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Abstract 

The first radars used in military scenarios to detect enemies were bistatic because the 

technology that would allow a transmitter and a receiver to use the same antenna had 

not been developed. Then, with the development of monostatic radars, there was 

almost no interest in the bistatic radars subject. Nowadays, due to the fact that 

monostatic radars alone have reached its limits in terms of performance and because 

of the existence of new threats, the interest in bistatic and multistatic radars should 

last longer. Bistatic and multistatic radars are particularly interesting in military 

scenarios where it is important to be able to detect and track stealth targets and also 

to be able to operate with minimized risks of being affected by jamming attacks. 

This thesis investigates how much multistatic radars can surpass stand alone 

monostatic radars when attempting to track a target. Simulations with different 

geometries and different target trajectories are performed in order to assess the 

tracking performance in each scenario. Tracking performance is assessed in terms of 

estimated position, velocity and acceleration accuracies. Different geometries include 

monostatic radar, netted monostatic radars, bistatic radars with target crossing and 

not crossing the baseline, multistatic radars with only 1 TX and many RXs, 

multistatic radars with many TXs and only 1 RX and multistatic radars with many 

TXs and RXs. Simulations are performed using real radar characteristics in order to 

assess whether it is possible to use navigation radars to track targets with low RCS.  

The research herein presented shows that it is possible to achieve a good accuracy 

configuring a geometry that is suitable for the requirements of a system. Also, from 

the results of the simulations it is possible to understand why multistatic radars can 

still work with acceptable accuracy if a TXs is lost/destroyed.  
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1 Introduction 

1.1 Overview and Motivation 

According to [1], the history of radars started in the 1930s and they were mainly 

bistatic being developed, almost at the same time, in many countries such as United 

States, the United Kingdom, Russia and Japan. Transmitters and receivers were not 

co-located (since, in the earlier stages, they did not have the technology to use one 

single antenna to transmit and receive signals) and were known as continuous wave 

(CW) interference detectors. Therefore, the target could be detected when it crossed 

the transmitter-receiver baseline by measuring the interference between the received 

signal and the direct signal when the target was crossing. Nevertheless, it is 

important to report that [2] reminds that, in 1900, Nikola Tesla came up with the idea 

of the possibility of employing radio waves to detect and also measure the movement 

of distant objects. But it was in 1904 that Christian Hülsmeyer, a German engineer, 

applied for a patent for his “telemobiloskop” [2] which was a transmitter-receiver 

that used electrical waves to detect distant metallic objects. The main purpose of this 

system was to avoid ship collision, and although it had impressed the press and the 

public, naval authorities and public companies did not show any interest on it. 

A radar is basically a device that transmits an electromagnetic signal and receives an 

echo of it after it is reflected by a target. The time to receive the echo determines the 

range of the target. The transmitter and the receiver can be co-located (monostatic 

radars) or separated (bistatic radars). 
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The main difference between monostatic and bistatic radars is the separation of the 

transmitter (TX) and receiver (RX). However, a co-located TX and RX are not 

considered a bistatic system, even though they do not use a common antenna. The 

separation between TX and RX in a radar system must be big enough if compared 

with a typical target range so that it can be considered a bistatic system. Figure 1 and 

Figure 2 show, respectively, an example of a Monostatic and a Bistatic Radar. 

 

Figure 1 - Monostatic Radar 

 

Figure 2 - Bistatic Radar 

One or more transmitters and receivers working together in a coordinated and 

integrated way can be considered a multistatic system. Each transmitter combined 

with a receiver form a bistatic system and all the possible bistatic systems formed 

with all these transmitters and receivers form the multistatic system (see Figure 3). 
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Figure 3 - Multistatic Radar 

In 1936, the US Naval Research Laboratory invented the duplexer which allowed 

transmitting and receiving using one single antenna (monostatic radar) [3]. Because 

of that, there was almost no interest in bistatic radars for the next 15 years. Since 

then, the interest in this subject seems to be cyclic and with a period of about 15-20 

years [3]. It is believed that new technologies leads to renewed interest in the subject 

and nowadays it seems that the interest is going to last for a longer period of time. 

Nowadays, military forces have particular interest on bistatic systems due to the fact 

that monostatic radars can be easily detected and hence jammed or targeted by 

antiradiation missiles (ARM). A bistatic system with its receiver situated far (many 

tens or hundreds of kilometres) from the transmitter (which can be located on the 

ground or even on an aircraft) can offer reduced vulnerability to its threats, for 

example, a jammer signal directed back to the transmitter has no effect on the 

receiver that is potentially covert (see Figure 4). 
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Figure 4 - Bistatic Radar being jammed 

A bistatic radar may be comprised of a fully controlled transmitter that is 

synchronized with the receiver or a radar which is not under the control of the 

designer, usually named hitchhiker radar. Moreover, it can also make use of other 

sources (originally not for radar use) such as broadcast transmissions (see Figure 5). 

 

Figure 5 - Pairs of bistatic radar using different kind of transmitters 

Also, monostatic radars can be used in a bistatic configuration by adding one or more 

receivers in the geometry. Another possibility is to use many monostatic radars 

working altogether in bistatic mode as well as in its original purpose, monostatic 

mode (see Figure 6). 
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Figure 6 - Monostatic Radars working either as a monostatic or bistatic radar 

1.1.1 The Problem of Tracking in a Radar Network 

One of the most important functions of a radar surveillance system is to keep track of 

all targets of interest within the area covered by its sensors. Recently, many 

surveillance systems have been relying on multiple sensors which can work together 

in a coordinated and integrated way to provide more accurate and reliable estimates 

of targets than isolated sensors. Therefore, a network of radars working in multistatic 

mode could be used to detect and track targets for defence purposes. Due to the 

agility of electronically-steered antennas, it would be better to use this kind of 

antenna instead of the traditional rotating antennas in order to make it easy to 

coordinate the pointing direction of the transmitters and receivers antennas. 

1.1.1.1 Sensor Management 

Nowadays, modern military or civilian systems comprise many sensors that might 

have different characteristics or functionalities, be located at different locations or 

have different dynamics [4]. These modern systems of sensors must be able to 

manage, co-ordinate and integrate the sensor usage to accomplish specific objectives. 

Sensor Management Systems are responsible for these activities and aims to optimize 

the performance of the whole sensor system and its objectives. The fundamental task 

of a Sensor Management System is to choose at a certain time the most appropriate 

group of sensors to execute a task. 
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A Sensor Management System (SMS) can be seen as a unit to the sensor data fusion 

unit. Therefore, the SMS design is much related to the design of the sensor data 

fusion unit that can be basically of three types: Centralized, Decentralized or 

Hierarchical. 

1.1.1.2 Centralized Data Fusion 

In this type of design, all the information collected from the different sensors is sent 

to a data fusion unit which is located at a central processor or node. This central node 

can receive raw data, detections, plots or tracks and process them depending on the 

applications. All decisions are made at this node, and instructions are given out to the 

chosen sensors (see Figure 7). This kind of approach might not be feasible or might 

be very expensive if the multistatic radar system is comprised of too many nodes 

and/or if the data is processed are at the raw level (lots of data to communicate and 

process). 

 

Figure 7 - Centralized system 

1.1.1.3 Decentralized Data Fusion 

In this case, the system allows its sensors more freedom to make their own decisions 

as data are fused locally, eventually using information from the sensors around. The 

co-ordination of the sensors is done through communications among them, where 

sensors share locally fused information. Efficient implementation of the 

communication network (Figure 8) is a crucial matter. 
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Figure 8 - Decentralized system 

A decentralized data fusion system [5] consists of a set of sensor nodes (identical or 

not) where each sensor processes its own data and data received from neighbouring 

nodes. The nodes do not require any central node to send their data and also can 

make their own decisions based on a local data fusion. There is no node where fusion 

or global decisions are made. A decentralised data fusion system is characterised by 

three constraints: 

1. There is no single central fusion node; 

2. There is no common communication facility; nodes cannot broadcast results and 

communication must be done on a node-to-node basis (however, many systems 

nowadays rely on a common communication facility as seen on Figure 10); and 

3. Sensor nodes do not have and should not need any global knowledge of sensor 

network topology. 

As a consequence of the constraints mentioned above, some important characteristics 

(particularly in military scenarios) for decentralized data fusion systems arise: 

- With no central fusion centre and no common communication facility, the 

system becomes scalable as there are no limits imposed by centralized 

computational bottlenecks or lack of communication bandwidth (scalability). 

- If no node is central and no global knowledge of the sensor network topology 

is required, the system is more failure proof and also more flexible (and less 

sensitive) to changes in the network structure (survivability). 
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- Nodes can be designed and programmed independently of the other nodes 

because no global knowledge of the network is required a priori and all data 

fusion processes must take place locally at each sensor site (modularity). 

The following figures show examples of topologies that can be used in decentralized 

data fusion systems.  

Figure 9 shows a topology where the nodes maintain independent links (peer-to-peer 

communication) to adjacent nodes. The local algorithm in each node does not require 

any knowledge of network topology because the algorithm is supposed to transmit 

new local information to the adjacent connected nodes. These nodes receive the 

information and re-transmit it to their neighbours. Although this architecture brings 

some advantages such as survivability and scalability, there are some disadvantages 

related to communication complexity and delays in the information propagation 

through the nodes. 

 

Figure 9 - Decentralized Data Fusion System using peer-to-peer communication links 

Figure 10 shows a communication topology in which each node is connected to 

every other node in the system through a common communication facility. This 

topology avoids the problems of interconnection complexity and delays in 

information propagation but the use of a common communication medium goes 

against a principle of decentralised systems in avoiding any central resource. 

Nevertheless, the broadcast architecture is very common in many existing 

communication systems. 
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Figure 10 - Decentralized Data Fusion System using a central network facility 

1.1.1.4 Hierarchical Data Fusion 

This design can be considered as a mix of some characteristics of the centralized and 

decentralized systems. In the bottom level of the hierarchy there are local fusion 

units responsible to fuse and control a small group of sensors. Local fusion units can 

group themselves and centralize their information in a higher level until they reach 

the top level where the information from all sensors are fused and used in a global 

fusion centre (see an example in Figure 11). 

 

Figure 11 - Hierarchical system 
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1.2 Thesis Layout 

This thesis approaches the concept of bistatic and multistatic radars that only recently 

has been a subject of a long-term interest due to new technologies that have emerged 

to help deploying such concept consistently. Also, the well known concept of stand-

alone monostatic radars has reached its limits and has been facing difficulties, for 

example, when trying to detect and track a stealth target. 

The use of a network of radars operating either monostatically or bi/multistatically 

will improve sensitivity, coverage, tracking accuracy and so on. It is expected that, 

although there are several advantages in the use of such technology, there are also 

some disadvantages and new challenges that must be overcome in order to make the 

technology operatively and financially feasible. 

In this thesis, a tracking algorithm performance comparison between different 

configurations of networked radars and stand-alone monostatic radars is performed 

and analysed. 

Next chapter, the objectives of this thesis are presented in more detail and the reasons 

to carry out this research are explained. 

Chapter 3 starts with some theory about bistatic and multistatic radars and explains 

the basic properties of bistatic radars. In chapter 4, the idea of tracking is introduced 

and explained.  

After that, in chapter 5, a review of the previous work produced so far about the 

concept of multistatic radars, multistatic tracking and resource management as well 

are reported. 

Following this chapter, in chapter 6, the methodology and infrastructure used to 

perform simulations and ultimately collect data is described. The results of the 

simulations including a final analysis about the data gathered are presented in chapter 

7.  
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Finally, chapter 8 presents the conclusions of this research and its contributions to 

the field and also suggests some improvements and possible future developments 

from this research. 
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2 The Proposed Approach 

Nowadays, many applications rely on different kind of radars. They can be civilian 

or military and each of them has its own particular needs (maximum range, range 

resolution, bandwidth, angular resolution and so on). This thesis focuses on the class 

of applications related to target tracking in multistatic environments compared to 

monostatic ones. It does not matter whether it is for civilian or military applications 

although it seems that the tracking subject is likely to be more interesting for 

military, defence or security needs. There are many papers in the literature (for 

instance, [6], [7], [8], [9], [10], [11] and [12]) that are related to multistatic tracking 

concepts, new algorithms or comparison among algorithms. However, it has not been 

found so far in the literature any research or published paper that shows how 

different are the results when a target is tracked using several different configurations 

of multistatic or netted radar systems. 

The main idea of this research is to prepare a simulation where one target is going to 

fly inside of the coverage area of a radar system. One tracking algorithm is going to 

be chosen based on its simplicity as the main idea is not to develop a new algorithm 

or to improve existing ones. The idea is to assess different configurations of radar 

networks and how they can improve tracking performance. So, for a chosen 

algorithm and same dynamics profile of the target, different configurations of radar 

(monostatic, netted monostatic, bistatic, multistatic with many receivers, multistatic 

with many transmitters and so on) are assessed and compared in terms of tracking 

position errors, tracking velocity errors and if necessary, tracking acceleration errors. 

Another configuration that is also simulated is whether the processing of the 
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information (measurements) is performed in a central node or performed in a 

decentralized way in each node and then fused on a central node. Each different 

configuration is going to produce a solution which is the tracking position and 

velocity and the solution is compared with the real position and velocity. 

The simulations and the results provided by this research might help in the process of 

choosing a suitable multistatic geometry for a particular need. It can also help the 

resource management software developer to understand the consequences of moving 

in real-time a radar platform to another location in order to improve tracking 

accuracy. In addition, since all the simulations are performed using radar 

characteristics similar to commercial radars, an example is prepared at the end of the 

results section in order to show how a navigation radar aimed to track ships at 

distances no bigger than the horizon distance (25 km), can be used in a network of 

similar radars to track targets that are located further (around 70-80 km) and have 

smaller Radar Cross Section (RCS) such as stealth targets (which for the purpose of 

this research is considered to be RCS = 0.1 m
2
, although it can be found that there are 

stealth targets with RCS = 0.01m
2
 or even less). 

2.1 Scope and Limitations 

The starting scenario is comprised of a single target flying in a straight line with 

constant velocity. All the scenarios are simulated in a 2D environment thus only (x,y) 

coordinates for position and velocity are considered. From there, some other 

scenarios are exploited such as a target with some acceleration or a target that 

manoeuvres.  

Also, the target RCS is considered to be constant and equivalent to a perfectly 

conducting sphere. The simulations are performed with RCS of 10 m
2
 or 0.1 m

2
. 

RCS is also considered constant in bistatic scenarios. In addition, in bistatic 

scenarios, where the measurements of a bistatic radar is fused with some other radar, 

measurements coming from the region where the bistatic angle is between 145-180 

degrees are made gradually less important and hence not considered in the fusion 

algorithm because simulations show that when the bistatic angle is in the 

aforementioned range, the location of the target is not accurate. 
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The measurements are simulated considering standard deviations (for range and 

bearing angle) and these standard deviations varies (Equations (18) and (19)) 

according to Signal-to-Noise Ratio (SNR), which is a function (Equation (9)) of 

range (distance from the target to the radar). 

The research reported herein does not consider the existence of more than one target 

and also, the simulations consider that the radars (either TX or RX) are looking at the 

correct region of the space. It is considered that a proper Resource Management 

algorithm would be responsible for pointing the radars to the right direction at the 

right time given the right information from the tracking algorithm is received. Also, 

due to the fact that there is only one target and no clutter is considered, the 

measurements are assumed to be from the only existing target. 

Another important thing to be mentioned is that all the measurements are schedule to 

be performed in fixed regular intervals. 

It should also be reported that the transmission of data between nodes (radars), either 

for synchronization or for sending measurements/tracks is considered to be done 

without delays and that the processing node has all the information it needs to 

process the tracking or fusion algorithms. 
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3 Bistatic / Multistatic Radar 

A bistatic radar according to IEEE definition [13] is “a radar using antennas for 

transmission and reception at sufficiently different locations that the angles or ranges 

to the target are significantly different” (see Figure 2). Similarly, a multistatic radar 

is “a radar system having two or more transmitting or receiving antennas with all 

antennas separated by large distances when compared to the antenna sizes” (see 

Figure 3). Bistatic and Multistatic radars have many advantages, especially that the 

receivers are passive, thus potentially undetectable (unless, for example, in the case 

where the bi/multistatic system comprises monostatic radars, as seen in Figure 6). 

Another interesting advantage is that it is easier to detect stealth targets using 

bi/multistatic radars because although their RCS is small to monostatic radars, it is 

unlikely to be small to bi/multistatic radars (see item 3.3.4). However, despite the 

advantages, there are some disadvantages such as the complexity of the geometry 

and the need to synchronize the nodes (transmitters and receivers). Below there is an 

extended list of advantages and disadvantages of these kind of radars. 

3.1 Advantages 

The separation of transmitter and receiver(s) in a bistatic or multistatic radar makes it 

difficult for an ARM to recognize the receiver since the receivers are passive and 

thus covered and less vulnerable to jamming.  

It is expected that stealth targets are easier to detect because these targets scatters the 

signal to others directions instead of back to the transmitter. This kind of 
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configuration is highly dependent on its geometry (see Figure 12 and, for more 

details, item 3.3.1), so it is important to know the location of the transmitter/receiver 

and whether they are moving or are stationary. Some other advantages are: 

a) Graceful degradation in performance if one or more sites (transmitter or 

receiver) are lost 

b) Enhanced immunity to jamming. The more complex the system with multiple 

transmitters and receivers, the greater the  immunity 

c) Potential to be used in a hostile electronic countermeasure environment (in 

military operations) 

d) More information is available since targets are observed from different 

perspectives and so, due to those many different transmitter-target-receiver 

paths it is unlikely that bi/multistatic radars suffer from fading like in 

monostatic cases. Also, with more available information, it is possible to 

improve detection and classification of targets. 

e) Sending data through communication channels and processing them is easier 

now because of the increasing processing power and capacity and reliability 

of the network communication links. 

f) If used in a passive configuration, the cost can be very low when avoiding the 

cost of expensive transmitter antennas, unless in cases where it is necessary to 

use expensive Electronic Array Antennas at the receiving nodes. 

g) Stealth targets whose shape is designed to scatter energy in directions away 

from the monostatic may be detected by bistatic radars. It is possible because 

of the enhancement of RCS of the target due to geometrical effects 

3.2 Disadvantages 

When designing bistatic/multistatic systems the disadvantages must be considered in 

order to evaluate if it is worth developing them for a given application. In some 

systems it would be interesting to consider a hybrid configuration comprised of 

monostatic nodes and also bi/multistatic nodes working either actively or even 

passively using illuminators of opportunity [14], [15]. This kind of configuration 
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makes the system very flexible because the transmitters can be located anywhere as 

well the receivers. The disadvantages to be considered are: 

a) Complexity of the geometry 

b) Difficulty to control and synchronize the nodes (nowadays this problem has 

been overcome because of the existence of high quality and high speed 

communication links) 

c) Difficulty to establish the exact position of the nodes (transmitters and 

receivers), especially if they move (can be overcome due to GPS technology) 

d) Higher costs to provide communication between sites 

e) The need of a more complex sensor/resource management system 

3.3 Bistatic Radar Properties 

In [3] and in the Chapter 23 of [16] the bistatic radar properties are described in 

detail. Items like bistatic geometry, bistatic doppler, bistatic radar equation, and 

bistatic RCS are summarized in the next sections. 

3.3.1 Bistatic Radar geometry 

In a bistatic configuration ([3] and [15]), the receiver processor, in order to calculate 

the distance r2 (see Figure 12), must know the baseline L (which is the distance 

between the transmitter and receiver), the time interval Δt between the reception of 

the transmitted signal and the target echo, and the angle of receiver antenna θR. First 

of all, it is necessary to calculate r1+r2. It is easily achieved by computing     

              , where c is the speed of propagation. Now, it is possible to 

calculate the distance from the target to the receiver, r2. 

    
   

    

             
 (1) 

Figure 12 depicts the scenario and the variables involved. 
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Figure 12 - Bistatic Radar Geometry 

Another important concept regarding radar geometry is isorange contour. It means 

that for any            , regardless of the receiver look angle, the target can be 

in any position of an ellipse with the transmitter and receiver as the two focal points. 

In Figure 13, the range sum RTT is the sum of r1 and r2 and with a given RTT, the 

target can lie in any position of the “Constant range ellipse”. 

 

Figure 13 - Constant range ellipse (isorange contour) 

3.3.2 Bistatic Doppler 

The geometry for bistatic doppler, considering the generic case where the target, 

transmitter and receiver are moving, can be explained using Figure 14 [3] and is very 

well explained in [3] and Chapter 23 of [16]. 



Bistatic / Multistatic Radar 

43 

 

 
Figure 14 - Bistatic Radar Geometry and the variables involved in the Bistatic Doppler (after [3]) 

V, VT and VR are the velocity magnitude for the target, transmitter and receiver, 

respectively while δ, δT and δR are the aspect angles of V, VT and VR. β is the bistatic 

angle and is β = θT – θR as shown below with the angles being measured in degrees. 

                               (2) 

                 (3) 

         (4) 

Considering the simplest case, where the transmitter and receiver are not moving (VT 

= VR = 0), the bistatic doppler at the receiver site is developed: 

     
 

 
 
        

  
   

   
 

 
 
   

  
 

   

  
  (5) 

Where RT is the distance between transmitter and target, and RR is the distance 

between target and receiver. Moreover: 

 
   

  
        

 
    (6) 

And 
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    (7) 

Therefore: 

    
 

 
       

 
          

 
      

    
  

 
        

 
    (8) 

fB is the bistatic doppler shift caused by target motion when the transmitter and 

receiver are stationary. 

3.3.3 Bistatic Radar equation 

Similarly to the monostatic radar equation, one can develop the bistatic radar 

equation. In the monostatic case, the radar equation is described by: 

     
  

  
 

       
  

              
 (9) 

Where: 

- SNR is the Signal-to-Noise-Ratio 

- PS is the signal power at the receiver. It is measured in watts (W) 

- PN is the noise power in the receiver as well. The unit is also watt (W) 

- Pt is the transmit power at the output of the transmitter. The unit is watt (W) 

- Gt is the power gain of the transmit antenna 

- Gr is the power gain of the receive antenna. Usually, for monostatic radars, 

this is the same as the power gain of the transmit antenna. 

- λ is the radar wavelength and is related to the transmitted frequency. The unit 

is meter (m) 

- σ is the target RCS. Its unit is square meter (m
2
) 
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- R is the range from the radar to the target. The unit is meter (m) 

- k is Boltzmann‟s constant and is equal to             . The unit is 

        

- T0 is the room temperature in Kelvins (K). Considering         , then 

           , with units in     or     . 

- B is the receiver bandwidth and its unit is Hz 

- Fn is the radar noise figure 

- L is a factor (greater than 1) included in order to account for all losses in the 

signal that can reduce the radar performance 

The equation can also be arranged in terms of SNR to find R: 

    
       

  

                 
 (10) 

And R will have its maximum value when SNR is at its minimum, so: 

     
  

       
  

                    
 (11) 

In order to derive the bistatic radar range equation, it is necessary to split the term R
4
 

into two different r
2
, where each r

2
 is related to the transmitter-target and target-

receiver distance respectively. Furthermore, the radar cross section (RCS) σ becomes 

the bistatic radar cross section σB. Therefore, the bistatic radar equation is: 

          
  

       
   

                    
 (12) 
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Figure 15 - Radar Range Equation variables 

3.3.4 Bistatic Radar Cross Section (RCS) 

The bistatic RCS of a target, σB, similarly to the monostatic case, σ, is a measure that 

represents how much energy is scattered from the target to the receiver. It means 

that, the higher the energy scattered, the more detectable the target is. Nevertheless, 

the similarity does not go further, because bistatic RCS are much more complex as it 

depends on aspect angle and bistatic angle as well as the shape of the target. There 

are three regions of bistatic RCS. The regions vary from β = 0
° 

to β = 180
° 

and 

depend primarily on target‟s physical characteristics. The three regions are: 

pseudomonostatic (small β), bistatic and forward scatter (β near 180
°
). 

3.3.4.1 Forward Scatter 

The bistatic RCS of a target is improved if compared to its monostatic (backscatter) 

case when the bistatic angle is close to 180 degrees. For a bistatic angle β=180°, the 

bistatic radar cross section σB is of the order of         ([17] and [18]), where A is 

the silhouette area of the target and λ is the wavelength of the signal and should be 

small compared to the target dimensions. 

As an example, for a target with monostatic RCS of       , its silhouette area A is 

also        and for a        (3 GHz),            which corresponds to an 

enhancement of 31 dB. The angular width (in radians) of the forward scatter is given 
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by        , where d is the linear dimension of the target in the appropriate plane 

[18]. So, for the same example above, if      , then           radians which 

corresponds to 0.29 degrees. 

Since the forward scatter returned from a target does not depend on its composition, 

bistatic radars can detect targets that were specially designed to reduce its monostatic 

RCS (for example, stealth aircrafts). On the other hand, if the target lies on or close 

the forward scatter region (or the transmitter-receiver baseline), it is not possible to 

extract either range or Doppler information.  

For a small aircraft of        and      , the Figure 16 [18] depicts what 

happens with σB and θB as the frequency of the transmitter increases. 

 

Figure 16 – (after [18]) σB and θB as functions of frequency (or wavelength λ) 

It shows that, although the forward scatter RCS σB is highly improved with 

frequency increases, the angular width θB is dramatically reduced. It is up to the 

designer of the system, according to the application needs, to find the best 

compromise between σB and θB. 

3.4 Multistatic Radar 

Considering that a Multistatic Radar is “A radar system having two or more 

transmitting or receiving antennas with all antennas separated by large distances 

when compared to the antenna sizes” [13], it is a generic form of a radar network 
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where each pair transmitter-receiver is a bistatic radar an thus, multiple bistatic 

radars working and co-operating together in a unique system make a multistatic radar 

system. Many possible configurations for different applications can be implemented 

and depending on them, the complexity of the system can increase considerably. It 

might be important to note that the term “multistatic radar” has some similar terms 

used in the literature, such as multisite radar, radar networks, distributed radars, 

netted radars, just to mention a few of them. They are used with the same meaning 

but sometimes they refer to a specific type of configuration. The main idea is still 

that there are many sensors working co-operatively. 

Table 1 [19] depicts just a few examples of configurations and their complexity 

according to variables such as location, operation mode and so on. 

Table 1 - Different levels of complexity according to some Multistatic configuration variables (after 

[19]) 

 

The idea of Table 1 is to illustrate what happens on the level of complexity 

(“Assessment” row) when some of the characteristics vary from a simple 

configuration to a more difficult to implement one. For example, if the locations of 

the platforms (nodes) are fixed (see “Location” row of Table 1), systems tend to be 

simpler than when platforms move. On the other hand, the system tend to be more 

complex when the data level vary from track level to detections and ultimately to raw 
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level. The last row of Table 1 shows for those 6 cases (out of a much more variety of 

possible combinations of characteristics) how complex is to implement each case. 

In multistatic systems (or in any network radar system), differently from monostatic 

systems, the nodes must communicate with each other and maybe it is one of the 

most important differences between monostatic and multistatic/multiradar systems. 

Communication links might be necessary to synchronize the nodes, and they are also 

necessary to exchange information collected among them (e.g., measurement data) or 

to send the information to a central node. The synchronization of transmit and 

receive nodes plays an important role in the performance of the network because 

both kind of nodes need to be looking at the same areas or volume of interest in order 

to acquire or track a target. One possible solution to minimize the problem is to use 

omni-directional antennas (in the transmit nodes) and/or use electronically steered 

antennas (either in transmit or receive nodes).  
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4 Tracking algorithms 

The purpose of a tracking algorithm is to track moving targets using a sequence of 

sensor(s) measurements (or observations). By using the measurements, it is possible 

to update the last estimate of a target and also estimate the next state of it 

(considering that the track had been formed and confirmed). The problem of tracking 

gets more complicated depending on the number of targets and sensors involved and 

also on the geometry of the system. 

In [20], the author presents maybe the most famous tracking algorithm since 1960, 

the Kalman Filter (KF). It is an optimal recursive data processing algorithm which 

uses all the data available to it. Those data, also called measurements, are combined 

in order to estimate variables of interest. It uses the knowledge of the system and 

measurement device dynamics. Also it is important to use the statistical description 

of the system noises, measurements errors and uncertainties in the dynamic models. 

Finally, it uses any information provided about the initial conditions of the variables 

of interest. The Kalman Filter is very popular because it is convenient for online real-

time processing, it is not difficult to implement and good results can be achieved in 

practice. It has been used so far in applications such as, tracking targets like missiles 

and aircraft using radars or robot localization using sensors. 

4.1 Simple Example 

For example, imagine a simple situation where an aircraft is moving horizontally in a 

straight line with constant velocity v. The idea is to estimate the aircraft (target) 
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position x and velocity v. However, the measurements performed by a sensor (e.g. 

monostatic radar) are corrupted by white noise, with zero mean and standard 

deviation σz. And also, the measurements can only be done in specific moments 

(discrete time). Using this very simple dynamics, the following equations model it. 

           
   
  

  
  

  
   

       
  

  (13) 

 

          (14) 

where the matrix X is the state of the aircraft (position, velocity), Zn is the 

measurement of the position plus noise u. 

After that, with measurement Zn, and previous prediction of state    
 , it is possible to 

update the estimate position    . 

          
      (15) 

And now, with    , the state prediction      
  can be updated. 

      
         (16) 

Figure 17 depicts this recursive algorithm: 

 

Figure 17 - Tracking recursive algorithm 
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In section 6.3, more details about tracking algorithms used in this thesis are 

presented. 

4.2 Multistatic Tracking of a Target 

As in a conventional monostatic radar tracking system, multistatic radar tracking 

systems might also have the objective to detect and track targets as they pass through 

the radar system. In this case, there are measurements being done by all the radars 

(receivers) of the system. A receiver performs a measurement based on information 

sent via the synchronization links, such as a transmitter‟s pointing direction and 

frequency being used. The main idea here is that the whole system must work in a 

co-ordinated and intelligent way in order to achieve the best results when detecting 

and tracking targets making use of all the resources available in an optimal way. 

Two of the most important aspects of this problem are to: 

a) Manage the resources of the system making the transmitters and receivers 

work appropriately in order to acquire and track targets; and 

b) Track a target using, if necessary, measurements from all the receivers, 

making the best use of different perspectives. 

In this present work, item “a” is considered to be performed by some software 

module dealing with resource management. Therefore, it can be considered that the 

multistatic radar system can make use of electronically-steered antennas in the 

receiver nodes and, if possible, in the transmitter nodes. It can smartly detect and 

track targets by scheduling instantaneously appropriate transmit and receive beams 

directions, setting the transmitter waveforms and if necessary, exploiting forward 

scatter (which gives high possibility of detection but no range and Doppler 

information).  

The management of a multistatic radar system in order to detect and track targets is 

very similar to what happens in a Multi-Function Radar (MFR) ([21] and [22]), also 

known as, Phased Array Radar, where its resource management module decides if a 

target needs constant updating or not, considering the target‟s level of threat or the 

use of less energy. Nevertheless, for the purposes of this thesis, the updating rate of a 

target is considered to be fixed as if it were using a rotating antenna instead. 
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The second important aspect (item “b”) is related to the fusion algorithm 

implemented in this thesis which uses information from all receivers and with a very 

simple procedure, decides which information is going to be used and how it is going 

to be used (section 6.3). 
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5 Review of Previous Work 

In the next sections, some of the important work that have been done so far and that 

are related to the main topic of this research are listed. The generic topic of 

Multistatic radar is presented in 5.1. Then, Multistatic tracking, which is directly 

related to this research is covered in 5.2. Then, finally in 5.3, the topic of resource 

management is reported as it has important connections with some future work 

suggested later in the thesis. 

5.1 Multistatic Radar 

As previously mentioned at the beginning of Chapter 3, IEEE defines bistatic and 

multistatic radar [13]. There are also some other terminology common used in the 

literature such as: netted radar, distributed radar, multisite radar just to mention some 

of them. 

In [18], the author presents a review of work on multistatic, Multiple Input Multiple 

Output (MIMO) and networked radar. Here, some good reasons for the growing 

interest in this area are listed. Also the very important concept of “Forward Scatter” 

geometry is explained and it is shown how the detection of a target is improved 

although it is difficult to measure the range and/or velocity of the target from the 

sensor using this mechanism. Furthermore, the paper discusses some ideas ([21], [22] 

and [23]) that are applied to monostatic phased array radars (and other types of radar 

systems) and that could also be utilized in a radar network, such as intelligence and 

adaptability of the sensors comprising the system. 
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Combined position-finding accuracies of netted monostatic and netted bistatic radars 

are calculated in [24]. Different radar configurations are compared: single 

monostatic, single bistatic, netted monostatic and netted bistatic.  The comparison is 

performed in terms of measurement error. The paper does not show many 

configurations but it is an important contribution given by the authors in 1983. It is 

shown that the results essentially depend whether the range dependence of the 

measurement errors are considered or not. 

Monostatic radar systems have been stretched to their limits in terms of sensitivity 

and information by new radar applications. [25] shows that these limitations can be 

overcome if networks of smaller radar systems are used. For instance, networks of 

radar sensors can counter stealth technology at the same time that additional 

information for improved target classification is provided. In an overall comparison, 

a more efficient reception of radar scatter can be achieved by using multiple 

independent sensors as they are able to deliver a view of many target perspectives. 

The relative merits of non-coherent and coherent networks are introduced and the 

balance between increased performance, complexity, and cost is discussed. 

The use of Bistatic and/or Multistatic radars, meaning that transmitters and receivers 

are not co-located, results in some great advantages over the traditional monostatic 

radars. Some advantages have already been mentioned in 3.1 but there are some 

others: a) improved tracking, location accuracy and target classification as the target 

is observed from different perspectives; b) spatial distribution of the nodes of the 

network enables the area to be tailored according to the specific application of 

interest; c) increased survivability and reliability is achieved because of the option of 

having „silent‟ or passive operation of the receivers. These receivers can improve the 

location accuracy of possible jammers by fusing the information from the network 

nodes;  

Those advantages are explored in [26] in the context of homeland security activities. 

Despite the advantages, the interest on this subject has been varying periodically with 

peaks of interest each 15-20 years [3][27] and at the moment, the “3rd resurgence” is 

due. 
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There are some disadvantages that can explain this cyclic interest which have been 

mentioned in 3.2. [14] and [15], though, presents a review of bistatic radar systems 

with particular emphasis on Passive Coherent Location (PCL) techniques, which 

means using broadcast and communications signals as “illuminators of opportunity”. 

Additionally, [15] also explains why practical bistatic radar systems may now be 

developed and used and [28] presents and discusses recent developments that show 

that bistatic systems are becoming practical for many applications. [28] also 

discusses some current issues concerning, for example, passive bistatic radars. 

An experimental netted radar system with four nodes was designed and developed 

using “Commercial Off The Shelf” (COTS) components wherever possible in order 

to reduce costs [29]. Some simulations were performed using that experimental 

system and the results were presented showing the viability of COTS components to 

reduce costs. [29] and [30] reports on the initial characterisation and calibration of 

such a low cost multistatic radar system. It is a practical contribution to the area and 

some improvements are being planned, such as the use of wireless synchronization 

and improved frequency agility. 

An important aspect that has to be evaluated in netted radars is the ambiguity 

function. [31], [32] and [33] conclude that multistatic ambiguity function and 

sensitivity are dependent on the system and target geometries. [32] shows that an 

experimental system that was being developed at UCL ([29] and [30]) could help in 

determining achievable performance under realistic situations and in providing a tool 

for multistatic measurements. 

Furthermore, [34] presents the results of processing real data acquired with the 

University College London (UCL) radar network ([29] and [30]) to localize a 

walking person using two different incoherent approaches: centralized and 

decentralized. Then, the results are compared with two coherent approaches. The 

paper does not investigate targets with much higher velocities. 

In [35], the authors present an algorithm to fuse data from sensors. In this case, they 

are three dissimilar sensors: High Resolution Radar (HRR), Low Resolution Radar 

(LRR) and Electronic Support Measures (ESM). With this algorithm it was possible 

to jointly form a track and assign an identity flag to a target on the basis of 
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measurements provided by the sensors. This can be an advantage especially if the 

result can be displayed in one screen instead of showing it in each sensor screen. 

Knowledge-Based (KB) radar signal and data processing can also be very useful in 

radar systems used in military operations due to the always evolving and increasing 

threats from military targets with small RCS, large number of targets in a scenario 

and so on. [36] explains how KB techniques can significantly improve performance 

of radar systems aiding human operators in carrying out their tasks. For example, KB 

techniques may have several applications in bistatic and multistatic radar systems as 

well as in the resource allocation of a MFR. 

In [37], a sub-optimum algorithm is applied to a radar network with a double 

threshold for detection and it is shown that detection performance can be maintained 

in presence of jamming without any of the countermeasures more commonly 

adopted. 

A multistatic radar system composed of one transmitter, a number of receivers and a 

central processing station is presented in [38]. Its main objective is to increase the 

detection probability of targets with low monostatic RCS, taking advantage of the 

Bistatic RCS and the low operating frequency (low UHF band). Each receiver, that 

makes a bistatic pair with the only transmitter, measures the targets bistatic range and 

range-rate information, while estimating their azimuth angle. The measurements are 

processed locally and after that, the resulting data are sent to a central processing 

station in order to perform 3D multiple target tracking. In this work, the only 

function of the transmitter is to emit a Frequency Modulated Continuous Wave 

(FMCW) signal and an appropriate synchronization beacon, while the receiver 

performs a totally passive function. The use of a low cost radar sensor which 

performs a simple operation is the main design objective, while the main system 

functionality is performed by the central processing station. The main objective is 

accomplished using relatively recent computer power. 

In [39], the coverage performance of a radar network is investigated when four 

different forms of processing concepts are applied. The main contribution of the 

paper is to show that the form of the processing concept used and the number of the 

nodes can affect coverage performance. 



Review of Previous Work 

58 

 

Another very recent contribution is presented in [40] where the main approach is to 

evaluate network topologies of low power radars that improve the coverage of the 

lower troposphere (3 km) in the context of weather sensing. Yet in the context of 

weather sensing and forecasting, [41], [42], [43], [44], [45], [46], [47] and [48] show 

the research that has been done so far involving the Engineering Research Centre for 

Collaborative Adaptive Sensing of the Atmosphere (CASA) [49] which utilizes a set 

of radar nodes, comprised of small, low power antennas, to adaptively sense the 

weather including the lower part of the troposphere. Particularly, [48] is a very recent 

paper that reports an approach where networks of small radars can be used to support 

the interception of low-flying aircrafts at the same time that it can be used to detect 

weather hazards. This is a very interesting approach as supposedly the radar network 

does not need to spend much time on detecting weather hazards and the remaining 

idle time can be used for border security missions. However, it seems that the nodes 

work as monostatic radars and not bistatically or multistatically. 

5.2 Multistatic Tracking 

It is not possible to talk about tracking without mentioning [20], which is likely to be 

the most famous tracking algorithm since 1960. From the idea of Rudolf Emil 

Kalman, many other derivations of the filter emerged to tackle variations of the 

tracking problem (e.g., [9], [10], [11]). [50] shows in a very simple language several 

tracking algorithms that have been used so far. 

The difficulties to implement a multiradar tracker comparing its results to the ones 

from a system that form monostatic radar tracks and combine them to produce a 

single track is reported in [51]. It is a paper that discusses three different approaches 

on how to use information from the radars of a multiradar system in order to track a 

target. 

[52] describes and compares many Kalman Filter algorithms that can be used for 

state estimation with a multiple sensor system. Three approaches are investigated in 

terms of computational resources used. The idea of the work seems to be adequate in 

a multistatic radar scenario as well. 
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A multiradar tracking that utilizes position and radial velocity measurements is 

discussed in [6]. Although this paper is about a multiradar (many monostatic radars) 

and not a multistatic radar (monostatic and bistatic radars as well), it shows, through 

simulations, that having radial velocities measured from different perspectives 

improve significantly the tracking of a target compared to when radial velocity 

measurements are not used. 

The tracking function of multistatic radar systems is analysed in [7] and a general 

architecture for data processing is proposed. Data compression and measurement 

selection methods are discussed which improve the performance of tracking filters. A 

tracking performance analysis based on a computer simulation is performed for a 

two-dimensional multistatic system with one transmitter and two receivers. A 

comparison between multistatic tracking systems and netted monostatic systems 

shows that both types of system provide similar tracking accuracy. 

[8] presents a unified view of the tracking algorithms that were available for 

multistatic radars systems and considers the problem of deriving and evaluating the 

performance of those algorithms able to process data from bistatic or multistatic 

radar systems. In a system like that, it is mandatory that information about the nodes 

(transmitters and receivers) be available in order to know when and how to steer the 

transmitters and receivers. Also, some issues about the data flow are mentioned, 

considering a centralized and a distributed system. Some of the issues do not exist 

anymore though, as the technology in the last 25 years has evolved and has been 

helping to deal with them. 

A complete decentralized version of the Kalman Filter is presented in [9] and [10]. 

Once more, these papers do not deal with a multistatic radar configuration but is able 

to show the importance of having, in the context of multi sensors, a decentralized 

filter that does not require a central processing software or centralised 

communications medium at all. Since there is not a node that performs a centralized 

computation of the filter, the system as a whole is highly resilient to loss of one or 

more sensing nodes. This idea of quick recovering from a difficult condition is very 

suitable in military applications or in systems where a failure in a node can happen 

without affecting so much the behaviour of them. This kind of characteristic can be 
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called “graceful” degradation. Also, due to the decentralized architecture of the 

algorithm, it is easier to add new nodes to the system making it scalable. 

Despite [53] presents a fusion filter that has been designed for the tracking of 

airborne targets using many different sensor types at different sites, it is not a paper 

that deals with a multistatic radar configuration. Nonetheless, the idea seems to be 

appropriate in a multistatic scenario as well. Moreover, the paper assesses the 

performance of the algorithm in four different scenarios, although the scenarios are 

comprised of only one or two sensors. 

The problem of tracking multiple targets in a net of passive 2D or 3D radars is 

presented in [54]. In this context, the authors suggest a new method to overcome 

problems with false detections.  

[55] is an interesting paper that looks at the subject of tracking performance when 

comparing scenarios with one, two or three sensors. It shows for each scenario what 

is the accuracy in each location of the surveillance volume and also makes 

considerations about data fusion. It seems that information about the characteristics 

of the radar and waveform are missing or not very clear, although it reports the 

detection range and measurement rate of each sensor in each example. The paper 

reports an analysis method to describe tracking performance of a multistatic radar 

and also shows how the analysis can support decisions when comparing different 

system configurations. Also, the method enables the quantification of data fusion 

advantages. 

The subject “target tracking” in a multisensor environment is presented in [56]. It 

presents an overview of common filtering techniques that are used for moving 

targets, such as Kalman Filter and its variations as well as Interacting Multiple 

Model (IMM) and some variations. The paper also discusses the computational 

demand of those algorithms and suggests some solutions to minimize such demand. 

The main contribution of this work is that it summarizes many aspects, 

characteristics and issues related to multisensor target tracking such as centralized vs 

decentralized tracking, sensor management, computational complexity and real time 

implementation. 
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In [57], examples of bi-/multistatic radar systems are discussed as well as their 

geometry dependencies with respect to measurements and their input to a tracking 

and fusion system. Given the configuration of the bi-/multistatic radar, four different 

simulated flight paths were used to evaluate three different data fusion algorithms. 

One contribution that addresses multistatic tracking in the context of sonar is [58]. In 

addition, this paper provides a simulation-based study using centralized and 

decentralized tracking algorithms and identifies a trade-off between both approaches 

when fading detection performance data is used: the former achieves better 

localization accuracy, whilst the latter achieves improved Receiver Operating 

Characteristic (ROC) curve performance. 

[59], [60], [61] and [62] are all papers related to the Multistatic Tracking Working 

Group (MSTWG) and several simulated multistatic sonar scenario data sets are 

developed and made available by this group for use in tracker evaluation by the 

group‟s participants. A common set of performance metrics is also agreed, to enable 

tracker algorithm comparison and evaluation. MSTWG was formed in 2005 by an 

international group of researchers interested in developing and improving tracking 

capabilities when applied to multistatic sonar and radar problems. [59] presents a 

brief description of the datasets and trackers developed and/or utilized by MSTWG 

as well as a detailed discussion of a proposed set of tracker performance metrics. 

Furthermore, the paper reports a number of issues associated with performance 

assessment for target tracking. [60] discusses an implementation of a general 

Bayesian tracking method and also discusses and compares the results when the 

algorithm is utilized with the datasets provided by MSTWG. In [61], the authors 

report consolidated results comparing tracking algorithms performance using the 

common data sets and metrics. The results are important to help in the understanding 

the different tracking algorithms according to the scenario and/or metric. Finally, 

[62] presents a tracker that overcome problems with high levels of false alarm clutter 

on all sonar nodes of a multistatic active sonar and presents performance results of 

the tracking algorithm using the simulated data sets from MSTWG.  

In [12], a track fusion procedure has been implemented in a multiradar configuration 

in the context of homeland security and in particular on border control issues. This 

procedure may involve a large number of heterogeneous sensors, command and 



Review of Previous Work 

62 

 

control centres, platforms and communication networks. The sensors can be ground 

or ship based, 1D, 2D or 3D. The paper deals with the problem of correlation and 

fusion of track data related to ground and ship based radar sensors (2D and 3D) 

directly in the radar sites. This is another paper that deals with tracking/fusion where 

many (eventually different) sensors are utilized. Although the test bed presented in 

this paper uses monostatic radars, it seems that the use of bistatic radars would not be 

a problem for the algorithm. 

In a recent work [11], four different filtering algorithms (Sequential Iterated 

Extended Kalman Filter (SI-EKF), Iterated Unscented Kalman Filter (I-UKF), 

Interactive Multiple Model algorithm combined with Sequential Iterated Extended 

Kalman Filter (IMM-SI-EKF), and Interactive Multiple Model algorithm combined 

with Iterated Unscented Kalman Filter (IMM-I-UKF)) are used and compared in the 

context of tracking a manoeuvring target passing by a given multistatic radar 

configuration that comprises a number of bistatic radars measuring bistatic range and 

bistatic range-rate. A Monte Carlo simulation is performed to demonstrate the track 

accuracy performance and computational complexity of each algorithm for 

manoeuvring targets. 

In [63], from the same authors of [11], the filtering algorithm IMM-I-UKF (which 

was the one that performed best in [11]) is used for target tracking in a multistatic 

environment. The performance of the tracker is evaluated for multiple scenarios 

including multiple, closely-spaced, manoeuvring, with crossing track patterns targets, 

in dense clutter environment with non-unity Probability of Detection (PD). The 

tracker performed very well in all cases and also could be implemented with 

computer power available in 2008. Additionally, the proposed algorithm proved to be 

superior to some other very known and used methods. A Monte Carlo simulation is 

performed to demonstrate the track accuracy, probability of correct association, 

robustness and computational complexity for the different scenarios.  

Another paper that reports the results of a tracking algorithm to track targets crossing 

a multistatic radar is [64].  Once more, just one scenario of multistatic radar is used 

to assess the algorithm. Nonetheless, the tracker is tested on a 3D multitarget 

scenario that includes crossing targets and targets moving in formation. 
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5.3 Resource Management 

The management of radar resources in a Multi Function Radar is perhaps the most 

important thing to be accomplished in order to deliver the maximum potential that 

electronic array antennas can provide. Scheduling is an important component of 

radar resource management due to the correlation between how tasks should be 

performed into the time limits available. The same concepts of resource management 

used for Multi Function Radar could be applied when managing the resources of a 

radar network. 

Controlling and managing the resources of a MFR has been the subject of study of 

many researchers and many papers have been published so far ([22], [65], [66], [67], 

[68], [69] and [70]). Using similar ideas some papers show that it is possible to 

overcome the challenges when managing the resources of a radar network using the 

concept of cognition ([23], [71], [72] and [73]). 

As an example, [66] presents the issue of tracking targets using a rotating MFR in 

comparison with the static MFR systems and also highlights the main benefits that 

arise from the rotating phased array antenna. In addition to this, it outlines the 

existing complications in the control of the rotating MFR and presents a scheduling 

algorithm which deals with the complications in an efficient manner. 

10 years later, [70] compares two scheduling algorithms reported in the literature so 

that differences between their performance could be analysed in both “underload” 

and “overload” conditions. This could be accomplished through a developed MFR 

model. 

And finally, [73] reports the design and implementation of cognitive tracking radar 

using the same ideas published by the same author in [71]. It states that a Cognitive 

Radar would be comprised of 3 basic components: a) “feedback” from the receiver to 

the transmitter as a “facilitator of intelligence”; b) “learning” from what the radar 

receives from the environment and c) “information preservation” of radar returns. 

[71] also mentions two approaches for the cognition on a cognitive radar network: a) 

distributed and b) centralized. Still in the same subject, [72] develops the idea of 
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cognitive radar network and presents an architecture that incorporate cognitive 

capabilities.  
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6 Simulations 

The use of computer simulations is essential for this research because of the 

expensive infrastructure that would be necessary to perform real experiments 

involving aircrafts and real navigation radars to collect the data. Computer 

simulations are useful when there is no budget to afford real experiments but it is 

also very useful when time is an important matter. Furthermore, the use of 

simulations makes it simpler to change parameters and observe the results bringing 

extra information about the behaviour of the system. However, it is important to 

mention that it is not an easy task (maybe impossible) to model and simulate a real 

scenario and thus, computer simulations might not represent exactly what would 

happen if real experiments were performed. For the purpose of this research 

simulations are used to analyse the results when a radar system (comprised of 1 or 

more radars) tracks a target that crosses its coverage area using a simple tracking 

algorithm and a simple fusion algorithm (if in a multistatic scenario). 

6.1 Setting up the Environment 

In order to perform simulations of a target crossing different kind of radar geometries 

(for example, one monostatic radar, a network of monostatic radars, a bistatic radar 

or a multistatic radar), and compare the results when looking at measurements, 

filtered measurements (using filters such as g-h or g-h-k [50] or Kalman Filter), 

fusion of measurements and filtered fused measurements, some computational 

resources are used. 
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The hardware used for the simulations is a notebook with Intel Core i7 processor and 

8GB RAM memory and 1GB RAM Dedicated Video Memory. Also, it has a hard 

disk of 750 GB, even though, the simulations would work with hard disks with much 

less storage space (less than 100 GB, including the operating system). The operating 

system is the Windows 7 Home 64 bits. Finally, the software used for the simulation 

is MATLAB 7.10.0.499 (R2010a) 64 bits. In all simulations, total RAM usage is 

never more than 6GB RAM. 

The MATLAB environment is set to save all the simulation scripts in only one folder 

in order to make it easy to use them in any other computer with MATLAB installed. 

6.2 Methodology 

All the simulations are performed using MATLAB scripts that make use of classes 

written specifically for the purposes of this thesis. All the MATLAB source code are 

available in Appendix A (one CD-ROM) of this thesis. 

Also, the simulations consider a two-dimensional space in order to make it easier to 

present, understand and analyse the results. 

At the beginning, one script (script01.m file) and one simple class named “Radar” 

(Radar.m file) are developed in order to compare true trajectories against 

measurements performed by a monostatic radar. The simulated measurements take 

into account that the range and angle measurements standard deviation are fixed and 

do not change according to range. Using Class “Radar”, it was possible to set 

different standard deviations for range and angle measurements in order to observe 

the effects of those changes. Since the objective of this research is related to tracking 

and not resource management, the simulations consider that transmitters and/or 

receivers are pointing and looking at the same region where the target is located. The 

figures below show 2 examples of measurements performed by a radar using 

different range and/or azimuth standard deviations. Figure 18 shows 3 horizontal 

target trajectories (red line) flying from left to right with velocities of 100, 200 and 

300 m/s and 3 vertical target trajectories (blue line) flying from top to bottom with 

the same velocities. The green lines are the measurements using a radar with 150 m 

range standard deviation and with 30 mrad azimuth standard deviation. The radar 
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(green circle) is located at (100,0) km and x and y axis are in meters. In all figures 

related to position or position errors, the unit used is meter unless mentioned 

otherwise. 

  

Figure 18 - Horizontal (red) and Vertical (blue) target trajectories with different 

velocities and the radar located at (100,0) km. 

 

Figure 19 and Figure 20 depict the errors in x-axis and y-axis when comparing true 

position against measurements of the top horizontal trajectory (Figure 18) flying 

from (-100,100) km to (50,100) km with x-velocity of +100m/s during 1500 seconds. 

 

Figure 19 – Measurement number vs x-axis 

errors (using 150 m and 30 mrad standard 

deviations) 

 

Figure 20 – Measurement number vs y-axis 

errors (using 150 m and 30 mrad standard 

deviations) 

 

Figure 21 and Figure 22 present the same scenario but with a range standard 

deviation of 15 meters. In this case, it is possible to see that almost no improvement 

is achieved with the decreasing of range standard deviation (10 times less). 
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Figure 21 - Measurement number vs x-axis 

errors (using 15 m and 30 mrad standard 

deviations) 

 

Figure 22 - Measurement number vs y-axis 

errors (using 15 m and 30 mrad standard 

deviations) 

 

The following pictures (Figure 23 and Figure 24) depict a scenario where the range 

standard deviation is 150 m but the azimuth standard deviation is 3 mrad (10 times 

less than the previous simulations). 

 

Figure 23 - Measurement number vs x-axis 

errors (using 150 m and 3 mrad standard 

deviations) 

 

Figure 24 - Measurement number vs y-axis 

errors (using 150 m and 3 mrad standard 

deviations) 

 

In this case, the improvement in azimuth standard deviation (10 times less) brings a 

great reduction in the measurement errors. The simulations above do not consider 

RCS or operation frequency. They are just showing how different standard 

deviations, which are considered to be constant regardless of range, can affect the 

final measurements. 

The next script (script03.m file) also use class “Radar”, but now, 2 objects of class 

“Radar” are created in the script (one transmitter and one receiver), in order to 

simulate measurements performed by a bistatic radar. Using this script, it is possible 
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to simulate different geometries of bistatic radars, for example, a target crossing the 

bistatic line or a target going on a parallel trajectory to the baseline. To compute the 

range from the receiver (r2) to the target, equation (17) is used: 

    
   

    

             
 (17) 

An example of a scenario and measurement errors are shown in  Figure 25, Figure 26 

and Figure 27. The transmitter (black circle) is located at (0,200) km and the receiver 

(black hexagram) at (0,0) km. 

 
Figure 25 – location of TX (black circle) and RX (black 

hexagram), true trajectory (red line) and measurements 

(green line) 

 

 
Figure 26 - Measurement number vs x-axis 

errors (using 150 m and 3 mrad standard 

deviations) 

 
Figure 27 - Measurement number vs y-axis 

errors (using 150 m and 3 mrad standard 

deviations) 

 

It can be seen in Figure 26 and Figure 27 that when the target approaches the 

baseline of the bistatic radar, the measurement of the target location is much worse 



Simulations 

70 

 

than when it is far from the baseline. For this example, a range standard deviation of 

150 m and an azimuth standard deviation of 3 mrad are used. 

Script04b.m file is a script which uses new classes: “TRadar” (instead of “Radar”) 

and “TEnvironment” and “TTarget”. Those new classes were created to make the 

scripts (Matlab code) easier to read, understand and maintain. Besides, they will help 

to make changes to the parameters of the simulations easier. When using 

Script04b.m, it is possible to simulate different geometries of one monostatic radar 

or one bistatic radar. In addition, the new class “TRadar” provides the new 

functionality of having range and angle measurements standard deviations that vary 

according to SNR. It means that if the target is far from the radar, the SNR will be 

small and hence the standard deviation of the measurements will be bigger. 

Equations (18) and (19) (pages 69 and 70 of [74]) show how the standard deviations 

are calculated (range and azimuth standard deviations, respectively), where N is the 

number of pulses integrated. SNR is calculated using the radar range equation (12). 

    
               

            
 (18) 

    
         

            
 (19) 

Some examples of graphics generated from script04b.m are found in Figure 28, 

Figure 29 and Figure 30 for the monostatic case and Figure 31, Figure 32 and Figure 

33 for bistatic case (when the target is parallel to the baseline). 
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Figure 28 – Geometry with monostatic radar location 

(black circle) and target trajectory 

 

 
Figure 29 - Measurement number vs x-axis 

errors (range and azimuth standard deviations 

vary with distance to the radar) 

 
Figure 30 - Measurement number vs y-axis 

errors (range and azimuth standard deviations 

vary with distance to the radar) 

 

 
Figure 31 – Geometry with radars location and target trajectory where black circle is TX and 

black hexagram is RX 
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Figure 32 - Measurement number vs x-axis 

errors (range and azimuth standard deviations 

vary with distance to the radar) 

 
Figure 33 - Measurement number vs y-axis 

errors (range and azimuth standard deviations 

vary with distance to the radar) 

 

For the examples in Figure 28 to Figure 33, the radar and target characteristics are: 

 Radar Power: 1.5MW 

 Frequency: 8 GHz 

 PRF: 1500 Hz 

 Beam width: 5 degrees 

 Pulse Width: 0.7 μs and Range Resolution: 105 meters 

 Antenna rotation: 30 RPM, pulses per beam width: 27 and Sampling rate: 2 

seconds (change in TRadar.m and script04b.m) 

 Antennas gain: 45 dB and Noise figure: 3 dB 

 target RCS is 0.1 m
2
 and x-velocity is 200 m/s (in TEnvironment.m) 

Following, next script (script10.m) uses a new class named “TghFilter” which 

implements a g-h filter. The g-h filter implemented is a version of a “Critically 

Damped Filter” [50] where the values of g and h are a function of θ and θ can be a 

value between 0 and 1, where values close to 0 mean that the filter trusts more on 

recent measurements and values close to 1 mean that the filter trusts more on 

historical measurements. The values of g and h are according to equation (20), once 

θ is defined. 

                     (20) 
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The simulation considers a target flying on a straight trajectory with constant 

velocity and the value of θ changes during the filtering process from an initial value 

of 0.10 (recent measurements are more important) to a maximum value of more than 

0.90 (historical measurements are more important). The values were chosen after 

some simulations to assess the performance of the g-h filter. The filter algorithm can 

be used to filter the measurements performed either by a monostatic or a by a bistatic 

radar. Still using script10.m file, it generates a series of graphs that depict, for each 

geometry (monostatic or different bistatic geometries), measurements, filtered 

measurements of position and velocity of the target and also, in the bistatic 

configurations, bistatic angle is presented. Below, there is an example of a simulation 

using bistatic geometry. 

 
Figure 34 – Geometry with radars location and 

target trajectory where black circle is TX and 

black hexagram is RX 

 
Figure 35 – Bistatic angle along the target 

trajectory 

 

 
Figure 36 – x-position of the target vs x-axis 

errors 

 
Figure 37 – x-position of the target vs y-axis 

errors 
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Figure 38 - x-position of the target vs x-axis 

errors after tracking filter 

 
Figure 39 - x-position of the target vs y-axis 

errors after tracking filter 

 

 
Figure 40 – x-position of the target vs x-axis (red) and y-axis (blue) estimated velocity 

 

The main objective of script11 file series (script11a.m, script11b.m, and so on) is to 

make use of data fusion in scenarios where more than one radar (monostatic or 

bistatic) are used in order to improve the resulting measurements or filtered 

measurements. The data fusion can be done, for example, in two different ways:  

a) by applying weight to the measurements according to SNR and then perform 

a weighted mean of the measurements or the filtered measurements to have 

the final result or  

b) by applying weight to the measurements according to SNR to select the best 

measurement or filtered measurement to be used. 

Function wmean() is used to perform the chosen method. In this research, method (a) 

is chosen for the simulations. 

In all script11 files, the sampling rate is 4 seconds and beam width is 3 degrees. 

In the specific case where the SNR is high because the target is near or crossing the 

baseline of a bistatic radar, the weight of the measurements must be reduced when 
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the bistatic angle lies in the range between 145-180 degrees since the measurements 

in this region are not very accurate as it can be seen in Figure 36 and Figure 37. 

Figure 41, Figure 42 and Figure 43, present one example of fusion of data 

(measurements or tracks) in a scenario with 2 monostatic radars (using script11.m). 

The resulting track is the same if comparing the algorithm that fuse the tracks (Figure 

42) with the algorithm that fuse the measurements before applying the tracking filter 

(Figure 43). 

 
Figure 41 - Geometry with radars location and target trajectory (red) where green and cyan 

circles are monostatic radars. Green and cyan dots represent measurements from each radar 

respectively 

 

 
Figure 42 – Individual tracks (green and cyan 

dots) and fused track (black line) 

 
Figure 43 – Fused measurements (yellow) and 

track (black line) 

 

The last script of this series, script11z.m, generates graphs to compare the use of one 

monostatic radar with power of 1.5 MW and the use of 4 monostatic radars of 375 

kW on a network. The following figures depict both scenarios. 



Simulations 

76 

 

 
Figure 44 - Geometry with radar location, 

target trajectory (red) and measurements 

(green). The black circle is the monostatic 

radar 

 
Figure 45 - Geometry with radars location 

where green, blue, red and magenta circles are 

monostatic radars and the same colours of lines 

represent their respective measurements 

 

 
Figure 46 – Track when only one radar (1.5 

MW) is used 

 
Figure 47 – Fusion of tracks from each radar (4 

radars of 375 kW) 

 

It can be observed that in Figure 46, the errors in the beginning of the trajectory are 

bigger than in the Figure 47. However in the geometry of Figure 46 the track is more 

stable until 200 km whereas in Figure 47 the track starts do diverge from 100 km. 

So far, all scripts performed just one run of the simulation. The results show a rough 

idea about how tracking accuracy varies when geometries or radar characteristics are 

changed. Nevertheless, due to the random nature of the errors it is appropriate to run 

each simulation many times in order to see and understand the pattern of the errors. 

The next series of scripts, script12 files (script12.m, script12a.m, and so on) perform 

the same tasks as the script11 series but now making use of Monte Carlo Simulation 

techniques. Thus, for each geometry, many Monte Carlo runs are performed before 

generating the graphs. For instance, for the same scenario depicted in Figure 46 and 

Figure 47, the results would be according to the Figure 48 and Figure 49 (with 100 

simulations runs) and they show that both geometries have similar results apart from 
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the beginning of the trajectory where the netted monostatic geometry performs better 

(script12z.m). 

 
Figure 48 - Track when only one radar (1.5 

MW) is used 

 
Figure 49 - Fusion of tracks from each radar (4 

radars of 375 kW) 

 

In script13.m, a new filter, g-h-k filter is programmed and assessed. It is again a 

version of a “Critically Damped Filter” [50] where the values of g, h and k are a 

function of θ and θ can be a value between 0 and 1, where values close to 0 mean 

that the filter should trust more on recent measurements and values close to 1 mean 

that the filter should trust more on historical measurements. The values of g, h and k 

are defined according to equation (21). 

 

                            

            
(21) 

Similarly to the g-h filter, this g-h-k filter also starts with the value of θ = 0.10 and 

then increases gradually up to 0.90 or more, for example. The need of using a g-h-k 

filter comes from the idea of performing the simulations using a target that 

manoeuvres. A sinusoidal trajectory is used to see how the g-h-k filter performs. The 

following figures show an example of 2 monostatic radars used to track such a target. 
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Figure 50 - Geometry with radars location, 

target trajectory (red sinusoidal) and 

measurements (green/blue) from each 

monostatic radar (green and blue circles) 

 
Figure 51 – Tracking (black line) using a g-h-k 

filter after doing fusion of measurements 

(yellow) 

 

The track result from g-h-k filter (Figure 51) is better than the result from g-h filter 

depicted in the Figure 52.  

 
Figure 52 - Tracking (black line) after doing fusion of measurements (yellow) using a g-h filter 

 

For the script20.m, the sampling time is changed to 2 seconds and the beam width 

changed to 5 degrees. The main objective of script20.m is to perform in the same 

scenarios of scrip10.m with a target moving on a sinusoidal trajectory to assess the g-

h-k filter. The sinusoidal trajectory simulated has a constant velocity on the x-axis 

and a non-constant velocity and acceleration in the y-axis. 

Figure 53 shows the estimate velocity using a g-h filter and Figure 54 shows the 

estimate velocity using a g-h-k filter. The use of g-h-k filter improved the estimation 

of y-velocity. 
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Figure 53 – Estimated y-velocity (blue line) 

using a g-h filter. Black line is the true 

velocity. Estimated x-velocity is illustrated by 

the red line (constant 200 m/s) 

 
Figure 54 – Estimated y-velocity (blue line) 

using a g-h-k filter. Black line is the true 

velocity. Estimated x-velocity is illustrated by 

the red line (constant 200 m/s) 

 

Although, so far, all the scripts to track targets uses g-h or g-h-k filters (Figure 53 

and Figure 54), a Kalman Filter has been developed and the result can be seen in 

Figure 55. 

 
Figure 55 – Estimated velocity (blue line) using a g-h-k filter. Black line is the true velocity 

 

The use of Kalman Filter brings an improvement in the estimated velocities and thus 

to estimated position of the target. 

For the next (and last) 2 scripts (script30.m and script30a.m), only Kalman filter is 

considered. Kalman Filter uses more computational resources but as long as it is not 

a limitation for the simulations and for the current computer power available in the 

market and its results are considerably better, this will be the filter used for the 

analysis of this thesis. Therefore, the main simulations and results are performed 

using script30.m and script30a.m. 

This section has explained the methodology and has built step-by-step the important 

concepts to be used by script30.m and script30a.m as the main simulations. 
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6.3 Algorithms 

Choosing the right filtering algorithm to be used in the simulations depends on 

specific characteristics of the problem. The initial idea was to perform simulations 

using a target whose trajectory was linear, on a straight line and with a constant 

speed. In this scenario, using a g-h filter was enough to achieve acceptable results. A 

Critically Damped g-h filter [50] has been used, where the variable θ was varying 

from some value close to 0 to some value close to 1 during the trajectory of the 

target. 

In a scenario where some acceleration was considered (for example, when the target 

has a sinusoidal trajectory with constant x-velocity and some acceleration in y-axis), 

the use of a g-h-k filter was more appropriate. Although the filter considers a 

constant acceleration and the target had some non-constant acceleration, the filter 

performed well. Once more, the g-h-k filter that has been implemented was the 

Critically Damped g-h-k filter where θ varied the same way as in the g-h version. 

In a situation where computer resources are limited, the use of g-h-k filter with some 

tuning in the θ variable would be enough for some target trajectories. However, 

nowadays, computer power is not a problem if compared to 50 years ago when the 

Kalman Filter was published [20]. Therefore, a Kalman Filter was implemented (3-

state, position, velocity and acceleration) for the main simulations of this research 

and, because of that, it is possible to achieve better results when the target 

manoeuvres. 

A brief explanation about each filter used is given in the next sections. In addition, 

some explanation on how the measurements are simulated is presented. 

6.3.1 Simulated Measurements 

The simulated measurements consider the real position of the target according to its 

trajectory (straight line, sinusoidal or spiral). From the real 2D position (x,y) of the 

target, a true measurement of range and bearing angle (azimuth) is calculated with 

respect to the radar position (receiver) using Cartesian-to-Polar conversion. Then 

some noise is added to the range and azimuth measurements. This noise is a white 
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noise, with zero mean and with variances that varies according to SNR. SNR is 

calculated according to the radar equation, which depends on many variables such as 

Transmitter Power, wavelength, antenna gains, RCS, etc. The same SNR is used by 

the fusion algorithm in order to measure how accurate or how good is the 

measurement. In bistatic measurements, this weight factor is reduced when the 

bistatic angle is close to 180 degrees. Therefore, the sequence below is performed in 

order to simulate a measurement: 

1) In monostatic cases, from true x-y position, use Cartesian-to-Polar conversion 

and find true range and azimuth (R and θ); 

2) In the case of bistatic geometries, from true x-y position, the distances 

transmitter-target and target-receiver are calculated and then summed to find RT. 

θ in the bistatic case is the bearing angle (θR) with respect to the vertical axis 

(see Figure 12 and equation (1)) 

3) From the true range, calculate SNR (RCS is considered to be constant in all 

cases, monostatic or bistatic, regardless of aspect angle, geometry and so on) 

using radar range equation; 

4) From SNR, calculate standard deviations for range and azimuth measurements 

[74]. See equations (18) and (19); 

5) Calculate measurement plus noise (range plus noise and azimuth plus noise) and 

6) Use SNR to weigh the importance of a measurement (to be used in measurement 

fusion procedure). 

6.3.1.1 Fusion of measurements 

SNR is used to calculate standard deviations for range and azimuth and also is the 

information used to weigh the measurements so that the fusion process (weighted 

average of measurements and variances) can give more importance to measurements 

with larger SNR. Nonetheless, when the target is close to the baseline of a bistatic 

radar which means that the bistatic angle is close to 180 degrees, its measurements 

can get worse and it is difficult to measure where the target is lying in or near the 

baseline. Therefore, the decision was to model the measurements from a bistatic 
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radar to be less important dividing the SNR by a factor according to equation (22) 

when the bistatic angle has a value between 145 and 180 degrees. 

                                               (22) 

6.3.2 Critically Damped g-h filter 

The Critically Damped g-h filter used in this research is a slightly different version 

from the one reported in [50]. In this research, it has been realized that varying the 

parameter θ from small values (0.10) to higher values (more than 0.90) during the 

process of tracking resulted in some improvement in the tracking errors. So, the 

following equations are used to estimated position and velocity: 

1) First, start with a small θ, for example, 0.10 

2) Calculate g and h using equation (20) 

3) Calculate estimate position and velocity using the measurements and the 

following equations [50] 

 

       
         

  
 

 
          

  , where T is the sampling 

interval, yn is the n
th

-measurement and * means estimate 

       
  means the estimated velocity for step n+1, using 

measurements until step n 

(23) 

       
        

          
             

   (24) 

4) Increase θ (until a maximum of about 0.90) by a small amount, for example, 

0.05 and go back to step 2. 

6.3.3 Critically Damped g-h-k filter 

This filter is similar to the previous one and the steps to calculate the estimate 

position, velocity and acceleration are similar, except that now there is an extra 

parameter, k. 

1) First, start with a small θ, for example, 0.10 
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2) Calculate g, h and k using equation (21) 

3) Calculate estimate position, velocity and acceleration using the measurements 

and the following equations [50]. 

      
         

  
  

  
          

   (25) 

      
         

  
 

 
          

   (26) 

     
        

             
   (27) 

        
       

  (28) 

        
       

       
   (29) 

       
      

       
        

 
  

 
 (30) 

4) Increase θ (until a maximum of about 0.90) by a small amount, for example, 

0.05 and go back to step 2. 

6.3.4 Kalman Filter (KF) 

The KF algorithm used in this research is based on [50]. The algorithm to perform 

the tracking using KF is as follows: 

1) Set ϕ which is the transition matrix. It is a 2x2 matrix (for 2-state filter) or a 3x3 

matrix (for 3-state filter) 

    

    
    
    
    

  or (31) 
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2) Set M, the measurement matrix, which is 2(measurements)x4 for a 2-state filter 

or 2(measurements)x6 for a 3-state filter 

    
    
    

  or    
      
      

  (32) 

3) Set S0, the covariance of prediction matrix (4x4 for 2-state filter or 6x6 matrix 

for 3-state filter). The number 10
8
 was chosen to be very large in order to make 

the filter, at the beginning, to trust more on measurements and not on predictions 

             or             (33) 

4) Set Q, the dynamic noise covariance matrix  

 

               , where Ux and Uy are 

              and 

             , where 

                  and                   

 maxAccelX, maxAccelY and B are set according to page 66 of 

[50] 

(34) 

5) With the measurement, calculate R, the measurement covariance vector (see 

page 179 of [74]) 

 

    
      

      
 , where 

      
        θ

          ,       
       

 θ
          and           

 

 
        

     θ
  , where 

(35) 
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(R,θ) are the measurements and (σR, σθ) are the standard deviations 

of the measurements 

6) According to page 180 [74] the use of equations (35) and converting the 

measurements from Polar to Cartesian coordinates can lead to bias on the 

measurements and equations (35) are usually valid if equations (36) and (37) are 

valid. Figure 56 and Figure 57 show what happens with the values of equations 

(36) and (37) in a scenario simulated in this thesis (section 7.2) where the 

transmitter power is 25 KW, RCS 0.1 m
2
 and starting maximum distance is 80 

km (section 7.2.1.1). As can be seen, the equation (36) is only valid from x-

position 60 km. However, the tracking results are good and it converges well in 

the beginning of the tracking (Figure 145 and Figure 146). 

    
 

  
     

(36) 

            (37) 

 

 
Figure 56 – test for Equation (36), when Power is 

25 kw, RCS 0.1 m
2
 

 
Figure 57 – test for Equation (37), when Power is 

25 kw, RCS 0.1 m
2
 

 

7) Calculate S1, the predictor covariance matrix 

        
    (38) 

8) Calculate H, the Weight matrix 

                   (39) 

9) Update the estimation     
  

     
        

               
  , where the first (40) 
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prediction       
  is based on the first measurement    

10) Update S0 

              (41) 

11) Calculate the new prediction       
  

       
       

  (42) 

12)  Go back to step 5 
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7 Results 

When all the scripts are run, some assumptions about the radar parameters have to be 

made. First of all, it is a two-dimensional space where radars and target have their 

positions established in Cartesian coordinates (x and y coordinates). The 

measurements are in Polar coordinates (range or total range, and bearing angle) and 

the sampling rate of the measurements is 2.5 seconds (unless mentioned differently 

for a specific simulation), considering an antenna rotation of 24 RPM (TRadar.m). 

The measurements are then transformed to Cartesian coordinates in order to be 

filtered by the Kalman Filter. The target flies in a straight line with a constant 

velocity or for the complex scenarios, the target flies in a spiral-like trajectory. The 

standard deviations of range and bearing angle measurements are functions of the 

range to the target. SNR is calculated using the Radar Equation (or Bistatic Radar 

Equation). Table 2 shows a summary of the radar parameters. 

Table 2 – Main radar parameters used in the simulations and some other related information 

Coordinates Two-dimensional 

Measurements 
Polar coordinates (range, bearing 

angle) 

Tracking Cartesian Coordinates (x,y) 

Antenna Rotation 24 RPM, hence sampling rate 2.5 sec 

Tracking Filter Kalman Filter (KF) 

Target trajectory 

Straight line with constant velocity or 

spiral with non-constant x and y 

velocity and acceleration 
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Probability of Detection (PD) 100% 

Probability of False Alarm (PFA) 0% 

Range and azimuth standard 

deviation 
Function of Range, hence SNR 

SNR Calculated with Radar Equation 

Transmitter Power 
25 kW (or a fraction, according to the 

geometry) 

Antenna Gain (TX and RX) 45 dB 

Radar Frequency 9.41 GHz, hence λ=3.19 cm 

Radar Cross Section (perfectly 

conducting sphere) 

10 m
2
 or 0.1 m

2
, hence sphere radius 

of 1.78m or 17.8 cm 

Pulse width 
0.7 micro seconds, hence range 

resolution = 105m 

Bandwidth (B) = 
 

           
 1.4 MHz 

Noise figure 3 dB 

Losses (L in Equation (9)) 0 dB 

Beam width 2 degrees 

Pulse Repetition Frequency (PRF) 1 KHz 

Unambiguous range 150 km 

Pulses per beam width 

 
   

       
            

13 

Horizon (considering H1, height of 

antenna 10 meters and H2 

              , where d is in 

nautical miles and H1 and H2 are in 

feet 

25 km, if H2=10 meters (ship) 

422 km, if H2=10 km (aircraft) 

Different geometries and scenarios are exploited as measurements and filtering are 

performed in each case. The main idea is to make comparisons of the true trajectory 

against measurements and filtered measurements when the target crosses different 

geometries of radar (monostatic, netted monostatic, bistatic or multistatic). In more 

sophisticated scenarios where more than one radar is working cooperatively on a 

network (netted monostatic radars or multiple bistatic pairs comprising a multistatic 
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radar), a data fusion algorithm is used in order to combine the measurements (or 

filtered measurements). 

7.1 Measurements Results 

In these simulations, script30.m is used and, for each scenario, two different target 

Radar Cross Section is used, 10 m
2
 and 0.1 m

2
 (change in TEnviroment.m). 

7.1.1 Monostatic 

7.1.1.1 Target RCS 10 m
2
 

In this first simulation, only one monostatic radar of 25 kW is being used to perform 

the measurements on the target. The radar is located at position (0,0) and the target is 

flying from (-100,100) km with an x-velocity of 250 m/s (TEnvironment.m). The 

measurements are performed during 1000 seconds every 2.5 seconds (antenna 

rotation is 24 RPM). Figure 58 shows the geometry where a black circle represents 

the monostatic radar, the green dots are the measurements and the red line is the true 

trajectory. Figure 59 and Figure 60 depict the measurements errors in x and y-axis 

respectively. Figure 61 denotes how SNR and bistatic angle (on a bistatic 

configuration) changes with x-position of the target. And finally, Figure 62 shows the 

range (blue) and azimuth (green) measurements standard deviations. In this scenario, 

note that the errors in y-axis (Figure 60) become very good (less than ± 50m) 

between x-target locations -50 km and 50 km. This is due to the fact that range 

measurement standard deviation is around 1m. The x-position errors do not improve 

so much even though the azimuth measurement standard deviation is also small 

(about 0.5 mrad). This is because at a distance of 100 km, even a small error in the 

measurement of the bearing angle (0.5 mrad) can affect the results and the location of 

the target is less accurate. 



Results 

90 

 

 
Figure 58 – Location of TX/RX (monostatic radar with 25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 59 - x-position vs x-axis errors (1 radar 

25 kW) 

 
Figure 60 - x-position vs y-axis errors (1 radar 

25 kW) 

 

 
Figure 61 – x-position vs SNR (blue line) – 1 

radar 25 kW 

 
Figure 62 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 radar 25 kW 

 

The same geometry is used in the following figures, but using a radar with 4 times 

less power, 6.25 kW. As it was expected the errors are larger as SNR decreases and 

standard deviations get worse. 
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Figure 63 - x-position vs x-axis errors (1 radar 

6.25 kW) 

 
Figure 64 - x-position vs y-axis errors (1 radar 

6.25 kW) 

 

 
Figure 65 – x-position vs SNR (blue line) – 1 

radar 6.25 kW 

 
Figure 66 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 radar 6.25 kW 

 

In following scenario, the radar is located on the way of the target at (0,100) km. 

Now, it is possible to see x-position errors are much better than y-position errors, 

again due to the fact that at a location 100 km from the radar, even such a small 

azimuth measurement standard deviation (0.4 mrad) can bring an error of about ± 

80m when the target is initiating its trajectory at (-100,100) km. 

 
Figure 67 – Location of TX/RX (monostatic radar with 25 kW), true trajectory (red line) and 

measurements (green dots) 
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Figure 68 - x-position vs x-axis errors (1 radar 

25 kW) 

 
Figure 69 - x-position vs y-axis errors (1 radar 

25 kW) 

 

 
Figure 70 – x-position vs SNR (blue line) – 1 

radar 25 kW 

 
Figure 71 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 radar 25 kW 

 

The figures below depict the same scenario with 4 times less transmitter power (6.25 

kW). As shown earlier, the errors are larger because of the resulting smaller SNR and 

worse standard deviations. As expected, the errors are 2 times larger with the 

reduction on power of 4 times. This happens, because SNR reduces 4 times (due to 

radar equation (9)) and as a consequence, because of the square root factor of 

equations (18) and (19), standard deviations (range and azimuth) increase by a factor 

of 2. 
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Figure 72 – Location of TX/RX (monostatic radar with 6.25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 73 - x-position vs x-axis errors (1 radar 

6.25 kW) 

 
Figure 74 - x-position vs y-axis errors (1 radar 

6.25 kW) 

 

 
Figure 75 – x-position vs SNR (blue line) – 1 

radar 6.25 kW 

 
Figure 76 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 radar 6.25 kW 

 

7.1.1.2 Target RCS 0.1 m
2
 

Now, the same trajectory crossing the same geometries as in section 7.1.1.1, but the 

target has RCS of 0.1 m
2
 (TEnvironment.m). It can be seen in all figures in this 

section, that comparing to the figures in the previous section, the reduction on RCS 

from 10 m
2
 to 0.1 m

2
, made the errors to increase 10 times. The reduction on RCS by 

a factor of 100 (20 dB), makes SNR to reduce 100 times as well, and due to the 
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square root factor of equations (18) and (19), standard deviations increase by a factor 

of 10. 

 
Figure 77 - Location of TX/RX (monostatic radar with 25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 78 - x-position vs x-axis errors (1 radar 

25 kW) 

 
Figure 79 - x-position vs y-axis errors (1 radar 

25 kW) 

 

 
Figure 80 – x-position vs SNR (blue line) – 1 

radar 25 kW 

 
 Figure 81 – x-position vs [range 

stddev(blue) and azimuth stddev (green)] – 1 

radar 25 kW 

 

In the next scenario, Figure 82 to Figure 86 are equivalent to Figure 67 to Figure 71, 

with the target having an RCS of 0.1 m
2
. 
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Figure 82 – Location of TX/RX (monostatic radar with 25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 83 - x-position vs x-axis errors (1 radar 

25 kW) 

 
Figure 84 - x-position vs y-axis errors (1 radar 

25 kW) 

 

 
Figure 85 – x-position vs SNR (blue line) – 1 

radar 25 kW 

 
Figure 86 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 radar 25 kW 

 

7.1.2 Bistatic 

In the bistatic scenarios depicted in the next sections, bistatic radars are represented 

by a TX (black circle) and a RX (black hexagram). The target has an x-velocity of 

250 m/s and the measurements are performed during 1000 seconds every 2.5 

seconds. 
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7.1.2.1 Target RCS 10 m
2
 

Figure 87 shows the geometry with TX and RX separated by 100 km which is the 

baseline. The target is moving horizontally and parallel to the baseline. 

 
Figure 87 - Location of TX and RX (bistatic radar with TX 25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 88 - x-position vs x-axis errors (1 TX 25 

kW) 

 
Figure 89 - x-position vs y-axis errors (1 TX 25 

kW) 

 

 
Figure 90 – x-position vs [SNR (blue line) and 

bistatic angle (green line) – 1 TX 25 kW 

 
Figure 91 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 TX 25 kW 

 

In the example below, the TX still have 25 kW power but the baseline is 200 km and 

is perpendicular to the target trajectory which crosses the baseline. Observing Figure 

93, Figure 94 and Figure 95 it can be seen that when bistatic angle gets close to 180 
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degrees, the measurements errors get much worse, although SNR is higher (Figure 

95) in this region. This is due to equation (1). 

 
Figure 92 - Location of TX and RX (bistatic radar with TX 25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 93 - x-position vs x-axis errors (1 TX 25 

kW) 

 
Figure 94 - x-position vs y-axis errors (1 TX 25 

kW) 

 

 
Figure 95 – x-position vs [SNR (blue line) and 

bistatic angle (green line) – 1 TX 25 kW 

 
Figure 96 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 TX 25 kW 

 

The next 2 scenarios show what happens with the measurements errors when the 

power of TX is reduced by a factor of 4. 
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Figure 97 - Location of TX and RX (bistatic radar with TX 6.25 kW), true trajectory (red line) 

and measurements (green dots) 

 

 
Figure 98 - x-position vs x-axis errors (1 TX 

6.25 kW) 

 
Figure 99 - x-position vs y-axis errors (1 TX 

6.25 kW) 

 

 
Figure 100 – x-position vs [SNR (blue line) 

and bistatic angle (green line) – 1 TX 6.25 kW 

 
Figure 101 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 TX 6.25 kW 

 

Note, again, that a reduction in power of a factor of 4 has the same (expected) effect 

on measurement errors either when the target is parallel to the baseline or crossing it. 
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Figure 102 - Location of TX and RX (bistatic radar with TX 6.25 kW), true trajectory (red line) 

and measurements (green dots) 

 

 
Figure 103 - x-position vs x-axis errors (1 TX 

6.25 kW) 

 
Figure 104 - x-position vs y-axis errors (1 TX 

6.25 kW) 

 

 
Figure 105 – x-position vs [SNR (blue line) 

and bistatic angle (green line) – 1 TX 6.25 kW 

 
Figure 106 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 TX 6.25 kW 

 

7.1.2.2 Target RCS 0.1 m
2
 

Now, the same trajectory crossing the same bistatic geometries as in section 7.1.2.1, 

but the target has RCS of 0.1 m
2
. It can be seen in all figures in this section, that 

comparing to the figures in the previous section, the reduction on RCS from 10 m
2
 to 

0.1 m
2
, made the errors to increase 10 times. The reduction on RCS by a factor of 
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100 (20 dB), makes SNR to reduce 100 times as well, and due to the square root 

factor of equations (18) and (19), standard deviations increase by a factor of 10. 

 
Figure 107 - Location of TX and RX (bistatic radar with TX 25 kW), true trajectory (red line) 

and measurements (green dots) 

 

 
Figure 108 - x-position vs x-axis errors (1 TX 

25 kW) 

 
Figure 109 - x-position vs y-axis errors (1 TX 

25 kW) 

 

 
Figure 110 – x-position vs [SNR (blue line) 

and bistatic angle (green line) – 1 TX 25 kW 

 
Figure 111 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 TX 25 kW 

 

Figure 112 to Figure 116 present the scenario where the target crosses the baseline of 

the bistatic radar. 
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Figure 112 - Location of TX and RX (bistatic radar with TX 25 kW), true trajectory (red line) 

and measurements (green dots) 

 

 
Figure 113 - x-position vs x-axis errors (1 TX 

25 kW) 

 
Figure 114 - x-position vs y-axis errors (1 TX 

25 kW) 

 

 
Figure 115 – x-position vs [SNR (blue line) 

and bistatic angle (green line) – 1 TX 25 kW 

 
Figure 116 – x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 TX 25 kW 

 

7.1.3 Multistatic (1 x N) 

In the multistatic scenarios depicted below, the main purpose is to show the results 

from the fusion algorithm when performed using measurements from 2 radars (for 

example, 2 bistatic radars). For multistatic scenarios, only targets with RCS=0.1 m
2
 

are considered as it is the main focus of this research. 
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Figure 117 to Figure 127 show a geometry where there is only 1 TX (25 kW) and 2 

RXs, and the target has RCS=0.1 m
2
. The black circle is the TX and the green and 

magenta hexagrams are RXs. Thus, the target is crossing the baseline of a bistatic 

radar (black/green pair) and going on a parallel line of another bistatic radar 

(black/magenta pair). 

 
Figure 117 - Location of 1 TX 25 kW (black circle) and 2 RXs (green and magenta hexagrams), 

true trajectory (red line) and measurements (green and magenta dots) 

 

 
Figure 118 - x-position vs x-axis errors (1 TX 

25 kW) – when crossing baseline 

 
Figure 119 - x-position vs y-axis errors (1 TX 

25 kW) – when crossing baseline 

 

 
Figure 120 - x-position vs x-axis errors (1 TX 

25 kW) – when parallel to baseline 

 
Figure 121 - x-position vs y-axis errors (1 TX 

25 kW) – when parallel to baseline 
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Figure 122 - x-position vs x-axis errors (1 TX 

25 kW) – after fusion procedure 

 
Figure 123 - x-position vs y-axis errors (1 TX 

25 kW) – after fusion procedure 

 

 
Figure 124 – x-position vs SNR (for each 

radar) 

 
Figure 125 – x-position vs bistatic angle (for 

each radar) 

 

 
Figure 126 – x-position vs Range std dev (for 

each radar) 

 
Figure 127 – x-position vs Azimuth std dev 

(for each radar) 

 

7.1.4 Multistatic (M x 1) 

Figure 128 to Figure 138 depict a geometry where there is only 1 RX and 2 TXs (of 

12.5 kW each). The black hexagram is the RX and the green and magenta circles are 

the TXs, like the previous scenario. Thus, the target is crossing the baseline of a 

bistatic radar (black/green pair) and going on a parallel line of another bistatic radar 

(black/magenta pair). 
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Figure 128 - Location of 2 TXs 12.5 kW (green and magenta circles) and 1 RX (black 

hexagram), true trajectory (red line) and measurements (green and magenta dots) 

 

 
Figure 129 - x-position vs x-axis errors (1 TX 

12.5 kW) – when crossing baseline 

 
Figure 130 - x-position vs y-axis errors (1 TX 

12.5 kW) – when crossing baseline 

 

 
Figure 131 - x-position vs x-axis errors (1 TX 

12.5 kW) – when parallel to baseline 

 
Figure 132 - x-position vs y-axis errors (1 TX 

12.5 kW) – when parallel to baseline 
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Figure 133 - x-position vs x-axis errors (2 TXs 

12.5 kW) – after fusion procedure 

 
Figure 134 - x-position vs y-axis errors (2 TXs 

12.5 kW) – after fusion procedure 

 

 
Figure 135 – x-position vs SNR (for each 

radar) 

 
Figure 136 – x-position vs bistatic angle (for 

each radar) 

 

 
Figure 137 – x-position vs Range std dev (for 

each radar) 

 
Figure 138  – x-position vs Azimuth std dev 

(for each radar) 

 

In this scenario, there are 2 TXs of half of the power of the scenario where there was 

1 TX (section 7.1.3). So, instead of having 2 pairs of bistatic radars with a 25 kW 

TX, there are 2 pairs of bistatic radars with 12.5 kW TXs. But, because of the square 

root factor in equations (18) and (19), the errors increased about 1.4 times if 

compared to the scenario in 7.1.3.  

Therefore, although it seems to be better to use a configuration with 1 TX (25 kW) 

and 1 RX instead of 2 TXs (12.5 kW) and 1 RX, there is an advantage when using 
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the latter that, if one TX is lost (in military scenarios, it is more likely that a TX is 

located and thus destroyed) the whole system can still work (with some loss in 

performance).  

7.1.5 Measurements Summary Table 

Section 7.1 presents a series of simulations performing measurements in different 

scenarios, including monostatic, bistatic and multistatic ones. Table 3 presents a 

summary from the measurements simulations in monostatic geometries. This is to 

illustrate how different parameters on the geometry or target can affect the 

measurements errors. 

Table 3 – Measurements Summary for monostatic geometries – measurement errors during the 

trajectory of the target in different configurations, changing location and transmit power of the radar 

and target RCS 

Geometry Errors in x-axis measurement (m) Errors in y-axis measurement (m) 

 x=-50 

km 

x=0 

km 

x=50 km x=100 

km 

x=-50 

km 

x=0 

km 

x=50 

km 

x=100 km 

(1) Monostatic 

(25 kW) far 
150 100 150 200 75 5 75 200 

(2) Monostatic 

(6.25 kW) far 
300 200 300 400 150 10 150 400 

(3) Monostatic 

(25 kW) 
0.75 0 0.75 3 10 0 10 100 

(4) Monostatic 

(6.25 kW) 
1.5 0 1.5 6 20 0 20 200 

(5) Monostatic 

(25 kW) far 

RCS=0.1 m2 

1500 1000 1500 2000 750 50 750 2000 

(6) Monostatic 

(25 kW) 
RCS=0.1 m2 

7.5 0 7.5 30 100 0 100 1000 

 

From line (1) to line (2), TX power is reduced from 25 kW to 6.25kW and it results 

in an increase on errors by a factor of 2. The same happens from line (3) to line (4) 

but, in those lines, TX is on the target trajectory and thus the errors are significantly 

smaller. Line (5) is compared to line (1), where in line (5) RCS of the target is 

reduced by a factor of 100 (from 10 m
2
 to 0.1 m

2
) which results in increasing of the 

errors by a factor of 10. The same situation occurs when comparing line (6) to line 

(3). 
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Next table, Table 4, depicts a summary from the measurements simulations in 

bistatic geometries and its purpose is to demonstrate that the same assumptions for 

the errors are valid. 

Table 4 - Measurements Summary for bistatic geometries – measurement errors during the trajectory 

of the target in different configurations, changing location and transmit power of the radar and target 

RCS 

Geometry Errors in x-axis measurement (m) Errors in y-axis measurement (m) 

 x=-50 

km 

x=0 

km 

x=50 km x=100 

km 

x=-50 

km 

x=0 

km 

x=50 

km 

x=100 km 

(1) Bistatic 

(25 kW) 
200 125 175 225 150 50 0 100 

(2) Bistatic 

(25 kW) 
crossing 

4  4 4 300  300 400 

(3) Bistatic 
(6.25 kW) 

400 250 350 450 300 100 0 200 

(4) Bistatic 
(6.25 kW) 

crossing 

8  8 8 600  600 800 

(5) Bistatic 

(25 kW) 

RCS=0.1 m2 

2000 1250 1750 2250 1500 500 0 1000 

(6) Bistatic 

(25 kW) 
RCS=0.1 m2 

crossing 

40  40 40 3000  3000 4000 

 

As an example, from Table 4, line (1) compared with line (3) has an increase in the 

errors by a factor of 2 due to the decrease in the power by a factor of 4. The same 

happens between lines (2) and (4). And if RCS is decreased by a factor of 100, the 

errors increase by a factor of 10 as can be seen observing lines (1) and (5) and also 

lines (2) and (6). 

For multistatic scenarios, Table 5 summarizes what is simulated in 7.1.3 and 7.1.4 

when the radar networks are comprised by 1 TX (25 kW) and 2 RXs or 2 TXs (12.5 

kW each) and 1 RX. Lines (1) and (4) depict the results from the bistatic pair whose 

baseline the target is crossing and lines (2) and (5) show the results from the pair 

whose baseline is parallel to the target trajectory. Lines (3) and (6) depict the results 

after performing the fusion of the measurements from both pairs of bistatic radars. 

Table 5 - Measurements Summary for multistatic geometries – measurement errors during the 

trajectory of the target in 2 different configurations, one Multistatic (1 TX / 2 RXs) and the other one 

Multistatic (2 TXs / 1 RX) 
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Geometry 

RCS=0.1 m2 

Errors in x-axis measurement (m) Errors in y-axis measurement (m) 

1 TX (25 kW) 

and 2 RXs 

x=-50 

km 

x=0 

km 

x=50 km x=100 

km 

x=-50 

km 

x=0 

km 

x=50 

km 

x=100 km 

(1) Crossing 

pair 
40  40 50 3000  3000 4000 

(2) Parallel pair 2500 2000 1500 1200 2000 1000 0 500 

(3) Fused 800 1750 800 1000 2000 1000 1500 1500 

2 TXs (12.5 

kW each) and 

1 RX 

 

(4) Crossing 

pair 
50  50 70 4000  4000 5000 

(5) Parallel pair 3000 2000 2000 3000 2000 1000 0 1500 

(6) Fused 800 2000 1000 2000 3000 1000 2000 2000 

 

Table 6 shows, for monostatic scenarios, how different is the maximum SNR which 

affects how good measurement standard deviations are. Only scenarios where the 

target is far from the monostatic radar are depicted. 

Table 6 – Maximum SNR and Best Range/Azimuth standard deviation for monostatic scenarios 

(target flying far from TX/RX) 

Geometry Maximum SNR (dB) Best Range standard 

deviation (meters) 

Best Azimuth standard 

deviation (mrad) 

(1) Far Monostatic (25 

kW) RCS=10 m2 

20.5 at x=0 1 0.4 

(2) Far Monostatic (6.25 

kW) RCS=10 m2 

14.5 at x=0 2 0.8 

(3) Far Monostatic (25 

kW) RCS=0.1 m2 

0.5 at x=0 10 4 

 

From line (1) to line (2), the total power is reduced by a factor of 4 and thus SNR is 

also reduced by a factor of 4 (or 6 dB). Standard deviations are increased by a factor 

of 2. From line (1) to line (3), the total power is still the same, but target RCS is 

decreased by a factor of 100 (20 dB) and thus SNR is decreased by the same factor. 

Standard deviations are increased by a factor of 10. 

Table 7 depicts, for bistatic scenarios, the maximum SNR and their respective best 

range and azimuth standard deviations. Again, the same conclusions from Table 6 

are valid for Table 7 when comparing lines (1), (3) and (5) (target not crossing the 

baseline) and then comparing lines (2), (4) and (6) (target that cross the baseline). 

Table 7 - Maximum SNR and Best Range/Azimuth standard deviation for bistatic scenarios 
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Geometry Maximum SNR (dB) Best Range standard 

deviation (meters) 

Best Azimuth standard 

deviation (mrad) 

(1) Far Bistatic (25 kW) 
RCS=10 m2 

18.5 at x=50 km 1.3 0.5 

(2) Crossing Bistatic (25 
kW) RCS=10 m2 

20.5 at x=0 km 1 0.4 

(3) Far Bistatic (6.25 kW) 

RCS=10 m2 

12.5 at x=50 km 2.6 1 

(4) Crossing Bistatic 
(6.25 kW) RCS=10 m2 

14.5 at x=0 km 2 0.8 

(5) Far Bistatic (25 kW) 
RCS=0.1 m2 

-1.5 at x=50 km 13 5 

(6) Crossing Bistatic (25 
kW) RCS=0.1 m2 

0.5 at x=0 km 10 4 

 

Finally, Table 8 presents Maximum SNR and standard deviations for multistatic 

scenarios. 

Table 8 - Maximum SNR and Best Range/Azimuth standard deviation for multistatic scenarios 

Geometry Maximum SNR (dB) Best Range standard 

deviation (meters) 

Best Azimuth standard 

deviation (mrad) 

Multistatic 1 x N (1 TX 25 kW and 2 RXs), RCS=0.1 m2 : 2 pairs of 25 kW bistatic radars 

Crossing pair 0.5 at x=0 10 4 

Parallel pair -1.5 at x=0 13 5 

Multistatic N x 1 (2 TXs 12.5 kW and 1 RX), RCS=0.1 m2 : 2 pairs of 12.5 kW bistatic radars 

Crossing pair -2.5 at x=0 15 5.5 

Parallel pair -4.5 at x=0 18 7 

 

The tables in this section present some quantitative values at certain points of the 

trajectory and illustrate the influence of transmitter power and RCS in the results. 

However, the graphics in previous sections depict a more thorough idea on how the 

measurements behave along the whole trajectory for different geometries. 

7.2 Tracking Results 

As can be seen in Section 7.1, there are some scenarios where SNR have negative 

values (in dB). In this section, it is assumed, for the purpose of this research, that the 

minimum SNR in order to detect the target is 5 dB, which is a ratio of about 3.1. So, 

for more realistic results, the radar nodes are positioned closer to the target, like 

shown in Figure 139 and Figure 140 where the target starts to be tracked when it is 

about 80 Km far from the radar and at this location the measurement have an SNR of 

about 5 dB. 
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Figure 139 - Location of TX/RX (monostatic 

radar with 25 kW), true trajectory (red line) 

and measurements (green dots) 

 

 
Figure 140 - x-position vs SNR (blue line) – 1 

radar 25 kW 

 

The same is applied for spiral-like trajectories and Figure 141 to Figure 143 show the 

trajectory, SNR and standard deviations according to x-position. 

 
Figure 141 - Location of TX/RX (monostatic radar with 25 kW), true trajectory (red line) and 

measurements (green dots) 

 

 
Figure 142 - x-position vs SNR (blue line) – 1 

radar 25 kW 

 
Figure 143 - x-position vs [range stddev(blue) 

and azimuth stddev (green)] – 1 radar 25 kW 

 

Therefore, in this section, several geometries are presented with a target (target 1) 

crossing with a horizontal constant speed of 250 m/s, during 600 seconds and then a 

target (target 2) with a spiral trajectory with no constant velocity or acceleration 



Results 

111 

 

during 1000 seconds. For all scenarios in this section, target RCS is 0.1 m
2
. Now, 

script30a.m is run for each scenario and TEnvironment.m must be adapted in order 

to use the correct target trajectories (comment some lines of code and uncomment 

some others related to horizontal trajectories). 

7.2.1 Target 1 (straight line) 

In the next scenarios the target starts at (-75,25) km, flies on a straight line and for 

each scenario, 100 simulation runs are performed in order to calculate the average 

and standard deviation of the results. 

7.2.1.1 Monostatic 

This scenario represents a monostatic geometry where in Figure 144, the black circle 

is the monostatic radar (TX/RX) with 25 kW, the red line is the true trajectory and 

the green dots are the measurements. The following 2 figures (Figure 145 and Figure 

146) represent the average position errors (red for x-axis and blue for y-axis) and ±1 

standard deviation (green dotted line) after filtering. Finally, the last two figures of 

this scenario (Figure 147 and Figure 148) show the average velocity errors (red for x-

axis and blue for y-axis) and ±1 standard deviation (green dotted line). Note that the 

position errors in both axis are smaller than 20 meters after position x=-50 km and 

velocity errors are smaller than 0.5 m/s from the same position.  

 
Figure 144 – Location of TX/RX (monostatic radar with 25 kW), true trajectory (red line) and 

measurements (green dots) 

 



Results 

112 

 

 
Figure 145 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 146 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 147 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 148 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.2 Bistatic 

7.2.1.2.1 Bistatic (crossing baseline) 

This scenario represents a bistatic geometry where in the Figure 149, the black circle 

at (0,50) km is the TX with 25 kW, the black hexagram at (0,0) km is the RX, the red 

line is the true trajectory and the green dots are the measurements. Black line depicts 

the filtered trajectory. The following figures (Figure 149 to Figure 153) represent the 

same type information as in Figure 144 to Figure 148. 
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Figure 149 - Location of 25 kW TX (black circle) and RX (black hexagram), true trajectory (red line) 

and measurements (green dots) 

 

 
Figure 150 - Average x-position error (red) after 

tracking. Green lines depict ±1 standard deviation 

  

 
Figure 151 - Average y-position error (blue) after 

tracking. Green lines depict ±1 standard deviation 

  

 

Note that, in this geometry, the tracking errors (for y-position and y-velocity) are 

very large in the region close to the baseline and overall the same tracking errors (for 

y-axis) are larger than the previous (monostatic) case. Nevertheless, the x-position 

and x-velocity, except when it is close to the baseline (somewhere from x=-10 and 

x=-10 km) are much better than in monostatic cases. After the baseline, it takes some 

time in order to the tracking filter to adjust and be accurate again (at around x=10 km 

for x-axis and x=25 km for y-axis). In this scenario, the y-axis (position or velocity) 

tracking results are bad, because the measurements are very inaccurate in this axis, as 

this axis lie in the baseline or parallel to it. 
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Figure 152 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 153 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.2.2 Bistatic (parallel to baseline TX-RX) 

This is another bistatic example but now, the target is flying on a parallel line to the 

baseline of the bistatic radar. From Figure 155 and Figure 156, it is possible to see 

that, with this geometry, the errors in y-axis are worse than the errors in x-axis, 

except in the region where x-position is between -20 and 20 km. 

 
Figure 154 - Location of 25 kW TX (black circle) and RX (black hexagram), true trajectory (red 

line) and measurements (green dots) 
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Figure 155 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 156 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 157 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 158 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.2.3 Bistatic (parallel to baseline RX-TX) 

Similarly to previous scenario, this scenario simulates a target that flies on a parallel 

line to the baseline of a bistatic radar. However, instead of a pair TX-RX, it is a pair 

RX-TX where the target passes first by RX and then by TX. It is possible to see that 

the accuracy close to RX is slightly better in both cases. 
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Figure 159 - Location of 25 kW TX (black circle) and RX (black hexagram), true trajectory (red 

line) and measurements (green dots) 

 

 
Figure 160 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 161 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 162 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 163 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.3 Netted Monostatic 

7.2.1.3.1 4 monostatic (6.25 kW each) 

This scenario represents a netted monostatic geometry where there are 4 monostatic 

radars and each radar has 4 times less power than the monostatic one in 7.2.1.1. Total 
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power is still 25 kW though. In Figure 164, the circles (green, blue, red and magenta) 

are the radars (TX/RX) with 6.25 kW each. 

 
Figure 164 - Geometry with four monostatic radar (6.25 kW each) where the coloured circles are 

the radars and the coloured dots are the measurements performed by each radar 

 

Comparing the following figures with the figures in Monostatic case where only one 

radar of 25 kW is used, the accuracies are very similar. Therefore, with the same 

total power, it is possible to achieve very similar results. However now, the system as 

whole is much more resilient to electronic counter measures. 

 
Figure 165 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 166 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 



Results 

118 

 

 
Figure 167 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 168 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.3.2 10 monostatic (2.5 kW) in the same location 

This scenario shows again a netted monostatic geometry, but in this one, there are 10 

Monostatic radars (2.5 kW) at the same location, which is the same location of the 

only radar in the monostatic case in 7.2.1.1. Therefore, both scenarios are compared. 

And, as expected, both scenarios have identical results. It means that, on a situation 

where it is not possible to have one radar with a huge power transmitter, the solution 

is to deploy as many low power radars as necessary to achieve the desired total 

power. 

 
Figure 169 - Geometry with 10 monostatic radar (2.5 kW each) at the same location (0,0) 
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Figure 170 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 171 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 172 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 173 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.3.3 10 monostatic (2.5 kW) on a parallel line to target 

Next scenario also uses a network of monostatic radars but now they are positioned 

along a horizontal line parallel to the target trajectory. In the beginning of the 

trajectory the radars are close to each other but the distance between them increases 

along the horizontal line. In Figure 174, the black circles are the monostatic (TX/RX) 

radars with 2.5 kW power each. Figure 175 presents the fused measurements (cyan 

dots) and the track like (black line). Note that the fused measurements have better 

accuracy than the view with all the radars measurements on Figure 174. 
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Figure 174 - Geometry with 10 monostatic 

radar (2.5 kW each) on a horizontal line 

parallel to the trajectory – black circles are 

TX/RX 

 
Figure 175 – Fused measurements (cyan dots) 

and track (black line) 

 

The difference here, is that this scenario makes the tracker to converge slightly faster 

to x or y-position errors that are less than 5 meters and to x or y-velocity errors that 

are less than 0.1 m/s. This is because in the beginning of the trajectory there are more 

radars close to the target. However, in this scenario, after converging to a certain 

point the tracker is not able to be more accurate than in the monostatic case. For 

example, y-position error here has its best value around x=-50 km and the error is 

about 1.5 meters (Figure 177). In the monostatic case, y-position error has its best 

value at x=0 and the error is less than 1 meter (Figure 146). 

 
Figure 176 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 177 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 
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Figure 178 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 179 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.4 Multistatic (1 x N) 

7.2.1.4.1 1 TX (25 kW) and 4 RXs 

This scenario comprises 1 TX and 4 RXs, where TX is the black circle and RXs are 

the coloured hexagrams. Note that there is a RX (red hexagram) at (-20,0) km with a 

TX as well. 

 
Figure 180 - Geometry with one TX (black circle) and 4 RXs (coloured hexagrams). There is a 

TX and an RX at (-20,0) km 

 

Note that, adding 3 RXs to the geometry, but keeping the total power transmitted (25 

kW) the tracking result in position and velocity are not very different from the 

monostatic case. However, it must be noted that the target crosses 2 baselines which, 

due to the way the fusion is made, make the results be worse than expected. On the 

other hand, having a system with more nodes, makes it more resilient in the case of 

one or more nodes are lost. 
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Figure 181 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 182 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 183 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 184 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.4.2 1 TX (25 kW) and 10 RXs (on a parallel line to target) 

Once more, keeping the same total power, using only 1 TX (25 kW) and 10 RXs on a 

horizontal line parallel to the target trajectory, this geometry must be compared with 

the previous scenario. Although this scenario has 6 more RXs than the previous one, 

the results are not as good. It is still good and better than the previous scenario, but 

not as good as expected. This must be because of the location of the radars. On the 

other hand, this geometry has the great advantage of using just one TX and from it, it 

is possible to deploy a radar network comprised of 10 bistatic pairs of 25 kW power 

each. Therefore, it is just a matter to reposition all 10 RXs according to the 

requirements of the system. 
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Figure 185 - Geometry with one TX (black circle) and 10 RXs (coloured hexagrams) along a 

horizontal line parallel to the target trajectory 

 

 
Figure 186 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 187 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 188 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 189 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.5 Multistatic (M x 1) 

7.2.1.5.1 4 TXs (6.25 kW each) and 1 RX 

In the next scenario, 4 transmitters of 6.25 kW each are used making bistatic pairs 

with one receiver. If compared with the one on 7.2.1.4, it is clear that this one is 

worse because, here, the geometry comprises 4 pairs of bistatic radars with a 6.25 
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kW TX instead of 4 pairs of 25 kW. The advantage of this scenario is that it is 

comprised of 4 TXs instead of just 1 TX. It makes this system more resilient since 

transmitters are more vulnerable to physical attacks. 

 
Figure 190 - Geometry with 4 TXs 6.25 kW each (coloured circles) and 1 RX (black hexagram) 

 

 
Figure 191 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 192 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 193 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 194 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

7.2.1.5.2 10 TXs (2.5 kW each) and 1 RX (on a parallel line to target) 

Now, the geometry (Figure 195) includes 10 TXs with 2.5 kW and just 1 RX. RX is 

the black hexagram and coloured circles denote the transmitters along a line parallel 
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to the target trajectory. Again, as expected, this scenario, if compared with the one in 

7.2.1.4, has worse results because the geometry is comprised of 10 pairs of 2.5 kW 

bistatic radars instead of 10 pairs of 25 kW bistatic radars. 

 
Figure 195 - Geometry with 10 TXs 2.5 kW each (coloured circles) and 1 RX (black hexagram) 

along a horizontal line parallel to the target trajectory 

 

 
Figure 196 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 197 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 198 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 199 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

Although the results here are worse than in the [1 TX / 10 RXs], it is not so bad and, 

on the other hand, there is the advantage of multiple transmitters which, make the 

system more resilient in the case of loss of one or more transmitters. 
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7.2.1.6 Multistatic (2 TXs and 2 RXs) 

In this scenario, 2 TXs (12.5 kW) and 2 RXs results in 4 pairs of 12.5 kW bistatic 

radars. Comparing, this geometry with the previous one [10 TXs and 1 RX], this one 

is better and one could choose this geometry instead of the previous one if it were to 

reduce deployment costs or to minimize synchronization problems. 

 
Figure 200 - Geometry with 2 TXs 12.5 kW each (blue/green) and 2 RXs (red/magenta) along a 

horizontal line parallel to target trajectory 

 

 
Figure 201 - Average x-position error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 202 - Average y-position error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 

 

 
Figure 203 - Average x-velocity error (red) 

after tracking. Green lines depict ±1 standard 

deviation 

 
Figure 204 - Average y-velocity error (blue) 

after tracking. Green lines depict ±1 standard 

deviation 
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This scenario, if compared with the [1 TX and 10 RXs] geometry is worse, but 

instead has one more transmitter which might be good depending on how the radar is 

intended to be used. 

7.2.2 Target 2 (spiral-like trajectory) 

In the following scenarios, the target starts at about (-76,0) km and flies on a spiral 

trajectory towards one transmitter of the network during 1000 seconds. In this 

section, in all the figures except the one that shows the geometry, the x-axis 

represents the measurement sequence number. For each scenario, 100 simulation 

runs are performed in order to calculate the average and standard deviation of the 

results. 

In a spiral trajectory, the target changes direction in either x-axis or y-axis a couple of 

times. In all scenarios in this section, the first change of direction occurs at around 

measurement number 110 where vy is zero and the target is at the top of the spiral. 

The next change of direction occurs at around measurement number 230 where vx is 

zero and the target is on the right of the spiral. The last change of direction of this 

trajectory occurs at around measurement number 330, where vy is zero and the target 

is at the bottom of the spiral, very close to the aimed transmitter. The simulation 

finishes at measurement number 400, thus 70 measurements after the last change of 

direction and it means 175 seconds later. The trajectory finishes 5 km far from the 

transmitter at position (0,-5) km. 

7.2.2.1 Monostatic 

As can be seen in Figure 205 and Figure 206, the velocity and acceleration varies 

during the whole trajectory of the target. In both figures, red lines depict the x-axis 

true values and blue lines depict the y-axis true values for velocity and acceleration. 

Note that the maximum absolute velocity in either axis is about 350 m/s and the 

maximum absolute acceleration is about 1.6 m/s
2
. Figure 207 depicts the target 

trajectory and radar location (black circle). 
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Figure 205 – The red (x-velocity) and blue (y-

velocity) depict the true target velocities 

 
Figure 206 - The red (x-acceleration) and blue (y-

acceleration) depict the true target accelerations 

 

 
Figure 207 – Geometry with one monostatic radar (black circle at (0,0)) and a target with spiral 

trajectory 

 

Figure 208 and Figure 209 depict the average position errors in x and y-axis after 

tracking. 

 
Figure 208 – Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 209 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

Figure 210 and Figure 211 show the average velocity errors in x and y-axis after 

tracking. 
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Figure 210 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 211 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

Figure 212 and Figure 213 present the average acceleration errors in x and y-axis 

after tracking. 

 
Figure 212 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 213 - Average y-acceleration error (blue) 

after tracking on each measurement. Green lines 

depict ±1 standard deviation 

 

7.2.2.2 Bistatic 

This section shows 2 geometries for a bistatic radar: one where the target crosses the 

baseline of the radar and another one where it does not cross the baseline. 

7.2.2.2.1 Bistatic (crossing baseline) 

This scenario represents a bistatic geometry where in Figure 214, the black circle at 

(0,0) km is the TX with 25 kW, the black hexagram at (0,60) km is the RX, the red 

line is the true trajectory and the green dots are the measurements. Black line depicts 

the filtered trajectory. The following figures (Figure 214 to Figure 220) represent the 

same type information as in Figure 207 to Figure 213. 
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Figure 214 - Geometry with one bistatic radar (black circle at (0,0) is TX and black hexagram at 

(0,60) km is RX) and a target with spiral trajectory (target crossing baseline) 

 

Overall, it can be seen that this configuration is worse than the previous one 

(monostatic case), especially the states (position, velocity and acceleration) in y-axis. 

In the x-axis, this scenario is better at the beginning of the trajectory but not so good 

at the end of it. Note that there are peaks in the tracking results when the target is 

crossing the baseline. The inaccuracy is much more evident on y-axis which is the 

axis parallel to baseline. It is shown in Figure 93 and Figure 94 that the 

measurements are much more inaccurate in the y-axis as well. 

 
Figure 215 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 216 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 
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Figure 217 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 218 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 219 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 220 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.2.2 Bistatic (without crossing baseline) 

This scenario represents a bistatic geometry where the target does not cross the 

baseline (Figure 221). The total power is still 25 kW. Figure 221 to Figure 227 

represent the same type of information as in figures in the previous scenario. In this 

scenario, the position errors are big when the target is far from the radar, as expected, 

in the region between the top of spiral and the right of it. Overall this geometry, if 

compared with the monostatic case, is better at the beginning of the trajectory but 

worse elsewhere. This is correct, according to the model, since at the beginning of 

the trajectory the transmitted signal does not have to travel back to the monostatic 

TX/RX because the RX is very close to the beginning of trajectory. 
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Figure 221 - Geometry with one bistatic radar (black circle at (0,0) is TX and black hexagram at 

(-60,0) km is RX) and a target with spiral trajectory  

 

 
Figure 222 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 223 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 224 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 225 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 
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Figure 226 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 227 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.3 Netted Monostatic 

In the following scenarios, configurations using many monostatic radars are 

presented. In all cases, the total power is 25 kW, regardless of the number of radars. 

7.2.2.3.1 4 monostatic (6.25 kW each) 

This scenario represents a netted monostatic geometry with 4 radars with 6.25 kW 

transmitter power each. 

 
Figure 228 - Geometry with four monostatic radar (6.25 kW each) where the coloured circles are 

the radars and the coloured dots are the measurements performed by each radar 

 

Comparing this scenario with the monostatic one in 7.2.2.1, the results here are 

similar although there are some peaks because now, the total power is spread and the 

standard deviations are different in each radar. However, it still delivers good results 

(especially when it is close to “green circle” radar near the measurement number 

130) and has the big advantage of being more immune to attacks, because if the 

target destroys the aimed transmitter, the system still has 3 more transmitters 

(graceful degradation). 
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Figure 229 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 230 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 231 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 232 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 233 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 234 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.3.2 4 monostatic (6.25 kW each) – closer to the target 

This scenario, if compared to the previous one, is undoubtedly better, because the 

radars are much closer to the target. In addition, if this geometry is compared with 

the monostatic radar with 25 kW in 7.2.2.1, it shows that this geometry has better 

results especially during the initial measurements with the position estimates 
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converging faster. The final result, in terms of location is overall better than the 

monostatic case. Nevertheless, there are some peaks in the velocity and acceleration 

estimates which do not change significantly the position results. Furthermore, this 

geometry is still more immune to attacks from enemies and consequently, the system 

is more resilient. 

 
Figure 235 - Geometry with four monostatic radar (6.25 kW each) where the coloured circles are the 

radars and the coloured dots are the measurements performed by each radar 

 

 
Figure 236 - Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 237 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 

 
Figure 238 - Average x-velocity error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 239 - Average y-velocity error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 
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Figure 240 - Average x-acceleration error (red) 

after tracking on each measurement. Green lines 

depict ±1 standard deviation 

 
Figure 241 - Average y-acceleration error (blue) 

after tracking on each measurement. Green lines 

depict ±1 standard deviation 

 

7.2.2.3.3 10 monostatic (2.5 kW) at the same location 

This scenario, with 10 monostatic radars at the same location of 7.2.2.1 but with 10 

times less power each produces a total power of 25 kW. The main idea of this 

scenario is to compare with the scenario where just one monostatic radar is used and 

show that the results are basically the same. This confirms that if it is not possible to 

increase the power of a transmitter, then it is possible to use many of them to achieve 

the desired transmitter power (as shown in 7.2.1.3.2). 

 
Figure 242 - Geometry with 10 monostatic radar (2.5 kW each) at the same location (0,0) 
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Figure 243 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 244 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 245 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 246 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 247 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 248 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.3.4 10 monostatic (2.5 kW) on a line  

This scenario also uses a network of monostatic radars but now they are positioned 

along a horizontal line following the target trajectory. In the beginning of the 

trajectory the radars are close to each other but the distance between them increases 

along the horizontal line. The difference here is that this scenario is better than the 
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previous one at the beginning of the trajectory but not in the middle of it. At the end 

of trajectory this geometry is just slightly worse than the previous one although in the 

previous one it takes advantage of having a very powerful transmitter close to the 

target.  

 
Figure 249 - Geometry with 10 monostatic radar (2.5 kW each) on a line – black circles are 

TX/RX 

 

 
Figure 250 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 251 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 252 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 253 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 
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Figure 254 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 255 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.4 Multistatic (1 x N) 

This section presents 2 different scenarios where a combination of bistatic radars 

result in a Multistatic Radar with 1 TX and many RXs. 

7.2.2.4.1 1 TX (25 kW) and 4 RXs 

This geometry is comprised of 1 TX (25 kW) at (0,0) km (black circle) and 4 RXs 

located around the trajectory. This geometry is very similar to the one with 4 

monostatic radars and is compared with it. Figure 256 depicts the geometry where all 

4 RXs are in the same location as the 4 monostatic radars in 7.2.2.3.2. In fact, one 

pair of “bistatic” radar is working as a monostatic one because they are co-located. 

 

 
Figure 256 - Geometry with 1 TX (black circle) and 4 RXs (coloured hexagrams) and a target 

with spiral trajectory 

 

Figure 257 and Figure 258 depict the tracking results and compared with the 4 

monostatic case, it shows that this one is better in the beginning of the trajectory for 

x-axis. The main point to be noted here, is that in the multistatic case, when the target 
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is getting closer to the end of the trajectory, it crosses 2 bistatic radar baselines what 

makes the results to be not so good, although there is a very strong “monostatic” (1 

TX and 1 RX collocated) in this region (black/red pair). 

 
Figure 257 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 258 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

Therefore, although it was expected that this geometry was better than the four 6.25 

kW netted monostatic radar presented in 7.2.2.3.2, this geometry, which comprises 4 

pairs of 25 kW bistatic radars, is just slightly better than the netted monostatic one. 

 
Figure 259 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 260 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 
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Figure 261 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 262 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.4.2 1 TX (25 kW) and 10 RXs (on a horizontal line) 

Here, 10 pairs of 25 kW bistatic radars are put on a horizontal line. TX (25 kW) is 

located in the middle of this line of radars with 5 RXs to the left and 5 RXs to the 

right. Overall, the results presented here are better than the results in 7.2.2.3.4. 

However, it seems that estimates are just similar at the end of trajectory. This might 

be due to the fact that the target crosses 4 baselines when it is near (25,0) km. 

 
Figure 263 - Geometry with one TX (black circle) and 10 RXs (coloured hexagrams) along a 

horizontal line and a target with spiral trajectory 
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Figure 264 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 265 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 266 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 267 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 268 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 269 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.5 Multistatic (M x 1) 

This section presents 2 different scenarios where a combination of bistatic radars 

results in a Multistatic Radar with many TXs and 1 RX. 

7.2.2.5.1 4 TXs (6.25 kW each) and 1 RX 
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This section presents a geometry with 4 pairs of 6.25 kW bistatic radars. One of 

those bistatic radars is actually a monostatic one because TX and RX (red/black pair) 

are co-located at (0,0). This geometry is compared with the 1xN multistatic case in 

7.2.2.4.1. The geometry presented here has worse results and it can be seen by 

comparing Figure 271 and Figure 272 with Figure 257 and Figure 258. It is an 

expected result because here 4 pairs of 6.25 kW bistatic radars are used instead of 4 

pairs of 25 kW bistatic in 7.2.2.4.1. Nonetheless, it is always worth mentioning that 

this geometry could be an option if a more resilient system is desirable. 

 
Figure 270 - Geometry with 4 TXs 6.25 kW each (coloured circles) and 1 RX (black hexagram) 

and a target with spiral trajectory 

 

 
Figure 271 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 272 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 
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Figure 273 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 274 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 275 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 276 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

7.2.2.5.2 10 TXs (2.5 kW each) and 1 RX (on a line) 

This geometry presents a configuration where 10 pairs of 2.5 kW bistatic radars are 

put on a horizontal line. RX is located in the middle of this line of radars with 5 TXs 

(2.5 kW each) to the left and 5 TXs (2.5 kW each) to the right. Overall, the results 

presented here are worse than the results in 7.2.2.4.2. Comparing this geometry with 

one in 7.2.2.3.4, the latter is better at the beginning and at the end of the trajectory. 
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Figure 277 - Geometry with 10 TXs 2.5 kW each (coloured circles) and one RX (black hexagram) 

along a horizontal line and a target with spiral trajectory 

 

 
Figure 278 - Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 279 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 

 
Figure 280 - Average x-velocity error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 281 - Average y-velocity error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 
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Figure 282 - Average x-acceleration error (red) 

after tracking on each measurement. Green lines 

depict ±1 standard deviation 

 
Figure 283 - Average y-acceleration error (blue) 

after tracking on each measurement. Green lines 

depict ±1 standard deviation 

 

7.2.2.6 Multistatic (2 TXs and 2 RXs) 

In this scenario, there are 2 TXs (12.5 kW) and 2 RXs, comprising 4 pairs of 12.5 

kW bistatic radars. Comparing, this geometry with the one [10 TXs and 1 RX], they 

are very similar but this scenario is better at the beginning of the trajectory. Besides, 

one could decide to implement this one if it were to reduce deployment costs or to 

minimize synchronization problems. Note, in Figure 286, that for y-axis position, 

there is a peak between measurement 250 and 300 that might be because the target is 

crossing the baseline of the bistatic pairs (green-magenta and blue-magenta). 

 
Figure 284 – Geometry with 2 TXs 12.5 kW each (blue/green) and 2 RXs (red/magenta) along a 

horizontal line and a target with spiral trajectory 
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Figure 285 - Average x-position error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 286 - Average y-position error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 287 - Average x-velocity error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 
Figure 288 - Average y-velocity error (blue) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

 

 
Figure 289 - Average x-acceleration error (red) 

after tracking on each measurement. Green 

lines depict ±1 standard deviation 

Figure 290 - Average y-acceleration error 

(blue) after tracking on each measurement. 

Green lines depict ±1 standard deviation 

 

This scenario, if compared with the geometry (1 TX / 10 RXs) in 7.2.2.4.2, is worse. 

On the other hand, has one more transmitter which might be good depending on how 

the radar is intended to be used. 



Results 

148 

 

7.2.3 Tracking Summary Tables 

7.2.3.1 Target 1 

Table 9 summarizes the tracking position errors for x and y-axis for a target that flies 

with a constant velocity of 250 m/s and has an RCS of 0.1 m
2
. All the geometries 

presented in 7.2.1 are summarized in this table. 

Tables in this section present some quantitative values at certain points of the 

trajectory and illustrate the influence of transmitter power and geometry in the 

results. However, the graphics in previous sections depict a more thorough idea on 

how the tracking accuracy behave along the whole trajectory for different 

geometries. 

Table 9 – Tracking Results Summary – tracking position errors during the trajectory of a target that 

flies on a straight line with constant velocity of 250 m/s 

Geometry Tracking Errors for position in x-axis 

(m) 

Tracking Errors for position in y-axis 

(m) 

 x=-40 

km 

x=-20 

km 

x=0 km x=20 

km 

x=-40 

km 

x=-20 

km 

x=0 km x=20 km 

(1) Monostatic 

(25 kW) 
6 2.5 2 2 12 3 0.5 1 

(2) Bistatic (25 

kW) crossing 
0.7 0.5 7.3 0.5 30 15 400 180 

(3) Bistatic (25 

kW) parallel 

TX-RX 

18 12 10 7 22 9 2 7 

(3a) Bistatic (25 

kW) parallel 

RX-TX 

9 6 10 12 14 8 2 8 

(4) Netted 

Mono 4 TX/RX 
(6.25 kW) 

4 2 2 1.5 5 1.5 2 1.5 

(5) Netted 
Mono 10 

TX/RX (2.5 

kW) same 

location 

6 2.5 2 2 11 3 0.5 1 

(6) Netted 

Mono 10 
TX/RX (2.5 

kW) line 

2.4 2.4 2 1.9 1.5 1.7 1.9 1.5 

(7) Multistatic 1 

TX (25 kW) 

and 4 RXs 

1.8 1.4 1.8 1.7 4 2 1.5 1.5 

(8) Multi 1 TX 

(25 kW) and 10 

RXs line 

2 1.6 1 1 2 1 0.8 0.7 

(9) Multi 4 TXs 
(6.25 kW) and 1 

RX 

2.5 1.8 1.5 2.3 5.8 2.9 3.8 5 
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(10) Multi 10 

TXs (2.5 kW) 
and 1 RX line 

11 5 2.5 2.5 7 2.5 2 2.5 

(11) Multi 2 
TXs (12.5 kW) 

and 2 RXs 

4.4 4 3.7 3.5 3 2 3 3 

 

Similarly to Table 9, Table 10 depicts the target tracking velocity errors in x and y-

axis at certain x-axis positions. 

Table 10 - Tracking Results Summary – tracking velocity errors during the trajectory of a target that 

flies on a straight line with constant velocity of 250 m/s 

Geometry Tracking Errors for velocity in x-axis 

(m/s) 

Tracking Errors for velocity in y-axis 

(m/s) 

 x=-40 

km 

x=-20 

km 

x=0 km x=20 

km 

x=-40 

km 

x=-20 

km 

x=0 km x=20 km 

(1) Monostatic 

(25 kW) 
0.12 0.05 0.02 0.01 0.25 0.06 0.02 0.01 

(2) Bistatic (25 

kW) crossing 
0.05 0.04 0.5 0.04 2 2 100 38 

(3) Bistatic (25 

kW) parallel 

TX-RX 

1.3 1 0.8 0.6 1.5 0.6 0.2 1 

(3a) Bistatic (25 

kW) parallel 

RX-TX 

0.7 0.5 0.75 0.9 1 1.2 0.2 0.4 

(4) Netted 

Mono 4 TX/RX 
(6.25 kW) 

0.06 0.02 0.15 0.1 0.12 0.04 0.02 0.01 

(5) Netted 
Mono 10 

TX/RX (2.5 

kW) same 

location 

0.1 0.04 0.02 0.01 0.25 0.06 0.02 0.01 

(6) Netted 

Mono 10 
TX/RX (2.5 

kW) line 

0.03 0.02 0.015 0.01 0.02 0.015 0.01 0.005 

(7) Multistatic 1 

TX (25 kW) 

and 4 RXs 

0.03 0.02 0.015 0.01 0.08 0.03 0.02 0.015 

(8) Multi 1 TX 

(25 kW) and 10 

RXs line 

0.03 0.02 0.01 0.01 0.35 0.02 0.01 0.01 

(9) Multi 4 TXs 

(6.25 kW) and 1 
RX 

0.045 0.02 0.015 0.015 0.13 0.07 0.04 0.03 

(10) Multi 10 
TXs (2.5 kW) 

and 1 RX line 

0.18 0.06 0.04 0.03 0.14 0.05 0.03 0.02 

(11) Multi 2 

TXs (12.5 kW) 

and 2 RXs 

0.06 0.03 0.025 0.02 0.05 0.025 0.025 0.02 

 



Results 

150 

 

7.2.3.2 Target 2 

Target 2 is a target that flies on a spiral-like trajectory with non constant velocity and 

acceleration starting from (-100,0) km and going towards one transmitter of the 

network. Table 11, Table 12 and  

Table 13 depict, respectively the tracking errors for position, velocity and 

acceleration for all scenarios from section 7.2.2. 

Table 11 - Tracking Results Summary – tracking position errors during the trajectory of a target that 

flies on a spiral trajectory with non constant velocity and acceleration. The errors are depicted at 

certain measurement sequence number. Each measurement is performed every 2.5 seconds. 

Geometry Tracking Errors for position 

in x-axis (m) 

Tracking Errors for position in 

y-axis (m) 

 At  100 At  200 At 350 At 100 At 200 At 350 

(1) Monostatic (25 kW) 45 15 2 25 15 2 

(2a) Bistatic (25 kW) crossing 10 2 20 20 30 15 

(2b) Bistatic (25 kW) 60 50 20 10 70 20 

(3a) Netted Mono 4 TX/RX (6.25 
kW) 

6 28 3 10 14 2 

(3b) Netted Mono 4 TX/RX (6.25 
kW) closer 

8 3 3 10 4 3 

(3c) Netted Mono 10 TX/RX (2.5 
kW) same location 

43 12 2 20 14 2 

(3d) Netted Mono 10 TX/RX (2.5 

kW) line 
47 12 15 33 15 3 

(4a) Multistatic 1 TX (25 kW) 

and 4 RXs 
15 8 3 10 7 2 

(4b) Multistatic 1 TX (25 kW) 

and 10 RXs line 
23 8 3 15 10 2 

(4c) Multistatic 4 TXs (6.25 kW) 

and 1 RX 
30 13 3 26 14 2 

(4d) Multistatic 10 TXs (2.5 kW) 

and 1 RX line 
45 20 4 20 10 2 

(5) Multistatic 2 TXs (12.5 kW) 

and 2 RXs 
40 16 14 29 18 7 

 
Table 12 - Tracking Results Summary – tracking velocity errors during the trajectory of a target that 

flies on a spiral trajectory with non constant velocity and acceleration. The errors are depicted at 

certain measurement sequence number. Each measurement is performed every 2.5 seconds. 

Geometry Tracking Errors for velocity 

in x-axis (m/s) 

Tracking Errors for velocity in 

y-axis (m/s) 

 At  100 At  200 At 350 At 100 At 200 At 350 

(1) Monostatic (25 kW) 4.8 2.5 0.7 3.7 2.5 0.9 

(2a) Bistatic (25 kW) crossing 2.4 1.4 2.5 3 5 3 

(2b) Bistatic (25 kW) 6 6 4 2 5 2.8 

(3a) Netted Mono 4 TX/RX (6.25 

kW) 
1 6 0.8 2.2 1.8 1 

(3b) Netted Mono 4 TX/RX (6.25 

kW) closer 
1.3 1.4 0.6 2.4 2.4 1 



Results 

151 

 

(3c) Netted Mono 10 TX/RX (2.5 

kW) same location 
3.5 1.6 0.5 2.6 1.8 0.9 

(3d) Netted Mono 10 TX/RX (2.5 

kW) line 
4 1.5 0.5 4.2 3 1 

(4a) Multistatic 1 TX (25 kW) 

and 4 RXs 
2 1.9 0.7 2.2 1.3 0.9 

(4b) Multistatic 1 TX (25 kW) 

and 10 RXs line 
2.2 1.4 0.6 3.1 2.5 1 

(4c) Multistatic 4 TXs (6.25 kW) 

and 1 RX 
3 2.2 0.6 3.5 2 0.9 

(4d) Multistatic 10 TXs (2.5 kW) 

and 1 RX line 
4 2 0.9 2.2 1.6 1 

(5) Multistatic 2 TXs (12.5 kW) 

and 2 RXs 
3.5 2 2 5 3.4 1.8 

 
Table 13 - Tracking Results Summary – tracking acceleration errors during the trajectory of a target 

that flies on a spiral trajectory with non constant velocity and acceleration. The errors are depicted at 

certain measurement sequence number. Each measurement is performed every 2.5 seconds. 

Geometry Tracking Errors for 

acceleration in x-axis (m/s2) 

Tracking Errors for 

acceleration in y-axis (m/s2) 

 At  100 At  200 At 350 At 100 At 200 At 350 

(1) Monostatic (25 kW) 0.23 0.17 0.08 0.18 0.19 0.07 

(2a) Bistatic (25 kW) crossing 0.24 0.01 0.17 0.2 0.35 0.35 

(2b) Bistatic (25 kW) 0.3 0.3 0.4 0.04 0.22 0.15 

(3a) Netted Mono 4 TX/RX (6.25 
kW) far 

0.1 0.6 0.06 0.1 0.12 0.06 

(3b) Netted Mono 4 TX/RX (6.25 
kW) closer 

0.12 0.05 0.06 0.09 0.1 0.07 

(3c) Netted Mono 10 TX/RX (2.5 

kW) same location 
0.23 0.07 0.04 0.07 0.12 0.04 

(3d) Netted Mono 10 TX/RX (2.5 

kW) line 
0.23 0.05 0.05 0.25 0.25 0.1 

(4a) Multistatic 1 TX (25 kW) 

and 4 RXs 
0.15 0.1 0.08 0.08 0.1 0.07 

(4b) Multistatic 1 TX (25 kW) 

and 10 RXs line 
0.15 0.05 0.07 0.2 0.3 0.08 

(4c) Multistatic 4 TXs (6.25 kW) 

and 1 RX 
0.18 0.11 0.07 0.17 0.13 0.05 

(4d) Multistatic 10 TXs (2.5 kW) 

and 1 RX line 
0.22 0.09 0.07 0.06 0.11 0.03 

(5) Multistatic 2 TXs (12.5 kW) 

and 2 RXs 
0.16 0.1 0.14 0.35 0.3 0.13 

 

7.3 Analysis 

Sections 7.1 and 7.2 present the simulations performed in several different scenarios 

where some parameters are varied in order to assess how the performance of the 

radars are affected in terms of measurements and tracking when compared with the 

real state of the target. Section 7.1.5 and 7.2.3 show, respectively for measurement 

and tracking, a summary of position errors (measurement and tracking), velocity 

errors (tracking) and acceleration errors (tracking) when it is applicable. 
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All the results in Section 7.1 are according to the model that uses the radar range 

equation (9). When the RCS is reduced by 20 dB (from 10 m
2
 to 0.1 m

2
), SNR is also 

reduced by 20 dB. Moreover, when the transmitter power is reduced by a factor of 4 

(or 6 dB), SNR is also reduced by the same factor according to the radar equation. In 

scenarios where a multistatic radar is used, comparing a multistatic radar with 1 TX 

(25 kW) and 2 RXs against a multistatic radar with 2 TXs (12.5 kW each) and 1 RX, 

because of the process of fusion, it is shown that having 2 pairs of 12.5 kW bistatic 

radars is not necessarily worse than having 2 pairs of 25 kW bistatic radars. In some 

situations, for example, in Table 5, when x=-50 km the fused measurement errors for 

x-position are the same (800 m) in both multistatic scenarios. The same happens for 

y-position when x=0 km. And, although it is useful to compare the numbers 

presented in Table 5, it is easier to see the differences when comparing, for example, 

Figure 122 with Figure 133 or Figure 123 with Figure 134. 

In section 7.2, several scenarios are presented in order to bring a better understanding 

about the benefits of using a multistatic radar when tracking a target, either using a 

network of monostatic radars or a set of bistatic radars. Again, although the tables in 

section 7.2.3 present quantitatively the errors in a form where it might be easy to 

compare different scenarios at once, the tables do not show how the numbers are 

changing at a certain time. Sometimes, having a better number at x=0, is worse as 

whole because, after that it might be increasing or changing abruptly. For example, 

line (2a) of Table 11 indicates that the tracking error for position in y-axis changes 

from 20 m at measurement number 100 to 30 m at measurement number 200. 

However, it does not show that between measurements number 100 and 200 (see 

Figure 216), there is a peak where the errors are very large (more than 150 m). 

Nonetheless, it is possible to see, when comparing lines (3b) and (4a) of the same 

table that using a netted monostatic radar with 4 radars of 6.25 KW is slightly better 

than using 4 pair of 25 KW bistatic radars. This is probably because, in this case, the 

target is crossing the baseline of a bistatic pair at a certain point of the trajectory. 

Section 7.2.1 and 7.2.2 present the results when a target is flying with a constant 

velocity and in a spiral–like trajectory, respectively. In both cases, many different 

scenarios are simulated keeping the total transmitted power equal to 25 kW. One 

difference between those 2 situations is that the results for 
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position/velocity/acceleration errors are spikier in the “Target 2” scenarios. This is 

due to the fact that Kalman Filter has to be set for a situation where it expects a non 

constant behaviour of the target. 

Either for target 1 (Section 7.2.1) or target 2 (Section 7.2.2), simulations show the 

advantages of using a combination of radar measurements to track a target. The idea 

of all simulations is to show that it is not easy to track a target with RCS of 0.1 m
2
, 

which is about 100 or even more times worse than the expected target RCS of this 

kind of radar with 25 kW power. The radar with 25 kW is a typical radar for 

navigation purposes where the main targets are located no more than the horizon 

distance (around 25 km for ships, which may have an RCS of tens or even hundreds 

and thousands of square meters). For targets, like aircrafts flying at a height of 10 

km, the horizon distance can be around 400 km (see Table 2), which is quite far for a 

radar like this to detect and track an aircraft with RCS=0.1 m
2
. For a target with such 

RCS flying at a distance of about 65 km, the tracking error for x-position is about 15 

m (Figure 145) after some time tracking the target (about 60 seconds). This error can 

be as good as 1.5 m if the RCS is increased to 10 m
2
. Thus, the main challenge is to 

obtain better results when tracking 0.1 m
2
 RCS targets using 25 kW radar built for 

navigation purposes. 

Sections 7.2.1.3.2 and 7.2.2.3.3 are examples that show that combining 10 radars of 

2.5 kW has equivalent results to a radar with 25 kW (or even slightly better). It 

means that it is possible to emulate a radar of 250 kW power, for example, just using 

10 radars of 25 kW at the same location. Problems with interference or timing are not 

considered in this study though. 

The results also show that distributing the power of the radar along the trajectory 

(compare Figure 171 and Figure 177, for example) makes it to converge quicker to a 

certain level of error, but it does not get better along the trajectory.  

Scenarios where the target crosses the baseline of a bistatic radar present worse 

results with the filter and fusion algorithm being used. It is possible to see as well 

(comparing Figure 150 and Figure 151) that tracking results are better along the axis 

that crosses the baseline. Figure 150 shows that it has the best x-position track results 
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at the beginning of the track if compared with all the other geometries (see line (2) of 

Table 9). 

Scenarios with just one TX with 25 kW can have much better results when using 

many receivers to make use of this power, making the system as a whole be 

comprised of many bistatic radars with 25 kW (Figure 185, for example). This 

scenario with the same total power as the monostatic case (Figure 144) is overall 

better when comparing the results for tracking position (Figure 145, Figure 186 and 

Table 9).  

A scenario that keeps that same total power, spreading the power along many TXs, 

using only 1 RX is also simulated (Figure 195). In this case, the system comprises 10 

TXs with 2.5 kW power and 1 RX. The results are worse than the 1 TX and many 

RXs scenario but there is the big advantage of having many TXs which makes the 

system more resilient to attacks against the TXs. The system can still work with 

some degraded performance when one or more TXs are destroyed, for example. 

The same ideas of changing the geometry of a radar are applied with target 2. Figure 

205 and Figure 206 show how velocity and acceleration of the target are varying 

according to time in a spiral-like trajectory (Figure 207). 

In section 7.2.2 there are scenarios that show that there is a good improvement on the 

results when the radars are brought closer to the target for monostatic cases (Figure 

228 and Figure 235), which is an expected result. Nevertheless, the use of 4 bistatic 

radars (25 kW pairs) like in Figure 256, instead of 4 monostatic 6.25 kW radars 

(Figure 235), does not show better results. In fact, the results are very similar, but in 

the first moment, it is not an expected result. The fact that the target crosses the 

baseline of 2 of those 4 bistatic radars, can make the system have more modest 

results. At the beginning of the trajectory, though, the multistatic radar performs 

better (comparing Figure 236 and Figure 257). 

Overall, the tracking and fusion algorithm performed well and according to expected. 

However, there are cases where, especially for acceleration and velocity, the filter 

presents some peaks during the estimation of these states (see, for example Figure 

232, Figure 234, Figure 237, Figure 239, Figure 240, Figure 260, Figure 261, Figure 

262 and so on). The good thing is that, apparently, the position tracking results are 
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not affected. The existence of peaks seems to be related to the fusion process and 

how information about output from the fusion is passed to Kalman Filter. 

7.4 Examples 

To summarize and to illustrate what can be done with the information from the 

previous sections, this section shows the same scenario as in 7.2.2.4.1. The target 

flies in a spiral-like trajectory and has RCS=0.1 m
2
. The main objective in this 

example is to improve the tracking results especially at the beginning of the 

trajectory (script31.m is used). 

The comparison is done against Figure 257 and Figure 258. 

Figure 291 depicts the same geometry but instead of using one TX of 25 kW, 10 TXs 

of 25 kW are used. The results are depicted in Figure 292 and Figure 293. As the 

total power increases by a factor of 10, SNR also increases by the same amount. And 

the errors, consequently (according to Equations (18) and (19)), decrease by a factor 

of    . If it was possible to use just one TX of 250 kW, the results would be very 

similar. 

 
Figure 291 - Geometry with 10 TXs (black circle) at (0,0) and 4 RXs (coloured hexagrams) and a 

target with spiral trajectory 
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Figure 292 - Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 293 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation  

 

Despite the fact that overall the errors are better, at the beginning of the trajectory, it 

is still not so good. Next scenario, with the same 10 TXs of 25 kW but with 3 of 4 

RXs repositioned, it is possible to improve this requirement. This improvement 

comes by changing the position of an RX (green hexagram) to somewhere closer to 

the beginning of trajectory and to reposition other 2 RXs (blue and magenta 

hexagrams) to a place where the target would not cross the baseline of pairs of 

bistatic radars (see Figure 294). 

 
Figure 294 - Geometry with 10 TXs (black circle) at (0,0) and 4 RXs (coloured hexagrams) and a 

target with spiral trajectory 
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Figure 295 - Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 296 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation  

 

Figure 295 and Figure 296 depict the results of tracking position errors using the new 

geometry and, as expected, the tracking position errors are much better now. A great 

improvement happened especially in y-axis position accuracy as can be seen 

comparing Figure 296 with Figure 293. 

Now, for the same scenario shown in Figure 294 but with just one TX of 250 kW 

(for simplicity) and 4 RXs, the measurements of the 4 bistatic pairs are not 

performed at the same time. Instead, they are alternated and there is one 

measurement done by one of the 4 bistatic pairs every 0.625 seconds (
   

 
 seconds). 

As can be seen in Figure 297 and Figure 298, the average position errors have the 

similar magnitude although in this last scenario the errors are spikier. This is due to 

the fact that each pair of bistatic radar has different measurement standard deviations 

which affect the output of Kalman Filter. 

 
Figure 297 - Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 298 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 
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Figure 299 and Figure 300 show, for the same scenario above, how is the behaviour 

of the errors if all 4 bistatic pairs perform the measurement at the same time every 

2.5 seconds. Again, for simplicity, it is used just one TX of 250 kW and the results 

are quite similar to Figure 295 and Figure 296 (where 10 TXs of 25 kW is used). 

 
Figure 299 Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 300 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 

As the last example, Figure 301 represents a scenario where there is only 1 TX (250 

kW for simplicity, instead of 10 TXs of 25 kW) and only 1 RX that moves along the 

green line trajectory (clockwise direction).  

 
Figure 301 - Geometry with 1 TX (black circle) at (0,0) and 1 RX (red hexagrams) that moves along 

the green line (clockwise) and a target with spiral trajectory (red line) 

 

This shows what would happen if a intelligent radar decide to move one RX (or TX) 

following the target at a certain distance and keeping the bistatic angle at values that 

are smaller than 145-180 degrees. 
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Figure 302 - Average x-position error (red) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 
Figure 303 - Average y-position error (blue) after 

tracking on each measurement. Green lines depict 

±1 standard deviation 

 

So, with just one RX it is possible to achieve results (see Figure 302 and Figure 303) 

that are similar to what is obtained in the previous scenario. To perform this specific 

scenario (case 4 of script31.m), another version of class TRadar has to be used and 

TRadar1.m must substitute TRadar.m to perform this simulation. 
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8 Conclusions and Further Work 

The first radars used in military scenarios to detect enemies were quasi-bistatic, due 

to the fact that by that time, it had not been developed a technology that would allow 

the transmitter and receiver to use the same antenna. After the development of 

monostatic radars, there was almost no interest in the bistatic radars subject. 

Apparently, this interest in bistatic and multistatic radars has been happening in 

cycles of 15-20 years according to [3]. However, due to the fact that monostatic 

radars alone have been reaching their limits in terms of performance and because of 

the existence of new threats, the interest in bistatic and multistatic radars, nowadays, 

should last longer. 

In order to detect stealth targets and to be able to overcome jamming attacks by 

enemies, networks of radars operating either monostatically or bi/multistatically can 

be used. Among many things, this delivers better sensitivity, coverage and tracking 

accuracy. 

The research reported in this thesis has investigated how much multistatic radars can 

be better than stand alone monostatic radars when tracking a target. Simulations with 

different geometries and different target trajectories have been performed in order to 

assess the tracking performance in each scenario. Although three simple tracking 

filters (g-h, g-h-k and KF) have been programmed, only the KF has been used for the 

final results. Tracking performance has been analysed in terms of estimated position, 

velocity and acceleration accuracies. Different geometries including monostatic 

radar, bistatic radars with target crossing and not crossing the baseline, multistatic 
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radars with only 1 TX and many RXs, multistatic radars with many TXs and only 1 

RX and multistatic radars with many TXs and RXs have been considered. 

In terms of target state (position, velocity and acceleration) accuracy of the 

measurements and tracking, the simulations have shown that performance is 

proportional to the total power of the network transmitters. Nonetheless, depending 

on the configuration of the geometry, the results have not been as good as expected. 

It happened because the fusion algorithm is very simple and it considers the 

measurements from each radar of the network using weights to perform average of 

the measurements. While the weight is related to SNR, the algorithm considers 

measurements with higher SNR more important than the ones with lower SNR. In 

scenarios where the target crosses the baseline of a pair of bistatic radar, it has been 

assumed that measurements coming from the region where the bistatic angle is close 

to 180 degrees are not very reliable and thus their weights are reduced. 

The simulations were performed with real radar characteristics because the idea was 

to assess if it was possible to use characteristics of navigation radars to track targets 

with low RCS. The research reported in this thesis has shown that it is possible to 

achieve a good accuracy configuring a geometry that is suitable for the requirements 

of a system.  

Also, from the results of the simulations it is possible to understand why multistatic 

radars can still work with acceptable accuracy if one TX is lost or destroyed 

(graceful degradation). Losing one TX from a multistatic radar with 10 TXs, means 

that the total power of the system is reduced to 90% if all TXs are identical. If all 

TXs are located at the same position, the reduction in SNR would be the same as the 

reduction in total power. Thus, the errors increase by a factor of about 5%. 

The problem of jamming attacks to TX does not affect performance of bistatic radars 

or multistatic radars comprised of pairs of bistatic radars. In addition, jamming 

attacks to a monostatic radar of a network makes the system to perform with a 

degraded performance and not to be completely out of service. Besides, an intelligent 

system could order the monostatic radar to stop emitting and become just a receiver 

in the network making jamming attacks less effective. 
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This work has presented several figures that show the tracking accuracy (for position, 

velocity and acceleration) of different geometries when the target is flying at certain 

velocity and at a certain distance from the radar. Therefore, it is possible to see how 

the performance of a tracker can be improved just adding another TX or RX or just 

deploying them into a more suitable location. Furthermore, it has shown that if the 

technology does not allow the system to have more powerful radars, so adding some 

more TXs to the network can help to improve accuracy, for example. Also, if the 

budget does not allow buying so many TXs, adding cheap RXs can still enhance the 

performance of the system. 

Consequently, using more than one monostatic radar, a number of TXs and RXs and 

combining information from all radars of a network will allow the system to be more 

accurate, more resilient and maybe cheaper. However, there are some improvements 

that should be tackled in future research. The report herein presented has considered 

that the radars (nodes) of the network communicate without delays or any other 

problems related to communication among them. The information necessary for data 

fusion is 100% available for the fusion algorithms and then for the tracking 

algorithm. Additionally, position estimates have been considered to be known by all 

the nodes so that they can point their antennas to the correct region of the space. It is 

also considered to be performed by another software module not developed in this 

thesis. As a consequence, resource management software should be developed in 

order to make the best use of all information that herein is considered available for 

all algorithms whenever necessary. Another important characteristic of the 

simulations performed in this thesis is that all the measurements have been 

performed in fixed intervals of 2.5 seconds. These intervals could be variable 

according to the needs of the system if the system uses Electronically Steered 

Antennas. Again, “needs of the system” means that there is some module managing 

where the resources are most necessary at a certain moment. The same ideas applied 

for Multifunctional Radar could be applied on a radar network when it is about 

managing the resources of a system [22][36].  

This thesis has shown that deploying a radar platform (TX and/or RX) in different 

locations can bring better or worse results. A resource management software can also 

designate a platform to move during the tracking process to a more suitable location 
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according to the needs of the scenario. It would be done especially, for example, 

when the system is prepared to launch a missile against a target and more accuracy is 

needed. Even the missile can be working cooperatively with some RXs nodes in 

order to keep track of the target during its flight even if the target is trying to jam its 

TX. 

Also, this work has shown quantitatively that the use of navigation radars of 25 kW 

(aimed to track ships with RCS of tens, hundreds or thousands of square meters) and 

operational frequency of 9.41 GHz (X-band) working co-operatively in a network of 

radars makes it possible to track targets with RCS as small as 0.1 m
2
 flying within 

the surveillance area. Uncountable scenarios are possible. This thesis has focused on 

working with the same fusion and tracking algorithm and also the basic 

characteristics of the radar (operational frequency, PRF, beam width, pulse width, 

etc) and only varying the geometry of the radar network to assess its performance. 

Some future work may include more simulations changing some other variables such 

as pulse width to improve range resolution, measurement accuracy and tracking 

accuracy. 

Also, from the results of the simulations it is possible to see that bistatic radars have 

very good performance along the axis that is crossing its baseline but not so good on 

the other axis. Nevertheless, this affirmative is true only when the bistatic angle is 

smaller than 145 degrees. This information is very useful, especially if TXs and RXs 

can move dynamically while tracking targets in order to have the best precision most 

of the time. And, although for bistatic angles around 180 degrees the accuracy of 

measurements and tracking are very bad, detection in this region is very high because 

of the effect shown in 3.3.4.1 and Figure 16. The information that a target is lying on 

the baseline of a bistatic radar might be important especially if another pair of 

bistatic radar can be used in order to find the location of the target. 

Comparing the results reported in this research with the work present in [55], it 

seems that the latter is also a work that shows how tracking accuracy varies in 

different scenarios of systems of sensors. Its approach is more spatially oriented 

showing how the accuracy varies in the surveillance area. It uses the same idea of 

fixing the algorithm and assessing it against different geometries. Nonetheless, it 

does not show examples using bistatic radars or even a multistatic radars. Only 
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monostatic radars are considered. The work presented in this thesis has a different 

approach when presenting the results, showing for a particular target dynamics how 

the tracking performance varies when different geometries are used to track the 

target. Moreover, the work presented herein has considered that standard deviation in 

range and angle vary according to SNR and thus, distance to the target. 

In [57], the authors present simulations where the configuration of the radar network 

does not change and 4 different target trajectories and 3 different tracking algorithms 

are assessed. The paper shows different figures to illustrate the tracking accuracy in 

these different situations. Once more, it is another paper that approaches the problem 

of tracking a target in a multistatic scenario but it does not include information about 

how different configurations of radars would affect the results in tracking accuracy. 

On the other hand, important information can be extracted from the paper, for 

instance, the difference in tracking accuracy for each tracking algorithm that is 

executed. 

Some simulations are also performed in the work presented in [24]. In this case, only 

measurement accuracy is considered and 5 different configurations of radars are 

assessed by the use of “constant accuracy contours”: monostatic case, bistatic case, 

netted monostatic, netted bistatic (linear) and netted bistatic (triangular). Similarly to 

what has been done in this thesis, the total power of the systems are kept the same to 

make the comparisons fairer. [24] though does not go further to investigate tracking 

accuracy or to assess some additional geometries with more TXs, for example. From 

the same author, [7] presents a multistatic tracking system and makes comparisons 

between multistatic and netted monostatic radar systems from the tracking point of 

view. Contrasting these two papers [7] [24] with the work herein presented it is 

possible to see that this thesis, although not using the same type of graphs, goes 

further in the investigation of tracking performance in several different geometries of 

multistatic radars usually with more than 2 TXs or RXs. 

Additionally, the Matlab code developed for the purpose of this thesis can be reused 

and straightforwardly some parameters can be changed in order to assess how 

performance changes. Some of the parameters than can be changed include: 

transmitter power, beamwidth, operating frequency, pulse width and sampling 

interval. 
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Further research can be done simulating the use of Electronically Steered Antennas, 

assessing scenarios with more than one target, making the platforms to move 

intelligently according to the scenario, using 3D geometries and making the radars to 

communicate among them in order to synchronize and exchange data. Parameters 

that are considered to be ideal by this research can be modelled in further studies, for 

example, clutter levels, probability of detection, probability of false alarm data link 

delays and missed and out-of-sequence measurements. In addition, improvements in 

the algorithms of fusion and tracking can be developed aiming better accuracy and 

reduction in the computational load according to each geometry. 

Performing simulations with Electronically Steered Antennas will show, for 

example, how changing the sampling interval can improve tracking accuracy. The 

use of this kind of antenna allows the system to “look” at a certain region of the 

space immediately without having to wait for a complete revolution of a rotating 

antenna. The agility provided by this kind of antenna allows a resource management 

system to make the best use of the existing resources and from the ideas herein 

presented, the developer team of such system has an idea of where to move a 

platform, where to point the antenna, which sampling interval to use, how much time 

to be looking at a certain target and so on. 

In addition, from the ideas presented in this thesis, more analysis can be done if more 

variables are considered. For example, considering communication links delays can 

affect tracking accuracy and thus delays should be quantified and demonstrated how 

they could affect the performance of the whole tracking system. 

If the resource management system can move the nodes, it is important that the new 

positions are accurate. The simulations performed in this thesis have considered that 

the location of the platforms were very accurate without errors. Moving the platforms 

must be very important if the system is trying to avoid, for example, that a target lies 

in the region of the baseline of a bistatic radar. Or even if it is impossible, it can 

move some plataforms in order to keep the target on the forward scatter region 

(where the detection is very high) of 2 or more bistatic radars in order to find the 

position of the target by using high detection information coming from a number of 

bistatic radars. The problem here is that it might be necessary to have platforms that 

can move at velocities similar to the target velocity. 
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Finally, from the work presented in this thesis, it is expected that more aspects of the 

scenarios can be taken into account as well as more characteristics of the radar can be 

varied in order to help in the development of intelligent and adaptive systems that 

will be able to make the best use of all resources of a radar network in order to keep 

track of one or more targets. 

8.1 Summary 

Summarizing, the main contribution of this thesis is to show that it is possible to use 

characteristics of simple and cheap navigation radars (when they are used in a 

multistatic configuration) to track targets located as far as 70-80 km with RCS (0.1 

m
2
) that is smaller than the RCS of targets that usually this kind of radar is designed 

for. In addition, the thesis has shown how several different geometries (with one or 

more TXs and RXs) can affect the results in tracking accuracy and also showed 

quantitatively the respective accuracies along trajectory of the target. 

Some of the most important conclusions include: 

- Using the algorithms chosen, it was better to avoid targets crossing the 

baseline of bistatic radars 

- Adding more TXs to the system made it possible to achieve similar results if 

comparing to an equivalent more powerful radar 

- Splitting the power of one radar into smaller radars brought similar results 

and depending on the geometry could also bring better results, for example, 

making the tracking prediction to converge faster 

- Geometry is important and being able to move nodes to better locations 

according to the needs of the system could bring better results 

- Intelligent systems are needed in order to control the network aiming for a 

dynamic geometry that changes according to scenario 
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Appendix A - Matlab Code 

This is a CD-ROM that contains the Matlab source code used to perform the 

simulations reported in this thesis. 
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