malware variants. We present two

theoretical results for our method, a test data generation algorithm for low-level

code and a correctness notion of the algorithm.

To summarise, the contents of this chapter are as follows:

140
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• We develop an extended version of the DDR algorithm for AAPL that allows

us to produce test data cases for executable programs. The algorithm first

explores feasible program paths in the control flow graph (CFG) of an AAPL

program, driven by the DDR technique and a set of values of program inputs.

The algorithm then attempts to find a subset of values of program inputs

under which the feasible program paths in the CFG are executed.

• We prove the correctness for our extended DDR algorithm. Our conjecture

for the correctness property of the algorithm is that for a given program path

in the control flow graph of an AAPL program, the DDR analysis is correct

if it finds a subset of values of program inputs such that, when executing

the program for test data selected from the subset of program inputs in

this set, the set of output states at the end of the path is reached. The

set of output states is determined by the reachability semantics of an AAPL

program path language, which is based on Cousot’s semantics of reachable

states for transition systems [CC77].

The rest of this chapter is organised as follows. Section 6.1 provides an overview

of the dynamic domain reduction approach for executable code. Preliminary def-

initions, syntax and semantics of program paths are presented in Section 6.2. In

Section 6.3, the dynamic domain reduction method is reviewed. In Section 6.4,

the DDR algorithm is extended to handle AAPL programs. The correctness proof

of the new algorithm is presented in Section 6.5. Section 6.6 gives related work

of software testing in the area of malware analysis and detection. Section 6.7

concludes the chapter.

6.1 Overview

The objective of test coverage or the coverage-based testing technique is to cover

the code under investigation with test cases that satisfy some fixed coverage cri-

teria [CDH+03]. In software testing, a test case is a set of program input values

under which the testing criteria are met. There are several testing criteria used in

software testing which include: statement coverage or node coverage, branch cover-

age, condition coverage, multiple condition coverage and path coverage. The path

coverage or path-oriented approach [McM04] identifies a set of program control

flow paths that cover all program commands (and branches) in the program and
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then attempts to generate test data that executes every selected path. Test data

generation is the process of identifying program input data that satisfy selected

testing criteria.

Increasing test coverage for malicious executable programs could be done by ex-

isting test data generation methods [McM04, Har07], such as the random testing

method [GKS05], where hundreds of tests are randomly performed with each mal-

ware family in different operating environments in an attempt to cover different

paths in the program code. Unfortunately, performing and maintaining a large

set of random test cases can be a tedious and costly task. Also, testing a malware

sample in different operating environments cannot guarantee that certain feasible

branches in the code are covered by test cases. That is, many inputs provided by

the test cases may have no influence on the program run (e.g. operating system

changes). Also, some malware programs do not invoke their malicious commands

unless they receive some expected inputs (e.g. file size, date/time).

Symbolic evaluation-based methods [BEL75, VPK04, BCM04] could be used to

generate test data. Symbolic execution [Kin75, Kin76] evaluates program state-

ments along a control flow path and produces constraints (equalities or inequal-

ities) on symbolic input values under which a selected path is traversed. How-

ever, symbolic evaluation methods require complex algebraic manipulations of

intermediate algebraic expressions and have difficulty in dealing with the alias-

ing problem for pointer analysis [McM04]. Constraint Logic Programming (CLP)

techniques [GBR00, GzAP10] have been applied to test data generation (TDG). A

CLP technique dynamically builds a constraint system, which consists of program

input variables, domains and constraints. Existing test data generation methods

are mainly for programs in high-level languages and require modification for use

with low-level machine programs. While the existing test data generation meth-

ods are assumed to be correct in computing test data for program inputs, no

correctness proofs have been presented so far.

In this chapter, we propose a solution that addresses the problem of test data

generation of executable code. The solution computes test data for the path cov-

erage criterion. The basic idea is that we identify test data for program paths

in a machine-level (i.e., AAPL) program by extending the automated test data

generation method called the Dynamic Domain Reduction (DDR) technique pre-

sented in [OJP99]. More precisely, the DDR method computes test data using

the set of possible values of program input variables. The domain of a program



Chapter 6. Test Data Generation for Malware Executables 143

P :
1 (r0 < 40) JMP L1

2 r1 := r0 × 2

3 L1: (r1 > 120) JMP L2

4 r2 := r1 × 4

5 L2: JMP Exit

(a)

1

23

45

F[r1≤120]F[r1>120]

F[r0≥40]F[r0<40]

(b)

Figure 6.1: A sample of AAPL code and its control flow graph. The dotted
regions represent basic blocks of the code.

input variable is the set of values that the variable can hold. This approach is

based on the domain of program input variables, a set of control flow graph paths

and a domain minimisation method. The domain minimisation method evaluates

branch expressions (constraints) in the path by reducing the set of values of pro-

gram input variables such that the reduced domain of program variables satisfies

a path constraint for the path traversed. The minimisation method incorporates a

search process to find suitable points for reducing the domain. Thus, the method

starts with the domain of initial values of program input variables and attempts

to evaluate each constraint along the selected path and reduces the domain of

program input variables until the end of the path is reached. Then, the method

outputs the domain of program input variables and test data can be selected from

this domain that guarantees the execution of the selected path.

6.2 Preliminaries

This section introduces basic concepts used in the rest of the chapter.

The syntax and semantics of the AAPL language are given in Chapter 4. Figure 6.1

shows a sample of AAPL code and its corresponding control flow graph.

Control Flow Graph (CFG). The standard compiler techniques for converting

a list of assembly program instructions to a list of basic blocks is a straightforward
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Syntactic Categories:

s ∈ S (AAPL path statements) π ∈ Π (finite CFG paths)
aop ∈ {+,−, ∗, /} bop ∈ {& , | , ⊕ , � , �}
rop ∈ {==, 6=,≤,≥, <,>} r ∈ R (AAPL registers)
Val, n ∈ Z
e ∈ E (Expressions) b ∈ B (Boolean Expressions)
dm ∈ DM (data manipulators) r ∈ R (AAPL registers)

Syntax:
DM ::= r | *r | *n
Lexpr ::= DM Rexpr ::= DM | n
BE ::= DM bop n | ¬DM (Bitwise expressions)
AE ::= DM aop n (Arithmetic expressions)
E ::= n | DM | AE | BE (Expressions)
B ::= Lexpr rop Rexpr (Branch predicate)

Path Statements: CFG Paths:

S ::= dm := e | PUSH e | POP dm
| JMP e | CALL e | RTN e | SKIP
| B (where B JMP E )

π ::=< s1, . . . , sk > where s1 and sk
are the entry and an exit nodes,
respectively and ∀i, (1 ≤ i < k),
∃e ∈ CFG, e = (si, si+1)

Figure 6.2: Syntactic categories and Syntax of the AAPL path language.

algorithmic process [Muc97]. A basic block consists of one or more instructions in

which there is at most one entry point and one exit point. An entry point is an

instruction which accepts control from another basic block. An exit point is an

instruction which transfers control to another code in another basic block. The

execution of program instructions within a basic block is by definition sequential.

The first instruction of each basic block is called the leader. The leader instruction

may be the start instruction of the program, a target of a branch or an instruction

immediately following a branch instruction. To identify the basic blocks that

build an AAPL program, we first determine all the leaders, then we include in each

leader’s basic block all the instructions from it to the next leader. The control

flow graph of an AAPL program is CFG(P ) = (V,E, s) where V is the set of basic

blocks, and E (a subset of V × V ) is the set of control flow transitions between

basic blocks. A CFG has one entry node s and at least one exit node.

A Program Path. A program path in a CFG is a sequence of nodes <
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Collecting Semantics:

V k
⊥ (the set of bit strings of length k ∈ N, k > 0)
σ : DM → V k

⊥ (a state)

Σ : 2DM→V
k
⊥ (sets of states (Domains))

=[[E ]] : Σ→ ℘(V k
⊥)

=[[B ]] : Σ→ Σ
=[[S ]] : Σ→ Σ

Semantics of E: Semantics of B:
fe = =[[· ]] fb = =[[·]]
fe [[n]]Σ = {n} fb[[b]]Σ = {σ ∈ Σ | σ ` b ⇒ True}
fe [[dm]]Σ = {v | ∃σ ∈ Σ, σ ` dm⇒ v}
fe [[¬dm]]Σ = ¬fe[[dm]]Σ

fe [[dm bop n]]Σ = fe[[dm]]Σ bop fe [[n]]Σ

fe [[AE]]Σ = fe [[dm aop n]]Σ = fe[[dm]]Σ aop fe [[n]]Σ

Semantics of S:

fs = =[[S]]
fs [[dm := e]]Σ = Σ′ where Σ′ = {σ[dm 7→ {v}] | σ ∈ Σ, {v ∈ fe[[e]]Σ}}
fs [[PUSH e]]Σ = Σ′ where Σ′ = {σ[dm 7→ {v}] | σ ∈ Σ, SP 7→ SP − 1,

dm = SP, {v ∈ fe[[e]]Σ}}
fs [[POP dm]]Σ = Σ′ where Σ′ = {σ[dm 7→ {v}] | σ ∈ Σ, {v ∈ fe[[SP ]]Σ},

SP 7→ SP + 1}
fs [[JMP e]]Σ = Σ
fs [[CALL e]]Σ = Σ
fs [[RTN e]]Σ = Σ
fs [[B]]Σ = Σ′ where Σ′ = fb[[B]]Σ ∩ Σ

Figure 6.3: Semantics of the AAPL path language.

n1, n2, . . . , nk >, such that n1 = s, nk is an exit node in a program CFG and

∀i, 1 ≤ i < k, (ni, ni+1) ∈ E. A path is executable (or feasible) if there exists a

program input for which the path is traversed during program execution, otherwise

the path is unexecutable (or infeasible). A finite program path that begins with

the entry node s and ends with an exit node is called a complete path. Otherwise,

it is called an incomplete path. For instance, the path < 1, 2, 3, 5 > is a complete

(finite) path in the CFG of Figure 6.1 on page 143; however, the path < 1, 2, 3, 4 >

is an incomplete path.

Program Input Variables. Program registers and direct memory locations

(i.e, addressing memory locations with an immediate offset, a register or a register
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with an offset) are used to perform data manipulations during execution, such

as retrieving and storing data from memory. We use the term data manipulators

(Definition 4.3 on page 71) to denote registers and memory locations that are used

to process the program inputs. Thus, a data manipulator is a program register

or memory location used to perform data definition and manipulation operations.

A program input variable of a program P is a data manipulator that appears in

an instruction in P . Throughout the chapter, we use these terms interchangeably,

namely: data manipulators and input variables. Also, we allow input data ma-

nipulators to be of type unsigned integer (and can be represented as a set of bits

(i.e. unsigned binary integer)). Each input data manipulator is initially assigned

a domain of as large a set of possible values as the data manipulator can hold. We

let a data manipulator be a 32-bit unsigned integer (i.e. 232 possible values).

The Syntax and Collecting Semantics for Program Paths. The syntax

and semantics of AAPL program path constructs are shown in Figs 6.2 on page 144

and 6.3 on the previous page, respectively. The semantics are useful when con-

structing our correctness proof for the extended DDR algorithm. Since we are

interested to compute the domains of program input variables (data manipula-

tors) and produce a test data in which a path is exercised, we consider a subset

of AAPL syntax and semantics (in Chapter 4) which affects the values of data

manipulators in a particular program path. For instance, from AAPL action com-

mands, we consider the assignment commands, PUSH and POP in the program path

semantics. However, other action commands such as CALL E, JMP E and SKIP do

not change the values of program input variables within a path execution. The

program path syntax contains a statement of type branch predicate B, where B is

part of conditional command in AAPL language, i.e. CB := B JMP E . The branch

predicate statement may update the sets of states of a program path such that

the outcome of the predicate is true.

A bitwise expression BE is created using a bitwise operator (bop ∈ {& , | , ⊕ , �
, �}) (i.e. AND, OR, XOR, logical shift left and logical shift right, respectively)

with two operands (i.e. a data manipulator and a constant). Also, a bitwise

expression can have one operand (i.e. DM) in the case of the unary operation, i.e.

the bitwise NOT that performs logical negation on each bit of a data manipulator

(e.g. ¬DM), computing the ones’ complement of the given binary value. The

bitwise operators work on the binary representation of operands’ values and change

individual bits of a destination data manipulator. An arithmetic expression AE

can contain any of the arithmetic operators (aop ∈ {+,−, ∗, /}) and a pair of
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operands (i.e. DM and n operands). An expression E, in this path language,

can represent a constant value, a data manipulator, a bitwise or an arithmetic

expression. A relational operator forms what we refer to as a branch predicate

expression B. A branch predicate involves exactly two operands (i.e. Lexpr and

Rexpr operands). Note that an operand on the left is always a data manipulator

and an operand on the right can either be a data manipulator or a constant value.

Figure 6.3 on page 145 shows the collecting semantics [CC76] of arithmetic and

Boolean expressions and path statements. We let V k be the set of bit strings of

length k ∈ N, k > 0. Also, we let a state to have type DM → V k, i.e. is a map from

the set of data manipulators DM to the set of bit strings of length k, including

⊥ (which is undefined). Thus, we use σ0, σ1, σi, . . . , σ
′, σ′′ ∈ DM → V k to denote

states which represent the information collected about the bindings of program

data manipulators to their possible values. Also, we let Σ,Σ0,Σ1,Σi, . . . ,Σ
′,Σ′ ∈

2DM→V
k
⊥ to represent the set of states. The semantics of an expression defines

the possible values that the expression can evaluate to in a given set of states

(environments). The semantics of a Boolean expression B defines the subset of

possible states for which the Boolean expression may evaluate to true. During the

evaluation of an assignment statement in a path π, a new state can be constructed

and included to the set of states Σ′ = σ ∪ Σ, where σ is the newly created store.

We let ΣP be the set of all possible states of a program P . Also, we let [[π]] be the

path semantics for a finite program path π. Then the set of all reachable states

for π according to the semantics is then [[π]]ΣP = {σ′ | ∀σ ∈ ΣP , σ
′ = [[π]]σ}.

Branch Predicates. An edge corresponds to a possible transfer of control from

one basic block to another basic block. A branch is an outgoing edge of a con-

ditional jump instruction (i.e. CB := B JMP E). A branch predicate is a label of

a branch that describes the condition (constraint) on which that branch is tra-

versed. We let F denote a filtering function that describes the branch predicate

of a conditional jump instruction. For instance, in the program of Figure 6.1 on

page 143 branch (1,2) is labelled F[r0≥40], which means that in order to traverse the

branch, the constraint r0 ≥ 40 must be satisfied; similarly, for traversing branch

(3,5), which has the label F[r1>120], the constraint r1 > 120 must be satisfied. Note

that for the CFG in Figure 6.1 on page 143, node 1 is the entry statement of the

program.

Domain of Program Inputs. Let I = (dm1, dm2, dmi . . . , dmn) (1 ≤ i ≤ n) be a

vector of input variables (i.e. data manipulators) of program P . The domain  Ddmi
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of input variable dmi is the set of all values which dmi can hold. By the domain  D

of the program P we mean a cross product,  D =  Ddm1×  Ddm2×  Ddm3× . . .×  Ddmn ,

where each  Ddmi
is the domain for input variable dmi. Also, a program input is a

single point x in the n-dimensional input space, such that x = (d1, d2, di, . . . , dn),

di ∈  Ddmi
(1 ≤ i ≤ n) and x ∈  D. The collecting semantics that we have defined

for the AAPL path language represents the behaviours of AAPL code and allows

to specify the domains of program input variables. We could consider a program

P as a function, P :  D →  D′, where  D ⊆ ΣP as it maps the set of all possible

inputs to the set of all possible outputs  D′. Also,  D′ can be better described as a

reachable set of program outputs of a given path as follows:

Reachable Output States R. Let π be a finite path in the CFG of a program,

P , and  D ⊆ ΣP be the set of possible initial states of P . Rπ = [[π]] D represents

all possible reachable output states of program data manipulators that could be

produced when executing the path π with initial program input  D. We use the

collecting semantics of the path language to describe how the evaluation of possible

reachable states Rπ can be produced for an initial domain of a program and any

given path π.

6.3 A Test Data Generation Problem: DDR Ap-

proach

At this point let us define the goal of the path-oriented automatic test data gen-

eration problem: given a path π =< n1, n2, . . . , nk >, which is a finite path in

the CFG of a program, find a program input x ∈  D on which π will be traversed

(executed). The dynamic domain reduction approach reduces this problem to a

solution where a minimisation search process, referred to as the domain reduction

method, applied to the initial domain of the program to compute a subset  Dπ

of the domain from which any program input x is selected, will execute π. If π

is traversed (and, hence, it is a feasible path), the subset,  Dπ, that is computed

by the DDR method is the solution to the test data generation problem; if not,

we consider the method to be unsuccessful in finding a solution for π. Thus, we

assume that there exists a path generator that takes the CFG of an AAPL program

as an input and produces a set of finite paths of interest. Then, given an initial

domain for the program, we apply the extended DDR approach to compute a test

data solution.
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Dynamic domain reduction was developed to handle most problems that exist

with constraint-based test (CBT) data generation and the symbolic evaluation

technique, such as those associated with handling arrays, loops and nested ex-

pressions. The DDR approach incorporates parts of previously existing testing

techniques: CBT [DO91, DO93], dynamic testing [Kor90] and symbolic evalua-

tion [Kin75]. The main development of the DDR approach is that it uses a do-

main reduction method for deriving a subset of program inputs, which represent

conditions under which a path will be executed. Also, the DDR approach uses a

new backtracking search method to discover other possible values of inputs when a

condition is not met. We provide an overview of the DDR approach, and describe

the original algorithm in Section 6.3.1. Section 6.3.2 provides an overview of the

main procedures of DDR. Details of the algorithm can be obtained from [OJP99],

which was developed for high-level programs (e.g. Java and C/C++ code) with

basic arithmetic expressions and numerical data types.

6.3.1 Description of DDR Analysis

The original DDR analysis uses constraints derived from the path to progressively

reduce domains of program input variables until test data that satisfy these con-

straints are identified. The method automatically finds values by walking through

the path, using one branch predicate at a time and reducing the domain of the

program step by step. The method introduces two new techniques for generating

path-oriented test data. The techniques are implemented in different procedures

in the DDR algorithm. Figure 6.4 on page 151 shows the flow diagram of the

DDR method. In the diagram, circles represent inputs and outputs of the DDR

analysis, rectangles are the DDR steps and diamonds are branches during a path

evaluation process.

Domain-based Symbolic Execution. This technique evaluates the path sym-

bolically, and as it processes the constraints along the path, the domains of pro-

gram input variables are modified (i.e. the domains may be reduced for branch

predicates and updated for assignments) to reflect conditions and assignments.

Program instructions such as assignments are evaluated by creating special sym-

bolic variables and expressions rather than actual values. DDR analysis maintains

a symbolic state to track and update the symbolic expressions for a program path.

When a new expression is encountered, the analysis creates a domain of possible
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values for the expression. A new domain of an expression is computed from the do-

mains of program input variables involved in the expression. Initially, the domain

of a program input variable may be assigned minimum and maximum possible val-

ues for the host machine, or limited to a reasonable input specification range. The

method represents the domain,  Ddm of a program input variable dm by a top and

bottom limits (e.g. [ldm, udm], where ldm and udm are the minimum and maximum

values in the domain, respectively). A domain may consist of sub-domains where

each sub-domain represents a set of contiguous values. For instance, the domain

{1, 2, 3, 6, 7, 8} is represented in two sub-domains as < [1, 3], [6, 8] >. The method

uses a domain reduction process to select a point in the domain of a program

input variable at which the domain is split. Also, whenever each constraint has

been satisfied, the method updates the domains of program input variables such

that their current values are consistent with the path conditions taken so far. The

following example demonstrates how the method finds test data input using the

domain splitting, reduction and update techniques:

Example 6.1. To illustrate the DDR method. Consider a path in the control flow

graph of the program in Figure 6.5 on page 152, π =< 1, 2, 3, 4, 5 >. The goal

of the DDR method is to find a program input x (i.e. values for the input data

manipulators (variables) I = {r0, r1, r2}) which causes π to be traversed. We

assume that all input variables receive initial values for their domains; suppose the

following values have been assigned: l = 1 and u = 100. Thus, the initial domains

of the program input variables are as follows:

 Dr0 = [1, 100],  Dr1 = [1, 100],  Dr2 = [1, 100]

Since nodes 1 and 3 are conditional jump instructions in the program, the con-

straints on edges (1,2) and (3,4) (labelled by F[r0≥40] and F[r1≤120] in the CFG,

respectively) are included in the path. The method starts with the first constraint

in the path and attempts to satisfy it, such that all possible values of r0 must

be greater than or equal to the value 40. To find a solution for this constraint,

the method performs a search process to determine a point in  Dr0 such that a

subdomain could be found in which all values in that subdomain agree with the

constraint. The domain of r0 is split at 50 (the split is referred to as the split

point), and the subdomain [50, 100] becomes the current input domain of r0. The

new domain of r0 contains all possible values that are greater than or equal to

50. Note that this reduction process also discards some of the valid values of r0

from its domain (i.e. [40, 49]). The method proceeds to the assignment node 2.
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Figure 6.4: The flow diagram for the DDR algorithm.

For the expression 2× r0, the method uses the domain of r0 to symbolically eval-

uate the expression and create a domain for the expression. The new domain for

the expression 2 × r0 is [100, 200] =< [100, 100], [102, 102], . . . , [200, 200] >, i.e.

 D2×r0 = {2× 50, 2× 51, . . . , 2× 100} = {100, 102, . . . , 200}.

Next, the method evaluates the constraint r1 ≤ 120 on edge (3,4). To satisfy

this constraint, the domain of the expression 2× r0 must be reduced and the split

point 110 is selected. After the reduction process, the domain of the expression
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P :
1 (r0 < 40) JMP L1

2 r1 := r0 × 2

3 L1: (r1 > 120) JMP L2

4 r2 := r1 × 4

5 L2: JMP Exit

(a)

1

23

45

F[r1≤120]F[r1>120]

F[r0≥40]F[r0<40]

(b)

Figure 6.5: A sample of AAPL code and its control flow graph revisited in
Example 6.1.

 D2×r0 becomes [100, 110]. Once the constraint is satisfied by the computed domain,

the method updates the current domain of r0 (as r1 is symbolically assigned the

expression 2×r0 from the previous step) to reflect the new values of the expression.

Thus, the domain  Dr0 becomes [50, 55]. Note that after this step,  Dr1 is not changed

due to the domain-based symbolic execution performed for node 2. The method

evaluates the remaining instructions on nodes 4 and 5 where a new domain is

created for the expression, r1 × 4. At node 4, the symbolic expression r1 × 4 is

assigned to r2 in the symbolic state. The statements at Nodes 4 and 5 do not affect

the domains of the program data manipulators. Thus, the output of the method at

the end of the path is the set of domains of I. The evaluation steps of the DDR
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method on π are shown below:

 Dr0 = [1, 100],  Dr1 = [1, 100],  Dr2 = [1, 100]

1 r0 ≥ 40 (split point for r0 selected is 50)

 Dr0 = [50, 100],  Dr1 = [1, 100],  Dr2 = [1, 100]

2 r1 := r0 × 2

 Dr0 = [50, 100],  Dr1 = [1, 100],  Dr2 = [1, 100],

 Dr0×2 =< [100, 100], . . . , [200, 200] >

3 r1 ≤ 120 (split point for r0× 2 selected is 110)

 Dr0 = [50, 55],  Dr1 = [1, 100],  Dr2 = [1, 100],

 Dr0×2 =< [100, 100], . . . , [110, 110] >

4 r2 := r1 × 4

 Dr0 = [50, 55],  Dr1 = [1, 100],  Dr2 = [1, 100],

 Dr0×2 =< [100, 100], . . . , [110, 110] >,

 Dr1×4 = [4, 400]

5 JMP Exit

 Dr0 = [50, 55],  Dr1 = [1, 100],  Dr2 = [1, 100],  Dr0×2 = [100, 110],

 Dr1×4 = [4, 400]

A program input can be selected from the domains of program input data manip-

ulators such as x = (r0 = 50, r1 = 1, r2 = 100), which will execute the path

π.

As we have noticed in Example 6.1, when the DDR method starts processing a

given path in the control flow of a program, the initial domain of the program

may contain some program inputs that will execute the path. The method takes

a conservative approach in producing a safe solution for the test data generation

problem. A safe solution means that the method finds a subset of the program

input domain such that the path will be taken for every program input x in this

subset. In Section 6.5 we prove that for every solution the DDR method generates,

the method is correct with respect to this property.

A Backtrack Search-based Process. The method introduces a second tech-

nique, called a backtrack search process, to handle cases when a program input
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P :
1 (r0 > r1) JMP L1

2 r2 := 26

3 L1: (r0 ≥ r2) JMP L2

4 r1 := r1 + 1

5 JMP Exit1

6 L2: JMP Exit2

(a)

1

23

46

5

F[r0≤r1]F[r0>r1]

F[r0<r2]F[r0≥r2]

(b)

Figure 6.6: A sample of AAPL code and its control flow graph for Example 6.2.

that will traverse a path is not included in the resulting domains of the program

input variables. That is, as the method reduces the domains of program input

variables to satisfy current constraints along the path, there may be situations

where later constraints cannot be satisfied by the current domain of the program

input variables but different, previous choices of split points may produce a suit-

able domain. The backtrack search-based process undoes the previous steps of the

domain reduction for former constraints and computes a different split point to

give a new reduction decision on the domains of program input variables.

Example 6.2. Consider a path π =< 1, 2, 3, 6 > in the control flow graph of the

program in Figure 6.6. Let us assume that the initial domains of the program input

variables are:

 Dr0 = [10, 30],  Dr1 = [20, 50],  Dr2 = [0, 100]

The first node in the path corresponds to a jump instruction with the constraint

r0 ≤ r1 on the edge (1, 2). The method generates a split point to reduce the

domains of r0 and r1 in an attempt to satisfy the constraint. The split point

calculated is 25 and the domains are reduced to  Dr0 = [10, 25] and  Dr1 = [26, 50].

At node 2, the assignment instruction r2 := 26 is evaluated symbolically such that a

domain for the new expression (a constant) 26 is created,  D26 = [26, 26]. Note that
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the domain of r2 is not modified at this step. Next, the constraint r0 ≥ r2 from

node 3 is handled in an attempt to reduce  Dr0 and  Dr2. However, the possible values

of r0 in its domain are less than all possible values of r2 = 26 (i.e. contains a single

value,  D26 = [26, 26]). Therefore, the method cannot find a suitable split point and

it has to go back to the previous split-point step and re-compute a different split

point value. The method automatically resets the domains of the program input

variables to their initial values and a new split point is calculated for the constraint

at node 1. The new split point is 13 and the domains are reduced as  Dr0 = [10, 13]

and  Dr1 = [14, 50]. However,  Dr0 = [10, 13] is still less than  D26 = [26, 26], and the

method performs another backtrack step to node 1 and resets the domains again.

A third split point is computed to be 28 for the constraint r0 ≤ r1, which results

in reducing the domains for r0 and r1 to  Dr0 = [10, 28] and  Dr1 = [29, 50]. The

method proceeds to node 2 and  D26 = [26, 26]. Then at node 3, the domains of

r0 and 26 allow the constraint r0 ≥ r2 to be satisfied. A split point is computed

to be 26 such that  Dr0 = [27, 28] and  D26 remains as [26, 26]. The domain of r2

remains the same as the constant value 26 is assigned (symbolically) to r2 as an

expression. The method reaches the end of the path and all constraints of the path

were successfully satisfied. Below are the steps taken to reduce the domains of
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program input variables:

 Dr0 = [10, 30],  Dr1 = [2, 50],  Dr2 = [0, 100]

1 r0 ≤ r1 (split point for r0 and r1 selected is 25)

 Dr0 = [10, 25],  Dr1 = [26, 50],  Dr2 = [0, 100]

2 r2 := 26

 Dr0 = [10, 25],  Dr1 = [26, 50],  Dr2 = [0, 100],  D26 = [26, 26]

3 r0 ≥ r2

- no split point can be computed, backtrack to Node 1

1 r0 ≤ r1 (split point for r0 and r1 selected is 13)

 Dr0 = [10, 13],  Dr1 = [14, 50],  Dr2 = [0, 100]

2 r2 := 26

 Dr0 = [10, 13],  Dr1 = [14, 50],  Dr2 = [0, 100],  D26 = [26, 26]

3 r0 ≥ r2

- no split point can be computed, backtrack to Node 1

1 r0 ≤ r1 (split point for r0 and r1 selected is 28)

 Dr0 = [10, 28],  Dr1 = [29, 50],  Dr2 = [0, 100]

2 r2 := 26

 Dr0 = [10, 28],  Dr1 = [29, 50],  Dr2 = [0, 100],  D26 = [26, 26]

3 r0 ≥ r2 (split point for r0 selected is 26)

 Dr0 = [27, 28],  Dr1 = [29, 50],  Dr2 = [0, 100],  D26 = [26, 26]

6 JMP Exit

 Dr0 = [27, 28],  Dr1 = [29, 50],  Dr2 = [0, 100],  D26 = [26, 26]

A program input can be arbitrarily selected from the domains of the program input

data manipulators  D (=  Dr0 ×  Dr1 ×  Dr2), which was produced by the method.

Thus, a program input x = (r0 = 27, r1 = 35, r2 = 0) will traverse π.

6.3.2 DDR Procedures

From the previous examples, we observe that the DDR analysis uses a backtracking

search process to find a different split point for reducing input domains whenever a

later constraint in the path cannot be satisfied. Also, when an update is required,
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Algorithm 6.1: Sketch of the DDR algorithm.

for each complete path in the CFG of a program under test:

for each node in the path:

if the node corresponds to a conditional instruction:

read the constraint on the edge.

evaluate the left and right sub-expressions,

ExprDomain()

search for suitable domains to satisfy the constraint,

DomFitCnst()

GetSplit()

if FoundSuitableDom()

Update()

else

apply the backtrack process.

else the node corresponds to an assignment instruction:

apply domain-based symbolic execution.

if the path is traversed and constraints are satisfied:

the path is feasible.

generate test data from the domain of the program.

else

the path may not be feasible.

the analysis propagates the update values of an expression back to the domains of

program input variables in the left- and right-hand sides of the expression.

Next we describe the main procedures implemented in the DDR algorithm:

• FoundSuitableDom

• DomFitCnst

• GetSplit

• Update

• ExprDomain

A sketch of the DDR algorithm with its main procedures is shown in Algorithm 6.1.

The full detailed description of the algorithm is available in [OJP94].
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FoundSuitableDom. For a given constraint (branch predicate) in a CFG path,

the procedure finds suitable domains for program input variables that satisfy the

constraint. The input to this procedure is a branch predicate expression B and the

current domains of the Lexpr and Rexpr sub-expressions of the branch predicate.

If the constraint is satisfied by the current domains then the procedure returns

the value True and the domains of the program input variables that are used in

the sub-expressions are updated. If the procedure returns the value False, then

the constraint is not satisfied by the current domains. The procedure passes the

constraint and a copy of the current domains of the program input variables and

expressions to procedure DomFitCnst to find a suitable subset of current domains

that satisfy the constraint.

DomFitCnst. This procedure takes a constraint as an input and determines

if the current domains of the sub-expressions in the constraint satisfy it. The

constraint is of the form Lexpr rop Rexpr where Lexpr and Rexpr are the left

and right sub-expressions, respectively, and rop is a relational operator. The

procedure handles two different constraint types: DM rop n (and n rop DM)

and DM rop DM . If the domains of the two sub-expressions do not satisfy the

constraint then the procedure attempts to modify and to update the domains.

The procedure returns the value True when the update of the domains of both

expressions is successful. To modify program input domains and to update changes

on domains, the procedure calls the procedures GetSplit and Update, respectively.

GetSplit. This procedure accepts the domains of two expressions (e.g. expres-

sions x, y) and returns a split point. A split point is a value in two given domains

that is used to reduce the domains such that the modified domains satisfies the con-

straint. Each domain is represented by its bottom and top values i.e.  Dx = [lx, ux]

and  Dy = [ly, uy], where l and u are the minimum and the maximum values in

a domain, respectively. The procedure computes a split point sp for two given

domains under one of four cases:

• if (lx ≥ ly) ∧ (ux ≤ uy) then sp = (ux − lx) ∗ i+ lx

• if (lx ≤ ly) ∧ (ux ≥ uy) then sp = (uy − ly) ∗ i+ ly

• if (lx ≥ ly) ∧ (ux ≥ uy) ∧ (uy ≥ lx) then sp = (ux − ly) ∗ i+ ly

• if (lx ≤ ly) ∧ (ux ≤ uy) ∧ (ly ≤ ux) then sp = (uy − lx) ∗ i+ lx
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Note that in the last two cases, a third condition after the second ∧ clause is added

to ensure that the domains overlap, but neither is contained in the other. GetSplit

uses the index i (0 < i < 1) as a search point for a split between two domains

(i.e. i ∈ {1/2, 1/4, 3/4, 1/8, . . .}) where i is initialised to 1/2. The split point is

moved halfway in one direction then the other till a successful split point is found,

allowing domains to be reduced or a predetermined maximum number of search

choices have been made.

Update. This procedure takes an expression e and its current domain [le, ue] and

updates the domains of the program input variables, which are used in the expres-

sion. The procedure propagates back the new values of the expression’s domain

to its sub-expressions. The domain of a program input variable is reduced if the

new bottom and top values are contained within the current domain of the vari-

able, otherwise the current domain is not modified. Also, if there are any changes

that are necessitated after satisfying a constraint (a branch predicate expression),

the procedure recursively updates the domains of program input variables in the

expression. When all domains are reduced successfully, i.e. a domain update is

feasible, the procedure returns True to function DomFitCnst.

ExprDomain. This procedure computes a possible domain for a new expression

encountered in the path analysis. The procedure accepts a new expression and the

current domains of the program input variables and expressions. A new domain

of the expression is evaluated from its sub-expressions’ domains.

6.4 Description of the Extended DDR Algorithm

Our extended version of the DDR algorithm contains additional modules, which

handle the syntax and semantics of AAPL program paths shown in Figure 6.2 on

page 144. In particular, the expressions in AAPL are evaluated by two different

expression evaluation modules depending on the type of expression, i.e., arithmetic

and bitwise expressions. In this section, we first explain the new modules (i.e. the

refinements of Algorithm 6.1 on page 157) and then present pseudocode for the

algorithms.

The extended version of the DDR algorithm includes the following modules (within

ExprDomain and Update procedures):
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1. Domain evaluation module:

• Data manipulator evaluation.

• Arithmetic expression evaluation.

• Bitwise expression evaluation.

2. Domain update module for:

• Program input data manipulators’ domains.

• Bitwise expressions’ domains.

6.4.1 Expression Domain Evaluation Procedure

The procedure in Algorithm 6.2 on the next page computes a possible domain

for a given expression. The set of current domains TDom of program inputs and

the expression E are passed to the function as inputs. A new domain of the

expression E is computed from the domains of operands and the operator used

in the expression. When E is a data manipulator DM (in Algorithm 6.2 on the

following page, line 11), the procedure computes the top and bottom values of the

domain,  DDM of DM by finding the upper and the lower subdomains in  DDM , i.e.,

 Dn =USubDom( DDM) and  D1 =LSubDom( DDM), respectively. The top and bottom

values of the domain of DM are then determined by taking the maximum and

minimum values in these subdomains, i.e. uDM = max( Dn) and lDM = min( D1),

respectively. Thus, the domain of E is created with top and bottom values, uE =

uDM and lE = lDM . This procedure handles arithmetic and bitwise expressions

(in Algorithm 6.2 on the next page, line 17 and line 19, respectively) using two

functions GetAExprDom (in Algorithm 6.3 on page 163), and GetBExprDom (in

Algorithm 6.4 on page 165), respectively. Notice that when the expression is a

constant, the procedure assigns a new domain of values from n. At the end of

the procedure, the new domain of a given expression is created in TDom of the

program and it is passed to the caller procedure, which checks if the new computed

domain of the expression fits a constraint in the program.
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Algorithm 6.2: ExpDomEval(E) evaluates the domain of a program expression.

1: Input: an expression E to be evaluated, where E ::= n | DM | AE | BE and the
set of domains of program expressions and inputs in TDom.

2: Output: evaluates the domain of E and stores it in TDom.
3: procedure GetAExprDom(AE,TDom) is presented in Algorithm 6.3 on page 163
4: procedure GetBExprDom(BE,TDom) is presented in Algorithm 6.4 on page 165
5: USubDom( DDM ) finds the upper subdomain in a given domain
6: LSubDom( DDM ) finds the lower subdomain in a given domain

7: begin ExpDomEval(E)
8: if E is n then
9: uE = n and lE = n

10:  DE = [uE , lE ]
11: else if E is DM then
12: uDM = max( Dn) where  Dn = USubDom( DDM ),
13: lDM = min( D1) where  D1 = LSubDom( DDM )
14: uE = uDM
15: lE = lDM
16:  DE = [uE , lE ]
17: else if E is AE then
18:  DE = GetAExprDom(AE,TDom)

19: else if E is BE then
20:  DE = GetBExprDom(BE,TDom)

21: end if
22: TDom→ TDom ∪  DE

23: return  DE

24: end ExpDomEval(E)

1. Evaluating Domains of Arithmetic Expressions

The function GetAExprDom uses the domain of program inputs to symbolically

evaluate arithmetic expressions and produces a new domain of a given expres-

sion. This function is similar to the ExprDomain algorithm presented in [OJP99]

except that ExprDomain evaluates expressions recursively by finding the domains

of operands at the leaves of the expression and propagating these domains up to

compute the domain of the expression. GetAExprDom finds the domain of the ex-

pression by applying the arithmetic operation to the domains of the operands (i.e.

a data manipulator and a constant).

2. Evaluating Domains of Bitwise Expressions

The function GetBExprDom finds a possible domain for a bitwise expression. The

inputs to this function are a bitwise expression BE and the set of current domains
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of program input variables and expressions, TDom. Five bitwise operations are

considered for AAPL statements in this function: bitwise NOT (¬), AND (&), OR

(|), XOR (⊕), shift left (<<) and shift right (>>). The bitwise NOT is a unary

operation that performs bitwise negation on each bit of the operand. A bitwise

expression could be constructed from other bitwise operations consisting of a data

manipulator and a constant as operands in the expression.

The bitwise operations, AND, OR and XOR, require a pair of operands of equal

length and produce a result of the same length by performing the bitwise operation

on each pair of corresponding bits. The left and right shift operators are logical

shifts. Bitwise expressions of shift operations consist of a data manipulator and

a constant (repeat) value, which determines the number of times the single bit

shift operation is repeated. The shifts operate on the binary representation of

an unsigned integer number such that when the bits are shifted, some bits will be

discarded and zeros are shifted in (at the appropriate end). Since a bitwise left shift

(i.e. a left shift by one) is equivalent to multiplication by 2 and a bitwise right shift

(a right shift by one) is equivalent to division by 2, the function makes use of the

procedure GetAExprDom to compute the result. The function evaluates the domain

of a given bitwise expression by determining the domains of the program input

(data manipulator) and the constant, n, and computing the bitwise operations

with these domains.

6.4.2 Update Domains Procedure

1. Updating Domain Values for Bitwise Expressions

The function UpdateBEDomVal accepts three input parameters from the main pro-

cedure UpdateDomVal in Algorithm 6.5 on page 166: a bitwise expression BE, the

top and bottom values u, l of the new domain of values of BE and the set of cur-

rent input domains of program variables and expressions, TDom. Given a bitwise

expression BE, the function finds possible domain limits (u′DM , l′DM) of the data

manipulator DM involved in BE using the domain of BE and the constant value

used (if any) in the expression BE. At the end of the function, the new possible do-

main limits of DM are passed to the main function so the function UpdateDomVal

is called after UpdateBEDomVal to update the changes back to the current domain

of DM . The function handles all types of bitwise expression defined in the syntax
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Algorithm 6.3: GetAExprDom(AE,TDom) evaluates a new domain for an arith-
metic expression AE.

1: Input: an arithmetic expression, AE := L aop n and the set of current domains of
program expressions and inputs in TDom.

2: Output: computes a new domain for the arithmetic expression AE.
3: getOpDom(TDom,DM) returns the current domain of the data manipulator operand
DM from TDom.

4: getaop(AE) returns the arithmetic operator in AE.
5: getop1(AE) and getop2(AE) return the first and second operands in expression
AE, respectively.

6: begin GetAExprDom(AE,TDom)

7: a = getaop(BE)
8: DM = getop1(AE)
9: n = getop2(AE)

10:  DDM = getOpDom(TDom,DM), where
11:  DDM =< subdomVal1, . . . , subdomValm >
12:  Dn = getOpDom(TDom,n), where  Dn = [n, n]
13: if a is + or − then
14: for all subdomVali ∈  DDM where 1 ≤ i ≤ m and subdomVali = [li, ui] do
15: if a is + then
16:  DE =  DE ∪ [li + n, ui + n]
17: else
18:  DE =  DE ∪ [li − n, ui − n]
19: end if
20: end for
21: else if a is ∗ then
22: for all subdomVali ∈  DDM where 1 ≤ i ≤ m and subdomVali = [li, ui] do
23: u = ui ∗ n
24: l = li ∗ n
25: if l > u then
26:  DE =  DE ∪ [u, l]
27: else
28:  DE =  DE ∪ [l, u]
29: end if
30: end for
31: else if a is / then
32: for all subdomVali ∈  DDM where 1 ≤ i ≤ m and subdomVali = [li, ui] do
33: if n == 0 then
34:  Dn = [ln, un] = [1,−1]
35: end if
36: u = ui / un
37: l = li / ln
38: if l > u then
39:  DE =  DE ∪ [u, l]
40: else
41:  DE =  DE ∪ [l, u]
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Continued Algorithm 6.3

42: end if
43: end for
44: end if
45: return  DE

46: end GetAExprDom(AE,TDom)

of the AAPL program paths, see Figure 6.2 on page 144, in which a domain of a

data manipulator is computed.

For bitwise expressions using the bitwise AND, OR and XOR operations, the

function examines lBE and uBE of the expression and the constant value associated

with the expression to determine the limits of the new domain of DM . For each of

these three bitwise operations, an update evaluation technique is used to compute

possible values of the operand’s domain. The values of bits within the elements in

the domain of the expression and the constant number are examined to compute

the possible domain of the data manipulator. For instance, in the case of AND

evaluation (in Algorithm 6.6 on page 168, lines 13-37), when the value of a bit

for an element (e.g. lE) in the domain of the expression, E, is equal to 1, the

corresponding bit in the element lDM for the domain of DM is set to 1; however,

if the bit in lE for the domain of the expression, E domain is equal to 0 then the

function checks the value of the corresponding bit in the constant n and sets lDM

to 0 or x if n is 1 or 0, respectively, where x is a do-not-care value (i.e. x = 0 or 1).

In the case of OR evaluation (in Algorithm 6.6 on page 168, lines 38-48), the bit

values of the constant n are only examined to determine the value of each bit of

an element in the domain of DM . That is, when the value of a bit in n is 0 or

1, the value of the corresponding bit of the element (e.g. lDM or uDM) in DM

is either equal to the value of that corresponding bit in the element (i.e. lBE or

uBE) of E, or x, respectively. Note that if changes are required by decisions made

when evaluating the constraints, UpdateDMDomVal (in Algorithm 6.7 on page 170)

is called to find suitable values for bits that are set to x.

The update evaluation technique for handling XOR operations and computing the

domain for a DM operand, in a bitwise expression, e.g. BE = DM ⊕ n, is defined

as follows:

d(i) =

{
¬n(i) if e(i) = 1

n(i) otherwise
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Algorithm 6.4: GetBExprDom(BE) evaluate a new domain for a bitwise expres-
sion BE.

1: Input: a bitwise expression, BE := DM bop n | ¬DM and the set of domains of
program expressions and inputs in TDom.

2: Output: computes a new domain for the bitwise expression BE.
3: procedure GetAExprDom(AE,TDom) is presented in Algorithm 6.3 on page 163
4: getOpDom(TDom,DM) returns the current domain of the data manipulator operand
DM from TDom.

5: getop1(E) and getop2(E) return the first and second operands in expression E,
respectively.

6: getbop(BE) returns the bitwise operator (including ¬) in BE.
7: max and min return the greater and the smaller of two values, respectively.

8: begin GetBExprDom(BE)
9: b = getbop(BE)

10: DM = getop1(BE)
11:  DDM = getOpDom(TDom,DM)

12: if b is ¬ then
13: uBE = max(¬(uDM ),¬(lDM ))
14: lBE = min(¬(uDM ),¬(lDM ))
15: else
16: n = getop2(BE)
17: if b is & then
18: for all subdomVali ∈  DDM where 1 ≤ i ≤ m and subdomVali = [li, ui] do
19: for all element k in subdomVali do
20:  DBE =  DBE ∪ {k & n}
21: end for
22: end for
23: else if b is | then
24: for all subdomVali ∈  DDM where 1 ≤ i ≤ m and subdomVali = [li, ui] do
25: for all element k in subdomVali do
26:  DBE =  DBE ∪ {k | n}
27: end for
28: end for
29: else if b is ⊕ then
30: for all subdomVali ∈  DDM where 1 ≤ i ≤ m and subdomVali = [li, ui] do
31: for all element k in subdomVali do
32:  DBE =  DBE ∪ {k ⊕ n}
33: end for
34: end for
35: else if b is � then
36: to perform a bitwise shift left, multiply DM by 2∗n, then compute the domain

of the expression:
37: k = n ∗ 2
38: return GetAExprDom(DM ∗ k,TDom)

39: else if b is � then
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Continued Algorithm 6.4

40: to perform a bitwise shift right, divide DM by 2 ∗ n, then compute the domain
of the expression:

41: k = n ∗ 2
42: return GetAExprDom(DM/k,TDom)

43: end if
44: end if
45:  DBE = [lBE , uBE ]
46: return  DBE

47: end GetBExprDom(BE)

Algorithm 6.5: UpdateDomVal(E, l, u, TDom) updates the domains of program
input variables (data manipulators).

1: Input: an expression, E := n | DM | BE | AE, its new domain bottom, l, and
top, u, values and the set of current domains of program expressions and inputs in
TDom.

2: Output: True, if the procedure successfully modifies the domains of program inputs
or False, otherwise.

3: procedure UpdateDMDomVal in Algorithm 6.7 on page 170.
4: procedure UpdateBEDomVal in Algorithm 6.6 on page 168.

5: begin UpdateDomVal(E, l, u, TDom)

6: if E is n then
7: return True
8: else if E is DM then
9: return UpdateDMDomVal(DM, l, u, TDom)

10: else if E is BE then
11: return UpdateBEDomVal(BE, l, u, TDom)

12: else if E is AE then
13: This is part of the procedure Update in [OJP99].
14: end if
15: end UpdateDomVal(E, l, u, TDom)

Observe that the above evaluation technique is applied for both top, uDM , and bot-

tom, lDM , limits of the domain of the operand DM (in Algorithm 6.6 on page 168,

lines 49-67). Thus, d and e represent uDM and uBE in the case of computing the

top limit for the domain of DM using the top limit for the domain of BE, re-

spectively, and represent lDM and lBE in the case of computing the bottom limit

for the domain of DM using the bottom limit for the domain of BE, respectively.

The evaluation walks through each bit, d(i) (in lDM and uDM), in the domain of

the data manipulator, DM , and computes the bit value based on the value of the

corresponding bit, e(i) (in lBE and uBE), in the domain limit of the expression,

BE.
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The update evaluation techniques for bitwise left and right shift operations (<<,

>>) (in Algorithm 6.6 on the next page, lines 68 and 71, are similar to the evalu-

ation techniques for the division and multiplication operations. Thus, these two

cases are handled by the update technique of the arithmetic operations presented

in [OJP99], see case AE in Algorithm 6.5 on the preceding page.

2. Updating Domain Values for Data Manipulators

The function UpdateDMDomVal (in Algorithm 6.7 on page 170) updates the domain

of a program data manipulator based on the new values of the domain passed to

the function. The function takes as inputs a data manipulator DM , and the top

and bottom values (u and l, respectively), of the new domain and the temporary

current input domains of the program input variables and expressions.

The function consists of three main steps. The first step (Algorithm 6.7 on

page 170, lines 11-16) examines the limits u and l of the new domain and as-

signs appropriate values to bits that are labelled as do-not-care (i.e. x) – meaning

that these bits can hold either the value 1 or 0. Thus, the function assigns zeros

to do-not-care bits in l (the bottom value) and assigns ones to do-not-care bits in

u (the top value) of the new domain. This step helps to reduce the new domain

values of the data manipulator so that it contains the correct values computed

from the ExpDomEval procedure.

After all do-not-care bits (in the new top and bottom values) are replaced with

appropriate one and zero, in the second step (lines 18-23), the function handles

domains of program inputs that are involved in bitwise expressions with AND and

OR operations (if any). For the l and u of new domains that contain do-not-care

bits, the function discards a subdomain in the domain of the program input where

some of its values are not consistent with the new limits l and u. Note that lTmp

and uTmp hold the values of l and u, respectively, of the new domain, which is

passed to the function. For instance, assume that the new limits of the domain

are lTmp = uTmp = 1x1x, and that the limits of the domain of values of a data

manipulator are u = 1111 and l = 1010 before step 2. Thus, the function discards

subdomains between u and l when their values do not agree with lTmp in ones

values, e.g. 1100 and 1101 are discarded from the domain of values since the value

of the second bit is not 1. Note that this step checks all individual values in the

domain of lTmp and uTmp consistent with bit
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Algorithm 6.6: UpdateBEDomVal(BE,l,u,TDom) updates the domain of a pro-
gram data manipulator in a bitwise expression.

1: Input: a bitwise expression, BE := DM bop n | ¬DM , its new domain bottom, l,
and top, u, values and the set of current domains of program expressions and inputs
in TDom.

2: Output: True, if the procedure successfully modifies the domains of DM or False,
otherwise.

3: procedure UpdateDMDomVal in Algorithm 6.7 on page 170.
4: getbop(BE) returns the bitwise operator in BE.
5: getop1(BE) and getop2(BE) return the first and second operands in expression
BE, respectively.

6: begin UpdateBEDomVal(BE,l,u,TDom)

7: bop = getbop(BE), DM = getop1(BE) and n = getop2(BE)
8: if bop is ¬ then
9: l′DM = ¬lBE ; u′DM = ¬uBE

10: if l′DM > u′DM then
11: swap(l′DM ,u′DM )
12: end if
13: else if bop is & then
14: check each bit in lBE and compute the values of the corresponding bits in lDM :
15: for k → 0; k < 32; k++ do
16: if lBE(k) is 1 then
17: l′DM (k) = 1
18: else if n(k) is 0 then
19: the value of bit k in lDM could be set to 0 or 1:
20: l′DM (k) = x
21: else
22: this is the case when lBE(k) = 0 and n(k) = 1:
23: l′DM (k) = 0
24: end if
25: end for
26: now check each bit in uBE and compute the values of the corresponding bits in

uDM :
27: for k → 0; k < 32; k++ do
28: if uBE(k) is 1 then
29: u′DM (k) = 1
30: else if n(k) is 0 then
31: the value of bit k in uDM could be set to 0 or 1:
32: u′DM (k) = x
33: else
34: this is the case when uBE(k) = 0 and n(k) = 1:
35: u′DM (k) = 0
36: end if
37: end for
38: else if bop is | then
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39: for each element in the domain of BE: ∀valBE ∈ [lBE, uBE]:
40: check the value of each bit i in n and compute the corresponding bit value in

valDM ∈ [l′, u′ of DM :
41: for k → 0; k < 32; k++ do
42: if n(k) is 0 then
43: valDM (k) = valBE(k)

44: else
45: this is the case when the value of bit k is set to x
46: valDM (k) = x
47: end if
48: end for
49: else if bop is ⊕ then
50: for each element in the domain of BE: ∀valBE ∈ [lBE, uBE] do:
51: check each bit in lBE and uBE of the expression domain and compute the corre-

sponding bit value in DM , where valDM ∈ [l′, u′]:
52: for k → 0; k < 32; k++ do
53: if valBE(k) is 1 then
54: valDM (k) = ¬n(k)
55: else
56: this is the case when the value of bit i in valDM is set to n(k):
57: valDM (k) = n(k)
58: end if
59: end for
60: for k → 0; k < 32; k++ do
61: if valBE(k) is 1 then
62: valDM (k) = ¬n(k)
63: else
64: this is the case when the value of bit k in valDM is set to n(k):
65: valDM (k) = n(k)
66: end if
67: end for
68: else if bop is << then
69: k = 2 ∗ n
70: return UpdateDMDomVal(DM*k, l, u, TDom)

71: else if bop is >> then
72: k = 2 ∗ n
73: return UpdateDMDomVal(DM/k, l, u, TDom)

74: end if
75: return UpdateDMDomVal(DM, l′DM , u

′
DM , TDom)

76: end UpdateBEDomVal(BE,l,u,TDom)

The third step attempts to reduce the current domain of DM using the new domain

values. This step is similar to the Update function presented in [OJP99] in the

sense that it discards any subdomain from the current domain of a program input

that is not contained within the limits of the new domain.
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Algorithm 6.7: UpdateDMDomVal(DM, l, u, TDom) updates the domain of a pro-
gram data manipulator.

1: Input: a data manipulator, DM := r | ∗ r | ∗ n, its new domain bottom, l, and
top, u, values and the set of current domains of program expressions and inputs in
TDom.

2: Output: True, if the procedure successfully modifies the domains of program inputs
or False, otherwise.

3: procedure remove: deletes a subdomain from the domain of DM and shifts the sub
domains of DM (i.e.renumber the labels of the subdomains).

4: procedure replace: replaces the current bottom and top values of a subdomain
with new top and bottom values and shifts the subdomains in DM ’s domain.

5: begin UpdateDMDomVal(DM, l, u, TDom)

6: the current domain of DM is  DDM =< subdomVal1, . . . , subdomValn >.
7: where 1 ≤ i ≤ n and subdomVali = [li, ui] ∈  DDM .
8: let lTmp→ l and uTmp→ u
9: step 1: check if any do-not-care bit values x exist in new l and u.

10: for all bits k in l and u, replace each bit value x with 0 and 1 in l and u, respectively.
11: for k → 0; k < 32; k++ do
12: if l(k) is x and u(k) is x then
13: l(k) = 0
14: u(k) = 1
15: end if
16: end for
17: step 2: check bit values of the bottom, li, of each subdomain in  DDM , and discard

any subdomain which its, li, does not agree with the new bit values in lTmp, note
this case applies for logic AND and OR operations only:

18: for i = 1, i ≤ n, i++ do
19: where subdomVali = [li, ui] ∈  DDM and ∀k, 0 ≤ k ≤ 32:
20: if lTmp(k) is 1 and li(k) is not 1 then
21: remove(TDom,DM,subdomVal)
22: end if
23: end for
24: step 3: reduce the domain by removing any subdomains that are not contained

within the new domain range.
25: if l ≤ l1 and u ≥ un then
26: return True
27: else if l > un or u < ln then
28: return False
29: else
30: handle top value of domain first:
31: if u ≥ un then
32: no need to update the current top value of the domain, un, as it is within the

new top value, u.
33: else
34: now search (from un to u1) for a new top value and modify the domain of DM :
35: for i = n, i ≥ 1, i- - do
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36: subdomain subdomVali = [li, ui] ∈  DDM

37: if u ≥ li and u ≤ ui then
38: discard subdomains < [u+ 1, ui], . . . , [li, ui] > from  DDM .
39: for all subdomVal ∈< [u+ 1, ui], . . . , [li, ui] > do
40: remove(TDom,DM,subdomVal)
41: end for
42: replace subdomain [li, ui] with [li, u]:
43: replace(TDom,DM,[li, u],[li, ui])
44: break()
45: else if u > ui and u < li + 1 then
46: discard subdomains < [li + 1, ui + 1], . . . , [ln, un] > from  DDM :
47: for all subdomVal ∈< [li + 1, ui + 1], . . . , [ln, un] > do
48: remove(TDom,DM,subdomVal)
49: end for
50: break()
51: end if
52: end for
53: end if
54: now at this point the domain of DM might be modified (i.e. reduced with a new

top value m)  DDM =< [l1, u1] . . . [lm, um]> where m ≤ n:
55: handle bottom value of domain first:
56: if l ≤ li then
57: return True
58: else
59: now search (from l1 to ln) for a new bottom value and modify the domain of

DM :
60: for i = 1, i ≤ n, i++ do
61: subdomain subdomVali = [li, ui] ∈  DDM

62: if l ≥ li and l ≤ ui then
63: replace subdomain < [li, ui] with [l, ui] >:
64: replace(TDom,DM,[l, ui],[li, ui])
65: remove < [l1, u1], . . . , [li − 1, ui − 1]> from  DDM and shift the domain (ith

subdomain becomes the 1st subdomain):
66: for subdomVal ∈< [l1, u1], . . . , [li − 1, ui − 1] > do
67: remove(TDom,DM,subdomVal)
68: end for
69: now at this point the domain of DM (both the top and bottom values)

may have been reduced.
70: return True
71: else if l > ui and l < li + 1 then
72: discard subdomains < [l1, u1], . . . , [li, ui] > from  DDM and shift the domain

such that the ith subdomain becomes the 1st subdomain:
73: for subdomVal ∈< [l1, u1], . . . , [li, ui] > do
74: remove(TDom,DM,subdomVal)
75: end for
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76: return True
77: end if
78: end for
79: end if
80: at this point the new value [l, u] is not contained within the domain of DM :
81: return False
82: end if
83: end UpdateDMDomVal(DM, l, u, TDom)

6.4.3 Examples

This section provides two examples to show how the extended DDR algorithm

handles AAPL program inputs and generates test data.

Example 6.3. Given a program and its control flow graph, as shown in Figure 6.7

on the following page, let the program inputs ( data manipulators) be r0, r1 and

*129. The program fetches the memory location pointed to by *129 and updates the

values of data manipulators r1 and *129 based on the values of program inputs

r0 and *129. Assume that the initial domains  Dr0,  Dr1,  D*129 of the input data

manipulators are as follows:

 Dr0 = [0, 7],  Dr1 = [0, 7],  D∗129 = [0, 7]

To generate a test case for the program, let the path π =< 1, 2, 3, 4, 5, 6, 7, 9 >

be the input path for the algorithm. Note that the selected path consists of four

assignment statements, two conditional and two unconditional jump statements.

The first statement in the path is handled and the expression in the statement is

symbolically evaluated by the procedure ExprDomEval (Algorithm 6.2 on page 161)

where r3 is evaluated to the expression r0 & 5. The expression r0 & 5 is assigned

a new domain where the bottom and the top values of the domain,  Dr0 & 5, are

lr0 & 5 = 0 and ur0 & 5 = 5, respectively. Note that Algorithm 6.4 on page 165 in

lines 17-22 computes the domain of the expression as  Dr0 & 5 = {0, 1, 4, 5} (i.e.

there are two subdomains,  Dr0 & 5 =< [0, 1], [4, 5] >). The next statement to be

handled in π is statement 2 (a conditional statement) and the constraint associated

with the edge (2, 3) in the control flow graph (Figure 6.7 on the next page) is

r3 ≤ 4. Since r3 is evaluated to the expression r0 & 5, the algorithm needs to

find a suitable subdomain of values for r0 & 5 using  Dr0 & 5 such that it satisfies

the current constraint. The domain of r0 & 5 satisfies case 2 in the GetSplit
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P :
1 START: r3:=r0 & 5

2 (r3 > 4) JMP ELSE

3 r1:=4

4 r3:=r3+1

5 (r0>*129) JMP ELSE

6 *129:= *129⊕ 3

7 JMP END

8 ELSE: *129:=r1

9 END: RTN

(a)

1

2

3

4

5

6

7

8

9

F[r3>4]

F[r0>*129] F[r0≤*129]

F[r3≤4]

(b)

Figure 6.7: A code fragment in AAPL and its control flow graph for Exam-
ple 6.3.

procedure, where (lr0 & 5 ≤ 4) and (ur0 & 5 ≥ 4); thus, the split point is computed

as sp = (u4− l4) ∗ 1/2 + l4 = 4 where 4 is the right hand side sub-expression of the

boolean expression and  D4 = [4, 4]. The domain of the expression r0 & 5 is reduced

to  Dr0 & 5 =< [0, 1], [4, 4] > and procedure UpdateDMDomVal (in Algorithm 6.7

on page 170, lines 18-23) propagates the changes down to the program input r0.

Note that procedure UpdateBEDomVal in Algorithm 6.6 on page 168 (lines 13-

37) computes the corresponding bit values of the bottom and top values of each

subdomain of r0 domain. For each subdomain in  Dr0 & 5, the procedure computes

the top and bottom of the subdomain of r0 domain, yielding  Dr0 =< [0, 4], [6, 6] >

(i.e.  Dr0 = {0, 1, 2, 3, 4, 6}). The current domain of program inputs becomes as
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follows:

 Dr0 =< [0, 4], [6, 6] >,  Dr1 = [0, 7],  D∗129 = [0, 7]

The next two statements in the path are statements 3 and 4, which are assign-

ment commands. These statements are symbolically evaluated where r1 and r3

are evaluated to expressions 4 and (r0 & 5) + 1, respectively. A new domain for

the expression r3+1 is created by adding one to the bottom and top values of the

domain of the expression r0 & 5, yielding  Dr3+1 =< [1, 2], [5, 5] >. Note that at

this point, the domain of the program input data manipulators r0 and r1 are not

changed. Then statement 5 is handled and since it is a conditional jump com-

mand the constraint (r0 ≤ *129) associated with the edge (5, 6) in the control

flow graph is evaluated. Examining the domains of data manipulators involved in

the constraint, case 1 in the GetSplit procedure is satisfied and the split point is

sp = (ur0− lr0)∗1/2+ lr0 = 3 (where lr0 = 0 and ur0 = 6). The domains of r0 and

*129 are only reduced by the UpdateDMDomVal procedure and the current domain

values of the program input becomes:

 Dr0 = [0, 3],  Dr1 = [0, 7],  D∗129 = [3, 7]

Finally, the algorithm reaches statement 6 in the selected path where the symbolic

expression *129 ⊕ 3 is assigned to *129 and a new domain for the expression

is created  D*129 ⊕ 3 =< [0, 0], [4, 7] >. Statement 7 is an unconditional jump

command, which moves the control flow to statement 9 and exits the path. At this

point, the final domains of program inputs r0, r1 and *129 are:

 Dr0 = [0, 3],  Dr1 = [0, 7],  D∗129 = [3, 7]
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Below are the steps taken to reduce the domains of program input data manipula-

tors and expressions:

 Dr0 = [0, 7],  Dr1 = [0, 7],  D∗129 = [0, 7]

1 r3:=r0 & 5

 Dr0 = [0, 7],  Dr1 = [0, 7],  D∗129 = [0, 7],  Dr0 & 5 =< [0, 1], [4, 5] >

2 r3 ≤ 4 (split point for r0 & 5 selected is 4)

 Dr0 =< [0, 4], [6, 6] >,  Dr1 = [0, 7],  D∗129 = [0, 7],  Dr0 & 5 =< [0, 1], [4, 4] >

3 r1:=4

 Dr0 =< [0, 4], [6, 6] >,  Dr1 = [0, 7],  D∗129 = [0, 7],  Dr0 & 5 =< [0, 1], [4, 4] >,

 D4 = [4, 4]

4 r3:=r3+1

 Dr0 =< [0, 4], [6, 6] >,  Dr1 = [0, 7],  D∗129 = [0, 7],  Dr0 & 5 =< [0, 1], [4, 4] >,

 Dr3+1 =< [1, 2], [5, 5]

2 r0 ≤ *129 (split point for r0 and *129 selected is 3)

 Dr0 = [0, 3],  Dr1 = [0, 7],  D∗129 = [3, 7],  Dr0 & 5 =< [0, 1], [4, 4] >,

 Dr3+1 =< [1, 2], [5, 5]

3 *129:= *129⊕ 3

 Dr0 = [0, 3],  Dr1 = [0, 7],  D∗129 = [3, 7],  Dr0 & 5 =< [0, 1], [4, 4] >,

 Dr3+1 =< [1, 2], [5, 5],  D*129 ⊕ 3 =< [0, 0], [4, 7] >

Test data input can be selected randomly from within the values of the domains of

the program inputs, r0, r1 and *129. Any selected test case should exercise the

selected path and satisfy all the constraints on the path. For example, the test case

< 3, 4, 3 > is produced by randomly selecting one value for each data manipulator

from their domains  Dr0,  Dr1 and  D*129, respectively. When the program is executed
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using this test case the following path statements are exercised:

test case: < r0 = 3, r1 = 4, *129 = 3 >

node statement path constraint

1 START: r3:=r0 & 5 (r3 = 1)

2 (r3 ≤ 4) (1 ≤ 4)

3 r1:=4 (r1 = 4)

4 r3:=r3+1 (r3 = 2)

5 (r0 ≤ *129) (3 ≤ 3)

6 *129:= *129⊕ r1 (*129 = 7)

7 JMP END

9 END: RTN

Example 6.4. Given a program and its control flow graph, as shown in Figure 6.8

on the following page, which contains a loop, assume the program inputs ( data

manipulators) are r0, r1 and r2. The program updates the memory location *r1

pointed to by the value of r1 in a given state inside the loop at instructions in lines

2, 5, 7 and 9. There are three branching destinations, LOOP, ELSE and END, in the

CFG where the program control flow may go. In this example, the algorithm will

compute for the path π =< 1, 2, 3, 4, 7, 8, 1, 9, 10 > a test case that exercises the

loop only once. Assume that the initial domains of the input data manipulators

are as follows:

 Dr0 = [0, 7],  Dr1 = [1, 4],  Dr2 = [6, 15]

Note that the selected path consists of four assignment statements, three conditional

and two unconditional jump statements. The first statement in π is a conditional

jump command and constraint associated with the edge (1, 2) in the control flow

graph (Figure 6.8 on the next page) (i.e. r0 < r2). The algorithm needs to find

a suitable subdomain of values for r0 and r2 such that they satisfy the current

constraint. The domains of r0 and r2 satisfy case 4 in the GetSplit procedure,

where (lr0 ≤ lr2) and (ur0 ≤ ur2) and (lr2 ≤ ur0), thus, the split point is computed

as sp = (ur2 − lr0) ∗ 1/2 + lr0 = 8. The domain of r2 is reduced to  Dr2 = [8, 15].

The current domain of program inputs becomes as follows:

 Dr0 = [0, 7],  Dr1 = [1, 4],  Dr2 = [8, 15]
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P :

1 LOOP: (r0 ≥ r2) JMP END

2 *r1:=r2 + 1

3 r0:=r0 << 1

4 (r0 < r1) JMP ELSE

5 *r1:=r0 + *r1

6 JMP END

7 ELSE: *r1:=r0

8 JMP LOOP

9 END: *r1:=0

10 RTN

(a)

2
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4

5

6

7

9

1

8

10

F[r0≥r1] F[r0<r1]

F[r0<r2]F[r0≥r2]

(b)

Figure 6.8: A code fragment in AAPL and its control flow graph for Exam-
ple 6.4.

The next two statements in the path are statements 2 and 3, which are assignment

commands. These statements are symbolically evaluated and the domains of pro-

gram data manipulators *r1 and r0 are not changed. The method creates a new do-

main for the expressions r2+1 and r0<<1. Then we have,  Dr2+1 = [lr2+1, ur2+1] =

[9, 16] and  Dr0 << 1=[l(r0<<1),u(r0<<1)] where l(r0<<1) = lr0<<1 and u(r0<<1) = ur0<<1.

Thus,  Dr0<<1 consists of even values where  Dr0<<1 =<subdomVal1, . . . , subdomValn>

(where subdomValn is a sub-domain of contiguous values) and n ≥ 1, i.e.  Dr0<<1 =<

[0, 0], [2, 2], [4, 4], . . . , [14, 14] > (Algorithm 6.4 on page 165 lines 35-38). Then

statement 4 is handled and since it is a conditional jump command the constraint

(r0 ≥ r1) associated with the edge (4, 7) in the control flow graph is evaluated and
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r0 is expressed by the symbolic value r0<<1. In the GetSplit procedure, case 2 is

satisfied between  Dr0<<1 and  Dr1; the split point is calculated as sp = (ur1 − lr1) ∗
1/2 + lr1 = 3. Then the procedure UpdateDMDomVal takes sp and reduces the do-

mains of r0<<1 and r1 and produces  Dr0<<1 =< [4, 4], [6, 6], [8, 8] . . . , [14, 14] > and

 Dr1 = [1, 3]. Since the expression, r0<<1, is symbolically assigned to r0 at node

3, the reduced domain values of expression r0<<1 are propagated back by procedure

UpdateBEDomVal (Algorithm 6.6 on page 168 lines 68-70) to compute the current

domain of r0 right before statement 3. Now, the current domains of the program

inputs are:

 Dr0 = [2, 7],  Dr1 = [1, 3],  Dr2 = [8, 15]

Statement 7 is the next statement in the path and since it is an assignment com-

mand, it is evaluated symbolically where *r1 is expressed by r0 (i.e. *r1 = r0).

Then statement 8, which is an unconditional jump statement, transfers the con-

trol flow to the beginning of the loop. Statement 1 is re-evaluated such that the

edge (1,9) has to be traversed. The constraint r0 ≥ r2 is evaluated; note that

at this point r0 is still expressed by the symbolic value r0<<1 where  Dr0<<1 =<

[4, 4], [6, 6], . . . , [14, 14] >. In procedure GetSplit, case 4 is satisfied where (lr0<<1 ≤
lr2) and (ur0<<1 ≤ ur2) and (lr2 ≤ ur0<<1). The split point in this case is 10. The new

domains of r0<<1 and r2 after splitting are  Dr0<<1 =< [10, 10], [12, 12], [14, 14] >

and  Dr2 = [8, 9]. To propagate the changes to the current input domain of r0, the

procedure UpdateBEDomVal takes the computed domain  Dr0<<1 and updates  Dr0.

Now the current domains of the program input data manipulators after statement

1 become:

 Dr0 = [5, 7],  Dr1 = [1, 3],  Dr2 = [8, 10]

Finally, statements 9 and 10 are reached, where statement 9 is an assignment

command and statement 10 is an unconditional jump command. Both commands

have no effect on the current domain values of the program input and thus, the

algorithm terminates, and the set of domains of program inputs is computed.
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Below are the steps taken to reduce the domains of program input data manipula-

tors and expressions:

 Dr0 = [0, 7],  Dr1 = [1, 4],  Dr2 = [6, 15]

1 r0 < r2 (split point for r0 and r2 selected is 8)

 Dr0 = [0, 7],  Dr1 = [1, 4],  Dr2 = [8, 15]

2 *r1:=r2 + 1

 Dr0 = [0, 7],  Dr1 = [1, 4],  Dr2 = [8, 15],  Dr2+1 = [9, 16]

3 r0:=r0 << 1

 Dr0 = [0, 7],  Dr1 = [1, 4],  Dr2 = [8, 15],  Dr2+1 = [9, 16],

 Dr0<<1 =< [0, 0], [2, 2], . . . , [14, 14] >

4 r0 ≥ r1 (split point for r0<<1 and r1 selected is 3)

 Dr0 = [2, 7],  Dr1 = [1, 3],  Dr2 = [8, 15],  Dr2+1 = [9, 16],

 Dr0<<1 =< [4, 4], [6, 6], [8, 8] . . . , [14, 14] >

7 *r1:=r0

 Dr0 = [2, 7],  Dr1 = [1, 3],  Dr2 = [8, 15],  Dr2+1 = [9, 16],

 Dr0<<1 =< [4, 4], [6, 6], [8, 8] . . . , [14, 14] >

8 JMP LOOP

 Dr0 = [2, 7],  Dr1 = [1, 3],  Dr2 = [8, 15],  Dr2+1 = [9, 16],

 Dr0<<1 =< [4, 4], [6, 6], [8, 8] . . . , [14, 14] >

1 r0 ≥ r2 (split point for r0<<1 and r2 selected is 10)

 Dr0 = [5, 7],  Dr1 = [1, 3],  Dr2 = [8, 10],  Dr2+1 = [9, 11],

 Dr0<<1 =< [10, 10], [12, 12], [14, 14] >

9 *r1:=0

 Dr0 = [5, 7],  Dr1 = [1, 3],  Dr2 = [8, 10],  Dr2+1 = [9, 11],

 Dr0<<1 =< [10, 10], [12, 12], [14, 14] >,  D0 = [0, 0]

10 RTN

 Dr0 = [5, 7],  Dr1 = [1, 3],  Dr2 = [8, 10],  Dr2+1 = [9, 11],

 Dr0<<1 =< [10, 10], [12, 12], [14, 14] >,  D0 = [0, 0]

Test data input can be selected randomly from within the values of the domains

of the program inputs. Any selected test case should exercise the selected path
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and satisfy all the constraints on the path. For example, the test case < 5, 2, 8>

is produced by randomly selecting one value for each data manipulator from its

domain,  Dr0 = [5, 7],  Dr1 = [1, 3] and  Dr2 = [8, 9], respectively. When the program

is executed using this test case the following path statements are exercised:

test case: < r0 = 5, r1 = 2, r2 = 8 >

node statement path constraint

1 LOOP: (r0<r2) (5 < 8)

2 *r1:=r2+1 (*2 = 9)

3 r0:=r0<<1 (r0 = 10)

4 (r0 ≥ r1) (10 ≥ 2)

7 ELSE: *r1:=r0 (∗2 = 10)

8 JMP LOOP

1 LOOP: (r0 ≥ r2) JMP END (10 ≥ 8)

9 END: *r1:=0 (*2 = 0)

10 RTN

6.5 The Correctness Proof of Extended DDR

The semantic evaluations of the DDR analysis for a CFG path are phrased

in terms of successive approximations of the set of all possible states, ΣP , of a

program P and the symbolic evaluation of expressions at every program path

statement S. For the rest of this chapter we use ddrAlg to refer to the DDR

algorithm. Let π be a finite path in the CFG of an AAPL program P and ΣP be

the set of all possible states of P . We let  Dπ ⊆ ΣP be the domains of program

input data manipulators calculated by applying DDR to π, i.e.  Dπ = ddrAlg(π).

For the set of all possible initial states of a program P , ΣP , each program data

manipulator input dm is initially assigned a domain (i.e. a set of possible input

values for dm). Then, as ddrAlg evaluates the statements in π, the domains of

the program input data manipulators may be dynamically reduced to satisfy the

constraints in the path. Thus, after each constraint is evaluated, the domains of

the program input data manipulators are modified and may be reduced to smaller

domains than the initial domains. Thus, the output of ddrAlg for a finite CFG

path π of P is  Dπ = { Ddm1 × . . . ×  Ddmk
}, a cross product of all k input data

manipulators of P .
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Our conjecture for the correctness property of the DDR analysis is that ddrAlg is

correct if ∀σ ∈ ΣP and we have  Dπ ⊆ ΣP . That is, the algorithm finds a subset

of initial domains of program input data manipulators such that when executing

the program using test data, x, selected from  Dπ, the set of output states at the

end of the path is reached (Theorem 6.1). The set of output (reachable) states is

represented by the reachability semantics of AAPL path in Figure 6.2 on page 144.

From Section 6.3, we observe that ddrAlg uses two main procedures, GetSplit

and Update, to find a solution that is a subset of the initial domains of the pro-

gram input data manipulators. Thus, it is important to show that ∀σ ∈ ΣP (the

set of initial states) and ∀dm (program input variables), GetSplit and Update

modify the data manipulators’ domains such that the computed domains are con-

tained within the initial domains of the data manipulators. Lemma 6.1 covers the

correctness of GetSplit and Lemma 6.2 presents the correctness of Update. In

Lemma 6.3, we show that whenever ddrAlg produces a solution  Dπ for a given

path, π, it is always contained within the given set of initial states of program

input data manipulators. In Theorem 6.1, we prove that ddrAlg is correct with

respect to the reachability semantics of AAPL path such that the set of reachable

states for π given by the domain  Dπ is a subset of the set of all possible reachable

states for π according to the semantics of AAPL.

The Correctness of Procedure GetSplit:

Given a pair of domain values of two program input variables, the procedure

GetSplit attempts to find a split point whenever there is an overlap between the

pair of domains. In Lemma 6.1, we show that the procedure always finds a split

point value which is an element of both given domains of program input variables.

We let Π denote a set of finite paths in the CFG of an AAPL program. Also,

let dm be a data manipulator in a program P , and for a given state σ ∈ ΣP ,

the domain of dm denoted by DomValΣdm represents the set of values that dm can

have in σ, i.e. DomValΣdm = {v | ∃σ ∈ ΣP , σ[dm 7→ v]}. Furthermore, we let

the pair ldm and udm denote the bottom and the top values of set DomValΣdm, i.e.

ldm = min(DomValΣdm) and udm = max(DomValΣdm).

Lemma 6.1. For a program P , let dm1, dm2 be program input variables of P and

∃π ∈ Π of the CFG of P , and .
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Whenever

DomValΣdm1
∩DomValΣdm2

6= {∅},

the function GetSplit always produces a split point sp such that

sp ∈ DomValΣdm1
∩ DomValΣdm2

Proof Assume that there exists a non-empty set, DomValΣdm1
∩ DomValΣdm2

. There

are four cases to consider for the GetSplit function when computing sp. These

cases depend on the relationships between DomValΣdm1
and DomValΣdm1

. We let

ldm1 = min(DomValΣdm1
), udm1 = max(DomValΣdm1

), ldm2 = min(DomValΣdm2
), udm2 =

max(DomValΣdm2
) and the search point index 0 ≤ i ≤ 1.

1. When (ldm1 ≥ ldm2)∧(udm1 ≥ udm2). We note that DomValΣdm1
∩ DomValΣdm2

=

DomValΣdm1
. Then to compute the split point for this case, we use the equation

sp = (udm1 − ldm1) ∗ i+ ldm1 (by GetSplit)

and ∀i 0 ≤ i ≤ 1 we get ldm1 ≤ sp ≤ udm1. It follows that we have sp ∈
DomValΣdm1

.

2. When (ldm1 ≤ ldm2) ∧ (udm1 ≥ udm2), we have the same result as step 1 (by

symmetry).

3. When (ldm1 ≥ ldm2)∧(udm1 ≥ udm2)∧(udm2 ≥ ldm1). We note that DomValΣdm1
∩

DomValΣdm2
= W = {ldm1 , . . . , udm2}. Then to compute the split point for this

case, we use the equation

sp = (udm2 − ldm1) ∗ i+ ldm1 (by GetSplit)

and ∀i 0 ≤ i ≤ 1 we get ldm1 ≤ sp ≤ udm2. It follows that we have sp ∈ W .

4. When (ldm1 ≤ ldm2)∧(udm1 ≤ udm2)∧(udm1 ≤ ldm2). We note that DomValΣdm1
∩

DomValΣdm2
= W = {ldm2 , . . . , udm1}. Then to compute the split point for this

case, we use the equation

sp = (udm1 − ldm2) ∗ i+ ldm2 (by GetSplit)

and ∀i 0 ≤ i ≤ 1 we get ldm2 ≤ sp ≤ udm1. It follows that we have sp ∈ W .
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This completes the proof.

Lemma 6.1 shows that when the function GetSplit computes a split point between

a pair of intersecting domains of two program input variables, the split point is

chosen to be a value contained within the overlapping region of the two domains

so that the dynamic domain reduction algorithm safely reduces the two domains.

The domain of a program input variable is then modified (reduced) by procedure

Update, using the calculated split point. Next we present a lemma that proves

Update always reduces a given domain of a program input variable DomVal by

including a subset of values of the program input variables that is part of the

ddrAlg solution.

The Correctness of Procedure Update:

Let us assume that for the set of states of a program P , a domain of the program

input variable, dm, is a set of sub-domains, i.e.

DomValΣdm =< [l1, u1], . . . , [ln, un] >

where ldm = l1 = min(DomValΣdm) and udm = un = max(DomValΣdm). The function

Update takes the domain of dm as an input and updates the domain such that the

output is a subset of the input domain. That is Update : DomValΣdm → DomVal
Σ

dm,

and DomVal
Σ

dm ⊆ DomValΣdm.

Lemma 6.2. Given the set of possible states Σ of a program P , ∃π ∈ Π of the

CFG of P , and for a program input variable (data manipulator) dm in π let

DomVal
Σ

dm = Update(DomValΣdm). Whenever the function Update is feasible (i.e. it

returns true), then

DomVal
Σ

dm ⊆ DomValΣdm

Proof (Proof by Contradiction) We let l and u be the new minimum and maxi-

mum values of the domain of dm. Assume to the contrary that the function Update

is feasible and the computed new domain values DomVal
Σ

dm are not contained in

the original domain values, i.e.

DomVal
Σ

dm * DomValΣdm
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Then we have ∃s ∈ DomValΣdm such that s /∈ DomValΣdm. There are two cases in

which the function Update is feasible and DomVal
Σ

dm is produced.

• When l ≤ l1∧u ≥ un, we note that the current DomValΣdm is contained within

the given l and u and the function does not need to modify DomValΣdm. Thus,

DomVal
Σ

dm = DomValΣdm, which contradicts our assumption.

• When DomValΣdm is not fully contained within the given limits, the function

Update attempts to reduce DomValΣdm. Let k be a set of domain values in

DomValΣdm where 1 ≤ k ≤ n, n = |DomValΣdm| and

DomValΣdm =< [l1, u1], . . . , [ln, . . . , un] >,

the function modifies the domain of dm via the value limits udm and ldm in

two steps:

1. udm is handled, and for each set k in the domain, the function proceeds in

three cases:

• When u ≤ un the function does not need to change udm.

• When u ≥ lk ∧ u ≤ uk, the function removes the subdomains D =<

[lk+1, uk], . . . , [ln, un] > and produces the modified domain DomVal
Σ

dm =

DomValΣdm \D. It follows that we have DomVal
Σ

dm ⊆ DomValΣdm, which

is the same contradiction.

• When u > uk ∧ u < lk + 1, the function removes the subdomains

D =< [lk + 1, uk + 1], . . . , [ln, un] > and produces the modified do-

main DomVal
Σ

dm = DomValΣdm \D. It follows that we have DomVal
Σ

dm ⊆
DomValΣdm and we get the same contradiction.

2. At this point, the domain of dm may be updated by one of the cases in the

previous step, thus, we let

DomValΣdm =< [l1, u1], . . . , [lm, . . . , um] >

where m ≤ n. Then for each set k, 1 ≤ k ≤ m, in the domain, the function

modifies ldm in one of the following three cases:

• When l ≤ l1 the function does not need to change ldm.
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• When l ≥ lk ∧ l ≤ uk, the function replaces the subdomain [lk, uk] with

[l, uk], and removes the subdomains

D =< [lk, uk], . . . , [lk − 1, uk − 1] > from DomValΣdm. Then, the mod-

ified domain is DomVal
Σ

dm = DomValΣdm \ D. It follows that we have

DomVal
Σ

dm ⊆ DomValΣdm, which is the same contradiction.

• When l > uk ∧ l < lk + 1, the function removes the subdomains D =<

[l1, u1], . . . , [lk, uk] > from the variable domain, shifts the domain list

where the i + 1th subdomain becomes the first subdomain and produces

the modified domain DomVal
Σ

dm = DomValΣdm \ D. It follows that we

have the same contradiction that DomVal
Σ

dm ⊆ DomValΣdm.

3. This step is only applied when the algorithm handles bitwise expressions of

type AND and OR, and where the values of some bits of the new domain limit

l and u may be set to “x” (i.e., do-not-care values) meaning that the bits

are allowed to be assigned values 0 or 1. These do-not-care bits are not con-

sidered during the update procedure; however, the bits with 1 values are used

to determine which values in DomValΣdm should be discarded and to reduce

the domain. In this case, the domain of dm is modified such that it only

contains values that agree with the new limits, i.e. l and u of the domain.

Therefore, the domain of dm might be reduced further by removing some

subdomains that contain irrelevant values. Assume that there exists some

subdomain subdomVal ∈ DomValΣdm, and ∃val ∈ subdomVal s.t. val /∈ [l, u]

(the new domain of dm), then when function Update checks that the bits

of val do not match with 1′s bits in l and u (Step 2, lines 18-23 in Algo-

rithm 6.7 on page 170), subdomVal is removed from the domain. Eventually,

this step walks through all subdomains and whenever it finds incorrect values

the domain of dm is reduced and computes a domain DomVal
Σ

dm which is a

contradiction.

This completes the proof.

The Correctness of ddrAlg:

Next we show that for any given complete path π, whenever ddrAlg computes

a solution  Dπ for the test data, the computed domains of the program input

variables in  Dπ are always contained within the initial domains of the program

input variables.
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Lemma 6.3. ∀π ∈ Π of the CFG of a program P , ∀s ∈ π,∀σ ∈ Σ let  Dπ =

ddrAlg(π) where π =< s1, . . . , sk > and k ≥ 1. Also, let π′ = π.s where s

is a path statement in the CFG such that π′ is produced by extending π with

an adjacent statement, s, of the statement sk in the program CFG. Whenever

 Dπ′ = ddrAlg(π′), it holds that

 Dπ′ ⊆  Dπ

Proof (By induction on the length of π) Assume that for path π the algorithm

produces  Dπ = ddrAlg(π). Next we add one more path statement sk+1 to π such

that π′ =< s1, . . . , sk, sk+1 >. In order to compute  Dπ′ = ddrAlg(π′) it is sufficient

to apply the algorithm on the new added statement sk+1 with the current domain

of input variables  Dπ. To this end, there are two cases to consider for sk+1:

• If sk+1 is an action statement, e.g., sk+1 = dm := e, PUSH e, POP dm, . . .

etc., then the algorithm ddrAlg symbolically evaluates the statement, creates a

new domain for the expression in the statement and the domain of inputs  Dπ

is not affected in this case. Thus, the new domain is  Dπ′ =  Dπ = ddrAlg(π′).

• If sk+1 is a Boolean statement, i.e., sk+1 = B, then the algorithm checks

that the current domains of the inputs satisfy the Boolean expression B, and

it makes use of the functions GetSplit and Update in order to reduce the

domains of sub-expressions involved if B was not satisfied. Two cases for

the outcome of the Boolean expression B need to be considered:

– When B = True the constraint is satisfied by the current domain, i.e.,

 Dπ and the algorithm does not need to modify the domains. Thus,

 Dπ′ =  Dπ = ddrAlg(π′).

– When B = False, the constraint is not satisfied and the algorithm

attempts to modify  Dπ to satisfy the constraint. Thus, the algorithm

uses the functions GetSplit and Update to reduce the current do-

main. By Lemmas 6.1 and 6.2, we infer that whenever the function

GetSplit finds a split point sp and the function Update is feasible w.r.t.

to sp, the produced domain is contained within the original domain,

i.e.  Dπ′ ⊆  Dπ.

This completes the proof.
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Now we are in the position to establish the desired correctness result of the dynamic

domain reduction algorithm.

Theorem 6.1. Given an AAPL program P , ∀π ∈ Π of the CFG of P , we denote by

[[· ]]′ the reachability semantics function for computing the reachable output states

R for π. If  Dπ = ddrAlg(π), then ∀σ ∈  Dπ, we have

[[π]]σ ∈ [[π]]′Σ

Proof Assume ∀σ ∈  Dπ, [[π]]σ ∈ [[π]]′Σ (IH).

Let  Dπ.s = ddrAlg(π.s), and by Lemma 6.3 and by IH, we infer that ∀σ ∈  Dπ.s,

and we have σ ∈  Dπ and [[π]]σ ∈ [[π]]′Σ. Therefore, our proof must show that

[[π.s]]σ ∈ [[π.s]]′Σ. Also, we know that [[π.s]]σ = [[s]]([[π]]σ), thus, there are four

cases for statement s to be considered:

• Case s = dm := e. Here we consider the case where the data manipulator,

dm, is equal to some expression e. Assume that expression e is equal to

some value v in the reachability semantics rule fe[[e]]Σ = v. We know that

dm is assigned to some outcome of the evaluation of expression e. We apply

the reachability semantics rule [[dm := e]]′Σ = {[[π]]σ[dm 7→ {v}] | [[π]]σ ∈
Σ∧{v ∈ fe[[e]]([[π]]σ)}}, which produces a final state where ([[π]]σ)[dm 7→ {v}].
We know that < dm, ([[π]]σ) > →E < v, ([[π]]σ) > holds using the small-

step semantics axiom of a data manipulator. So, we can conclude that

[[dm := e]]([[π]]σ) ∈ [[dm := e]]′Σ.

• Case s = PUSH e. Here we consider the case where a memory location (a data

manipulator, dm) defined by the stack,SP , is assigned a value (the outcome

of the evaluation of expression e). We apply the reachability semantics rule of

the command: [[PUSH e]]′Σ = Σ′ = {σ[dm 7→ {v}] | σ ∈ Σ, SP 7→ SP−1, dm =

SP, {v ∈ fe[[e]]Σ}}, and a final state is produced where ([[π]]σ)[dm 7→ {v}].
We know that < dm, ([[π]]σ) > →E < v, ([[π]]σ) > holds using the small-

step semantics axiom of a data manipulator. So, we can conclude that

[[PUSH e]]([[π]]σ) ∈ [[PUSH e]]′Σ.

• Case s = POP dm. Here we consider the case where the data manipulator, dm

is assigned to a value from the stack (i.e. pointed to by the stack register SP ).

Assume that the stack register is evaluated to some value v in the reacha-

bility semantics rule fe[[SP ]]Σ = v. We apply the reachability semantics rule
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[[POP dm]]′Σ = {[[π]]σ[dm 7→ {v}] | [[π]]σ ∈ Σ ∧ {v ∈ fe[[SP ]]([[π]]σ)}} ∪ Σ,

which produces a final state where ([[π]]σ)[dm 7→ {v}]. We know that <

dm, ([[π]]σ)>→E <v, ([[π]]σ)> holds using the small-step semantics axiom of

a data manipulator. So, we can conclude that [[POP dm]]([[π]]σ) ∈ [[POP dm]]′Σ.

• Case s = B. Here we consider the case when the statement is a Boolean

expression. Assume that the evaluation of B is true and fb[[B]]Σ = Σ′,

then the one rule in the reachability semantics whose outcome looks like

this is fb[[B]]Σ = {([[π]]σ) ∈ Σ | ([[π]]σ) ` B ⇒ True} ∪ Σ. This rule

requires B = True in ([[π]]σ). Since B = True in ([[π]]σ), we know that

< B > →BExp < True, ([[π]]σ) > holds by using the inference rule of small-

step semantics. So we conclude that [[B]]([[π]]σ) ∈ [[B]]′Σ.

6.6 Related Work

The goal of our work is to extend the dynamic domain reduction technique to

a low-level programming language, namely AAPL. The extended technique allows

us to generate input test cases for all possible feasible execution paths. A more

complete picture of the trace semantics of a (malicious) code sample can be pro-

duced using test cases. This is similar to software testing where many test input

generation techniques [BJS+06, DO91, GBR98, GMS98] have been developed to

analyse programs in an attempt to find inputs that trigger bugs. They differ from

our extension of the DDR technique because the goal of these approaches is to

reach a certain node in the control flow of a program, and not to capture the

complete program execution trace semantics. Other testing techniques have been

proposed that cover multiple paths of a program to detect program errors. For

example, [CGP+06] and [MKK07a] presented systems that can explore multiple

program execution paths that depend on interesting input. Both systems use

a similar symbolic execution technique to handle specific inputs. However, the

main differences from the extended dynamic domain reduction approach are that,

first, in [CGP+06] the goal is to search for execution paths that lead to program

bugs, and second, in [MKK07a] the goal is to record comprehensive behavioural

profiles of malicious code by saving snapshots of the program environment and,

thus, explore alternative execution paths. While the objective of the DDR ap-

proach is to create a set of test data in which all feasible program paths can be
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exercised. The system that is closest to the extended DDR approach is [ARJ07].

The system allows automatically generated input sequences to exercise a high

coverage of a low-level program code and is based on static binary analysis and

symbolic propagation. That is, symbolic formulas are generated, which represent

input constraints at input-dependent program instructions, and these depend on

the symbolically propagated program input values. Then the system can identify

different input-dependent paths. Similar to our approach, the system can oper-

ate on low-level binary programs and it covers all possible program paths in the

program control flow graph. The system produces an input sequence, which trig-

gers the execution of a new path. The method of generating test data in their

system is similar to that in the DDR extension for AAPL. The difference is that

their approach requires the translation of input-dependent instructions into a set

of Simple Theorem Prover (STP) [Gan07] conditional formulas in order to validate

path conditions and generate test data. Also, none of the above testing techniques

have been proved to be correct with respect to their computed test input values,

while we show that the extended DDR method for low-level programs produces

a subset of the value domains of the program inputs, which can be used as test

cases to traverse the feasible program paths.

Constraint Logic Programming (CLP) techniques have been applied to test data

generation. For solving a TDG problem, a CLP technique dynamically builds a

constraint system, which consists of program input variables, domains and con-

straints. The process of solving a constraint system has three main components:

1) a constraint propagation method, which makes use of the constraints to reduce

the search space, 2) a constraint entailment method, which tries to produce new

constraints from existing ones, 3) a labelling procedure. Unlike symbolic-based

approaches to test data generation, the CLP approach integrates path selection

and constraint-solving steps into a single step. That is, symbolic execution of the

CLP-translated program can be performed by relying on the standard evaluation

mechanism of CLP, which provides backtracking and handling of symbolic expres-

sions for free. A CLP-based method, which tackles the problem of automatic test

data generation, is described in Gotlieb et al. [GBR00]. A CLP system is given to

find program test data. A constraint system over CLP is generated and solved to

check whether at least one feasible control flow path passing through the selected

point exists, and to generate test data automatically, which correspond to one of

these paths. The main idea of the approach is the use of constraint entailment

techniques to reduce the search space efficiently. In the proposed CLP framework,
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test data can be generated without following a path through the program. Also,

the approach proposed in [GzAP10] presents a whole test data generation frame-

work for an object-oriented (OO) imperative language using CLP. The approach

has two steps: first, the imperative program is compiled into an equivalent CLP

program and, second, the test data generation process is performed on the CLP

program by relying only on CLP’s evaluation mechanisms. This approach has

one main advantage in that the whole test data generation process is formulated

using CLP only. That is, their method translates the program into a constraint

logic program for which symbolic execution is performed (without the need to

define specific constraint operators). However, our method for finding test data

was developed to consider low-level programming language features, incorporating

backtracking and domain-splitting mechanisms.

6.7 Conclusion

In this chapter, we developed an extended version of the Dynamic Domain Re-

duction method (DDR) for AAPL programs. The goal of the DDR technique is to

automatically find a domain of program inputs that can be used to produce test

data for feasible program paths. To adapt this method for low-level executable

malware programs, first, we developed an extension of the DDR algorithm for

analysing executable malware programs (low-level code). Then we showed that

the DDR method is correct in producing an under-approximation solution (a sub-

set) from the initial domains of the program input variables. With automated test

data generation using the extended DDR technique, comprehensive analysis of

feasible program paths can be performed. In addition, the method automatically

provides safe under-approximation program inputs, which can be used by mal-

ware detection systems to trigger and capture malicious behaviour. In particular,

this method can improve our semantic signature generation by simulating more

feasible paths with test cases, and, hence, extracting new semantic traces. The

examples provided in this chapter demonstrate that the extended DDR algorithm

for low-level programs computes a subset of values for program input variables as

test data for a feasible path.



Chapter 7

Conclusion and Future Work

Malware has become a profitable business model for cybercriminals. Today, more

than ever before, malware constantly poses a greater threat to individuals, busi-

nesses and government infrastructures. To overwhelm the power of existing AV

tools, malware writers have increasingly used polymorphism and metamorphism

techniques for increasing the production of stealthy variants of known malware.

In this dissertation, we presented new methods for the analysis and detection of

(possibly obfuscated) new malware variants. The main idea of our approach is

that (part of) the semantics of malware code, preserved across successive vari-

ants of the malware, can be used as a signature for detecting code variants. As a

step towards tackling the malware variant detection problem using this idea, we

introduced program trace semantics, or semantic signatures, as an abstraction of

code semantics for identifying new instances of the malware. In Chapter 4, we

described a trace-slicing method and showed that the method produces a correct

trace slice with respect to given trace-slicing criteria for executables. The slicing

step in the signature generation phase helps in tackling the effects of a class of ob-

fuscating techniques in subsequent code variants and allows for improved efficiency

of detection.

Our malware variant detection system in Chapter 5 is based on matching the

semantics of traces of simulated malware code. A semantic simulator is devel-

oped for the system to simulate malware executable files and to capture semantic

traces. That is, the semantic simulator is a static program analyser for simulat-

ing the execution of abstract machine code. We developed a matching algorithm

for identifying malicious code instances. We demonstrated how the trace-slicing

191
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method for generating semantic signatures produces an improvement in detection

times and detection accuracy compared with detection without the trace-slicing

method.

We proposed a testing analysis technique, and in Chapter 6 we proved it to be a

correct analysis for approximating the semantics of malicious executables through

identifying a set of test inputs for a set of feasible program paths. A test input

is part of the semantic signature of the malicious program, which can be used to

identify some of the malicious behaviour in new variants of the program.

Our proposed approach cannot solve the problem of malware detection, but it

provides an important step towards incorporating program trace semantics for

detection of malicious code instances and, thus, raising the bar for malware writers.

We believe that current malware detection tools can be amended with our method

to tackle new, unrecognised variants of an existing malware. Our method can be

utilised in much the same way that signatures are currently used to detect malware,

however, we can clearly enhance and decentralise the phases of distributing new

semantic signatures and recognising new malware variants. Also, a possibility, as

a particular use of our tool, is the use of the approach as a classification tool for

analysing variants of malware samples at AV laboratories.

We envision that our approach will pave the way and inspire researchers in this

area to arrive at more systematic methods for tackling some issues related to the

semantics-based approach in the following areas:

1. Discover hidden abstract traces. This dissertation only presents semantics-

based techniques for detecting malicious executables but does not explore the

solution space of handling malware variants with dynamic code generation

capabilities. We are interested in dealing with dynamic code obfuscation

techniques via deploying a hybrid technique to malware variant detection.

In this case, we may apply virtualisation techniques [VMw, Ora] to par-

tially allow malware, possibly with dynamic code obfuscation, to generate

its code such that other malicious program paths (abstract traces) can be

decoded on-the-fly. Our testing method could benefit from a hybrid tech-

nique by covering more aspects of the malware code and capture more of its

semantics.

2. Reasoning about program semantics approximation. Another possi-

bility for future work is to investigate a framework for determining the set of



Chapter 7. Conclusion and Future Work 193

approximate semantic traces with respect to possible program paths in the

control flow graph of a malicious program. As a first step in this direction,

we observe that for each (unique) feasible program path in a program CFG,

there may exist a set of simulation (concrete) traces that might have similar

semantics. Hence, for future work, an abstraction method could be devel-

oped to characterise the relation between the abstract environment, i.e. the

control flow graph, and the concrete environment, i.e. semantic traces. This

method may be described as a Galois relation between two domains and may

help us in reasoning about how to minimise the number of false negatives in

matching trace slices of program variants.

3. Detection performance improvements. Parallel implementations of the

detection algorithm may help to improve the efficiency of a semantics-based

malware detector when extracting and matching malware signatures. Cur-

rently, our techniques, proposed in this dissertation, for analysing a known

malware program and generating a signature, perform slowly because they

only handle one malware sample at a time. One area we believe major im-

provements can be made is by using General-Purpose computing on Graph-

ics Processing Units (GPGPU) [LHK+04, SC07]. GPGPU has drastically

evolved in recent years and provides software developers with the inex-

pensive, massive computation power available in Graphics Processing Units

(GPUs). This power can be used to code and run data-intensive algorithms

that up till now were traditionally accommodated by the central processing

unit (CPU). This technique may enhance the malware detection phase; in

particular, it could speed up the matching process by handling a large set of

suspicious programs simultaneously, quickly determine if a malicious code is

not a variant of an existing malware, and, hence, a new semantic signature

can be extracted automatically for the new malware.

We believe that the semantics-based approach to malware detection has the po-

tential to strengthen AV scanners on clients’ machines with semantics-enabled

malware detectors. Future solutions to the above mentioned issues will improve

the contributions of this dissertation in developing stronger malware detection

tools.
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