
 
 
 
 
 

MECHANISMS OF  
ISCHAEMIC PROTECTION IN HUMANS 

 
 
 
 
 

Thesis presented for the degree of Doctor of Philosophy 

in the Faculty of Medicine, University College London 

 
 
 
 
 

 
 

Dr Michael Okorie 
 
 
 
 
 
 
 
 
 
 
 



 2 

Acknowledgements 
 

I am very grateful to Professor Raymond MacAllister for his supervision, support and 

for giving me the opportunity to work with him. A special thanks to Professor Patrick 

Vallance for believing in me and fully supporting my British Heart Foundation (BHF) 

PhD fellowship application. 

 

I am indebted to the BHF for the funding, and to all the volunteers who participated 

in the study. This thesis would not have been possible without their assistance. I 

also wish to acknowledge the support of Dr Stavros Loukogeorgakis who, from the 

outset, encouraged me with his drive and enthusiasm. I am also grateful to 

Professor John Deanfield for his assistance. 

 

Dr Adrian Hobbs of UCL performed chemiluminescence for nitrate and nitrites and 

Dr Roy Sherwood and Ms Tracey Drew of KCH supervised my ELISA for beta 

endorphins. I am sincerely grateful for their contribution. 

 

An extra special thanks to my wife (Pepe) and children (Michelle and Muna) who 

have stood by me and remained a loving family throughout.   

 

Finally, I give thanks to God for guiding me, especially through some very trying 

times. 

 

 

 



 3 

Abstract 

Reperfusion limits ischaemic tissue damage. Paradoxically, reperfusion can cause 

additional tissue injury and contribute to a composite phenomenon known as 

ischaemia reperfusion (IR) injury.  Therapeutic interventions aimed at reducing IR 

injury have the potential to improve outcomes in the management of ischaemic 

conditions. Protective procedures such as ischaemic preconditioning (IPC), 

ischaemic postconditioning (PostC), remote preconditioning (RIPC) and remote 

postconditioning (RPostC) have all been shown in animals and humans to be 

effective in reducing IR injury. Experiments in this thesis sought to determine 

tractable aspects of the mechanisms underlying these protective phenomena with a 

view to validating potential pharmacological targets in humans. IR induced 

endothelial dysfunction in the forearm of healthy volunteers was characterised by 

vascular ultrasound and venous occlusion plethysmography.  

IPC, PostC, RIPC and RPostC all protected against IR-induced endothelial 

dysfunction. Oral inorganic nitrates in the form of beetroot juice or potassium nitrate 

(KNO3) also protected against endothelial IR injury. The magnitude of protection 

from IR injury was similar.  

The mechanism of PostC was investigated in detail. Protection by PostC was 

blocked by glibenclamide, a non selective KATP channel blocker, suggesting that 

activation of these potassium channels was necessary for PostC-induced ischaemic 

protection. Selectivity of KATP channels was evident because glimepiride (a selective 

KATP channel blocker) did not affect the protective effect of PostC. A role for the 

mitochondrial permeability transition pore (mPTP) was suggested by the effect of 

ciclosporin (blocker of the mPTP) to mimic PostC-induced protection. These aspects 
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of the mechanism of PostC resemble previously identified mechanisms of IPC and 

RIPC in the human forearm.  

Studies were undertaken to explore the mechanism whereby protection spreads 

systemically. Systemic protection by RIPC from ischaemic injury to the endothelium 

was blocked by the opioid receptor antagonist, naloxone without any effect on 

protection conferred by IPC or RPostC These data implicate the opioid receptor 

pathway in the facilitation of RIPC, and is likely to involve a haematogenous 

mechanism. Conversely, the alpha adrenergic receptor antagonist phentolamine, 

blocked systemic protection from RPostC but had no effect on RIPC. This highlights 

a role of a component of the autonomic nervous system in the mediation of RPostC.  

Ischaemic protection in humans is mechanistically a complex process but results in 

this thesis contribute to the validation of pharmacological targets as a prelude to 

drug development. 
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1.1 Introduction 

Cardiovascular disease remains the major cause of death globally amounting to 17 

million deaths a year (1). Ischaemia accounts for the majority of these deaths and 

results from arterial occlusion mainly due to athero-thrombosis. Most commonly this 

presents clinically as coronary heart disease (CHD) and stroke which are projected 

to remain the leading causes of death worldwide over the next two decades (1). 

Timely reperfusion improves outcomes of CHD and stroke but paradoxically this 

causes an injury to tissues. The resulting injury is a composite of ischaemia and 

reperfusion – ischaemia-reperfusion (IR) injury. Reducing reperfusion injury might 

further improve the clinical effectiveness of existing reperfusion strategies.  

This thesis aims to use an in vivo model of IR injury in the human forearm to 

investigate the mechanisms of protective strategies against IR injury. These are 

postconditioning (PostC), remote preconditioning (RIPC), remote postconditioning 

(RPostC) and inorganic nitrate.  

 

1.2       Athero-thrombosis  

 

1.2.1 Definition and relevance to ischaemia 

Atherosclerosis is the most frequent underlying cause of human arterial thrombosis. 

It has been defined as “a multifocal, smouldering, immunoinflammatory disease of 

medium–sized and larger arteries fuelled by lipid” (2). This inflammatory process can 

ultimately lead to the development of complex lesions, or plaques, that protrude into 
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the arterial lumen and cause vascular obstruction and occlusion (3). This is 

manifested clinically as acute or chronic ischaemic syndromes involving the heart, 

brain, leg and other tissues. The main risk factors for the development of 

atherosclerosis are elevated plasma cholesterol, age, hypertension, diabetes, 

smoking and male gender (2). 

Pre-clinical atherosclerosis begins in early childhood and progresses during 

adolescence and adulthood (4, 5). In susceptible individuals under the influence of 

risk factors, clinical disease processes caused by atherogenesis become evident 

later in life.  

 

1.2.2 Pathology of atherosclerosis 

Arterial wall morphological changes, including thickening and reorganisation of the 

tunica intima, excess synthesis of collagenous matrix (fibroblastic intimal thickening) 

and permanent or dynamic deposition of lipids (fatty streaks) already occur in 

childhood or adolescence (6). A fatty streak is an accumulation of subendothelial 

lipid laden cells that are prevalent in young people and never cause symptoms (7, 

8).  In the presence of risk factors, endothelial dysfunction occurs and this is thought 

to be the promoter of the atherothrombotic disease process. 

Endothelial dysfunction and leakage of the endothelial barrier increases the 

expression of two classes of adhesion molecules, the selectins and the 

immunoglobulin gene superfamily [VCAM-1 and ICAM-1] (6, 9).  This leads to an 

accumulation of monocytes, T-lymphocytes and lipids in the subendothelial space 

where potential atherogenic lipoproteins are retained and modified to become 
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cytotoxic, proinflammatory, chemotaxic and proatherogenic (2, 6). The imbalance in 

lipoprotein influx and efflux, intraplaque haemorrhage and the development of the 

extracellular matrix promotes progression of early atherosclerotic lesions which are 

known as plaques (9). An advanced coronary plaque is composed of a necrotic lipid-

rich core and hypocellular fibrous cap (2). Rupture of the cap exposes the 

prothrombotic core to circulating blood and leads to vascular occlusion. 

Atherogenesis may have a genetic basis, making some individuals more susceptible 

to the effects of hyperlipidaemia (10). It has been proposed that microalbuminuria 

reflects a state of generalised transendothelial leakiness for plasma proteins, an 

important event in atherogenesis (10). Risk factor modification has an important 

influence on the progression of atherosclerotic disease, particularly blood pressure 

and cholesterol reduction.  

 

1.3 Ischaemia  

Ischaemia is the result of vascular occlusion and leads to deprivation of oxygen and 

nutrients in a tissue or organ. Research has focused mainly on myocardial 

ischaemia in view of its substantial impact on morbidity and mortality. The 

pathophysiologic mechanisms of ischaemia in the heart, however, also apply to 

other tissues and organs. 

Acute ischaemia is characterised by (a) cessation of aerobic metabolism, (b) 

depletion of creatine phosphate (high-energy phosphate), (c) onset of anaerobic 

glycolysis and (d) accumulation of glycolytic products such as lactate and catabolites 

of the nucleotide pools in tissues (11). These processes, which commence within 
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seconds of ischaemia, are consequent upon hypoxia and subsequent loss of aerobic 

adenosine triphosphate (ATP) production and if prolonged may lead to irreversible 

cell damage. The shift to an anaerobic source of ATP is compensatory but still only 

comprises about one fourth of the myocardial aerobic glycolytic rate which 

eventually ceases after about 60 minutes of ischaemia (11).  

 

1.3.1 ATP metabolism during ischaemia  

The high-energy bond of ATP is the main source of energy for myocardial function 

and ATP concentration has been identified as an important correlate of myocardial 

function following ischaemia (12, 13).  Reduction in oxidative phosphorylation 

through the citric acid cycle causes myocardial ATP levels to decrease progressively 

during ischaemia, resulting in decreasing levels of intracellular creatine phosphate 

and increasing levels of intracellular phosphate (demand for high energy phosphate 

exceeds supply) [Figure 1.1]. As the ATP is metabolised, adenosine diphosphate 

(ADP) begins to accumulate. ADP is in turn converted to ATP and adenosine 

monophosphate (AMP) by the action of adenylate kinase (11). The ATP formed from 

ADP by adenylate kinase is re-used as a source of energy while the AMP is 

converted to adenosine and inorganic phosphate (Pi) by 5’ nucleotidase (5’ND). The 

adenosine is deaminated to inosine via adenosine deaminase (14). Adenosine and 

inosine are nucleosides and in contrast to nucleotides, can diffuse from the myocyte 

to the extracellular space where the inosine is degraded to hypoxanthine and 

xanthine by the action of nucleoside phosphorylase and xanthine oxidase 

respectively (11). As the duration of ischaemia increases, further breakdown to 
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diffusable metabolites occurs resulting in decreasing levels of ADP and AMP which 

invariably affect supplementary ATP production (12). In addition, further oxidation of 

xanthine by xanthine oxidase is a source of generation of reactive oxygen species 

(ROS) (15, 16). Both processes may lead to cell death.  

 

Figure 1.1: Changes in ATP metabolism during ischaemia. Tissue hypoperfusion causes a reduction in 
oxidative phosphorylation which is the main cellular source of ATP (aerobic pathway). The cells resort to other 
sources of ATP (anaerobic pathway) which provide amounts of ATP insufficient for normal cellular function. If this 
process is prolonged irreversible cell damage will occur. (Adapted from Jennings RB, 1982) 
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1.3.2 Ionic homeostasis during ischaemia 

Energy supply in the ischaemic myocardium is determined by the rate of ATP 

generation and the declining tissue ATP concentration (rate of high energy 

phosphate utilisation, or demand) (11). With prolonged ischaemia, anaerobic 

metabolism leads to the abnormal accumulation of metabolites and lactic acid, a 

decrease in intracellular pH and K+ and an increase in intracellular Na+ and Ca2+.  

These changes are deleterious to myocardial function (15, 17).   

The reduction in intracellular pH activates the Na+/H+ exchanger in an attempt to 

restore the pHi. Together with  the reduction of ATP production and inhibition of the 

Na+/K+ -ATPase there is an increase in the intracellular Na+
 , Cl- and water, which 

leads to cell swelling (15, 17). Inhibition of the Na+/Ca2+ exchanger and both 

sarcolemmal and plasmalemmal Ca2+ ATPases, which usually pump Ca2+ out of the 

cell, increases intracellular Ca2+
 (18). This may result in activation of degradation 

enzymes such as phospholipases, proteases and nucleases that can lead to 

irreversible cell damage characterised by disruption of the plasma membrane (15, 

17) [Figure 1.2].  

 

1.3.3 Mitochondrial function during ischaemia 

Mitochondrial integrity is important in cell survival. An impermeable inner 

mitochondrial membrane is essential to maintain the membrane potential and pH 

gradient that enables ATP synthesis through oxidative phosphorylation. If the 

permeability barrier of the inner membrane is disrupted, mitochondria become 

uncoupled, and thus, can neither synthesise ATP by oxidative phosphorylation nor 
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separate cytosolic and mitochondrial pools of metabolites (15). These mitochondrial 

changes, which occur during ischaemia, have been attributed to an increase in 

intracellular phosphate and disruption in cell Ca2+ homeostasis and may ultimately 

lead to cell death (15, 19). 

 

1.3.4 Vascular injury during ischaemia 

Endothelial cells maintain vascular homeostasis and are vulnerable to ischaemic 

damage.  Prolonged hypoxia reduces endothelial cell production of certain bioactive 

agents (prostacyclin, nitric oxide) and stimulates the production of other agents 

(endothelin, thromboxane A2) (20). However, overt microvascular damage in the 

myocardium does not appear until after 60 minutes or more of severe in vivo 

ischaemia, at which time endothelial disruption is believed to contribute to 

microvascular obstruction. (11). 

 

1.3.5 Irreversible ischaemic injury  

The hallmarks of early phase irreversible injury include: a) ATP<10% of control; b) 

high concentrations of H+, AMP, inosine, and hypoxanthine; c)  cessation of  

anaerobic glycolysis; d) high lactate and low glycogen; e) mitochondrial swelling with 

amorphous matrix densities and f) focally disrupted sarcolemma which seems to be 

the final event (11).  Reperfusion prevents progression from reversible to irreversible 

injury by restoration of oxidative phosphorylation and washout of harmful metabolites 

of glycolysis such as lactate. 
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Figure 1.2: Cellular ionic homeostasis during ischaemia. Tissue hypoperfusion results in untilisation of 
anaerobic sources of ATP production. The formation of acidic cellular metabolites leads to a disruption of ionic 
homeostasis which is deleterious to cellular membrane integrity. This culminates in cellular injury and death. 
(Adapted from Buja LM, 2005) 
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1.4 Reperfusion injury 

Reperfusion is essential for tissue salvage but paradoxically has deleterious effects 

on tissues. Reperfusion injury does not occur independently of ischaemia and this 

composite is often referred to as ischaemia-reperfusion (IR) injury.  

A period of prolonged ischaemia causes the cells to resort to the glycolytic source of 

ATP production. This pathway does not provide sufficient amounts of ATP. 

Furthermore, the anaerobic state leads to the accumulation of lactic acid,   a 

decrease of the intracellular pH, and an increase in intracellular Na+ concentration. 

Further depletion of ATP leads to dysfunction of the Na+/K+ -ATPase which causes a 

reversal of the Na+/Ca2+ antiporter and intracellular Ca2+ overload. The details of this 

process have been discussed above. With reperfusion the resupply of oxygen 

causes an abundance of oxygen free radicals which in combination with intracellular 

Ca2+ overload have a deleterious effect on cellular function. The duration of 

ischaemia correlates with the amount of tissue damage and without reperfusion 

there will be no tissue salvage. However, timely reperfusion of salvageable tissue 

may itself account for up to 50% of the final myocardial infarct size in experimental 

studies (21).  

 

1.4.1 Mechanism of reperfusion injury 

Recent research has demonstrated a key role for mitochondria as an end effector in 

the mechanism of IR injury.  Myocardial reperfusion leads to a number changes 

which include: the generation of reactive oxygen species (ROS), intracellular calcium 

overload, the rapid restoration of physiologic pH, and inflammation (21). These 
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changes lead to disruption of mitochondrial membranes (permeabilisation) which 

plays a crucial role in cell death (15, 22 - 24).  

Cell death may occur via a variety of pathways. Apoptosis is a programmed cell 

death and results from permeabilisation of the outer mitochondrial membrane 

(OMM) which leads to release of cytochrome c and other pro-apoptotic factors (25, 

26). The details of this process remain unclear but it is thought to be a cause of 

naturally occurring cell death in response to developmental, homeostatic or internal 

damage signals. Autophagy occurs in cellular nutrient deprivation and entails 

recruitment of proteins such as p19ARF to the mitochondria predisposing them to 

engulfment by autophagic vacuoles and transfer to lysosomes (26). The process of 

necrosis involves opening of the non-specific pore in the inner mitochondrial 

membrane (IMM), known as the mitochondrial permeability transition pore (mPTP) 

(25, 26) [Figure 1.3]. Necrosis results from deleterious cellular conditions such as 

the presence of toxins or during reperfusion injury. 

 

1.4.2 The mitochondrial permeability transition pore 

The mPTP is a non-specific pore in the inner mitochondrial membrane that normally 

remains closed but under conditions of cellular stress can open and lead to cell 

death. There are two major consequences of opening of the pore (24): a) There is 

free passage of molecules of <1.5kDa across the inner mitochondrial membrane, but 

not proteins. This creates a colloidal osmotic pressure that causes the mitochondria 

to swell and eventually there is rupture of the outer membrane leading to release of 

proteins such as cytochrome c into the intermembrane space. The result is cell 
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death. b) The inner membrane becomes freely permeable to protons and this 

uncouples oxidative phosphorylation. The resulting depletion of intracellular ATP 

levels leads to disruption of ionic and metabolic homeostasis and activation of 

degradation enzymes. If pore closure does not occur then these changes will lead to 

irreversible cell damage (22-24).  

The exact molecular structure of the mPTP is not yet known, but it is thought to 

comprise two candidate proteins - adenine nucleotide translocase (ANT) and the 

mitochondrial phosphate carrier (PiC) which occur in abundance in the IMM and are 

susceptible to damage by oxidant stress (26).  Another mitochondrial protein known 

as cyclophilin D (Cyp-D) possesses peptidyl-propyl cis-trans isomerase (PPIase) 

activity and binds to PiC under the influence of increasing Ca2+ concentration and 

oxidative stress.   This leads to a conformational change in either PiC or ANT that 

promotes pore formation/opening (24, 26) [Figure 1.4]. Evidence of a role for Cyp-D 

in pore formation is supported by studies in which pharmacological inhibition or 

genetic ablation of Cyp-D conferred resistance to acute IR injury (24, 27-31).  By 

preventing Cyp-D binding to PiC or ANT, ciclosporin acts as a potent inhibitor of the 

mPTP. Another potent inhibitor of the mPTP is Sangliferin A (SfA), which inhibits 

PPIase activity (24). Other proteins thought to be implicated in mPTP formation 

include the voltage dependent anion channel (VDAC), the peripheral 

benzodiazepine receptor (PBDR), hexokinase, and Bcl-2, but their role is not well 

defined (26). Experimental evidence indicates that the mPTP is closed during 

ischaemia and only opens during reperfusion (32). This makes the early phase of 

reperfusion an attractive therapeutic target. 
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Figure 1.3: mPTP: the final common pathway of reperfusion injury. With reperfusion, the rapid 
replacement of oxygen causes mitochondrial re-energisation which leads to generation of ROS, a further 
increase in intracellular calcium concentration (due to a combination of dysfunction of the sarcoplasmic reticulum 
calcium uptake mechanism and rapid restoration of the Na+/Ca2+ exchanger activity) and a reduction in pH. 
These processes lead to opening of the mPTP resulting in cell death.   
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Figure 1.4: A proposed working model of the mPTP (26). 

 

1.4.3 Reactive oxygen species  

Free radicals are molecules that contain one or more unpaired electrons and so are 

chemically reactive. Oxygen free radicals are formed continuously in minute 

quantities during normal metabolism of mammalian cells and these are inactivated 

by free radical scavenging systems such as superoxide dismutase, catalase and 

glutathione peroxidase (33-35).  During IR injury increased production overwhelms 

these protective mechanisms, and increased concentration can be detected by using 

chemiluminescence, fluorescent detection and electron paramagnetic resonance 
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spectroscopy (36-38).  In addition, the reduction of IR injury by ROS scavengers in 

experimental models implicates their role in IR injury (39-42).  

ROS generation in reperfused myocardium occurs within the endothelial cells and 

myocytes. Enzymatic sources include activation of leucocyte NADPH oxidase, 

xanthine oxidase, mitochondrial oxidative phosphorylation, cycloxygenase mediated 

unsaturated fatty acid oxidation, catecholamine oxidation, P450-mediated oxidation, 

uncoupling of eNOS, and iron release and redox cycling (43, 44).  The overall 

burden of oxidative stress is further exacerbated by chemotaxis of leucocytes 

resulting from ROS produced by endothelial cells and myocytes. 

NADPH oxidase (also called Nox) is a major source of superoxide and is found 

mainly in phagocytes (neutrophils, eosinophils, monocytes and macrophages) (45). 

The enzyme is inactive in resting phagocytes but is activated by contact with 

microbes or inflammatory mediators (45, 46). Structurally, NADPH oxidase consists 

of the membrane bound catalytic subunit (Nox 1 – 5) that transfers electrons from 

NADPH to molecular oxygen to form superoxide, a smaller membrane-bound protein 

(p22phox) that stabilizes the Nox subunit within the membrane and cytosolic 

regulatory subunits – p47phox, p40phox, p67phox and GTPase RAC (45, 46).  

IR injury results in neutrophil activation which promotes NADPH oxidase activity and 

increased ROS production (47). The role of NADPH oxidase in the pathophysiology 

of IR injury is suggested by upregulation of Nox 2 in ischaemic human 

cardiomyocytes (48) and protection against IR injury in NADPH oxidase knockout 

mice in a variety of organs (49-52).  These findings are supported by evidence from 

a recent study, using a human in vivo model of IR injury.  Patients with chronic 
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granulomatous disease who have mutations in genes encoding for specific NADPH 

oxidase with disruption of oxidase activity, exhibit reduced endothelial IR injury (53).  

Xanthine oxidoreductase is an another important contributor to the total cellular ROS 

load and exists in two interconvertible forms – xanthine dehydrogenase (XDH) and 

xanthine oxidase (XO), both of which catalyse the conversion of hypoxanthine and 

xanthine (54).  XDH utilises mainly NAD+ to accept electrons yielding NADH and uric 

acid whereas XO has a greater affinity for oxygen forming superoxide and hydrogen 

peroxide. The relative availability of these two forms is therefore important in 

determining the amount of ROS produced by these enzymes.  

ROS are therefore recognised to contribute to cell death during IR injury in 

experimental studies using animal and human models of IR injury. However, 

reducing ROS activity has proved to be an intractable therapeutic target to date. A 

number of clinical studies of antioxidants in acute ischaemia have demonstrated a 

null therapeutic effect (55). The reasons for this might be variability in clinical 

characteristics, dose and timing of interventions in experimental and clinical studies. 

 

1.4.4 Neutrophil activation 

IR injury activates the innate immune mechanisms to induce an inflammatory 

reaction by increasing the expression of cytokines (TNF, IL-1β, IL-6, IL-8), 

complement fragments (C5a), ROS, leukotriene B4, thromboxane A2, platelet 

activation factor, ICAM and P-selectin (56). This promotes chemotactic recruitment 

of neutrophils and their adhesion to the endothelium. This causes occlusion of the 

microvasculature and the release of neutrophil-derived mediators of IR injury 
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(proteolytic enzymes, ROS, CD 11/CD18). Evidence for a pathogenic role for 

neutrophils during IR injury is mainly from animal studies in which protection against 

IR injury was achieved with neutrophil depletion or specific blockade of neutrophil 

adhesion molecules (57-61).  

However, the significance of neutrophil activation remains contentious given that IR 

injury occurs in neutrophil-free systems such as isolated heart preparations (56). In 

addition, results from clinical studies of anti-neutrophil and anti-inflammatory 

therapies have not been successful in reducing IR injury (55, 56).  

 

1.5 IR injury and the vasculature  

Vascular endothelial cells appear to be particularly susceptible to injury as a result of 

both ischaemia and reperfusion. This manifests as endothelial dysfunction that 

affects the arterioles, capillaries and venules (20).  

 

1.5.1 Physiology of endothelium 

The endothelium is a single layer of cells that lines the inner surface of blood 

vessels. They were initially thought to be inert, acting as a barrier between blood and 

vascular smooth muscle. However, vascular endothelial cells have been 

demonstrated to possess paracrine functions which regulate a number of vascular 

processes including vascular tone, cell adhesiveness and coagulation (62). The 

endothelial effect on blood vessel function is achieved by the local production of 

vasodilators (NO, prostacyclin and endothelium derived hyperpolarisation factor, 
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EDHF) and vasoconstrictors (thromboxane and endothelin) (62). During normal 

vascular function the endothelial release of vasodilators predominates and any 

changes in this balance may lead to altered vascular tone. The release of 

vasodilators by endothelial cells can be potentiated by a number of chemical 

agonists (acetylcholine, substance P, bradykinin) and physical factors such as sheer 

stress generated by an increased blood flow. 

 

1.5.2 Endothelial mediators 

Furchgott and Zawadzki demonstrated that vascular smooth muscle relaxation 

occurred in response to acetylcholine and this was dependent on an intact 

endothelial layer (63). They named the mediator responsible for this effect 

endothelium derived relaxing factor (EDRF) and this was later identified as NO. 

NO is a free radical gas derived in the endothelium mainly by the conversion of the 

precursor amino acid L-arginine in the presence of molecular oxygen and co-factors 

such as BH4, NADPH and flavin adenine dinucleotide (FAD) (64). This process is 

catalysed by the constitutively expressed endothelial nitric oxide synthase (eNOS). 

However other isoforms of NOS may contribute to NO bioavailability and include 

neuronal (n) NOS and inducible (i) NOS. The nomenclature for the NOS isoforms 

reflects the tissues of origin for the original protein and DNA isolates and their level 

of expression might vary under different physiological conditions (64, 65). NO is 

freely diffusible and its vasodilator properties of NO arise from its effect on vascular 

smooth muscle cells by activating soluble guanylate cyclase (sGC). This leads to 

increased production of cyclic 3’,5’ guanosine monophosphate (cGMP) and a 
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reduction in intra-cellular calcium within the smooth muscle cell, causing smooth 

muscle relaxation (66).  The biosynthesis of NO is regulated by endogenous NOS 

inhibitors [asymmetrical dimethylarginine (ADMA) and NG-monomethyl-L-arginine 

(L-NMMA)]. An alternative pathway of NO generation (endothelium independent), 

thought to be activated during ischaemia, will be discussed in section 1.10 of chapter 

1 of this thesis. 

Prostacyclin and thromboxane A2 are endothelium derived molecules synthesized 

from the precursor compound arachidonic acid (AA) which is released from cell 

membrane phospholipids (67, 68). Cyclo-oxygenases (constitutive COX-1 and 

inducible COX-2) act on AA to generate prostaglandin endoperoxides which are the 

substrate for prostacyclin and thromboxane synthases (67, 68). Prostacyclin causes 

vasodilatation via activation of adenylate cyclase leading to increased levels of cyclic 

adenosine monophosphate (cAMP) which causes smooth muscle relaxation. 

Furthermore, prostacyclin is a potent inhibitor of platelet aggregation. Thromboxane 

A2, on the other hand, produces vasoconstriction by causing smooth muscle 

contraction.  

EDHF is an endothelial mediator that complements the vasodilator effects of NO and 

prostacyclin. A number of candidiates have been proposed to be EDHFs, including 

prostanoids, potassium ions, and C-type natriuretic peptide. Hyperpolarisation of the 

vascular smooth muscle decreases calcium influx and this leads to relaxation. The 

vasodilator effect of EDHF increases as the blood vessel size decreases such that 

their effect is thought to predominate in resistance vessels whereas NO is the 

principal vasodilator in conduit vessels(69). However, it is postulated that the EDHF-

mediated response might become more prominent when NO production is 
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compromised since mesenteric arteries for eNOS knockout mice showed an 

upregulation of EDHF (70).  

 

The endothelins are peptides that possess potent vasoconstrictor properties.  

Endothelial cells in humans produce endothelin-1(ET-1) and increased circulating 

levels of these have been correlated with the development of atherosclerosis and 

coronary endothelial dysfunction (71-73).  ET-1 acts via two major receptors; 

endothelin – A (ETA) which is present on vascular smooth muscle cells and 

endothelin – B (ETB) which is located on both vascular smooth muscle and 

endothelial cells. ETB receptors which are expressed on the endothelial cells mediate 

the release of NO and promote pulmonary clearance and endothelial reuptake of 

ET-1. This has been the justification for investigating the potential role of selective 

ETA   antagonists in the treatment of coronary artery endothelial dysfunction and 

hypertension (74-76).  

 

1.5.3   IR induced endothelial dysfunction 

Vascular endothelial cells are particularly susceptible to the effects of IR injury. Ku et 

al demonstrated that coronary artery endothelial dysfunction occurred after 90 

minutes of ischaemia and 1-2 hours of reperfusion in the canine heart (77). IR-

induced endothelial dysfunction was seen within the first few minutes of reperfusion 

whereas with ischaemia alone, significant impairment in endothelial response to 

vasodilators is only detected after 2 hours. 

Endothelial cells produce NO (via NOS) and superoxide (from a number of sources 

including NADPH oxidase). Under normal conditions, the rate of production of NO 

exceeds that of superoxide production. This allows for NO a) to effectively scavenge 
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the low intracellular levels of superoxide; b) to modulate arteriolar tone via the 

guanylate cyclase activation in smooth muscle; c) to inhibit platelet aggregation and 

thrombus formation and d) to minimise the adhesive interactions between leucocytes 

and the endothelial cell surface (20). After IR injury, this balance is reversed such 

that accumulation of superoxide occurs and NO production is impaired. NO 

synthesis depends on the availability of molecular oxygen, which is reduced during 

ischaemia. Superoxide production increases as a result of the mechanisms 

described in section 1.4.3.  The relatively low levels of NO react with the abundant 

supply of superoxide further reducing NO levels. The net effect is a reduction of 

endothelium-dependent vasodilatation and the production of other reactive oxygen 

species such as H2O2 and HOCl, which further impair endothelial function (20). In 

addition to impairment of endothelial function, reactive oxygen species promote 

inflammation and apoptosis which contribute to the process of cellular damage 

during IR.  

1.5.4 The vascular “no-reflow” phenomenon 

Another vascular manifestation of IR injury is the “no-reflow” phenomenon. This has 

been defined as incomplete and non-uniform reperfusion at the microvascular level 

despite adequate re-opening of the proximal artery after a period of transient 

ischaemia (78).  The importance of this phenomenon lies in the fact that it correlates 

with infarct size and provides useful prognostic information (79). Reperfusion is 

thought to cause microthromboemboli and particles of plaque to be showered 

downstream after plaque rupture, leading to obstruction of small arteries and 

arterioles (79). The major determinants of the degree of no-reflow are the duration of 
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occlusion, infarct size and length of reperfusion and no-reflow tends to persist over a 

period of at least 4 weeks (78).  

 

1.6 Protection against IR injury  

Over the last two decades, interventions that are protective against IR injury have 

emerged. Various models of IR injury (cell cultures, isolated perfused hearts and 

animal models in vivo) have been used to investigate strategies to reduce cellular 

and tissue damage. Some of these interventions have been translated to clinical 

studies in patients and could potentially lead to a significant reduction of reperfusion 

injury in the clinical setting. There are 4 types of intervention that are considered in 

this thesis; ischaemic preconditioning, ischaemic postconditioning, remote 

conditioning and administration of oral inorganic nitrate, each of which is discussed 

in turn below. 

 

1.7   Ischaemic preconditioning  

This was first described in 1986 when Murry et al demonstrated in an anaesthetized 

dog, that 5 minute periods of circumflex artery occlusion alternating with 5 minute 

periods of reperfusion prior to a 40 minute total occlusion of the same artery, 

reduced myocardial infarct size (80) [Figure 1.5]. The protective effects of 

preconditioning (IPC) have since been reproduced in animal and human models. 

The IPC stimulus is applied prior to the onset of index ischaemia and causes two 

phases of protection; a “classic” or “early” or “first window of protection (FWOP)” 
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phase and the “delayed” or “late” or “second window of protection (SWOP)” phase. 

Classic IPC, as described by Murry and colleagues, in which protection by IPC was 

lost when the interval between the IPC stimulus and the infarct protocol was 

extended beyond 60 minutes. Delayed IPC was based on a discovery that even 

though initial protection by IPC was lost after 60 minutes, protection re-emerged at 

24 hours, lasting for up to 72 hours (81-83).  

 

Figure 1.5: Original description of ischaemic preconditioning canine model of myocardial ischaemia 
reperfusion injury showing reduction in infarct size with episodes of circumflex artery occlusion-reperfusion prior 
to the injurious ischaemia in dogs (80). 

 

 

1.7.1   Mechanisms of ischaemic preconditioning  

IPC promotes the accumulation of protective ligands (triggers) which activate a 

number of mediators and through a complex process of cell signalling protection 

against IR injury is conferred by end effectors. In delayed IPC there is prominence of 
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gene transcription and synthesis of new proteins rather than activation of existing 

proteins. This enables a sustained period of protection after the FWOP. However the 

mechanisms of early and delayed IPC remain similar [Figure 1.6a & b]. 

 

1.7.1.1     Triggers of ischaemic preconditioning 

The IPC stimulus promotes the release and accumulation of triggers which initiate 

the process of ischaemic protection. Adenosine (84, 85), bradykinin (86, 87), opioids 

(88-90), NO (91) and acetylcholine (92, 93) have all been identified as triggers and 

act via cell surface G-coupled receptors. Evidence for involvement of these ligands 

in IPC stems from studies that show that the protective effects of IPC are abolished 

in receptor knockout animals or with pharmacological blockade of their respective 

receptors. The receptors are proposed to act in parallel such that pharmacological 

antagonism of an individual receptor raises the ischaemic threshold required to 

trigger protection by IPC (94). Other autacoids implicated as triggers of IPC include 

free radicals (95, 96), norepinephrine (97) and CGRP (98). 

 

1.7.1.2    Mediators of ischaemic preconditioning 

The triggers of IPC activate second messengers including protein kinase C epsilon 

(PKCε), tyrosine kinases, phophatidylinositol 3-kinase (PI3K), Akt, mitogen-activated 

protein kinase (MAPK), extracelluar receptor kinase (ERK), JAK/STAT and nuclear 

factor κB (94). In addition, some downstream proapoptotic proteins are inactivated. 

These include glycogen synthase-3β (GSK-3β) and the Bcl-2 proteins – Bad and 
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Bax (99-101). eNOS activation leads to generation of NO and this activates protein 

kinase G via elevation of intracellular cGMP. Some downstream consequences of 

PKCε include KATP channel opening which further enhances PKCε production and 

generates ROS which is thought to be an essential part of the signalling cascade 

(Figure 1.6a).  

The transcriptional regulator, nuclear factor kappa B (NF-κB) plays a prominent role 

in the modulation of several genes during delayed IPC. This was evident in studies 

which showed that delayed IPC induced NF-κB activation and the NF-κB inhibitor 

DDTC blocked the protective effect of delayed IPC in a rabbit model of IR Injury 

(102). This  group also demonstrated that delayed IPC-induced activation of NF-κB 

and ischaemic protection was blocked by pre-treatment with the NOS inhibitor NG-

nitro-L-arginine (L-NA), the ROS scavenger N-2-mercaptopropionyl glycine, the PKC 

inhibitor chelerythrine and the tyrosine kinase inhibitor lavendustin A (102). The 

results highlighted the importance of activation of these pathways during delayed 

IPC and the possible role of NF-κB as the common distal pathway of delayed IPC. 

NO has often been considered to act as both a trigger and a mediator during 

delayed IPC.  eNOS releases NO following the IPC stimulus and iNOS mediates the 

formation of NO which confers protection 24-72 hours later. This is indicated by a 

biphasic response in measured NOS activity, though there appears to be a degree 

of overlap (103). The loss of the delayed IPC-induced ischaemic protection with a 

pharmacological inhibition of NOS or in iNOS knockout mice implicates a role for NO 

and specifically iNOS in delayed IPC (104, 105).   
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1.7.1.3   Effectors of ischaemic preconditioning 

KATP channels are proteins that play a key role as effectors of the IPC stimulus.  KATP 

channels consist of inward rectifier potassium channels (KIR) and sulfonylurea 

receptor (SUR) subunits which form functional units (106, 107). Isoforms of KIR 

(KIR6.1 and KIR6.2) and SUR (1, 2A, 2B) result in heterogeneous populations of KATP 

channels, with differing tissue specificity (108, 109).  KATP channels are present the 

plasma membrane (sarcolemmal KATP channels) and mitochondria (mitochondrial 

KATP channels).  Both populations are thought to have a similar structure and are 

implicated in IPC (110).  

Evidence of involvement of KATP channels arises from studies in which the 

pharmacological antagonists (glibenclamide – nonselective; HMR1098 – selective 

for sarcolemmal KATP channels; 5-hydroxydecanoate – selective for mitochondrial 

KATP channels) abolished the protection by IPC and pharmacological KATP channels 

openers such as diazoxide and nicorandil mimicked protection by IPC (94). In 

addition, the loss of protective effect of IPC in KATP channel knockout mice models of 

IR injury has implicated their role in the mechanism of IPC (111). Evidence suggests 

that the mitochondrial KATP channels play a more prominent role in IPC, activation of 

which prevents opening of the mPTP, thereby reducing IR injury (see section 1.4.2) 

(112, 113). Suggested mechanisms by which KATP channel activation inhibits the 

mPTP include reduction in mitochondrial calcium load (promoting efflux or reducing 

entry), improvement in mitochondrial energy production by enhancing oxidative 

phosphorylation and reduction of ROS levels (113). Possible end effectors that play 

a role specific to delayed IPC includes heat shock proteins (HSP), iNOS, COX and 

antioxidant enzymes (94, 114). 
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a. 
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Figure 1.6:  Major mechanisms of ischaemic preconditioning (IPC). (a) Early IPC promotes the 
accumulation of protective ligands (green panels) which activates a complex cascade of intracellular events. 
Interestingly the opening of the mKATP channels by PKC activation generates ROS which further activation of 
PKC. Inhibition of processes which facilitate mPTP opening (red panels) forms an essential part of the 
mechanism of early IPC. (b)Similarly, the triggers of late IPC activate a signal transduction process that entails 
activation of kinases and transcription factors and gene transcription. These processes facilitate the formation of 
new proteins which serve as effectors (Adapted from Stein et al 2004). 

 

1.7.2   Clinical application of ischaemic preconditioning 

Since the description of IPC, it has consistently produced significant reduction in IR 

injury in several experimental models. Yellon and colleagues demonstrated the 

reduction of myocardial injury in patients undergoing coronary artery bypass surgery 

using IPC which comprised cross clamping of the aorta (115). Following this, a 

number of studies demonstrating cardioprotection with IPC protocols  have been 

performed in patients undergoing elective procedures such as  aortic and mitral 

valve replacements and coronary artery by-pass surgery(116, 117). Furthermore, 

studies have shown that pre-infarct angina might serve as an IPC stimulus and 

b. 
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confer cardioprotection in patients who present with acute myocardial infarction 

(118-120). One major concern has been the safety of the IPC stimulus which often 

involves intermittent clamping and unclamping of the aorta or brief coronary artery 

occlusion and reperfusion in minimally invasive coronary artery by-pass surgery. In 

addition, some organs, such as the brain, are at a risk of IR injury but not accessible. 

This created the need to develop preconditioning mimetic drugs which could be 

administered prior to elective procedures or prophylactically in high risk patients. 

Based on the knowledge of the molecular mechanisms of IPC, mimetics such as 

adenosine, nicorandil and nitroglycerin have been tested in humans but have 

produced mixed results (21,121). Another hindrance to the clinical development of 

IPC is that it is not applicable during unplanned ischaemic syndromes.  

In summary, IPC is an established method of ischaemic protection but two issues 

limit its clinical application. Firstly, there are risks associated with brief periods of 

ischaemia to vital organs. Secondly, most cardiovascular events are unpredictable, 

making it impossible to schedule any such prior preconditioning events. It has 

therefore been necessary to explore other strategies which might be more clinically 

applicable.     

 

1.8   Ischaemic postconditioning  

Another form of ischaemic protection, discovered more recently, is known as 

ischaemic postconditioning (PostC).  Zhao and colleagues showed in a canine 

model, that after a 45 minute episode of sustained myocardial ischaemia, the 

interruption of myocardial reperfusion with three 30 second cycles of alternating 
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reperfusion/ischaemia reduced the myocardial infarct size by almost 50% (122). 

Furthermore, this schedule of interrupted reperfusion (PostC) also prevented 

coronary artery endothelial dysfunction, and neutrophil accumulation in the area at 

risk. Results of this study not only identified a novel method of ischaemic protection 

but also demonstrated that its protective effect was comparable to IPC. 

The application of the PostC stimulus early in reperfusion is crucial. This is evident in 

the loss of protection with as little as a one minute delay in application PostC 

(123,124). Different schedules of PostC have been demonstrated to be protective 

and include (3-6) cycles of brief (10-30 seconds) alternating ischaemia/reperfusion 

(125,126). 

PostC clearly influences specifically the reperfusion phase of IR injury, yet in general 

it has a similar degree of ischaemic protection as IPC (122, 127,128). This suggests 

that much of the reversible tissue injury following arterial occlusion happens early in 

the reperfusion phase. An additive cardioprotective effect when both stimuli are 

applied has been observed in the rat, but results have not been consistent in rats 

and across species (127-131). One interpretation of this is that in most species there 

is mechanistic overlap between IPC and PostC. The additive effect seen in the some 

rat models is consistent with a smaller degree of protection by PostC or a larger 

component of ischaemic injury in this species.  
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1.8.1 Mechanisms of postconditioning  

The mechanisms of PostC resemble that of IPC and can be considered in similar 

terms: triggers, mediators, effectors [Figure 1.7]. 

 

1.8.1.1 Triggers 

PostC promotes the accumulation or delays the washout of cardioprotective ligands 

which activate G-protein coupled receptors (132), many of which have been 

implicated in IPC. Adenosine is involved as non-selective pharmacological 

antagonism (8-ρ-sulfophenyl theophylline) of adenosine receptors during reperfusion 

abolished the protective effect of PostC (133, 134). Studies with selective adenosine 

receptor ligands have suggested a role for A2 receptor subtypes (A2A in mouse and 

A2B in rabbits) in PostC (133, 135). Bradykinin B2 receptors have also been 

implicated in PostC, because  5 cycles of 10 seconds intermittent bradykinin infusion 

triggered PostC-like protection and the non-peptidic bradykinin B2 receptor 

antagonist - WIN64338 blocked PostC (136). Endogenous opioids appear to have a 

role because the protective effects of PostC are blocked by the non-selective opioid 

receptor antagonist naloxone and the selective [delta]-opioid receptor antagonist 

naltrindone (137,138). Erythropoietin (EPO) receptor expression in hypoxic tissues is 

increased and higher endogenous EPO levels have been associated with smaller 

infarct sizes in patients undergoing PCI for acute myocardial infarction (139). Indeed 

administration of EPO at reperfusion also reduces infarct size in several animal 

models but this protective effect is yet to be reproduced in humans (140-142). 
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1.8.1.2 Mediators 

The endogenous protective ligands described above are thought to cause the 

activation of intracellular signalling molecules and prosurvival kinases, and similar to 

IPC.  

Prosurvival kinases (reperfusion injury salvage kinases, RISK) activated during IPC 

have been implicated in PostC (143, 144). They include PI3/ Akt, ERK 1/2, JNK, 

Protein kinase C, Protein kinase G and p70S6K. Using a rat isolated heart model, 

PI3K/Akt activation has been identified as a mediator of PostC because the 

administration of PI3K inhibitors (LY294002 or wortmannin) in the first 15 minutes of 

reperfusion inhibited PostC induced protection (131). Similarly, PD98059, a 

MAPK/ERK inhibitor aborted the protection afforded by PostC in rabbit myocardium, 

thus identifying a role for MAPK/ERK in PostC (145). PostC has also been found to 

be dependent on protein kinase C (PKC) signalling in that the infarct-sparing effect 

of PostC was abrogated by the non-selective PKC inhibitor, chelerythrine and 

PKCepsilon inhibitor, KIE1-1 (146). Administration of the PKCdelta inhibitor, rottlerin 

seemed to mimic the protective effect of PostC. These data suggest that there is an 

increase in PKCepsilon activity and a reduction in PKCdelta activity in PostC as is 

the case for IPC. Acidosis might have a direct co-stimulating effect on these kinases; 

phosphorylation of Akt and ERK induced by postconditioning was blunted by the co-

treatment with sodium bicarbonate (147).  

Several interventions have been shown, experimentally, to elicit cardioprotection 

when administered at the time of reperfusion through activation of the RISK pathway 

and include insulin, IGF-1, erythropoetin, G-CSF, leptin, atorvastatin, pioglitazone, 
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atrial natriuretic peptides (ANP), Rho kinase inhibitors (Fasudil) and oestrogen (144). 

This highlights the importance of the RISK pathway in cardioprotection and creates 

the potential for use of some of these agents clinically. In addition to the up-

regulation of antiapoptotic kinases, PostC causes downstream inhibition of 

proapoptotic proteins such as GSK-3β and members of the Bcl-2 protein family 

(Bad, Bax) (148, 149).  

The demonstration of increased eNOS-ser1177 phosphorylation after PostC and the 

loss of protection by PostC with a selective soluble guanylyl cyclase (sGC) inhibitor 

(1H-[1, 2, 4]oxadiazolo[4,3-α] quinoxalin-1-one, ODQ) is evidence that 

GC/NO/cGMP pathway is involved in PostC  (131, 134). In addition, in a rabbit heart 

model of IR injury, infusion of the NOS inhibitor, N-nitro-L-arginine methyl ester (L-

NAME) before the onset of reperfusion caused a loss of protection by PostC (145). 

Subsequently Penna and colleagues have demonstrated, in rat isolated hearts, that 

NOS and sGC play different roles in PostC. Their study revealed that the protection 

afforded by PostC was only blunted by the NOS inhibitor, L-NAME but fully 

abolished by the sGC inhibitor, ODQ suggesting an additional route of activation of 

sGC by PostC which is NOS-independent (150).  

Signaling, via NO, leads to accumulation of cGMP which causes activation of PKG. 

During rapid re-oxygenation (simulated IR injury) of adult rat cardiomyocytes, the 

presence of the PKG activator – 8-pCPT-cGMP or the cGMP analogue – 8-bromo-

cGMP, increased  sarcoplasmic Ca2+ - ATPase (SERCA) activity which reduced the 

peak intracellular calcium concentration and cardiomyocyte hypercontracture (151).  

These effects were abrogated by KT5283, a specific inhibitor of PKG. Some 

investigators have proposed that PKG is the terminal cytosolic component of the 
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trigger pathway and exerts its protective effect on the inner mitochondrial membrane 

via a signaling mechanism that involves KATP channels and PKC (152). 

PostC is also thought to be associated with the reduction of ROS generation which 

contributes to reperfusion injury (123, 153).  In contrast, administration of the ROS 

scavenger N-acetylcysteine (NAC) before or during PostC abolished protection 

(154). This was not the case when NAC was administered after PostC. This 

suggests that ROS generation has complex effects, and may play a role in signaling 

cardioprotection. 

 

1.8.1.3 Effectors 

As with IPC, KATP channels have been implicated in the mechanism of PostC. In a 

rabbit model of myocardial IR injury, the non-selective KATP channel blocker, 

glibenclamide and the mKATP channel blocker 5-Hydroxydecanoate (5-HD) 

administered at the onset of reperfusion, abrogated the protective effect of PostC 

(145). Recently, Myktenko and colleagues demonstrated that the infarct sparing 

effect of PostC, in a canine model of IR injury, was abolished by the administration 

of 5-HD, a mKATP channel blocker. However, in the presence of HMR1098 - a 

sarcKATP channel blocker, the protective effect of PostC was not affected (155). In 

the same study, PostC up-regulated expression of mKATP channel Kir6.1 protein. 

These data suggest a specific role for mKATP channels in PostC. Activation of mKATP 

channels is thought to mediate inhibition of mPTP opening as described above. 

A role for the mPTP in PostC was first reported by Argaud and colleagues who 

demonstrated that the specific inhibitor of the mPTP, NIM811, administered around 
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the onset of reperfusion, limited infarct size in rabbit hearts to a degree comparable 

to IPC and PostC (156). In addition, they showed that mitochondria isolated from 

postconditioned myocardium displayed an increased resistance to Ca2+ loading and 

this was similar to the hearts that underwent preconditioning or treatment with 

NIM811.  

Cardioprotection by inhibition of the mPTP around the time of reperfusion has been 

explored in an acute angioplasty model in humans (157). Intravenous administration 

of a bolus dose of the mPTP inhibitor, ciclosporin, immediately before percutaneous 

coronary intervention (PCI) caused a significant reduction of creatine kinase 

compared with the control group.  

The exact mechanism by which PostC inhibits opening of the mPTP is yet unknown. 

Recently, it has been suggested that PostC is critically dependent on both 

maintenance of myocardial acidosis during the initial 2 minutes of reperfusion and 

the simultaneous supply of oxygen (158). Using an rabbit isolated heart model, it 

was  demonstrated that protection by PostC was lost when the heart was reperfused 

with an alkaline perfusate, even when the cardioprotective signalling cascade was 

triggered by activators of PKC (phobol 12-myristate 13-acetate [PMA])  or GSK-3β 

(SB216763), the latter being a downstream molecule. However the protection by 

PostC was restored with the addition of ciclosporin suggesting that ciclosporin is a 

more potent inhibitor of mPTP.  It was also observed that in the presence of a 

hypoxic acidic perfusate, PostC was ineffective. It was postulated that an 

oxygenated acidic environment was necessary to block the mPTP opening long 

enough so that signalling could be triggered leading to endogenous attenuation of 

mPTP opening even after the correction of myocardial pH (158). Other mechanisms 
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by which PostC inhibits mPTP opening have been proposed and can be divided into 

indirect (intracellular calcium regulation, ATP preservation, oxidative stress 

correction) and direct (the phosphorylation and translocation of various protein 

kinases such as Akt, ERK1/2, GSK-3β, PKG, and PKC-ε) (159).  

1.8.2   Clinical application of ischaemic postconditioning 

Ischaemic protection by PostC is an attractive protective strategy especially 

considering its applicability and effectiveness in the acute ischaemic setting. Since 

first demonstration in humans, PostC has been successfully applied to patients in 

the setting of acute coronary angioplasty and has been associated with reduction of 

infarct size, improved endothelial function and improved resolution of ST-segments 

(160-162). PostC has also been protective during elective valve replacement, when 

the adult myocardium undergoes cold blood cardioplegic arrest (163). In addition, 

PostC has been protective during surgical correction of congenital heart disease in 

children (164).     

The long term clinical effect of PostC in patients is yet to be established. In a recent 

acute coronary angioplasty study, not only did the postconditioned group of patients 

exhibit a reduced infarct size but also, at one year, a 7% increase in left ventricular 

ejection fraction compared with controls was observed (165). The limitation of this 

study is the small number of patients, and much larger studies with long term follow-

up will be needed to define its clinical usefulness. 
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Figure 1.7: Mechanisms of postconditioning. PostC is thought to promote the accumulation or delay the 
wash out of protective ligands (adenosine, bradykinin, opioids etc.) which activate a complex cascade of 
intracellular events. These processes are protective (green panels) in themselves or lead to inhibition of 
deleterious products of IR that exacerbate injury (red panels). Ultimately, these intracellular events seem to 
cause protection by preventing opening of the mPTP.  

 

1.9   Remote ischaemic conditioning 

IPC also has protective effects at sites remote from those exposed to the ischaemic 

preconditioning stimulus, and this facet of IPC has been termed remote ischaemic 

preconditioning (RIPC). This was first reported in anaesthetised dogs when regional 

ischaemic 'preconditioning' protected remote virgin myocardium from subsequent 

sustained coronary occlusion (166). This study hinted that IPC had systemic 
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protective effects that were confirmed when it was shown that preconditioning the 

kidney (167, 178), intestine (168, 178) or limb (169) provided protection against IR 

injury in the heart and other tissues. This form of protection entailed application of 

the remote stimulus in advance of the ischaemic insult and is termed remote 

ischaemic preconditioning (RIPC).  More recently, remote postconditioning 

(RPostC), a variant of RIPC, has also been described. In RPostC, the conditioning 

stimulus is applied during the ischaemic insult making it a more convenient remote 

stimulus in the acute ischaemic setting (170, 171).  In this thesis I will use the term 

remote ischaemic conditioning as a blanket term for the two types of remote 

ischaemic protection.   

RIPC shares similar signaling mechanisms to those of IPC and experimental models 

have implicated similar triggers, mediators and effectors (167, 170-173). This has 

been discussed in section 1.6.1 of this thesis. 

 

1.9.1   Mechanisms of transfer of remote protection 

One of the most intriguing aspects of remote protection is the mechanism of 

systemic spread of protection from the site undergoing conditioning. Humoral and 

neurogenic pathways have been proposed, with the potential for a degree of overlap 

between them [Figure 1.8].   
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1.9.1.1   Humoral mechanism 

Coronary effluent from a preconditioned heart induces myocardial protection in non-

preconditioned hearts, an effect that was blocked by administration of the non-

specific opioid receptor blocker, naloxone to the recipient (174). This implicated the 

opioid receptor pathway in the spread of remote protection and highlighted the 

importance of circulating opioids. Furthermore it was shown that in the rat isolated 

heart, infarct size was reduced by plasma and dialysate of plasma (obtained using a 

15 kDa cut-off dialysis membrane) from donor rabbits subjected to RIPC (174). In 

addition, the dialysate of plasma from rabbits and humans subjected to RIPC, 

reduced necrosis in an isolated fresh cardiomyocyte model of simulated ischaemia 

and reperfusion. Interestingly, these protective effects were abrogated by naloxone, 

suggesting that cardioprotection by RIPC occurred across species, required opioid 

receptor activation but did not require an intact nervous system. More recently 

however, the same group has demonstrated that the intra-arterial injection of 

adenosine into the femoral artery or limb RIPC released dialysable cardioprotective 

factor(s) in a manner that was dependent on an intact femoral nerve (175). With 

prior femoral nerve transection in the donor rabbit, the dialysate was no longer 

protective in the Langendorff perfused rabbit heart. This suggests a plausible 

interaction between a neurogenic and humoral mode of transfer. Opiates are not the 

only implicated humoral factor, with evidence for prostaglandins (176) and 

unidentified hydrophobic compounds (177). 
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1.9.1.2   Neurogenic mechanism 

Neurogenic mechanisms have also been explored using autonomic ganglionic 

blockade. In a rat myocardial infarction model (60 minutes coronary artery occlusion 

with 3 hours of reperfusion), Gho et al showed that the ganglion blocker 

hexamethonium abolished protection by RIPC achieved by 15 minutes of mesenteric 

artery occlusion-reperfusion (MAO) but had no effect on local myocardial IPC 

achieved by 15 minutes of coronary artery occlusion-reperfusion(178). 

Cardioprotection was absent when MAO was sustained throughout the study, 

indicating that reperfusion in the small intestine was essential to activate the 

neurogenic pathway. In a similar study, using a rabbit model of myocardial IR injury, 

an intramesenteric artery infusion of bradykinin (BK) at a dose that stimulates 

sensory nerves without systemic effects mimicked these protective effects of RIPC. 

Protection was abolished by both the bradykinin 2 (BK2) receptor antagonist, HOE- 

140 and the ganglion blocker, hexamethonium (179).  Pre-treatment with HOE-140 

did not have an effect on infarct size of non-preconditioned rabbits. The researchers 

propose that the BK2 receptor activates local afferent nerves and lead to protection 

via the autonomic nervous system. These data corroborate a previous study in 

which HOE-140 abolished ischaemic protection by IPC in an intact rabbit heart but 

failed to block protection by IPC in an isolated rabbit heart (180). This suggested that 

protection by bradykinin was dependent on an intact autonomic nervous system. An 

increase in the release of the neurotransmitter glutamate and an increased 

expression of bradykinin receptors in cultured rat dorsal route ganglia sensory 

neurons, in response to increasing bradykinin concentration has been demonstrated 

in in vitro studies (181, 182).   
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In an in vivo rabbit model of myocardial infarction, RIPC by renal artery occlusion 

reduced infarct size by 46% (183). This protection was abolished by intravenous 

pretreatment with the nonselective adenosine receptor antagonist; 8-SPT. During 

renal RIPC, the renal afferent nerve discharge increased but this was attenuated by 

administration of intravenous 8-SPT. Furthermore, renal nerve resection abolished 

the protective effects of RIPC. These data suggest that the renal sympathetic nerve 

responds to adenosine receptor activation and triggers spread of protection beyond 

the kidney.  

There is also experimental evidence that calcitonin gene-related peptide (CGRP), a 

neurotransmitter in capsaicin sensitive sensory nerves (CSSN), is implicated in the 

mediation of the delayed phase of remote organ protection. In a rabbit model of 

myocardial infarction RIPC induced by transient ischaemia of the small intestine, 

caused a reduction in infarct size and creatine kinase with an increase in plasma 

levels of CGRP (184). In this study, the protective effect of intestinal RIPC was 

abrogated by pre-treatment with capsaicin administered systemically, which 

selectively deletes neurotransmitters in the CSSN. Capsaicin also prevented an 

increase in the plasma level of CGRP. In another study using a pig model of 

myocardial ischaemia reperfusion injury, administration of the CGRP antagonist – 

CGRP (8-37) locally or systemically by intravenous infusion, did not influence infarct 

size. (185). Other studies have shown that the release of CGRP occurs in response 

to transient ischaemia, hyperthermia or endogenous ligands such as bradykinin 

(186). These data support the thesis that release of endogenous ligands in the 

remote organ activates afferent nerves which mediate the transfer of protective 

effects of RIPC. 
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The role of the nervous system in remote conditioning has also been demonstrated 

in humans using an in vivo model of vascular IR injury. The autonomic ganglion 

blocker, trimetaphan, had no effect on endothelial IR injury but abolished the effect 

of early and late RIPC to prevent such injury (187).  

 

1.9.2   Clinical application of remote conditioning 

RIPC obviates the need for complex and invasive IPC protocols because the 

protective stimulus can be applied non-invasively to a limb), without risking the blood 

supply to a vital organ. The first study to associate limb ischaemia with remote 

protection used a composite of electrical stimulation of skeletal muscle and arterial 

obstruction, to reduce myocardial infarct size in rabbits (188). This study was 

followed by the demonstration in humans, using an in vivo model of endothelial IR 

injury, that remote transient limb ischaemia was protective (169). The protective 

effect of RIPC by transient limb ischaemia has since been reproduced in a number 

of studies in patients (189). However, in the acute ischaemic setting RIPC is not 

applicable. RPostC which entails the application of the RIPC stimulus after the onset 

of injurious ischaemia has been described and in a clinical study of patients with ST-

elevation myocardial infarction, who received RPostC in the ambulance prior to PCI, 

there was a significant myocardial salvage (190).  Further studies to harness the full 

potential of this form of protection are on-going. 
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Figure 1.8: Mechanisms of transfer of protection by remote conditioning.  Protection by RIPC and 
RPostC is thought to be transferred to the site of injurious ischaemia via a neurogenic pathway or circulating 
substances (humoral pathway). An interaction between the two pathways is plausible but their relative 
contribution to overall protection merits further investigation.  

 

 

1.10 Ischaemic protection by inorganic nitrates and nitrites 

As stated above (section 1.5.2) reduction in the NO bioavailability is a key event 

during IR injury resulting mainly from disruption to normal oxygen dependent 

endothelial production of NO. In addition, NO-cGMP signalling has been implicated 

in the mechanism of ischaemic preconditioning and postconditioning. NO donors 

reduce IR injury in a variety of experimental models, though clinical trials of NO 

donors to reduce IR injury have been negative (222). Recently, interest in a parallel 

pathway for NO generation that is activated at times of oxygen depletion, has led to 
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a reappraisal of the role of exogenous NO-supplementation as a potential treatment 

for IR injury.  This pathway is the nitrate-nitrite-NO pathway [Figure 1.9] and is 

described in the next section. 

 

1.10.1 NO generation – the alternative pathway  

Within the cardiovascular system NO is generated largely via the activity of the 

eNOS enzyme (191-193). By this mechanism, NO is made available for 

physiological functions which may contribute to ischaemic protection as described in 

sections 1.7.1.2 and 1.8.1.2. Under the influence of the oxyhaemoglobin, a 

significant proportion of the circulating NO is rapidly oxidised to NO2
- (nitrite), which 

is itself oxidised to the more stable NO3
- (nitrate) (194, 195). Previously, nitrite and 

nitrate were considered to be inert end products of NO metabolism but current 

research findings are changing this view. The hypoxic environment promotes the 

reduction of nitrites and nitrates to produce NO. This alternative (NOS-independent) 

pathway for NO generation predominates over the NOS-dependent pathway under 

conditions of hypoxia and acidosis such as occurs with IR injury (196). The 

implication is that endogenous nitrite and nitrate stores act as a backup source of 

NO which may be beneficial during IR injury. 
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Figure 1.9: The nitrate-nitrite-NO pathway. An alternative pathway for NO generation which is activated 
hypoxic and acidotic conditions when the NOS-dependent pathway is dysfunctional. 

 

1.10.2   Enterosalivary circulation of nitrates in humans 

Ingested nitrates are rapidly absorbed in the small intestine and distributed in the 

blood to other parts of the body, and whilst up to 75% is eventually excreted in the 

urine, 25% is taken up by the salivary gland [Figure 1.10] (197). This nitrate is then 

secreted into the saliva and reduced to nitrite by bacterial nitrate reductases on the 

dorsum of the tongue [Figure 1.10] (198).  The nitrite-rich saliva is swallowed and 

enters the stomach where under the acidic conditions, some of this nitrite is 

converted by simple chemical acidification to NO (198, 199). However, it is thought 

that at least some of this nitrite enters the circulation where it may then be converted 

to NO by nitrite reductases (200, 201).  The importance of the enterosalivary 

production of nitrite has been highlighted in studies that show that a disruption of 

enterosalivary pathway, by preventing swallowing of nitrite-rich saliva or use of anti 
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bacterial mouthwash, results in a lack of a corresponding increase in circulating 

nitrite levels after ingestion of an oral inorganic nitrate load (202, 203).  

Reduction of nitrite to NO in the circulation has been shown to be facilitated by a 

number of different candidates including deoxyhaemoglobin, xanthine 

oxidoreductase and mitochondrial enzymes, activities of which are enhanced in 

ischaemic environments, i.e. nitrite reduction to NO increases with decreasing pH 

and pO2 (198). In addition, reduction of nitrite to NO via eNOS has been described 

(204). In particular it has been suggested that eNOS might act as a nitrite reductase 

when conventional eNOS activity (ie. L-arginine conversion to NO) is impaired such 

as in low O2 conditions (205, 206). This enterosalivary circuit and intravascular 

processing enables oral inorganic nitrates and nitrites to serve as an intravascular 

reservoir for NO under hypoxic and acidotic conditions.  

Systemic nitrite is derived from oxidation of NO in the plasma, reduction of salivary 

inorganic nitrate and from dietary sources such as meat, vegetables and drinking 

water (207).  Accordingly under fasting conditions, the majority of nitrite is thought to 

be from oxidation of NOS derived NO. The reduction of circulating nitrite to NO 

under hypoxic and acidotic conditions that occurs during ischaemia, might have 

biological effects to limit tissue injury.   



 65 

 

Figure 1.10: Enterosalivary circulation of nitrate in humans. A proportion of the absorbed nitrate (purple 
circle) is taken up by the salivary gland, secreted into the saliva and reduced to nitrite (orange circle) by 
reductases present on the dorsum of the tongue. This is swallowed and in the acidic environment of the stomach 
is further reduced to NO (green circle). This enterosalivary circulation of nitrate is thought to provide an 
alternative source of NO in conditions of hypoxia and acidosis such as during IR injury. 

 

1.10.3 Nitrites and protection against IR injury 

Johnson and colleagues discovered that administration of acidified sodium nitrite, 

during ischaemia, resulted in a significant reduction of myocardial injury in cats 

(208). This was indicated by lower creatine kinase (CK) levels and a reduced 
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necrotic area (expressed as percentage of myocardial area at risk) on nitroblue 

tetrazolium staining compared to controls. Using the isolated rat Langendorff heart 

model, Webb et al demonstrated that provision of nitrite during the ischaemic period 

or at reperfusion significantly reduced myocardial infarct size; an effect associated 

with comparable improvements in recovery of LV function (209). In this study, the 

importance of reduction of nitrite to NO was highlighted by the demonstration that 

protection was lost in the presence of the NO• scavenger 2-(4-carboxyphenyl)-

4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide (carboxy-PTIO). This apparent loss of 

nitrite-induced ischaemic protection with carboxy-PTIO has since been 

demonstrated in a number of other animal studies (210-212). Using animal models 

of IR injury, it is now evident that nitrite is protective in the heart (209, 213-217), liver 

(211, 213, 215), kidney (212) and brain (218, 219). The role of nitrite-dependent NO 

in ischaemic protection is also highlighted in a study by Bryan et al in which dietary 

nitrite restored NO and nitrite bioavailability in eNOS knockout mice to steady state 

levels which were sufficient to protect against myocardial IR injury (214). This study 

provides evidence that dietary nitrites can act as alternative sources of NO in 

conditions associated with a dysfunctional NOS pathway.  

The exact mechanism of the beneficial effects of nitrite-derived NO is debatable. 

Nitrite-dependent NO production during hypoxia is thought to regulate mitochondrial 

respiration by inhibiting respiratory chain complexes, thereby regulating the oxygen 

gradient and mediating cytoprotection during IR injury (213, 220). Nitrite-derived NO 

might also activate sGC and promote cGMP-dependent mechanisms of ischaemic 

protection. 
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1.10.4   Clinical application of nitrates and nitrites in ischaemic protection 

In clinical practice, organic nitrates, mainly in the form of nitroglycerin (GTN), have 

been used for the symptomatic treatment of coronary artery disease for over a 

century (221). GTN is thought to exert its biological effects via the release of NO. 

However, ISIS 4 showed that isosorbide mononitrate had no effect on mortality in 

acute myocardial infarction, and this has limited enthusiasm for further clinical study 

of the therapeutic effect of NO-supplementation (222). As for other failed 

interventions in clinical IR injury, it remains uncertain if the organic nitrate was 

administered at the optimal time-point.  

Another clinically relevant approach to NO delivery to tissues is administration in the 

inhaled form. Previously, the biological effects of inhaled NO (iNO) were thought to 

be limited to the pulmonary vasculature without any extrapulmonary bioactivity. Fox-

Robichaud and colleagues disproved this by demonstrating, in feline mesentery 

treated with the NOS inhibitor – L-NAME, that the local vasoconstriction and 

leukocyte recruitment was abolished by iNO (223). Subsequent studies using animal 

and human models of IR injury have shown that iNO may exert protective effects in 

the liver (224), heart (225, 226) lung (227) and lower limb (228). Large scale clinical 

trials and potential widespread clinical use of iNO in the clinical setting have been 

hindered by lack of convincing preliminary human data, complex dose titration and 

storage issues, possibility of rebound hypertension or hypoxia with acute use, the 

risk of developing methemoglobulinemia and the accumulation of toxic oxidants such 

as NO2 and peroxynitrite (229-231). Currently, iNO is licensed only for persistent 

pulmonary hypertension in neonates (230).  
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There is now compelling experimental evidence, from several studies, to support 

nitrite therapy in protection against IR injury in animals. The reduction in infarct size 

by a sodium nitrite infusion in the last 5 minutes of ischaemia during acute 

myocardial infarction in dogs sets the stage for the potential clinical use of nitrites as 

adjuvant cardioprotective therapy (232).  Inorganic nitrate and nitrite have potential 

to deliver NO specifically to ischaemic tissues, in a manner that might optimise the 

local therapeutic effect and minimise systemic effects.  

The inorganic nitrates and nitrites thus provide a substrate for the endogenous NO 

production in time of need, necessitating further assessment of their role in 

protection against IR. 

 

1.11   Translation of protective therapies into clinical use 

The ultimate aim of strategies to reduce IR injury lies in the translation of research 

findings into clinical use in order to derive the full benefit of improving outcomes in 

the management of cardiovascular ischaemia.  

Previous therapies aimed at reducing the lethal reperfusion injury in patients with 

myocardial infarction have not been successfully translated into clinical use. These 

include antioxidants, calcium overload and Na+-H+ exchange inhibitors, anti-

inflammatory agents, magnesium, therapeutic hypothermia, and glucose, insulin and 

potassium (21). Perhaps the pathogenesis of human IR injury is more complex than 

in the animal models that are used to validate drug targets. Some of the differences 

that have been highlighted include age and health of subjects, ischaemia/reperfusion 

times, timing of intervention and end points for cardioprotection (21). Future studies 
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should be aimed at using more clinically relevant animal models with robust study 

designs that will correlate with human studies. The utility of human mechanistic 

studies to bridge the gap between animal data and clinical trials in patients cannot 

be overemphasised. 

 

1.12 The human forearm model of IR injury 

The human forearm has served as a valid in vivo model to investigate the 

mechanisms of ischaemic protection in humans (53, 124, 169, 171, 187, 233). The 

ability to measure IR induced endothelial dysfunction in the human forearm has 

enabled the mechanistic assessment of different protective strategies. IPC, PostC 

and remote conditioning have all previously been shown to protect against 

endothelial IR injury in the human forearm.  

 

1.13   Aims of thesis 

Using the human forearm model of IR injury I sought to determine whether RIPC, 

RPostC and PostC protect against endothelial IR injury in conduit and resistance 

vessels.  

In chapter 3, I investigated the role of KATP channels and the mPTP in mechanism of 

PostC in humans. These targets can be manipulated using pharmacological tools. 

PostC has previously been shown to protect against endothelial IR injury in the 

brachial artery (124).  I assessed the effects of PostC on endothelial IR injury in the 

brachial artery and resistance vessels. Using this in vivo model of endothelial IR 



 70 

injury, KATP channels have previously been implicated in IPC and RIPC (171, 233). I 

investigated whether the non selective KATP channel blocker, glibenclamide 

abrogates the protective effect of PostC and also determined the effects of the more 

pancreatic selective KATP channel blocker, glimepiride on PostC. This was to 

establish a role for KATP channels in PostC and investigate the effects of agents with 

different selectivity on PostC. Opening of the mPTP has been implicated as an 

effector mechanism in PostC (156, 159). I sought to determine if the administration 

of ciclosporin, a known inhibitor of the mPTP opening, administered around the 

onset of reperfusion protects against endothelial IR injury. This might be evidence 

that ciclosporin mimics PostC.  

In chapter 4, I investigated the role of the opioid receptor pathway in remote 

conditioning. Naloxone is a known non-selective inhibitor of the opioid receptors. I 

sought determine whether naloxone abolishes the protective effects of RIPC or 

RPostC in an attempt to identify a role for circulating opioids in the transfer of 

protection by remote conditioning. 

In chapter 5, I investigated the role of components of the autonomic nervous system 

in RIPC and RPostC. Using a human in vivo model of endothelial IR, a previous 

study in this laboratory showed that complete autonomic blockade with trimetaphan 

abolished the protective effects in the early and late phases of RIPC (187). I sought 

to determine the effect of alpha adrenergic and cholinergic nervous blockade on 

RIPC and RPostC using phentolamine and atropine respectively. 

Chapter 6 entailed investigations into the role of oral inorganic nitrate, as an 

endogenous source of NO during IR injury in humans. This is in recognition of the 
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role of an alternative pathway of NO generation during IR injury (196). I sought to 

determine whether oral inorganic nitrates in the form of beetroot juice and KNO3 

tablets protected against endothelial IR injury. 

The above aims are a component of a larger investigation of the mechanistic 

aspects of ischaemic protection in humans. This will build on the data in animal 

models and identify potential pharmacological targets in humans, as a prelude to 

clinical trials in patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

 

 

 

 

 

 

Chapter 2 
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2.1 The human forearm model of IR injury 

By inflating a blood pressure cuff to a suprasystolic pressure it is possible to achieve 

ischaemia in the forearm. The ability to measure IR-induced endothelial dysfunction 

in the human forearm has enabled the mechanistic assessment of different 

protective strategies. Ischaemic protection by IPC, PostC and remote conditioning 

has previously been investigated using the human forearm endothelial IR injury 

model (124, 169, 233). 

 

2.1.1 Induction of IR injury 

Ischaemia of the non-dominant arm (plethysmography studies)/right arm (vascular 

ultrasound studies) was achieved by inflating a 12cm or 9cm wide blood pressure 

cuff respectively, placed around the upper arm to a pressure of 200 mm Hg for 20 

min. Thereafter, 20 minutes of reperfusion allowed restoration of baseline diameter 

and blood flow as described previously (53, 124, 171, 187, 233).  

 

2.1.2 Induction of ischaemic preconditioning (IPC) 

IPC was induced by inflating a 9cm-wide blood pressure cuff placed around the 

upper part of the right (index) arm. The cuff was inflated to 200 mm Hg for 5 minutes 

(ischaemia of the arm), followed by a 5-minute deflation (reperfusion). This 

constituted a conditioning cycle and 3 cycles were used in advance of IR, as 

described previously (233). 
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2.1.3 Induction of ischaemic postconditioning (PostC) 

PostC was induced by short periods of intermittent reperfusion to the ischaemic arm 

in the first 60 seconds of reperfusion (124). At the end of the 20 minute period of 

index ischaemia, the upper arm cuff was deflated for 10 seconds (allowing 

reperfusion), after which the cuff was again inflated to 200 mmHg for 10 seconds 

(restoring ischaemia). The alternating deflation/inflation cycle was repeated 3 times 

(1 minute total duration), after which continuous reperfusion of the arm occurred. 

 

2.1.4 Induction of remote preconditioning (RIPC) 

RIPC was induced by inflating a 9cm-wide blood pressure cuff placed around the 

upper part of the contralateral arm (ArmRIPC) or 12cm blood pressure cuff around 

the upper part of the thigh (LegRIPC). The cuff was inflated to 200 mm Hg for 5 

minutes (ischemia of the arm), followed by a 5-minute deflation (reperfusion). This 

constituted a conditioning cycle and 3 cycles in the arm or 2 cycles in the leg were 

used in advance of IR, as described previously (171, 187). 

 

2.1.5 Induction of remote postconditioning (RPostC) 

RPostC was induced by inflating a 12cm-wide blood pressure cuff placed around the 

upper part of the thigh. The cuff was inflated to 200 mm Hg for 5 minutes (ischemia 

of the arm), followed by a 5-minute deflation (reperfusion). This constituted a 

conditioning cycle and 2 cycles were used during the 20 min index ischemia, as 

described previously (171). 
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2.2 Measurement of endothelial function 

It is now well established that the single layer of cells lining blood vessels, termed 

endothelium, subserves several important functions that maintain the integrity of the 

cardiovascular system. In view of its varied function it is perhaps not surprising that 

no single measure describes all aspects of endothelial function. In addition, 

endothelial function may vary depending on the vascular bed, disease condition or 

even the type of flow (eg laminar versus turbulent) to which the endothelium is 

exposed (234, 235).  However the vasomotor function has been easiest to measure 

in humans. In response to certain physical and chemical stimuli the endothelium 

releases NO which causes blood vessels to dilate (236-238). The degree of 

vasodilatation and/or blood flow can be measured and is an assessment of 

endothelial function. This can be done by invasive (venous occlusion 

plethysmography; intravascular coronary ultrasound) and non-invasive 

(brachial/radial artery FMD; pulse wave analysis, pulse amplitude tonometry) 

techniques.  In this thesis, endothelial function assessment has been performed in 

two vascular beds – conduit vessel (brachial artery) and resistance vessels.  

 

2.2.1 Assessment of conduit vessel endothelial function  

By using vascular ultrasound, the endothelial response to shear stress (increased 

blood flow) can be measured. This phenomenon is known as flow mediated 

dilatation (FMD) and is used to assess endothelial function in conduit arteries such 

as the brachial or radial artery. The mechanisms that underlie an increase in NO 

bioactivity in response to shear stress include increased levels of calcium which 

occurs as a result of the opening of calcium-activated potassium channels (236). 

This leads to increased eNOS activity; subsequent increased NO generation and 
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vasodilatation. The increase in vessel diameter is measured using vascular 

ultrasound.  FMD in the forearm is largely NO- dependent because administration of 

a NOS inhibitor abolishes FMD (238, 239). Factors which affect the magnitude of 

FMD include temperature, food, vasoactive drugs, physical exercise, sympathetic 

stimuli such as acute exercise and mental stress, phase of the menstrual cycle and 

the magnitude of the blood flow stimulus (236). These factors should be taken into 

account when performing FMD studies.  

 

2.2.1.1 Subject preparation 

FMD studies in this thesis were performed at the Vascular Physiology Unit, Institute 

of Child Health, UCL and the Clinical Research Facility UCL Hospital. Studies were 

performed on healthy, non-smoking volunteers (18-45 years of age) in a quiet, 

temperature-controlled laboratory (24oC to 26oC). Volunteers were asked to refrain 

from caffeine-containing drinks and fatty meals for 4 hours prior to each study and 

refrain from excessive exercise for 24 hours prior to each study. The exclusion 

criteria were a history of any illness, volunteers taking systemic medication, 

pregnancy or age <18 years or >45 years. Studies repeated in same volunteers 

were at least 7 days apart and in a random order sequence. All protocols were 

undertaken after review by an NHS research ethics committee. 

 

2.2.1.2 Experimental technique 

Subjects were positioned comfortably (Fig 2.1) and brachial artery flow mediated 

dilatation (FMD) of the right arm was assessed. Reactive hyperaemia of the forearm 

(achieved by means of the FMD cuff) was used as a stimulus to increase blood flow 

in the brachial artery resulting in brachial artery dilatation (239).  A B-mode 
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ultrasound scan of the brachial artery was obtained in longitudinal section between 5 

and 10 cm above the antecubital fossa with 7.0-MHz linear-array transducer [spatial 

resolution of 0.1 mm] (240) and a standard Acuson XP10 system. Longitudinal, 

ECG-gated, end-diastolic images were acquired every 3 seconds for offline analysis 

(Fig 2.2). Arterial diameter over a 1- to 2- cm segment was determined for each 

image using automatic B-mode edge-detection software (Brachial Tools, Medical 

Imaging Applications).  
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Fig. 2.1: These photographs show the subject positioning and  experimental set up during an FMD study. 
 
 
 
 

 
 
 
 
 
Fig 2.2: Image of longitudinal section of the brachial artery on ultrasound machine. 
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Blood flow was manipulated in the brachial artery by means of a 9-cm-wide 

pneumatic cuff (Scanmed, Moreton-in-Marsh, Gloucestershire, UK) placed around 

the forearm immediately below the antecubital fossa (FMD cuff). After 1 min of 

baseline flow, the cuff was inflated to 300 mm Hg for 5 minutes and then released, 

resulting in a brief episode of reactive hyperaemia. Brachial artery diameter changes 

in response to blood flow were assessed for a further 5 min. Blood flow velocity was 

continuously monitored by pulsed-wave Doppler. 

 

2.2.1.3 FMD calculation 

FMD in this thesis is expressed as peak percentage change in arterial diameter from 

baseline (Fig. 2.3). FMD may also be expressed as absolute change in arterial 

diameter. 

 
 

Fig. 2.3: FMD expressed as percentage change in brachial artery diameter from baseline at peak dilatation. 

 

 

2.2.1.4 Measurement of blood flow 

Blood flow velocity was measured using the pulsed wave doppler flow signal [Figure. 

2.2]. This is the velocity-time profile for a single cardiac cycle and is displayed as a 

spectral doppler curve. The area under the curve of the velocity-time profile is the 
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velocity-time integral [VTI = velocity (m/s) x time (s)] and approximates to the 

average distance, measured in metres, travelled by a pulse of blood during one 

cardiac cycle, typically at rest 0.01 – 0.05 m [Figure 2.4]. 

    

           

 

 

 

 

 

 

                         

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 2.4: (a) Blood flow / time profile; velocity time integral (VTI). (b) VTI and dilatation as a function of time 
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Blood flow is that volume of blood that passes a point in a specified period of time. 

Assuming that we can approximate a section of artery to a cylinder, the calculation 

of the blood flow volume will be as follows:  

 

Volume / cardiac cycle = artery cross-sectional area x average distance 

travelled by pulse = πr2 (t) ∫ v(t) dt, 

(r(t) = the measured instantaneous vessel radius and v(t) = the instantaneous 

blood velocity) 

The Doppler signal is measured at an angle of approximately 70º to the axis of the 

blood vessel, giving ∫ v(t) dt = cos 70º x measured VTI. Therefore, 

 

Volume / cardiac cycle = cos 70º.πr2 (t).VTI 

Volume per minute is calculated by multiplying this value by heart rate (HR). 

Volume / min= HR cos 70º.πr2 (t).VTI. 

 

If the heart rate, the doppler angle of incidence and arterial diameter (2 x arterial 

radius) are assumed to remain constant during the period of the study, VTI can be 

considered proportional to volume flow per minute. Measurement of the radius for 

the period of peak flow (up to 30 seconds after cuff release) confirms that there is 

minimal change in arterial diameter at this time. Furthermore, during the same time 

period heart rate and doppler angle are also constant. Thus a valid conclusion is that 

peak volume following cuff release coincides with peak VTI. A small change in 

arterial diameter will introduce an error into the assessment of flow based on VTI. 

This error may be calculated as follows: 
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Volume / min = HR (t=0) cos 70º.πr2 (t=0).VTI [1 + 2∆r/ r (t=0)] 

 

r (t=0) is the arterial radius at the time when the blood pressure cuff is released and 

it is equal to the radius of the artery prior to forearm ischaemia. Therefore fractional 

error is typically (2∆r / r (t=0)) and is maximal at about t=60s (approximately 6%). 

However, for the 30 seconds following cuff release this is negligible, as the arterial 

radius remains almost constant and approximately equal to r (t=0).   

Taking the above into account, the following formula can be used to calculate peak 

volume flow per minute during reactive hyperaemia: 

 

Volume / min (peak) = HR(at time of peak VTI) cos 70º.πr(t=0)2.VTI(peak) 

 

2.2.1.5 Data presentation of blood flow 

For studies in this thesis, baseline and peak VTI were calculated and the ratio of 

peak to baseline absolute volume flow per minute was determined using the 

following formula:  

 

Volume / min (peak)          HR (at time of peak VTI).VTI (peak) 

 Volume / min(baseline)               HR(baseline).VTI(baseline) 

 

This formula is based on the assumption that r(t=0) is approximately equal to 

r(baseline). In all of the studies in this thesis there were no significant changes in 

heart rate. However to avoid the risk of confounding effects of changes in heart rate 

affecting the measurement of the flow stimulus, heart rate values were recorded at 

= 
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the same time as the VTI measurements at baseline and peak hyperaemia and 

incorporated into the calculation of the volume flow per minute ratio. 

 

2.2.1.6 Accuracy and reproducibility of the technique 

The validity of any measuring technique depends on its degree of accuracy and 

reproducibility. Error arises when the same observer makes repeated measures 

(intraobserver error) and when different observers make the same measures 

(interobserver error). To enable the detection of a reliable effect of an intervention, 

knowledge of the reproducibility is essential. FMD has a high degree of 

reproducibility as evidenced by studies which show a low coefficient of variation (CV) 

(241, 242). A pre-requisite to reproducibility of FMD is standardisation of the 

technique and operator training both of which are part of the standard operating 

procedures within the laboratories where these studies were performed. Comparison 

of FMD responses in a single subject measured on multiple occasions or between 

groups of subjects is possible provided that there are no major differences in basal 

blood flow, or arterial diameter. Image analysis is another factor that influences the 

reproducibility of FMD. B mode edge detection software was used for analysis in this 

thesis and compared with an alternative method of analysis (A-mode wall tracking 

(A-WT) (Vadirec, Medical Systems Arnhem, Oosterbeek, the Netherlands), has a 

lower coefficient of variation (242).  

Having performed detailed assessments of brachial artery FMD, Donald et al have 

expressed reproducibility of FMD as the percentage of coefficient of variation (CV) = 

[(standard deviation of the paired differences/the overall mean)/√2] x 100 (242). 

Reproducibility of FMD in this thesis has been presented in a similar manner. I 



 84 

assessed intraobserver variability by performing two sequential scans on 8 subjects 

at least 72 hours apart. Interobserver variability was assessed by performing 

repeated FMDs in 8 subjects on two separate days at least 72 hours apart. One of 

the scans was performed by an experienced vascular sonographer (Ann Donald) 

and the other by me.  

My intraobserver CV was 6.24%; n=8 and interobserver CV was 7.6%; n=8. These 

are comparable to the published data for FMD CV of 7.1% for adults and 6.3% for 

children (241).  

 

2.2.2 Assessment of resistance vessel endothelial function  

Forearm venous occlusion plethysmography measures endothelial function in 

resistance vessels in response to chemical stimuli. Local administration of 

endothelium dependent vasodilator drugs such as acetylcholine (ACh) and 

bradykinin increases forearm blood flow which is an index effect of these drugs on 

the endothelium (237). By so doing, the endothelial function in forearm resistance 

vessels can be indirectly assessed. Forearm plethysmography is based on the 

principle that if venous return from the arm is obstructed and arterial inflow 

continues, the result is forearm swelling at a rate proportional to the arterial inflow 

(237, 243). The rate of swelling is measured as a change in the forearm 

circumference which reflects a change in forearm blood flow (FBF). FBF is 

predominantly in skeletal muscle, so the hands are excluded during measurements 

because blood flow in the hand is predominantly through the skin. Another reason 

for excluding the hand is a high proportion of arteriovenous shunts (243). 

Absolute values of basal blood flow in the forearm may vary with the time of day or 

sympathetic tone but should not alter the ratio of flow in the two arms or the 
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percentage response to drugs calculated from the ratio (237, 243). The presence of 

a control arm (contralateral arm) for each study is an advantage of the technique. To 

minimise variability, studies should be undertaken in a quiet, temperature-controlled 

environment and results expressed as a ratio of flow in the two arms.  

 

2.2.2.1 Subject preparation 

Venous occlusion plethysmography studies in this thesis were performed in the 

Clinical Pharmacology Clinical Laboratory, and subsequently in the Clinical 

Research Facility, University College Hospital London. Other aspects of subject 

preparation were as for FMD studies highlighted in section 2.2.1.1. 

 

2.2.2.2 Experimental technique 

Subjects were positioned comfortably (Fig 2.5) and bilateral forearm blood flow was 

measured by means of mercury-in-silastic strain gauge plethysmography, as 

described previously (233, 237, 243).  The brachial artery of the non-dominant arm 

was cannulated with a 27-gauge needle (Cooper’s Needle Works, Birmingham, UK) 

under aseptic technique using 2ml of 2% lidocaine (subcutaneous) for anaesthesia 

(Fig. 2.6). Drugs were administered in saline (0.9% [wt/vol] sodium chloride) and 

infused at a rate of 0.5ml/min. During recording periods, the hands were excluded 

from the circulation by inflation of the wrist cuffs to 200 mm Hg. Forearm blood flow 

in response to the endothelium-dependent dilator acetylcholine (ACh; 25, 50 and 

100nmol/min; each dose for 3 minutes) was measured 15 minutes after cannulation 

to establish baseline endothelial function. For some studies the response to the 

endothelium-independent dilator, glyceryl trinitrate (GTN; 4, 8 and 16 nmol/min; each 

dose for 3 minutes) was determined. 
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Fig 2.5: Experimental set up during venous occlusion plethysmography 

 

 

 

 
Fig 2.6: Needle positioning during venous occlusion plethysmography 
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2.2.2.3 Data analysis 

Calibration of the strain gauges occurred at the start of each experiment for each 

subject. The mean slope of the last four recordings (over a minute duration) during 

the infusion of normal saline and each subsequent drug infusion (the last minute of 

recording of each dose of the infused drug) was used for analysis. Forearm blood 

flow was expressed as ml (flow)/100 ml (forearm volume)/minute. In this thesis, data 

were expressed as the percentage change in ratio of blood flow (infused/non-infused 

arm). This method enabled adjustment for non-specific changes that may change 

resting blood flow (243). Dose-response curves of percentage change in ratio of 

blood flow (infused/non-infused arm) against dose of vasodilator (ACh or GTN) were 

obtained. Other possible methods of expression of this data are as absolute blood 

flow, or as percentage change in absolute blood flow.  

 

2.2.2.4 Accuracy and reproducibility of technique 

Blood flow measured by strain gauge plethsymography correlates with that 

measured using doppler ultrasound (244).  However factors such as mental arousal, 

sympathetic activity and ambient temperature can contribute to significant difficulty in 

interpretation of forearm blood flow (FBF) measurements. As a result of 

considerable intra-individual variation in a single limb (coefficient of variation – CV 

>30%), FBF measurements are performed in both forearms and expressed as 

changes in relation to the other (FBF ratio of intervention to control forearms) (245). 

This eliminates the confounding effects of background changes in FBF and reduces 

the variability of the technique (CV 20%). 

In this thesis, intra-individual variation in baseline FBF ratio was assessed in 13 

subjects who had repeated studies between three and seven times on separate 
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occasions. The mean CV for baseline FBF was 24.4%; n=13. After vasodilatation 

with acetylcholine (25, 50, 100nmol/min) the mean CV in dose response increased 

to 31.2%; n=13. These CVs compare with those obtained in other studies (245, 246). 

There is evidence that endothelial function measurements by plethysmography do 

not relate to arm length or circumference, but results may be affected by distal 

misplacement of the strain gauge (246, 247). 

 

2.3 Biochemical assays 

Biochemical assays in this thesis were performed at the department of clinical 

biochemistry, King’s College Hospital (KCH) under the supervision of Dr Roy 

Sherwood and Ms Tracy Dew for plasma beta endorphins and the Wolfson Institute 

for biomedical research, UCL in collaboration with Dr Adrian Hobbs for plasma 

nitrates and nitrites.  

 

2.3.1 Measurement of plasma beta endorphins  

Endogenous opioids are found in the brain, heart, sympathetic nerves and adrenal 

medulla.  They have been identified as important peptides in the triggering and/or 

mediation of ischaemic protection, particularly in the myocardium (248). There are 

three well characterised endogenous opioids (enkephalins, dynorphins, and 

endorphins) and they interact with G-protein coupled receptors (GPCRs) opioid 

receptors (δ, µ, κ) to exert their biological effects (249-251). 

Beta endorphin is a 31 amino acid peptide first isolated from camel pituitary (252).  It 

is derived from the C-terminal fragment of a 31kDa precursor molecule known as 

proopiomelanocortin (POMC) and has been found in a variety of tissues including 

brain, heart, adrenal gland and peripheral nerves (253).  Historically, measurement 
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of plasma levels of beta endorphin was performed by immunologic reactions which 

involved radioisotope antigen markers (254, 255). Although still used today, this 

laboratory technique [radioimmunoassay (RIA)] is fraught with problems of safety, 

complicated set up procedures and inconvenient storage, handling and disposal 

techniques. More recently, enzyme linked immunosorbent assay (ELISA), which has 

the advantage of simplicity and ease of use, has been used as a sensitive assay for 

beta endorphins (254, 255). Importantly, a good correlation (r=0.95) exists between 

ELISA and RIA for quantitative determination of beta endorphins in plasma (256)  

 

2.3.1.1 Beta endorphin ELISA 

This assay is based on the principle of competitive inhibition enzyme immunoassay 

which was first developed as a two step ELISA technique and had a sensitivity of 10 

picograms (3 femtomoles) per well (254). Based on this principle, other researchers 

have subsequently developed more sensitive ELISA assays for beta endorphin 

detection in humans (255). 

Beta endorphin is a relatively small peptide and competitive inhibition assays are 

often used for small analytes because of the risk of steric hindrance which may 

occur with other techniques that entail the binding of two antibodies to the molecule 

at the same time, as in the monoclonal – polyclonal sandwich immunoassay.  

The non-specific binding sites of a secondary antibody, on a pre-coated microtitre 

immunoplate, are blocked. This enables the secondary antibody to bind to the Fc 

fragment of the primary antibody (beta endorphin antibody) whose Fab fragment will 

be competitively bound by both biotinylated beta endorphin and beta endorphin 

standard or targeted beta endorphin in the sample. The biotinylated beta endorphin 

is able to interact with streptavidin-horseradish peroxidise (HRP) which catalyzes the 
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substrate solution composed of 3, 3', 5, 5'- tetramethylbenzidine (TMB) and 

hydrogen peroxide to produce a blue coloured solution. This enzyme substrate 

reaction is stopped by hydrogen chloride and the solution turns to yellow. The 

intensity of the yellow is directly proportional to the amount of biotinylated beta 

endorphin – HRP complex but inversely proportional to the amount of beta 

endorphin in standard solutions or samples. This is due to the competitive binding of 

the biotinylated beta endorphin and the beta endorphin in standard solutions or 

samples to the beta endorphin antibody (primary antibody). A standard curve of a 

beta endorphin with known concentration can then be established accordingly. The 

beta endorphin with unknown concentration in samples can be determined by 

extrapolation to this standard curve (ref: MD biosciences® beta endorphin ELISA 

protocol; www.mdbiosciences.com). 

 

2.3.1.2 Preparation of plasma 

Venous blood was collected in EDTA tubes containing 312µl aprotinin (0.6 TIU/ml of 

blood) and shaken gently. This was to prevent clotting and degradation of proteins 

by proteinases.  4-mls of blood at specified time points during RIPC were collected 

(details of experimental protocol in chapter 4). Venous blood samples were 

centrifuged (3000rpm for 15 minutes at 4°C), to obtain plasma. The plasma samples 

were aliquoted and stored at -80°C until laboratory analysis was performed within 

one month. Plasma samples were transported to KCH on dry ice.  
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2.3.1.3 Assay procedure 

All reagents were prepared as recommended by the assay manufacturers. Microtitre 

well plate (Fig 2.8) A-1 was left empty as a blank and 50 µL assay buffer was added 

into B-1 as total binding.  

50 µL standard (1.0 µg of human beta endorphin; Lyophilized) + positive control 

(0.4-0.6 ng/ml of human beta endorphin lyophilized) were added to the remaining 

wells in duplicate. 25 µL of primary antiserum (rabbit anti beta endorphin IgG) was 

added into each well except the blank. 25 µL of biotinylated beta endorphin was 

added into each well. The well plates were then covered and incubated for 2 hours 

at room temperature. Thereafter each well (except blank) was washed 6 times with 

300 µL assay buffer and blotted dry. 100 µL HRP solution was added to each well 

(except blank). The wells were then covered and incubated at room temperature. A 

repeat wash with assay buffer (as above) was performed and then 100 µL of 

substrate solution (TMB) was added to each well (including blank). The wells were 

covered and incubated for 1 hour at room temperature.  Finally, 100 µL 2N HCl was 

added to each well (including blank) and absorbance at 450nm was read by a 

microplate reader.  

 

2.3.1.4 Data analysis 

The concentration of beta endorphin in a sample was determined by reference to the 

standard curve and expressed in ng/ml. 

 

2.3.1.5 Accuracy and reproducibility of the assay 

The sensitivity of the assay is 0.15 ng/ml  (range 0.15 –1.96ng/ml) and is 

comparable to other beta endorphin ELISA assays used by other researchers (254, 
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255).  Intra-assay variation of <5-10% and inter assay variation of <15%. Cross 

reactivity specificity for human beta endorphin was 100%. 

 

 

2.3.2 Measurement of plasma nitrates and nitrites  

The reduction of nitrite and nitrate to NO at room temperature is facilitated by an 

acidic milieu containing vanadium III. However at room temperature nitrates are only 

very slowly reduced. Heating to temperatures of 80 – 90 ºC enables the rapid 

reduction of both nitrite and nitrate (257). This forms the basis of the 

chemiluminescence detector-based method for trace nitrites and nitrates in aqueous 

samples. Earlier chemiluminescence methods employed glacial acetic acid and 

potassium Iodide to reduce nitrite to nitric oxide.  However this only resulted in 

reduction of nitrite but not nitrate, thus providing a method to determine nitrite 

concentration in the large excess of nitrate in plasma (258).The chemiluminescence 

analysis method is used in environmental analyses and human fluids where trace 

nitrite and nitrate data are needed. Other methods to measure nitrite levels in 

plasma include flow injection analysis (FIA) and high pressure liquid chromatography 

(HPLC). However ozone chemiluminescence is more sensitive to trace quantities of 

NO, making it the method of choice when extremely low concentration of nitrites 

must be quantified in a complex matrix and sample volumes are limited (258, 259).  

 

2.3.2.1 Ozone chemiluminescence analysis of NOx 

Acidic vanadium III at 98 ºC quantitatively reduces both nitric acid and nitrate to NO. 

The released NO is carried by inert gas to a detector where it reacts with ozone to 



 93 

produce a chemiluminescence signal proportional to the concentration and this is 

quantified (258). 

 

2.3.2.2 Preparation of samples 

Venous blood samples were collected from a large superficial arm vein, at specified 

time points (see chapter 6) and transferred into heparin tubes containing 5 IU/ml of 

blood). The samples were centrifuged at 1300G at 40C for 15 minutes. The plasma 

supernatant was separated from the red blood cells and both samples were stored 

at - 80 ºC until analysis. The blood sampling and centrifugation was performed 

without delay to prevent the nitrite from rapidly reacting with haemoglobin to form 

nitrate under oxygenated conditions or iron-nitrosylhaemoglobin under de-

oxygenated conditions (259). 

 

2.3.2.3 Experimental procedure 

Prior to ozone chemiluminescence, plasma samples were filtered using Microcon® 

Ultracel YM (3 kDa) filters (Millipore Corporation, Billerica, USA) and then [nitrate] 

and [nitrite] in the filtrate determined (260).  Samples and standards containing nitrite 

and nitrate were first reduced to NO, which was then quantified using a NO analyzer 

(NOA 280, Sievers, Boulder, USA). To determine total [nitrite] and [nitrate] (NOx), 

samples were added to 0.1 mol/L vanadium (III) chloride in 1M hydrochloric acid 

refluxing at 90°C under nitrogen. Nitrite concentrations were determined by addition 

of samples to 1.5% potassium iodide in glacial acetic acid under nitrogen at room 

temperature.  Concentrations of nitrate were calculated by subtraction of [nitrite] 

from NOx values. 
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2.3.2.4 Data analysis and accuracy 

The sensitivity of the ozone chemiluminescence is 1±1nmol/L with a coefficient of 

variation of 5%. Plasma concentrations (µmol/L) of nitrate and nitrite were 

determined after construction of standard curves. 

 

2.4 Drugs and reagents 

Acetylcholine (ACh) was obtained from Merck Biosciences, Nottingham, UK; 

Lidocaine Hydrochloride from Antigen Pharmaceuticals, Roscrea, Ireland; 0.9% 

sodium chloride from Baxter Healthcare, Norfolk, UK; Glibenclamide (Glib) from 

APS, Eastbourne, UK; Glimepiride (Glim) from Alpharma, Barnstable, UK; 

Ciclosporin (Sandimmun® ) from Novartis Pharma, UK;  Naloxone from CP 

Pharmaceuticals Ltd, Wrexham, UK; Phentolamine from Alliance Pharmaceuticals 

Chippenham, Wiltshire, UK; Atropine from Antigen Pharmaceuticals, Roscrea, 

Ireland; Potassium nitrate from Martindale Pharmaceuticals, UK; Potassium Chloride 

from Martindale Pharmaceuticals, UK; Beetroot juice from Planet Organic; Aprotinin 

was obtained from Nordic Pharma, UK. 

 

 

2.5 Calculations and statistical analysis 

All data were analysed with GraphPad prism version 4.0 (GraphPad Software, USA) 

and expressed as mean±SEM. For conduit vessel studies, data were compared 

using a paired t test or ANCOVA as appropriate.  For resistance vessel studies, ACh 

dose-response curves were constructed and the area under the dose-response 
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curve (AUC) calculated. Comparisons before and after an intervention were made 

using paired 2-way ANOVA or ANCOVA as appropriate.  

A repeated measure ANCOVA was used to compare post-IR values between 

interventions. Adjustment for baseline FMD and AUC of the baseline dilator 

response to ACh values was made by including the pre-IR values as a baseline co-

variate. Post hoc comparisons between pairs of interventions were performed and 

adjustment for multiplicity was made using the Scheffe’s test. In all cases, a value of 

P<0.05 was considered statistically significant. The D’Agostino-Pearson normality 

test was used to check for ANCOVA normality assumption. 

Sample size calculations used prior estimates of FMD (mean 8.6%, within individual 

SD of 2.3) and resistance vessel dilatation to ACh (mean area under the dose-

response curve to ACh 13,000 units, within subject SD of 6000). To detect a 50% 

reduction in dilatation, at an α value of 0.05 and a β level of 0.8, required n=7 (FMD) 

and n=16 (plethysmography). 
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3.1 Introduction 

Ischaemic postconditioning (PostC) elicited by intermittent restoration of blood flow 

at the onset of reperfusion and has been proven to be effective in reducing 

experimental and clinical IR injury (see section 1.8). PostC is mechanistically similar 

to ischaemic preconditioning (IPC); however IPC is activated by brief periods of non-

lethal ischaemia in advance of an injurious ischaemic insult. IPC and PostC cause 

similar degrees of tissue protection in experimental settings of IR injury, and these 

observations suggest that much of reversible tissue damage caused by IR injury 

occurs early in the reperfusion phase. Cardiovascular events are unpredictable and 

this makes PostC an attractive intervention, especially in acute ischaemic 

syndromes where there is a degree of mechanical control over the schedule of 

reperfusion. This has been successfully demonstrated in clinical studies of PostC in 

ST-segment elevation myocardial infarction (see section 1.8.5).  

The control of reperfusion in the majority of acute ischaemic syndromes has 

remained technically challenging. Pharmacological activation of PostC mechanisms 

could be a useful adjunct to reperfusion therapy in other domains. Much is known of 

the mechanism of PostC in animal models, with an important role identified for 

mitochondria, through the opening of the mitochondrial KATP channel associated with 

closure of the mitochondrial permeability transition pore (mPTP) (145, 155, 156). In 

this chapter, I sought to determine a role for KATP channels in PostC and a role for 

inhibition of the mitochondrial permeability transition pore at reperfusion in ischaemic 

protection. I have used an inhibitor of the mPTP (ciclcosporin) and KATP channel 

blockers with different tissue specificity (glibenclamide and glimepride) to achieve 

this. 
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3.2 Methods 

 

3.2.1 Subjects 

One hundred and thirty nine studies were performed on 24 healthy, non-smoking 

volunteers aged 18-45 years. Of these, 9 were recruited to the FMD studies and 17 

recruited to the venous occlusion plethysmography studies receiving interventions 

based on KATP channel blockade. 11 volunteers were recruited to the venous 

occlusion plethysmography studies receiving interventions based on mPTP 

blockade.  

 

3.2.2 Assessment of Conduit Vessel Endothelial Function 

Brachial artery flow mediated dilatation (FMD) of the right arm was assessed, as 

described in section 2.2.1. 

 

3.2.3 Assessment of Resistance Vessel Endothelial Function 

Bilateral forearm blood flow was measured using mercury-in-silastic strain gauge 

plethysmography, as described in section 2.3.1  

 

3.2.4 Induction of IR injury 

Ischaemia of the non-dominant arm (plethysmography studies)/right arm (vascular 

ultrasound studies) was achieved as described in section 2.1.1. Uninterrupted 

reperfusion occurred on cuff deflation. 
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3.2.5 Induction of Postconditioning 

PostC was induced by short periods of intermittent reperfusion to the ischaemic arm 

in the first 60 seconds of reperfusion as described in section 2.1.3. The alternating 

deflation/inflation cycle was repeated 3 times (1 minute total duration), after which 

continuous reperfusion of the arm occurred. 

 

3.3 Experimental Protocols 

 

3.3.1 Effect of IR on Endothelial Function 

To determine the effect of IR on endothelial function (EF), brachial artery FMD and 

forearm blood flow in response to ACh (Figure 3.1a) was assessed before ischaemia 

(baseline) and at 20 minutes after reperfusion. It has previously been demonstrated 

that this protocol results in endothelial dysfunction in the brachial artery and forearm 

resistance vessels (53, 124, 169, 171, 187, 233). 

 

3.3.2 Effect of IR on vascular smooth muscle function 

To determine the effect of IR on smooth muscle function in resistance vessels 

forearm blood flow in response to GTN was assessed before ischaemia and at 20 

minutes after reperfusion (Figure 3.1b). Previous studies in this laboratory have 

demonstrated that this protocol did not result in vascular smooth muscle dysfunction 

in conduit vessels (187, 261). 
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3.3.3 Effect of postconditioning on endothelial IR Injury 

To establish that protection against endothelial IR can be achieved by modifying 

reperfusion, PostC was induced in the same group of volunteers. The PostC 

schedule was applied at the onset of reperfusion, immediately after index ischaemia 

(Figure 3.1c) 

 

3.3.4 Mechanism of protection by PostC in humans: Role of KATP channels 

The effect of KATP channel blockade on PostC was investigated using the 5mg oral 

glibenclamide [non-selective KATP channel blocker] and 1mg oral glimepiride 

[pancreas-selective KATP channel blocker] (262-264 ). Drugs were administered 45 

minutes before assessment of baseline endothelial function of conduit and 

resistance vessels (Figure 3.2a) (171, 233). This was followed by 20 minutes of arm 

ischaemia, PostC and a repeat assessment of endothelial function. To exclude a 

direct vascular effect of either KATP channel blocker on the endothelial response to 

IR injury, endothelial function was determined before and after IR injury in the 

presence of glibenclamide (n=4) or glimepiride (n=5), (Figure 3.2b). In all studies a 

high-carbohydrate meal (59g carbohydrates; 15g fat; 2.4g protein; 386 Kcal) was 

given immediately and 3 hours (115g carbohydrates; 50g total sugars; 20g fat; 27g 

protein; 750 Kcal) after the administration of glibenclamide and glimepiride (171, 

233). Blood glucose was monitored throughout the study. 
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I (20 minutes) R (20minutes) 

I                 R 

I  R  

a.                              
 
 
b.                              
 
 
c. 
                                                                                                                        
 

Figure 3.1: Protocol of studies to determine the effect of PostC on endothelial IR-injury (a) Endothelial 
function (EF) in the brachial artery and forearm resistance vessels was assessed before 20 minutes of arm 
ischaemia (I) and at 20 minutes of reperfusion (R). (b)The vascular smooth muscle function (SMF) in the forearm 
resistance vessels was assessed before and after IR injury. The effect of PostC was determined (c) by applying 
3 cycles of 10 seconds of arm reperfusion and 10 seconds of arm ischaemia. 
 

 

a. 
                                                                                      

 
 
b. 
 

 

 
Figure 3.2: Protocol of studies to determine the role of KATP Channels in PostC (a) To determine the 
effect of Glibenclamide on PostC; Baseline EF was assessed in the brachial artery (FMD) and resistance vessels 
(dose response to ACh). 3 cycles of PostC were applied after 20 minutes of ischaemia of the arm (at the onset of 
reperfusion) in the presence of oral glibenclamide 5mg which was administered 45 minutes before IR. EF was 
reassessed at 20 minutes of reperfusion. To determine the effect of glimepiride on PostC; Baseline EF was 
assessed in the brachial artery and resistance vessels. 3 cycles of PostC were applied after 20 minutes of 
ischaemia of the arm in the presence of oral glimepiride 1mg which was administered 45 minutes before IR. EF 
was reassessed at 20 minutes of reperfusion. (b) Experiments to exclude any direct effects of glibenclamide or 
glimepiride on endothelial response to IR injury.  
 

 

3.3.5 Effect of inhibition of the mPTP on endothelial IR Injury 

In cohort 2 (n=11), the role of the mPTP in PostC was assessed using ciclosporin 

(non-selective mPTP blocker) administered intra-arterially at reperfusion. Baseline 

response to ACh was assessed before and after IR injury as above (Figure 3.3a). 

45 minutes EF EF 
 

KATP blocker 
 

45 minutes EF EF 
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EF EF 
 

EF EF 
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I (20 minutes) R (20minutes) 

I  R 

20 minutes  20 minutes 

On a separate study day, subjects underwent IR injury, during which ciclosporin 

(Sandimmun-Novartis; 0.6µmol/min), was administered during the last 2 minutes of 

ischaemia and the first minute of reperfusion (Figure 3.3b). After 20 minutes of 

reperfusion the response to ACh was repeated. To assess for a direct effect of 

ciclosporin on endothelial function, the protocol was repeated without IR (Figure 

3.3c). 

   
a.                              
 
 
b.                       

 
 
c.                      
 
          
 
 
Figure 3.3: Protocol of studies to determine the role of the mPTP in PostC. (a) Endothelial function (EF) 
in the forearm resistance vessels was assessed before 20 minutes of arm ischaemia (I) and at 20 minutes of 
reperfusion (R) (b) Baseline EF was assessed in the resistance vessels (dose response to ACh). To determine if  
mPTP inhibition mimics, the mPTP inhibitor ciclosporin (0.6µmol/min) was infused into the brachial artery during 
the last 2 minutes of ischaemia and the first minute of reperfusion (3 minutes in total). EF function was 
reassessed at 20 minutes of reperfusion.  
 
 

3.4 Calculations and Statistical Analysis 

See section 2.5 of chapter 2. 

 

3.5 Results 

All subjects tolerated the procedure. There was no significant difference in blood 

glucose between the glibenclamide- and glimepiride- treated subjects (Figure 3.4). 

Symptomatic hypoglycaemia was treated in two subjects in the glibenclamide group 

and one subject in the glimepiride group. There were no effects on blood pressure, 

EF EF 
 

Ciclosporin (3 minutes) 

EF EF 
 

          Ciclosporin (3 minutes) 

EF EF 
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heart rate, baseline brachial artery diameter or FMD flow stimulus during reactive 

hyperaemia (Table 3.1). 

 

 

 

 
 
 
Figure 3.4: Comparison of blood glucose concentration (mmol/l) in glimepiride and glibenclamide studies 
(p=0.2; Paired t test). 
 

3.5.1 Effect of IR on endothelial function 

IR reduced brachial artery FMD (7.1±0.9% before IR vs 2.8±0.4% after IR, P<0.001; 

Paired t test; n=9) [Figure 3.5a] and resistance vessel forearm blood flow (P=0.0014; 

ANOVA; n=17) [Figure 3.5c]. In the KATP studies, a significant correlation existed 

between baseline and post-IR values for FMD (Pearson’s r=0.6, P< 0.001) and 

vasodilator response to ACh AUC (Pearson’s r=0.7, P<0.0001). In the mPTP 

studies, a significant correlation existed between baseline and post-IR values for the 

vasodilator response to ACh AUC (Pearson’s r=0.7, P<0.001). These correlations 

justified using ANCOVA to adjust post-IR values for differences in baseline 

endothelial function (EF) between the different protocols, so that post-IR EF could be 

directly compared with greater statistical power (Tables 3.2, 3.4 and 3.5) 
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Table 3.1: Summary of blood pressure, heart rate, baseline brachial artery diameter and FMD flow stimulus 
(no units) during reactive hyperaemia. 
 

 

3.5.2 Effect of PostC on endothelial IR injury 

PostC prevented the IR induced endothelial dysfunction in the brachial artery FMD 

(6.8%±0.9% before IR+PostC vs 6.1±0.7% after IR+PostC, p>0.05; n=9) [Figure 

3.5b] and resistance vessels (P=0.38; n=16) [Figure 3.5d] 

 

3.5.3 Effect of IR on vascular smooth muscle function 

IR did not affect vascular smooth muscle function in the resistance vessel (P=0.92; 

n=9) [Figure 3.5e]. 

 IR Alone 
(n=9) 

IR+PostC 
(n=9) 

IR+PostC+Glib 
(n=9) 

IR+PostC+Glim 
(n=9) 

  
  Pre  

 
 Post  

 
  Pre  

 
 Post 

 
 Pre  

 
 Post 

 
  Pre  

 
 Post 

SBP  
(mmHg) 105±3 110±2 114±5 116±4 113±4 117±5 111±3 114±4 

DBP 
 (mmHg) 63±2 65±2 61±2 65±2 61±2 64±2 63±3 66±2 

HR (bpm) 67±5 66±5 65±3 63±3 64±3 64±3 66±3 65±2 

Baseline 
arterial 

diameter (mm) 
3.6±0.1 3.5±0.1 3.6±0.1 3.6±0.1 3.6±0.1 3.6±0.1 3.5±0.1 3.6±0.1 

Flow Stimulus 
(no units) 10.1±1.1 10.4±1.3 11.6±0.9 10.6±1.3 7.5±0.4 10.5±1.2 8.1±0.4 9.3±0.4 
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Figure 3.5: IR reduced endothelial function in the (a) brachial artery (FMD 7.1±0.9% pre-IR versus 2.8±0.4% 
post-IR; *P<0.001; n=9).  The IR induced endothelial dysfunction was prevented by PostC, in the (b) brachial 
artery (FMD 6.8%±0.9% pre- versus 6.1±0.7% post-IR+PostC; P>0.05; n=9). Similarly, IR induced endothelial 
dysfunction and in the (c) resistance vessels (*P=0.0014; n=18) and this was also prevented by PostC (d) 
(P=0.38; n=16). (e) IR did not affect vascular smooth muscle function in resistance vessels (P=0.92; n=9).  
BL=baseline; FBF=forearm blood flow. 
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3.5.4 Mechanism of Protection by PostC:  Role of KATP channels 

Glibenclamide abolished the protection induced by PostC against IR-induced 

endothelial dysfunction in the brachial artery (FMD 6.5±0.8% before IR + PostC + 

glibenclamide vs 3.1±0.4% after IR + PostC + glibenclamide, p<0.05; n=9) [Figures 

3.6a and 3.8] and resistance vessels (P=0.014; n=9) [Figures 3.6c and 3.8]. In 

contrast, glimepiride had no effect on PostC in the brachial artery (FMD 7.1±0.9% 

before IR + PostC + glimepiride vs 6.4±0.6% after IR + PostC + glimepiride, p>0.05; 

n=9) [Figures 3.6b and 3.8] or resistance vessels (P=0.56; n=10) [Figures 3.6d and 

3.9]. Neither glibenclamide (FMD 6.3±1.5 pre- versus 2.9±1.0 post-IR+Glib; P=0.03; 

n=4) [Figure 3.7a] nor glimepiride (FMD 6.9±1.1 pre- versus 3.6±0.7 post-IR+Glim; 

P=0.001; n=5) [Figure 3.7b] had any effect on the endothelial response to IR injury. 
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Figure 3.6:  In the presence of glibenclamide, the protection by PostC against IR was lost in the (a) brachial 
artery (FMD 6.5±0.8% pre- versus 3.1±0.4% post IR+PostC+Glib, †P<0.05; n=9) and (c) in the resistance 
vessels (P=0.014; n=9). In the presence of glimepiride the protection by PostC was preserved in the (b) brachial 
artery (FMD 7.1±0.9% pre- versus 6.4±0.6% post-IR+PostC+Glim, P>0.05; n=9) and (d) resistance vessels 
(P=0.56; n=10).  
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Figure 3.7: Endothelial response to IR injury was not affected by (a) Glibenclamide (FMD 6.3±1.5 pre- 
versus 2.9±1.0 post-IR+Glib; P<0.05; n=4) or (b) Glimepiride (FMD 6.9±1.1 pre- versus 3.6±0.7 post-IR+Glim; 
P<0.01; n=5).  
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Figure 3.8: Role of KATP channels in the mechanism of protection by PostC in the brachial artery. PostC 
prevented IR-induced reduction in FMD (post-IR FMD, 6.0±0.3%, n=9). The protective effects of PostC were 
abrogated by systemic glibenclamide (post-IR FMD, 3.3±0.2%, n=9). In the presence of glimepiride PostC 
prevented IR-induced reduction in FMD (post-IR FMD, 6.2±0.3%, n=9).  Post-IR values were adjusted for 
baseline FMD (ANCOVA). 
. 
 
 

 
Table 3.2: Summary of Baseline and Post-IR FMD data 
 
 

Study n 
Baseline 

FMD 
Post-IR 

FMD 
Post-IR 

 FMD (ANCOVA Adjusted) 

IR 9 7.1±0.9 2.8±0.4 2.6±0.4* 

IR+PostC 9 6.8±0.9 6.1±0.7 6.0±0.3† 

IR+PostC+Glibenclamide 9 6.5±0.8 3.1±0.4 3.3±0.2‡ 

IR+PostC+Glimepiride 9 7.1±0.9 

 

 

 

6.4±0.6                          6.2±0.3 

Data are expressed as mean±SEM. Post-IR FMD values were adjusted for baseline FMD by 

ANCOVA (Regression coefficient 0.56±0.13). For comparisons between the 4 groups, P 

values by ANCOVA were Scheffé adjusted. 

*P<0.001, IR vs IR+PostC and IR+PostC+Glimepiride  
†P<0.001, IR+PostC vs IR+PostC+Glibenclamide 
‡P<0.001, IR+PostC+Glibenclamide vs IR+PostC+Glimepiride 
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Table 3.3: Summary of Baseline and Post-IR dilator response to ACh AUC data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9: Role of KATP channels in the mechanism of protection by PostC in the resistance vessels. PostC 
prevented IR-induced reduction in the dilator response to ACh (Post-IR AUC 1.9±0.2 x 104; n=16). The protective 
effects of PostC were abrogated by systemic glibenclamide (Post-IR AUC 1.1±0.2 x 104; n=9). In the presence of 
glimepiride, PostC prevented the IR induced reduction in dilator response to ACh (Post-IR AUC 2.0±0.2 x 104; 
n=10). Post IR values were adjusted for baseline dilator response to ACh AUC (ANCOVA). AUC=area under 
curve; FBF=forearm blood flow. 
 
 
 
 

Study n 
Baseline 

AUC 
Post-IR 

AUC 
Post-IR 

 AUC (ANCOVA Adjusted) 

IR 17 2.1±0.4 1.5±0.2 1.0±0.1* 

IR+PostC 16 1.3±0.3 1.3±0.3 1.9±0.2† 

IR+PostC+Glibenclamide 9 2.4±0.7 1.5±0.3 1.1±0.2‡ 

IR+PostC+Glimepiride 10 2.1±0.6 

 

 

 

2.4±0.6                            2.0±0.2 

IR IR+PostC IR+PostC+Glib IR+PostC+Glim

P<0.001

P<0.001

AU
C

 A
C

h 
D

os
e 

R
es

po
ns

e 
(x

10
4 )

0

1

2

3

4

5

Data are expressed as mean±SEM. Post-IR dilator response to ACh AUC values (x104) were 

adjusted for baseline AUC by ANCOVA (Regression coefficient 0.55±0.07). For comparisons 

between the 4 groups, P values by ANCOVA were Scheffé adjusted. 

 *P<0.001, IR vs IR+PostC and IR+PostC+Glimepiride  
 †P<0.001, IR+PostC vs IR+PostC+Glibenclamide 
 ‡P<0.01, IR+PostC+Glibenclamide vs IR+PostC+Glimepiride 
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3.5.5 Effect of inhibition of the mPTP on endothelial IR Injury 
 
IR reduced the vasodilator response to ACh (P=0.006; n=11) [Figures 3.8a and 

3.11]. Infusion of ciclosporin around the onset of reperfusion mimicked the protective 

effect of PostC (p=0.44; n=11) [Figure 3.8b and 3.11]. Ciclosporin had no direct 

effect on endothelial function (p=0.76; n=11) [Figure 3.8c].  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10: (a) IR caused a reduction in endothelial function (P=0.006; n=11) (b) Administration of 
Ciclosporin around the onset of reperfusion protected against endothelial IR injury in the resistance vessels 
(P=0.44; n=11). (c) Ciclosporin had no effect on endothelial function (P=0.76; n=11). 
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Study n Baseline AUC Post-IR AUC Post-IR AUC (ANCOVA Adjusted) 

IR 11 2.3±0.5 1.4±0.3 1.4±0.2* 

IR+Ciclosporin 11 2.2±0.4 2.1±0.4 2.2±0.3 

 

 
 

Table 3.4: Summary of Baseline and Post-IR dilator response to ACh AUC data (Cohort 2) 
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Figure 3.11: Role of the inhibition of the mPTP in protection against IR-induced endothelial dysfunction in 
resistance vessels. The IR-induced reduction in dilator response to ACh (Post-IR AUC 1.4±0.2 x 104; n=11) was 
prevented by ciclosporin administered around the onset of reperfusion (Post-IR AUC 2.2±0.3 x 104; n=11). Post 
IR values were adjusted for baseline dilator response to ACh AUC (ANCOVA).  
 

 

 

Data are expressed as mean±SEM. Post-IR dilator response to ACh AUC values (x104) were 

adjusted for baseline AUC by ANCOVA (Regression coefficient 0.53±0.12).  

 *P<0.05, IR vs IR+Ciclosporin 
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3.6 Discussion 

This chapter demonstrates that PostC is dependent on KATP channel activity. In 

conduit and resistance vessels, the non-selective KATP channel blocker, 

glibenclamide abolished protection. In contrast, glimepiride, a KATP blocker that is 

selective for non-vascular tissues, had no effect on PostC. Furthermore, this study 

demonstrates that protection by PostC is mimicked by inhibition of the mPTP, as 

administration of the non-specific inhibitor of mPTP – ciclosporin, around the onset 

of reperfusion, protected against endothelial IR injury. 

 

3.6.1 PostC protects against endothelial IR injury 

IR injury to any organ causes damage directly to the tissue parenchyma, but a 

vascular component of IR injury can interfere with reperfusion and so contribute to 

tissue damage. This vascular injury, mainly in the form of endothelial dysfunction, 

has been well described in both animal and human models (see sections 1.3 & 1.6 of 

chapter 1). In the present study I used IR-induced endothelial dysfunction as a 

convenient proxy to explore the mechanism of PostC in humans. As demonstrated 

previously, IR had no effect on vascular smooth muscle in resistance vessels (187, 

261). Also consistent with previous work, results of this chapter demonstrate that 

PostC preserves endothelial function in conduit vessels exposed to IR, and extends 

these findings to the resistance vasculature (124). It is possible that these 

vasculoprotective effects in conduit and resistance vessels contribute to the clinical 

effect of PostC to reduce tissue injury in patients. 
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3.6.2 Mechanisms of protection by PostC 

Studies of the mechanisms of PostC in the mammalian heart have revealed a 

number of themes. There is involvement of endogenous ligands which include 

adenosine, bradykinin and opioids to trigger protection which is then dependent on 

activation of a number of intermediate pathways, including the NO/cGMP pathway, 

reperfusion injury salvage kinases (RISK pathway) and KATP channels. Ultimately, 

modulation of mitochondrial energetics (critical for many types of ischaemic 

protection) seems to be a key aspect of PostC, because inhibition of the 

mitochondrial permeability transition pore (mPTP) at reperfusion mimics PostC (156, 

265). These pathways, identified in animal models, provide opportunities to 

pharmacologically probe the mechanism of PostC in humans.  

 

3.6.3 A role for KATP channels in PostC in humans 

It has previously been shown in humans that KATP channel activation mimics and 

blockade of KATP channels inhibits ischaemic preconditioning in humans (233). The 

results of this chapter demonstrate that glibenclamide (non-selective KATP channel 

blocker) largely abolishes PostC-induced protection against endothelial IR injury, in 

conduit and resistance vessels. These data implicate the KATP channel in the 

mechanism of PostC, and are consistent with animal data (145, 154-156, 266, 267). 

The molecular structure of KATP channels offers an explanation for the differential 

effect of glibenclamide and glimepiride (see section 1.4.3 of chapter 1). KATP 

channels in cardiac and vascular tissue comprise mainly KIR6.2/SUR2A and 

KIR6.1/SUR2B channels respectively, and are more sensitive to non-selective 

blockade by glibenclamide (262, 263). In contrast, glimepiride preferentially blocks 

KIR6.2/SUR1 channels, which predominate in the pancreas. Animal and human 
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studies have demonstrated that glimepiride has fewer cardiac actions compared to 

glibenclamide (262-264, 268, 269). I observed a clear effect of glibenclamide but not 

glimepiride to abolish the protective effects of PostC in both vascular beds studied. 

The results are not easily explained by differences in dose, as the hypoglycaemic 

effect of both drugs was similar (Figure 3.3). Epidemiological studies have not 

consistently identified whether glibenclamide increases the risk of ischaemic tissue 

damage when used to treat diabetes, but the differential effects of KATP channel 

blockers identified in this study provide a theoretical basis for choosing between 

them. Although some studies suggest that glimepiride may induce ischaemic 

protection by other mechanisms, my results do not show this in humans in vivo (270, 

271). 

 

3.6.4 Mimicking PostC by mPTP inhibition at reperfusion 

Although the exact molecular structure of the mPTP is yet to be determined its role 

in cell death after IR injury is well recognised (272).  During ischaemia the mPTP 

remains closed but at reperfusion it opens (32). Opening of the mPTP leads to 

inability of the cells to generate ATP for the repair of damage caused by the Ca2+ 

dependent proteases, nucleases and phospholipases activated during IR injury, a 

process that contributes to cell death (24). 

This chapter demonstrates that the non-specific mPTP inhibitor – ciclosporin 

administered intra-arterially at a dose of 0.6µmol/min around the time of reperfusion 

protects against endothelial IR injury in human forearm resistance vessels. A key 

aspect of the study design was to ensure that ciclosporin was administered close to 

the moment of reperfusion.  The cumulative dose of ciclosporin used was 

comparable to that which achieved a protective effect in similar studies in isolated rat 
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hearts and human atrial tissue (273, 274).  This was in an attempt to limit the intra-

arterial dose of ciclosporin to subsystemic levels and also to avoid higher doses that 

may lead to a reversal of the protective effect (273).  However, experimental 

evidence suggests that mPTP opening can be transient and may not necessarily 

lead to cell death (275, 276). Therefore, a plausible explanation for my results is that 

ciclosporin afforded protection in this model of IR injury by inhibition of long lasting 

mPTP opening.  

Available evidence suggests that PostC induces protection against IR injury by 

modifying early stages of reperfusion; such that a delay in the application of the 

PostC stimulus for as short as 1 minute results in loss of the protection (124). 

Protection against IR injury by pharmacologically inhibiting the mPTP at reperfusion 

suggests this as a possible mechanism of PostC. These data are in agreement with 

animal data in which mPTP inhibitors such as ciclosporin, NIM811, debio-025 and 

sanghliferin A, given at the time of reperfusion after prolonged ischaemia, limited IR 

injury (156, 277, 278). The possibility of a direct effect of ciclosporin on endothelial 

function was considered, but my data show that ciclosporin had no direct effect on 

endothelial function. In a study in patients presenting with acute myocardial 

infarction, ciclosporin administered around the time of reperfusion caused a 

significant reduction of creatine kinase a biochemical marker of myocardial infarct 

size (157). My results provide further evidence that ciclosporin might be exploited as 

an adjuvant during reperfusion therapy in humans. 

 

3.6.5 Conclusion 

In summary, these data provide further support for ischaemic postconditioning as an 

effective protective strategy against IR injury in humans. In addition, an immediate 
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therapeutic implication of my results is that preserving vascular KATP channel activity 

will be necessary to facilitate the development of new treatments, irrespective of 

whether they are based on old or new drugs. Evidence from my study and the study 

in patients presenting with myocardial infarction suggests that inhibition of the mPTP 

to limit IR injury in humans might be clinically useful.   
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4.1 Introduction 

Ischaemic preconditioning (IPC) protects against damage from ischaemia-

reperfusion (IR) injury. Though first noted to cause localized protection, it is now 

evident that there is a cotemporaneous systemic mechanism that is activated by IPC 

and which causes ischaemic protection in tissues remote from those undergoing 

IPC. Two variants of remote protection have been identified; remote ischaemic 

preconditioning (RIPC), where the preconditioning stimulus is applied before IR 

injury and remote ischaemic postconditioning (RPostC) where the preconditioning 

stimulus is applied during IR injury. The discovery that limb ischaemia activates 

RIPC and RPostC has led to their validation in humans, and a number of clinical 

trials have reported promising biological effects of RIPC in patients (189). 

Understanding the mechanism whereby protection spreads to distant tissues has 

scientific and therapeutic implications. In animals and humans, a neuronal 

mechanism has been proposed, because RIPC-induced protection is abolished in 

the presence of ganglionic blockade (178, 179,187). There is also evidence for 

haematogenous spread of RIPC; ischaemic protection transfers in blood to 

preconditioning-naïve animals (177, 279). In humans, plasma extract obtained after 

activation of RIPC pathways contains a factor that reduces IR injury in vitro (174). 

The identity of the transferable factor(s) remains unknown, though it is opioid-

dependent and crosses species (174, 177, 279). It has not yet been possible to 

demonstrate in humans that there is inter-individual haematogenous spread of 

remote ischaemic protection. This reflects the logistical problems and safety 

concerns of using blood or blood products to transfer protection between individuals. 

However differences between IPC, RIPC and RPostC might enable the question of 

intra-individual haematogenous spread to be addressed. Local protection of IPC is 
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independent of any circulating factor, the key difference in its mechanism compared 

to RIPC (280). In addition, the model of RPostC that I used in this thesis uses a 

remote postconditioning stimulus simultaneous with the ischaemic phase of IR 

injury. The consequence of this is that the injured tissue is isolated from the 

circulation during induction of remote ischaemic protection. This scheduling of 

protective stimulus and ischaemic injury minimises the influence of any circulating 

factor. Therefore, in this chapter I undertook experiments to test the following 

hypotheses in healthy volunteers; 

a. RIPC requires the activation of opioid pathways in vivo and is blocked by the 

opioid antagonist naloxone 

b. IPC and RPostC do not require a circulating factor and are not blocked by 

opioid antagonism  

 

4.2 Methods 

97 studies were performed on 19 healthy non-smoking male volunteers aged 

between 18 and 45 years who were recruited from the University College London 

staff and student community. 9 volunteers participated in the RIPC and RPostC 

studies (cohort 1) while 10 volunteers participated in the IPC studies (cohort 2). FMD 

was used to assess brachial artery endothelial function (section 2.2.1) and 

measurement of plasma beta endorphins was performed by ELISA (section 2.3.1). 
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4.2.1 Induction of IR injury 

IR injury was induced as described in section 2.1.1. 

 

4.2.2 Induction of remote preconditioning 

RIPC was performed as described in section 2.1.4. 

 

4.2.3 Induction of remote postconditioning 

RPostC was performed as described in section 2.1.5. 

 

4.2.4 Induction of ischaemic preconditioning (IPC) 

This was performed as described in section 2.1.2. 

 

4.2.5 Assessment of plasma beta endorphins 

Volunteers were seated comfortably and a 12-cm blood pressure cuff was placed 

around the upper part of the thigh.  A 19G butterfly needle was placed into a vein in 

the upper arm and a second was positioned into a vein in the leg. Blood samples, at 

specific time points (see below) were collected in EDTA tubes that contained 312µl 

aprotinin (0.6 TIU/ml of blood) and centrifuged to obtain plasma. The plasma 

samples were aliquoted and stored at -80°C until laboratory analysis was performed 

(see section 2.3.1).  
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4.3 Experimental protocols   

 

4.3.1 Effect of IR on endothelial function 

To determine the effect of IR on endothelial function (EF), brachial artery FMD was 

assessed before ischaemia (baseline) and at 20 minutes after reperfusion [Figure 

4.1a].  

 

4.3.2 Effect of remote preconditioning on endothelial IR Injury 

FMD was assessed before and after IR but immediately preceded by ArmRIPC and 

LegRIPC to establish that protection against endothelial IR can be achieved by two 

different RIPC stimuli [Figure 4.1b & c]. 

 

4.3.3 Effect of remote postconditioning on endothelial IR Injury 

FMD was assessed before and after IR but during the index ischaemia the RPostC 

stimulus was applied. This was to establish that protection against endothelial IR can 

be achieved by RPostC [Figure 4.1d]. 

 

4.3.4 Effect of ischaemic preconditioning on endothelial IR Injury 

FMD was assessed before and after IR but immediately preceded by local IPC to 

establish that protection against endothelial IR can be achieved by IPC [Figure 4.1e]. 
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Figure 4.1: Protocols to determine the effect of (a) IR on endothelial function (EF), (b) ArmRIPC on 
endothelial IR injury; (c) LegRIPC on endothelial IR injury; (d) RPostC on endothelial IR injury and (e) IPC on 
endothelial IR injury. 
 

4.3.5 Effect of opioid receptor blockade on RIPC, RPostC and IPC 

The non-selective opioid receptor blocker, naloxone  was administered intravenously 

at a bolus dose of 6mg, then a continuous infusion at a dose of 0.1 mg/min 

throughout the duration of the protective stimulus [Figures 4.2 a - d]. This dose has 

been used in a previous study in patients and was determined by the increase of β-

endorphin in the plasma to levels that indicate effective opioid receptor blockade 

(281). This protocol was to establish the role of opioid receptors in the different 

modalities of ischaemic protection.  
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Figure 4.2: Protocols to determine the effect of naloxone on (a) Arm RIPC (b) Leg RIPC (c) RPostC and (d) 
IPC. 
 

 

4.3.6 Effect of naloxone on endothelial IR injury 

Experiments to assess the direct effect of naloxone on endothelial IR injury were 

also performed [Figures 4.3a & b]. 

 

 

 

 

IPC + naloxone 

RPostC + naloxone 

ArmRIPC+ naloxone 

EF EF 
 

EF EF 
 

EF EF 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

LegRIPC + naloxone 

EF EF 
 

 
 

 
 

 
 

 
 



 124 

I  R  

I R 

I(5 mins) R (5 mins) I(5 mins) R (5 mins) 

 

a.                
 
 
 
 
b. 
 

 
 
Figure 4.3: Protocols to determine the effect of naloxone on endothelial IR injury with (a) IR alone and with 
(b) IR + No RIPC.  
 

 

4.3.7 Effect of remote conditioning stimulus on local production of beta 

endorphins 

Baseline blood samples were obtained from the arm and the leg as described in 

figure 4.4. 

 

 
 
 
 
 
 
 
 
 
Figure 4.4: Protocol to determine the effect of remote conditioning stimulus on plasma beta 
endorphins. Baseline blood samples were obtained from the arm [1] and the leg [2]. After the cuff was inflated 
for 4.5 minutes a blood sample [3] was collected from the butterfly needle in the leg vein. Immediately after cuff 
deflation (approximately at 5 minutes) a 2nd blood sample [4] was collected from the leg vein. A 3rd blood sample 
[5] was collected just before the end of cycle 1 (before cuff inflation for cycle 2) and this occurred at 
approximately 9.5 minutes.  During cycle 2, blood samples were collected after the cuff had been inflated [6], 
immediately after the cuff deflation [7] and before the end of cycle 2 [8].  Blood samples were collected 5 minutes 
after the remote conditioning stimulus, from the arm [9] and from the leg [10]. 
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4.4 Calculations and Statistical Analysis 

For FMD these are as described in section 2.4. Plasma beta endorphin 

concentrations were measured in ng/ml. In all cases, a value of P<0.05 was 

considered statistically significant. 

 

4.5 Results 

All subjects tolerated the procedure. There were no significant effects on blood 

pressure, heart rate, baseline brachial artery diameter or FMD flow stimulus during 

reactive hyperaemia (Table 4.1). 

 

 

Table 4.1: Summary of blood pressure, heart rate, baseline brachial artery diameter and FMD flow stimulus 
(no units) during reactive hyperaemia. 
 

 

 IR Alone (n=8) IR+ArmRIPC (n=8) IR+RPostC (n=9)  IR+ArmRIPC + 
naloxone (n=9) 

IR+RPostC + 
naloxone (n=8) 

  
Pre 

 
Post 

 
Pre 

 
Post 

  
Pre 

 
Post 

Pre Post    Pre        Post 

SBP  
(mmHg) 108±8 109±8 111±4 112±3 105±3 108±2 111±3 114±4 

114±5         110±2 
 

DBP 
(mmHg) 66±5 67±5 60±3 66±1 58±2 60±4 63±3 66±2 66±4         64±3 

HR 
(bpm) 63±4 63±4 60±4 58±4 59±3 64±3 66±3 65±2 63±3         61±2 

Baseline 
arterial 

diameter 
(mm) 

3.9±0.2 3.8±0.2 4.0±0.2 4.0±0.2 3.7±0.1 3.7±0.1 3.9±0.1 3.8±0.1 3.7±0.1     3.8±0.1 

Flow 
Stimulus 9.1±1.1 10.2±1.3 10.3±1.1 10.9±1.4 9.4±0.6 10.6±1.3 10.1±0.4 11.5±0.4 9.3±1.6   10.2 ±1.1 
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4.5.1 Effect of IR on endothelial function 

IR reduced brachial artery FMD (FMD 7.8±0.8% before IR vs 3.6±0.7% post-IR; 

*p<0.0001; paired t test; n=8) [Figures 4.5a & 4.7]. A significant correlation existed 

between baseline and post-IR values for FMD (Pearson’s r=0.5, P<0.001). These 

correlations justified using ANCOVA to adjust post-IR values for differences in 

baseline endothelial function (EF) between the different protocols, so that post-IR EF 

could be directly compared with greater statistical power (Figure 4.7) 

 

4.5.2 Effect of RIPC on endothelial IR injury 

RIPC prevented the IR induced reduction in brachial artery FMD (FMD 7.1±0.5% 

before IR+Arm RIPC vs 6.9±1.0% after IR+Arm RIPC, p=NS; n=8 and FMD 

7.2±0.8% before IR+Leg RIPC vs 7.3±0.7% after IR+LegRIPC, p=NS; n=7) [Figures 

4.5 b & c & 4.7]. 

 
 
4.5.3 Effect of RPostC on endothelial IR injury 

RPostC prevented the IR induced reduction in brachial artery FMD (FMD 6.5±0.8% 

before IR+RPostC vs 6.6±1.0% after IR+RPostC, p=NS; n=7) [Figures 4.5d & 4.7].  
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4.5.4 Role of opioid receptors in protection by RIPC and RPostC 

Naloxone abolished the protection by RIPC (arm or leg) against IR-induced 

endothelial dysfunction in the brachial artery FMD (7.0±0.6% before IR+Arm 

RIPC+naloxone vs 2.8 ± 0.6% after IR+ArmRIPC+naloxone, p<0.001; n=8) and 

6.7±0.7% before IR+Leg RIPC+naloxone  vs 3.0 ± 0.5% after IR+ 

LegRIPC+naloxone, p<0.001; n=6) [Figures 4.6a & b & 4.7].  In contrast, naloxone 

did not affect the protection afforded by RPostC (7.1±0.6% before 

IR+RPostC+naloxone vs. 7.0 ± 0.7% after IR+RPostC+naloxone, p =NS; n=8) 

[Figures 4.6c & 4.7]. 

  

 

 

 

 

 

Figure 4.5: IR reduced endothelial function in the (a) brachial artery (FMD 7.8±0.8% pre-IR versus 
3.6±0.7% post-IR; *P<0.0001; n=8).The IR induced endothelial dysfunction was prevented by (b) ArmRIPC 
(FMD 7.1±0.5% pre- versus 6.9±1.0% post-IR+ArmRIPC; P=NS; n=8),  (c) LegRIPC (FMD 7.2±0.8% pre- 
versus 7.3±0.7% post-IR+LegRIPC; P=NS; n=7) and  (d) RPostC (FMD 6.5±0.8% pre- versus 6.6±1.0% 
post-IR+RPostC; P=NS; n=7).  BL=baseline. 
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Figure 4.7: Role of opioid receptors in protection by RIPC and RPostC in the brachial artery. ArmRIPC 
(post-IR FMD, 6.9±0.9%, n=8), LegRIPC (post-IR FMD, 7.4±0.5%, n=7) and RPostC (post-IR FMD, 7.0±0.7%, 
n=7) prevented IR-induced reduction in FMD. The protective effects of ArmRIPC (post-IR FMD, 3.0±0.4%, n=8) 
and LegRIPC (post-IR FMD, 3.0±0.4%, n=6) were abrogated by systemic naloxone. In contrast, the protective 
effect of RPostC was preserved in the presence of naloxone (post-IR FMD, 6.9±0.5%, n=8).  Post-IR values 
were adjusted for baseline FMD (ANCOVA). 
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Figure 4.6: Naloxone abolished the protective effects of (a) ArmRIPC (FMD 7.0±0.6% pre-IR versus 
2.8±0.8% post-IR; *P<0.001; n=8) and (b) LegRIPC (FMD 6.7±0.7% pre- versus 3.0±0.5% post-
IR+LegRIPC+naloxone; *P<0.001; n=8). Naloxone did not affect the protection afforded by (c) RPostC (FMD 
7.1±0.6% pre- versus 7.0±0.7% post-IR+LegRIPC+naloxone; P=NS; n=8) BL=baseline 
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4.5.5 Role of opioid receptors in protection by IPC 

In the cohort of volunteers that took part in the IPC studies (n=10), IR reduced 

brachial artery FMD (FMD 6.7±0.7% before IR vs 2.5±0.4% after IR, *p<0.0001; 

n=10) (Figure 4.8a). IPC prevented the IR induced reduction in brachial artery FMD 

(FMD 6.3±0.5% before IR+IPC vs 6.5±0.6% after IR+IPC, p=NS; n=10) [Figure 

4.8b]. Naloxone had no effect on protection against IR-induced endothelial 

dysfunction by IPC (6.1±0.4% before IPC + vs. 6.5±0.6% after IPC, p =NS; n =10) 

[Figure 4.8c] 
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Figure 4.8: IR reduced endothelial function in the (a) brachial artery (FMD 6.7±0.7% pre-IR versus 2.5±0.4% 
post-IR; *P<0.0001; n=10).The IR induced endothelial dysfunction was prevented by (b) IPC (FMD 6.3±0.5% pre- 
versus 6.5±0.6% post-IR+IPC; P=NS; n=10).  (c) Naloxone did not affect the protection afforded by IPC (FMD 
6.1±0.4% pre- versus 6.5±0.6% post-IR+IPC; P=NS; n=10) 
 

                      BL   IR+IPC+naloxone 
0

2

4

6

8

10

12

14

FM
D

  (
%

)

c.



 130 

4.5.6 Effect of remote conditioning on beta endorphins  

The concentration of plasma beta endorphins did not change after LegRIPC (p=NS; 

ANOVA; n=6) [Figure 4.9]. 

 

 

 

 

 

 

 

                      

 

 

 

4.6 Discussion 

Results in this chapter demonstrate that naloxone inhibits RIPC-induced endothelial 

protection from IR injury. Naloxone had no effect on other ischaemic conditioning 

stimuli that have little or no requirement for circulating mechanisms to effect 

protection. The most plausible explanation is that opioid antagonism blocks a 

humoral mediator that contributes to the systemic spread of ischaemic protection in 

RIPC, but which is not required in IPC or RPostC.  Control studies confirmed that 

naloxone had no direct effect on the endothelial response to IR injury. 

 

 

 

0 5 10 15 20 25 30

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Time (minutes)

[P
la

sm
a 

be
ta

 e
nd

or
ph

in
]

ng
/m

l

Figure 4.9: There was no significant change in plasma beta endorphin concentrations during the remote 
conditioning stimulus comprising 2 leg cycles of 5 minutes ischaemia and 5 minutes reperfusion (p=NS; 
ANOVA; n=6).  
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4.6.1 Effect of opioid antagonism on IPC 

Ischaemic preconditioning represents the best characterised example of hormesis, 

whereby controlled doses of a potentially injurious stimulus (brief periods of 

ischaemia) induce transient protection against a larger toxic dose of the same 

stimulus. IPC induces release of multiple triggers that activate membrane bound 

receptors (94). These in turn stimulate a complex kinase-based mechanism which 

leads to changes in mitochondrial energetics and subsequent tissue protection. The 

human forearm model of IR injury and IPC mimics many of the facets of the 

mechanisms of IR and IPC identified in pre-clinical models. IR injury is dependent on 

endogenous oxidant stress, is reduced by exogenous anti-oxidants, and NO-based 

interventions (41, 282, 283). Activation of IPC requires a threshold stimulus; 

protection requires activation of mitochondrial ATP-sensitive potassium channels 

and is mimicked by inhibition of the mitochondrial permeability transition pore (94). 

Though endogenous opioids have been shown to trigger IPC in some animal 

models, at the systemic dose that was administered in this thesis, there was no 

effect of opioid antagonism to block IPC-induced protection. My observations 

compare with the results of a previous study in isolated rabbit hearts; in which 

naloxone did not inhibit local preconditioning but abolished the protection afforded by 

transfer of an IPC concentrate (280). This research group postulates that ischaemic 

protection by IPC is mediated by multiple, independent or ‘in-parallel’ protective 

mechanisms such that blocking the opioid pathway alone does not affect protection. 

The dose of naloxone I have chosen has been previously demonstrated to inhibit the 

effects of endogenous opioids in humans and increase plasma concentration of 

endorphins via receptor displacement (281). Whether larger doses or co-



 132 

administration with other agents (to target multiple triggers) would be needed to 

block IPC remains to be determined. Therefore, although the present study does not 

rule out a role for endogenous opioids in the mechanism of IPC, it strongly suggests 

that opioids are not necessary to effect IPC in humans in vivo. 

 

4.6.2 Systemic spread of protection in RIPC 

Tissue mechanisms of ischaemic protection by RIPC resemble those of IPC with 

respect to the involvement of triggers, mediators and effectors (see section 1.7.1). 

However the systemic spread of protection from a localised stimulus implies the 

involvement of humoral and/or neuronal mechanisms and evidence for both has 

emerged. Autonomic ganglionic blockade inhibits RIPC in animals and humans (168, 

172,187). However, there is strong evidence that a humoral mechanism can also 

effect systemic protection. Organ denervation does not block RIPC, and there is 

inter-individual transfer of ischaemic protection by blood or blood products (174, 177, 

279, 284, 285). The nature of the active principle in the blood remains uncertain, 

with circumstantial evidence supporting each of adenosine, bradykinin, opioids and 

cannabinoids (286). The relative contribution of the neural and humoral components 

and the degree to which they interact might vary between species and the nature of 

the IR injury and the preconditioning stimulus.  

In a previous study, ganglionic blockade with trimetaphan inhibited the effect of 

RIPC to prevent endothelial IR injury, a finding that supported a neuronal 

mechanism in humans. However a dialysable plasma extract from volunteers in 

whom preconditioning pathways have been activated has been identified that 
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reduces myocardial IR injury in the rat isolated heart (174). The activity of this 

unidentified substance was blocked by naloxone, strongly suggesting that it 

activates opiate receptors. Results in this thesis provide corroborative in vivo 

evidence that RIPC is opioid-dependent. As previously shown, the contrast with IPC 

is best explained by naloxone inhibiting the spread of protection rather than 

interfering with local activation or effector mechanisms, given the similarities of these 

aspects of the mechanism between IPC and RIPC (280). However, these studies do 

not themselves differentiate between an opioid based humoral or neuronal 

mechanism.  

 

4.6.3 Role of opioids in RPostC 

Differences in the scheduling of the conditioning ischaemia between RIPC and 

RPostC provide an opportunity to examine the role of a circulating factor in humans. 

In the RPostC protocol that was used in this thesis, the index ischaemia and 

conditioning ischaemia are co-temporaneous. The corollary of this is that the limb 

undergoing index ischaemia is completely isolated from the circulation during the 

application of the ischaemic preconditioning stimulus on the contra-lateral limb. This 

would be expected to minimise any influence of a blood-borne protective substance, 

but leave neuronal mechanisms intact. RPostC had a similar protective effect to 

RIPC but this was unaffected by naloxone administration. This is strong evidence 

that the opioid component of remote protection requires an intact circulation and is 

humoral rather than neuronal.  
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4.6.4 Relative contribution of neuronal and humoral pathways 

RIPC is sensitive to neuronal or opioid blockade, with inhibition of either pathway 

blocking protection. This could be because the neuronal and humoral pathways are 

arranged in series. An alternative mechanism is that they are parallel pathways and 

each is required to breach a threshold stimulus above which ischaemic protection is 

triggered. The present study provides evidence that the pathways are not simply 

arranged in series, because protection from RPostC (activated principally 

neuronally) persisted after administration of naloxone. It remains to be determined 

how activation of one pathway during RPostC is sufficient to cross a threshold to 

effect remote ischaemic protection, whereas for RIPC both pathways need to be 

activated. One explanation is that the conditioning stimulus of RPostC is closer in 

time to the index injury, and it is possible that the closer in time the protective 

stimulus is to the index ischaemia, the greater is the degree of protection. The 

hypothesis would be that at this earlier timepoint, RPostC crosses a threshold for 

protection.  

 

4.6.5 Beta endorphins in remote conditioning 

The endogenous opioids (endorphins, dynorphins and enkephalins), mediate their 

effects via the activation of the mu-, kappa- and delta – opioid receptors respectively 

(251). In this thesis plasma beta endorphins were assayed as a sensitive marker of 

activation of the endogenous opioid pathway during the remote conditioning 

stimulus. The lack of a significant change in the concentration of plasma beta 

endorphin in response to the conditioning stimulus might possibly be due to absence 
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of a plasma extraction process by acidification to purify the samples. This was based 

on protocols of the KCH laboratory, which does not recommend extraction when 

dealing with relatively small polypeptides such as beta endorphin, because of the 

risk of denaturation. Another possibility is that other endogenous opioids such as the 

enkephalins or dynorphins might have played a more prominent role during the 

remote conditioning stimulus. Further studies will be needed to explore this in more 

detail.   

 

4.6.6 Conclusion 

Results in this chapter provide evidence in vivo for a circulating factor that 

contributes to ischaemic protection in humans. It is sensitive to opioid antagonism 

and may act independently of nervous system control. There is a complex 

interaction between the circulating factor and the nervous system, which is explored 

in more detail in the next chapter. It is possible that the identification of this humoral 

factor will allow supra-physiological activation of ischaemic conditioning pathways, 

with greater potential to reduce IR injury than has been possible to date. 
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5.1 Introduction 

Chapter 4 of this thesis described evidence for a circulating opioid pathway in the 

transfer of protection by RIPC. Previous studies in this laboratory have 

demonstrated that complete autonomic blockade using trimetaphan abolished 

protection against endothelial IR injury by early and late RIPC in healthy volunteers 

(187). This builds on data from animal models which have shown that the ganglion 

blocker hexamethonium can block the protective effects of RIPC (178, 179).  

However, available data do not give a clear indication of the relative contribution of 

the neurogenic or humoral pathways in the mediation of protection by a remote 

stimulus. The plausibility of a complex interaction between humoral factors and the 

neurogenic system is highlighted in studies which show that an intact nerve supply is 

essential to facilitate remote protection by circulating factors (175). 

Using an in vivo model of endothelial IR injury I sought to further investigate the role 

of the autonomic pathways in protection by RIPC and RPostC.  In this chapter 

phentolamine and atropine were used as pharmacological probes to determine the 

role of the alpha adrenergic and cholinergic neural pathways respectively.   

 

5.2 Methods 

5.2.1 Subjects 

83 studies were performed on 17 male, healthy, non-smoking volunteers aged 18-45 

years. Cohort 1 (n=10) were recruited for the RIPC protocols and cohort 2 (n=10) 

were recruited for the RPostC studies. Missing data are attributable to the inability of 

some of the participants to complete the protocol which entailed several visits.  
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5.2.2 Assessment of Conduit Vessel Endothelial Function 

Brachial artery flow mediated dilatation (FMD) of the right arm was assessed as 

described in section 2.2.1. 

 

5.2.3 Induction of IR injury 

IR injury was induced as described in section 2.1.1. 

 

5.2.4 Induction of remote preconditioning 

ArmRIPC was performed as described in section 2.1.4. 

 

5.2.5 Induction of remote postconditioning 

RPostC was performed as described in section 2.1.5. 

 

5.3 Experimental Protocols 

5.3.1 Effect of IR on Endothelial Function 

To determine the effect of IR on endothelial function (EF), brachial artery FMD was 

assessed before ischaemia (baseline) and at 20 minutes after reperfusion [Figure 

5.1a].  
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5.3.2 Effect of ischaemic conditioning stimuli on Endothelial IR Injury  

FMD was assessed before and after IR injury + ArmRIPC or RPostC [Figures 5.1b & 

c].  

a.                
 
 
 
b. 
                                                                                                                        
 
 
 
 
 
c. 
                                                                                      

 
 

 

Figure 5.1: Protocols to determine the effect of RIPC and RPostC on endothelial IR. 

 

 

5.3.3 Effect of alpha adrenergic receptor blockade on RIPC and RPostC  

The alpha adrenergic receptor blocker, phentolamine was administered 

intravenously at a dose of 0.2 – 0.7mg/min, as described previously (287). The 

infusion rate for each volunteer was titrated according to the response observed with 

dose increments every 5 minutes as appropriate; the drug was considered to be at 

the effective dose when there was a stable drop of 10mmHg in the systolic arterial 

pressure or a sustained increase of 10 beats per minute in heart rate (287) [Table 
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5.1]. The phentolamine infusion, at the effective dose, was commenced at least 5 

minutes before RIPC and RPostC and was continued through these interventions. 

This was to determine the effect of phentolamine on ArmRIPC and RPostC [Figures 

5.2a and b]. 

 

a.  

                                                                                                                        
 
 
 
 
 
b. 
                                                                                      

 
 

 

Figure 5.2: Protocols to determine the effect of alpha adrenergic blockade on RIPC and RPostC 

 

 Phentolamine effective dose (n=22) 

  Pre                Post 
SBP 

(mmHg) 
 

115±4 119±4 

DBP 
(mmHg) 63±3 68±2 

HR (bpm) 63±3 81±4 

 

Table 5.1: Evidence of the effective dose of phentolamine was a sustained increase in heart rate of >10 
beats per minute above baseline. 
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5.3.4 Effect of cholinergic receptor blockade on RIPC and RPostC 

The cholinergic receptor blocker, atropine was administered intravenously at a bolus 

dose of 10mcg/kg. This is a dose that is similar to that in clinical use and has also 

been used previously in healthy volunteer studies (288, 289). Atropine was 

administered 5 minutes before ArmRIPC and RPostC [Figures 5.3a and b]. 

a. 

. 
                                                                                                                        
 
 
 
 
 
 

 
b. 
 
                                                                                      

 
 
 

 

Figure 5.3: Protocols to determine the effect of the cholinergic receptor blockade on (a) RIPC and (b) 

RPostC 

 

5.3.5 Effect of combined alpha adrenergic + cholinergic receptor blockade on 
RIPC 
  
Both phentolamine and atropine were administered, as described above, 

simultaneously [Figure 5.4]. 
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Figure 5.4: Protocol to determine the effect of combined alpha adrenergic and cholinergic receptor blockade 
on RIPC. 

 

5.3.6 Effect of phentolamine and atropine on endothelial IR injury 

Phentolamine or atropine was administered, as described above, to determine the 

effect of administration of phentolamine and atropine on endothelial IR injury 

(Figures 5.5a and b).  

 
a. 
 
 
                                                                                      

 
 
 
b. 
 
                                                                                      

 
 
 

Figure 5.5: Protocols to determine the effect of atropine or phentolamine on endothelial IR injury. 
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5.4 Calculations and Statistical Analysis 

As described in section 2.5 of chapter 2. 

 

5.5 Results 

The studies were generally well tolerated with most volunteers experiencing nasal 

congestion during the phentolamine studies and a dry mouth with atropine studies. 

In two subjects, during phentolamine studies transient episodes of palpitations with 

tachycardia were managed conservatively and the studies were stopped. There 

were no significant confounding effects on blood pressure, heart rate, baseline 

brachial artery diameter or FMD flow stimulus during reactive hyperaemia during 

FMD measurements [Table 5.2].  

 IR Alone 
(RIPC studies) IR+RIPC IR+RIPC+Phent IR+RPostC+Phent 

 Pre Post Pre Post Pre Post Pre             Post 

SBP 
(mmHg) 113±2 117±2 112±3 116±2 115±2 115±3 111±2        116±2 

DBP 
(mmHg) 65±1 67±2 62±2 64±3 65±3 68±2 70±3           67±4 

HR (bpm) 64±2 63±4 65±3 63±3 65±3 69±6 65±3           69±4 

Baseline arterial 
diameter (mm) 

 
3.9±0.2 3.9±0.2 3.9±0.2 3.9±0.3 3.9±0.2 4.0±0.2 3.9±0.2       4.0±0.3 

Flow 
Stimulus 7.1±1.0 10.2±1.3 8.3±1.1 9.9±1.4 8.4±0.3 9.6±1.1 8.4±0.3      8.8±0.4 

Table 5.2: Summary of blood pressure, heart rate, baseline brachial artery diameter and FMD 
flow stimulus (no units) during reactive hyperaemia. 
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5.5.1 Effect of IR on vascular dilator function 
 

IR reduced brachial artery endothelial dysfunction in the RIPC study (6.4 ± 1.0% 

before IR vs 2.6±1.2 after IR, p<0.0001; paired t test; n=10) [Figures 5.6a & 5.8] and 

RPostC study (6.4±1.1% before IR vs 2.7± 0.8% after IR, p<0.0001; paired t test; 

n=9) [Figures 5.6b & 5.9] A significant correlation existed between baseline and 

post-IR values for FMD in the RIPC studies (Pearson’s r=0.5, P<0.001) and RPostC 

studies (Pearson’s r=0.5, P<0.01). These correlations justified using ANCOVA to 

adjust post-IR values for differences in baseline endothelial function (EF) between 

the different protocols, so that post-IR EF could be directly compared with greater 

statistical power (Figures 5.8 & 5.9) 

 

5.5.2 Effect of RIPC and RPostC on endothelial IR injury 

RIPC (FMD 6.3±0.7% before vs 5.9±0.7% after IR+ RIPC, p = NS; n=8) [Figures 

5.6c & 5.8] and RPostC (FMD 5.8±0.3% before vs 5.5 ± 0.2% after IR+ RPostC, p = 

NS; n=9) [Figures 5.6d & 5.9] protected from endothelial IR injury.  
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5.5.3 Effect of phentolamine on RIPC and RPostC 

Phentolamine had no effect on the RIPC induced protection (FMD 6.8 ±0.7% before 

vs 5.9±0.7% after IR + RIPC + phentolamine, p=NS; n=9) [Figure 5.7a & 5.8] 

whereas the administration of phentolamine abolished the protective action of 

RPostC (FMD 6.0±0.5% before vs 1.8±0.3% after IR + RPostC + phentolamine, 

p<0.0001;n=8)[Figures5.7b&5.9].  

 

 

 

 

 

 

 

Figure 5.7: The administration of phentolamine had no effect of protection against endothelial IR by (a) RIPC 
(FMD 6.8±0.7% pre- versus 5.9±0.7% post-IR+RIPC+Phentolamine; P=NS; n=9) but abolished the protective 
effect of (b) RPostC (FMD 6.0±0.5% pre- versus 1.8±0.3% post-IR+RPostC+Phentolamine; *P<0.0001; n=8). 
BL=baseline 
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Figure 5.6: IR reduced endothelial function in the brachial artery in the RIPC study (FMD 6.4±1.0% pre- 
versus 2.6±1.2% post-IR; *P<0.0001; n=10) and RPostC study (FMD 6.4±1.1% pre- versus 2.7±0.8% post-IR; 
*P<0.0001; n=9)  The IR induced endothelial dysfunction was prevented by (b) RIPC (FMD 6.3±0.7% pre- versus 
6.9±1.0% post-IR+RIPC; P=NS;  n=8), and  (c) RPostC (FMD 5.8±0.3% pre- versus 5.5±0.2% post-IR+RPostC; 
P=NS; n=9) BL=baseline 
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Figure 5.8: Effect of phentolamine (Phent) on protection by RIPC in the brachial artery. RIPC prevented IR-
induced reduction in FMD (post-IR FMD, 6.4±0.4%, n=8). The protective effects of RIPC were preserved in the 
presence of systemic phentolamine (post-IR FMD, 6.1±0.5%, n=9). Post-IR values were adjusted for baseline 
FMD (ANCOVA). 
 

 

Figure 5.9: Effect of phentolamine (Phent) on protection by RPostC in the brachial artery. RPostC prevented 
IR-induced reduction in FMD (post-IR FMD, 6.3±0.2%, n=9). The protective effects of RPostC were abrogated by 
systemic phentolamine (post-IR FMD, 2.4±0.3%, n=8. Post-IR values were adjusted for baseline FMD 
(ANCOVA). 
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5.5.4 Effect of atropine on RIPC and RPostC  

The administration of atropine had no effect on protection against endothelial IR 

injury induced by RIPC (FMD 4.4±0.4% before vs 4.2±0.4% after IR + RIPC + 

atropine, p=NS; n=8) [Figure 5.10a] or by RPostC (FMD 4.0±0.7% before vs 

3.8±0.8% after IR + RPostC + atropine, p=NS; n=6) [Figure 5.10b]. 

 

 

 

 

 

 

 

 

 

5.5.5 Effect of phentolamine + atropine on RIPC  

RIPC induced protection against endothelial IR injury was not significantly affected 

by the administration of the combination of phentolamine and atropine (FMD 5.0±0.8 

% before vs 4.1±0.7% after IR + RIPC + phentolamine + atropine, p=NS; n=7) 

[Figure 5.11]. 
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Figure 5.10: The administration of atropine had no effect of protection against endothelial IR by (a) 
RIPC (FMD 4.4±0.4% pre- versus 4.2±0.4% post-IR+RIPC+Atropine; P=NS; n=8) or (b) RPostC RIPC (FMD 
4.0±0.7% pre- versus 3.8±0.8% post-IR+RIPC+Atropine; P=NS; n=6). BL=baseline 
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5.5.6 Effect of phentolamine and atropine on endothelial IR injury 

Neither Phentolamine nor atropine, administered during a sham RPostC stimulus, 

had any effect on the endothelial response to IR injury (FMD 7.0±0.7% before vs 

3.2±0.3% after IR + shamRPostC+ phentolamine; p<0.001; n=5) [Figure 5.12a] and 

(FMD 5.4±1.0% before vs 3.3 ±1.0% after IR + No RPostC+ atropine; p<0.05; n=4) 

[Figure 5.12b] 
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Figure 5.11: The administration of phentolamine+atropine did not affect protection conferred by RIPC (FMD 
5.0±0.8% pre- versus 4.1±0.7% post-IR+RIPC+Atropine+Phentolamine; P=NS; n=7). BL=baseline 
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Figure 5.12: Endothelial response to IR was not affected by (a) Phentolamine (FMD 7.0±0.7% pre- versus 
3.2±0.3% post-IR+Phentolamine; *P<0.001; n=5) or (b) atropine (FMD 5.4±1.0% pre- versus 3.3±1.0% post-
IR+Atropine *P<0.05; n=4). BL=baseline 
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5.6 Discussion 

This study demonstrates, for the first time in humans, that phentolamine inhibits 

RPostC-induced protection against IR injury. However, phentolamine had no effect 

on RIPC. These results suggest a significant contribution of the alpha adrenergic 

pathway in mediation of protection by RPostC. Furthermore, this study demonstrates 

that atropine had no effect on the protection by RIPC or RPostC, a suggestion that 

the cholinergic pathway plays little role in the mediation of a remote protective 

stimulus.  

   

5.6.1 RPostC is blocked by systemic adrenergic blockade  

Systemic phentolamine administered at a dose that caused detectable adrenergic 

blockade abolished the effect of RPostC to protect remote endothelium from IR 

injury, whereas atropine had no effect. These data implicate the adrenergic but not 

the cholinergic component of the autonomic nervous system in the reflex spread of 

ischaemic protection elicited by RPostC. However it is not possible to be certain that 

a larger dose of atropine might have had an inhibitory effect. Neither atropine nor 

phentolamine affected the endothelial response to IR injury, so the effect of 

phentolamine was unlikely to be explained by a direct effect to exacerbate IR injury 

(although the sample sizes for these studies were small and limit the robustness of 

these conclusions).  
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5.6.2 Relative contribution of neuronal and haematogenous transfer of 

protection by RPostC  

In chapter 4, I presented evidence that a circulating factor contributed to the 

systemic protection that was triggered by RIPC, and likely activated opioid 

pathways. I hypothesised that a haematogenous factor would not contribute to IPC 

(protection was exclusively activated by local pathways) or RPostC (where the 

ischaemic conditioning stimulus activated systemic pathways in a limb that was 

isolated from the circulation). The data on the effects of naloxone were consistent 

with this hypothesis. The corollary was that RPostC could only cause remote 

protection by neuronal pathways. The adrenergic and cholinergic components of the 

autonomic nervous system were rational candidates based on the known 

involvement of the autonomic nervous system in RIPC, and the established role of 

acetylcholine and noradrenaline as triggers of preconditioning in many tissues.  My 

results suggest a pivotal role for the alpha adrenergic receptors in the transfer of 

protection by RPostC by the autonomic nervous system. These results also support 

my conclusion in chapter 4 that the neuronal and humoral pathways probably act in 

parallel rather than simply in series. Both will be activated by the RPostC stimulus, 

but it is only by blocking the neuronal component that it is possible to inhibit RPostC. 

Were the pathways arranged as a single neuro-hormonal mechanism sequential 

mechanism, blockade of one would necessarily inhibit the entire pathway. Indeed if 

this were the case, then RPostC would probably not cause any protection, as my 

data suggest that regardless of the activation of a humoral pathway, it has an 

insufficient biological effect to contribute to ischaemic protection. 
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5.6.3 Interaction between the neural and humoral pathways in RIPC 

Loukogeorgakis et al have previously demonstrated, using a human in vivo model of 

IR injury, that complete autonomic blockade using trimethaphan abolished the RIPC 

induced protection against endothelial IR injury (187). Data in this chapter show that 

the combined effects of alpha adrenergic and cholinergic receptor blockade, by the 

combined administration of phentolamine and atropine, were insufficient to block the 

protective effects of RIPC. This may highlight the unrecognised importance of other 

components of the autonomic nervous system in order to achieve a threshold 

stimulus for RIPC to occur. It is possible that the dose of atropine was too low, or 

that there is a requirement for beta adrenergic blockade. These possibilities will 

require additional study, and it is a weakness of this chapter that these data have not 

been included. There is also the possibility in the study by Loukogeorgakis and 

colleagues that the trimetaphan had off target effects which might have affected 

endothelial function and contributed to protection. However if it is accepted that 

ganglionic blockade effects a more complete autonomic blockade than I have 

achieved in this chapter, then it seems likely that a neuro-humoral reflex accounts 

for the spread of ischaemic protection by RIPC. Given that identical stimuli effect 

RIPC and RPostC, the conclusions drawn about RPostC imply that the neuro-

humoral pathways that underpin the systemic protection of RIPC operate in parallel 

and both contribute to the crossing of a threshold of protection.   

 

5.6.5 Conclusion  

Results in this chapter highlight that the alpha adrenergic autonomic pathway plays 

a role in facilitating RPostC but not RIPC. The cholinergic pathway does not seem to 

be implicated in effecting protection by either RPostC or RIPC. More studies are 
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required to elucidate the role of other components of the autonomic pathway such as 

the beta adrenoceptor pathway and also to determine the relative contribution of 

each of the different pathways (neurogenic or humoral) to remote protection. 
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Chapter 6 

 

The role of inorganic nitrates in  

protection against endothelial  

ischaemia reperfusion injury 
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6.1 Introduction 

Vascular endothelial cells are susceptible to the effects of IR injury and this manifest 

as a measurable endothelial dysfunction (see section 1.5.3). Invariably this affects 

the endothelial production of NO via endothelial NO synthase (eNOS).  NO has been 

implicated in the protective effect of the various interventions against IR injury that 

exist to date (290). There is evidence that an increase in nitric oxide (NO) 

bioavailability, via a complex signalling pathway involving cyclic GMP and various 

protein kinases, results in a reduction in deleterious intracellular processes such as 

calcium overload, mitochondrial permeability transition pore opening and increased 

production of reactive oxygen species (290). This promotes cellular cytoprotection 

and tissue salvage which is the ultimate goal in protection against IR injury. 

Emerging data indicate that inorganic nitrates and nitrites, previously considered to 

be inert end products of NO metabolism, provide a source of NO for cellular 

processes under hypoxic and acidotic conditions, such as during IR injury, when 

NOS becomes dysfunctional (see section 1.10 of chapter 1). The implication is that 

endogenous nitrite and nitrate stores act as a backup source of NO which may be 

beneficial during IR injury. 

Vegetables including beetroot contain a large amount of inorganic nitrate which is 

thought to play a significant role in their potential health benefits (291-293).Once 

ingested the inorganic nitrate is rapidly absorbed via the stomach and a proportion of 

it enters the enterosalivary circulation where it is recycled into NO via reduction to 

nitrite (see section 1.10.2 of chapter 1). The nitrate-nitrite dependent NO generation 

might achieve prominence during hypoxic or ischaemic conditions, such that their 

reduction to NO occurs when NOS–dependent NO synthesis is impaired (196).  This 

process of increasing the bioavailability of NO under ‘stress’ is thought to be the 
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mechanism underlying protection against IR injury by inorganic nitrates and nitrites 

as demonstrated in animal models (196, 294). 

Oral ingestion of inorganic nitrates produces a dose-dependent increase in nitrite 

and NO production in the circulation (202, 203, 217). This might enable the 

therapeutic potential of nitrates to be exploited as a storage pool for nitrite and NO 

generation given their longer half-lives. Based on this I sought to determine the role 

of oral inorganic nitrates in the form of beetroot juice and postassium nitrate (KNO3) 

in protection against endothelial IR injury in the human in vivo model.  

 

 

6.2. Methods 

 

6.2.1 Subjects 

Studies were performed on healthy, non-smoking volunteers, aged 18-45 years.  In 

study one (beetroot 500ml), 20 studies were performed on 10 volunteers and in 

study two (beetroot 250ml & KNO3), 49 studies were performed in 13 volunteers. All 

studies repeated in same volunteers were at least 7 days apart and were an open-

label crossover design for beetroot juice studies and double-blind crossover design 

for potassium nitrate studies.  

 

6.2.2 Assessment of conduit vessel endothelial function 

Brachial artery flow mediated dilatation (FMD) of the right arm was assessed, as 

described in section 2.2.1. 
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6.2.3 Induction of IR injury 

IR injury was induced as described in section 2.1.1. 

 

6.2.4 Determination of plasma nitrite and nitrate concentration  

 

6.2.4.1 Blood samples 

A 19‐gauge butterfly needle, with extension set, was inserted prior to capsule or 

juice ingestion. The blood samples obtained were prepared as described in section 

2.3.2.2. 

 

6.2.4.2 Chemiluminescence 

Plasma nitrite and nitrate concentrations were determined by chemiluminescence as 

described in section 2.3.2.1.  

 

6.3 Experimental protocols 

 

6.3.1 Effect of IR on endothelial function 

To determine the effect of IR on endothelial function (EF), brachial artery FMD 

(Figure 6.1a) was assessed before ischaemia (baseline) and at 20 minutes after 

reperfusion.  

               

 

Figure 6.1a: Protocol to determine the effect of IR on endothelial function 

EF EF 
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6.3.2 Effect of 500ml beetroot juice on endothelial IR injury 

To determine the effect of beetroot juice (Planet Organic®) on endothelial IR injury, 

healthy volunteers were randomised to 500ml of beetroot juice 2 hours before IR or 

no treatment before IR. Subjects underwent the IR injury protocol after beetroot juice 

or no treatment, with both protocols being at least 7 days apart (Figure 6.1b) 

 

 
 
 
 500ml Beetroot juice 2 hours before  
 
Figure 6.1b: Effect of 500ml beetroot juice on endothelial IR Injury 
 
 
6.3.3 Effect of KNO3 on endothelial IR injury 
 
 
To determine the effect of KNO3 (Martindale Pharmaceuticals) on endothelial IR 

injury, healthy volunteers were randomised in a double-blind crossover design to 

receive either 24 mmol of KNO3 or KCl tablets with 500ml of water (Figure 6.1c). 

 

 

 
  
KNO3 1.5 hours before  
 
                
 
 
 
 
      KCl 1.5 hours before 
 
 
Figure 6.1c: Effect of KNO3 on endothelial IR injury 

EF EF 
 

EF EF 
 

EF EF 
 



 158 

I (20 minutes) R (20minutes) 

6.3.4 Dose-dependent effect of beetroot juice on endothelial IR injury 
 
 
To determine the effect of beetroot juice containing a lower dose of nitrate (5.5mmol) 

on endothelial IR injury, healthy volunteers received 250ml of beetroot juice (James 

White Drinks Ltd) 1.5 hours before IR or 250ml of water (Figure 6.1d). 

 

 

 
 
 
      250ml Beetroot juice or 250ml water 1.5 hours before 
 
 
Figure 6.1d: Effect of 250ml of beetroot juice on endothelial IR injury 

 
 
6.3.5 Blood sampling for nitrate and nitrite concentration  
 
 
To determine the change in nitrate and nitrite concentrations in plasma after KNO3, 

blood samples were obtained at baseline; then after KNO3 every 30 minutes up to 3 

hours. 

 

6.4 Calculations and Statistical Analysis 

See section 2.5 of chapter 2. 

 

6.5 Results 

The studies were well tolerated with beeturia and red stools as expected adverse 

effects. However one subject developed mild symptoms of gastritis which was 

associated with the potassium chloride capsules (on unblinding). This participant 

EF EF 
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was managed conservatively with antacids and withdrawn from the study. The mean 

nitrate concentration was 45.0±2.6mmol/L in the 500ml beetroot juice and 

22.4±3.8mmol/L in the 250ml beetroot juice. The nitrite concentration in both 

volumes of beetroot juice was <50nmol/L.  

 
6.5.1 Study 1 
 
 
6.5.1.1 Effect of IR on endothelial function 
 
IR reduced brachial artery FMD (7.5±0.9% before IR vs 3.1±0.4% after IR, 

p<0.0001; n=10) [Figure 6.2a].  

 

6.5.1.2 Effect of beetroot juice on endothelial IR injury 

500ml beetroot juice prevented IR induced endothelial dysfunction (FMD 6.8±1.0 % 

before IR + BJ 500 vs 5.5±1.0 after IR + BJ 500, p<0.001; n=10) [Figure 6.2a & b]. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6.2: Effect of beetroot juice (500ml) on endothelial IR injury 
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6.5.2 Study 2 

 

6.5.2.1 Effect of IR on endothelial function 

IR reduced brachial artery FMD (10.3 ±1.0% before IR vs 4.9±0.8% after IR, 

p<0001; paired t test; n=12) [Figures 6.3a & 6.4]. A significant correlation existed 

between baseline and post-IR values for FMD (Pearson’s r=0.7, P<0.0001).These 

correlations justified using ANCOVA to adjust post-IR values for differences in 

baseline endothelial function (EF) between the protocols, so that post-IR EF could 

be directly compared with greater statistical power [Table 6.1] 

 

6.5.2.2 Effect of KNO3 on endothelial IR injury 

KNO3 prevented the IR induced endothelial dysfunction (FMD 11.6±1.2% before IR + 

KNO3 vs 10.2 ±1.1% after IR + KNO3, p=NS; n=.12) [Figures 6.3b & 6.4] whereas 

there was no protection against endothelial IR injury with KCl (FMD 12.1±1.6% 

before IR + KCl vs 7.7±1.0% after IR + KCl, p<0.001; n=12) [Figures 6.3c & Figure 

6.4]  

 

6.5.4 Effect of lower dose beetroot juice derived nitrate  

The lower dose of beetroot derived nitrate (250ml) also reduced the IR induced 

endothelial dysfunction FMD (11.0 ±1.2% before IR + BJ 250 vs 10.7±1.2% after IR 

+ BJ 250, p=NS; n=12) [Figures 6.3d & 6.4]. 
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Figure 6.3: Effect of (b) KNO3, (c) KCl and (d) 250ml of beetroot juice on (a) endothelial IR injury. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4: Effect of KNO3 and 250ml of beetroot juice on endothelial IR injury. Both KNO3 (post-IR FMD, 
8.0±0.8%, n=12) and 250ml of beetroot juice (post-IR FMD 8.8.±1.0%, n=12) prevented IR-induced reduction in 
FMD. KCl (post-IR FMD, 5.3±0.5%, n=12) did not protect against IR induced endothelial dysfunction. Post-IR 
values were adjusted for baseline FMD (ANCOVA). 
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Table 6.1: Summary of baseline and Post-IR FMD data 

 

6.5.6 Circulating nitrate and nitrite concentration after oral nitrate load  

Ingestion of 250ml of beetroot juice (5.5mmol nitrate) or KNO3 capsules (24mmol 

nitrate) increased the circulating plasma nitrate concentration within 30 minutes and 

this peaked at 3 hours [Figure 6.5a & b]. The rise in plasma nitrite concentration was 

more modest with significantly elevated levels first evident at 1.5 hours and peaking 

at 2.5 hours [Figure 6.5c and d]. 

 

 

 

 

 

 

 

Study n 
Baseline 

FMD 
Post-IR 

FMD 
Post-IR 

 FMD (ANCOVA Adjusted) 

IR 12  10.3 ±1.0 % 4.9±0.8% 3.4.±0.4* 

IR+KNO3 12 11.6±1.2% 10.2 ±1.1% 8.0±0.8† 

IR+KCL 12 12.1±1.6% 7.7±1.0% 5.3±0.5‡ 

IR+BJ250 12 11.0 ±1.2%  

 

 

10.7±1.2% 8.8.±1.1 

Data are expressed as mean±SEM. Post-IR FMD values were adjusted for baseline FMD by 

ANCOVA (Regression coefficient 0.56±0.13). For comparisons between the 4 groups, P values by 

ANCOVA were Scheffé adjusted. 

*P<0.001, IR vs IR+KNO3 and IR+BJ250  
†P<0.05, IR+ KNO3 vs IR+KCL 
‡P<0.01, IR+BJ250 vs IR+KCL 
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Figure 6.5: Effect of oral nitrate load on plasma nitrate and nitrite compared with KCl. 250ml beetroot juice 
(5mmol nitrate) elevated nitrate and nitrite levels [(a) &(c)]. Similarly, KNO3 (24mmol nitrate) elevated plasma 
nitrate and nitrite [(b) & (d)]. In contrast, KCl had no significant effect on plasma nitrate or nitrite (unfilled data 
points).  Data are expressed as mean SEM of n=9. Significance shown for comparisons as §§§ P<0.0001 for 2-
way ANOVA and *** P<0.001 or **P<0.01 for Bonferroni post hoc tests. 
 
 

 

6.6 Discussion  

Results in this chapter demonstrate, for the first time in humans, that oral inorganic 

nitrate, in the form of beetroot juice or KNO3 capsules, protects against endothelial 

IR injury. Notably this protection was not evident after ingestion of KCL capsules 

which negates potential confounding protective effects of K+. Both beetroot juice and 

KNO3 capsules resulted in increases in plasma nitrate and nitrite indicating that the 

endogenous handling of oral inorganic nitrate is the same whether the source is a 

nitrate salt or the diet. 
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6.6.1 Plasma nitrate and nitrite concentrations after an oral nitrate load 

The exact mechanism by which vegetable-rich diets confer protection against 

cardiovascular disease remains uncertain. However the recent suggestions that their 

beneficial effects are as a result of nitrate/nitrite derived NO has generated further 

interest.  

My results indicate that an oral nitrate load (beetroot juice or KNO3) administered 

before IR produced a rapid (within 30 minutes) rise in circulating plasma nitrate 

concentration while the plasma nitrite concentration showed a more gradual rise with 

significant elevation in concentration at 1.5 hours.  The important finding with respect 

to IR injury was that the elevated nitrate and nitrite concentrations were sustained 

beyond the onset of reperfusion, therefore providing the necessary substrate for NO 

generation. A potential explanation for this time lag between the plasma nitrate and 

nitrite peaks is the endogenous production of nitrites which is facilitated by the 

enterosalivary circuit. This is corroborated by the observation that interruption of this 

circuit, by avoidance of swallowing, blocks the increase in plasma nitrite but has no 

effect on plasma nitrate (202). In addition, beetroot juice contained large amounts of 

nitrate but undetectable levels of nitrite. The reduction of nitrite to NO is thought to 

be facilitated by enzymes (predominantly xanthine oxidoreductase) or 

deoxyhaemoglobin, activities of which are enhanced during ischaemic conditions 

(198, 200, 201).   

Bryan et al showed that nitrate supplementation in the drinking water of mice for 7 

days, which also protected against the damaging effects of a myocardial IR injury, 

was associated with higher steady state plasma and heart nitrite levels (217). 

Conversely, this group observed that feeding mice with a low nitrite/nitrate diet for 

the same period of time, resulted in reduced levels of plasma and myocardial nitrite 
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concentration and the protection against IR injury was lost. The acute rise in plasma 

nitrite concentration I observed is consistent with results from other human studies 

and is associated with nitrate accumulation in saliva and plasma (202, 203).  

 

6.6.2 Oral inorganic nitrate and ischaemic protection 

The early phase of reperfusion is critical in the mediation of IR injury, presenting an 

immediate therapeutic window of opportunity.  My results indicate that oral inorganic 

nitrate in the form of beetroot juice and potassium nitrate tablets, led to a reduction 

in endothelial IR injury. Notably the early phase of reperfusion corresponded with 

elevated plasma concentrations of nitrate and nitrite. I did not observe such an effect 

with my volume control (water) or potassium control (potassium chloride tablets) 

interventions, which strongly suggest that the oral nitrate load was responsible for 

these biological effects. The quantity of nitrite in the diet is limited and the half-life 

short (see section 1.10.3 of chapter 1); therefore there is a need for further 

investigation into the benefits which might be derived from oral inorganic nitrate in 

whatever form.  

 

6.6.3 Clinical perspective 

Contributing to an increase in NO bioavailability appears to be the fundamental 

principle underlying the therapeutic use of oral inorganic nitrates in protection 

against IR injury.  Organic nitrates, such as nitroglycerin (GTN) or isosorbide 

mononitrate, are widely used in clinical practice for the management of heart failure 

or relief of angina and cause rapid generation of NO in vascular smooth muscle.  

This can generate profound vasodilatation which might cause significant 

hypotension and limit their use. Another significant problem with the use of organic 
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nitrates is the development of tolerance. Although the exact mechanism of nitrate 

intolerance is not clear, increased formation of reactive oxygen species have been 

implicated (221, 295). An additional advantage of inorganic nitrates over the organic 

nitrates is that their bioactivation to NO is pH- and pO2- dependent such that 

therapeutic effects are localised to the ischaemic tissue without an unwanted 

generalised effect. 

 

6.6.4 Conclusion  

Inorganic nitrate and nitrite biology has received a considerable amount of research 

interest particularly in relation to its contribution to endogenous NO production and 

protection against IR injury. A parallel study by some of my research collaborators 

also demonstrates effects of oral inorganic nitrates in BP reduction. Further efforts to 

harness the full potential of this area of research should be in the form of well 

designed clinical trials. This will enable us build on the very promising preliminary 

data in this thesis and might enable the exploitation of oral nitrate supplementation in 

the acute or chronic ischaemic setting.   
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Chapter 7 
 
 
 

Summary and Conclusions 
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In this thesis, I investigated the mechanisms of ischaemic protective phenomena 

(IPC, PostC, RIPC, RPostC) using a human in vivo model of endothelial IR injury in 

the forearm. I utilised pharmacological probes to investigate the role of a) KATP 

channels and the mPTP in PostC; b) the opioid pathway in remote conditioning; and 

c) components of the autonomic nervous system (alpha adrenergic and cholinergic) 

in remote conditioning. I also determined whether oral inorganic nitrates (beetroot 

juice and KNO3) protected against endothelial IR injury in humans. 

 

7.1 Mechanisms of postconditioning 

In chapter 3, I demonstrated that PostC protects against endothelial IR injury in 

humans in two vascular beds (resistance and conduit vessels). This provides more 

data in support of PostC as a valid therapeutic intervention aimed at reducing IR 

injury in humans. Furthermore, data in this thesis suggest that the mPTP is involved 

in the mediation of protection by PostC as ciclosporin, administered around the 

onset of reperfusion, mimicked the protective effect of PostC. This is consistent with 

data that showed cardioprotection from ciclosporin administered around the time of 

percutaneous coronary intervention in patients presenting with acute myocardial 

infarction (157). An obvious therapeutic implication is pharmacological 

postconditioning with ciclosporin, a drug with a long term safety profile. This might 

enable the therapeutic benefits of ischaemic PostC to be derived whilst avoiding the 

uncertainties of safety and feasibility of the technique.  

Results from Chapter 3 also highlight a role for KATP channels in the mechanism of 

PostC. This was evident from studies which showed that glibenclamide a non-

selective KATP channel blocker abolished the protective effects of PostC against 

endothelial IR injury. However with the pancreas-selective KATP channel blocker, 
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glimepiride, protection by PostC was preserved. KATP channel blockers are widely 

used in clinical practice for the treatment of Type 2 Diabetes. Diabetic patients are at 

an increased risk of cardiovascular events and are more likely to benefit from 

protective phenomena such as PostC. The differential effects of subtype specific 

KATP channel blocker perhaps need to be considered when using these drugs in this 

patient cohort.  

 

7.1.1 Future work 

Translation of the above findings will require clinical trials to determine the optimal 

dose of ciclosporin, as preclinical studies indicate that high dose may actually 

exacerbate IR injury (273). Robust trials with appropriate endpoints should be aimed 

at validating the protective effect of ciclosporin during IR injury and determining the 

differential effects of KATP channel blockers on protective strategies. Such trials will 

not be trivial because they will need to be large and are unlikely to be sponsored by 

the pharmaceutical industry. Epidemiological data from various sources might also 

provide complementary information on cardiovascular outcomes in patients on 

ciclosporin and KATP channel blockers. 

 

7.2 Mechanisms of transfer of protection by remote conditioning 

Data from chapter 4 of this thesis highlight a role for the opioid receptor pathway in 

RIPC. The evidence for this is that non selective opioid receptor blocker, naloxone, 

abolished protection afforded by RIPC. In contrast, protection by IPC was not 

affected by naloxone.  

These results provide a further suggestion that endogenous opioids play a 

prominent role in the transfer of protection from a remote site during RIPC rather 
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than for local protection. Furthermore, the data also indicate that RPostC protected 

against endothelial IR injury and this protection was preserved in the presence of 

naloxone suggesting a less significant role for the opioid pathway in RPostC.   

Experiments in Chapter 5 demonstrate that protection by RPostC is lost when the 

alpha adrenoceptor blocker, phentolamine, was co-administered while protection by 

RIPC was unaffected. This suggests that alpha adrenergic component of the 

autonomic nervous system (ANS) contributes significantly to protection by RPostC. 

My results also show that blockade of the cholinergic component using atropine did 

not affect protection by RIPC or RPostC. This suggests that the cholinergic 

component of the autonomic nervous system is of limited importance during RIPC or 

RPostC. However, previous studies in this laboratory show that complete autonomic 

blockade with trimetaphan abolished protection by RIPC (187). A speculation is that 

in addition to the activation of opioid pathway RIPC depends on a component of the 

autonomic nervous system to cross a threshold of protection. 

The main difference between RIPC and RPostC is in the timing of the application of 

the stimulus in relation to IR. A plausible mechanism of the mode of transfer of 

protection is that the two pathways (neurogenic and humoral) act synergistically in 

parallel, with the autonomic pathway providing an initial predominant stimulus which 

rises above a threshold for protection for a limited period of time during RPostC. As 

time elapses the humoral pathway becomes the predominant stimulus and reaches 

threshold, responsible for protection by RIPC.    

 

7.2.1 Future work 
 
Further studies in order to probe the mechanisms of transfer of protection by remote 

conditioning are essential. Mechanistic studies should aim to determine the role of 
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other humoral factors such as bradykinin, hypoxic inducible factor (HIF) and 

adenosine in the transfer of protection by a remote protective stimulus. Assessing 

the role of the beta adrenoceptor component of the ANS in facilitating remote 

protection is also appropriate. Information on the time course of transfer of protection 

via the neurogenic and humoral pathways will enable an understanding of their 

interaction and relative contribution to remote ischaemic protection. This might 

enable full utilisation of this form of ischaemic protection. 

 

7.3 Oral inorganic nitrates in protection against IR injury 

Studies in chapter 6 focused on the role of oral inorganic nitrates in protection 

against endothelial IR injury. Results suggest that oral inorganic nitrates in the form 

of beetroot juice and potassium nitrate capsules provide protection against 

endothelial IR injury. These data build on previous data which until now have been 

based on animal models of IR injury. The L-arginine-NOS system is a major source 

of NO and is critical in maintaining cardiovascular homeostasis. An important 

advance, with potential therapeutic application, is in the recognition of alternative NO 

generation via the nitrate and nitrite (NOS independent) pathways, during conditions 

associated with dysfunction of the NOS dependent pathway, as in IR injury.  

 

7.3.1 Future work  

Further studies using other human models of IR injury are required to characterise 

the protective role of NOS independent pathway and validate this potential 

therapeutic target.  
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7.4 Conclusion  

This translational research project has been performed to obtain mechanistic 

information on aspects of ischaemic protection in humans.  The ultimate goal is to 

identify therapeutic targets which can be developed for clinical application. The 

persisting gaps in knowledge necessitate further research. 
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	Chapter 1
	Introduction
	1.1 Introduction
	Cardiovascular disease remains the major cause of death globally amounting to 17 million deaths a year (1). Ischaemia accounts for the majority of these deaths and results from arterial occlusion mainly due to athero-thrombosis. Most commonly this pre...
	This thesis aims to use an in vivo model of IR injury in the human forearm to investigate the mechanisms of protective strategies against IR injury. These are postconditioning (PostC), remote preconditioning (RIPC), remote postconditioning (RPostC) an...
	1.2       Athero-thrombosis
	1.2.1 Definition and relevance to ischaemia
	Atherosclerosis is the most frequent underlying cause of human arterial thrombosis. It has been defined as “a multifocal, smouldering, immunoinflammatory disease of medium–sized and larger arteries fuelled by lipid” (2). This inflammatory process can ...
	Pre-clinical atherosclerosis begins in early childhood and progresses during adolescence and adulthood (4, 5). In susceptible individuals under the influence of risk factors, clinical disease processes caused by atherogenesis become evident later in l...
	1.2.2 Pathology of atherosclerosis
	Arterial wall morphological changes, including thickening and reorganisation of the tunica intima, excess synthesis of collagenous matrix (fibroblastic intimal thickening) and permanent or dynamic deposition of lipids (fatty streaks) already occur in ...
	Endothelial dysfunction and leakage of the endothelial barrier increases the expression of two classes of adhesion molecules, the selectins and the immunoglobulin gene superfamily [VCAM-1 and ICAM-1] (6, 9).  This leads to an accumulation of monocytes...
	1.3 Ischaemia
	Ischaemia is the result of vascular occlusion and leads to deprivation of oxygen and nutrients in a tissue or organ. Research has focused mainly on myocardial ischaemia in view of its substantial impact on morbidity and mortality. The pathophysiologic...
	Acute ischaemia is characterised by (a) cessation of aerobic metabolism, (b) depletion of creatine phosphate (high-energy phosphate), (c) onset of anaerobic glycolysis and (d) accumulation of glycolytic products such as lactate and catabolites of the ...
	1.3.1 ATP metabolism during ischaemia
	The high-energy bond of ATP is the main source of energy for myocardial function and ATP concentration has been identified as an important correlate of myocardial function following ischaemia (12, 13).  Reduction in oxidative phosphorylation through t...
	Figure 1.1: Changes in ATP metabolism during ischaemia. Tissue hypoperfusion causes a reduction in oxidative phosphorylation which is the main cellular source of ATP (aerobic pathway). The cells resort to other sources of ATP (anaerobic pathway) which...
	1.3.2 Ionic homeostasis during ischaemia
	Energy supply in the ischaemic myocardium is determined by the rate of ATP generation and the declining tissue ATP concentration (rate of high energy phosphate utilisation, or demand) (11). With prolonged ischaemia, anaerobic metabolism leads to the a...
	The reduction in intracellular pH activates the Na+/H+ exchanger in an attempt to restore the pHi. Together with  the reduction of ATP production and inhibition of the Na+/K+ -ATPase there is an increase in the intracellular Na+ , Cl- and water, which...
	1.3.3 Mitochondrial function during ischaemia
	Mitochondrial integrity is important in cell survival. An impermeable inner mitochondrial membrane is essential to maintain the membrane potential and pH gradient that enables ATP synthesis through oxidative phosphorylation. If the permeability barrie...
	1.3.4 Vascular injury during ischaemia
	Endothelial cells maintain vascular homeostasis and are vulnerable to ischaemic damage.  Prolonged hypoxia reduces endothelial cell production of certain bioactive agents (prostacyclin, nitric oxide) and stimulates the production of other agents (endo...
	1.3.5 Irreversible ischaemic injury
	The hallmarks of early phase irreversible injury include: a) ATP<10% of control; b) high concentrations of H+, AMP, inosine, and hypoxanthine; c)  cessation of  anaerobic glycolysis; d) high lactate and low glycogen; e) mitochondrial swelling with amo...
	Figure 1.2: Cellular ionic homeostasis during ischaemia. Tissue hypoperfusion results in untilisation of anaerobic sources of ATP production. The formation of acidic cellular metabolites leads to a disruption of ionic homeostasis which is deleterious ...
	1.4 Reperfusion injury
	Reperfusion is essential for tissue salvage but paradoxically has deleterious effects on tissues. Reperfusion injury does not occur independently of ischaemia and this composite is often referred to as ischaemia-reperfusion (IR) injury.
	A period of prolonged ischaemia causes the cells to resort to the glycolytic source of ATP production. This pathway does not provide sufficient amounts of ATP. Furthermore, the anaerobic state leads to the accumulation of lactic acid,   a decrease of ...
	1.4.1 Mechanism of reperfusion injury
	Recent research has demonstrated a key role for mitochondria as an end effector in the mechanism of IR injury.  Myocardial reperfusion leads to a number changes which include: the generation of reactive oxygen species (ROS), intracellular calcium over...
	Cell death may occur via a variety of pathways. Apoptosis is a programmed cell death and results from permeabilisation of the outer mitochondrial membrane (OMM) which leads to release of cytochrome c and other pro-apoptotic factors (25, 26). The detai...
	1.4.2 The mitochondrial permeability transition pore
	The mPTP is a non-specific pore in the inner mitochondrial membrane that normally remains closed but under conditions of cellular stress can open and lead to cell death. There are two major consequences of opening of the pore (24): a) There is free pa...
	The exact molecular structure of the mPTP is not yet known, but it is thought to comprise two candidate proteins - adenine nucleotide translocase (ANT) and the mitochondrial phosphate carrier (PiC) which occur in abundance in the IMM and are susceptib...
	Figure 1.3: mPTP: the final common pathway of reperfusion injury. With reperfusion, the rapid replacement of oxygen causes mitochondrial re-energisation which leads to generation of ROS, a further increase in intracellular calcium concentration (due t...
	Figure 1.4: A proposed working model of the mPTP (26).
	1.4.3 Reactive oxygen species
	Free radicals are molecules that contain one or more unpaired electrons and so are chemically reactive. Oxygen free radicals are formed continuously in minute quantities during normal metabolism of mammalian cells and these are inactivated by free rad...
	ROS generation in reperfused myocardium occurs within the endothelial cells and myocytes. Enzymatic sources include activation of leucocyte NADPH oxidase, xanthine oxidase, mitochondrial oxidative phosphorylation, cycloxygenase mediated unsaturated fa...
	NADPH oxidase (also called Nox) is a major source of superoxide and is found mainly in phagocytes (neutrophils, eosinophils, monocytes and macrophages) (45). The enzyme is inactive in resting phagocytes but is activated by contact with microbes or inf...
	IR injury results in neutrophil activation which promotes NADPH oxidase activity and increased ROS production (47). The role of NADPH oxidase in the pathophysiology of IR injury is suggested by upregulation of Nox 2 in ischaemic human cardiomyocytes (...
	Xanthine oxidoreductase is an another important contributor to the total cellular ROS load and exists in two interconvertible forms – xanthine dehydrogenase (XDH) and xanthine oxidase (XO), both of which catalyse the conversion of hypoxanthine and xan...
	ROS are therefore recognised to contribute to cell death during IR injury in experimental studies using animal and human models of IR injury. However, reducing ROS activity has proved to be an intractable therapeutic target to date. A number of clinic...
	1.4.4 Neutrophil activation
	IR injury activates the innate immune mechanisms to induce an inflammatory reaction by increasing the expression of cytokines (TNF, IL-1β, IL-6, IL-8), complement fragments (C5a), ROS, leukotriene B4, thromboxane A2, platelet activation factor, ICAM a...
	However, the significance of neutrophil activation remains contentious given that IR injury occurs in neutrophil-free systems such as isolated heart preparations (56). In addition, results from clinical studies of anti-neutrophil and anti-inflammatory...
	1.5 IR injury and the vasculature
	Vascular endothelial cells appear to be particularly susceptible to injury as a result of both ischaemia and reperfusion. This manifests as endothelial dysfunction that affects the arterioles, capillaries and venules (20).
	1.5.1 Physiology of endothelium
	The endothelium is a single layer of cells that lines the inner surface of blood vessels. They were initially thought to be inert, acting as a barrier between blood and vascular smooth muscle. However, vascular endothelial cells have been demonstrated...
	1.5.2 Endothelial mediators
	Furchgott and Zawadzki demonstrated that vascular smooth muscle relaxation occurred in response to acetylcholine and this was dependent on an intact endothelial layer (63). They named the mediator responsible for this effect endothelium derived relaxi...
	NO is a free radical gas derived in the endothelium mainly by the conversion of the precursor amino acid L-arginine in the presence of molecular oxygen and co-factors such as BH4, NADPH and flavin adenine dinucleotide (FAD) (64). This process is catal...
	Prostacyclin and thromboxane A2 are endothelium derived molecules synthesized from the precursor compound arachidonic acid (AA) which is released from cell membrane phospholipids (67, 68). Cyclo-oxygenases (constitutive COX-1 and inducible COX-2) act ...
	EDHF is an endothelial mediator that complements the vasodilator effects of NO and prostacyclin. A number of candidiates have been proposed to be EDHFs, including prostanoids, potassium ions, and C-type natriuretic peptide. Hyperpolarisation of the va...
	The endothelins are peptides that possess potent vasoconstrictor properties.  Endothelial cells in humans produce endothelin-1(ET-1) and increased circulating levels of these have been correlated with the development of atherosclerosis and coronary en...
	1.5.3   IR induced endothelial dysfunction
	Vascular endothelial cells are particularly susceptible to the effects of IR injury. Ku et al demonstrated that coronary artery endothelial dysfunction occurred after 90 minutes of ischaemia and 1-2 hours of reperfusion in the canine heart (77). IR-in...
	Endothelial cells produce NO (via NOS) and superoxide (from a number of sources including NADPH oxidase). Under normal conditions, the rate of production of NO exceeds that of superoxide production. This allows for NO a) to effectively scavenge the lo...
	1.5.4 The vascular “no-reflow” phenomenon
	Another vascular manifestation of IR injury is the “no-reflow” phenomenon. This has been defined as incomplete and non-uniform reperfusion at the microvascular level despite adequate re-opening of the proximal artery after a period of transient ischae...
	1.6 Protection against IR injury
	Over the last two decades, interventions that are protective against IR injury have emerged. Various models of IR injury (cell cultures, isolated perfused hearts and animal models in vivo) have been used to investigate strategies to reduce cellular an...
	1.7   Ischaemic preconditioning
	This was first described in 1986 when Murry et al demonstrated in an anaesthetized dog, that 5 minute periods of circumflex artery occlusion alternating with 5 minute periods of reperfusion prior to a 40 minute total occlusion of the same artery, redu...
	Figure 1.5: Original description of ischaemic preconditioning canine model of myocardial ischaemia reperfusion injury showing reduction in infarct size with episodes of circumflex artery occlusion-reperfusion prior to the injurious ischaemia in dogs (...
	1.7.1   Mechanisms of ischaemic preconditioning
	IPC promotes the accumulation of protective ligands (triggers) which activate a number of mediators and through a complex process of cell signalling protection against IR injury is conferred by end effectors. In delayed IPC there is prominence of gene...
	1.7.1.1     Triggers of ischaemic preconditioning
	The IPC stimulus promotes the release and accumulation of triggers which initiate the process of ischaemic protection. Adenosine (84, 85), bradykinin (86, 87), opioids (88-90), NO (91) and acetylcholine (92, 93) have all been identified as triggers an...
	1.7.1.2    Mediators of ischaemic preconditioning
	The triggers of IPC activate second messengers including protein kinase C epsilon (PKCε), tyrosine kinases, phophatidylinositol 3-kinase (PI3K), Akt, mitogen-activated protein kinase (MAPK), extracelluar receptor kinase (ERK), JAK/STAT and nuclear fac...
	The transcriptional regulator, nuclear factor kappa B (NF-κB) plays a prominent role in the modulation of several genes during delayed IPC. This was evident in studies which showed that delayed IPC induced NF-κB activation and the NF-κB inhibitor DDTC...
	1.7.1.3   Effectors of ischaemic preconditioning
	KATP channels are proteins that play a key role as effectors of the IPC stimulus.  KATP channels consist of inward rectifier potassium channels (KIR) and sulfonylurea receptor (SUR) subunits which form functional units (106, 107). Isoforms of KIR (KIR...
	Evidence of involvement of KATP channels arises from studies in which the pharmacological antagonists (glibenclamide – nonselective; HMR1098 – selective for sarcolemmal KATP channels; 5-hydroxydecanoate – selective for mitochondrial KATP channels) abo...
	Figure 1.6:  Major mechanisms of ischaemic preconditioning (IPC). (a) Early IPC promotes the accumulation of protective ligands (green panels) which activates a complex cascade of intracellular events. Interestingly the opening of the mKATP channels b...
	1.7.2   Clinical application of ischaemic preconditioning
	Since the description of IPC, it has consistently produced significant reduction in IR injury in several experimental models. Yellon and colleagues demonstrated the reduction of myocardial injury in patients undergoing coronary artery bypass surgery u...
	In summary, IPC is an established method of ischaemic protection but two issues limit its clinical application. Firstly, there are risks associated with brief periods of ischaemia to vital organs. Secondly, most cardiovascular events are unpredictable...
	1.8   Ischaemic postconditioning
	Another form of ischaemic protection, discovered more recently, is known as ischaemic postconditioning (PostC).  Zhao and colleagues showed in a canine model, that after a 45 minute episode of sustained myocardial ischaemia, the interruption of myocar...
	The application of the PostC stimulus early in reperfusion is crucial. This is evident in the loss of protection with as little as a one minute delay in application PostC (123,124). Different schedules of PostC have been demonstrated to be protective ...
	PostC clearly influences specifically the reperfusion phase of IR injury, yet in general it has a similar degree of ischaemic protection as IPC (122, 127,128). This suggests that much of the reversible tissue injury following arterial occlusion happen...
	1.8.1 Mechanisms of postconditioning
	The mechanisms of PostC resemble that of IPC and can be considered in similar terms: triggers, mediators, effectors [Figure 1.7].
	1.8.1.1 Triggers
	PostC promotes the accumulation or delays the washout of cardioprotective ligands which activate G-protein coupled receptors (132), many of which have been implicated in IPC. Adenosine is involved as non-selective pharmacological antagonism (8-ρ-sulfo...
	1.8.1.2 Mediators
	The endogenous protective ligands described above are thought to cause the activation of intracellular signalling molecules and prosurvival kinases, and similar to IPC.
	Prosurvival kinases (reperfusion injury salvage kinases, RISK) activated during IPC have been implicated in PostC (143, 144). They include PI3/ Akt, ERK 1/2, JNK, Protein kinase C, Protein kinase G and p70S6K. Using a rat isolated heart model, PI3K/Ak...
	Several interventions have been shown, experimentally, to elicit cardioprotection when administered at the time of reperfusion through activation of the RISK pathway and include insulin, IGF-1, erythropoetin, G-CSF, leptin, atorvastatin, pioglitazone,...
	The demonstration of increased eNOS-ser1177 phosphorylation after PostC and the loss of protection by PostC with a selective soluble guanylyl cyclase (sGC) inhibitor (1H-[1, 2, 4]oxadiazolo[4,3-α] quinoxalin-1-one, ODQ) is evidence that GC/NO/cGMP pat...
	Signaling, via NO, leads to accumulation of cGMP which causes activation of PKG. During rapid re-oxygenation (simulated IR injury) of adult rat cardiomyocytes, the presence of the PKG activator – 8-pCPT-cGMP or the cGMP analogue – 8-bromo-cGMP, increa...
	PostC is also thought to be associated with the reduction of ROS generation which contributes to reperfusion injury (123, 153).  In contrast, administration of the ROS scavenger N-acetylcysteine (NAC) before or during PostC abolished protection (154)....
	1.8.1.3 Effectors
	As with IPC, KATP channels have been implicated in the mechanism of PostC. In a rabbit model of myocardial IR injury, the non-selective KATP channel blocker, glibenclamide and the mKATP channel blocker 5-Hydroxydecanoate (5-HD) administered at the ons...
	A role for the mPTP in PostC was first reported by Argaud and colleagues who demonstrated that the specific inhibitor of the mPTP, NIM811, administered around the onset of reperfusion, limited infarct size in rabbit hearts to a degree comparable to IP...
	Cardioprotection by inhibition of the mPTP around the time of reperfusion has been explored in an acute angioplasty model in humans (157). Intravenous administration of a bolus dose of the mPTP inhibitor, ciclosporin, immediately before percutaneous c...
	The exact mechanism by which PostC inhibits opening of the mPTP is yet unknown. Recently, it has been suggested that PostC is critically dependent on both maintenance of myocardial acidosis during the initial 2 minutes of reperfusion and the simultane...
	1.8.2   Clinical application of ischaemic postconditioning
	Ischaemic protection by PostC is an attractive protective strategy especially considering its applicability and effectiveness in the acute ischaemic setting. Since first demonstration in humans, PostC has been successfully applied to patients in the s...
	The long term clinical effect of PostC in patients is yet to be established. In a recent acute coronary angioplasty study, not only did the postconditioned group of patients exhibit a reduced infarct size but also, at one year, a 7% increase in left v...
	Figure 1.7: Mechanisms of postconditioning. PostC is thought to promote the accumulation or delay the wash out of protective ligands (adenosine, bradykinin, opioids etc.) which activate a complex cascade of intracellular events. These processes are pr...
	1.9   Remote ischaemic conditioning
	IPC also has protective effects at sites remote from those exposed to the ischaemic preconditioning stimulus, and this facet of IPC has been termed remote ischaemic preconditioning (RIPC). This was first reported in anaesthetised dogs when regional is...
	RIPC shares similar signaling mechanisms to those of IPC and experimental models have implicated similar triggers, mediators and effectors (167, 170-173). This has been discussed in section 1.6.1 of this thesis.
	1.9.1   Mechanisms of transfer of remote protection
	One of the most intriguing aspects of remote protection is the mechanism of systemic spread of protection from the site undergoing conditioning. Humoral and neurogenic pathways have been proposed, with the potential for a degree of overlap between the...
	1.9.1.1   Humoral mechanism
	Coronary effluent from a preconditioned heart induces myocardial protection in non-preconditioned hearts, an effect that was blocked by administration of the non-specific opioid receptor blocker, naloxone to the recipient (174). This implicated the op...
	1.9.1.2   Neurogenic mechanism
	Neurogenic mechanisms have also been explored using autonomic ganglionic blockade. In a rat myocardial infarction model (60 minutes coronary artery occlusion with 3 hours of reperfusion), Gho et al showed that the ganglion blocker hexamethonium abolis...
	In an in vivo rabbit model of myocardial infarction, RIPC by renal artery occlusion reduced infarct size by 46% (183). This protection was abolished by intravenous pretreatment with the nonselective adenosine receptor antagonist; 8-SPT. During renal R...
	There is also experimental evidence that calcitonin gene-related peptide (CGRP), a neurotransmitter in capsaicin sensitive sensory nerves (CSSN), is implicated in the mediation of the delayed phase of remote organ protection. In a rabbit model of myoc...
	The role of the nervous system in remote conditioning has also been demonstrated in humans using an in vivo model of vascular IR injury. The autonomic ganglion blocker, trimetaphan, had no effect on endothelial IR injury but abolished the effect of ea...
	1.9.2   Clinical application of remote conditioning
	RIPC obviates the need for complex and invasive IPC protocols because the protective stimulus can be applied non-invasively to a limb), without risking the blood supply to a vital organ. The first study to associate limb ischaemia with remote protecti...
	Figure 1.8: Mechanisms of transfer of protection by remote conditioning.  Protection by RIPC and RPostC is thought to be transferred to the site of injurious ischaemia via a neurogenic pathway or circulating substances (humoral pathway). An interactio...
	1.10 Ischaemic protection by inorganic nitrates and nitrites
	As stated above (section 1.5.2) reduction in the NO bioavailability is a key event during IR injury resulting mainly from disruption to normal oxygen dependent endothelial production of NO. In addition, NO-cGMP signalling has been implicated in the me...
	1.10.1 NO generation – the alternative pathway
	Within the cardiovascular system NO is generated largely via the activity of the eNOS enzyme (191-193). By this mechanism, NO is made available for physiological functions which may contribute to ischaemic protection as described in sections 1.7.1.2 a...
	Figure 1.9: The nitrate-nitrite-NO pathway. An alternative pathway for NO generation which is activated hypoxic and acidotic conditions when the NOS-dependent pathway is dysfunctional.
	1.10.2   Enterosalivary circulation of nitrates in humans
	Ingested nitrates are rapidly absorbed in the small intestine and distributed in the blood to other parts of the body, and whilst up to 75% is eventually excreted in the urine, 25% is taken up by the salivary gland [Figure 1.10] (197). This nitrate is...
	Reduction of nitrite to NO in the circulation has been shown to be facilitated by a number of different candidates including deoxyhaemoglobin, xanthine oxidoreductase and mitochondrial enzymes, activities of which are enhanced in ischaemic environment...
	Systemic nitrite is derived from oxidation of NO in the plasma, reduction of salivary inorganic nitrate and from dietary sources such as meat, vegetables and drinking water (207).  Accordingly under fasting conditions, the majority of nitrite is thoug...
	Figure 1.10: Enterosalivary circulation of nitrate in humans. A proportion of the absorbed nitrate (purple circle) is taken up by the salivary gland, secreted into the saliva and reduced to nitrite (orange circle) by reductases present on the dorsum o...
	1.10.3 Nitrites and protection against IR injury
	Johnson and colleagues discovered that administration of acidified sodium nitrite, during ischaemia, resulted in a significant reduction of myocardial injury in cats (208). This was indicated by lower creatine kinase (CK) levels and a reduced necrotic...
	The exact mechanism of the beneficial effects of nitrite-derived NO is debatable. Nitrite-dependent NO production during hypoxia is thought to regulate mitochondrial respiration by inhibiting respiratory chain complexes, thereby regulating the oxygen ...
	1.10.4   Clinical application of nitrates and nitrites in ischaemic protection
	In clinical practice, organic nitrates, mainly in the form of nitroglycerin (GTN), have been used for the symptomatic treatment of coronary artery disease for over a century (221). GTN is thought to exert its biological effects via the release of NO. ...
	Another clinically relevant approach to NO delivery to tissues is administration in the inhaled form. Previously, the biological effects of inhaled NO (iNO) were thought to be limited to the pulmonary vasculature without any extrapulmonary bioactivity...
	There is now compelling experimental evidence, from several studies, to support nitrite therapy in protection against IR injury in animals. The reduction in infarct size by a sodium nitrite infusion in the last 5 minutes of ischaemia during acute myoc...
	The inorganic nitrates and nitrites thus provide a substrate for the endogenous NO production in time of need, necessitating further assessment of their role in protection against IR.
	1.11   Translation of protective therapies into clinical use
	The ultimate aim of strategies to reduce IR injury lies in the translation of research findings into clinical use in order to derive the full benefit of improving outcomes in the management of cardiovascular ischaemia.
	Previous therapies aimed at reducing the lethal reperfusion injury in patients with myocardial infarction have not been successfully translated into clinical use. These include antioxidants, calcium overload and Na+-H+ exchange inhibitors, anti-inflam...
	1.12 The human forearm model of IR injury
	The human forearm has served as a valid in vivo model to investigate the mechanisms of ischaemic protection in humans (53, 124, 169, 171, 187, 233). The ability to measure IR induced endothelial dysfunction in the human forearm has enabled the mechani...
	1.13   Aims of thesis
	Using the human forearm model of IR injury I sought to determine whether RIPC, RPostC and PostC protect against endothelial IR injury in conduit and resistance vessels.
	In chapter 3, I investigated the role of KATP channels and the mPTP in mechanism of PostC in humans. These targets can be manipulated using pharmacological tools. PostC has previously been shown to protect against endothelial IR injury in the brachial...
	In chapter 4, I investigated the role of the opioid receptor pathway in remote conditioning. Naloxone is a known non-selective inhibitor of the opioid receptors. I sought determine whether naloxone abolishes the protective effects of RIPC or RPostC in...
	In chapter 5, I investigated the role of components of the autonomic nervous system in RIPC and RPostC. Using a human in vivo model of endothelial IR, a previous study in this laboratory showed that complete autonomic blockade with trimetaphan abolish...
	Chapter 6 entailed investigations into the role of oral inorganic nitrate, as an endogenous source of NO during IR injury in humans. This is in recognition of the role of an alternative pathway of NO generation during IR injury (196). I sought to dete...
	RIPC was induced by inflating a 9cm-wide blood pressure cuff placed around the upper part of the contralateral arm (ArmRIPC) or 12cm blood pressure cuff around the upper part of the thigh (LegRIPC). The cuff was inflated to 200 mm Hg for 5 minutes (is...
	RPostC was induced by inflating a 12cm-wide blood pressure cuff placed around the upper part of the thigh. The cuff was inflated to 200 mm Hg for 5 minutes (ischemia of the arm), followed by a 5-minute deflation (reperfusion). This constituted a condi...
	3.2.4 Induction of IR injury
	3.5.2 Effect of PostC on endothelial IR injury
	PostC prevented the IR induced endothelial dysfunction in the brachial artery FMD (6.8%±0.9% before IR+PostC vs 6.1±0.7% after IR+PostC, p>0.05; n=9) [Figure 3.5b] and resistance vessels (P=0.38; n=16) [Figure 3.5d]
	3.5.3 Effect of IR on vascular smooth muscle function
	IR did not affect vascular smooth muscle function in the resistance vessel (P=0.92; n=9) [Figure 3.5e].
	Understanding the mechanism whereby protection spreads to distant tissues has scientific and therapeutic implications. In animals and humans, a neuronal mechanism has been proposed, because RIPC-induced protection is abolished in the presence of gangl...
	a. RIPC requires the activation of opioid pathways in vivo and is blocked by the opioid antagonist naloxone
	b. IPC and RPostC do not require a circulating factor and are not blocked by opioid antagonism
	4.2.1 Induction of IR injury
	IR injury was induced as described in section 2.1.1.
	RIPC was performed as described in section 2.1.4.
	RPostC was performed as described in section 2.1.5.
	This was performed as described in section 2.1.2.
	4.2.5 Assessment of plasma beta endorphins
	Results in this chapter demonstrate that naloxone inhibits RIPC-induced endothelial protection from IR injury. Naloxone had no effect on other ischaemic conditioning stimuli that have little or no requirement for circulating mechanisms to effect prote...
	4.6.1 Effect of opioid antagonism on IPC
	Ischaemic preconditioning represents the best characterised example of hormesis, whereby controlled doses of a potentially injurious stimulus (brief periods of ischaemia) induce transient protection against a larger toxic dose of the same stimulus. IP...
	4.6.2 Systemic spread of protection in RIPC
	Tissue mechanisms of ischaemic protection by RIPC resemble those of IPC with respect to the involvement of triggers, mediators and effectors (see section 1.7.1). However the systemic spread of protection from a localised stimulus implies the involveme...
	In a previous study, ganglionic blockade with trimetaphan inhibited the effect of RIPC to prevent endothelial IR injury, a finding that supported a neuronal mechanism in humans. However a dialysable plasma extract from volunteers in whom preconditioni...
	4.6.3 Role of opioids in RPostC
	Differences in the scheduling of the conditioning ischaemia between RIPC and RPostC provide an opportunity to examine the role of a circulating factor in humans. In the RPostC protocol that was used in this thesis, the index ischaemia and conditioning...
	4.6.4 Relative contribution of neuronal and humoral pathways
	RIPC is sensitive to neuronal or opioid blockade, with inhibition of either pathway blocking protection. This could be because the neuronal and humoral pathways are arranged in series. An alternative mechanism is that they are parallel pathways and ea...
	4.6.5 Beta endorphins in remote conditioning
	The endogenous opioids (endorphins, dynorphins and enkephalins), mediate their effects via the activation of the mu-, kappa- and delta – opioid receptors respectively (251). In this thesis plasma beta endorphins were assayed as a sensitive marker of a...
	4.6.6 Conclusion
	Results in this chapter provide evidence in vivo for a circulating factor that contributes to ischaemic protection in humans. It is sensitive to opioid antagonism and may act independently of nervous system control. There is a complex interaction betw...
	5.2 Methods
	5.2.1 Subjects
	83 studies were performed on 17 male, healthy, non-smoking volunteers aged 18-45 years. Cohort 1 (n=10) were recruited for the RIPC protocols and cohort 2 (n=10) were recruited for the RPostC studies. Missing data are attributable to the inability of ...
	5.2.2 Assessment of Conduit Vessel Endothelial Function
	Brachial artery flow mediated dilatation (FMD) of the right arm was assessed as described in section 2.2.1.
	5.2.3 Induction of IR injury
	IR injury was induced as described in section 2.1.1.
	ArmRIPC was performed as described in section 2.1.4.
	RPostC was performed as described in section 2.1.5.
	5.3 Experimental Protocols
	5.3.1 Effect of IR on Endothelial Function
	To determine the effect of IR on endothelial function (EF), brachial artery FMD was assessed before ischaemia (baseline) and at 20 minutes after reperfusion [Figure 5.1a].
	5.3.2 Effect of ischaemic conditioning stimuli on Endothelial IR Injury
	FMD was assessed before and after IR injury + ArmRIPC or RPostC [Figures 5.1b & c].
	Figure 5.1: Protocols to determine the effect of RIPC and RPostC on endothelial IR.
	5.3.3 Effect of alpha adrenergic receptor blockade on RIPC and RPostC
	The alpha adrenergic receptor blocker, phentolamine was administered intravenously at a dose of 0.2 – 0.7mg/min, as described previously (287). The infusion rate for each volunteer was titrated according to the response observed with dose increments e...
	a.
	Figure 5.2: Protocols to determine the effect of alpha adrenergic blockade on RIPC and RPostC
	Table 5.1: Evidence of the effective dose of phentolamine was a sustained increase in heart rate of >10 beats per minute above baseline.
	5.3.4 Effect of cholinergic receptor blockade on RIPC and RPostC
	The cholinergic receptor blocker, atropine was administered intravenously at a bolus dose of 10mcg/kg. This is a dose that is similar to that in clinical use and has also been used previously in healthy volunteer studies (288, 289). Atropine was admin...
	a.
	Figure 5.3: Protocols to determine the effect of the cholinergic receptor blockade on (a) RIPC and (b) RPostC
	Both phentolamine and atropine were administered, as described above, simultaneously [Figure 5.4].
	Figure 5.4: Protocol to determine the effect of combined alpha adrenergic and cholinergic receptor blockade on RIPC.
	5.3.6 Effect of phentolamine and atropine on endothelial IR injury
	Phentolamine or atropine was administered, as described above, to determine the effect of administration of phentolamine and atropine on endothelial IR injury (Figures 5.5a and b).
	Figure 5.5: Protocols to determine the effect of atropine or phentolamine on endothelial IR injury.
	5.4 Calculations and Statistical Analysis
	As described in section 2.5 of chapter 2.
	The studies were generally well tolerated with most volunteers experiencing nasal congestion during the phentolamine studies and a dry mouth with atropine studies. In two subjects, during phentolamine studies transient episodes of palpitations with ta...
	5.5.2 Effect of RIPC and RPostC on endothelial IR injury
	RIPC (FMD 6.3±0.7% before vs 5.9±0.7% after IR+ RIPC, p = NS; n=8) [Figures 5.6c & 5.8] and RPostC (FMD 5.8±0.3% before vs 5.5 ± 0.2% after IR+ RPostC, p = NS; n=9) [Figures 5.6d & 5.9] protected from endothelial IR injury.
	5.5.3 Effect of phentolamine on RIPC and RPostC
	Phentolamine had no effect on the RIPC induced protection (FMD 6.8 ±0.7% before vs 5.9±0.7% after IR + RIPC + phentolamine, p=NS; n=9) [Figure 5.7a & 5.8] whereas the administration of phentolamine abolished the protective action of RPostC (FMD 6.0±...
	5.5.4 Effect of atropine on RIPC and RPostC
	The administration of atropine had no effect on protection against endothelial IR injury induced by RIPC (FMD 4.4±0.4% before vs 4.2±0.4% after IR + RIPC + atropine, p=NS; n=8) [Figure 5.10a] or by RPostC (FMD 4.0±0.7% before vs 3.8±0.8% after IR + RP...
	5.5.5 Effect of phentolamine + atropine on RIPC
	RIPC induced protection against endothelial IR injury was not significantly affected by the administration of the combination of phentolamine and atropine (FMD 5.0±0.8 % before vs 4.1±0.7% after IR + RIPC + phentolamine + atropine, p=NS; n=7) [Figure ...
	5.5.6 Effect of phentolamine and atropine on endothelial IR injury
	Neither Phentolamine nor atropine, administered during a sham RPostC stimulus, had any effect on the endothelial response to IR injury (FMD 7.0±0.7% before vs 3.2±0.3% after IR + shamRPostC+ phentolamine; p<0.001; n=5) [Figure 5.12a] and (FMD 5.4±1....
	5.6 Discussion
	This study demonstrates, for the first time in humans, that phentolamine inhibits RPostC-induced protection against IR injury. However, phentolamine had no effect on RIPC. These results suggest a significant contribution of the alpha adrenergic pathwa...
	6.2.3 Induction of IR injury
	6.3.1 Effect of IR on endothelial function
	To determine the effect of IR on endothelial function (EF), brachial artery FMD (Figure 6.1a) was assessed before ischaemia (baseline) and at 20 minutes after reperfusion.
	Figure 6.1a: Protocol to determine the effect of IR on endothelial function
	6.3.2 Effect of 500ml beetroot juice on endothelial IR injury
	To determine the effect of beetroot juice (Planet Organic®) on endothelial IR injury, healthy volunteers were randomised to 500ml of beetroot juice 2 hours before IR or no treatment before IR. Subjects underwent the IR injury protocol after beetroot j...
	Figure 6.1d: Effect of 250ml of beetroot juice on endothelial IR injury

