
Modelling the inhibitory components of

the Interleukin-1β network

Johnny Kelsey

CoMPLEX

University College London

A thesis submitted to the University of London in the

Department of Mathematics for the degree of Doctor of Philosophy

June 2010



Abstract

The inhibitory influences present in the interleukin-1β network are considered,
and their effect on the network elucidated. IL-1β is a pro-inflammatory cytokine
essential to the functioning of the immune system.

The IL-1 network exhibits a complexity which has been noted by many
researchers. It exists in two forms, α and β, which afforded a natural way of
drawing a boundary around which part of the network was to be modelled: a
choice between the α or β forms. The β form was chosen for investigation since
it is known to have a higher potency than the α form.

IL-1β requires the formation of a signalling ternary complex in order to
trigger signalling transduction; it needs to bind with the signalling (Type-I)
receptor, and for this binary complex in turn to be bound by a receptor acces-
sory protein, before signalling transduction can proceed. A variety of control
mechanisms which inhibit the formation of this signalling ternary process have
evolved. These have been modelled using a variety of techniques.

This work was generously supported by the Engineering and Physical Sci-
ences Research Council.
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Chapter 1

Introduction

1.1 Interleukin-1: a short history

Endotoxin, a combination of Gram-negative lipopolysaccharide (LPS) plus as-
sociated outer cell membrane proteins, is one of the most potent inflammatory
moieties. Endotoxin shock still kills millions each year worldwide. Thus there
has been a long-term interest in how endotoxin induces the severe, often lethal,
inflammatory state in individuals with Gram-negative bacterial infections. It is
the study of this problem that led to the discovery of interleukin-1 (IL-1) and,
indeed, to the concept of the local homeostatic mediators known as cytokines.

In 1939, Paul Beeson, working in the United States, showed that leukocytes
exposed to endotoxin produced a pyrogenic (fever producing) molecule that
was not endotoxin. This was called granulocyte pyrogen (GP), because of the
preponderance of these cells in the rabbit exudates he was using. Later this
activity was called leukocyte pyrogen (LP) or endogenous pyrogen (EP).

A large amount of work during the 1950s added to our knowledge of this
potential activity, but also introduced the problem of ensuring that the activ-
ity being measured was not due to tiny amounts of endotoxin contamination.
However, it was not until the 1970s that the attempts at purifying EP (as it
was then called) started to show some degree of success. Studies by Bodel (10)
and Murphy (68) using rabbit material demonstrated that EP would survive gel
filtration techniques; a molecule with molecular mass of 14-15kDa was identi-
fied as containing the EP bioactivity. Charles Dinarello, working on human EP,
found evidence for two isolectric forms of the protein (Dinarello et al, 1974).
Using these materials, Dinarello raised antibodies to the two presumptive forms
of EP.

Contemporaneously, other workers were identifying a wide range of biological
activities which would later be shown to be due to EP/IL-1. These factors
had a weird variety of names (Table 1.1). The 1970s and 1980s are a period
of increasing interest in EP as more and more important biological actions
are ascribed to this protein (Table 1.2); for example, it was claimed that EP
was equivalent to a potent T cell mitogenic factor called lymphocyte-activating
factor (LAF). The suggestion that so many different functions could be caused
by a single mediator was still considered to be controversial, however (13).

What brought all this confusion and controversy to an end (or nearly so)

14
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The many names of IL-1

Endogenous pyrogen
Leukocytic endogenous mediator

Lymphocyte activating factor
Hemopoietin-1

Mononuclear cell factor
Proteolysis inducing factor

Catabolin
Osteoclast activating factor

Table 1.1: Before its discovery, many different names were used to refer to IL-1(21).

Pleiotropism of IL-1

Causes fever
Stimulates acute-phase proteins
Augment lymphocyte responses

Induce degenerative changes in joints
Increase bone marrow cells

Table 1.2: Some of the effects of IL-1, originally attributed to many different factors(21).

was the cloning of the genes for what turned out to be two distinct proteins
with almost identical activities. Surprisingly, the homology between the two
IL-1 sequences was found to be low (26%). Moreover, both proteins lacked a
classical leader sequence typical of secreted proteins. The cloned proteins were
of 31kDa. This was the mature protein, which was later shown to be cleaved
to a lower molecular mass (17kDa) form which expressed the biological activity
(particularly with IL-1β). The terms IL-1α and IL-1β were introduced after
both of these genes had been cloned and the recombinant proteins shown to
have EP activity.

These discoveries raised a number of questions. What was the relationship
between the two cDNA sequences? Why were there heterogeneous protein sizes?
How were the precursor forms processed into an active form?

A human form of the cDNA already discovered in the mouse was reported
in 1985 (60). It took several more years until the discovery of the mechanism
which converted IL-1 from its precursor form to its active, soluble form (13).

With these discoveries, the uncertainty surrounding IL-1 gradually dimin-
ished. It was known that IL-1 had two forms. The acidic form of IL-1 was now
known to be IL-1α, and the neutrally charged form IL-1β. Both forms of IL-1
were known to occur in a precursor form, which required further processing be-
fore becoming biologically active. The heterogeneity in size was accounted for
by the precursor and mature forms of IL-1. A major question was whether or
not so many diverse and apparently unrelated biological roles could be fulfilled
by a single protein; the discovery of IL-1α and IL-1β answered this question
(21).
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Biological activities of IL-1

Affects bone formation
Promotes acute phase response
Modulates endocrine function

Induces production of multiple cytokines
Upregulates cell-surface cytokine expression

Stimulates hematopoietic progenitor proliferation
Influences immune regulation (T- and B-cell responses)

Table 1.3: Selected biological activities of IL-1.

1.2 IL-1 as a key pro-inflammatory mediator

IL-1 is a primary mediator of an essential biological process known as inflam-
mation. Inflammation is a vascular process by which leukocytes, present in
the blood vessels, are directed to leave these blood vessels and enter into the
extravascular tissues. Inflammation and immunity are jointly linked systems
that have evolved to enable animals to kill pathogens. Pathogens come in many
forms, from the tiny non-living virus up to huge intestinal worms metres long.
The diversity of the cellular elements of inflammation/immunity is to cope with
the diversity of our pathogens. The complexity of the processes of vascular ac-
tivation, leukocyte activation, leukocyte movement (extravasation and chemo-
taxis) and leukocyte apoptosis requires exquisite control. Interleukin-1 and the
IL-1 family are now recognised as central regulators of inflammation. Before
describing in detail the biological roles of the IL-1 family members (Table 1.3)
a brief description of the central elements of the inflammatory process will be
provided.

As defined by John Hunter, inflammation is a salutary process; in other
words, it is an essential process for our survival, and one that we only recognise
if either: (i) it functions too vigorously or (ii) it functions aberrantly. For most
of our lives, and without our being aware of it, the inflammatory process is
constantly engaging and consuming infective agents.

Inflammation is a vascular phenomenon that takes place only within the
post-capillary venule. The main processes involved in the acute inflammatory
response are vasodilation, an increase of vascular permeability, and an influx of
phagocytes into the affected tissue.

Vasodilation, the increase in the diameter of blood vessels, occurs as those
vessels which carry blood away from the site constrict, causing engorgement of
the capillary network. The engorged capillaries cause two of the symptoms of
inflammation, reddening of the tissue and a localised increase in temperature.

The increase in capillary permeability effects an influx of fluid and cells
from the capillary network into the affected tissue. The fluid accumulation con-
tributes to another symptom of inflammation, swelling of the tissue, otherwise
known as edema. Increased tissue permeability also permits an influx of phago-
cytes into the affected site, which is in itself a complex process involving the
expression of adhesion molecules on the endothelial wall, migration of the cells
out of the capillary and into the tissue, and their migration towards the affected
site, as guided by chemokines. This process will be summarised below.
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Type Cell type

E-selectin Endothelial
L-selectin Leukoctyes
P-selectin Platelets / endothelial cells

Table 1.4: Types of the selectin cell adhesion molecule, and the cell types which express it.

Name Distribution Ligand

α1β1 Various Collagens, laminins
α2β1 Various Collagens, laminins
α4β1 Haematopoietic cells Fibronectin, VCAM-1
α5β1 Fibroblasts Fibronectin, proteinases
αLβ2 T-lymphocytes ICAM-1, ICAM2
αMβ2 Monocytes Serum proteins, ICAM-1
αIIbβ3 Platelets Serum proteins, fibronectin
αV β3 Platelets Vitronectin
αV β5 Platelets Matrix macromolecules, proteinases
α6β4 Epithelial cells Laminin

Table 1.5: Integrins expressed in mammals: integrins are heterodimers which contain two
distinct chains, the α and β subunits.

Macrophages at the affected site release pro-inflammatory cytokines, IL-
1 and TNF-α, and chemokines. The cytokines cause the endothelial cells to
express cell adhesion molecules (CAM) called selectins on their surface. A list
of selectin types is given in Table (1.4). Leukocytes are attracted to the site of
injury or infection by the chemokines.

The selectins on the endothelial wall bind to ligands on the leukocytes. The
distal lectin-like domain of the selectin binds to carbohydrate groups on leuko-
cyte surface proteins such as P-selectin glycoprotein ligand-1 (PSGL-1). Since
there is only a mild affinity between the adhesion molecules and the leukocyte
ligands, the bonds are relatively easy to form and break, causing the cells to
begin rolling along the inner surface of the vessel wall.

The leukocytes become activated by the presence of chemokines, which
causes them to release integrins from cellular stores. A list of integrin types
is given in Table (1.5). The integrins have a higher affinity for CAM, causing
the leukocyte to adhere tightly to the endothelial wall, arresting its movement.

The transmigration of leukocytes from the venule into the tissue requires the
reorganisation of their cytoskeletons. After the reorganisation, the leukocytes
are spread over the endothelial wall. Platelet/endothelial cell adhesion molecule
(PECAM) proteins, expressed on both the leukocyte and the endothelial cells,
interact to pull the leukocyte through the endothelium, a process known as
diapedesis. Leukocytes then follow the chemotactic gradient to the affected
site.

Macrophages which have migrated to the site of injury or infection release
mediators such as pro-inflammatory cytokines and chemokines, primarily IL-1
and TNF-α. These cytokines induce many of the localised and systemic changes
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Figure 1.1: Extravasation of a leukocyte. c©Brown University

observed in the acute inflammatory response, as given in Table (1.6). As an ex-
ample of cytokine redundancy and pleiotropism, the overlapped, multiple func-
tionality between IL-1 and TNF-α is striking. Both cytokines act locally, pro-
moting further migration of neutrophils, macrophages and monocytes to the
affected site by their pro-inflammatory action, inducing further vascular perme-
ability, expression of adhesion molecules and production of chemokines. Also,
both cytokines increase phagocytic activity by activating macrophages and neu-
trophils.

Accompanying the local inflammatory response is the systemic acute-phase
response. Among other processes initiated in the acute-phase response are an
increased production of leukocytes, fever, and production by the liver of acute-
phase proteins. The raised body temperature inhibits growth of several mi-
croorganisms. IL-1 (and TNF-α) acts on the hypothalamus to trigger the fever
response. Acute-phase proteins, such as the components of the complement
system, play many roles in attacking pathogens, including opsonisation and cell
lysis.

1.3 IL-1β as the target of this thesis

The complexity of the IL-1 network has been noted by many researchers (23),
(7). IL-1 has two forms, IL-1α and IL-1β. There are two receptors which bind
IL-1 (see section (1.4) for details of components of the IL-1 network). A receptor
accessory protein is necessary to form a signalling complex; many inhibitory
factors are part of the network.

Assuming complexity of the network as a given, experimental work involving
its components would most likely be arduous and time-consuming. However,
a model of such a complex system would, according to Klipp, “ ... assist ex-
perimentation. With an adequate model one may test different scenarios that
are not accessible by experiment [...] One may impose perturbations that are
not feasible in the real system. One may cause precise perturbations without
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Effect IL-1 TNF-α

Endogenous pyrogen fever + +
Synthesis of acute phase proteins by liver + +
Increased vascular permeability + +
Increased adhesion molecules on vascular endothelium + +
Fibroblast proliferation + +
Platelet production + -
Chemokine induction (e.g. IL-8) + +
Induction of IL-6 + +
T-cell activation + +
B-cell activation + +

Table 1.6: Redundant and pleiotropic effects of IL-1 and TNF-α: derived from Kuby Im-
munology 4th Ed.(35)

directly changing other system components, which is usually impossible in real
systems. Model simulations can be repeated often and for many different con-
ditions” (53). Furthermore, a model would allow us to find the equilibrium (or
equilibria) of the system, if such exists. It would enable us to analyse the effects
of different combinations of the inhibitory factors on the signalling of IL-1, and
the qualitative or quantitative changes on the system equilibrium. The purpose
of such a modelling process would be to clarify a system which has the complex-
ity of IL-1; such clarification may also lead to hypotheses on system behaviour
which can then be confirmed by experimentation.

A necessary first step of the modelling process is to decide which parts of
a system to model; in terms of systems theory, this is to establish the system
boundary. The IL-1 network has two ligands, IL-1α and -β. It would be possible
to model both, or to treat both types as a generalised ligand, but for clarification
of the model, it would be simpler to choose one or the other.

How then should we make a choice between them? Both are subject to
(largely) the same inhibitory factors (see section (2.A) for details of these),
both have roughly the same association and dissociation rates, both require
the same accessory protein to initiate a signalling event, and both use the same
receptors. One significant difference between the two types of IL-1 concerns their
secretion from the cell: IL-1β has been found to be secreted earlier than IL-1α in
response to an immunogenic stimulus (40). Working on human peripheral blood
monocytes (HPBM), Hazuka and colleagues stimulated them with LPS and
found that IL-1β is secreted at a much earlier phase that IL-1α, an observation
matched by the respective half-lives of their mRNA. IL-1β, but not IL-1α, has
been found to be necessary for regulating T-cell-dependent antibody production
(69). Another way of choosing which of the two forms of IL-1 to model is their
respective potency. In the context of the production of adrenocorticotropin
(ACTH), a hormone that stimulates the adrenal cortex, IL-1β was found to be
eight times more potent than IL-1α (62). In a study of the pyrogenic efficacy of
IL-1, the β type was found to be five times more potent than the α form (19).
With these factors in mind, we will choose IL-1β.
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1.4 Components of the IL-1β network

This section will examine the major components of the IL-1β network: IL-1β,
the two receptors, the accessory protein, and the receptor antagonist. These
relationships between these components will form the main basis of the models
to developed later in the thesis.

1.4.1 IL-1β

IL-1β is found at 2q14 and forms 269 amino acids. Both forms of IL-1 are
initially synthesised as 31 kDa precursors (pro-IL-1) (20). A unique feature of
IL-1 is that neither of the precursor forms contain a signal peptide sequence
indicating a natural cleavage site for the N-terminus (3). Cleavage of pro-IL-1
by proteases results in a carboxyl terminal 17-kDa peptide known as mature
IL-1, which is the biologically active form.

Both forms of IL-1 appear to be under different forms of transcriptional
control. When stimulated by LPS, IL-1β mRNA synthesis is rapid: in some
cell lines (e.g. macrophages) RNA transcription is observed under fifteen min-
utes from LPS exposure. There have been suggestions of rapid synthesis of a
transcriptional repressor, and an increase in half-life of the mRNA.

Transcription of IL-1 mRNA without translation can be observed after ex-
posure of blood monocytes to, for example, recombinant C5a. Schindler et
al investigated the effects of recombinant C5a (rC5a) on gene expression and
synthesis of IL-1β in human peripheral blood mononuclear cells (PBMC) (83).
They found that rC5a provides primarily a transcriptional but not translational
signal for IL-1 beta and TNF; the half-life of the untranslated mRNA is the
same as that of the translated message; rC5a-induced transcription upregulates
PBMC for enhanced synthesis of these cytokines; and a translational signal can
be provided by LPS or IL-1 itself. The half-life of mRNA was found to be
unchanged using this stimulus, and unlike the case when using LPS, there was
found to be no translation of IL-1 mRNA into the protein form.

IL-1β mRNA levels in human monocytes have been found to rise rapidly after
fifteen minutes and, depending on the stimulant, decrease after four hours. The
decrease is attributed to either a transcriptional repressor and/or a decrease in
mRNA half-life (47), (48); however, the effect of the stimulus is important, since
using IL-1 itself as a stimulant IL-1β mRNA levels can be maintained for over
twenty-four hours (82), (87). Increasing cAMP levels via histamine exposure
has been found to similarly raise IL-1β gene expression and subsequent protein
synthesis (101).

Inhibition of mRNA translation by cycloheximide has been reported as re-
sulting in enhanced splicing of exons, excision of introns and increased levels of
mature mRNA; synthesis of mature IL-1β mRNA appears to implicate an in-
trinsic inhibition to process precursor mRNA. A dissociation between the tran-
scription and translation phases of IL-1β has been noted (81). Most of the IL-1β
is degraded, despite the presence of excitatory signals such as C5a, and little sig-
nificant translation into pro-IL-1β is undertaken. Stimulus by IL-1 or endotoxin
to cells with a high level of steady-state IL-1β mRNA results, contrastingly, in
the activation of high levels of translation (88), (82): one possible explanation
for this phenomenon is that stabilisation of the 3’ untranslated region occurs
in those cells stimulated with LPS. The stabilisation of mRNA by LPS induce
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large-scale translation and eventual expression of IL-1β (64); another is that
IL-1 may stabilise its own mRNA by preventing deadenylation, as it has been
shown to do for the chemokine gro-α (98).

Pro-IL-1β remains largely cytosolic after synthesis until cleavage and trans-
port out of the cell; pro-IL-1β has, as yet, no known membrane form and is
minimally biologically active (50). There are several sites in pro-IL-1β available
for cleavage by enzymes, each of which produces a biologically active, mature
form of IL-1β.

1.4.2 Cleavage of the full length protein

Pro-IL-1β, as intimated above, requires cleavage by a suitable protease to meta-
morphose into its biologically active, mature form. The protagonist in this in-
teraction is the IL-1β converting enzyme (ICE), also known as caspase-1. ICE
is composed of a enzymatically active heterodimer comprising a 10- and 20-kDA
chain, with the active site cysteine located on the 20-kDa chain. The precursor
of ICE requires two cleavage events before it is active itself, and is involved in
its own processing; ICE assists processing of the precursor form by undergoing
oligomerisation with itself or other ICE homologues (106), (39). ICE is classified
as a member of the caspase family, a group of intracellular cysteine proteases;
cleavage by caspases occurs after an aspartic acid residue on the target protein
precursor.

A tetramer is formed from two molecules of the ICE heterodimer and two
molecules of pro-IL-1β: the aspartic acid, position 116 of the precursor, is the
target site for ICE cleavage, and enzymes such as elastase and granzyme A (46)
cleave the precursor at, respectively, amino acid 112 and 120 (106), (103); this
results in biologically active IL-1β.

The primary nature of ICE in the production of mature IL-1β is attested to
by the accumulation of pro-IL-1β, but minimal extracellular presence of mature
IL-1β, in ICE-deficient mice. A novel caspase-1-independent pathway involving
matrix metalloproteinases which results in mature IL-1β has also been identified
(84).

1.4.3 IL-1 receptor superfamily

The IL-1 receptors are part of a superfamily of structurally homologous pro-
teins. A large number of mammalian homologues of IL-1RI contain a highly
conserved region in their cytosolic domains, also found in a receptor protein of
the Drosophila fruit fly called Toll. The conserved region is accordingly known
as a Toll/IL-1R (TIR) domain, and the homology has defined a superfamily of
receptors known as the IL-1R/Toll-like receptor (TLR) superfamily (32). Figure
1.2 shows the structure of the TIR domain, and figure 1.3 shows members of
the superfamily, along with the consensus sequence of the TIR domain.

The superfamily divides into two subfamilies, those with leucine-rich repeats,
and those with three immunoglobulin (Ig) domains. This latter group includes
the receptors and receptor accessory protein of the IL-1 network, and other
receptors in the interleukin cytokine group, such as IL-18R (the receptor for
interleukin-18), and the orphan receptors T1/ST-2, SIGIRR and IL-1Rrp2. The
superfamily is diverse, but the degree of homology in the TIR domain and its
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Figure 1.2: Structure of the Toll/IL-1R (TIR) domain, a highly conserved region common
to receptors in many mammalian, and other, species . c©Berkeley University

Figure 1.3: Members of the IL-1R/TLR superfamily. The family is defined by a homologous
TIR (Toll/IL-1R) domain. Most of the receptors have unknown ligands, otherwise known as
orphan receptors; the exceptions are IL-1RI, IL-18R, TLR-2 and TLR-4. The concensus motif
for the superfamily is also shown, consisting of some 200 amino acids. Particularly conserved
regions, those present in all member of the family, are underlined c©(73)
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Figure 1.4: IL-1β/IL-1RI complex c©(41): The complex is displayed as a ribbon diagram
with the carboxy terminus of the receptor located at the bottom. The type-I receptor is
composed of three Ig-like domains, designated 1, 2, and 3, all of which interact with IL-1β.
Receptor binding sites have been classified into two regions on IL-1β, sites A and B. The
secondary structural elements for the β-strands are represented as arrowed ribbons with the
IL-1R1 receptor depicted in blue, and IL-1β in grey. The IL-1β residues that comprise binding
site A are shown in red, with the binding site B residues displayed in yellow. Histidine 30,
which makes critical interactions at site A, is highlighted in green for clarity.

presence across so many different species suggests that the superfamily is an
ancient part of host defense (33).

1.4.4 The type-I receptor: IL-1RI

IL-1RI is coded for at the locus 2q12, and consists of 4909 base pairs. It is
composed of 569 amino acids (92), and has a molecular weight of 65402 Da. The
type-I receptor effects IL-1β signal transduction by forming a ternary signalling
complex, binding to both IL-1β and the IL-1 receptor accessory protein, IL-
1RAcP.

IL-1RI is not an abundant receptor, but evokes a powerful response without
a high level of receptor occupancy (6), as the receptor activates many pathways
which operate in parallel. It is thought that as few as ten occupied receptors
are sufficient to evoke a strong response (93). IL-1RI binds both forms, IL-1α

and IL-1β, and a receptor antagonist, IL-1Ra. The human form of the type-I
receptor contains seven glycosylation sites; glycosylation is necessary for binding
(28).

Crystallographic studies of the IL-1β/IL-1RI binary complex reveal that the
first and second Ig-like domains are held rigidly in place by disulphide bonds;
the third domain has a more flexible alignment (see figure (1.4)). Once a ternary
signalling complex has been formed, after the further binding of the IL-1 receptor
accessory protein, it is internalised by receptor mediated endocytosis (92).
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1.4.5 The type-II receptor: IL-1RII

The DNA sequence for IL-1RII is found at the locus 2q12-q22, and consists
of 1484 base pairs, which yield 398 amino acids. It has a molecular weight of
45421Da. It was originally cloned from human and murine B-cells (63), and
is expressed on many cells, including monocytes, neutrophils, dendritic cells,
macrophages, B-cells, T-cells and epithelial cells. It binds both IL-1α and IL-
1β.

The IL-1RII receptor binds both IL-1α and IL-1β, and so competes with
the type-I receptor for ligand (71). The receptor has an extracellular region,
containing three Ig-like domains with a high homology to the type-I receptor.
However, it also has a short intracellular domain, some 29 amino acids in length
and lacking the TIR domain, which means that it is unable to initiate signal
transduction (15). Since it binds IL-1β and lacks the mechanisms to induce a
signal, it acts as a decoy target, or sink, for IL-1β (74) by sequestering it, and
therefore acts as an inhibitor on the IL-1β network.

It has also been noted that IL-1RII interacts with the IL-1 receptor accessory
protein (IL-1RAcP) (59), and so both types of receptor are in effect in compe-
tition for both IL-1 and IL-1RAcP (54). In order for a signal transduction
event to occur, IL-1RI and IL-1β requires the receptor accessory protein, and
an inhibitory factor on IL-1RAcP will also be inhibitory on signal transduction.

Similarly, IL-1RII has a low affinity for the IL-1 receptor antagonist (IL-1Ra,
see below) (99), and so does not act as a sink for this antagonist protein. This
is consistent with its apparent role of inhibitory factor of the IL-1β network.

1.4.6 Soluble IL-1RII (sIL-1RII)

A soluble form of the type-II receptor IL-1RII has also been discovered (99). It
has been shown that increased IL-1RII shedding attenuates the biological activ-
ity of IL-1β (16). Soluble IL-1RII lacks both cytoplasmic and transmembrane
regions. Two of the three Ig-like domains have been shown to be sufficient to
bind with IL-1β (55), and so sIL-1RII also acts as a sink for mature IL-1β.

1.4.7 Receptor accessory protein (IL-1RAcP)

The IL-1 receptor accessory protein (IL-1RAcP) can be found at human chromo-
some location 3q28. It consists of 4726 base pairs, which yield 570 amino acids,
with a molecular weight of 65418 Da. There is a significant homology with the
type-I and type-II receptors, with the protein sharing some 25% identity with
the two receptors (36).

It is clear that IL-1RAcP is an essential component in the IL-1 signal trans-
duction pathway (17). IL-1RAcP does not bind directly to IL-1β, but rather
to the binary complex formed by either of the receptors and the ligand. This can
cause inhibition of signal transduction when IL-1RAcP binds to the nonsignalling
binary complex formed by the type-II and the IL-1β ligand (104).

The binary complex is formed when IL-1β binds to one of the two types of
receptors. IL-1β binds the receptor through the Ig-like domains 1 and 2, which
results in a conformational change in the receptor such that domain 3 wraps
around the ligand. The ternary complex is formed when the conformational
change allows the interaction between IL-1RAcP and the binary complex (102).
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1.4.8 Soluble IL-1RAcP (sIL-1RAcP)

Human and murine soluble forms of IL-1RAcP have been identified (49). sIL-
1RAcP binds to IL-1RI, and so forms another inhibitory control mechanism of
the IL-1β network, by binding with and blocking type-I receptors, thereby pre-
venting them from binding with IL-1β and forming a binary signalling complex.

1.4.9 Receptor antagonist (IL-1Ra)

The IL-1 receptor antagonist is coded for on human chromosome 2q14, consisting
of 1612 base pairs. It has a molecular weight of 20055 Da, and is comprised of
177 amino acids. There are a number of different forms, encoded by the same
genes but generated by alternative splicing of different first exons, only one of
which is secreted; the secreted isoform has a mass of 17 kDa (see (5) for more
information on the intracellular forms of IL-1Ra). IL-1Ra shows a high degree
of homology to IL-1RI and IL-1RII (29).

IL-1Ra has been described as a pure receptor antagonist (5), which binds to
IL-1RI receptors but does not activate the signalling cascade. Furthermore, it
appears that the complex formed does not undergo endocytosis, and so blocks
receptor recycling, thus presumably blocking the receptor on the membrane
until the receptor is internalised. The receptor antagonist has lower affinity for
the type-II decoy receptor than the type-I signalling receptor. IL-1Ra represents
another control mechanism, inhibiting the IL-1β signalling pathway.

1.5 Inhibitory/antagonistic elements in the IL-
1β network

There are many different control mechanisms evident in the IL-1β network;
several of the major components have an inhibitory effect on the network. It is
a matter of speculation as to why these different mechanisms have evolved, but
it is appropriate to emphasise the complexity and redundancy of the network’s
control mechanisms, and to summarise them here.

• IL-1RII 7→ IL-1β: The type-II receptor acts as a decoy receptor on the cell
membrane, capturing IL-1β and preventing it from binding to the type-I
receptor.

• IL-1RII+IL-1β 7→ IL-1RAcP: The type-II/IL-1β binary nonsignalling com-
plex can sequester the receptor accessory protein, necessary for the bound
type-I complex to initiate the signalling cascade, to form a ternary nonsignalling
complex, thus preventing a ternary signalling complex if insufficient IL-
1RAcP exists on the cell membrane.

• IL-1Ra 7→ IL-1IR: The receptor antagonist IL-1Ra can bind with the type-
I receptor, thus blocking IL-1β from binding to IL-1RI.

• sIL-1RII 7→ IL-1β: The soluble form of the type-II receptor, sIL-1RII, acts
as a sink for extracellular IL-1β, thus preventing it from reaching type-I
receptors on the cell membrane.
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• sIL-1RII+IL-1β 7→ sIL-1RAcP : The soluble form of the receptor accessory
protein binds to IL-1RI, blocking the receptor binding to IL-1β.

As will be appreciated, this represents a considerable number of inhibitory
mechanisms at work in the IL-1β network.

In the following chapters, models of the inhibitory components of the IL-1β
network will be presented. A number of modelling techniques will be applied to
explore the action of these components on the cytokine. We aim to identify the
major inhibitory components of the network, and discover by which mechanisms
they inhibit IL-1β.



Chapter 2

Ordinary differential
equation model

2.1 Derivation of the four-dimensional model

A four-dimensional ordinary differential equation model is developed by apply-
ing Michaelis-Menten and Briggs-Haldane modelling methods (see the appendix
(2.A)) for more details on these methods). We are investigating the formation
of the binary complexes from the receptors IL-1RI and IL-1RII, and the IL-1β
cytokine, and the further formation of the ternary signalling and nonsignalling
complexes, formed from the binary complexes with an IL-1RAcP accessory pro-
tein. The assumption is that the system will rapidly approach a steady state,
so that it is more akin to the Briggs-Haldane model of protein kinetics.

There are a number of assumptions made by the Michaelis-Menten frame-
work which may influence how applicable it is to the task of modelling the IL-1β
network. The assumptions are (86):

• The enzyme is a catalyst.

• The enzyme and substrate react rapidly to form an enzyme-substrate com-
plex.

• Only a single substrate and a single enzyme-substrate complex are involved
and the enzyme-substrate complex breaks down to form free enzyme and
product.

• The substrate concentration is much larger than the enzyme concentra-
tion.

• The overall rate of the reaction is limited by the breakdown of the complex
to form free enzyme and product.

• Enzyme, substrate, and enzyme-substrate complex are at equilibrium -
the rate at which the complex dissociates to component parts is much
faster than the rate at which the product and free enzyme are produced.
This is the quasi-equilibrium or rapid equilibrium assumption.

27
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It would be useful to examine these assumptions and consider their applica-
bility to the IL-1β network and the modelling process.

• The enzyme is a catalyst: This should not pose any conceptual problems
for IL-1β; the ligand acts much like an enzyme, with the formation of
binary and ternary complexes analogous to the chemical reactions enzymes
initiate.

• Complex is formed rapidly: Binding between IL-β and its receptors is not
likely to be any more rapid than other cytokines and their receptors.

• Single substrate/single enzyme-substrate complex: In applying the equi-
librium assumption, we are considering the receptors IL-1R1, IL-1R2 and
IL-1RAcP as analogous to substrates in a chemical reaction. This as-
sumption does apply, since the model has been extended to accommodate
multiple substrates and enzymes, and so need not concern us.

• Substrate concentration is greater than enzyme concentration: This as-
sumption may be of concern if the amount of IL-1β is much greater than
the number of IL-RI receptors available, and would be an interesting case
for further analysis.

• Rate of reaction limited by complex breakdown: This assumption need
not be a problem for a model of the network.

• Rapid equilibrium: This will be borne out by the results below (see
section(3.1)).

If we let RI, RII be the type-I and type-II receptors, respectively, and L

the IL-1β, then the chemical rate equations governing the formation of binary
complexes are:

RI + L
k+

RIL

GGGGGGGGGA RIL (2.1)

RII + L
k+

RIIL

GGGGGGGGGGA RIIL (2.2)

Note that this gives only the forward reaction rate. To represent the association
of ternary complexes, let C represent the amount of IL-1RAcP, we have:

RIL + C
k+

RILC

GGGGGGGGGGA RILC (2.3)

RIIL + C
k+

RIILC

GGGGGGGGGGGGA RIILC (2.4)

where once again we are showing only the forward reaction rate. We must now
turn these chemical rate equations into a system of differential equations. In
order to begin building the model we would use the Law of Mass Action, which
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states the rate of a chemical reaction is proportional to the concentrations of
the reacting substances.

Let CR1 and CR2 be the type-I and type-II receptors, and let each type of
receptor be conserved; then the number of unbound type-I receptors is given
by CR1 minus the binary and ternary signalling complexes, and similarly, the
unbound type-II receptors by CR2 minus binary and ternary nonsignalling com-
plexes. If we let w symbolise the number of binary signalling complexes, x

the binary nonsignalling complexes, y the ternary signalling complexes, and z

the ternary nonsignalling complexes, then the number of unbound type-I and
type-II receptors are given respectively by the conservation laws:

Unbound type I = [R1] = CR1 − w − y (2.5)

Unbound type II = [R2] = CR2 − x − z (2.6)

We assume that the IL-1β, L, in the system is conserved. The unbound ligand
is therefore given by:

Unbound ligand = L − w − x − y − z (2.7)

Similarly, the IL-1RAcP, CAP , is assumed to be conserved. Accessory protein
is consumed by both the signalling and nonsignalling complexes, and so a con-
servation law is given by:

Unbound accessory = CAP − y − z (2.8)

Following on from these conservation laws, as a first approximation to the equa-
tions governing the change in binary signalling and nonsignalling complexes, we
obtain:

dw

dt
= k+

w (CR1 − w − y) (L − w − x − y − z) (2.9)

dx

dt
= k+

x (CR2 − x − z) (L − w − x − y − z) (2.10)

where k+
w is the association rate of binary signalling complex, and k+

x is the as-
sociation rate of the binary nonsignalling complex. Similarly, the corresponding
ternary complex rate equations are given by:

dy

dt
= k+

y w (CAP − y − z) (2.11)

dz

dt
= k+

z x (CAP − y − z) (2.12)

where k+
y and k+

z are the association rates for the ternary complexes.
However, these equations so far represent only association events, and we

need to take dissociation events into account. The binary signalling complex
has a rate of dissociation given by k−

w ; it will be decreased by the formation of
the ternary signalling complex, and increased by its dissociation. With this in
mind, the rate of change of binary signalling complexes is given by:
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dw

dt
= k+

w (CR1 − w − y) (L − w − x − y − z) (2.13)

−k−
ww + k−

y y − k+
y w (CAP − y − z)

where k−
w is the dissociation rate of the binary signalling complex, and k±

y are
the association/dissociation rates of the ternary signalling complex.

A similar argument yields the following equation for the rate of change of
signalling ternary complexes:

dy

dt
= k+

y w (CAP − y − z) − k−
y y (2.14)

where, once again, the dissociation rate of the ternary complex is given by k−
y .

Collecting the results together, the system of equations for the formation of
binary and ternary signalling and nonsignalling complexes is given by:

dw

dt
= k+

w (CR1 − w − y) (L − w − x − y − z) (2.15)

−k−
ww + k−

y y − k+
y w (CAP − y − z)

dx

dt
= k+

x (CR2 − x − z) (L − w − x − y − z) (2.16)

−k−
x x + k−

z z − k+
z x (CAP − y − z)

dy

dt
= k+

y w (CAP − y − z) − k−
y y (2.17)

dz

dt
= k+

z x (CAP − y − z) − k−
z z (2.18)

The above equations (2.15) - (2.18) is the reaction-kinetic ordinary differential
equation model for the IL-1β system. We will analyse the model in subsequent
sections.

2.2 Analysis of the ODE model

We shall simplify the system given by equations (2.15) - (2.18) above 1 . We
wish to reduce the four equations to two, and find where ẇ− ẏ = 0 = ẋ− ż; we
are looking for the conditions where two hyperplanes intersect. To effect this,
we introduce some substitutions. Let w = CR1θ, x = CR2θ, y = CR1φ, and
z = CR2φ, where we have θ < 1, φ < 1, and θ + φ < 1:

1I am especially indebted to Professor Seymour for his advice on the analysis in this section
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dCR1θ

dt
= k+

w (CR1(1 − θ − φ))(L − (CR1 + CR2)(θ + φ)) (2.19)

−k−
wCR1θ + k−

y CR1φ − k+
y CR1θ(CAP − (CR1 + CR2)φ)

dCR2θ

dt
= k+

x (CR2(1 − θ − φ))(L − (CR1 + CR2)(θ + φ)) (2.20)

−k−
x CR2θ + k−

z CR2φ − k+
z CR2θ(CAP − (CR1 + CR2)φ)

dCR1φ

dt
= k+

y CR1θ(CAP − (CR1 + CR2)φ) − k−
y CR1φ (2.21)

dCR2φ

dt
= k+

z CR2θ(CAP − (CR1 + CR2)φ) − k−
z CR2φ (2.22)

A considerable simplification to these equations occurs if we assume k±
w = k±

x ,
k±

y = k±
z . Biologically, this is not the case; however, it does allow us to get some

idea of the behaviour of the system, and so might be mathematically justified.
From (2.19) and (2.20) we have

1

CR1

d (CR1θ)

dt
= k+

w (1 − θ − φ) (L − CR (θ + φ)) (2.23)

−k−
wθ + k−

y φ − k+
y θ (CAP − CRφ)

1

CR2

d (CR2θ)

dt
= k+

x (1 − θ − φ) (L − CR (θ + φ)) (2.24)

−k−
x θ + k−

z φ − k+
z θ (CAP − CRφ)

where the total receptor density is given by CR = CR1 + CR2. Since CR1 and
CR2 are assumed to be constant, these two equations must be identical.

Similarly, we have, from (2.17) and (2.18)

1

CR1

d (CR1φ)

dt
= k+

y θ (CAP − CRφ) − k−
y φ (2.25)

1

CR2

d (CR2φ)

dt
= k+

z θ (CAP − CRφ) − k−
z φ (2.26)

and once again we have two identical equations if k±
y = k±

z .
We have reduced the 4-dimensional system (2.15) - (2.18) to the 2-dimensional

system

θ̇ = k+
w (1 − θ − φ) (L − CR (θ + φ)) (2.27)

−k−
wθ + k−

y φ − k+
y θ (CAP − CRφ)

φ̇ = k+
y θ (CAP − CRφ) − k−

y φ (2.28)

We nondimensionalise the system of equations by letting τ = k+
y t; we assume

r =
k+

w

k+
y

= 1, and we let ρw =
k−

w

k+
y

, ρy =
k−

y

k+
y

. Finally, we let S = CR1 + CR2.

With some simplifications and substitutions we have:
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Table 2.1: Association/dissociation rates: the association and dissociation rates of the
signalling and nonsignalling complexes of the IL-1β network, where S is the signalling binary
and NS the nonsignalling binary.(51)

Agent Binds Assoc. (M−1s−1) Dissoc. (s−1)

IL-1RI1 IL-1β 4.67 × 107 1.6 × 10−11

S 1 IL-1RAcP 4.03 × 107 0.32 × 10−11

IL-1RII 2 IL-1β 8.85 × 106 6.92 × 10−10

NS 2 IL-1RAcP 9.5 × 106 6.82 × 10−10

1 Source: (4), (24) 2 Source: (4), (25)

θ̇ = (1 − (θ + φ))(L − S(θ + φ)) (2.29)

−ρwθ + ρyφ − θ(CAP − Sφ)

φ̇ = θ(CAP − Sφ) − ρyφ (2.30)

where θ̇, φ̇ refers to differentiation w.r.t. τ . Adding these equations, we obtain:

θ̇ + φ̇ = (1 − (θ + φ))(L − S(θ + φ)) − ρwθ (2.31)

Referring again to Table 2.1, we note the extremely small magnitude of both ρw

and ρy, that is, that the association rates in this cytokine network are orders
of magnitude larger than the dissociation rates, making these ratios extremely
small. Since ρw ≪ 1, we set ρw = 0, and let σ = θ + φ, yielding:

σ̇ = (1 − σ)(L − Sσ) (2.32)

We can use this approximation to solve exactly for σ; since σ must be less than
or equal to one. Therefore, steady states exist at σ∗ = 1, L

S
. Let σ̇ = f(σ):

f ′(σ) = −(L + S) + 2Sσ (2.33)

f ′(1) = S − L (2.34)

f ′(L

S
) = L − S (2.35)

Clearly, the steady states depend on the relative sizes of L and S, the ligand
and the type-I and type-II receptors.

We continue the analysis by setting ρy to zero, yielding:

φ̇ = (σ − φ)(CAP − Sφ) (2.36)

σ̇ = (1 − σ)(L − Sσ) (2.37)

The fixed points are (1, 1), (1, CAP

S
), (L

S
, CAP

S
), (L

S
, L

S
). The Jacobian is given

by
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J =

(

−Sσ + 2Sφ − CAP CAP − Sφ

0 − (L + S − 2Sσ)

)

(2.38)

We will perform linear stability analysis of the approximation. At (1, 1) the
determinant of the Jacobian evaluated at the steady state J∗ is

J∗
(1,1) =

(

S − CAP CAP − S

0 − (L − S)

)

(2.39)

For reasons of biological realism, we assume from hereon that S ≥ CAP . We
can determine the behaviour of the system near the fixed point by evaluating
the trace and determinant of the Jacobian.

The eigenvalues are (λ1, λ2) = (S−L, S−CAP ); the determinant Det(J∗
(1,1)) =

−(L − S)(S − CAP ), and the trace is Tr(J∗
(1,1)) = −L + S + S − CAP . Recall

that we have simplified by setting r = 1.
We have the following conditions on the parameters at this steady state:

Det(J∗
(1,1)) < 0 and Tr(J∗

(1,1)) < 0 (2.40)

⇐ S > 0 and L > 2S and 0 ≤ CAP < S (2.41)

or L = 2S and 0 < CAP < S (2.42)

or L > S and L < 2S,L + CAP > 2S (2.43)

and S > CAP (2.44)

Furthermore, examining the eigenvalues, we obtain

λ1λ2 = S − L × S − CAP = S2 + LCAP − LS − SCAP (2.45)

λ1λ2 < 0 ⇐ S < L and CAP < S (2.46)

λ1λ2 > 0 ⇐ L < S and CAP < S (2.47)

Biologically, equation (2.46) would mean that the amount of free accessories is
fewer than the unbound receptors, which in turn is fewer than the free ligand.
This could be the case if the cell has already formed complexes, and so many of
its receptors and accessories are already consumed. If the conditions here are
met, the fixed point would be a saddle point.

If the conditions in equation (2.47) are met, the fixed point is either a node
or a spiral, in which case we examine the conditions on both the eigenvalues
and Tr(J∗

(1,1)); the node requires the following conditions:

Tr(J∗
(1,1))

2 − 4Det(J∗
(1,1)) > 0 and λ1λ2 > 0 (2.48)

⇐ L = 0 and S ≤ 1 and CAP < S (2.49)

or L < S ≤ 1 and (0 ≤ CAP < L or L < CAP < S) (2.50)

In the first case, we would have no ligand and most or all of the receptors un-
bound, with fewer receptor accessory proteins than receptors; in the second, the
ligand are fewer than the unbound receptors and either the accessory proteins
are fewer than the ligand or the ligand is fewer than the receptor accessories.
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The stability of the fixed point depends on the trace; in this case, if the receptor
accessories are fewer than available ligand, the equilibrium is stable.

For a spiral, we would require Tr(J∗
(1,1))

2 − 4Det(J∗
(1,1)) < 0; however, this

cannot be the case, since Tr(J∗
(1,1))

2−4Det(J∗
(1,1)) = (Lr+S−rS−CAP )2, and

so we can rule out the spiral as an equilibrium.
At the fixed point (θ∗, φ∗) = (1, CAP

S
) the Jacobian J∗ = J∗

(1,
CAP

S
)

is

J∗ =

(

CAP − S 0
0 r (S − L)

)

(2.51)

The eigenvalues (λ1, λ2) = (S −L,CAP − S); the determinant Det(J∗) = LS −
S2 − LCAP + SCAP and the trace Tr(J∗) = CAP − L. The conditions for a
saddle point are

λ1λ2 < 0 ⇐ 0 ≤ L < 1 (2.52)

and L < S ≤ 1 (2.53)

and 0 ≤ CAP < S (2.54)

Biologically, this would mean that both the ligand and the available receptor
accessories are fewer than the unbound receptors.

The conditions for a node are as follows:

Tr(J∗
(1,1))

2 − 4Det(J∗
(1,1)) > 0 and λ1λ2 > 0 (2.55)

⇐ 0 < L ≤ 1 (2.56)

and 0 < S < L (2.57)

and 0 ≤ CAP < S (2.58)

The amount of receptor accessories are fewer than the unbound receptors, which
in turn are fewer than the ligand. This might imply, for example, that some of
the receptors and accessories have already formed complexes, or simply that a
high number of ligand has been released. The stability of this steady state is
determined by Tr(J∗) = CAP −L, and since from above we have CAP < S and
S < L, the fixed point is stable. None of the constraints on the variables allow
the formation of a spiral or centre.

For the fixed point at (θ∗, φ∗) = (L
S
, CAP

S
) the Jacobian J∗ = J∗

“

L
S

,
CAP

S

” is

J∗ =

(

CAP − L 0
0 L − S

)

(2.59)

The eigenvalues (λ1, λ2) = (L− S,CAP −L), the trace Tr(J∗) = CAP − S, and
the determinant Det(J∗) = −(L − S)(L − CAP ). The conditions for a saddle
point are

λ1λ2 < 0 (2.60)

⇐ L = 0 and S ≤ 1 and CAP < S (2.61)

or L ≤ 1 and S = 0 and CAP = 0 (2.62)

or L ≤ 1 and S < L and CAP ≤ S (2.63)

or L < S ≤ 1 and L < CAP ≤ S (2.64)
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The (fairly complicated) conditions for a stable node are as follows:

λ1λ2 > 0 and Tr(J∗)2 − 4Det(J∗) > 0 and Tr(J∗) < 0

⇐ L ≤ 1

2
and L < S < 2L and 0 ≤ CAP < 2L − S

or L ≤ 1

2
and L < S < 2L and 2L − S < CAP < L

or L ≤ 1

2
and 2L == S and CAP < L

or L ≤ 1

2
and 2L < S ≤ 1 and CAP < L

or
1

2
< L < 1 and L < S ≤ 1 and 0 ≤ CAP < 2L − S

or
1

2
< L < 1 and L < S ≤ 1 and 2L − S < CAP < L

The constraints on the variables means that this fixed point cannot be an un-
stable node, and similarly for a stable or unstable spiral.

For the steady state (θ∗, φ∗) = (L
S
, L

S
) we obtain the Jacobian

J∗ =

(

L − CAP CAP − L

0 L − S

)

(2.65)

The eigenvalues are (λ1, λ2) = (L − S,L − CAP ), the determinant Det(J∗) =
(L− S)(L−CAP ), and the trace Tr(J∗) = 2L− S −CAP . For the steady state
to be a saddlepoint we require

λ1λ2 < 0 (2.66)

⇐ L < 1 and L < S ≤ 1 and 0 ≤ CAP < L (2.67)

Biologically, the receptor accessories should be fewer than the ligand and the
ligand fewer than free receptors.

For the steady state to be a stable node, we require the following conditions:

λ1λ2 > 0 and Tr(J∗)2 − 4Det(J∗) > 0 and Tr(J∗) < 0

⇐ 0 ≤ L < 1 and L < S ≤ 1 and L < CAP < S

Biologically, we would have fewer ligand than available accessories, which in
turn are fewer than unbound receptors.

For an unstable node, we require the following conditions to be met:

λ1λ2 > 0 and Tr(J∗)2 − 4Det(J∗) < 0 and Tr(J∗) > 0

⇐ 0 < L ≤ 1 and 0 < S < L and 0 ≤ CAP < S

In this case, there would be fewer accessories than receptors, and fewer receptors
than ligand; so in this case, an unstable node is possible. The constraints on
the receptors mean that neither a stable or unstable spiral can occur.

Linear stability analysis can give insights into the behaviour of a system,
and is often sufficient to provide a general picture of system dynamics; however,
a more robust analysis follows.
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Figure 2.1: The biological domain given in equation (2.70) in the (θ, φ) plane is the light

grey shaded region. The invariant domain 0 ≤ φ ≤ min
n

CAP
S

, L
S

, 1
o

, 0 ≤ σ ≤ min
n

L
S

, 1
o

is the dark grey shaded region. The blue curve is the isocline φ̇ = 0, and the red curve the
isocline σ̇ = 0. We have a unique equilibrium in the biological domain, inside the invariant

domain, given by the point. This figure illustrates the case CAP
S

< L
S

< 1.

2.3 Biological equilibria of the 2-dimensional sys-
tem

We have established that the system can be written as

φ̇ = (σ − φ) (CAP − Sφ) − ρyφ (2.68)

σ̇ = r (1 − σ) (L − Sσ) − ρw (σ − φ) (2.69)

We have the following biological constraints:

0 ≤ φ ≤ σ ≤ 1 (2.70)

This is a simplex in the (φ, σ) plane, which we show in figure (2.1). We consider
whether this domain is invariant under the dynamics given by equations (2.68),
(2.69). We consider the boundary of the simplex.

The edge φ = 0: From (2.69) we have φ̇ = σCAP . Thus, φ̇ ≥ 0 along the

edge φ = 0, with equality only when σ = 0. Note that, when σ = φ = 0, we
have σ̇ = rL > 0. It follows that the vector field defined by equations (2.68),
(2.69) is inward pointing along this edge.

The edge σ = 1: From (2.68), we have σ̇ = −ρw (1 − φ). In this case,

σ̇ ≤ 0 along the edge σ = 1, with equality only when φ = 1. Note that, when
σ = φ = 1, we have φ̇ = −ρy < 0. It follows that the vector field is inward
pointing along this edge.

The edge σ = φ: Here we have σ̇ − φ̇ = r (1 − σ) (L − Sσ) + ρyσ. This is

always positive if 0 ≤ σ ≤ min
{

L
S
, 1

}

. If L
S
≥ 1, this covers the full biological

range 0 ≤ σ ≤ 1.
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We have therefore shown that, if L
S
≥ 1, the whole biological domain (2.70)

is forward invariant under the vector field given by equations (2.68), (2.69).
The vector field is, in fact, inward pointing along the boundary of this domain.
From standard theorems, it follows that there is at least one equilibrium in the
interior of the biological domain.

If L
S

< 1, then we consider the subdomain of the biological domain given by

0 ≤ φ ≤ σ ≤ L

S
, 0 ≤ φ ≤ min

{

CAP

S
,
L

S

}

(2.71)

This is illustrated in figure (2.1), given as the dark grey region, for CAP

S
< L

S
< 1.

We show that this region is forward invariant under the vector flow.

The edge σ = L
S
: We have σ̇ = −ρw

(

L
S
− φ

)

along this edge, so σ̇ ≤ 0

along this edge, with equality only when φ = L
S
.

The edge φ = CAP

S
: Along this edge we have φ̇ = −ρyCAP

S
. Thus, φ̇ < 0

along this edge.
We already know that φ̇ > 0 along the edge φ = 0, except at σ = 0, where

φ̇ = 0; we also have σ̇ − φ̇ > 0 along the section of the edge σ = φ with
0 ≤ σ ≤ L

S
.

It now follows that the domain (2.70) is forward invariant under the flow
of the vector field, and that the field is inward pointing on the boundary of
this domain. From standard theorems, it now follows that there is at least one
equilibrium in the interior of the biological domain. This does not, however,
rule out the possibility of other equilibria within the biological domain (2.70)
but outside the invariant domain (2.71), but we can see that this is not the case.

We suppose first that φ > CAP

S
. It follows from (2.68) that φ̇ < 0. Next

we suppose that σ > L
S
. It then follows from (2.69) that σ̇ < 0. Hence there

can be no solution of σ̇ = φ̇ = 0 in the biological domain (2.70) but outside the
invariant domain defined by (2.69), (2.70). Therefore, all biologically acceptable
equilibria lie in the invariant domain.

2.3.1 Uniqueness of the equilibrium

We will now show that in fact there is only one equilibrium in the interior of the
invariant domain (2.71). We have shown that the vector field (2.68), (2.69) is
inward pointing on the boundary of the domain (2.71), and hence any equilibria
must lie in the interior of this domain. It follows from the Brower Fixed Point
Theorem for flows ((97), Theorem 7, p. 197) that there is at least one equilib-
rium in the domain (2.71). To show that there is exactly one equilibrium in the
domain, we use the Poincaré-Hopf index theorem (this theorem is explored in
appendix 2.C). According to this theorem, it suffices to show that the Jacobian
matrix has constant sign on the invariant domain. From (2.68), (2.69) we have

∣

∣

∣

∣

∣

∂φ̇
∂φ

∂φ̇
∂σ

∂σ̇
∂φ

∂σ̇
∂σ

∣

∣

∣

∣

∣

(2.72)

=

∣

∣

∣

∣

− (CAP − Sφ) + S (σ − φ) − ρy (CAP − Sφ)
ρw − (r (L − Sσ) + rS (1 − σ) + ρw)

∣

∣

∣

∣
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and hence we have

J (φ, σ) = r (L + S − 2Sσ) ((CAP + S (σ − 2φ) + ρy) (2.73)

+ ρw (S (σ − φ) + ρy) ≥ ρwρy

for (φ, σ) in the domain. Thus, J (φ, σ) < 0 for all (φ, σ) in the domain. It
follows from this that all equilibria in the domain are regular and isolated, and
that there can be only one of them. This proves the uniqueness of the biological
equilibrium.

2.3.2 Stability of the equilibrium

It follows from (2.68), (2.69) that the divergence of the vector field is

D(φ, σ) =
∂φ̇

∂φ
+

∂σ̇

∂σ
(2.74)

= −CAP − rS (1 − σ) − r (L − Sσ) (2.75)

−S (σ − φ) + Sφ − ρw − ρy

≤ − (ρy + ρw)

for (σ, φ) in the domain. Thus, D(φ, σ) < 0 for all (σ, φ) in the domain (2.71). It
now follows from the Poincaré-Bendixon theorem (see appendix 2.C) that there
are no limit cycles of the vector field in the domain, and so we can say that the
unique equilibrium is globally asympototically stable on this domain.

Finally, we note that the two isoclines within the biological domain are as
follows:

σ̇ = 0 isocline: (2.76)

σ = σ =
1

2





(

1 +
L

S
+

ρw

rS

)

−
√

(

1 +
L

S
+

ρw

rS

)2

− 4

(

ρw

rS
φ +

L

S

)





φ̇ = 0 isocline: (2.77)

σ = φ

(

1 +
ρy

(CAP − Sφ)

)

2.3.3 Biological consequences

From equations (2.76) and (2.77) the unique equilibrium in the biological domain
is the solution of

1

2





(

1 +
L

S
+

ρw

rS

)

−
√

(

1 +
L

S
+

ρw

rS

)2

− 4

(

ρw

rS
φ +

L

S

)



 (2.78)

= φ

(

1 +
ρy

(CAP − Sφ)

)
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Figure 2.2: Graphs of equilibrium values of σ (shown in brown), φ (shown in blue), and
θ = σ − φ (shown in red) as functions of free ligand density L

S
. The parameter values are:

CAP
S

= 0.5, ρw

rS
= 0.125,

ρy

S
= 0.05.

This equation defines the equilibrium solution φ∗ as a function of L
S

(with CAP

fixed). Given values for the parameters CAP

S
, ρw

rS
and

ρy

S
, this equation can

be solved numerically to obtain φ∗ as a function of L
S
. From the biological

constraints (2.70) and (2.71) we know that φ∗ < min
{

CAP

S
, 1

}

. We therefore
have two distinct cases.

Case 1: CAP

S
< 1: This case is illustrated in (2.1). In this case the avail-

ability of the receptor accessory protein (CAP ) is less than the total availability
of receptors (S = CR1 +CR2). So the accessory protein is the limiting resource.
This is illustrated in figure (2.1).

From section (2.2), we know that the density of binary complexes is w+x =
Sθ, with the density of ternary complexes given by y + z = Sφ. It follows from
the figure that for low values of L

S
, the equilibrium value of θ is less than that

of φ. The density of ternary complexes is therefore limited by the availability
of ligand, rather than receptors or receptor accessory protein.

For larger values of L
S
, the equilibrium value of θ is greater than that of

φ. We therefore have more binary complexes than ternary complexes. Ternary
complexes are limited by the unavailability of receptor accessory. For very large
values of L

S
, the equilibrium values of θ and φ become saturated. This occurs

when there is enough unbound ligand to exploit all the binding opportunities
available.

Even for low levels of ligand stimulus (L
S

small), the formation of ternary
complexes in equilibrium increases rapidly with stimulus (the blue curve in figure
(2.2)). Whether this results in the induction of cell signalling depends on the
proportion of type-I and type-II receptors.

Case 2: CAP

S
> 1: In this case, the availability of receptors S is the domi-

nant or limiting resource. We plot some equilibrium values in figure (2.3).
The equilibrium density of binary complex density θ, represented by the red

curve in the figure, remains below the equilibrium density of ternary complexes
(φ), represented by the blue curve in the figure, over the whole range of unbound
ligand stimulus density L

S
.
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Figure 2.3: Graphs of equilibrium values of σ (shown in brown), φ (shown in blue), and
θ = σ − φ (shown in red) as functions of free ligand density L

S
. The parameter values are:

CAP
S

= 1.5, ρw

rS
= 0.125,

ρy

S
= 0.05.

Both curves saturate rapidly as L
S

increases. The large saturated value for
the φ curve relative to the comparatively low saturated value for the θ curve is
a consequence of the relative abundance of receptor accessory protein in com-
parison with that of the receptors.

2.4 Results

The ordinary differential equation model derived above is resistant to a straight-
forward analysis; however, the approximations and perturbation analysis we
developed have shown us that steady states exist which depend on the relative
size ligand and the total number of receptors in the system.

The applicability of a Michaelis-Menten modelling approach to the IL-1β
system was considered in section 2.1. After consideration of the assumptions
underlying this modelling approach, a steady state model of the IL-1β network
was developed, based on conservation laws.

A first approximation was developed in section (2.2) which reduced the four-
dimensional system into a two-dimensional system. Although this approxima-
tion is not very precise, it emphasised the role played by the ratio of the IL-1
receptor accessory protein to the signalling and nonsignalling receptors, and the
ratio of the ligand to the receptors; that is, CAP

S
and L

S
.

A more comprehensive analysis was given in Section 2.3. The biological do-
main, those values for which the variables representing the complexes hold, was
shown to be forward invariant and inward pointing under the vector field given
by equations (2.76) and (2.77). By use of the Poincaré-Hopf index theorem, it
was found that within the biological domain a unique equilibrium existed.

The central role of the ratios CAP

S
and L

S
was further accentuated. It was

found that, if CAP

S
< 1, the availability of the receptor accessory protein is less

than the availability of both Type-I and Type-II receptors. In this case the
receptor accessory is the limiting resource. For low values of L

S
, it was found

that the density of ternary complexes is limited by availability of ligand.
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For larger values of L
S
, we find that there are more binary complexes than

ternary complexes, so that ternary formation is affected by the scarcity of the
receptor accessory.

In the case where CAP

S
> 1, the availability of the unbound receptors is the

limiting resource.

2.A Appendix: Michaelis-Menten model

The modelling of receptor-ligand models has often been based on two methods,
known as the Michaelis-Menten and Briggs-Haldane models; it may be beneficial
to analyse how each model is derived 2. Study of the impact made by changes in
experimental conditions on the rate of an enzyme-catalysed reaction is known
as enzyme kinetics. The effect on the initial rate of substrate concentration
of an enzyme-catalysed reaction is a concept central to enzyme kinetics: when
plotted, experiments of initial rate of reaction versus substrate concentration
characterises a hyperbolic curve. The Michaelis-Menten equations is based on
a generalised scheme for the enzyme-catalysed synthesis of a product P from
substrate S, that is, E binds S to form an enzyme-substrate complex. The
biochemical reaction is given by

E + S
k1

GGGGGGBFGGGGGG
k−1

ES
k2
GGGAE + P (2.79)

where k1, k−1 and k2 are rate constants describing, respectively, the association
of substrate and enzyme, the dissociation of unaltered substrate from the en-
zyme, and the dissociation of product (or altered substrate) from the enzyme.
A reverse reaction can take place, with the ES complex dissociating to form en-
zyme and substrate, but this effect can largely be disregarded when considering
initial rates of reaction; when the enzyme is initially introduced to the substrate,
there should not be any product available to combine with the enzyme.

It is necessary to highlight two assumptions which have been made in de-
signing the model; the first of these is that the amount of available substrate is
much larger than the concentration of enzyme, that is, [S] ≫ [E]; furthermore,
it is assumed that the system is in steady-state, in other words that the ES

complex is being formed and broken down at a constant rate, implying that
[ES] concentration is constant. The rate, or velocity, of the reaction, given by
v, is governed by the processing from ES to E + P , in turn mediated by the
rate k2 and the concentration of the enzyme bound with the substrate, [ES]:

v = k2[ES] (2.80)

The formation of [ES], then, is dependent on the rate constant k1 and the
amount of enzyme and substrate available; the breakdown of [ES] occurs either
by the conversion of substrate to product or the dissociation of substrate from
the complex. The Law of Mass Action, which states that the rate of a chemical
reaction is proportional to the concentrations of the reacting substances, is
applicable here, so that at steady-state we have:

2Much of this appendix, and the following appendix, synopsises Chapter 3 of Segel’s “En-
zyme Kinetics” (86), to which it is indebted
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k1[E][S] = k−1[ES] + k2[ES] (2.81)

yielding:

k1[E][S]

k−1 + k2
= [ES] (2.82)

Since all the rate constants are on the L.H.S., we can introduce a constant :

KM =
k−1 + k2

k1
(2.83)

where KM is known as the Michaelis constant. The total amount of enzyme in
the system must, obviously, remain the same, whether it is bound or free, and
so the total amount of enzyme [E0] is given by

[E0] = [E] + [ES] (2.84)

With some algebraic manipulation we arrive at an expression for v

v = k2
[E0][S]

[S] + KM

(2.85)

The maximum rate would be reached when all the enzyme molecules have bound
to substrate, and, where we have [S] ≫ [E], we could assume that all E will be
in the form ES, so that [E0] = [ES]; thinking again about equation (2.80) we
could substitute Vmax for v and [E0] for [ES], yielding the Michaelis-Menten
equation:

v =
Vmax[S]

KM + [S]
(2.86)

There are a number of assumptions made by the Michaelis-Menten framework
which may influence how applicable it is to the task of modelling the IL-1β
network. The assumptions are (86):

• The enzyme is a catalyst.

• The enzyme and substrate react rapidly to form an enzyme-substrate com-
plex.

• Only a single substrate and a single enzyme-substrate complex are involved
and the enzyme-substrate complex breaks down to form free enzyme and
product.

• The substrate concentration is much larger than the enzyme concentra-
tion.

• The overall rate of the reaction is limited by the breakdown of the complex
to form free enzyme and product.

• Enzyme, substrate, and enzyme-substrate complex are at equilibrium -
the rate at which the complex dissociates to component parts is much
faster than the rate at which the product and free enzyme are produced.
This is the quasi-equilibrium or rapid equilibrium assumption.
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It would be useful to examine these assumptions and consider their applica-
bility to the IL-1β network and the modelling process.

• The enzyme is a catalyst: This should not pose any conceptual problems
for IL-1β.

• Complex is formed rapidly: This should also not pose any problems.

• Single substrate/single enzyme-substrate complex: This no longer applies,
since the model has been extended to accommodate multiple substrates
and enzymes, and so need not concern us.

• Substrate concentration greater than enzyme concentration: This assump-
tion may be of concern if the amount of IL-1β is much greater than the
number of IL-RI receptors available, and would be an interesting case for
further analysis.

• Rate of reaction limited by complex breakdown: This assumption need
not be a problem for a model of the network.

• Rapid equilibrium: This could pose a problem for the model, and will be
dealt with below.

The rapid equilibrium framework allows us to express the enzyme-substrate
complex concentration, but the derivation yields an equilibrium expression for
the binding of the substrate to the enzyme; the velocity equation is obtained
when the term [ES] is inserted into the velocity dependence equation, or when
we derive an equation expressed in terms of v

Vmax
. However, it is not necessarily

the case that the concentration of the complex is solely determined by the
concentration of E and S, and in many cases this is unlikely to be the case (86).
How can this problem be dealt with?

The quasi-equilibrium problem can be ameliorated by using instead a steady-
state model, which will be detailed below. It should, however, be noted that
surprisingly often use of either the steady-state or the rapid equilibrium theories
will result in the same model; that is, the form of the equation yielded will be the
same. It is also noteworthy that there is an extensive literature which applies
the Michaelis-Menten theory to many different models, not all of which could
be considered as near equilibrium, with good match to experimental results; as
such the assumption could be considered as having been operationally relaxed.

2.B Appendix: Briggs-Haldane model

Briggs and Haldane (11) developed a general rate equation which did not require
the restriction of equilibrium. They proposed instead that the system would
rapidly approach a steady state level of production: that is, complex formation
would form at the same rate at which it decomposed. This assumption would
certainly be more realistic for our purposes. The derivation is as follows.

The enzyme-substrate complex is formed:

E + S
k1

GGGGGGAES (2.87)
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Note that the reverse reaction can initially be ignored, since during the early
stages of the reaction there will be little product. The complex can decompose
via two processes:

ES
k−1

GGGGGGGAE + S (2.88)

ES
k2

GGGGGGAE + P (2.89)

so that the rate of formation can be given by (f and g here are dummy functions)

df

dt
= k1[E][S] (2.90)

and the rate of decomposition

dg

dt
= k−1[ES] + k2[ES] = (k−1 + k2)[ES] (2.91)

so, at steady state we obtain

df

dt
=

dg

dt
=

d[ES]

dt
(2.92)

and

k1[E][S] = (k−1 + k2)[ES] (2.93)

Rearranging we obtain

[ES] =
k1[S]

(k−1 + k2)
[E] (2.94)

If we divide by the total amount of enzyme [E]tot

v

[E]tot

=
k2[ES]

[E] + [ES]
(2.95)

Substituting for [ES]:

v

k2[E]tot

=

k1[S]
(k−1+k2)

[E]

[E] + k1[S]
(k−1+k2)

[E]
(2.96)

Letting Vmax equal k2[E]tot yields

v

Vmax

=

k1[S]
(k−1+k2)

1 + k1[S]
(k−1+k2)

(2.97)

If we group the rate constants as the Michaelis constant Km we obtain

v

Vmax

=

[S]
Km

1 + [S]
Km

(2.98)

=
[S]

Km + [S]
(2.99)
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Notice also that

[E][S]

[ES]
=

k−1 + k2

k1
= Km (2.100)

Km can thus be considered a pseudo-constant which expresses the relationship
between the steady-state concentrations. The model can also be described by a
system of four differential equations:

d[E]

dt
= (k−1 + k2)[ES] − k1[E][S] (2.101)

d[ES]

dt
= k1[E][S] − (k−1 + k2)[ES] (2.102)

d[S]

dt
= k−1[ES] − k1[E][S] (2.103)

d[P ]

dt
= k2[ES] (2.104)

This system of differential equations, together with the mass balance equation
[E]tot = [E] + [ES], gives us a steady-state description of the system. Such a
system of equations depends on the assumption of steady-state dynamics, and
could not be derived given the assumption of equilibrium.

The system can be solved if the steady-state assumption holds and the value
of certain parameters ([E]tot,k1, etc.) are known.

2.C Appendix: Theorems

We give details of the theorems used in the previous chapter.

2.C.1 The Poincaré-Hopf index theorem

The 2-dimensional system defines a vector field f : R2 → R2. That is, f(φ, σ) =
(f1(φ, σ), f1(φ, σ)) where

φ̇ = (σ − φ)(CAP − Sφ) − ρyφ (2.105)

σ̇ = r(1 − σ)(L − Sσ) − ρw(σ − φ) (2.106)

We wish to restrict the vector field f to the biological domain (2.70), which
is a simplex △ ⊂ R2. Specifically, we consider restricting f to the subdomain
Ω ⊂ △ defined by (2.70), which is shown in (2.1).

Preliminaries: To state the Poincaré-Hopf Theorem, we need the notion of
the Euler characteristic of a polyhedral domain D, which we denote by χ(D).
In two dimensions, this is defined as:

χ(D) = Number of 0D vertices − Number of 1D edges (2.107)

+ Number of 2D faces



CHAPTER 2. ORDINARY DIFFERENTIAL EQUATION MODEL 46

Figure 2.4: a) The biological region (2.70), shaded light grey, is the region △. The biological
region (2.71) is the subregion Ω, shaded dark grey. The dashed line is the edge we have added
to calculate the Euler characteristic. b) The subregion Ωǫ obtained from Ω by cutting off a
small corner containing the origin, given by the white triangle. f is inward pointing on the
boundary of this region.

A vertex is a point, an edge is a straight line joining two vertices, and a face is
the area enclosed by a triangle formed by three vertices and three connecting
edges. For the simplex △ (see figure (2.1)), we have

χ(△) = 3 − 3 + 1 = 1 (2.108)

We wish to calculate the Euler characteristic for the subdomain Ω. To do this,
we first need to split the region into the union of two simplices by adding an
edge. We show this in figure (2.4 a). We then have

Number of 0D vertices = 4 (2.109)

Number of 1D edges = 5 (2.110)

Number of 2D faces = 2 (2.111)

⇒ χ(Ω) = 4 − 5 + 2 = 1 (2.112)

We are also interested in a subdomain Ωǫ ⊂ Ω, which we obtain by cutting off
a sufficiently small area containing the origin (0, 0), by the horizontal line σ = ǫ

with ǫ > 0 sufficiently small. We also add an additional edge, as shown in figure
(2.4 b). This yields

Number of 0D vertices = 5 (2.113)

Number of 1D edges = 7 (2.114)

Number of 2D faces = 3 (2.115)

⇒ χ(Ω) = 5 − 7 + 3 = 1 (2.116)

This shows that the domains in which we are interested have Euler characteristic
1. According to Spanier, the Euler characteristic is a topological invariant ((97),
chapter 4): if two polyhedra K and K′ are topologically homeomorphic, then
we have χ(K′) = χ(K). Clearly, △, Ω and Ωǫ are all homeomorphic to each
other, and so have the same Euler characteristic.
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We have shown in the main text that the vector field f restricted to Ω is
inward pointing on the boundary of Ω, except at the point (0, 0), where we have

φ̇ = f1(0, 0) = 0 (2.117)

σ̇ = f2(0, 0) = rL > 0 (2.118)

The vector field is non-zero at this point, but points along the boundary edge
φ = 0. If, however, we consider the domain Ωǫ, then along the additional edge
σ = ǫ, φ = ǫξ with 0 ≤ ξ ≤ 1, we have

φ̇ = f1(ǫξ, ǫ) = ǫ ((1 − ξ) CAP − ρyξ) + O(ǫ2) (2.119)

σ̇ = f2(ǫξ, ǫ) = r(1 − ǫ)(L − Sǫ) − ǫρw(1 − ξ) (2.120)

= rL + O(ǫ2)

Clearly, σ̂ > 0 along this edge for sufficiently small ǫ. Also

φ̇ = f1(0, ǫ) = ǫCAP + O(ǫ2) > 0 (2.121)

at ξ = 0, and

φ̇ = f1(ǫ, ǫ) = −ǫρy + O(ǫ2) < 0 (2.122)

at ξ = 1. Therefore, the vector field f is inward pointing into the domain Ωǫ at
all points on the boundary of Ωǫ.

We further note that, with ǫ > 0 chosen sufficiently small, then we have
σ̇ > 0 at all points in the excluded region 0 ≤ σ < ǫ, 0 ≤ φ < ǫ, given by the
small white triangle in (2.4 b).We have already shown that there are no further
equilibria of the vector field f in △−Ω; it follows that any biologically allowable
equilibria must be in the interior of Ωǫ.

Regular equilibria and the index: Let x8 = (φ∗, σ∗) be an equilibrium of

the system in Ωǫ. Such an equilibrium is said to be regular if the Jacobian
J(φ∗, σ∗) is non-zero. It follows from equation (2.73) that all equilibria in Ωǫ

are regular.
We now define the index of the equilibrium x∗ of the vector field f restricted

to Ωǫ by

indf (x∗) = sign J(x∗) (2.123)

We can now state the Poincaré-Hopf Index Theorem 3:

Theorem 2.C.1. Poincaré-Hopf Index Theorem Let Γ ⊂ Rn be a compact

domain with non-empty interior and piecewise boundary ∂Γ. Let g : Rn 7→ Rn

be a differentiable vector field that is non-zero and outward-pointing on ∂Γ.

Suppose that g has only finitely many, regular equilibria in Γ. Then

∑

equilibria x∗

indg(x
∗) = χ(Γ) (2.124)

3A more general statement of :Poincaré-Hopf Index Theorem can be found in Milnor (65)
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We can apply this to the vector field g = −f in the figure (2.4 b) on R2 with
Γ = Ωǫ. We have shown that f is inward pointing on ∂Ωǫ, and so g is outward
pointing. Clearly, f and g have the same, regular, equilibria in ωǫ. It therefore
follows from Theorem (2.C.1) and the already-established χ(Ωǫ) = 1 that

∑

equilibria x∗

ind−f (x∗) = 1 (2.125)

It follows from the definition that

J−f = Det

(

−∂f1

∂φ
−∂f1

∂σ

−∂f2

∂φ
−∂f2

∂σ

)

(x∗) (2.126)

=
∂f1

∂φ

∂f2

∂σ
− ∂f1

∂σ

∂f2

∂φ
(2.127)

= Det

(

∂f1

∂φ
∂f1

∂σ
∂f2

∂φ
∂f2

∂σ

)

(x∗) = Jf (x∗) (2.128)

and hence from equation (2.122) that ind−f (x∗) = indf (x∗), so we have from
equation (2.125)

∑

equilibria x∗

indf (x∗) = 1 (2.129)

We now note from (2.124) that J(x∗) > 0 for any equilibrium x∗; in fact, this
holds for any point in Γǫ. Then it follows that indf (x∗) = 1 for all equilibria
x∗ ∈ Γǫ. We let m be the number of such equilibria; then it follows from (2.129)
that m = 1. We have exactly one equilibrium of the vector field f in Γǫ. We
have therefore proven the uniqueness-of-equilibrium asserted in the main text.

The Poincaré-Bendixson Theorem: The necessary version of the theorem
is the following4:

Theorem 2.C.2. Poincaré-Bendixon Theorem Let Γ ⊂ R2 be a compact subset

that is forward invariant under the flow of a differentiable vector field f : R2 7→
R2. Then Γ contains a rest point or a periodic orbit.

We take Γ = Ωǫ. We have shown that the vector field f , as plotted in (2.4
a), is inward pointing on the boundary of Γǫ. Therefore, Γǫ is forward invariant
under the flow of f . We have also shown in equation (2.74) that

div f(φ, σ) = D(φ, σ) < 0 (2.130)

for (φ, σ) ∈ Γǫ. This implies that areas in Ωǫ are contracting, and so cannot
contain a periodic orbit, and the interior of Γǫ is an open set which contracts
in time to the only possible limit set, which is the unique equilibrium in the
interior of Γǫ. Thus we have proven what we asserted in the main text, that the
unique equilibrium is globally asymptotically stable on Γǫ.

4Hofbauer and Sigmund (42), chapter 4, have a more general analysis.



Chapter 3

The unconstrained receptor
model

IL-1β binds to two receptors on the cell membrane, the type-I and type-II re-
ceptor: the type-I receptor can cause a signal transduction event; the type-II
receptor is commonly considered to be a decoy receptor, lacking the transmem-
brane apparatus to initiate a signalling event (15). We will model the interac-
tion of IL-1β at the level of the cell membrane with type-I signalling and type-II
nonsignalling receptors, in order to discover the effect of the type-II receptor on
the dynamics of the system.

The IL-1β network contains many putative inhibitory elements, one of which
is the receptor antagonist IL-1Ra. This ligand binds with both the type-I and
type-II receptors, sequestering the receptor accessory IL-1RAcP, forming binary
and ternary complexes in much the same way as IL-1β; however, it does not
initiate signalling transduction. Since it consumes both receptors and receptor
accessory proteins, it may be considered an inhibitory influence on the network.
We will construct a model which investigates its efficacy as an IL-1β inhibitor.

The IL-1β network is composed of elements which occur at very low physi-
ological quantities. The type-I receptor is not abundant, but evokes a powerful
response without a high level of receptor occupancy (6), as the receptor acti-
vates many pathways which operate in parallel. Unlike most other cytokines, it
is thought that as few as ten occupied receptors are sufficient to evoke a strong
response (93). Since IL-1β typically acts at very low concentrations, the popu-
lation sizes of signalling and nonsignalling complexes will be small, and random
fluctuations will have a disproportionate effect. The use of stochastic methods
is indicated to model such a system.

3.1 The IL-1β network

This section explores the effect of the type-II receptor on the IL-1β network.
The interactions we model are as follows:

• IL-1β + type-I receptor: IL-1β associates with the signalling receptor to
form a signalling binary complex

49
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• signalling binary complex + receptor accessory protein: promotion of the
receptor accessory forms a signalling ternary complex, and signalling oc-
curs

• IL-1β + type-II receptor: IL-1β associates with the nonsignalling receptor
to form a nonsignalling binary complex

• nonsignalling binary complex + receptor accessory protein: promotion of
the receptor accessory forms a nonsignalling ternary complex

As in any reaction, the binding event is reversible; the complexes can both
associate and dissociate. The association and dissociation rates for the binary
and ternary signalling and nonsignalling complexes are given in Table (3.1). 1

We use the following notation: L is free (unbound) IL-1β, R1 is the type-I
signalling receptor, R2 is the type-II nonsignalling receptor, S is the signalling
binary complex, NS is the nonsignalling binary complex, R is the receptor
accessory protein, T is the signalling ternary complex, NT is the nonsignalling
ternary complex. Association rates are given as k+

u for a component u, and
dissociation rates are k−

u . In the notation of chemical reactions, the interactions
are:

L + R1
k+

S
EGGGGGGGGGGGGC

k−

S

S (3.1)

L + R2
k+

NS
EGGGGGGGGGGGGGGGGC

k−

NS

NS (3.2)

S + R
k+

T
EGGGGGGGGGGGGC

k−

T

T (3.3)

NS + R
k+

NT
EGGGGGGGGGGGGGGGGC

k−

NT

NT (3.4)

Units for dissociation rates k−
u are s−1, and these rates can be construed as

probabilities per unit time (= 1s). However, the units for association rates, k+
u ,

are M−1s−1, and these cannot be interpreted as probabilities without a trans-
formation, k̂+

u = ck+
u , where c is a suitable conversion factor having dimension

M (concentration).
We choose c to be a concentration based on one international unit of specific

activity of IL-1β. A standard international unit (IU) of IL-1β activity is defined
as a preparation (NISBC code: 86/632) which contains 0.75mg per ampoule with
assigned potency of 75000 units per ampoule (76). We can use this as a basis for
a conversion factor between association/dissociation constants and probabilities.
According to the standard, a 0.75mg ampoule has a defined potency of 0.75×105

international units (IUs). So one unit of IL-1β can be expressed as

1The first source for the association and dissociation rates are from the Journal of Im-
munology, authored by Arend et al (4). One of Arend’s team who worked on the paper,
Professor Steven Dower, kindly sent the author unpublished data with more accurate figures
which he had obtained using Biacore surface plasmon resonance technology (24), (25).
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Table 3.1: Association/dissociation rates: the association and dissociation rates of the
signalling and nonsignalling complexes of the IL-1β network, where S is the signalling binary
and NS the nonsignalling binary.(51)

Agent Binds Assoc. (M−1s−1) Dissoc. (s−1)

IL-1RI1 IL-1β 4.67 × 107 1.6 × 10−11

S 1 IL-1RAcP 4.03 × 107 0.32 × 10−11

IL-1RII 2 IL-1β 8.85 × 106 6.92 × 10−10

NS 2 IL-1RAcP 9.5 × 106 6.82 × 10−10

1 Source: (4), (24) 2 Source: (4), (25)

1 U = 10 pg = 10−8 mg

IL-1β therefore has an activity of 108 U
mg . Also, recall that M = mol

litre and that

1 mol = 1.7 × 104g, so that a single unit of IL-1β can be expressed as follows:

1 U = 10−8 mg = 10−11 g

Thus

1 U =
10−11

1.7 × 104
mol = 5.9 × 10−16 mol

This can be expressed as a standardised concentration in terms of M:

Unit

ml
= 5.9 × 10−13 M

We use this as our conversion factor c to express association rates as probabili-
ties.

We also need to express dissociation rates as probabilities; clearly, the dis-
sociation rates will need to be multiplied by a number which will result in a
probability which is proportional to the association probabilities. We can do
this by simply using c and dropping the associated units, so that we have

c∗ = 5.9 × 10−13

This will result in dissociation probabilities which are of a proportional order of
magnitude to the association probabilities, and can be used as a probability in
a simulation.

The derived probabilities are given in Table (3.2).

3.1.1 Markov chain model

The theory of discrete-time Markov chains provides powerful techniques for
modelling random processes which are generally straightforward to implement
computationally (38).

A Markov chain can be described by a diagram showing the transitions
between the various states of a system. Figure (3.1) shows the transition graph
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Table 3.2: Probabilities P(X) such that k̂±
u ∈ [0, 1] derived from association and dissociation

rates k±
u .

Association probabilities

Complex Symbol P(X)

Signalling binary k̂+
S 2.75 × 10−5

Nonsignalling binary k̂+
NS 5.22 × 10−6

Signalling ternary k̂+
T 2.37 × 10−5

Nonsignalling ternary k̂+
NT 5.6 × 10−6

Dissociation probabilities

Complex Symbol P(X)

Signalling binary k̂−

S 1.6 × 10−11

Nonsignalling binary k̂−

NS 6.92 × 10−10

Signalling ternary k̂−

T 0.32 × 10−11

Nonsignalling ternary k̂−

NT 6.82 × 10−10

k̄Lk̄S

k̄T

k̄NS

k̄NT

k̂+
S

k̂+
T

k̂+
NS

k̂+
NT

k̂−

S k̂−

NS

k̂−

T
k̂−

NT

LS NS

T NT

Figure 3.1: State transition diagram for IL-1β network, where L is IL-1β, S is the signalling
binary complex, NS is the nonsignalling binary complex, T is the signalling ternary complex,
and NT the nonsignalling ternary complex. Probabilities are derived from the association and
dissociation rates k̂±

u .
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for the subset of the IL-1β network directly associated with receptor binding,
both signalling and nonsignalling.

The vertices of the diagram represent possible states which a unit of IL-1β
can occupy. The arrows represent directed state transitions, with their associ-
ated (non-zero) probabilities. A self-loop at a vertex represents the probability
that the current state does not change in a given time step.

Notice that the diagram has excluded both the receptors and the receptor
accessory protein; we will assume that sufficient resources of these components
exist to form signalling and nonsignalling complexes, since the components we
wish to model are the unbound IL-1β and the complexes themselves. Estimates
of the number of type-I and type-II receptors R on human and murine cells
yield a range of 200 ≤ R ≤ 2000 (61), (8), (9), (43), (85); in comparison with
the potency of IL-1β, and the low level of occupied receptors required to effect
a cellular response, this simplification seems justified. It is, of course, possible
to include receptor dynamics explicitly in a stochastic model, and such a model
would be needed to investigate the case given a large concentration of IL-1β
(supersaturation) and a low number of receptors expressed on the cell surface.

The matrix of transition probabilities defining the Markov process illustrated
in Figure (3.1) is given in equation (3.5); note that the diagonal entries in the
matrix are one minus the sum of the others in the row.

P =























IL−1β S NS T NT

IL−1β k̄L k̂+
S k̂+

NS 0 0

S k̂−

S k̄S 0 k̂+
T 0

NS k̂−

NS 0 k̄NS 0 k̂+
NT

T 0 k̂−

T 0 k̄T 0

NT 0 0 k̂−

NT 0 k̄NT























(3.5)

Computational experiments were performed to investigate the time spent in
each state, and to find any stationary distributions to which the Markov process
is attracted in the long run.

Table (3.3) shows the results of repeating the experiment and averaging it
over the number of iterations n and the number of trials N . Each trial iterates
over the stochastic matrix for n iterations, where 100 ≤ n ≤ 5×108; each exper-
iment was repeated N = 500 times. The initial state is selected randomly, from
among the states L, S,NS, T,NT , and then evolves according to the probabil-
ities based on association and dissociation rates. After the experiments have
run, we calculate the average of how long the system spent in any particular
state.

As can be seen from the table, with a low number of iterations the Markov
chain is evenly distributed between its states. However, as the number of it-
erations increases, the stochastic matrix is rapidly attracted to the signalling
ternary state, and spends an increasing number of iterations in this state. It
would seem that the signalling ternary state is, in dynamical systems terms, a
robust attractor for the stochastic matrix.
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Table 3.3: The results of iterating over the stochastic matrix P . The labels are: L, un-
bound ligand; S, signalling binary; NS, nonsignalling binary; T , signalling ternary; NT ,
nonsignalling ternary. The experiments consisted of n iterations as given in the rightmost
column, and each experiment ran N = 500 trials. The number of times the systems is in a
state S is recorded for each experiment and then averaged by the number of iterations n and
repetitions of the experiment N . As can be seen, the time the system spent in the signalling
ternary state increases with the number of iterations.

L S NS T NT Iterations

0.18756 0.18788 0.20154 0.23902 0.18400 100
0.13538 0.20607 0.20800 0.26855 0.18200 200
0.11487 0.17557 0.18178 0.32176 0.20600 500
0.07669 0.11322 0.20676 0.39731 0.20600 1000
0.03934 0.08522 0.17392 0.52157 0.17993 2000
0.01902 0.03195 0.15765 0.58935 0.20200 5000
0.00954 0.01809 0.14662 0.63773 0.18800 10000
0.00608 0.01085 0.10482 0.66330 0.21493 20000
0.00258 0.00464 0.05216 0.73181 0.20878 50000
0.00168 0.00215 0.02924 0.75901 0.20790 100000
0.00069 0.00111 0.01497 0.77371 0.20949 200000
0.00033 0.00047 0.00775 0.80312 0.18831 500000
0.00018 0.00028 0.00432 0.87185 0.12335 1000000
0.00008 0.00014 0.00276 0.89592 0.10108 2000000
0.00003 0.00005 0.00116 0.95572 0.04301 5000000
0.00002 0.00003 0.00061 0.96736 0.03196 1 × 107

0.00001 0.00001 0.00031 0.98529 0.01437 2 × 107

4.08 × 10−6 6.10 × 10−6 0.00012 0.99430 0.00555 5 × 107

2.65 × 10−6 2.99 × 10−6 0.00006 0.99757 0.00236 1 × 108

1.13 × 10−6 1.59 × 10−6 0.00002 0.99824 0.00172 2 × 108

4.37 × 10−7 6.67 × 10−7 9.94 × 10−6 0.99942 0.00056 5 × 108
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Effect of Type-II receptor

n

No Type-II

T

Type-II

50 100 150 200

10000

20000

30000

40000

Figure 3.2: Sample paths: n is the number of iterations taken to reach the signalling
ternary state, T the number of experimental trials. Each experiment consisted of N = 5×106

trials. The type-II receptor slows the formation of signalling ternary complexes. Results up
to n = 200 iterations (the majority of trials) are shown.



CHAPTER 3. THE UNCONSTRAINED RECEPTOR MODEL 56

3.1.2 The effect of inhibitory receptor

We would like to know how long it takes before the probability distribution
arrives at the signalling ternary state T , starting from the ligand state L. Note
that it is not necessarily the case that the system will end up at the signalling
ternary state, and we have yet to analyse the system to see if there is a stationary
distribution, which we will pursue later (see section (3.1.3)).

The protocol for the experiment is as follows: we suppose that the system
is currently in state i, and we wish to consider which state it goes to next. The
probability distribution which determines this is

pi = {pi1, pi2,K, pim} (3.6)

where m is the number of possible states and pij is the transition probability

from state i to state j. Then
∑m−1

j=1 pij = 1 for each i.
To find the subsequent state, a uniformly distributed random number x is

generated between zero and one. The following rules are then applied:

• If x < pi1, then the subsequent system state is 1.

• If
∑k

j=1 pij ≤ x <
∑k+1

j=1 pij , then the subsequent system state is k + 1,
for 1 ≤ k < m − 2.

• If x ≥ ∑m−1
j=1 pij , then the subsequent system state is m.

Each experimental trial is a sample path of the Markov chain. The number
of iterations required to reach a state T is recorded as the result of the trial.
There is a maximum number of iterations for each trial, after which the trial
terminates. The experiment was run for a large number of trials.

We can observe the behaviour of the system when there is no inhibitory, type-
II nonsignalling receptor. Repeating the experiment without the nonsignalling
binary (NS) and ternary (NT) states shows what would happen if the network
consisted only of the type-I signalling receptor. Thus we can directly compare
the behaviour of the sample paths in the presence or absence of the inhibitory
receptor, in order to illustrate its effect.

The results from both experiments are in Figure (3.2). The experiment con-
sisted of N trials. The maximum possible number of iterations over the system
was set to n = 50000; if the system arrived at the signalling ternary complex
before n, the program terminated and the number of iterations recorded. The
figure shows the trials up to n = 200 iterations, which are most of the results;
outlying results, which show those trials which run up to the maximum num-
ber of iterations without a ternary complex forming, are omitted . From the
figure, we can see that the effect of type-II receptors is to slow the formation of
signalling ternary complexes; without the type-II receptor, the complexes form
much more quickly.

The means and standard deviations for both experiments are given in Table
(3.4). Notice that the mean Markov chain length of the experiment with type-II
receptors is an order of magnitude higher than the mean of the experiment with-
out type-II receptors. The sample paths take on average an order of magnitude
longer to reach the signalling ternary complex state with the type-II receptor
present. Also, note that the standard deviations are very large indeed, in com-
parison with the means. This can be explained by noting that the experiment
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Table 3.4: Mean path length and standard deviation from experiments: effect of type-II
receptor. The means are quite large, in comparison with figure (3.2), as are the standard
deviations; however, the experimental trials continue until either a ternary complex is formed
or until the maximum number of iterations has been reached.

Experiment Mean Standard deviation
Type-II receptor present 3713.96 8154.79
Type-II receptor absent 363.96 468.49

is designed to start with initial state L, and terminate either after it reaches the
state T or reaches a maximum number of iterations. If the system remains in
any other state without transitioning to T and therefore terminating, this will
increase the standard deviation considerably, since it will (infrequently) reach
the maximum number of iterations.

From these experiments, we can observe that the type-II nonsignalling recep-
tor slows the formation of signalling ternary complexes, thus indirectly slowing
the response of the cell to IL-1β.

3.1.3 Long-term behaviour of the system

The transition matrix P given in equation (3.5) depends on only eight param-

eters, namely k̂±

S , k̂±

NS , k̂±

T , k̂±

NT , because the diagonal entries are determined in
terms of these parameters by the requirement that the sum of the entries in
each row must be 1 (since P is a stochastic matrix). From Figure (3.1), we
see that it is possible to move from any state to any other along a path having
positive probability. That is, the process defined by P is ergodic. Standard
theorems (see, for example, Grimmett and Stirzaker (38)) tell us that, for an
ergodic process, a stationary distribution π exists and also satisfies πj > 0.

Let

D = k̂+
NS k̂+

NT k̂−

S k̂−

T + k̂+
S k̂+

T k̂−

NS k̂−

NT + k̂+
NS k̂−

S k̂−

T k̂−

NT +

k̂+
S k̂−

NS k̂−

T k̂−

NT + k̂−

S k̂−

NS k̂−

T k̂−

NT

(3.7)

Solving the equation πP = π algebraically, we find:

π1 =
k̂−

S k̂−

NS k̂−

T k̂−

NT

D
(3.8)

π2 =
k̂+

S k̂−

NS k̂−

T k̂−

NT

D
(3.9)

π3 =
k̂+

NS k̂−

S k̂−

T k̂−

NT

D
(3.10)

π4 =
k̂+

S k̂+
T k̂−

NS k̂−

NT

D
(3.11)



CHAPTER 3. THE UNCONSTRAINED RECEPTOR MODEL 58

π5 =
k̂+

NS k̂+
NT k̂−

S k̂−

T

D
(3.12)

Substituting and solving numerically, the stationary distribution is given as:

π1 ≈ 7.85 × 10−14 (3.13)

π2 ≈ 1.35 × 10−7 (3.14)

π3 ≈ 5.92 × 10−10 (3.15)

π4 ≈ 0.999995 (3.16)

π5 ≈ 4.86 × 10−6 (3.17)

(3.18)

Clearly, the values of π1, π2, π3 and π5 are many orders of magnitude smaller
than π4, which is extremely close to 1. Hence, to all intents and purposes, the
system ends up in the signalling ternary state (with probability 1), irrespective
of the initial distribution.

Given that the probabilities which represent the dissociation of the com-
plexes, namely k̂−

S , k̂−

NS , k̂−

T , k̂−

NT , are so small, it may be instructive to consider
the limiting case when all of these parameters are set to zero. In that case, the
transition diagram for the Markov chain can be represented schematically by

T ←− S ←− L −→ NS −→ NT, (3.19)

from which it is clear that the chain is reducible in this special case. Indeed, if
the system leaves any state other than one of the ternary complexes (T or NT )
then it can never return there. The transition matrix for this special case has
the upper triangular form

P =













1 − k̂+
S − k̂+

NS k̂+
S k̂+

NS 0 0

0 1 − k̂+
T 0 k̂+

T 0

0 0 1 − k̂+
NT 0 k̂+

NT

0 0 0 1 0
0 0 0 0 1













. (3.20)

We can again solve the vector equation πP = π for the reduced matrix (3.20),
which results in a family of stationary distributions

π1 = 0 (3.21)

π2 = 0

π3 = 0

π4 = q

π5 = 1 − q

Compare this with the stationary distribution we found where the dissociation
probabilities are non-zero; there, all states would tend toward the signalling
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ternary complex state T with a probability π4 ≈ 1. In this case, with the
dissociation probabilities set to zero, we have a one-parameter family of sta-
tionary distributions, with the parameter q such that 0 ≤ q ≤ 1. There are
therefore two possible outcomes for the system, the signalling and nonsignalling
ternary states. The non-uniqueness of the stationary distribution means that
the limiting state of the chain is highly dependent on the initial distribution.

What are the probabilities of reaching either state? Firstly, we can see that
if the system has the initial state X0 = S, then it can only remain in state S

and then (after a finite number of steps, m say) transit to state T , where it will

then remain, and so P (X∞ = T |X0 = S) =
∑∞

m=0 k̂+
T (1− k̂+

T )m = 1. Similarly
P (X∞ = NT |X0 = NS) = 1.

On the other hand, for the initial state X0 = L, at each step the system
can stay in that state with probability (1 − k̂+

S − k̂+
NS), or transit to S with

probability k̂+
S (in which case it will ultimately reach T with probability 1), or

transit to NS with probability k̂+
NS (in which case it will ultimately reach NT ).

Summing over transitions to S after m steps, for each m, gives P (X∞ =

T |X0 = L) =
∑∞

m=0 k̂+
S (1 − k̂+

S − k̂+
NS)m, and an analogous formula holds for

P (X∞ = NT |X0 = L). Hence we see that if the system starts off with an
unbound ligand, so X0 = L, then it can end up in either of the ternary states,
with the limiting probabilities being

P (X∞ = T |X0 = L) =
k̂+

S

(k̂+
S + k̂+

NS)
= q ≈ 0.840465, (3.22)

P (X∞ = NT |X0 = L) =
k̂+

NS

(k̂+
S + k̂+

NS)
= 1 − q ≈ 0.159535. (3.23)

What observations can we make from this analysis? It seems that the disso-
ciation probabilities, despite their insignificant size relative to the association
probabilities, play an essential role in the dynamics of the IL-1β network. With-
out the dissociation probabilities, we have two possible final outcomes for the
system, the signalling and nonsignalling ternary complexes T and NT ; how-
ever, with the dissociation probabilities greater than zero, the probability of the
Markov process arriving at the signalling ternary complex T is π4 ≈ 1.

3.2 Stochastic model of IL-1 network including
receptor antagonist

We examine the effects of the interleukin-1 receptor antagonist (IL-1Ra) on
the dynamics of the IL-1β network. The receptor antagonist, the properties of
which have been discussed in the introductory chapter (see chapter 1), is capable
of binding to both the type-I and type-II receptors, and therefore blocking
IL-1β from binding to the signalling receptor. This sections examines IL-1Ra
inhibition of the signalling process.

3.2.1 Description of the system

As in section 3.1 we will exclude both the receptor types and receptor accessory
proteins from explicit analysis, assuming that there are resources available to
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k̄Lk̄S

k̄T

k̄NS

k̄NT

k̂+
S

k̂+
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k̂+
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k̂+
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k̂−
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Figure 3.3: State transition diagram for IL-1β network including the receptor antagonist,
where L is IL-1β, R is IL-1Ra, S is the signalling binary complex, SR is the complex formed by
IL-1Ra and the type-I receptor, NS is the nonsignalling binary complex, NSR the binary com-
plex formed by IL-1Ra and the type-II receptor, T is the signalling ternary complex, TR is the
equivalent ternary complex containing the receptor antagonist, NT the nonsignalling ternary
complex, and NTR its IL-1Ra counterpart. Note that the state transition diagram consists
of two separate systems; this is the case since we are considering an unconstrained supply of
receptors and receptor accessory proteins. Probabilities are derived from the association and
dissociation rates k̂±

u ..
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form complexes. This is a not unreasonable assumption, as we have seen, and
allows us to reduce the complexity of the stochastic matrix.

We will use the following notation. R,SR.NSR, TR,NTR are, respectively:
the receptor antagonist (R), the binary complex formed by the type-I recep-
tor and IL-1Ra (SR), the binary complex formed by the type-II receptor and
IL-1Ra (NSR), the ternary complex formed by the complex SR and the re-
ceptor accessory (TR), and the ternary complex formed by the complex NSR

and the receptor accessory (NTR). All other entries are as given in Section
3.1 Table 3.3, but are given here for completeness: L, unbound ligand (IL-
1β); S, signalling binary; NS, nonsignalling binary; T , signalling ternary; NT ,
nonsignalling ternary.

The association and dissociation probabilities are represented, for example,
by k̂+

R , which is the association probability between IL-1Ra and the type-I re-
ceptor, and k̄S the probability of the signalling binary complex remaining in the
same state. k̂+

R , k̂+
NR, · · · are as given in Table 3.6.

The system we wish to represent, equation (3.25), is shown in the state tran-
sition diagram given in Figure (3.3). Notice from the figure that the transition
diagram appears to consist of two separate systems. If a ligand is in state L (a
unit of IL-1β) then it subsequently stays in the upper part of this diagram. If a
ligand is in state R (a unit of IL-1Ra), then it subsequently stays in the lower
part of the diagram. However, an arbitrary free ligand may be of type L or type
R with some probability q, depending on how the system is stimulated.

The diagonal entries k̄U in equation (3.25) give the probability that the
system remains in that state; for example, the probability k̄R is the probability
that the receptor antagonist does not bind to one of the receptors. This is made
explicit in the matrix of transition probabilities given in equation (3.26). We
know that, for example, the probability of IL-1Ra remaining in the same state
is k̄L = 1− (k̂+

S + k̂+
NS), and in general it can be seen that the sum of the entries

of each row is 1, and so P is a stochastic matrix.
The association and dissociation constants are transformed to probabilities,

as before, using:

Unit

ml
= 5.9 × 10−13 M (3.24)

with further amplification of the probabilities to make processing of the stochas-
tic matrix computationally tractable. Note that this uses the same conversion
as used previously, based on the international unit for IL-1β. Since IL-1Ra is
of a similar size to IL-1β, both approximately 17 kDa, and there is no agreed
international unit, we use the conversion factor as a basis for comparison. As-
sociation and dissociation rates are as given in the literature (51), (95).
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P̄ =


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
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













L S NS T NT R SR NSR TR NTR

L k̄L k̂+
S k̂+

NS 0 0 0 0 0 0 0

S k̂−

S k̄S 0 k̂+
T 0 0 0 0 0 0

NS k̂−

NS 0 k̄NS 0 k̂+
NT 0 0 0 0 0

T 0 k̂−

T 0 k̄T 0 0 0 0 0 0

NT 0 0 k̂−

NT 0 k̄NT 0 0 0 0 0

R 0 0 0 0 0 k̄R k̂+
SR k̂+

NSR 0 0

SR 0 0 0 0 0 k̂−

SR k̄SR 0 k̂+
TR 0

NSR 0 0 0 0 0 k̂−

NSR 0 k̄NSR 0 k̂+
NTR

TR 0 0 0 0 0 0 k̂−

TR 0 k̄TR 0

NTR 0 0 0 0 0 0 0 k̂−

NTR 0 k̄NTR













































(3.25)
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
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Table 3.5: Association/dissociation rates: the association and dissociation rates of the
signalling and nonsignalling complexes of the receptor antagonist, where SR is the signalling
binary and NSR the nonsignalling binary.

Agent Binds Assoc. (M−1s−1) Dissoc. (s−1)
IL-1RI1 IL-1Ra 4.3 × 106 1.25 × 10−4

SR 1 IL-1RAcP 4.3 × 106 1.25 × 10−4

IL-1RII 2 IL-1Ra 2.0 × 106 5.44 × 10−4

NSR 2 IL-1RAcP 1.73 × 106 5.41 × 10−4

1 Source: (37), (4), (24) 2 Source: (95), (4), (24)

Table 3.6: Probabilities P(X) such that k̂±
u ∈ [0, 1] derived from association and dissociation

rates k±
u given in table 3.5, after applying the conversion factor given by equation (3.24).

Antagonist association probabilities

Complex Symbol P(X)

Signalling binary k̂+
SR 2.54 × 10−6

Nonsignalling binary k̂+
NSR 1.18 × 10−6

Signalling ternary k̂+
TR 2.54 × 10−6

Nonsignalling ternary k̂+
NTR 1.02 × 10−6

Antagonist dissociation probabilities

Complex Symbol P(X)

Signalling binary k̂−

SR 7.38 × 10−17

Nonsignalling binary k̂−

NSR 3.21 × 10−16

Signalling ternary k̂−

TR 7.38 × 10−17

Nonsignalling ternary k̂−

NTR 3.20 × 10−16
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3.2.2 Markov chain model

We can experiment again to investigate the behaviour of the system in the pres-
ence of IL-1Ra, as in Section (3.1.1). Notice that the number of states in the
model has expanded: once again, for completeness, we have the subnetwork
formed by IL-1β (L); S, signalling binary; NS, nonsignalling binary; T , sig-
nalling ternary; NT , nonsignalling ternary; and the subnetwork formed by the
receptor antagonist (R), the binary complex formed by the type-I receptor and
IL-1Ra (SR), the binary complex formed by the type-II receptor and IL-1Ra
(NSR), the ternary complex formed by the complex SR and the receptor ac-
cessory (TR), and the ternary complex formed by the complex NSR and the
receptor accessory (NTR).

We would like to know how the system evolves in the presence of the re-
ceptor antagonist. In particular, does the receptor antagonist slow the average
time taken to form ternary complexes? To investigate this question, we could
modify the experimental protocol used in Section (3.1.2), including the receptor
antagonist.

The system will have two initial states, corresponding to IL-1β and IL-1Ra.
One way of thinking about this is that the ligand is in a superposition that
remains undetermined until an association event takes place.

The protocol for the experiment is as follows: we suppose that the system
is currently in state i, and we wish to consider which state it goes to next. The
probability distribution which determines this is

pi = {πi1, πi2,K, πim} (3.27)

where m is the number of possible states and pij is the transition probability
from state i to state j. Then

∑m
j=1 pij = 1 for each i. State changes occur using

the criteria given in section (3.2.3).
The termination criteria of the trial are as follows: if a signalling ternary

complex is formed, the experimental trial will terminate, reporting the number
of timesteps taken to reach this state; if the receptor antagonist forms a binary
or ternary complex, then the trial will continue until either a dissociation event
occurs, or the maximum number of timesteps is reached. The experiment will
describe the length of the mean sample path in the presence of the receptor
antagonist.

The experiment can best be described in the following way. Imagine that
there is a state called U for unbound ligand, which is the superposition of L and
R, with transition probabilities 1 − q : U → L and q : U → R, where q is the
proportion of IL-1Ra units, and 1 − q is the proportion of IL-1β units in the
extracellular concentration of ligand. The state transition diagram is given in
figure 3.4, although ternary complex transitions are omitted.

When a ligand dissociates, it returns to the extracellular pool, which contains
both IL-1β and IL-1Ra. At the next association event, a ligand is chosen from
this at random, so that it is of type L with probability 1 − q and of type R

with probability q. Therefore there is in effect only one unbound ligand state,
U , with four possible association event transitions
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Figure 3.4: State transition diagram for IL-1β network including the receptor antagonist,
where U is the unbound ligand state, L is IL-1β, R is IL-1Ra, S is the signalling binary complex,
SR is the complex formed by IL-1Ra and the type-I receptor, NS is the nonsignalling binary
complex, NSR the binary complex formed by IL-1Ra and the type-II receptor. Transitions to
and from ternary complexes are not shown.

U
(1 − q) k̂+

S

GGGGGGGGGGGGGGGA S (3.28)

U
(1 − q) k̂+

NS

GGGGGGGGGGGGGGGGA NS (3.29)

U
qk̂+

SR

GGGGGGGGGA SR (3.30)

U
qk̂+

NSR

GGGGGGGGGGGA NSR (3.31)

The probability that there is no transition out of state U is therefore

k̄U = 1 −
(

(1 − q)
(

k̂+
S + k̂+

NS

)

+ q
(

k̂+
SR + k̂+

NSR

))

(3.32)

We can also add nonsignalling binary and ternary complex formation in a second
experiment, so that we can find the effect of two inhibitors on the length of the
average sample path. The system will consist of two initial states, as described
above, consisting of IL-1β and IL-1Ra. Two association events are available to
each ligand to form a binary complex, and there are two further ternary complex
association events. The experimental trial will terminate if the system reaches
the signalling ternary state; otherwise, the system will continue until it reaches
the maximum number of iterations, to provide for dissociation of the complex.

The results from the experiments are given in Table (3.7). The first entry
gives us the results for the average sample path taken to form a signalling
ternary complex, where the system consists of IL-1β, the signalling binary, and
the signalling ternary. The second shows the longer average sample path where
the nonsignalling binary and ternary states are introduced into the system. The
third shows the effect of the receptor antagonist, without the type-II receptor,
and the fourth shows the effect of both antagonist and type-II receptor on
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Table 3.7: Mean sample path length from experiments: effect of the type-II receptor and
receptor antagonist. The first experiment shows the average sample path without the type-II
receptor or receptor antagonist, the second with the type-II receptor present, the third with
the receptor antagonist present and the type-II receptor absent, the fourth with both the
antagonist and the type-II receptor present. The average sample path clearly increases.

Type-II IL-1Ra Mean

N N 363.96
Y N 3713.96
N Y 6455.14
Y Y 7811.12

the system. From these experiments, it seems reasonable to conclude that the
receptor antagonist increases the average sample path taken to form signalling
ternary complexes. IL-1Ra can be said to perform a similar role to the type-II
receptor in the IL-1β network. Furthermore, both the antagonist and the type-
II receptor appear to have a synergistic effect on the network, acting in concert
to slow the formation of signalling ternaries and thus signalling transduction.

3.2.3 Long term behaviour of the system

We can find the stationary distribution by solving the equation πP = π for
the stochastic matrix P such that πj > 0. We can solve the equation πP =
π algebraically. The solutions are given in equations (3.33)-(3.42). Solving
numerically, we find once again that the signalling ternary complex formed by
IL-1β is approximately equal to one. In the presence of the receptor antagonist,
we have a robust solution π4 ≈ 1, which corresponds to the signalling ternary
complex; the next largest, π8, corresponds to the antagonist ternary complex.
We can conclude from this that the stationary distribution of the stochastic
matrix P is the signalling ternary complex.



C
H

A
P

T
E

R
3
.

T
H

E
U

N
C

O
N

S
T

R
A

IN
E

D
R

E
C

E
P

T
O

R
M

O
D

E
L

67
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π8 = ψ (3.40)
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The system described in the previous section was investigated for values of
U ∈ [100, 500, 1000]; we vary q between zero and one. The number of iterations
is set to 5×108; this a large and computationally expensive number of iterations,
intended to show the long term behaviour of the system, and is not intended to
be biologically realistic. For each value of U , we have 100 experimental trials.
The association and dissociation probabilities given in table (3.6) are used, and
the states are as given in figure (3.4).

At each iteration i, the simulation generates a random number and compares
it with the probabilities given in equations (3.28) - (3.32), determining if a state
change will occur. The state of the unbound ligand, whether it is IL-1β or
IL-1Ra, is chosen at this point by comparing a second random number to q. A
third random number is generated to determine which state change the ligand
will undergo, using the criteria given in section (3.2.3).

The state change then occurs, if it is possible - for instance, a signalling
ternary state change can only occur if a signalling binary is present in the
system.

3.3 Varying q

The value of q will clearly have a major effect on the dynamics of the system.
An experiment was designed to investigate these dynamics. The system starts
with a single ligand in the superposition state, as described previously. The
system has a single parameter, the value of q, such that 0.01 ≤ q ≤ 0.99, and
the increment δ = 0.01 is applied to q after N = 1000 trials. Each trial was
given a large number of iterations n = 5 × 105 before termination. Notice
that this is not necessarily a biologically feasible number if thought of in terms
of time steps, for example if each iteration represents a second; however, this
is not the intention of the experiment, since it is of more interest to give the
system as many opportunities to change state with the low probabilities which
certain values of q may engender. It is worth noting that the simulation took far
fewer iterations to reach a ternary state, and that none of the ligand remained
unbound for n iterations.

The system determines the state of the ligand in the following way: it gen-
erates a random number d and compares it to the q parameter. If d > q, the
ligand is assigned to be a protein of IL-1β, and if not, a receptor antagonist. The
system then goes through each iteration, generating a random number, and com-
paring this to the probabilities of each state change, as given in section (3.2.3).
The probabilities, as noted, change with the value of q. The system generally
terminates long before the maximum number of iterations n has been reached,
as would be expected from the mean Markov chain length of the simulations in
section (3.2).

After the ligand changes from its superposition to a defined state, only ap-
propriate state changes are available to it. If a change in state occurs, the
simulation immediately prints out this information. The final state of the sys-
tem is printed just before the simulation terminates, which allows us to capture
those trials where the ligand remains unbound.
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Figure 3.5: Ternary formation for IL-1β and IL-1Ra: mean sample path length. Only the
Type-I receptor is available for binding. The signalling ternary complexes, T , are given in
red, and the antagonist-bound ternaries, TR, are given in orange.
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10 000

15 000

20 000

n

q

T
TR

3.3.1 Varying q: results

The simulations initially excised the Type-II receptor from the system, so that
the effects of the receptor antagonist on IL-1β binding to Type-I can be seen
without the additional effects of the nonsignalling receptor. The effect of q on
the mean sample path length and the standard deviation can be seen in Table
(3.8) for both ligands. The simulation starts with q = 0.01 and ends with
q = 0.99; both start points and end points are given in the table, however, for
reasons of brevity, some of the data is elided from the table.

The table shows that for increasing q, the mean Markov chain length in-
creases for IL-1β-bound ternary complexes, and decreases for IL-1Ra-bound
ternary complexes. The effect of IL-1Ra can be seen in the increased mean
sample path, which is to be expected from the results given in section (3.2.2),
Table (3.7). Increasing q decreases the number of iterations taken to form an
IL-1Ra-bound ternary complex. Standard deviations σ for both type of com-
plexes are relatively large, which again accords with the results given in section
(3.2.2).

To summarise, as the probability of the determination of the ligand super-
position U becoming IL-1β becomes less, the mean path length to signalling
ternary complex formation becomes much greater, and IL-1Ra-bound ternary
complex formation takes on average much fewer iterations.

Figure (3.5) shows the mean sample paths of the IL-1β- and antagonist-
bound ternary complexes, showing the inhibitory effect of q on signalling com-
plex formation. Figure (3.6) gives the results of ternary formation, for varying
q, including the Type-II nonsignalling receptor.

The mean Markov chain length for IL-1β-bound ternary complexes is given
in figure (3.6(a)). Recall that the simulation will terminate when it reaches a
ternary complex, either signalling or antagonistic. Dividing by the number of
trials N gives the mean number of iterations, or the mean Markov chain length,
for the value of n for each value of q. The signalling ternary T , given in red, has
an initially short Markov chain length, as does the nonsignalling ternary NT ;
however, the nonsignalling ternary has a longer Markov chain length than the
signalling ternary, since it has a lower probability of association.



CHAPTER 3. THE UNCONSTRAINED RECEPTOR MODEL 70

Table 3.8: The mean sample path length and standard deviation taken to form a ternary
complex for increasing q. Only the Type-I receptor is available to the ligand. The results are
given for 0.01 ≤ q ≤ 0.99, however some data has been elided for brevity. Both the mean
Markov chain length and the standard deviation increase on increasing q; notice the large
standard deviation σ, which is similar to the results given in Table (3.7) in Section (3.2.2).
Each experiment ran for N = 1000 trials.

IL-1β ternaries

q Mean σ

0.01 460.54 327.91
0.10 489.00 497.83
0.20 542.13 382.52
0.30 603.79 432.09
0.40 741.54 520.33
0.50 866.14 603.93
0.60 1102.33 820.76
0.70 1369.71 1026.42
0.80 2199.96 2250.12
0.90 4567.42 3044.91
0.99 40216.55 25890.93

IL-1Ra ternaries

q Mean σ

0.01 217033.83 116674.52
0.10 25245.14 25553.04
0.20 13992.41 10923.43
0.30 8741.16 6378.66
0.40 6445.02 5020.79
0.50 4995.19 4161.98
0.60 4359.01 3379.97
0.70 3631.61 2984.28
0.80 3240.03 3252.19
0.90 2814.62 2312.00
0.99 2749.94 2044.33



CHAPTER 3. THE UNCONSTRAINED RECEPTOR MODEL 71

Table 3.9: The mean sample path length and standard deviation taken to form a ternary
complex for increasing q. Both receptor types are available to the ligand. The results are
given for 0.01 ≤ q ≤ 0.99. Each experiment ran for N = 1000 trials.

IL-1β-Type-I ternaries IL-1β-Type-II ternaries

q Mean σ q Mean σ

0.01 648.27 890.10 0.01 2885.68 3207.06
0.1 716.29 676.15 0.1 2988.17 3630.40
0.2 754.51 1070.19 0.2 3475.86 3649.50
0.3 904.94 1222.99 0.3 4014.20 4430.14
0.4 1258.55 1590.91 0.4 4416.97 5265.09
0.5 1331.34 1907.90 0.5 4979.98 6606.21
0.6 1574.13 2135.48 0.6 7671.85 8235.41
0.7 2239.37 2908.04 0.7 6927.02 10032.39
0.8 3458.06 3137.40 0.8 16899.12 14667.24
0.9 4633.86 8564.09 0.9 23025.96 32150.83

0.99 74907.14 103813.92 N/A N/A N/A

IL-1Ra-Type-I ternaries IL-1Ra-Type-II ternaries

q Mean σ q Mean σ

0.01 72118.94 119477.71 0.01 121111.00 160494.00
0.1 16749.50 13784.86 0.1 81394.92 65059.96
0.2 9506.58 11162.66 0.2 27017.45 33680.04
0.3 7625.03 8636.01 0.3 18940.65 20536.23
0.4 5558.49 6301.98 0.4 17206.61 15669.32
0.5 4292.39 4987.36 0.5 12771.29 13322.85
0.6 3611.62 4032.81 0.6 10920.79 11525.91
0.7 2818.33 3332.33 0.7 9528.51 9405.60
0.8 2579.12 2464.02 0.8 7104.74 7780.27
0.9 2051.89 2589.29 0.9 6123.82 6932.59

0.99 2088.73 2623.58 0.99 5741.87 6853.09
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Figure 3.6: Ternary complex formation with two ligands: IL-1β and IL-1Ra. Figure 3.6(a)
shows ternary complexes T bound to IL-1β, where the signalling ternary complex is given in
red, and the nonsignalling ternary complex NT is given in blue. Initially, the Markov chain
length has a low mean number of iterations. The chain length for both ternary complexes
increases on increasing values of q. Figure 3.6(b) shows ternary formation for IL-1Ra, where
the Type-I bound complex TR is given in orange, and the Type-II bound complex is given in
yellow. The Markov chain length is initially high and decreases on increasing n. Figure 3.6(c)
shows all the complexes for comparison purposes.
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The mean number of iterations n taken to form either complex again in-
creases with increasing q. Despite the figure showing mean Markov chain
lengths, the plot tends to fluctuate, particularly the nonsignalling ternary; the
formation of nonsignalling ternaries is a less frequent event, due to its lower
probability, and the simulation prints out any change of state as soon as it hap-
pens to the system, which will occur at an unpredictable number of timesteps,
accounting for the stochastic appearance of the plot.

Figure (3.6(b)) gives the antagonist-bound ternary complexes, those bound
to both Type-I and Type-II receptors and the receptor accessory protein. The
IL-1Ra-Type-I-IL-1RAcP ternary TR is given in the figure in orange, and the
Type-II-based ternary NTR is given in yellow. The formation of NTR takes a
higher number of iterations than formation of TR, as with the signalling and
nonsignalling ternaries T and NT . Similarly, formation of antagonist-bound
complexes take longer than IL-1β-bound complexes.

Comparing Table (3.8) and Table (3.9), we can confirm that, as found pre-
viously in Section (3.2.2), the receptor antagonist and the Type-II receptor act
to slow formation of signalling ternaries. There is therefore a synergy between
the Type-II receptor and the receptor antagonist, enhancing the inhibition of
IL-1β.

Figure (3.6) shows that there are two effects on binary and ternary complex
formation. The first is to slow the formation of signalling complexes; the second
is to block the formation of signalling complexes. If a Type-I receptor is con-
sumed by its formation with a receptor antagonist, it is not available for binding
IL-1β. Similarly, an antagonist ternary complex will make a Type-I receptor and
a receptor accessory protein unavailable for binding. This means that the inter-
action between the Type-II receptor and the antagonist significantly decrease
the mean number of iterations taken to form a signalling ternary complex, and
therefore the interaction between the Type-II receptor and the antagonist are
not noticeably mutually inhibitory.

The antagonist can go on to form antagonist ternary complexes, where it
has consumed a receptor accessory protein. Each receptor accessory consumed
is one that is not available for the formation of a signalling ternary complex,
and therefore impedes a possible signal transduction event.

To summarise, the following effects have been found:

• IL-1Ra without Type-II:

– slows signalling complex formation: the formation of signalling com-
plexes is noticeably slower for higher values of q

– sequesters Type-I receptors: prevents formation of signalling by con-
suming Type-I receptors, making them unavailable for signalling com-
plex formation

– sequesters receptor accessory protein: prevents formation of signalling
by consuming receptor accessory proteins, making them unavailable
for signalling complex formation

• IL-1Ra with Type-II:

– further slows signalling complex formation: a synergistic interaction
between the antagonist and the nonsignalling receptor slows sig-
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nalling complex formation, confirming what was shown in section
(3.2), with increasing q

– sequesters both Type-I receptor and receptor accessory protein: an-
tagonistic ternaries consume the receptor accessory protein, therefore
impeding formation of signalling ternary complexes.

3.4 Discussion

Two stochastic models of the IL-1β network have been presented, investigating
the respective roles of the type-II receptor and the receptor antagonist. The
behaviour of the Markov processes have been described both computationally
and analytically. IL-1β is a very active cytokine, requiring only tens of recep-
tors to invoke a cellular response. Many inhibitory control mechanisms have
evolved alongside the IL-1β network, possibly due to its potency (29). Two in-
hibitory control mechanisms, the type-II nonsignalling receptor and the receptor
antagonist, have been modelled in the stochastic models analysed above.

It was found that the model including type-II receptor has a unique station-
ary distribution in which the system occupies the ternary signalling complex
with probability close to one. Given the relative size of the association and dis-
sociation rates of the type-I and type-II receptors, this is perhaps unsurprising,
since IL-1β is a fundamentally important cytokine. This has implications for
the biology of the network. The potency of IL-1β is such that, without some
form of inhibition, it could potentially cause considerable damage.

It has been argued that the type-II receptor acts as a decoy, or sink, for
IL-1β (15), by absorbing any of it that has not yet bound to type-I receptors.
However, the Markov chain model, as described in Section (3.1.2), has shown
that the type-II receptor is not an effective competitor for IL-1β, or for receptor
accessory protein. Rather, its presence acts more to delay the network going
to the signalling ternary complex state, if the experimental protocol allows the
possibility of dissociation.

The modelled network exhibited a stationary distribution, but could a bi-

ological system be said to have an equilibrium? This is a difficult question,
and not one that could easily be addressed here, but certainly a chronic inflam-
matory disease such as rheumatoid arthritis appears to have an equilibrium,
sustained by a low, but persistent, level of stimulus. If the extracellular IL-1β
stimulus is sustained at a constant level, then the system will have time to reach
equilibrium. However, if the stimulus is transient, it may not. Since the type-II
receptor acts to delay passage to the signalling state, its function could be to
protect the cell from activation by transient IL-1 stimulation.

The dissociation rates of the system are extremely small, relative to the as-
sociation rates. When the dissociation rates were set to zero, an exploration of
the Markov chain behaviour revealed that, without the possibility of dissocia-
tion, the system no longer has a unique stationary distribution. It appears that
the dissociation rates, despite their apparent numerical insignificance, have a
significant role to play in the dynamics of the IL-1β network.

The receptor antagonist model, as described in Section (3.2.1) and modelled
in Section (3.2.2), introduced a second ligand into the IL-1β network. The an-
tagonist IL-1Ra binds to both type-I and type-II receptors, and also sequesters
the receptor accessory protein. It could therefore be considered a competitor for
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IL-1β, and an inhibitory influence on the network. Analysis of the stochastic
matrix showed that the signalling ternary complex was, once again, the state
with the highest probability distribution, although the signalling ternary com-
plex formed by the receptor antagonist was the second highest.

In section (3.3.1) we introduced a parameter q, the purpose of which was
to affect the probability of the ligand U being determined randomly as either
IL-1β or IL-1Ra. q varied such that 0.01 ≤ q ≤ 0.99. As q increased, the
mean Markov chain length for the formation of ternary signalling complexes
was found to increase, and antagonist ternary complex mean path length was
found to decrease. From this, and the results in section (3.2.2), it was found
that the presence of the receptor antagonist slows the formation of signalling
complexes, and by sequestering the Type-I receptor and the receptor accessory,
impedes formation of signalling complexes.

Adding the Type-II receptor to the simulation was found to further slow
formation of signalling complexes on increasing q, confirming results in section
(3.2.2). The antagonist and Type-II receptor were found not to be significantly
mutually inhibitory, although some antagonist-Type-II ternary complexes were
formed. Furthermore, antagonist complexes could consume both Type-I recep-
tors and receptor accessory protein, obstructing ongoing signal complex forma-
tion.

The ongoing consumption of receptors and accessories, inhibiting further
signalling ternary complex formation, suggests a further control mechanism.
Imagine a cell that has been subjected to an IL-1β stimulus in the presence
of some injury or infection. It is highly likely that immune system cells or
other inured cells in the immediate neighbourhood would be emitting cytokines,
including IL-1, at random intervals. Sequestration of receptors and accessories
by elements of the network, which do not contribute to signal transduction,
could prevent the cell from being able to respond to further IL-1β. IL-1β is
a very potent chemical, and the consumption of limited resources could have
evolved as a means to limit the physiological response of cells.



Chapter 4

Constrained resources
model

In the previous chapter, we considered a model of the IL-1β network where the
receptors and accessory proteins were not constrained. This chapter considers
the effect of constraining receptors and accessories on system dynamics.

The first Markov chain model consists of IL-1β, Type-I and Type-II recep-
tors, and the receptor accessory, along with subsequent protein products. We
decompose the network into a set of elementary events, and explore the transi-
tion between the various states. This model builds on the work in the previous
chapter, analysing the effect of the Type-II receptor on signal transduction.

The second Markov chain model examines the effect on the formation of
signalling ternary complexes in the presence of the receptor antagonist protein,
IL-1Ra. This entails further event decomposition, since the system has a number
of extra states available to it. Experiments take place both with and without
the Type-II receptor. A further experiment, based on an estimation of the
likely range of receptor and accessory populations on a human cell membrane,
indicates the likely behaviour of the system in the vicinity of a single human
cell.

4.1 IL-1β Markov process: finite receptors and
accessories

The model takes into account the central event of the IL-1β network, binding
of the ligand to the Type-I receptor. The components modelled are: IL-1β,
IL-1RI, IL-1RII, IL-1RAcP, signalling and nonsignalling binary complexes, and
signalling and nonsignalling ternary complexes.

Consider a population consisting of a number N of units, each of which can
be in one of S+1 possible states, indexed by u = 0, 1, . . . , S. If Nu is the number
of units in state u, then N = (N0, . . . , NS) is the population state vector. The
simplex over the set of states S can be given by:

∆[S] =

{

s ∈ (s0, . . . , sS) ∈ R
S+1 : 0 ≤ su ≤ 1, and

S
∑

u=0

su = 1

}

(4.1)

76
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Inside this S-dimensional simplex is the rational lattice:

ΩN = {s ∈ ∆[S] : Nsu = Nu is an integer ∀ u ∈ S} (4.2)

Elements of this set specify the state of the system (at any given time). We
assume that elementary events change the population state, and that each el-
ementary event can take place in an elementary time step. At most, one ele-
mentary event can occur to each population unit in an elementary time step.
If a particular population unit is in some state u, and an elementary event oc-
curs, the state of the unit may change, and therefore the population state will
change: N → N + ε, where the vector representing the change-of-state is given
by ε = (ε0, . . . , εS) and satisfies ε ∈ {0,±1} with

∑

w εw = 0. This ensures that
N , the total number of units in the population, is conserved.

We denote all the possible population state change vectors by the set:

ǫ =

{

ε = (ε0, ε1, . . . , εs) : εu ∈ {0,±1} and
∑

w

εw = 0

}

(4.3)

We will restrict the state changes of the system to allowable elementary events.
It is allowable, for example, for a binary signalling complex to change state to
a ternary signalling complex, but not allowable for a ligand to change state to
a ternary signalling complex. Let E be the set of allowable elementary events
and let it be partitioned in the form:

E =

S
⋃

u=0

Eu (4.4)

which is the disjoint union of events (since the elementary events are mutually
exclusive), so that each elementary event is associated with a particular popu-
lation unit state u. A population unit that is currently in state u can only be
affected by an elementary event in Eu. Also, each set Eu contains an element
signifying a nonevent, ∅u, indicating that nothing happens.

For each elementary event e ∈ Eu, we have:

∑

e∈Eu

p(e|s) = 1 (4.5)

where p(e|s) is the conditional probability that the elementary event e occurs,
conditional on the state of the system being s; the elementary events in Eu ex-
haust all the possible single-step changes of state that can occur to a population
unit in a state u.

We wish to model the major components in membrane-bound binding events
in the IL-1β network, and so need state variables which correspond to these com-
ponents. To simplify, we can use some of the conservation relations introduced
in the differential equations model (see 2.1); these conserved quantities are:

Total number of ligand molecules = LT (4.6)

Total number of Type-I receptors = NR1 (4.7)

Total number of Type-II receptors = NR2 (4.8)

Total number of accessory proteins = NCP (4.9)
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We introduce the state variables:

Number of free ligand molecules = L (4.10)

Number of binary Type-I complexes = C1 (4.11)

Number of binary Type-II complexes = C2 (4.12)

Number of ternary Type-I complexes = T1 (4.13)

Number of ternary Type-II complexes = T2 (4.14)

A further conservation relation for the total number of the various protein
species, or units, in the system LT is given by:

LT = L + C1 + C2 + T1 + T2 (4.15)

The total number of units in the system N = (L,C1, C2, T1, T2), and the corre-
sponding state probability distribution s = N

LT
= (s0, s1, s2, s3, s4). Note that,

as required of a probability distribution, s0 + s1 + s2 + s3 + s4 = 1. We should
also note that:

Free ligand molecules = L (4.16)

= LT − (C1 + C2 + T1 + T2)

Unbound Type-I receptors = NR1 − C1 − T1 (4.17)

Unbound Type-II receptors = NR2 − C2 − T2 (4.18)

Unbound IL-1RAcP = NCP − T1 − T2 (4.19)

The states we shall consider are as follows:

• S0: ligand

• S1: binary signalling complex

• S2: binary nonsignalling complex

• S3: ternary signalling complex

• S4: ternary nonsignalling complex

From this, we have S = 5. A state transition diagram is given in Figure (4.1),
which shows the components we are simulating in the experiments and their
relationship to each other.

4.2 Elementary events

This section details the elementary events which take the system from one state
to the next. Notice that the probabilities utilise the association and dissociation
rates k±

u ; however, in this context rate means probability per unit time, and so
need to be scaled to convert them into probabilities. We choose the scaling so
that they satisfy κk±

u = k̂±
u ∈ [0, 1], which will be described later.
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Figure 4.1: State transition diagram for the IL-1β network, where L is IL-1β, R1 is the
Type-I receptor, R2 is the Type-II receptor, R is the receptor accessory, S is the signalling
binary complex, NS is the nonsignalling binary complex, T is the signalling ternary complex,
and NT the nonsignalling ternary complex.
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4.2.1 E1: Ligand binds to Type-I receptor

Ligand encounters and binds IL-1RI, creating a signalling binary complex. If
the amount of free ligand L = 0, state change cannot occur; neither can it occur
if no free signalling receptor is available.

State transition : (L,C1) → (L − 1, C1 + 1)

Probability : p(E1|s) = k̂+
w (nR1 − s1 − s3) per unit of free ligand

Change vector : ε1 = (−1, 1, 0, 0, 0)

where nR1 = NR1

LT
, and k̂+

w is the association rate expressed as a probability per
unit time.

4.2.2 E2: Ligand binds to Type-II receptor

Ligand encounters and binds IL-1RII, creating a nonsignalling binary complex.
If the amount of free ligand L = 0, or C2 = 0, state change cannot occur.

State transition : (L,C2) → (L − 1, C2 + 1)

Probability : p(E2|s) = k̂+
x (nR2 − s2 − s4) per unit of free ligand

Change vector : ε2 = (−1, 0, 1, 0, 0)

where nR2 = NR2

LT
, and k̂+

x is the association rate expressed as a probability per
unit time.

4.2.3 E3: Signalling binary binds to IL-1RAcP

The signalling binary binds to the receptor accessory protein, creating a sig-
nalling ternary complex. If the amount of signalling binaries C1 = 0, the state
change cannot occur.

State transition : (C1, T1) → (C1 − 1, T1 + 1)

Probability : p(E3|s) = k̂+
y (nCP − s3 − s4)

per unit of Type-I binary complexes

Change vector : ε3 = (0,−1, 0, 1, 0)

where nCP = NCP

LT
, and k̂+

y is the association rate between the binary Type-I
complex and the accessory protein expressed as a probability per unit time.

4.2.4 E4: Nonsignalling binary binds to IL-1RAcP

The nonsignalling binary binds to the receptor accessory protein, creating a
nonsignalling ternary complex. If the amount of nonsignalling binaries C2 = 0,
the state change cannot occur.
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State transition : (C2, T2) → (C2 − 1, T2 + 1)

Probability : p(E4|s) = k̂+
z (nCP − s3 − s4)

per unit of Type-II binary complexes

Change vector : ε4 = (0, 0,−1, 0, 1)

where nCP is as above, and k̂+
z is the association rate between the binary Type-II

complex and the accessory protein expressed as a probability per unit time.

4.2.5 E5: Signalling binary complex dissociates

The signalling binary complex dissociates, yielding an unbound ligand and an
unbound Type-I receptor.

State transition : (L,C1) → (L + 1, C1 − 1)

Probability : p(E5|s) = k̂−
w per unit of Type-I binary complexes

Change vector : ε5 = (1,−1, 0, 0, 0)

4.2.6 E6: Nonsignalling binary complex dissociates

The nonsignalling binary complex dissociates, yielding an unbound ligand and
an unbound Type-II receptor.

State transition : (L,C2) → (L + 1, C2 − 1)

Probability : p(E6|s) = k̂−
x per unit of Type-II binary complexes

Change vector : ε6 = (1, 0,−1, 0, 0)

4.2.7 E7: Signalling ternary complex dissociates

The signalling ternary complex dissociates, creating a signalling binary complex
and a receptor accessory protein.

State transition : (C1, T1) → (C1 + 1, T1 − 1)

Probability : p(E7|s) = k̂−
y per unit of Type-I ternary complexes

Change vector : ε7 = (0, 1, 0,−1, 0)

4.2.8 E8: Nonsignalling ternary complex dissociates

The nonsignalling ternary complex dissociates, creating a nonsignalling binary
complex and a receptor accessory protein.

State transition : (C2, T2) → (C2 + 1, T2 − 1)

Probability : p(E8|s) = k̂−
z per unit of Type-II ternary complexes

Change vector : ε8 = (0, 0, 1, 0,−1)
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4.2.9 Event decomposition

The change-of-state vectors, along with their associated events, are:

E1 : (−1, 1, 0, 0, 0) (4.20)

E2 : (−1, 0, 1, 0, 0) (4.21)

E3 : (0,−1, 0, 1, 0) (4.22)

E4 : (0, 0,−1, 0, 1) (4.23)

E5 : (1,−1, 0, 0, 0) (4.24)

E6 : (1, 0,−1, 0, 0) (4.25)

E7 : (0, 1, 0,−1, 0) (4.26)

E8 : (0, 0, 1, 0,−1) (4.27)

where the vectors are applied to the total number of units in the system N =
(L,C1, C2, T1, T2) such that, for example, the change-of-state vector (−1, 1, 0, 0, 0)
would leave the system with one less ligand and one more signalling binary.

Grouping by the units of the modified quantity:

E0 = {∅0, E1, E2} per unit of free ligand (4.28)

E1 = {∅1, E3, E5} per unit of Type-I binary complexes (4.29)

E2 = {∅2, E4, E6} per unit of Type-II binary complexes (4.30)

E3 = {∅3, E7} per unit of Type-I ternary complexes (4.31)

E4 = {∅4, E8} per unit of Type-II ternary complexes (4.32)

Also:

E0(0, 0, 0, 0, 0) = {∅0}
E0(−1, 1, 0, 0, 0) = {E1} per unit of free ligand

E0(−1, 0, 1, 0, 0) = {E2} per unit of free ligand

E1(0, 0, 0, 0, 0) = {∅1}
E1(0,−1, 0, 1, 0) = {E3} per unit of Type-I binary complexes

E1(1,−1, 0, 0, 0) = {E5} per unit of Type-I binary complexes

E2(0, 0, 0, 0, 0) = {∅2}
E2(0, 0,−1, 0, 1) = {E4} per unit of Type-II binary complexes

E2(1, 0,−1, 0, 0) = {E6} per unit of Type-II binary complexes

E3(0, 0, 0, 0, 0) = {∅3}
E3(0, 1, 0,−1, 0) = {E7} per unit of Type-I ternary complexes

E4(0, 0, 0, 0, 0) = {∅4}
E4(0, 0, 1, 0,−1) = {E8} per unit of Type-II ternary complexes

4.2.10 Updating the system

In this section we will look at algorithms for updating the system. Note that
only certain operations can be applied to the population units when they are



CHAPTER 4. CONSTRAINED RESOURCES MODEL 83

in a certain state. In general, a binary or ternary complex may associate or
dissociate, and a receptor may bind, but some operations are forbidden. For
example, it is obviously impossible for a nonsignalling binary to become a sig-
nalling ternary.

At a systemic level, we have two options for updating the system. One of
these would be sequential updating, whereby the change to a population unit
would be reflected immediately in the state of the rest of the system. The
other, simultaneous updating, would mean that the system state remains the
same until updates have occurred to all the population units, and then applied
as a whole to the rest of the system. The simultaneous update algorithm is
given in algorithm (1); notice that, for brevity, only the association events are
shown in the algorithm. The notation is due to the pseudocode convention of
the widely used algorithmic package available with the text processing system
LATEX.

The simultaneous algorithm begins by making a copy of the current system
state, where the state vector after updating is Ñ. The algorithm loops over the
population units in the order of the units to which state changes are applicable,
so that association of signalling and nonsignalling binary complexes takes place
on the units of free ligand. A randomly-generated number in the range x ∈ [0, 1]
is compared to the various state change probabilities by the appropriate function
invocation, for example probabilitySignallingBinaryAssociation(). If the
random variable x is less than the probability p, a change is made, such as the
formation of a signalling binary complex; if not, the algorithm goes on to the
next state change for this unit.

If the state change is applicable to the currently-selected population unit,
then the population unit is updated with the state change; this prevents illegal
operations, for example, a binary signalling complex from binding another lig-
and, or becoming a ternary nonsignalling complex. Finally, once the population
units have been iterated over, the modified system is copied en masse to the
population unit vector (Ñ ⇐ N).

We can now perform an experiment which looks at the role of the Type-II
receptor in a Markov chain model where the resources, of receptors and receptor
accessories, are constrained. Previous experiments suggest that rather a large
number of Type-II receptors would be needed to form nonsignalling ternary
complexes. Subsequently, we introduce a parameter q which will be used to
multiply the size of the population of Type-II receptors in the system. q will
be in the range 0 ≤ q ≤ 20. The number of Type-II receptors will initially be
equal to Type-I, but for q = 0 the receptors in the system will consist of only
signalling receptors. The number of Type-II receptors will gradually increase
until they are more than an order of magnitude greater in number than Type-I
receptors.

Figure (4.2) shows the behaviour of the IL-1β network with constrained
receptors and accessories. For low values of q, where there are very few Type-II
receptors in the system, signalling ternaries form without constraint. As q, and
the size of the Type-II population, increase, nonsignalling ternaries begin to
increase until they reach parity with signalling ternaries.

After this point, nonsignalling ternaries form more frequently than their
signalling counterparts, and the Type-II receptor would have a significant in-
hibitory effect on signal transduction. Also, at this point, the constrained supply
of receptor accessory would have been consumed mainly by nonsignalling binary
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Ñ ⇐ copySystemState(N)
L ⇐ getLigand(Ñ) { get the free ligand state variable}
R1 ⇐ getSignallingReceptors(Ñ) { get the free ligand Type-I receptor state
variable}
R2 ⇐ getNonsignallingReceptors(Ñ) { ... Type-II receptors }
C1 ⇐ getSignallingComplexes(Ñ) { ... signalling binaries }
C2 ⇐ getNonsignallingComplexes(Ñ) { ... nonsignalling binaries }
RAcP ⇐ getReceptorAccessory(Ñ) {free receptor accessory state variable}
T1 ⇐ getSignallingTernaries(Ñ) {signalling ternaries (for possible dissocia-
tion event)}
T2 ⇐ getNonsignallingTernaries(Ñ) {nonsignalling ternaries (for possible
dissociation event)}
for all i such that 0 ≤ i ≤ L do

x ⇐ x ∈ [0, 1] {generate a random number}
p = probabilitySignallingBinaryAssociation()
if x < p then

L ⇐ L − 1 {decrement ligand state variable}
R1 ⇐ R1 − 1 {decrement Type-I receptors}
C1 ⇐ C1 + 1 {increment signalling binary complexes}

end if

x ⇐ x ∈ [0, 1] {get a fresh random number}
p = probabilityNonsignallingBinaryAssociation()
if x < p then

L ⇐ L − 1 {decrement ligand state variable}
R2 ⇐ R2 − 1 {decrement Type-II receptors}
C2 ⇐ C2 + 1 {increment nonsignalling binary complexes}

end if

x ⇐ x ∈ [0, 1] {this class of events works on units of Type-I binaries}
p = probabilitySignallingTernaryAssociation()
if x < p then

C1 ⇐ C1 − 1 {decrement signalling binary}
RAcP ⇐ RAcP − 1 {decrement free receptor accessory}
T1 ⇐ T1 + 1 {increment signalling ternaries}

end if

x ⇐ x ∈ [0, 1] {this class of events works on units of Type-II binaries}
p = probabilityNonsignallingTernaryAssociation()
if x < p then

C2 ⇐ C2 − 1 {decrement nonsignalling binary}
RAcP ⇐ RAcP − 1 {decrement receptor accessory}
T2 ⇐ T2 + 1 {increment nonsignalling ternaries}

end if

end for

N ⇐ copySystemState(Ñ) {copy the changed units back}
Algorithm 1: Simultaneous update method
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Figure 4.2: Ternary complex formation, both signalling and nonsignalling. The Type-I
receptor and receptor accessory are held constant at 100. Signalling complexes T formed
from IL-1β are given in red, and nonsignalling ternaries NT in blue. The number of ternaries
formed is given by n. The parameter q acts as a multiplier of the Type-II receptor population.
Signalling ternaries initially form rapidly, but as q increases, nonsignalling ternaries begin to
dominate; at larger values of q, nonsignalling ternary formation becomes more frequent than
signalling ternary.

and ternary complexes. If we accept some tens of signalling ternaries as suffi-
cient for inducing a physiological response from a cell, a value of q ≈ 10 would
have a substantial inhibitory effect.

4.3 Stochastic model of IL-1β: receptor antago-
nist

In this section, we examine the effects of the interleukin-1 receptor antagonist
on the dynamics of the IL-1β network, by expanding the stochastic system
presented in the previous section.

We can proceed to empirically investigate the behaviour of the system, once
again using stochastic simulation techniques. We develop the stochastic model
by continuing the process given in Section (4.1), considering the additional el-
ements demanded by the inclusion of the receptor antagonist. In the previous
section, we assumed that there were always sufficient pools of receptors and
accessory proteins to form a complex. In this section, we shall limit the number
of receptors and accessory proteins and observe the effect on ternary complex
formation.

Recall that E is the set of allowable elementary events, and let it be parti-
tioned in the form:

E =

S
⋃

u=0

Eu (4.33)

which is the disjoint union of the set of events (since the elementary events are
mutually exclusive), so that each event is associated with a particular population
unit state u. Also, each set Eu contains an element signifying a nonevent, ∅u.
A population unit that is currently in state u can only be affected by those
elementary events in Eu.

Once again, we consider a large population consisting of a large number
N of units, each of which can be in one of S + 1 possible states, indexed by
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S = 0, 1, . . . , S. If Nu is the number of units in a state u, then N = (N0, . . . , Ns)
is the population state vector. The states we shall consider are as follows:

• S0: ligand

• S1: receptor antagonist

• S2: binary signalling complex

• S3: binary nonsignalling complex

• S4: ternary signalling complex

• S5: ternary nonsignalling complex

• S6: IL-1Ra/Type-I binary complex

• S7: IL-1RA/Type-II binary complex

• S8: IL-1Ra/Type-I/RAcP ternary complex

• S9: IL-1Ra/Type-II/RAcP ternary complex

From this, we have S = 10.
Before introducing state variables we make use of some conservation rela-

tions; these conserved quantities are:

Total number of ligand molecules = LT (4.34)

Total number of IL-1β molecules = Lβ (4.35)

Total number of IL-1Ra molecules = LR (4.36)

Total number of Type-I receptors = NR1 (4.37)

Total number of Type-II receptors = NR2 (4.38)

Total number of accessory proteins = NCP (4.39)

We introduce the state variables:

Number of free IL-1β molecules = L (4.40)

Number of free IL-1Ra molecules = R (4.41)

Number of binary Type-I complexes = C1 (4.42)

Number of binary Type-II complexes = C2 (4.43)

Number of ternary Type-I complexes = T1 (4.44)

Number of ternary Type-II complexes = T2 (4.45)

Number of antagonist binary Type-I complexes = C1R (4.46)

Number of antagonist binary Type-II complexes = C2R (4.47)

Number of antagonist ternary Type-I complexes = T1R (4.48)

Number of antagonist ternary Type-II complexes = T2R (4.49)

Further conservation relations for the total ligand in the system LT can be
derived from this:



CHAPTER 4. CONSTRAINED RESOURCES MODEL 87

LT = L + R + C1 + C2 + T1 + T2 + C1R + C2R + T1R + T2R (4.50)

Lβ = L + C1 + C2 + T1 + T2 (4.51)

LR = R + C1R + C2R + T1R + T2R = LT − Lβ (4.52)

The independent variables can be taken as N = (L,R,C1, C2, · · · , T2R), and the
corresponding state probability distribution as s = N

LT
= (s0, s1, · · · , s9). Note

that, as required of a probability distribution, s0 + s1 + s2 + s3 + s4 + s5 + s6 +
s7 + s8 + s9 = 1. We should also note that:

Free ligand molecules = LT − (C1 + C2 + T1 + T2 (4.53)

+C1R + C2R + T1R + T2R)

Free IL-1β molecules = L (4.54)

= Lβ − (C1 + C2 + T1 + T2)

Free IL-1Ra molecules = R (4.55)

= LR − (C1R + C2R + T1R + T2R)

Unbound Type-I receptors = NR1 − (C1 + T1 + C1R + T1R) (4.56)

Unbound Type-II receptors = NR2 − (C2 + T2 + C2R + T2R) (4.57)

Unbound IL-1RAcP = NCP − (T1 + T2 + T1R + T2R) (4.58)

The state transition diagram given in Figure (4.3) shows the relationships
between the various components being modelled. Notice the centrality of both
receptors, and the receptor accessory protein, to the IL-1β network.

4.4 Elementary events

This section details the elementary events which takes the enhanced IL-1Ra
system from one state to the next. Notice that the probabilities utilise the
association and dissociation rates k±

u ; however, these rates must be scaled so

that they satisfy κk±
u = k̂±

u ∈ [0, 1], which will be described later. The previous
set of elementary events, which also apply to this model, are given in Section
(4.2), and so will not be given here.

4.4.1 E9: IL-1Ra binds to Type-I receptor

A particle of IL-1Ra encounters and binds to IL-1RI, creating a binary complex.
If the amount of free receptor antagonist R = 0, the state change cannot occur.

State transition : (R,C1R) → (R − 1, C1R + 1)

Probability : p(E9|s) = k̂+
raw(nR1 − s2 − s4 − s6 − s8) per unit of free IL-1Ra

Change vector : ε9 = (0,−1, 0, 0, 0, 0, 1, 0, 0, 0)

where nR1 = NR1

LT
, and k̂+

raw is the association rate expressed as a probability
per unit time.
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Figure 4.3: State transition diagram for IL-1β network, where L is IL-1β, R1 is the Type-I
receptor, R2 is the Type-II receptor, R is the receptor accessory, S is the signalling binary
complex, NS is the nonsignalling binary complex, T is the signalling ternary complex, NT the
nonsignalling ternary complex, RA is the receptor antagonist, SR is the signalling binary (an-
tagonist) complex, NSR is the nonsignalling binary (antagonist) complex, TR is the signalling
ternary (antagonist) complex, and NTR the nonsignalling ternary (antagonist) complex.
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4.4.2 E10: IL-1Ra binds to Type-II receptor

The receptor antagonist ligand encounters and binds to IL-1RII, creating a
binary complex. If the amount of free ligand R = 0, the state change cannot
occur.

State transition : (R,C2R) → (R − 1, C2R + 1)

Probability : p(E10|s) = k̂+
rax(nR2 − s3 − s5 − s7 − s9) per unit of free IL-1Ra

Change vector : ε10 = (0,−1, 0, 0, 0, 0, 0, 1, 0, 0)

where nR2 = NR2

LT
, and k̂+

rax is the association rate expressed as a probability
per unit time.

4.4.3 E11: IL-1Ra/Type-I binary binds to IL-1RAcP

The IL-1Ra/Type-I binary binds to the receptor accessory protein, creating a IL-
1Ra/Type-I/RAcP ternary complex. If the amount of IL-1Ra/Type-I binaries
C1R = 0, the state change cannot occur.

State transition : (C1R, T1R) → (C1R − 1, T1R + 1)

Probability : p(E11|s) = k̂+
ray(ncp − s3 − s4)

per unit of IL-1Ra/Type-I binary complexes

Change vector : ε11 = (0, 0, 0, 0, 0, 0,−1, 0, 1, 0)

where nCP = NCP

LT
, and k̂+

ray is the association rate between the antagonist/Type-
I complex and the accessory protein expressed as a probability per unit time.

4.4.4 E12: IL-1Ra/Type-II binary binds to IL-1RAcP

The IL-1Ra/Type-II binary binds to the receptor accessory protein, creating
a IL-1Ra/Type-II/RAcP ternary complex. If the amount of IL-1Ra/Type-II
binaries C2R = 0, the state change cannot occur.

State transition : (C2R, T2R) → (C2R − 1, T2R + 1)

Probability : p(E12|s) = k̂+
raz(ncp − s3 − s5 − s8 − s9)

per unit of IL-1Ra/Type-II binary complexes

Change vector : ε12 = (0, 0, 0, 0, 0, 0, 0,−1, 0, 1)

where nCP is as above, and k̂+
raz is the association rate between the IL-1Ra/Type-

II complex and the accessory protein expressed as a probability per unit time.

4.4.5 E13: IL-1Ra/Type-I binary complex dissociates

The IL-1Ra/Type-I binary complex dissociates, yielding an unbound receptor
antagonist and an unbound Type-I receptor.
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State transition : (R,C1R) → (R + 1, C1R − 1)

Probability : p(E13|s) = k̂−
raw per unit of IL-1Ra/Type-I binary complexes

Change vector : ε13 = (0, 1, 0, 0, 0, 0,−1, 0, 0, 0)

4.4.6 E14: IL-1Ra/Type-II binary complex dissociates

The IL-1Ra/Type-II binary complex dissociates, yielding an unbound receptor
antagonist and an unbound Type-II receptor.

State transition : (R,C2R) → (R + 1, C2R − 1)

Probability : p(E14|s) = k̂−
rax per unit of IL-1Ra/Type-II binary complexes

Change vector : ε14 = (0, 1, 0, 0, 0, 0, 0,−1, 0, 0)

4.4.7 E15: IL-1Ra/Type-I/RAcP ternary complex disso-
ciates

The IL-1Ra/Type-I/RAcP ternary complex dissociates, creating a IL-1Ra/Type-
I binary complex and a receptor accessory protein.

State transition : (C1R, T1R) → (C1R + 1, T1R − 1)

Probability : p(E15|s) = k̂−
ray per unit of IL-1Ra/Type-I/RAcP ternary complexes

Change vector : ε15 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0)

4.4.8 E16: IL-1Ra/Type-II/RAcP ternary complex disso-
ciates

The IL-1Ra/Type-II/RAcP ternary complex dissociates, creating a IL-1Ra/Type-
II binary complex and a receptor accessory protein.

State transition : (C2R, T2R) → (C2R + 1, T2R − 1)

Probability : p(E16|s) = k̂−
ray per unit of IL-1Ra/Type-II/RAcP ternary complexes

Change vector : ε16 = (0, 0, 0, 0, 0, 0, 0, 1, 0,−1)

4.4.9 Event decomposition

The change-of-state vectors, including those adapted from the stochastic model
without the receptor antagonist (see ...),along with their associated events, are:
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E1 : (−1, 0, 1, 0, 0, 0, 0, 0, 0, 0) (4.59)

E2 : (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0) (4.60)

E3 : (0, 0,−1, 0, 1, 0, 0, 0, 0, 0) (4.61)

E4 : (0, 0, 0,−1, 0, 1, 0, 0, 0, 0) (4.62)

E5 : (1, 0,−1, 0, 0, 0, 0, 0, 0, 0) (4.63)

E6 : (1, 0, 0,−1, 0, 0, 0, 0, 0, 0) (4.64)

E7 : (0, 0, 1, 0,−1, 0, 0, 0, 0, 0) (4.65)

E8 : (0, 0, 0, 1, 0,−1, 0, 0, 0, 0) (4.66)

E9 : (0,−1, 0, 0, 0, 0, 1, 0, 0, 0) (4.67)

E10 : (0,−1, 0, 0, 0, 0, 0, 1, 0, 0) (4.68)

E11 : (0, 0, 0, 0, 0, 0,−1, 0, 1, 0) (4.69)

E12 : (0, 0, 0, 0, 0, 0, 0,−1, 0, 1) (4.70)

E13 : (0, 1, 0, 0, 0, 0,−1, 0, 0, 0) (4.71)

E14 : (0, 1, 0, 0, 0, 0, 0,−1, 0, 0) (4.72)

E15 : (0, 0, 0, 0, 0, 0, 1, 0,−1, 0) (4.73)

E16 : (0, 0, 0, 0, 0, 0, 0, 1, 0,−1) (4.74)

and so, grouping by the units of the modified quantity:

E0 = {∅0, E1, E2} per unit of free ligand (4.75)

E1 = {∅1, E3, E5} per unit of Type-I binary complexes (4.76)

E2 = {∅2, E4, E6} per unit of Type-II binary complexes (4.77)

E3 = {∅3, E7} per unit of Type-I ternary complexes (4.78)

E4 = {∅4, E8} per unit of Type-II ternary complexes (4.79)

E5 = {∅5, E9, E10} per unit of free receptor antagonist (4.80)

E6 = {∅6, E11, E13} per unit of free IL-1Ra/Type-I binary (4.81)

E7 = {∅7, E12, E14} per unit of free IL-1Ra/Type-II binary (4.82)

E8 = {∅8, E15} per unit of IL-1Ra/Type-I/RAcP ternary (4.83)

E9 = {∅9, E16} per unit of IL-1Ra/Type-II/RAcP ternary (4.84)

4.5 Ternary complex formation in presence of
IL-1Ra

Using the constrained resources model, where receptors and accessory proteins
have a limited supply, we can experiment to observe the effect of the presence of
the receptor antagonist on the formation of signalling ternary. The experiment
considers competition for the Type-I receptor between IL-1β and IL-1Ra, and
further competition between both types of binary complexes (signalling and
antagonist signalling) for the receptor accessory.

We will begin by looking at the effect on IL-1β ternary signalling complex
formation in the presence of the receptor antagonist, gradually increasing the
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Figure 4.4: Ternary complex formation, both signalling and antagonist. The Type-I receptor
and receptor accessory are held constant at 100. Signalling complexes formed from IL-1β are
given in red, and antagonist ternaries in orange. The number of ternaries formed is given by
n. The parameter q acts as a multiplier of the antagonist population, while the amount of IL-
1β is held constant. Signalling ternaries initially form rapidly, but as q increases, antagonist
ternaries begin to dominate; at larger values of q, antagonist ternary formation becomes more
frequent than signalling ternary.

amount of IL-1Ra in the system. The simulation will initially have the same
amount of IL-1β and receptor antagonist; however, we once again make use of a
parameter q, where 0 ≤ q ≤ 20, which is used as a multiplier of the antagonist
population. The number of Type-I receptors and accessory proteins are kept
constant throughout. We will ignore the Type-II receptor for the moment,
choosing to include it in a later experiment.

Total number of IL-1β molecules = Lβ (4.85)

Total number of IL-1Ra molecules = LR (4.86)

Total number of ligand molecules = LT = Lβ + LR (4.87)

Total number of Type-I receptors = NR1 = Lβ + LR (4.88)

Total number of accessory proteins = NCP = Lβ + LR (4.89)

The experiment was repeated for N = 1000 trials for each value of the parameter
q. The maximum number of iterations available to each simulation is n =
5.0 × 105.

The effect on signalling ternary formation is shown in Figure (4.4). The
signalling ternaries are given in red, and the antagonist ternaries in orange. It
can be seen that the effect of increasing the amount of antagonist in the system
via increasing q has a significant effect on ternary formation.

The experiment allows us to observe that, for low values of q, IL-1β remains
capable of forming a sufficient number of signalling complexes to initiate signal
transduction. However, increasing values of q yields an increasingly large pop-
ulation of receptor antagonist, and a decreasing number of signalling ternary
formation. This is to be expected from the relative size of the association prob-
abilities.

As the receptor antagonist population reaches approximately ten times the
size of the IL-1β population, it forms approximately the same amount of ternar-
ies. For higher values of q, formation of antagonist ternaries outnumbers sig-
nalling ternaries. Recall that some tens of signalling ternary formation events
are required for signalling transduction to evoke a significant physiological re-
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sponse from the cell. The antagonist is competing with IL-1β for Type-I re-
ceptors and receptor accessory, and a significant value of q would be above ten,
where we have approximately a ten-to-one ratio between IL-1Ra and IL-1β and
a roughly equal formation of both types of ternaries.

Since the availability of Type-I receptors and receptor accessory are con-
strained, the experiment shows that a sufficiently large number of receptor an-
tagonists are likely to inhibit signal transduction. A ratio of ten-to-one in favour
of the receptor antagonist is likely to impede formation of sufficient signalling
ternaries for signal transduction.

4.6 Ternary complex formation in the presence
of IL-1Ra and Type-II receptor

The addition of the IL-1 receptor antagonist to the type of stochastic model
given in the last chapter implies an increase in complexity in the model’s struc-
ture. The receptor antagonist is a ligand capable of binding to the Type-I and
Type-II receptors, capable of forming both binary and ternary complexes. This
effectively doubles the dimensions of the stochastic model.

From earlier sections (Section (4.3), (4.5)) , we know that both the Type-II
receptor and the antagonist can have an inhibitory effect on signalling ternary
formation. Varying the amount of receptor antagonist, while keeping other
quantities fixed, would show the degree of synergy between the antagonist and
both receptors, and determine the inhibitory effect of the antagonist.

The results of the simulations are shown in Figure (4.5). All four species
of ternary are shown. Figure (4.5(a)) shows ternaries formed with IL-1β, Fig-
ure (4.5(b)) those formed with the antagonist, and Figure (4.5(c)) shows both
together for ease of comparison. The formation of signalling binaries grows grad-
ually less frequent as q increases, and signalling ternary formation is eventually
almost completely inhibited.

The q parameter varies over 0 ≤ q ≤ 20 and multiplies the antagonist popu-
lation. As in Section (3.2.2), there is a synergistic effect between the antagonist
and the Type-II receptor. Since there are more receptor antagonists the sys-
tem can change state to, IL-1β ligand is given greater opportunity to form
nonsignalling ternaries. This would confirm the observation in the earlier sec-
tion, where a slowing effect on signalling ternary formation was found to occur,
since nonsignalling ternary and antagonist ternary formation would add to the
mean Markov chain length of all ternaries. Similarly, the probability of associa-
tion of antagonist binaries and nonsignalling binaries are quite similar, making
the probabilistic choice between the two states difficult to distinguish.

4.7 Human parameter experiments

In order to explore biologically relevant and realistic ranges of these parameters,
we turn to the literature to ascertain the likely number of molecules on an
average human cell membrane. We require the number of Type-I and Type-II
receptors, and the number of receptor accessory proteins, likely to be expressed
on the average human cell.
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Figure 4.5: Ternary complex formation: IL-1β, and the Type-I receptor and Type-II recep-
tors are held constant at 100. In Figure (4.5(a)), signalling complexes T are given in red, and
nonsignalling ternaries NT in blue. The number of ternaries formed is given by n. The param-
eter q acts as a multiplier of the antagonist population. The formation of signalling binaries
grows gradually less frequent as q increases, and signalling ternary formation is eventually
almost completely inhibited. Figure (4.5(b)) shows the formation of antagonist ternaries: the
antagonist ternary formed with a Type-I receptor, TR, is given in orange, and the ternary
formed with a Type-II receptor, NTR, is given in yellow. Both ternaries increase gradually
on increasing q. Figure (4.5(c)) gives all the ternaries for ease of comparison.
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Schotanus et al found a range of 900-1800 Type-I receptors expressed on the
murine cell membrane on EL4 cells (85); Dubois et al found an average of 400
receptors were found to be expressed on both murine and human bone marrow
cells (26); and an investigation of human synovial fibroblasts by Sadouk et al
(79) found that they expressed an average of 1300 Type-I receptors on the cell
membrane.

Given these observations, it seems that an estimated range for Type-I re-
ceptors R would be 200 ≤ R ≤ 2000. Similar observations in both human and
murine cells give a similar range for the Type-II receptor (61), (8), (9), (43),
(14), and the receptor accessory protein (105),(58),(44), so that for a generalised
parameter U , where U stands for any of the parameters in the system, we would
have 200 ≤ U ≤ 2000.

However, we are interested in the effect of constraints on ternary formation,
particularly on signalling complexes, and so we shall restrict the experiment to
the lower end of this range; in particular, we will investigate 50 ≤ U ≤ 500. We
assume that a significant cell response occurs at fifty signalling ternaries, and
accordingly fix the amount of IL-1β available to the system to this amount; the
other quantities will be allowed to vary.

An analysis of the parameters may reveal cases of redundancy, which will
enable us to reduce the computational resources required by the experiment.

We can form the ratios

α1 =
CRI

CR
= Type-I/complex formation proteins (4.90)

α2 =
CRII

CR
= Type-II/complex formation proteins (4.91)

β =
CAP

CR
= IL-1RAcP/complex formation proteins (4.92)

L

CR
= IL-1β/complex formation proteins (4.93)

Ra

CR
= IL-1Ra /complex formation proteins (4.94)

α1 gives the ratio of the total number of signalling receptors to the total num-
ber of complex formation proteins; α2 gives the ratio of the total number of
nonsignalling receptors to the total number of complex formation proteins. β

gives the total number of receptor accessory proteins to the complex formation
proteins. L

CR
is ratio of the total IL-1β to the complex formation proteins, and

Ra
CR

gives the total receptor antagonist to the complex formation proteins. Recall
from the analysis in Chapter (2) that the ratios of the ligand and the receptor
accessory protein to the total number of receptors are primary in determining
the equilibrium of the system.

We wish to examine the effect of varying these parameters on system dy-
namics. For a general parameter U , we would vary the parameter such that, for
example:

50 ≤ U ≤ 500, {U : 100, 150, · · · , 500} (4.95)

One advantage of considering the parameters as ratios is to identify equivalent
sets of parameters; if the ratios are the same (after reduction to their simplest
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Table 4.1: Parameter set: stochastic model of ternary complex formation in the presence of
IL-1Ra and the Type-II receptor.

IL-1β IL-1Ra Type-I Type-II IL-1RAcP
50 50 100 100 200
50 100 150 150 300
50 150 200 200 400
50 200 250 250 500
50 250 300 300 600
50 300 350 350 700
50 350 400 400 800
50 400 450 450 900
50 450 500 500 1000
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(a) 50 IL-1Ra, 100 R1, 100 R2, 200 RAcP
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(b) 100 IL-1Ra, 150 R1, 150 R2, 300 RAcP
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(c) 150 IL-1Ra, 200 R2, 200 R2, 200 RacP
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(d) 200 IL-1Ra, 250 R1, 250 R2, 500 RAcP

Figure 4.6: Ternary complex, all four species. Signalling complexes T are given in red,
nonsignalling NT in blue; the antagonist ternary formed with a Type-I receptor, TR, is given
in orange, and the ternary formed with a Type-II receptor, NTR, is given in yellow.

forms), we need consider only one of the identical sets of parameters, thereby
eliminating redundancy and reducing the parameter space and the computa-
tional resources required.

We can set up an experiment to investigate what effect the introduction
of ranges of parameters from the literature has on the system dynamics. The
parameters used in the experiment are given in Table (4.1). Figure (4.6) shows
the results of the experiment.

The data presented in the figure has been averaged, but the simulation can
terminate whenever it has exhausted all the ligand. This leads to a stochastic
or random appearance to the plots, since some simulations will terminate at a
t which no other simulation terminates at, so that it is the only data point at
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Table 4.2: Results of simulation: stochastic model of ternary complex formation in the
presence of IL-1Ra and the Type-II receptor. IL-1β is held fixed at fifty. T gives the mean
signalling ternaries, NT , the nonsignalling ternaries, TR the antagonist-Type-I ternaries,
NTR the antagonist-Type-II ternaries.

IL-1Ra Type-I Type-II IL-1RAcP T NT TR NTR
50 100 100 200 42.28 7.71 26.63 23.36

100 150 150 300 43.17 6.82 53.61 44.10
150 200 200 400 43.36 6.63 82.24 51.33
200 250 250 500 43.50 6.49 111.33 54.69
250 300 300 600 43.58 6.41 140.77 56.74
300 350 350 700 43.71 6.29 169.34 59.21
350 400 400 800 43.75 6.25 190.01 61.27
400 450 450 900 43.74 6.25 197.46 64.65
450 500 500 1000 43.81 6.18 202.67 62.81

this time t, and therefore cannot be averaged against other simulations. The
simulations were repeated for N = 1000 trials. At no point in any of the trials
did the required fifty signalling ternaries form, as can be seen from the figures
and Table (4.2).

The figures show that the presence of Type-II receptors, where the numbers
of Type-I and Type-II receptors are equal, seem to impede ternary complex
formation sufficiently to prevent signal transduction, given the arbitrary (and
conservative) requirement of fifty signalling ternaries. In the case of IL-1β,
the complexes form rapidly, utilising many of the available Type-I receptors,
whereas the receptor antagonist ligand forms ternary complexes at a slower rate.
This is to be expected, given the respective association probabilities. Similarly,
increasing amounts of receptor antagonist inhibits signalling ternary formation.

The effect of constraining the receptors and receptor accessories can be seen
in the difference between, for example, the antagonist-IL-1β ternaries in Figure
(4.6(a)) and Figure (4.6(b)). The parameters for the first figure are: IL-1β = 50,
IL-1Ra = 50, Type-I = 100, Type-II = 100, IL-1RAcP = 200. In the second
figure, we have the parameters: IL-1β = 50, IL-1Ra = 100, Type-I = 150,
Type-II = 150, IL-1RAcP = 300.

In the first figure, the antagonist ternary complexes binding the Type-I recep-
tor reach equilibrium at a level below that of the signalling ternary complexes.
In the second figure, there are a greater number of both Type-I receptors and
receptor accessories; the antagonist can continue to form ternary complexes
and sequester resources that could be available to further IL-1β stimulus. The
Type-II receptor and receptor antagonist can therefore both inhibit signal trans-
duction, and consume resources which would be available to further interleukin
stimulus.

Table (4.2) gives the mean number of ternaries formed for each set of param-
eters. This confirms that the mean number of signalling ternaries does not reach
the arbitrary target of fifty. Relatively few nonsignalling ternaries, both IL-1β

and antagonist-bound, are formed, but this is sufficient to prevent signalling
transduction. As the number of available receptors and receptor accessories in-
creases, the number of antagonist-bound ternaries increase. Some of these are
bound to the Type-II receptor, but a greater number are bound to Type-I recep-
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tors. Furthermore, nonsignalling complexes, both IL-1β- and antagonist-bound,
continue to form after all possible signalling ternaries have been formed.

We have designed an experiment where the number of receptors and receptor
accessories are constrained: it is not assumed that a protein will be available
to form a binary complex, and an accessory protein to form a ternary complex;
they must be assigned from a finite pool. Type-I receptors bound to the receptor
antagonist, whether binary or ternary, make them unavailable to IL-1β. Simi-
larly, ligand bound to the Type-II receptor may consume the accessory protein;
insufficient available accessory protein will prevent signal transduction.

There are therefore two effects from the presence of the receptor antagonist
on signalling transduction. Nonsignalling ternaries consume the receptor ac-
cessory, and Type-I-antagonist complexes consume the signalling receptor and
the accessory protein, thereby making them unavailable for forming signalling
ternary complexes. Antagonist ternaries also continue to form after IL-1β has
been consumed, sequestering receptors and accessories and making them un-
available to further IL-1β stimulus.



Chapter 5

Lipid rafts and signalling

5.1 Introduction

In recent years the classical image of the plasma membrane lipid bilayer, a
uniformly structured two-dimensional fluid acting as a medium for the diffusion
of membrane proteins, has been modified substantially. It has been suggested
that the plasma membrane is a more complex and compartmentalised structure
than previously thought. This greater complexity is thought to be driven by a
variety of lipid-lipid, lipid-protein and cytoskeletal interactions (2), (27), (57),
(67). Separation of cholesterol enriched domains has been clearly demonstrated
in both model and biological membranes, although the size and duration of lipid
rafts is still to be determined (91).

Lipid rafts are areas of higher viscosity in comparison to the surrounding cell
membrane, and this higher viscosity might capture membrane proteins as they
move over the cell surface (66). It has been suggested that a major biological role
which lipid rafts fulfil is to transport receptors and other related proteins around
the cell membrane. If this is the case, they would play an important part in
signal transduction (96), since they would intensify protein-protein interaction.

IL-1β is an essential part of the inflammatory process, triggering a rapid
response to injury and/or infection, but has relatively few receptors expressed
on the cell membrane. Since it plays such an integral part in mediating the
host’s defences, it is important that IL-1β signal transduction occurs rapidly.
This work tests the hypothesis: do lipid rafts promote IL-1β signal transduction?

5.2 Lipid raft hypothesis

According to Cavalli (12), a lipid raft is a cholesterol-enriched microdomain in
cell membranes. Lipids can broadly be defined as any hydrophobic naturally
occurring molecule, and the term more specifically refers to fat-soluble acids
such as cholesterol.

In 1972 the Singer-Nicolson fluid mosaic membrane model encapsulated the
state-of-the-art theory on the organisation of membrane bound molecules in
the plasma membrane of cells in general: a strong emphasis was placed on
the dynamic behaviour of molecular elements in particular (94). The lipid mi-
crodomain concept, originally suggested more than two decades ago (52), was

99
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Figure 5.1: Schematic of lipid raft. c©Wikimedia Commons (freely licensed). The section
labelled A represents intracellular, cytosolic space, and B, extracellular space. Furthermore,
we have (1) Non-raft membrane, (2) Lipid raft, (3) Lipid raft associated transmembrane
protein, (4) Non-raft membrane protein, (5) Glycosylation modifications (on glycoproteins
and glycolipids), (6) GPI-anchored protein, (7) Cholesterol, (8) Glycolipid

based on lipid distribution heterogeneity analysis and structural perturbation
assays in biomembranes. A number of observations reported on non-random
and distinctive membrane associated patterns on the surface of live cells; many
of these were made using fluorescence resonance energy transfer (FRET) tech-
niques (100), (18). These observations raised questions about the widely-held
fluid mosaic model of membranes.

Simons and Ikonen were the first to suggest the raft hypothesis (91). An
overall view of the evidence and collected data indicate that glycosphigolipids
(GSLs) form small, liquid ordered phase microdomains in phospholipid bilay-
ers (107). These GSL microdomains are further stabilised with cholesterol,
sometimes reinforced with cholesterol binding proteins such as caveolins. The
microdomains may promote compartmentalisation of raft-associated proteins,
such as receptors, and their spatial segregation from proteins excluded from
rafts. These properties suggest that lipid rafts may be fundamental agents in
the signal transduction process, through bringing together receptors with their
signal transmitting, converting, and/or amplifying molecules while excluding
other, for example inhibitory, proteins from these compartments. Figure (5.1)
shows the structure of a lipid raft.

Novel single molecule techniques and FRET-based experiments showed that
clusters of proteins consist of only a few proteins, and may only exist for a
lifetime in the range of milliseconds (89). Rafts may facilitate distinct protein-
protein interactions by increasing their local concentration and hence the proba-
bility for contact of signalling molecules. Moreover, results from single molecule
tracking indicate that receptor ligation contributes to raft stabilisation, as shown
for the receptor CD59 (57). A variety of other observational techniques have
been applied to the problem of determining the size of lipid rafts. These have
resulted in estimates converging on the region of five to fifty nm, with more
recent estimates suggesting the lower end of this range (78), (77), (89).

Microdomains are larger than single membrane proteins, and so the rate of
diffusion over the cell membrane of encapsulated proteins will be lower than that
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of those anchored purely in the cell membrane itself (77). One way of approach-
ing such questions would be to implement a stochastic, Monte Carlo model of
the dynamics of protein interactions on a cell membrane, with signalling pro-
teins encapsulated in microdomains of various sizes: such an approach has been
tried in a recent paper (72). The paper allowed for a certain porousness of
the microdomains, in that receptors and other associated proteins could enter
and leave the raft; similarly, the work did not focus on the effect of the mi-
crodomains on the efficacy of signalling complex formation. The work was also
quite generalised, since no specific types of receptor or ligand were modelled.
We intend to apply a modelling technique to the IL-1β network derived from the
approach by Nicolau et al, to attempt to determine a similar estimate of the size
of the lipid rafts which are involved in supporting the formation of signalling
and nonsignalling ternary complexes (72).

5.3 Simulation methods

The aim of the simulation is to see whether the presence of lipid rafts signifi-
cantly enhances the formation of ternary complexes on the cell membrane. Cell
membranes will be simulated both with and without lipid rafts, and the number
of time steps taken to generate a fixed number of signalling complexes will be
recorded.

It is appropriate at this point to consider the more general discussion sur-
rounding lipid rafts. Despite many observation techniques and putative obser-
vations, the ontological status of lipid rafts is still mildly controversial. Given
this, it may be better to suggest a more abstract entity, high viscosity regions
(HVRs). This will enable us to investigate the effect which areas of higher vis-
cosity have on the formation of signalling complexes, while remaining agnostic
as to their cause.

The cell membrane is modelled as a two dimensional grid. A node, or grid
point, is an element of the grid which can either be occupied or unoccupied
by a protein at each time step. Only one protein may occupy a node at any
one time, a principle known as volume exclusion. A protein may interact with
another protein only if the two proteins are strictly contiguous, that is, they
occupy neighbouring grid points. Each node is assumed to be 2 nm on each
side, an estimate of the average size of a membrane (or microdomain) anchored
protein (72). This gives a guide to the lower limit of the size of a HVR, and
allows us to simply state the size of the cell membrane used in the simulation.

A HVR is modelled as a collection of nodes. A particularly simple repre-
sentation would be to use a square: other models have used a disk in their
simulation (72), although given the nature of the simulation (effectively a cellu-
lar automaton with Monte Carlo motivated probabilistic updating rules), it is
arguable to what extent one representation is any more realistic than the other.
It is likely that a microdomain is more amorphous, complex and ephemeral than
either of these fixed shapes. The modelled HVRs will have different surface ar-
eas and densities on the simulated membrane, but these parameters will remain
fixed for any particular execution of the simulation.

The simulation will initially randomly distribute a variety of different protein
species among the HVRs; since we are investigating the IL-1β cytokine network,
these species are IL-1RI and IL-1RAcP. The effect of extracellular inhibitory
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proteins or receptors such as IL-1RII will not be included in this model, since
we are interested in protein dynamics on the cell surface: for the purposes of
the simulation, the total number of ternary complexes are more important than
whether or not the complex initiates a signalling cascade.

The microdomains will also have empty grid points, allowing the proteins
to move about on the HVR and interact (89). Since receptors and accessory
proteins are relatively rare structures on the cell surface, the sparsity of receptors
and accessory proteins will be reflected in the simulation, so that most of the
membrane will be empty, although the number of proteins will be exaggerated
for the purposes of computational tractability and sample size. Each node is
initialised with two characteristics, an (x, y) coordinate which determines its
location in the grid, and either one of the protein species or an empty status.

It is necessary for the modelled receptors and accessory proteins to be able to
interact; proteins on the membrane are affected by random movements, caused
by Brownian motion. At each time step, a protein is chosen in turn from the
population of proteins. A neighbouring (contiguous) grid point is also chosen at
random: note that the selection includes the grid point currently being occupied,
so that it is possible to generate a non-move (a stayput). Since the grid is to
be modelled in a similar manner to a cellular automaton, we have chosen a
representation where the neighbourhood consists of nine grid points; those that
surround the grid point, and the grid point itself. Each possible move has
an equal probability of being chosen. Note that there is no distinction made
between the species regarding the speed with which they move; although it is
physically possible that this is the case, it is unlikely that differing velocities of
protein species will make much difference at the level of detail of the simulation.
There is, however, a difference between proteins encapsulated on a HVR and
those which are free proteins, that is, those which are anchored in the cell
membrane but which do not form part of a microdomain; differing diffusion
rates will be dealt with below.

If the chosen grid point is empty, then the protein can move to it, and the
previously occupied grid point will be given the empty status: if the selected
neighbouring grid point is occupied, then the protein cannot move to it, and so
remains in its current grid point; such an event is the simulation’s version of a
collision, and enforces volume exclusion, so that only one protein can occupy a
grid point at any one time.

The random nature of protein movement on the HVR represents the Brown-
ian motion which, as noted, governs protein diffusion on cell membranes. After
each movement (or non-movement) has been generated, the simulation time is
incremented by 1

n
where n is the total number of proteins on the cell membrane.

An interval of one signifies the time taken for all the proteins to move on the
membrane, and represents a simulation’s complete time step. HVRs would also
be subject to Brownian motion; however, this would add complications to a
direct comparison between a simulation with microdomains and one without,
and so HVRs are held immobile for the current purposes.

Since the area of the cell membrane being modelled is large relative to the
area of the grid point, the simulation should be a reasonably good approximation
to a random walk approximation to Brownian motion (89). It should be noted
that the grid is toroidal in nature. The diffusion rates used in the simulation
are given in table (5.1); an exploration of the Saffman-Delbrück model is given
in appendix (5.A).
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HVR area H ( units in 2nm2) Diffusion coefficient
1 1.0
2 0.89635
3 0.82281
4 0.76577
5 0.71917
6 0.67976
7 0.64563
8 0.61552
9 0.58859
10 0.56422
1 Calculated using the Saffman-Delbrück formula (80)

Table 5.1: Probability of protein mobility

The mobility of a protein inside a microdomain is given by the ratio

D =
DR

DNR

(5.1)

where DR is the diffusion rate of an encapsulated protein, and DNR is an unen-
capsulated protein on the cell membrane (a free protein). Both diffusion rates
are calculated according to the Saffman-Delbrück model (80). Larger D values
correspond to higher rates of diffusion; if D is nonintegral, then the interpre-
tation of D is probabilistic. Proteins outside of HVRs have a diffusion rate of
D = 1; those inside the microdomains use a calculated diffusion rate depending
on the size of the microdomain. If D < 1, a random number ψ is generated; if
ψ < D, then the protein can move, and a random move to one of its neighbour-
ing nodes can occur. For the purposes of the current simulation, friction terms
have not been taken into account.

Notice that there may be more receptors and/or microdomains than is bio-
logically reasonable for the area of the cell membrane being simulated; however,
the purpose of the simulation is not to realistically model the receptor coverage
of a cell membrane, and so this aspect is not relevant to the simulation. The
number of receptors and accessory proteins is set to one thousand for each iter-
ation of the simulation, which would be an unusually high distribution for a cell
membrane; however, this makes the simulation computationally tractable, since
it is more likely that a receptor will encounter a ligand or an accessory protein.

The system is subjected to IL-1β in the following way: the ligand has a
fixed probability of striking the membrane. A random number is generated,
and if that number is less than the probability of ligand being injected, a ran-
dom coordinate on the cell membrane is selected. If the coordinate contains
a receptor, then a binary complex is formed; otherwise, the ligand is deleted
from the simulation. Once the binary complex is formed, it must bind with an
accessory protein (by moving into a neighbouring node containing IL-1RAcP)
before a ternary complex is formed. Once a ternary complex is formed, a signal
transduction event is recorded.

The size of the cell membrane will obviously have an effect on the probability
of a bound receptor binding with an accessory protein, and therefore on the
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number of signal transduction events. If the simulated cell membrane is smaller,
it is more likely that a bound receptor will encounter an accessory protein,
and vice versa. The simulation will be iterated over a number of different cell
membrane sizes to note its effect on the number of triggered signal events.

Note that, for those simulations which contain HVRs, there are a fixed num-
ber of fifty. HVRs each have a size s randomly chosen from 2 ≤ s ≤ 50, which
is in the range of reported sizes for lipid rafts in the literature (90). HVRs do
not change in size or shape for the duration of the simulation. The length of a
simulated time step depends on the number of proteins undergoing Brownian
motion: to preserve a comparable number of time steps between HVR and non-
HVR simulations, HVRs are fixed in place on the cell membrane. Intuitively this
would reduce the number of protein-protein interactions, since fewer receptors
and accessory proteins would be captured by the microdomains.

5.4 High viscosity regions and protein-protein
interactions

To test the hypothesis that HVRs affect protein-protein interaction on the cell
membrane, and therefore the number of ternary complexes formed, a number
of simulations were performed. One simulation had a number of HVRs, of
random sizes, positioned randomly on the membrane: the other has no HVRs,
and depends on Brownian motion to bring adjacent proteins into contact on a
surface of uniform viscosity. The experiment recorded the number of timesteps
required to form a certain number of ternary complexes. The area of the cell
membrane was treated as a parameter and varied, since this will also have an
effect on protein interaction.

The results of the simulation are shown in Figure (5.2), in this case for a cell
membrane area of A = 500×500; since the basic unit in the simulation is 4nm2,
this gives a simulated cell membrane of area 1×106 nm2. The simulations which
feature HVRs are given in red, and those without are given in blue. As can be
seen, those simulations which feature HVRs tend to consistently form ternary
complexes more rapidly than those without.

Given computational constraints, the typical number of receptors and ac-
cessory proteins has been exaggerated. It is known that very few signal trans-
duction events can elicit a strong response from the cell (93); fewer than ten
ligand-occupied receptors are required per cell in order to induce a significant
reaction, in comparison with the ten- to one hundred-fold higher occupancy re-
quired for most other receptor systems (22). In the simulation, one thousand
receptors and accessory proteins have been assigned to the cell membrane, which
is much higher than would ordinarily occur; however, the higher distribution of
receptors allows a larger sample size. Each experiment was repeated fifty times.

Increasing the area of the cell membrane should affect the number of timesteps
taken to form ternary complexes: we would expect the time taken to increase
with the area, since receptors would on average have a longer path to travel
before encountering an accessory protein. This can be seen in Figure (5.3),
where the increase in area does in fact increase the amount of time taken for
ternary complexes to form. It is also apparent that HVRs have a positive effect
on the formation of ternary complexes. The relative shapes of the generated
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Figure 5.2: Effect of HVRs on ternary complex formation. The graph shows how HVRs
tend to create ternary complexes in fewer time steps. The simulations with HVRs present on
the membrane, represented in red, produce ternary complexes in less time steps than those
without surface HVRs on the membrane, given in blue. The vertical axis, C, shows the number
of complexes, and the horizontal axis the number of time-steps, t. The number of HVRs in
each simulation is limited to fifty, and the size of each HVR is 2 ≤ H ≤ 50, chosen randomly.
The simulated cell membrane area is 1 × 106 nm2, or A = 500 × 500 units.
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Figure 5.3: Effect of varying the cell membrane used in the simulation. The simulations
which feature HVRs are given in red, and those without are given in blue; complex formation
rates are averaged over N = 50 experimental trials. As can be seen, the larger the cell
membrane, the greater number of timesteps taken for ternary complexes to form. The surface
area of the cell membranes are 1.44 × 106nm2, and 4.05 × 106nm2. Clearly the shapes of the
curves generated by the simulations are similar; however, as the horizontal axis shows, the
number of timesteps taken to reach the target number of complexes grows with the increase in
membrane surface area. Those simulations which feature HVRs consistently take fewer time
steps to form the target number of complexes than those which have no HVRs.
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curves remain the same given different membrane surface areas, showing that
the behaviour of the system is consistent.

The amount of membrane surface covered with HVRs is, to an extent, ran-
domly determined, since the fifty HVRs are assigned a random size H in the
range 2 ≤ H ≤ 50, but the maximum possible size with this allocation policy
on the smallest cell membrane simulated represents ten percent of the total sur-
face area. This is smaller than most estimates of lipid raft coverage cited in
the literature, where conservative estimates of membrane coverage range from
24 ± 2% to 43 ± 6% (6).

It would be possible to simulate larger cell membranes to observe what effect
increasing area had on protein-protein interaction, but it seems reasonable to
conclude from figure (5.3) that this would merely increase the timesteps taken
to form the ternary complexes. It also seems reasonable to conclude that, given
the model outlined above, the presence of HVRs on a cell membrane acts to
concentrate protein-protein interactions, and therefore facilitates the formation
of ternary complexes in the IL-1β network.

5.5 Estimating the high viscosity region size

According to Simons et al, lipid rafts are estimated to exist in the size range
2 ≤ H ≤ 50 (90). It may be illuminating to investigate the effect this range
has on the formation of signalling ternaries in the IL-1β network. One way of
doing this would be to use the squared area of the lipid raft as a limit, so that
the maximum possible size of the HVR is H ∈ 4, 9, 25, · · · , 64; it may also be
instructive to investigate larger areas to observe any effect on the formation of
complexes.

The composition of the simulated HVRs will still be randomly placed on
the cell membrane, but they will be of uniform area and therefore viscosity.
Notice that the largest surface area (100) is larger than the size estimated in
the literature (50). It would be interesting to see if the larger surface area of
the simulated HVRs limits the formation of signalling ternaries or enhances it,
which may reflect on the appropriateness of the range given in the literature.

A limiting factor on such a process would occur when the HVR area grew
so large that the viscosity approached zero. In such a case, receptors and other
membrane-bound proteins would congregate at the HVR’s perimeter. Given
the results in Table (5.2), we would expect that the greater the area, the longer
time on average would be taken to form signalling ternaries. We would expect
from this that very large HVRs would likely be an exceptional occurrence.

It should be noted that the simulation is only a rough guide, since it is
unlikely that HVRs form in neat, square regions on the cell membrane. The
intention of the experiment is to investigate the relationship between HVR sur-
face area and signalling efficacy. A more reasonable simulation would be to use
the area of the HVR as an upper limit, and randomly assign grid points to a
HVR.

The experiment has a fixed membrane surface area of A = 500×500×4 nm2.
Each simulation iterates for one hundred trials. The number of receptors and
accessories remains constant at 1000, and the simulation halts when half of
the receptors and accessories are consumed by complex formation. IL-1β is
injected into the system whenever a randomly generated number x > 0.001; in
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HVR size (2nm)2 Formation time σ

4 2491.42 74.06
9 3928.39 126.59
16 9790.53 367.18
25 25994.04 994.25
36 50000.00 0.00
49 50000.00 0.00
64 50000.00 0.00
81 50000.00 0.00
100 50000.00 0.00

Table 5.2: Effect of HVR area on ternary signalling complex formation. The size of the
simulated membrane is A = 500 × 500 units (a unit being 4nm2). The number of receptors
and accessories are held constant at 1000, and each simulation is repeated for 100 trials. The
simulation terminates after 50% of the receptors and accessories are consumed by forming
ternary signalling complexes. The simulations successfully form complexes until the HVR
size reaches 36, at which point the simulations can no longer form sufficient complexes to
terminate; at this point, the simulations always reach their maximum number of timesteps
before terminating.

order to save computational runtime, a receptor is picked from the surface of
the cell and modified into a signalling binary complex. While this method is
clearly not biologically realistic (randomly selecting a grid point and simulating
a collision between the membrane and the cytokine would be a more reasonable
simulation), it saves the number of clockcycles necessary to run the simulation.

Table (5.2) gives the average time taken to consume 50% of the receptors
and accessories by complex formation. Clearly, the smaller area leads to faster
complex formation. The average formation time for ternary complexes with
four units of square HVR area is relatively rapid; the mean formation time,
and the standard deviation, increases until it reaches thirty-six square units.
At this point, the system is no longer capable of forming 50% of its receptors
and accessories into signalling ternaries (a signalling half-life) within the pre-
scribed time limit of 50000 seconds or 500000 iterations of the simulation. The
standard deviation in this case obviously falls to zero. Although it is unlikely
that nature creates lipid rafts in monotonously neat, square tiles, and therefore
the simulation is unlikely to be replicating natural raft formation processes,
the simulation does appear to indicate that smaller rafts are more appropriate
signalling platforms.

It should be noted that the simulations suggest a smaller area would enhance
signalling in this case, where it is necessary for a receptor and an accessory to
be contiguous. An individual with such a HVR formation strategy would likely
have an evolutionary advantage, since the inflammatory response would occur
efficiently. However, such a strategy would not be as efficient if more than two
membrane-bound proteins were required to form a signalling complex, and so
such a strategy would be useful only in the case of systems similar to IL-1β.

Figure (5.4) shows the evolution of the system over time. The paths of the
particles on the cellular membrane are preserved, so that the random walk can
be observed. The proteins are colour coded, so that receptors are coloured blue,
accessories green, binaries red and ternary complexes orange. Areas which have
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Figure 5.4: Random walk of particles on the cell membrane constrained by HVRs: evolution
of the proteins on the cell membrane. The paths of the proteins over the membrane are
preserved. Accessory proteins are given in green, receptors in blue, binaries are in red, and
ternaries are in orange. Areas of the membrane which have not been visited by a protein are
coloured grey. The initial state of the system is given in figure (5.4)(a), where the proteins
have covered little of the area of the membrane and few complexes have formed. Figures
(5.4)(b) and (5.4)(c) show greater movement and the formation of binary complexes. Figure
(5.4)(d) shows a later stage, where most of the receptors have either been consumed by binary
complexes or signalling ternary complexes.

not yet been visited by a protein are coloured grey. As would be expected,
the numbers of binary and ternary complexes increase with the incidence of
ligand and the collisions between binaries and IL-1RAcP, and the number of
unbound receptors and accessory proteins decrease. Eventually, as shown in
figure (5.4)(d), most proteins are either ternary complexes or binary complexes
and accessory proteins which have not yet collided.

5.6 Effects of HVRs on random walks

An assumption that could be made when modelling the cell membrane is that the
movements of proteins approximate a random walk. When the viscosity of the
membrane is uniform, and the proteins are subject to the noisy environment on
and around the cell surface, this would be a reasonable approximation; proteins
would be likely to move in a manner described by Brownian motion, subject to
the constant collisions from other molecules.

However, the presence on the cell membrane of HVRs would mean that the
viscosity would not be uniform. We would expect that the motion of a particle
on the cell membrane would be constrained by the presence of HVRs, and their
behaviour would vary from unconstrained Brownian motion. If we assume that
Brownian motion is a reasonable approximation to dynamics of proteins in a
uniform-viscosity model of the cell membrane, is it possible to build a model
which compares this with the HVR, nonuniform model?
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5.6.1 Random walks with a probable nonmove

We will consider the movement of a particle on a one-dimensional surface. The
derivation below will be modified from standard arguments in probability (70),
(38). We consider a particle with two degrees of freedom, for example left and
right, and include the possibility that the particle does not move.

Let P (x) be the probability of a particle being at a position x at a time n.
Let a move to the right be given by p, a move to the left be q, and a non-move
be given by r. Then the particle position is given by (p− q− r). The number of
possible combinations that are available to reach the same position is given by

n!

p!q!r!

Then each path occurs with probability

pkqlrm

The probability that the particle is at x = (p − q − r) at a time n is given by

P (x = (p − q − r)) =
n!

p!q!r!
pkqlrm (5.2)

Recall the trinomial relation

(p + q + r)n =
∑

k+l+m=n

n!

k!l!m!
pkqlrm

= S(p, q, r)

(5.3)

We differentiate w.r.t. p, then multiply by p:

p
∂S

∂p
=

∑

k+l+m=n

n!

k!l!m!
k

(

pkqlrm
)

= np (p + q + r)
n−1

(5.4)

Since p + q + r = 1 we have

∑

k+l+m=n

n!

k!l!m!
k

(

pkqlrm
)

= np (5.5)

A similar argument for q and r yields

∑

k+l+m=n

n!

k!l!m!
l
(

pkqlrm
)

= nq (5.6)

and

∑

k+l+m=n

n!

k!l!m!
m

(

pkqlrm
)

= nr (5.7)

Using these expressions we find
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< xn > =
∑

k+l+m=n

n!

k!l!m!
pkqlrm (k − l − m)

= n (p − q − r)

(5.8)

We now need to consider the variance of xn.

< x2
n >=

∑

k+l+m=n

n!

k!l!m!
pkqlrm (k − l − m)

2
(5.9)

Expanding we find

∑

k+l+m=n

n!

k!l!m!
pkqlrm

(

k2 + l2 + m2 − 2kl − 2km + 2lm
)

(5.10)

We need to use the trinomial relation to establish the values of k2, l2, etc.
Differentiating both sides of (5.3) twice, and multiplying by p2, we obtain

∑

k+l+m=n

n!

k!l!m!
k2pk−2qlrm

= n (n − 1) (n − 2) (p + q + r)
n−2

+
∑

k+l+m+2=n

n!

k!l!m!
kpkqlrm

=n (n − 1) p2 (p + q + r)
n−2

+ np (p + q + r)
n−1

⇒
∑

k+l+m=n

n!

k!l!m!
k2pkqlrm = n (n − 1) p2 + np

(5.11)

since we have p + q + r = 1. A similar argument yields

∑

k+l+m=n

n!

k!l!m!
l2pkqlrm = n (n − 1) q2 + nq (5.12)

and

∑

k+l+m=n

n!

k!l!m!
m2pkqlrm = n (n − 1) r2 + nr (5.13)

We now have expressions involving k2, l2 and m2, and we require the coefficients
kl, km, and lm.

Differentiating w.r.t. p, then q, and multiplying appropriately, we find

n (n − 1) pq (p + q + r)
n−2

= n (n − 1) pq

⇒
∑

k+l+m=n

n!

k!l!m!
klpkqlrm = n (n − 1) pq

(5.14)
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Table 5.3: Table of coefficients

k2 n(n − 1)p2 + np

l2 n(n − 1)q2 + nq

m2 n(n − 1)r2 + nr

kl n(n − 1)pq

km n(n − 1)pr

lm n(n − 1)qr

Repeating the process for p, then r, and q, then r, yields

∑

k+l+m=n

n!

k!l!m!
kmpkqlrm = n (n − 1) pr

∑

k+l+m=n

n!

k!l!m!
lmpkqlrm = n (n − 1) qr

(5.15)

We have established a number of identities of coefficients through the differen-
tiation of the trinomial identity, as given in Table (5.3). Combining the results
obtained we find

< x2
n > =

∑

k+l+m=n

n!

k!l!m!
pkqlrm

(

k2 + l2 + m2 − 2kl − 2km + 2lm
)

=n(n − 1)p2 + np + n(n − 1)q2 + nq + n(n − 1)r2 + nr+

n(n − 1)pq + n(n − 1)pr + n(n − 1)qr

=n (n − 1)
(

p2 + q2 + r2 − 2pq − 2pr + 2qr
)

+

n (p + q + r)

(5.16)

Also we have

< xn >2 = (n (p + q + r))
2 (5.17)

The variance is obtained by

< x2
n > − < xn >2

= n (n − 1) (p − q − r)
2

+ n − n2 (p − q − r)
2

= n2 (p − q − r)
2 − n (p − q − r)

2
+ n − n2 (p − q − r)

2

= n
(

1 − (p − q − r)
2
)

= n
(

(p + q + r)
2 − (p − q − r)

2
)

= 4np (q + r)

(5.18)
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That is

Var (xn) =< x2
n > − < xn >2= 4np (q + r) (5.19)

We therefore have an equation for a particle in one dimension which has three
degrees of freedom. This may, of course, sound like a contradiction, since only
two directions are available for us to utilise, but we could assign p = q = left, r =
right, for example, or p = up, q = r = down, or some other combination.

However, we wish to describe the situation where we have the possibility
that the particle does not move. Since equation (5.2) describes the probability
of finding a particle in a certain position, we can see that setting one of the
variables p, q, r to zero would describe the contribution of a non-move to the
position of a particle. Letting p = q = 1

3 , r = 0 would give us

Var∗ (xn) =
4n

9
‘ (5.20)

where we have Var∗ rather than Var to indicate that this is the variance of a
random walk with a stayput operation. Equation (5.19) could also be extended
to a higher number of degrees of freedom, such that Var∗ (xn) =< x2

n > − <

xn >2= 4np (q + r + s), for example.
Since from standard text books we know that the standard deviation is the

square root of the variance, we would expect a random walk with two degrees
of freedom with a nonmove operation to travel

Std∗ (xn) =

√

4n

9
‘ (5.21)

from the origin. We can extend this analysis to include the number of degrees
of freedom which we will simulate. These are given in Table (5.4).

5.6.2 Simulated random walks with a probable nonmove

A typical random walk on a two dimensional lattice is thought to have a root
mean square distance which varies asymptotically with the square root of the
number of steps of the simulation, irrespective of the number of dimensions:
that is,

√
D2 7→ √

n (56), where D is the distance of the protein from its
starting point on the simulated membrane, and t is the number of simulated
timesteps. However, it should be noted that the theoretical value

√
t will only be

an estimate or approximation, since we are dealing here with discrete distances
on a uniformly-spaced lattice, rather than motion in a continuous space.

A random walk on a lattice can easily be simulated, to give us a basis
of comparison when further complexities are introduced. We require a dis-
tance measure which acts in a reasonable manner on a lattice, where the pro-
tein moves from one discrete grid point to another, rather than continuously.
There are a number of metrics which could be used as a distance measure; one
such measure would be the Manhattan distance or taxicab metric, given by
g((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| for all points P1(x1, y1), P2(x2, y2) on
the Euclidean plane. However, we shall use the Euclidean distance, as given by
√

x2 + y2.
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Degrees of freedom Var(xn)
∗

Std(xn)
∗

3 4
9n

√

4
9n

4 1
2n

√

1
2n

5 12
25n

√

12
25n

6 4
9n

√

4
9n

7 20
49n

√

20
49n

8 3
8n

√

3
8n

9 28
81n

√

28
81n

Table 5.4: Variance and standard deviation of a particle on a random walk with a nonmove
operation.

t (
√

t) (
√

R2
2) (

√

R2
4) (

√

R2
6) (

√

R2
8)

100 10.00 7.93 8.29 10.01 10.77
200 14.14 11.26 11.75 14.19 15.31
300 17.32 13.78 14.40 17.37 18.74
400 20.00 15.94 16.57 20.12 21.66
500 22.36 17.83 18.52 22.50 24.22
600 24.49 19.55 20.21 24.70 26.60
700 26.45 21.04 21.34 26.67 28.74
800 28.28 22.58 22.87 28.52 30.73
900 30.00 23.91 24.15 30.20 32.48

1000 31.62 25.21 25.54 31.92 34.30

Table 5.5: Brownian motion of a particle on a two-dimensional lattice with uniform viscosity.
The first column gives the number of timesteps, the second gives a theoretical measure of
average distance travelled; the third column, R

2

2
, gives the mean distance for a random walk

with two possible degrees of freedom, the fourth, R
2

4
, gives the mean distance for a particle

with four degrees of freedom, and so on. According to theory, the distance of a particle under
Brownian motion approximates

√
t, where t is the number of simulated timesteps. Each

simulation was repeated for 100000 trials, and the mean results from the trials are given.
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With the appropriate distance metric defined, and the degrees of freedom of
particle motion constrained to two, four, six and eight, we can see how accu-
rately a random walk on a lattice approaches

√
D2 7→

√
t. A simulation was run

for a number of different timesteps, where t ∈ {100, 200, · · · , 1000}, and each
simulation repeated for 100000 trials. A single particle was placed at the origin
on the simulated membrane, and moved randomly for t timesteps. Note that the
simulations took place with nontoroidal conditions on the two-dimensional lat-
tice; the lattice does not have boundaries, and is effectively an infinite Euclidean
plane.

The results are shown in Table (5.5), where we compare the averaged be-
haviour of the particle to the theoretical value, the square root of the total
number of timesteps in the simulation. The theoretical value is, of course, de-
rived from a continuous, rather than a discrete, environment, so can only be
a rough guide to particle behaviour on a lattice. The theoretical measure,

√
t,

is given in the second column, and the results of the simulations given in the
remaining columns.

The third column,
√

R2
2, shows the simulated random walk with two degrees

of freedom. In this case, the mean distance travelled from the origin is clearly
less than the theoretical value

√
t for each t ∈ [100, 200, · · · , 1000]. Looking at

the columns representing four-, six- and eight-degrees-of-freedom,
√

R2
4,

√

R2
6,

and
√

R2
8 respectively, we find that the mean distance travelled increases with

the number of degrees of freedom available to the particle. This can be seen to
occur between

√

R2
6, and

√

R2
8.

Similarly, we can investigate the effect of a non-move on a random walk.
Tables (5.6 - 5.9) give the results of a simulated random walk for a particle with
two, four, six and eight degrees of freedom, respectively. The first two columns
in each of the tables gives the time t of the simulation and the theoretical
mean distance

√
t, respectively. The third column, Std(t)

∗
, gives the measure

of standard deviation of a random walk with the probability of a nonmove,
developed in the previous section. The fourth column gives the result of a
simulated random walk with no probability of a nonmove. The fifth column gives
the mean distance from the origin travelled by the particle, where it is possible
for the particle to stay where it is rather than move, with equal probability.
We perform simulations for two degrees of freedom with mean square distance
√

D2
2 (given in table (5.6)), four degrees of freedom and mean distance

√

D2
4

(table (5.8)), six degrees of freedom and mean distance
√

D2
6 (table (5.6)), and

eight degrees of freedom and mean distance
√

D2
8 (table (5.6)).

Table (5.6) shows that the simulation with a non-move has a lower mean
squared distance than simulations without a stayput operation. Both

√

R2
2

and
√

D2
2 are less than the theoretical measure

√
t. This observation also holds

for table (5.7), where we have four degrees of freedom; however, it does not hold
for the results presented in table (5.8), where we have

√

R2
6 >

√
t >

√

D2
6.

Finally, in table (5.9), both the eight degrees of freedom mean squared distance
and the eight degrees and a non-move are greater than the theoretical estimate,
so that we have

√

R2
6 >

√

D2
6 >

√
t. For all of the results given, we have√

R2 >
√

D2.
The standard deviation measure Std(t)

∗
, developed in the previous section,

is also included in tables (5.6 - 5.9). In all cases, Std(t)
∗

<
√

t. For the
random walk with two degrees of freedom and a nonmove, Std(t)

∗
is close to
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t (
√

t) Std(t)
∗

(
√

R2
2) (

√

D2
2)

100 10.00 6.66 7.93 6.47
200 14.14 9.42 11.26 9.19
300 17.32 11.54 13.78 11.26
400 20.00 13.33 15.94 12.98
500 22.36 14.09 17.83 14.52
600 24.49 16.32 19.55 15.99
700 26.45 17.63 21.04 17.23
800 28.28 18.85 22.58 18.30
900 30.00 20.00 23.91 19.55

1000 31.62 21.08 25.21 20.47

Table 5.6: Brownian motion of a particle on a lattice with uniform viscosity: comparison
between two degrees of freedom, and two degrees of freedom plus a non-move. The first
column gives the number of timesteps, the second gives a theoretical measure of average
distance travelled; the third column gives the standard deviation of a random walk with a
nonmove, as derived in the previous section. The fourth column, R

2

2
, gives the mean distance

for a random walk with two possible degrees of freedom, the fifth, D2

2
, gives the mean distance

for a particle with two degrees of freedom and a stayput. The means are generated from 100000
simulations.

√
D2, although slightly larger than the empirical results. For four degrees of

freedom and a nonmove,
√

D4, the standard deviation is again close to the
empirical results, although in this case we have

√
D4 > Std(t)

∗
. With higher

degrees of freedom, six and eight respectively, the standard deviation measure
Std(t)

∗
is consistently smaller than the empirical results, and is a less accurate

approximation than is the case for two and four degrees of freedom.
The results show that the higher the number of degrees of freedom, the higher

the mean square distance from the origin. Furthermore, at approximately six
degrees of freedom, the mean square distance

√
R2 becomes larger than the

theoretical measure
√

t. It should be emphasised that the theoretical measure√
t is only an approximation to the case of a random walk on a lattice, and so

any discrepancy between a theoretical measure defined on a continuous space
and an empirical measure on a discrete lattice should not be considered unduly
alarming.

5.6.3 Random walks on nontoroidal plane

It could also be observed at this point that the above simulations take place on a
nontoroidal Euclidean plane. What effect would a toroidal structure have on the
root mean square distance from the particle’s origin? Simulations of four- and
eight-neighbourhood lattices with toroidal conditions set on a 500×500 grid are
given Table (5.10). The experimental protocol is much the same as the previous
simulations, the number of trials for each timestep t is 5000 and averaged over
each trial. As with the previous simulation runs, the theoretical estimate is less
than the empirically discovered value, but similar to the nontoroidal value. It
seems reasonable from these experiments to assume that bounding the lattice
has relatively little effect on the dynamics of a particle on a two-dimensional
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t (
√

t) Std(t)
∗

(
√

R2
4) (

√

D2
4)

100 10.00 7.07 8.29 7.88
200 14.14 10.00 11.75 11.17
300 17.32 12.24 14.40 13.68
400 20.00 14.14 16.57 15.82
500 22.36 15.81 18.52 17.69
600 24.49 17.32 20.21 19.40
700 26.45 18.70 21.34 20.96
800 28.28 20.00 22.87 22.39
900 30.00 21.21 24.15 23.74

1000 31.62 22.36 25.54 25.05

Table 5.7: Brownian motion of a particle on a two-dimensional lattice with uniform viscosity:
comparison between four degrees of freedom, and four degrees of freedom plus a non-move.

t (
√

t) Std(t)
∗

(
√

R2
6) (

√

D2
6)

100 10.00 6.66 10.01 9.26
200 14.14 9.42 14.19 13.15
300 17.32 11.54 17.37 16.16
400 20.00 13.33 20.12 18.57
500 22.36 14.90 22.50 20.77
600 24.49 16.32 24.70 22.75
700 26.45 17.63 26.67 24.64
800 28.28 18.85 28.52 26.25
900 30.00 20.00 30.20 27.90

1000 31.62 21.08 31.92 29.41

Table 5.8: Brownian motion of a particle on a two-dimensional lattice with uniform viscosity:
comparison between six degrees of freedom, and six degrees of freedom plus a non-move.

t (
√

t) Std(t)
∗

(
√

R2
8) (

√

D2
8)

100 10.00 5.87 10.77 10.20
200 14.14 8.31 15.31 14.43
300 17.32 10.18 18.74 17.72
400 20.00 11.75 21.65 20.46
500 22.36 13.14 24.22 22.89
600 24.49 14.40 26.60 25.10
700 26.45 15.55 28.74 27.05
800 28.28 16.62 30.73 29.03
900 30.00 17.63 32.48 30.75

1000 31.62 18.59 34.30 32.43

Table 5.9: Brownian motion of a particle on a two-dimensional lattice with uniform viscosity:
comparison between eight degrees of freedom, and eight degrees of freedom plus a non-move.
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lattice.
This can be tested further by allowing toroidal conditions, and varying the

area of the simulated membrane. The results of the experiment are given
in Tables (5.10), for the four degrees of freedom model, and (5.11), for the
eight degrees of freedom model. Note that these tables show only those re-
sults for a 500 × 500 matrix. The simulations for each HVR size are run
for t timesteps, where t ∈ {100, 200, · · · , 1000}, with the size of the HVR
H varying over the same range, so that the cell membrane has an area A =
100 × 100, 200 × 200, · · · , 1000 × 1000.

Table 5.10: Results for A = 500× 500 grid shown. Brownian motion of a particle on a two-
dimensional lattice with uniform viscosity. These simulations give the movement of particles
under Brownian motion with four and eight degrees of movement. The columns give the
length of one side of the membrane, the number of timesteps of the simulation, the theoretical
distance of the particle from its starting coordinates, and the empirical mean distance for a
particle with four degrees of movement. The four-neighbour simulations give values higher
than the predicted theoretical values.

H t Theoretical: (
√

t) 4 degrees: (
√

D2
4)

500 100 10.00 25.41
500 200 14.14 24.82
500 300 17.32 24.94
500 400 20.00 25.75
500 500 22.36 25.04
500 600 24.49 25.60
500 700 26.45 25.15
500 800 28.28 25.41
500 900 30.00 25.14
500 1000 31.62 25.12

Table 5.11: Results for A = 500×500 lattice shown. Brownian motion of a particle on a two-
dimensional lattice with uniform viscosity. These simulations give the movement of particles
under Brownian motion with eight degrees of movement. The eight-neighbour simulations
give values higher than the predicted theoretical values.

H t Theoretical: (
√

t) 8 degrees: (
√

D2
8)

500 100 10.00 29.65
500 200 14.14 29.29
500 300 17.32 29.50
500 400 20.00 29.28
500 500 22.36 28.35
500 600 24.49 29.41
500 700 26.45 29.01
500 800 28.28 28.86

Continued on next page



CHAPTER 5. LIPID RAFTS AND SIGNALLING 118

t
√

t H = 2 :
√

D2
8 H = 15 :

√

D2
8 H = 2 : σ H = 15 : σ

100 10.00 25.58 26.10 132.34 134.81
200 14.14 35.63 36.55 151.80 157.15
300 17.32 43.11 43.41 166.76 167.08
400 20.00 51.80 49.59 185.10 179.16
500 22.36 58.09 57.91 197.44 196.13
600 24.49 59.22 58.74 190.46 188.72
700 26.45 64.39 63.00 197.40 194.17
800 28.28 68.83 77.43 204.72 229.40
900 30.00 75.96 77.73 218.33 223.33
1000 31.62 77.21 78.29 215.96 220.27

Table 5.12: Brownian motion of a particle on a two-dimensional lattice with varying viscos-
ity. These simulations give the movement of particles under Brownian motion with HVRs of
size H = 2, H = 15. The size of the cellular membrane is A = 700 × 700 units. The HVRs
are assigned to random locations on the surface. The columns give the number of simulation
timesteps, the theoretical distance of the particle from its starting coordinates, the empirical
mean distance for a particle where there are HVRs of two units in size, and the empirical
mean distance for a particle in the vicinity of HVRs composed of fifteen units. The last two
columns give the standard deviations (σ) for both experiments, which are considerable. Both
experiments give values higher than the predicted theoretical values, and, unlike in previous
experiments, both increase with the size of the membrane.

Table 5.11 – continued from previous page

H t Theoretical: (
√

t) 8 degrees: (
√

D2
8)

500 900 30.00 29.03
500 1000 31.62 28.86

As can be seen from the tables, once again the empirical mean value is larger
than the theoretical value, and increases with the area of the HVR. Furthermore,
more degrees of freedom lead to higher root mean square distances from the
point of origin. However, the increase in the number of timesteps does not seem
to significantly affect the mean distance,

√

D2
4 and

√

D2
8.

These simulations give us a guideline to Brownian motion on two-dimensional
toroidal cellular membranes, but does not take into account higher viscosity re-
gions such as HVRs on the cell surface. This can be achieved with a slight mod-
ification of the previous experimental protocol. We iterate over HVRs which
vary over size H ∈ {2, 3, · · · , 15}, with the viscosity set accordingly.

The HVRs were randomly assigned on the membrane; the sizes of the HVR
are adhered to, rather than treated as an upper limit. The area of the mem-
brane was varied over A ∈ {100 × 100, 200 × 200, · · · , 1000 × 1000}, and the
number of simulated timesteps t varied over t ∈ {100, 200, · · · , 1000}. Each set
of parameters was iterated over for 5000 trials. Table (5.12) shows the results of
running an experiment on a 700 × 700 membrane, where the HVR size are the
extreme ends of the range, namely 2 and 15 units, for comparative purposes.
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As can be seen from the table, in comparison with the experiments where
there are no high viscosity regions (see Tables (5.10), (5.11)). The RMS distance
is much greater than both the theoretical value and the previous experiments.
Notice, however, that there is not much difference between the two different
HVR sizes H.

It appears that the mere presence of HVRs on the membrane is sufficient to
significantly increase the mean distance. The reason for this seems intuitively
obvious, that the protein performs a random walk on the membrane until it
encounters a HVR; after this point, the probability of it escaping the HVR is
considerably less than if it were in a uniform, low viscosity area. It seems rea-
sonable to conclude that the Brownian motion of a protein on a two dimensional
lattice is constrained by the presence of HVRs.

5.7 Variable-sized rafts with an upper limit

Having investigated the behaviour of particles in the presence of uniform-sized
HVRs, we can now examine a less regulated approach to HVR formation. In
the following experiment, HVR sizes will be assigned randomly, up to a certain
limit on their size. Units of lipid will be added to the HVR so that they are
roughly contiguous. An origin for the HVR is randomly assigned, and the next
unit of lipid will be chosen from its neighbourhood; the next point will in turn
be assigned from the neighbourhood of the previous point, until the randomly
determined area of the HVR has been exhausted.

The experimental protocol is much as before. The proteins and HVRs are
distributed randomly across the cell membrane. The membrane is a A = 500×
500 lattice. The upper limit of the area of the HVR is set. The size of each
HVR is randomly determined from this upper limit, that is, a random number
r is generated such that 2 ≤ r ≤ ǫ, where ǫ is the upper limit. The HVRs
are assigned lipid units contiguously until they reach H. We vary the upper
limit ǫ such that ǫ ∈ {4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225}. Each
value of the ǫ parameter is repeated for one hundred trials, and the number of
iterations taken to reach the signalling half-life is averaged over the number of
trials.

The results of the experiment are given in Table (5.13). Clearly, the most
effective upper limits, in the context of the signalling network that we are con-
sidering, are four and nine. The next value is an order of magnitude larger.
Interestingly, the signalling does not simply increase in proportion with the
upper limit ǫ, and in fact the mean time to the signalling half-life gradually
decreases after ǫ = 25. However, for the purposes of the IL-1β network, the
optimal size of HVRs would appear to be rather small.

5.8 Effect of Type-II receptor

Having explored the effects of the lattice and the neighbourhood shape on sig-
nalling, and the further effect of HVRs, the Type-II receptor is introduced onto
the simulated membrane. The experimental protocol should be familiar from
previous sections. The proteins and HVRs are distributed randomly across the
cell membrane.
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HVR area H = (2nm)2 Average formation time

4 2559.46
9 3679.13
16 40547.04
25 47154.35
36 45891.26
49 39290.99
64 33678.04
81 32895.24
100 29851.71
121 25628.22
144 23922.80
169 21853.35
196 24402.43
225 22034.30

Table 5.13: Effect of HVR area on ternary signalling complex formation. The size of the
simulated membrane is A = 500 × 500 units (a unit being 4nm2). The number of receptors
and accessories are held constant at 1000, and each simulation is repeated for one hundred
trials. The simulation terminates after 50% of the receptors and accessories are consumed by
forming ternary signalling complexes.
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The size of the membrane is chosen to be closer to average human cell
sizes, although large enough to give significant effects. The membrane size
varies over A = 100 × 100, 200 × 200, 300 × 300. The upper limit of the area
of the HVR is once again restricted, and the size of each HVR is randomly
determined up to this upper limit. The HVRs are assigned lipid units con-
tiguously until they reach H elements. We vary the upper limit ǫ such that
ǫ ∈ {4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225}. Each value of the ǫ

parameter is repeated for one hundred trials. Each trial has a maximum pos-
sible number of iterations t = 20000, which represents a more realistic period
in terms of human immune response times. All data is collected at whichever
timestep the simulation terminated.

Table 5.14: Effect of Type-II receptor on HVR signalling complex formation. Results are
given for membrane sizes varying over A = 100×100, 200×200, 300×300; the membrane sizes
are chosen to be closer to human cell sizes. The average number of complexes formed during
the simulation are given. The complexes are: signalling binary SBIN , nonsignalling binary
NSBIN , signalling ternary STERN ,and nonsignalling ternary NSTERN . Each trial was
given a maximum t = 20000 iterations before termination; this is a more biologically realistic
timescale. The number of Type-I and Type-II receptors and receptor accessory proteins were
all held constant at U = 100. The size of the membrane, and the upper limit of the HVR size,
were varied. In this way the accessory is a constrained resource, which both types of receptor
have to compete for. Larger HVR sizes form complexes more readily than smaller HVR sizes.
As the HVR size increases, the number of nonsignalling ternaries decreases. This is to be
expected from the competition for the constrained quantity of available receptor accessory.
Simulations were averaged over N = 100 trials for each set of parameters.

Membrane: 100 × 100
HVR area H (2nm)2 SBIN NSBIN STERN NSTERN
2 53.53 47.04 44.83 51.31
3 55.13 48.61 43.04 49.56
4 57.29 52.21 40.88 45.95
5 59.01 55.43 39.29 42.94
6 60.97 59.52 37.47 38.9
7 63.34 62.38 35.35 36.31
8 66.43 64.99 32.35 33.79
9 69.93 68.50 28.86 30.29
10 74.39 75.31 24.39 23.47
11 73.06 72.71 25.72 26.07
12 72.50 73.06 26.30 25.73
13 72.94 72.69 25.84 26.09

Membrane: 200 × 200
2 56.95 52.46 41.28 45.76
3 58.23 52.66 40.28 45.85
4 59.27 55.70 39.23 42.79
5 61.30 58.38 37.32 40.25
6 63.62 61.47 35.24 37.38
7 66.57 65.95 32.33 32.94
8 69.64 69.10 29.26 29.79
9 73.06 73.78 25.83 25.12
10 77.42 77.19 21.48 21.71

Continued on next page
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Table 5.14 – continued from previous page

HVR area H SBIN NSBIN STERN NSTERN

11 76.27 76.27 22.62 22.62
12 75.33 76.26 23.55 22.62
13 75.36 74.96 23.54 23.95

Membrane: 300 × 300
2 60.51 57.35 38.22 41.38
3 61.69 58.52 37.04 40.22
4 62.61 60.12 36.19 38.67
5 63.96 62.56 34.93 36.31
6 65.43 64.65 33.53 34.31
7 68.09 69.09 30.88 29.89
8 72.76 72.58 26.24 26.42
9 76.90 76.95 22.08 22.03
10 80.27 80.56 18.71 18.43
11 79.55 79.49 19.47 19.53
12 79.60 79.55 19.37 19.41
13 77.79 78.13 21.18 20.85

The parameters for the simulations were kept the same, with 100 IL-1β, and
100 Type-I and -II receptors. The receptor accessory was also set to 100 as a
constraint on complex formation, so that the two receptors have to compete
to form ternary complexes. The upper limit of the HVRs and the size of the
membrane were the only parameters allowed to vary.

The results are given in Table (5.14). The size of the membrane is a sig-
nificant factor here; the larger membrane appears to form signalling ternaries
more readily than the smaller membranes, for equal values of HVR area. What
is common to all three membrane areas is that HVRs with a larger upper limit
more readily form complexes of either kind than HVRs with a smaller upper
limit.

As the HVR size increases, the number of nonsignalling ternaries decreases.
This is to be expected from the competition for the constrained quantity of
available receptor accessory. However, the sequestration of resources, as would
be expected from Section (4.7), would arrest further signalling ternary formation
in the event of a further IL-1β stimulus.

The effect of HVRs on signalling has intensified the signalling complex forma-
tion process, although a higher ratio of Type-II receptors would inhibit sufficient
signalling ternaries being formed to initiate signalling transduction.

5.9 Discussion

The classic image of the cell membrane has been modified by recent research.
(2), (27), (57), (67). It has been suggested that the plasma membrane is a more
complex structure than hitherto assumed, shaped by cytoskeletal interactions.
We remain agnostic as to the causes of enhanced protein-protein interactions
on the membrane; rather than assuming the existence of structures known as
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lipid rafts, we presented a more abstract structure, referred to as high viscosity
regions (HVRs).

The efficacy of areas of high viscosity in enabling protein-protein interactions
on the cell membrane has been considered in a number of experiments. Using
the Saffman-Delbrück model of diffusion in cellular membranes we created a
model based on the area of the HVR, where the larger the area, the higher the
viscosity. It was found that HVRs facilitate protein-protein interaction, such as
the binding of a binary complex to an accessory process, compared to simulated
membranes without areas of higher viscosity. From the experiment, it would
seem that HVRs facilitate formation of signalling ternary complexes.

Since higher viscosity regions enable more rapid complex formation, and
thereby more rapid signal transduction, we investigated the optimal size of the
HVR in terms of the IL-1β network. A size of between four and nine units,
where each unit is 4 nm2, was found to be the optimal range for IL-1β signal
transduction.

Assuming that Brownian motion is a good approximation to the passage of
receptors and accessory proteins on the cell membrane, we compared the passage
of a particle on a cell membrane in the presence and the absence of high viscosity
regions. This required empirically establishing an average measure of Brownian
motion on a two-dimensional lattice, since this is our representation in a cellular
automaton environment of the cell membrane. Once this was established, with
the appropriate number of degrees of freedom for our simulation, we considered
the effect of high viscosity regions on the lattice/cell membrane. The presence
of HVRs on the lattice greatly increased the mean distance travelled by the
receptor on the lattice. This could be explained by the receptor being captured
by a high viscosity region, and remaining in it until the end of the experimental
trial.

In summary, high viscosity regions (within a certain range of areas) were
found to enhance signalling transduction in the IL-1β network, by enhancing
protein-protein interaction on the cellular membrane.
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5.A Appendix: The Saffman-Delbrück model

It might be appropriate at this point to focus briefly on the theory underly-
ing the Saffman-Delbrück equation. Saffman and Delbrück realised that the
rotational and translational diffusion of protein and lipid molecules in cellular
membranes could be studied theoretically by applying a model of Brownian mo-
tion to a hydrodynamic model (80). Taking the membrane as an infinite plane
sheet of viscous fluid (a lipid layer) separating infinite regions of a less viscous
fluid (water, for example), they took the protein to be a cylinder with axis
perpendicular to the plane of the sheet, its dynamics determined by Brownian
motion.

In the following, we will employ the same notation as used in the original
paper as far as possible. Diffusion of a particle subject to Brownian motion
is given by two diffusion coefficients, DT and DR, which represent the trans-
lational and rotational displacements. Motion in a plane and rotation about a
perpendicular axis are given by

r̄2 = 4DT t

and

θ̄2 = 2DRt

where r̄2 and θ̄2 are the mean square displacement and angular rotation in time
t. The diffusion coefficients can be related to the particle movement by the
Einstein relations

DT = kTbT , DR = kTbR

where k is Boltzmann’s constant, T is the absolute temperature and b is the
movement, independent of force or torque, defined as the velocity, or angular
velocity, produced by steady unit force. For a sphere in an unbounded fluid of
viscosity µ it is well known that

bT =
1

6πµa
, bR =

1

8πµa3

The ratio of these two mobilities is independent of the viscosity:

bT

bR

=
4

3
a2

where a denotes the particle radius. However, we need to consider two different
types of viscosity, that of the lipid layer (cell membrane) and the surrounding
layer, the viscosity of water. If we let µ be the viscosity of the cell membrane
and µ′ be the viscosity of water, then clearly µ ≫ µ′. A finite translational
mobility bT can be found by taking account of the inertia of the viscous fluid;
it is then found that

bT =
1

4πµh

(

log
4µ

ρUa
+

1

2
− γ

)

where ρ denotes the density of the fluid, U is the translational velocity and γ is
Euler’s constant.
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This model has been supported experimentally (75), and by further mod-
elling work by Hughes et al (45). Peters and Cherry give the lateral and rota-
tional diffusion equations as

DR =
kT

4πa2hη

and

DL =
kT

4πhη

(

log
ηh

ηwa
− γ

)

where the protein is modelled as a cylinder of diameter a spanning a membrane
of width h. The membrane is treated as a fluid with viscosity η, with ηw the
viscosity of the surrounding, less viscous medium, and the equations are accurate
when ηw ≪ η. The equations can be combined to yield

DL

DR

= a2

(

log
kT

4πha2ηwDR

− γ

)

The model will use the third formulation of the Saffman-Delbrück equation,
as modified and expanded by Evans and Hochmuth (original paper’s notation)
(31):

DT =
kT

4πB
log

(

B

vr

)

(5.22)

where k is the Boltzmann constant, T is the absolute temperature (taken in this
case as the temperature of the human body), B is the viscosity of the bilayer
surface (i.e. the cell membrane), which is set to unity, v is the viscosity of water
(taken as 10−2 in comparison with the viscosity of the bilipid layer (80)), and r

is the radius. Since we are dealing, for computational convenience, with a lipid
raft of square or rectangular shape, rather than a circle, the diameter is taken
as the square root of the sum of the two dimensions of the lipid raft squared.
Notice that we have an expression only for the diffusion coefficient which relates
to translational velocity; this is appropriate, since rotational velocity is not
being modelled.



Chapter 6

Conclusion: inhibition in
the IL-1β network

IL-1β is a pro-inflammatory cytokine essential to the functioning of the im-
mune system (30), (1). The response of inflammatory cytokines proves lethal
to millions every year around the globe through endotoxic shock. The study
of endotoxic shock led to the discovery of the biochemical mediators known as
cytokines, and eventually to the identification of IL-1. Interleukin-1 is a ma-
jor mediator of the inflammatory response, and thus must be kept under strict
control by the immune system.

The IL-1 network exhibits a complexity which has been noted by many re-
searchers (23), (7). It exists in two forms, α and β, which afforded a natural way
of drawing a boundary around which part of the network was to be modelled: a
choice between the α or β forms. The β form was chosen for investigation since
it is known to have a higher potency than the α form (62), (19).

IL-1β requires the formation of a signalling ternary complex in order to
trigger signalling transduction; it needs to bind with the signalling (Type-I)
receptor, and for this binary complex in turn to be bound by a receptor acces-
sory protein, before signalling transduction can proceed. A variety of control
mechanisms which inhibit the formation of this signalling ternary process have
evolved. These have been modelled using a variety of techniques.

6.1 Summary of results

A four-dimensional ordinary differential equation model was developed in Chap-
ter 2. The differential equations were developed by applying the Michaelis-
Menten model and the related Briggs-Haldane model, favoured in enzyme ki-
netics for chemical systems which rapidly reach equilibrium or quasi-equilibrium
states. An outline of the Michaelis-Menten model was given in Section 2.A, and
of Briggs-Haldane in 2.B. The equations described the complex formation which
would happen on a cell membrane if it expressed the Type-I and Type-II IL-
1β receptors. Four types of complex formation were permissible in the model:
signalling binary and ternary complexes, and their nonsignalling counterparts.
The amount of unbound ligand, receptors and receptor accessories were given
as conservation laws.

126
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Initial analysis of the system of differential equations implied that a reduction
and simplification of the model would yield more tractable results. In Section
2.2, the system was reduced to two dimensions and nondimensionalised, where
the large disparity between the association and dissociation rates was exploited.
The simplified system was shown to be in equilibrium whenever the number of
receptors was equal to the ligand. Linear stability analysis gave a number of
equilibria for this approximate form of the system, but not too much emphasis
was given to this analysis, due to its rather simplified nature. Many elements
which had been excluded were thought likely to significantly affect the dynamics
of the system.

In Section 2.3, a more complete analysis of the biological equilibria is given.
The biological domain, those values for which the variables representing the
complexes hold, was shown to be forward invariant and inward pointing under
the vector field:

φ̇ = (σ − φ) (CAP − Sφ) − ρyφ (6.1)

σ̇ = r (1 − σ) (L − Sσ) − ρw (σ − φ) (6.2)

From standard theorems, it followed from this that there must be at least one
equilibrium inside the biological domain. After further analysis, and the appli-
cation of the Poincaré-Hopf index theorem (this theorem is explored in appendix
2.C), it was determined that there is a unique biological equilibrium.

The central role of the ratios CAP

S
and L

S
was further accentuated. CAP

S
is

the ratio of unbound receptor accessory to unbound receptors (of either kind),
and L

S
is the ratio of unbound ligand to unbound receptors. It was found that,

if CAP

S
< 1, the availability of the receptor accessory protein is less than the

availability of both Type-I and Type-II receptors. In this case the receptor
accessory is the limiting resource. For low values of L

S
, it was found that the

density of ternary complexes is limited by availability of ligand. For larger
values of L

S
, it was found that there are more binary complexes than ternary

complexes, so that ternary formation is affected by the scarcity of the receptor
accessory. In the case where CAP

S
> 1, the availability of the unbound receptors

was found to be the limiting resource.
The IL-1β network is composed of elements which occur at very low physio-

logical quantities. The type-I receptor is not abundant, but evokes a powerful re-
sponse without a high level of receptor occupancy (6). Since IL-1β typically acts
at very low concentrations, the population sizes of signalling and nonsignalling
complexes will be small, and random fluctuations will have a disproportionate
effect. Stochastic modelling techniques such as Markov chain models are useful
in such a context. In Chapter 3, Section 3.1 a Markov chain model was devel-
oped to investigate the state changes between unbound ligand and the signalling
binary, nonsignalling binary, signalling ternary and nonsignalling ternary com-
plexes. The trials started with a relatively low number of total iterations and
increased, from where 100 ≤ n ≤ 5 × 108, until the probability distribution of
each state in the system became apparent: as the number of iterations increased,
the system became rapidly attracted to the signalling ternary state.

In Section 3.1.2, the mean sample path of the system was analysed. It
was assumed that there would be an effectively infinite number of receptors
and receptor accessory proteins, so as not to constrain complex formation. A
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simulation was designed which terminated either when a ternary complex was
formed, or the maximum number of iterations was reached. Each experimental
trial was a sample path of the Markov chain. The number of iterations required
to reach a state T was recorded as the result of the trial. The behaviour of the
system was observed both with and without the Type-II nonsignalling receptor.
It was found that the effect of the Type-II receptor was to slow the formation
of the signalling ternary complex.

The long term behaviour of the system was analysed in Section 3.1.3. The
stationary distribution was found both analytically and numerically, with the
signalling ternary state being found to be approximately equal to one. Further
analysis compared the stationary distribution of the system with a system where
all the dissociation rates were set to zero. The dissociation rates, and their rel-
evant probabilities, are extremely small in comparison to the association rates,
but made a fundamental change to the distribution of the two systems. In the
first, the signalling ternary was the stationary distribution; however, the system
with no defined dissociation had two stationary distributions, the signalling and
nonsignalling ternaries. From this analysis, it was concluded that the disso-
ciation probabilities, despite their insignificant size relative to the association
probabilities, played an essential role in the dynamics of the IL-1β network.
Without the dissociation probabilities, there were two possible final outcomes
for the system, the signalling and nonsignalling ternary complexes T and NT ;
however, with the dissociation probabilities greater than zero, the probability
of the Markov process arriving at the signalling ternary complex T was found
to be approximately one.

The effects of the interleukin-1 receptor antagonist on the dynamics of the
network were examined in Section 3.2.1. The stationary distribution was found
analytically, and solving numerically once again the signalling ternary was found
to be the stationary distribution, with the state with the second largest proba-
bility being the antagonist-Type-I-bound ternary complex.

The effect of the distribution of the ligand on the system was also considered.
A parameter q was introduced which determined whether or not the ligand was
IL-1β or IL-1Ra; that is, the ligand was considered to be in a superposition
that remains undetermined until an association event takes place, whereupon it
changes from an unbound ligand U to IL-1β L or receptor antagonist R with
transition probabilities 1− q : U → L and q : U → R, where q is the proportion
of IL-1Ra units, and 1 − q is the proportion of IL-1β units in the extracellular
environment. Simulations were carried out with this expanded system, and the
mean sample path of the Markov chain was calculated.

From these experiments, it was concluded that the receptor antagonist in-
creases the average sample path taken to form signalling ternary complexes.
IL-1Ra was found to perform a similar role to the type-II receptor in the IL-1β
network. Furthermore, both the antagonist and the type-II receptor appear to
have a synergistic effect on the network, acting in concert to slow the formation
of signalling ternaries and thus signal transduction.

As the probability of the determination of the ligand superposition U be-
coming IL-1β becomes less, the mean path length to signalling ternary complex
formation becomes much greater, and IL-1Ra-bound ternary complex formation
takes on average much fewer iterations.

The effects of the receptor antagonist and the nonsignalling receptor, from
the results of simulations and experiments in Chapter 3, can be summarised as
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follows:

• IL-1Ra without Type-II:

– slows signalling complex formation: the formation of signalling com-
plexes is noticeably slower for higher values of q,

– sequesters Type-I receptors: prevents formation of signalling by con-
suming Type-I receptors, making them unavailable for signalling com-
plex formation,

– sequesters receptor accessory protein: prevents formation of signalling
by consuming receptor accessory proteins, making them unavailable
for signalling complex formation.

• IL-1Ra with Type-II:

– further slows signalling complex formation: a synergistic interaction
between the antagonist and the nonsignalling receptor slows sig-
nalling complex formation, confirming what was shown in Section
3.2, with increasing q,

– sequesters both Type-I receptor and receptor accessory protein: an-
tagonistic ternaries consume the receptor accessory protein, therefore
impeding formation of signalling ternary complexes.

In Chapter 3, the supply of receptors and receptor antagonists were assumed
to be inexhaustible; in Chapter 4, these resources were explicitly constrained.
A stochastic system investigated the effects of finite receptors and accessories,
following on from the model developed in Chapter 3 and the analysis in Chap-
ter 2, which emphasised the importance of the ratios of ligand and receptor
accessories to the total number of receptors.

Experiments were run to determine the effect of the Type-II receptor on sig-
nal transduction, then the receptor antagonist, and then both inhibitory mech-
anisms. In Section 4.7, the range of human-typical parameters were derived
from the literature, as guided by the ratios derived in Chapter 2. The lower
end of this range was chosen, so as to further explore the effect of constrained
resources on signal transduction.

Two effects were found from the presence of the receptor antagonist on sig-
nalling transduction. Nonsignalling ternaries consume the receptor accessory,
and Type-I-antagonist complexes consume the signalling receptor and the ac-
cessory protein, thereby making them unavailable for forming signalling ternary
complexes, confirming the results of Chapter 3. Furthermore, antagonist ternar-
ies continued to form after IL-1β has been consumed, sequestering receptors and
accessories and making them unavailable to further IL-1β stimulus.

The ongoing consumption of receptors and accessories, inhibiting further
signalling ternary complex formation, suggested a further control mechanism.
A cell in the vicinity of an infection or tissue damage is likely to be subjected to
the emission of cytokines from damaged cells or immune system cells at random
intervals. Sequestration of receptors and accessories by elements of the network
which do not contribute to signal transduction, could prevent the cell from
being able to respond to further IL-1β. IL-1β is a very potent chemical, and
the consumption of limited resources could have evolved as a means to limit the
physiological response of cells.
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The simulations presented so far have taken place on an idealised, featureless
cell membrane. In recent years the classical image of the plasma membrane has
been challenged. It has been suggested that the plasma membrane is a more
complex and compartmentalised structure, driven by a variety of lipid-lipid,
lipid-protein and cytoskeletal interactions, than previously thought (2), (27),
(57), (67).

Simons and Ikonen were the first to suggest the raft hypothesis (91). Col-
lected data indicated that glycosphigolipids (GSLs) could form small, liquid
ordered phase microdomains in phospholipid bilayers (107). These GSL mi-
crodomains are further stabilised with cholesterol, sometime reinforced with
cholesterol binding proteins such as caveolins. The microdomains may promote
compartmentalisation of raft-associated proteins, such as receptors, and asso-
ciated proteins. These properties suggest that lipid rafts may be fundamental
agents in the signal transduction process.

A probabilistic cellular automata model was developed to investigate how
higher viscosity regions (HVRs) on the membrane could colocate receptors and
accessories, and how that would affect signalling ternary formation. After estab-
lishing that HVRs increase complex formation, the Type-II receptor was added
to the network.

The size of the membrane was found to be a significant factor. The larger
membranes formed signalling ternaries more readily than smaller membranes,
for equal values of HVR area. What was found to be common to all three
membrane areas was that the larger rafts (HVRs), up to an experimentally-
determined upper limit, aided signalling complex formation more than smaller
rafts.

As the raft size increased, the number of nonsignalling ternaries decreased.
This was expected from the competition for the constrained quantity of avail-
able receptor accessory. However, the sequestration of resources, as would be
expected from Section 4.7, would arrest further signalling ternary formation in
the event of a further IL-1β stimulus. The effect of HVRs on signalling in-
tensified the signalling complex formation process, although a higher ratio of
Type-II receptors would inhibit sufficient signalling ternaries being formed to
initiate signalling transduction.

6.2 Discussion

Research by its nature generates further intriguing questions to be answered,
which in turn generate other avenues for research, in a seemingly infinite regress.
In this thesis the author has concentrated on two inhibitory components in a
cytokine network replete with them. There are many other control mechanisms
at work on IL-1β, as detailed in Section 1.4, any of which would make a suitable
focus for a detailed piece of research. It would be relatively easy to expand on
the current work merely by adding one or two other inhibitory components to
what has been explored here.

There are other research techniques which could have been used: treating
the IL-1β network as a reaction-diffusion system would seem to be a worthwhile
focus for research, and the author did some initial work, but other research
paths opened up, and so the reaction-diffusion path was neglected. This will
form the basis of a future research project.
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The concept of HVRs (or lipid rafts, if we briefly drop our agnosticism)
would make an intriguing basis for further research. From the results presented
in Chapter 5, we have an upper limit for the size of a lipid raft in relation to
its efficacy as a concentrator of protein-protein interaction, and some results on
the motion on the cell membrane which could be compared with experimental
observation and data.

The probabilistic cellular automata models could have been expanded to in-
clude a third dimension, the extracellular environment directly above the cell
membrane; in fact, the author has the code, but ran out of time (and computer
clockcycles) before such models could be explored in sufficient depth. The prob-
abilistic cellular automaton in three dimensions is probably the most useful tool
presented here for spatial simulation on or near a cellular membrane. Using
a suitably modified version of the Gillespie algorithm would be likely to yield
good results (34).

This thesis has modelled a number of the inhibitory components of the IL-
1β network, and explored their effect on signalling transduction; it would be
intriguing to model further components of this complex network, and find what
other effects are waiting to be discovered.
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