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Abstract 

The expansion of wireless sensor networks to advanced areas, 

including structure health monitoring, multimedia surveillance, and health 

care monitoring applications, has resulted in new and complex problems. 

Traditional sensor systems are designed and optimised for extremely low 

traffic loads. However, it has been witnessed that network performance 

drops rapidly with the higher traffic loads common in advanced applications. 

In this thesis, we examine the system characteristics and new system 

requirements of these advanced sensor network applications. Based on this 

analysis, we propose an improved architecture for wireless sensor systems 

to increase the network performance while maintaining compatibility with the 

essential WSN requirements: low power, low cost, and distributed scalability.  

We propose a modified architecture deriving from the IEEE 802.15.4 

standard, which is shown to significantly increase the network performance 

in applications generating increased data loads. This is achieved by 

introducing the possibility of independently allocating the sub-carriers in a 

distributed manner. As a result, the overall efficiency of the channel 

contention mechanism will be increased to deliver higher throughput with 

lower energy consumption. Additionally, we develop the concept of 

increasing the data transmission efficiency by adapting the spreading code 

length to the wireless environment. Such a modification will not only be able 

to deliver higher throughput but also maintain a reliable wireless link in the 

harsh RF environment. Finally, we propose the use of the battery recovery 

effect to increase the power efficiency of the system under heavy traffic load 

conditions.  

These three innovations minimise the contention window period while 

maximising the capacity of the available channel, which is shown to increase 

network performance in terms of energy efficiency, throughput and latency. 

The proposed system is shown to be backwards compatible and able to 

satisfy both traditional and advanced applications and is particularly suitable 

for deployment in harsh RF environments. Experiments and analytic 
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techniques have been described and developed to produce performance 

metrics for all the proposed techniques.  
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Chapter 1.  Introduction 

1.1 Aim and Scope 

Wireless Sensor Networks (WSNs), which have been widely promoted 

over the last decade, are designed to monitor environmental parameters 

[1;2], e.g. temperature, light, and humidity in an intelligent, multi-hop style. 

Regardless of the scenarios and applications, WSNs are expected to last for 

long periods, usually years, without any maintenance, which means the 

system should be highly energy efficiency. To achieve this target, WSNs 

usually operate with extremely low duty cycles, i.e. they sleep between 

samples before waking up to send one sample. This configuration is 

reasonable, because the physical parameters monitored are slowly changing 

and do not require high sample rates to reconstruct the characteristics of the 

system. However, over time, although the essential characteristics of WSNs 

remain the same: power efficiency, scalability, and low cost, applications 

have expanded to more advanced areas, for example, structure health 

monitoring systems [3], multimedia surveillance systems [4], human health 

care systems [5], and industry process and condition monitoring systems 

[6;7]. Consequently, the system requirements have become much more 

complex. In such applications, the offered traffic load is much higher due to 

higher sample rates, thus a WSN should be re-recognised as a data 

intensive network instead of the traditional view of a low duty cycle network. 

Therefore, researchers will need to increase the WSN system performance 

to satisfy new challenges brought by advanced applications while continuing 

to be compatible with the essential requirements. 

Currently, most of WSN systems operated with Carrier Sense Multiple 

Access (CSMA) style network. With this architecture, the system can enter 

the sleep state to save energy and only wake up when there is information 

ready to be sent. As shown in Figure 1.1, the devices will first compete for 

the wireless channel before transmitting packets. The sensor devices will 

only access the network when they need to, and work in a duty cycled 

manner to reduce energy consumption. In traditional applications, because of 
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the low offered traffic load, the collision probability within the wireless 

channel is kept to a relatively low level. Therefore, the energy and time costs 

of channel competition can be kept low, which guarantees reasonable 

performance in the network. However, the performance will be quite different 

in advanced, high traffic load applications. As shown in Figure 1.1, since the 

channel collision probability increases due to higher traffic load (i.e. higher 

probability to access the channel), the channel contention process will be 

prolonged consuming more time and hence introducing increased delay and 

energy expenditure. As a consequent, not only the lifetime of network, but 

also other performance metrics including throughput and latency will all 

decreased significantly. 

Transmission
Channel

assesment

Channel

assesment

Packet arrived

Channel busy Channel free finish

Channel Competition

 

Figure 1.1. Transmission scheme in WSN system 

The second inefficient scheme of the traditional WSN architecture is 

the transmission itself. To protect against harsh RF environments common in 

many WSN deployments, e.g. industrial plants, the modulation schemes of 

WSN systems have been designed for high reliability. In other words, the 

packets are typically transmitted with an unnecessarily slow datarate, while 

the wireless channel may support much higher datarate. Since the wireless 

channel is time varying, even WSN systems deployed in harsh locations can 

still utilise higher data-rates most of the time. It is easy to imagine that higher 

data-rate will lead to shorter transmission times and therefore inefficient, 

fixed-rate modulation schemes result in higher power consumption, higher 

collision probability and less delivered throughput. 

The overall objective of this PhD thesis is to investigate the 

possibilities of increasing the potential performance of WSNs in advanced 
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applications where increased throughputs are required. Our solutions take as 

a base standard the IEEE 802.15.4 system and propose techniques to 

increase the system performance in two approaches, while still maintaining 

many of its primary features. The solutions offer improvements by improving 

efficiency at the channel contention stage and increasing datarate in the 

packet transmission stage.  

In the channel competition stage, we propose the use of a multi-

carrier based adaptive bandwidth scheme to increase the efficiency. It was 

noticed that in the multi-radio multi-channel system [8-10], high performance 

of system can be expected, due to the use of independent and 

simultaneously accessible radio transceivers. Since each transceiver can 

operate in different channels, simultaneous wireless communication with 

multiple devices will be enabled. In turn, this will significantly increase the 

efficiency of channel competition and provide the performance gain in the 

terms of minimising service delays as well as increasing network throughput. 

However, as expected, the performance gain obtained in this approach is at 

the expense of additional radio transceivers, which will increase both the 

power consumption and the system cost. We conjecture that the introduction 

of an OFDMA style multi-carrier scheme can achieve similar flexibility in the 

channel competition stage by allocating different number of sub-carriers1 to 

different user competing for the channel without increasing the total channel 

bandwidth. The advantage of this scheme is that it can be based on the 

single radio architecture to save cost and power consumption, and can be 

easily integrated with the IEEE 802.15.4 transceiver design. Nonetheless, 

the standard multi-carrier system comes with several problems preventing its 

potential employment in WSN system, including Carrier Frequency Offset 

(CFO) and the high Peak to Average Power Ratio (PAPR). We have 

examined the cause of these problems, and propose a low-cost modification 

applicable for deployment in WSNs. 

In the packet transmission stage, there is the potential to increase the 

system performance as well, since the existing IEEE 802.15.4 modulation 

scheme is designed for worst-case operation. To improve performance we 

                                            
1 In this context, sub-carrier could be equal to the channel in multi-radio architecture.  
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propose an adaptive coding scheme which matches transmission rates to the 

channel conditions. Similar schemes are common in cellular and WiFi 

systems and here we demonstrate that with very simple modifications in the 

physical layer, WSN systems can also be benefited by transmitting packets 

at a speed optimised to the SNR margin of wireless link. Within this modified 

architecture, the bandwidth and all other front-end components have been 

kept the same as required by the IEEE 802.15.4 standard, which means that 

the power consumptions for different data rate remain unchanged. Given the 

sensitivity to power consumption in WSNs, such an expansion should be 

able to increase the energy efficiency as well as the throughput, since a 

faster data rate will lead to a shorter active time. To fully utilise this feature, 

the system should be able to first determine the channel quality and then 

estimate the optimised matching spreading mode to transmit the packet. 

However, when this scheme is expanded to large-scale, multi-hop sensor 

networks, special considerations of the essential requirements of resource 

constraint WSNs are required. In such circumstance, we have examined 

these challenges, and propose corresponding solutions for deployment in 

WSNs, for example, how to evaluate the channel quality, how to estimate the 

optimised channel capacity, and how to implement such algorithm in a low 

complexity MAC protocol. 

During the investigation of adaptive coding schemes, a very 

interesting phenomenon was noticed: the battery recovery effect. This refers 

to the process whereby the active chemical substances in a battery will 

replenish themselves if left idling for sufficient period of time, and hence, the 

deliverable energy of a battery can, to some extent, be recharged. This effect 

has been ignored in WSNs before, since in the extremely low duty cycle 

system this effect has already been automatically maximised. However, in 

the advanced applications considered here, due to the increase in offered 

traffic, additional design is required to take the advantage of this effect 

without the conflicting with the latency and throughput performances of the 

WSNs. Thus, we are motivated to exploit this battery recovery effect as an 

additional approach of energy efficiency to improve battery performance in 

sensor networks. 
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In conclusion, the proposed overall system architecture in the context 

of wireless sensor network system within advantage application should be 

able to adapt in both the frequency and spreading code dimension. A brief 

example has been illustrated in Figure 1.2, the wireless channel has been 

shared by three nearby devices, where each device only occupied partial 

channel after negotiation and adapted spreading code length with the 

channel quality to deliver robust service. The potential system is expected to 

have the following characters: 

Time

Frequency

Code

Device 1

Device 2

Device 3

Interference

 

Figure 1.2. Expected system architecture 

• Efficient channel management: dynamically assign bandwidth to 

different devices in the network to increase the channel competition 

efficiency. 

• High channel utilisation: adapt the coding scheme for each sub 

channel to achieve higher data rate when the SNR margin of wireless 

channel permits. 

• High speed and stable wireless link: monitor the environment noise 

and channel quality to enable the spreading code length adaptation 

accordingly. 
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• Co-existing with other networks: black list the corresponding 

bandwidth where RF interference is detected. 

• Power efficiency: due to the efficient channel competition process and 

the fast data transmission.  

• Increased battery lifetime: due to the understanding of battery 

recovery effect, the system is able to find an optimised trade-off 

between maximising battery life and minimising the service delay. 

• Context aware services: provide prioritised QoS service for different 

data streams in advanced applications by assigning more sub-carriers 

and paths with better link conditions. 

It should be noted that, due to the limitation of experiment equipment, 

we have not delivered a prototype system with all the features in this thesis. 

Instead, we have to demonstrate the performance of these proposed 

solutions in different aspects separately using theoretical analyses, 

experimental validation, and simulation.  However, such an integrated 

prototype is designable using Software Defined Radio (SDR) platforms, for 

example the GNU radio, which may be considered in future work. 

1.2 Contributions and Publications 

The contributions of this thesis can be summarised as follows: 

 First experimental demonstration of a low-cost modification to the 

IEEE 802.15.4 system to integrate with the multi-carrier architecture, 

which mitigated the multi-user interference caused by the multi-hop 

distributed nature of WSN systems. The proposed architecture is able 

to work within 125kHz frequency offset. 

 First evaluation of the potential performance increase offered by the 

multi-carrier based adaptive bandwidth feature, which was validated 

by comparisons between results of analytic models and simulation. 

 First experimental demonstration of the performance of spreading 

code length adaptation derived from the DSSS technology within 

IEEE802.15.4 system. 
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 Proposed and experimentally validated a new error performance 

estimation model for adaptive spreading code length with improved 

accuracy over existing techniques. 

 Proposed a novel link indicator „Effective-SNR‟ by utilising the 

redundancy between the standard link indicators in a two layer 

Kalman filter system, which enabled the resource constraint WSN 

platforms to estimate the channel capacity in a low-cost manner. The 

estimation accuracy of proposed method was 160% better than the 

raw SNR and 120% better than the instantaneous LQI.  

 Designed a low-overhead MAC protocol utilising the adaptive 

spreading code length feature compatible with practical systems, and 

presented the first experimental evaluation of the network 

performance, which is able to deliver more than 200% of the 

throughput while saving more than 50% of the power consumption. 

 First experimental demonstration of the battery recovery effect in 

wireless sensor systems, showing more than 25% potential lifetime 

increase. 

The research work has resulted in the following publications within 

author‟s PhD period, as listed below: 

 C. Chau, M. Wahab, F. Qin, Y. Wang, and Y. Yang, "Battery 

Recovery Aware Sensor Networks," in Symposium on Modelling and 

Optimisation in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2008. 

 F. Qin, Y. Yang, and J. Mitchell, "Performance Increase in WSN by 

the Adaptation of Spreading Code Length," in London Communication 

Symposium (LCS), 2009. 

 F. Qin, Y. Yang, and J. Mitchell, "Performance Increase Through the 

Use of Multiple Sub-carriers in WSN," in 7th ACM International 

Symposium on Mobility Management and Wireless Access (MobiWac), 

2009. 
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 C. Chau, F. Qin, S. Samir, M. Wahab, and Y. Yang, "Harnessing 

Battery Recovery Effect in Sensor Networks", IEEE Journal on 

Selected Areas in Communications (JSAC), Vol. 28, No. 7, 2010 

 T. H. Lin, S. L. Hung, M. Chavali, R. J. Wu, H. N. Luk, and F. Qin, 

"Towards Development of Wireless Sensor System for Monitoring 

Anaesthetic Agents", Sensor Letters, Vol.8, Issue 6, 2010 

 F. Qin, J. Mitchell, "Performance Estimation of Adaptive Spreading 

Code Length for Energy Efficient WSN", in 7th IEEE Wireless 

Advanced Conference(WiAd), 2011. 

 F. Qin, J. Mitchell, "Analyses of MAC Performance for Multi-Carrier 

based Wireless Sensor Networks", in  11th IEEE International 

Workshop on Wireless Local Networks(WLN), 2011. 

 H. Liu, S. Gao, T. H. Loh, F. Qin, “Low-Cost Intelligent Antenna with 

Low Profile and Broad Bandwidth”, IET Microwaves, Antennas & 

Propagation (accepted), 2011 

 F. Qin, X. Dai, and J. Mitchell, "Effective-SNR Estimation for Wireless 

Sensor Network Using Kalman Filter", (Submitted to Ad-Hoc 

Networks), 2011. 

 F. Qin, J. Mitchell, "AS-MAC: Utilising the Adaptive Spreading Code 

Length for the MAC Protocol Design of WSNs", (Submitted to ACM 

Transactions on Sensor Networks), 2011. 

1.3 Thesis Organisation 

This thesis is organised as follows: 

Chapter 2 reviews the background and history of WSNs, introducing 

the most popular IEEE 802.15.4 standards, and addresses the motivation of 

our research project through a system requirement analyse of a real life case 

study. We also discuss related works in this chapter. 

Chapter 3 introduces a low-cost, multi-carrier based architecture for 

WSNs. An emulation based experiment has been deployed to demonstrate 

the feasibility and performance of the proposed approach, followed by an 
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analysis of the potential improvements in network performance offered by 

such architecture using both analytic methods and simulation results.  

Chapter 4 demonstrates a WSN with an adaptive spreading code 

length approach. To make it practically deployable, an accurate error 

estimation model has been proposed by examining the code set constitution 

and de-modulation process. Experiments with real life devices are used to 

validate the proposed error estimation model.  

Chapter 5 utilises the redundancy of two standard channel indicators 

provided by the IEEE 802.15.4 system to generate a new, reliable link 

indicator: Effective-SNR. A two-layer based Kalman filter has been designed 

to estimate the Effective-SNR, defined as: the SNR to achieve the same 

error performance in an AWGN channel. The experiment results show that 

the proposed method is not only accurate by also fast converging with very 

low implementation cost. 

Chapter 6 presents a MAC protocol design with adaptive spreading 

code length approach which is based on the error estimation model and 

Effective-SNR indication described in previous chapters. Experimental 

results have demonstrated significant performance increases in both energy 

efficiency and system throughput. The system performance in harsh RF 

environments has also been provided to show the ability of the proposed 

system to deliver a stable wireless link even in highly variable channel 

conditions. 

Chapter 7 demonstrates the battery recovery effect, followed by a 

discussion of utilising such an effect in WSN applications with high traffic 

load to maximise the network life time by the carefully design the duty cycle 

of devices. Simulation based analysis has been provided to show the 

possibility of optimising the trade-off between battery recovery and service 

latency. 

Chapter 8 presents the conclusions of this thesis, and proposes 

potential future work. 
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Chapter 2. Wireless Sensor Network 

2.1 WSN:  From Traditional to Advance 

A wireless sensor network consists of distributed wireless devices 

equipped with sensors, which can be utilised to collect information about 

physical parameters.  A WSN system could be formed by tens or even 

hundreds of these devices, which cooperated to monitor a geographic area 

and transmit gathered data back to the base station in a wireless Ad-Hoc 

fashion. Such architectures could greatly simplify the deployment and 

maintainability of systems comparing with the wired sensor systems.  

In the early days, such systems were always likely to be deployed for 

environment and habitat monitoring applications [1;2]. In these applications, 

WSN devices were equipped with temperature, humidity, or pressure 

sensors, and recorded data with low duty cycles, i.e. they woke up perhaps 

every hour to sample one measurement and transmit data via a wireless 

communication channel back to the base station. As a result, the offered 

traffic loads within the network in these applications were relatively small, 

usually with no QoS requirement (i.e. working in the „best effort‟ model, as 

some applications are insensitive to lost of information). These systems 

usually needed to last a few months or even years without staff attending the 

deployment site, which means energy efficiency is the most important feature 

of a WSN system. Another attractive feature of WSNs is their scalability, 

which enables the system to be able to add and remove devices without 

reconfiguration or interrupting the work of network. Therefore, to fulfil this 

requirement, systems usually operate with a distributed multi-hop 

architecture. As expected, since there could typically be hundreds of these 

devices deployed in one system, the WSN devices have to be of a low-cost 

design, leading to constraints in the resource available in each device. As a 

result, the essential requirements of the sensor networks are: low cost, 

energy efficiency, and scalability. For instance, MintRoute [11] and S-MAC 

[12] have been proposed by academics to achieve these requirements in the 

routing and MAC layer respectively. 
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Recently, the flexibility of WSNs has attracted more interest from 

advanced applications, e.g. structure health monitoring systems [3], 

multimedia surveillance systems [4], human health care systems [5], and 

industry process and condition monitoring systems [6;7]. Accordingly, the 

offered traffic load inside the network has increased tens or even hundreds 

times over traditional applications and QoS is now a fundamental 

requirement [13]. As could be predicted, the traditional WSN architecture has 

failed to completely satisfy the requirements of these advanced applications. 

For instance, Kim et al. [3] deployed a multi-hop wireless sensor network to 

monitor the structural health of the Golden Gate Bridge. They reported that 

transferring 512 kB of data from 64 nodes required over 12 hours. Moreover, 

some of these applications require the nodes to be deployed in harsh radio 

environments (e.g. industry plants), thus the quality of the wireless link will 

suffer from the variable RF channel, which raises further challenges in the 

network design.  

 

Figure 2.1. Engine section in the BP trail site [14] 

To understand the new requirements posed and allow the deployment 

of advance sensor network applications in practice, a real life WSN project 

will be discussed here as an example. British Petrol (BP) has deployed a trial 

WSNs system in Loch Rannoch aiming to monitor the health status of a 

ship‟s engine to avoid the daily checks which requires regular staff attention. 

It is worth noting that this is a monitoring system rather than a detection 
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system, which means that the system is expected to work for several years 

not just for single events (the later one is less sensitive to energy usage).  

This is a typical WSN application with high traffic load in a harsh RF 

environment. The engine itself also generates RF noise during operation, 

with other interference coming from the many electronic devices used in the 

ship including radar and communication systems, which operate with a 

random duty-cycle. Therefore, the wireless channel will suffer from time 

varying environment noise. Beside this, the engine area of Loch Rannoch 

consists of many metal surfaces and obstacles which may cause the heavy 

shadowing and fading effects (see Figure 2.1 for reference). These fading 

effects may come from the multi-path effect (e.g. the multiple reflection of 

metal surfaces). As a result the arrived signals through different paths in the 

receiver side may suffer from the frequency and time spreading, which will 

cause the signal quality degradation. However, since most of the WSN 

applications are statistic deployed, the degree of fading effect will be location 

dependant and be approximately constant for each deployed device. 

However, passing operators and vehicles may contribute to the varying 

channel. Without any doubt, all these effects will decrease the stability of the 

wireless link in the WSN system. 

The system determines the health status of the engine by monitoring 

the vibration sensors attached to the engine body. In total 98 accelerometers 

have been deployed feeding data to 28 battery-powered WSN nodes. Each 

sensor captures at a raw sample rate of 100 kHz raw sample with an Analog-

to-Digital Converter (ADC), which is then down-sampling to 3 kHz. 

Considering that each WSN node needs to transfer data from more than 3 

sensors, the offered traffic load in the network will be much higher than the 

traditional WSNs system (around 60 packets per node per second when the 

payload length = 100 bytes). Furthermore, all the WSN nodes will be trigged 

at exactly the same time to start sampling, which will further increase the 

competition probability in the wireless channel and decrease the successful 

deliverable throughput. To summarise, in this system, the WSN network is 

working with extremely low duty cycle manner transmitting only operation 

and  maintenance packets most of the time but will suffered congestion due 
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to the heavy traffic load and competition for the channel once the system has 

been trigged into the active stage. It should be noted that although these 

problems are discussed in the context of a structural health monitoring 

application, very similar problems also occurred in multi-media sensor 

networks and most of other advanced sensor network applications. 

In summary, although the original essential requirements of WSNs 

have not changed (i.e. energy efficiency, scalability and low cost), advanced 

applications increase the offered traffic load and pose significant 

performance challenges, which requires the system to be able to deliver 

higher throughput with QoS requirements. As the current WSN architecture 

is optimised for low duty cycle scenarios, the system performance decreases 

rapidly in a heavy offered traffic load scenario, which limits the application of 

sensor networks in advanced fields. Therefore, our work is aiming to build a 

realisable architecture which is an evolution of current WSN architectures, to 

adapt WSNs for these types of advanced applications by providing increased 

performance within the resource constraints typically encountered. 

2.2 IEEE802.15.4 Technology  

Although any technology which does not rely on wires could be 

classified as a wireless technology and can be employed by WSNs e.g. 

acoustic communication for underwater WSNs [15], Radio Frequency (RF) 

technology is the default option to represent „wireless‟ for WSNs. Moreover, 

in recent years, IEEE 802.15.4 [16] has become the most popular choice for 

most of the WSN platforms. The IEEE 802.15.4 standard also contributes to 

other standards including ZigBee [17], 6LoPAN [18], and Wireless Hart [19], 

which are different in higher layers but share the same physical layer and 

most of the MAC layer provided by IEEE 802.15.4. Without of loss any 

generality, we narrowed our scope of research to IEEE 802.15.4 based 

technology which is most widely representation in the wireless sensor 

community. Therefore, a brief introduction on IEEE802.15.4 standard will be 

provided in this section to aid the future discussions in this thesis. 

The IEEE 802.15.4 standard defines the characteristics for the PHY 

and MAC layers for applications named Low-Rate Wireless Personal Area 



Page 28 of 198 

Networks (LR-WPAN), which shares the basic features of WSNs, i.e. easy 

deployment, extremely low cost, power efficiency, and acceptable data 

transfer. 

2.2.1 Physical layer of IEEE 802.15.4 

The IEEE 802.15.4 standard specifies three frequency bands: 

868MHz, 915MHz, and 2.4GHz in the physical layer. As the first and second 

bands are not opened for un-licensed devices in all the countries, most 

IEEE802.15.4 compatible transceivers only support 2.4GHz [20;21].  

Figure 2.2. Modulation process of IEEE802.15.4 

As regulated by the IEEE 802.15.4 standard, each 4 bits from the 

upper layers will be mapped into one symbol, giving       symbols. Each 

symbol shall be mapped into a 32 chip sequence, which is one of the pre-

defined Pseudorandom Number (PN) code set. This processing is named 

Direct Sequence Spread Spectrum (DSSS) technology, which will increase 

the bandwidth but decrease the interference and noise effects. Since the 

code set are pseudo-orthogonal to each other, this system can also be 

treated as a 16-ary modulation system. In the 2.4GHz band the chip 

sequence is modulated using Offset Quadrature Phase Shift Keying (O-

QPSK) technology with a Half Sine Pulse Shaping (HSPS) filter, while Binary 

Phase Shift Keying (BPSK) technology is employed in the 868MHz and 

915MHz bands [16]. Recalling the discussion in section 2.1, to keep costs 

low most IEEE 802.15.4 transceivers employ non-coherent differential 

Minimum-Shift Keying (MSK) demodulation instead of coherent OQPSK 

demodulation to enable low cost and low complexity RFIC designs as 

discussed in [8,9]. The complexity of demodulation can be greatly simplified 

by removing the need for accurate frequency and phase synchronisation. 

Bit to Symbol Symbol to Chip Modulation

Data Stream Modulated Signal

250k Bit/s 62.5k Symbol/s 2M chip/s
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Table 2.1 Spreading Code Set used by IEEE802.15.4 

symbol Spreading code word 
0000 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 
0001 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 
0010 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 
0011 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 
0100 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 
0101 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 
0110 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 
0111 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 
1000 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 
1001 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 
1010 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 
1011 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 
1100 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 
1101 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 
1110 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 
1111 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 

 

Figure 2.3. O-QPSK modulation with HSPS filter [16]. 

2.2.2 MAC layer of IEEE 802.15.4 

All three bands share the same MAC layer which is a CSMA/CA 

protocol with a Binary Exponential Backoff (BEB) scheme. When a packet 

arrives at the MAC layer, a MAC header, a 2 byte CRC tail, one byte to 

indicate frame length, as well as a 6 bytes preamble will be added. The 

complete packet, which has been shown in Figure 2.4, is now ready to be 

transmitted. 

 

Figure 2.4. Packet consist of IEEE802.15.4 

Preamble 

Sequence
SFD
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In CSMA/CA, the device will first start a back off period which is 

chosen from the set (0~   -1) with uniform probability, where BE is the 

Backoff Exponent which has a default value of 3 but can be configured. After 

the back off period, a node will perform a Clear Channel Assessment (CCA): 

if the channel is free then the packet will be sent directly, otherwise the node 

will increase the value of BE by 1, and back off again, repeating this process 

until the channel is free and the packet is sent, or if BE reaches the pre-set 

maximum retry value, which has default value of 5, the packet is discarded. 

The ACK scheme is optional in the standard IEEE802.15.4 MAC. The 

ACK.request bit in the FCF field can be enabled to ask the receiver to send 

an ACK packet after a short period denoting a successful transmission. If 

not, the transmission link will be working in a best effort mode. 

2.3 Related Works 

a) Existing approaches for high traffic loads in WSNs 

Some research groups have noticed the increasing traffic load 

requirement in WSN and have tried to solve this problem by viewing it as a 

congestion control problem. CODA was the first solution proposed in [22], 

which is an energy efficient congestion control scheme with receiver based 

congestion detection, open-loop backpressure, and closed-loop source 

regulation. Hull et al. [23] examined the effect of three congestion control 

schemes (Hop by hop flow control, source rate control, and prioritised MAC 

protocol) in a real life WSN platform, and proposed a fusion algorithm to 

achieve the best effort. Ee et.al. [24] proposed a distributed congestion 

control algorithm for a common network architect in WSN. In [25], a source 

rate control scheme with further interference aware design has been 

proposed and validated in a 40 nodes WSN test bed. Nearly all these 

methods rely on the regulation of the packet generation rate, i.e. some 

packets will be drop if they exceed the buffer queue. Existing WSNs 

architectures lack the ability to allocate more resource to congested areas to 

aid faster transmission. 

Some other groups are trying to improve network performance in this 

scenario with QoS support. Erol et.al. [26] treated the WSN as consisting of 
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tasks which are unlikely to have the same requirement, for instance, delay 

and priority. Their solution is based in the routeing layer, which assigns the 

best route to the packets of a high priority task. Chewoo et.al. [27] proposed 

an enhanced MAC protocol for IEEE802.15.4 to support the service 

differentiation in WSNs. In [27], the network was treated as being constituted 

of rate-sensitive data flows. However, their algorithms can only adjust the 

parameters of the backoff window to meet network requirement. Danil et.al. 

[28] proposed a similar method of maintaining separate queues for different 

priorities packets and adjust contention and transmission power according to 

the priorities to guarantee the delivery of high priority packets.  

Beside these, some researchers are trying to decrease the generated 

traffic load. Edith et.al. [29] proposed a method to reduce the redundant 

packets transferred in WSN based on an „Information-Aware‟ scheme. The 

algorithm will drop packets when in the congested state according to the 

importance (decided by the application) of packets, trying to provide 

satisfactory Quality of Information (QoI) to the users. Although the term QoI 

has been proposed by Bisdikian [30] several years ago, up to now it is far 

from as well understood or as well accepted as QoS in communication 

networks or Quality of Images in computer vision. In other words, it is still 

lacking a universal judgement on which packets are less important and can 

be dropped. Moreover, this method does result in the loss of information and 

can only be applicable in specified applications. 

As a conclusion, the increased traffic load in WSNs has been well 

recognised in the research community. However, these proposed 

approaches usually suffer from limitations in the technologies provided by 

existing WSNs architectures, and fail to contribute a significant performance 

increase for these scenarios. 

b) Existing approaches to increase channel utilisation in WSNs 

Opportunities do exist to increase the efficiency of the wireless sensor 

network performance within data intensive applications through other 

medium access technologies, such as Time Division Multiple Access (TDMA) 

[22] or Code Division Multiple Access (CDMA) [23]. In a TDMA style network, 
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the transmission is based on super-frames where each super-frame is 

divided into several time slots allocated to different users. Although this 

scheme can increase the channel utilisation efficiency, it requires additional 

time synchronisation and pre-allocated time slot. A CDMA based network will 

further require accurate power and time synchronisation to level the received 

power of all incoming signals to avoid interference, which could be overly 

complex for a low cost sensor network system.  

Multi-channel based solutions are another popular approach in the 

research area of wireless networks, which allows transmission multiple 

channels to increase the network performance of WSNs. Nearly all proposed 

multi-channel protocols fall into one of the following two kinds: the first is 

scheduled access [31-34]. Protocols in this mode are a derivation of the 

TDMA style scheme, which usually divides each channel into slots, and 

assigns them to different devices in the network. However, this mode 

typically requires time synchronisation, global knowledge of the network 

topology, as well as of the traffic requirement for each device. The second 

type is more reasonable for WSN systems, the Random access [35-40]. 

Protocols in this mode are more flexible and compatible to traditional single 

channel system. But since the receiver can only switch between the 

channels, the system performance gain is limited. Some protocols simply 

assume the hardware to have the ability to listen to multiple frequencies at 

the same time [36-38], which is beyond the ability of any existing wireless 

transceiver in WSNs. Other protocols use low efficiency methods to solve 

these problems e.g. on demand channel switching, signal strength 

measurement based channel selection, or they assign channels randomly as 

in [39], which are easy to implemented but only have low performance gain.  

As a comparison, the multi-radio multi-channel systems [8-10] usually 

have significant performance improvement. This is because these systems 

are equipped with multiple wireless transceivers, therefore the system is able 

to receive and transmit data concurrently over multiple channels at the same 

time. However, considering that the radio transceiver consume most of the 

energy in a WSN platform, multiple radio transceivers will certainly increase 

the power consumption. It must be noted that this performance increase is 
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obtained in the expense of increased power consumption and system cost. 

Therefore, such a solution is not suitable for the energy constrained and cost 

sensitive WSNs. 

To summarise, the improvement of the wireless channel utilisation has 

been a focus of research for some time. Most of the proposed solutions are 

provide either high efficiency but low flexibility (centralised pre-organised 

solutions), or high flexibility but low efficiency (random and distributed 

solutions). However, in wireless sensor networks with high traffic load, it is 

important to achieve these two targets at the same time: i.e. high flexibility 

and high channel efficiency. 

c) Transmission adaptation with varying channel quality in WSNs 

The adaptation of data rate is inherent in the standards for 

IEEE802.11[41-45], Bluetooth [46;47] and some cellular systems [48;49]. 

Among these, IEEE 802.11 shows most similarity to the IEEE802.15.4 based 

WSNs system and provides helpful prior knowledge for our approach. The 

first data rate adaptation algorithm, the Autorate Fallback Algorithm (ARF) is 

proposed and implemented in [41], which is an SNR independent algorithm. 

ARF switched modes based on previous packet failures, which is simple to 

be implemented but provides relatively poor performance. The most famous 

data rate adaptation algorithm is the Receiver-Based Autorate Protocol 

(RBAR) [42], which demonstrated that a receiver based mechanism with 

SNR indication can achieve the best performance for an adaptation process. 

A more recent approach which included a practical implementation was 

proposed by Microsoft in [45], which further discussed interference effects in 

the network and proposed online calibration approaches based on their 

findings. 

In the area of WSNs, rate adaptation can be achieved through the 

adjustment of the spreading code length of the IEEE802.15.4 architecture; 

one of the most popular physical layer solutions of wireless sensor network. 

In the IEEE 802.15.4 PHY layer, four information bits (a symbol) are used to 

select one of 16 code words from a nearly orthogonal code set to be 

transmitted during each data symbol period. Hence, the rate adoption will be 
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enabled by adjusting the length of these code words. Such operation will be 

an un-compliant IEEE 802.15.4 solution but shares most of the basic 

principles of IEEE 802.15.4. Lanzisera et al. have proposed an algorithm 

based on this solution to reduce the average power consumption of wireless 

sensor network [50;51]. To the best of our knowledge, this is the only work 

discussing this topic. The work of [50] successfully introduced the possibility 

of adaptive spreading code length and demonstrated the great potential of 

this technique through simulation but due to hardware limitations a full 

experimental demonstrated was not presented. 

The most straightforward issue caused by harsh RF environments is 

interference, which consists of two types: interference from other devices 

intending to transmit signals including WiFi, communication radio, and radar 

device etc., or unintended radiation from devices that aren‟t supposed to 

transmit signals including sparks from motors or power generators, light 

dimmers and microwave oven. RF interference has been reported for 

industry locations in [52] and [53], and for hospital sites in [54]. A very special 

case has been reported in [55] for aviation equipment. The harsh RF 

environment can also be the result of multi-path effects which causes the 

fading channel of wireless transmissions. The channel performance with 

multi-path effects in various locations has been examined in [56;57]. All 

these investigations demonstrate that the harsh RF environment is not only 

time varying but also high enough to interrupt wireless communication. 

Many groups are trying to develop better ways to indicate the time-

varying, harsh RF channel. Several empirical studies have given us a better 

understanding of the complex correlation between SINR and link quality. For 

particular, Aguayo et. al. [58]  have studied several packet loss related 

factors including SNR, interference, and multi-path fading effect. Based on 

the experiment results collected from an IEEE 802.11 mesh network, they 

argued that, SNR cannot be used as a reliable predictor of link quality. Son 

et.al. [59] experimentally studied the concurrent transmission performance 

using Mica2 and MicaZ platforms within the context of WSNs. They 

confirmed that the assumption proposed by [58] also exists in the low-power 

wireless links. Beyond these work, our analyses further studied why SINR 
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breaks the correlation with PRR in the fading channel, and propose the 

correspond compensation. Jamieson et.al. [44;60] proposed a more accurate 

link indicator for wireless network system named SoftPHY. SoftPHY uses a 

Maximum Likelihood (ML) based approach in the decoding step of physical 

layer to directly estimate the likelihood of error probability of tagged wireless 

link. However, their approach modified the core hardware of the RF 

transceiver, thus cannot be deployed on a COTS platforms. Murat et.al. [61] 

proposed a Kalman filter based link quality estimation scheme for wireless 

sensor network. However, their approach takes received signal strength as 

the only observer parameter, thus failing to consider signal distortion caused 

by multi-path and other harsh RF effects.  

Adaptive transmission technology, which will automatically match the 

modulation and coding scheme with the channel quality, has been employed 

in wireless cellular and data networks for over a decade. Such approaches 

are expected to contribute to the network performance significantly for WSNs 

with high traffic loads in harsh RF environments.    

d) Existing battery aware design in WSNs 

Sensor networks commonly use rechargeable batteries, such as 

Nickel-cadmium (NiCd), Nickel-metal hydride (NiMH), Sealed lead-acid 

(SLA), Lithium-ion (Li-ion), and Lithium-polymer (similar to Li-ion). Different 

batteries have different properties. In particular, NiCd and NiMH are often 

used, because NiCd has a long cycle life, whereas NiMH has high energy 

density. There have been numerous studies about the performance of 

batteries in chemical engineering [62]. In networking, [63] carried out an 

empirical study to measure the performance of battery-powered sensors, but 

did not examine the saturation threshold. There are a number of approaches 

of energy management in sensor networks, examples include S-MAC, 

SEEDEX, RI-MAC, DW-MAC [12;64-66]. Commonly sensors, listening and 

reception can consume significant energy. There are other MAC protocols 

that consider battery characteristics for example BAMAC and Bel-MAC 

[67;68] rely on exchanging dynamic battery state information to optimise the 

use of batteries among sensors, but such information cannot be easily 

obtained without online measurement on the internal properties of a battery. 
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2.4 Summary 

This chapter addressed the high traffic load demands resulting from 

the application layer in new WSN applications including structural health 

monitoring, multi-media surveillance and health care, which are significantly 

different to traditional WSN applications. It can be concluded that WSNs are 

facing new challenges to provide reliable and energy efficient transmission 

under heavy traffic loads. Furthermore, the literature review shows that this is 

an area beginning to attract attention from a number of academic groups but 

that accepted solutions are still not common due to the limitation of current 

WSN architectures. In the following chapters of this thesis, we will propose 

several approaches within this context, which aim to increase the 

performance of energy constraint WSNs and enable their extension to 

advanced applications. 
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Chapter 3. Increase the Efficiency of 

Channel Contention using a Multi-carrier 

Architecture 

3.1 Introduction 

In this chapter, we attempt to improve the WSNs performance in 

advanced applications by increasing the efficiency of channel contention 

period. Currently, most of WSN systems operated with CSMA style network, 

where the devices compete for the wireless channel before the transmission 

of packets. As discussed in Chapter 1, when such system is posed with high 

traffic load in the advanced application, the WSN devices could consume 

more energy and time in the channel contention period than in the 

transmission period due the high collision and false channel assessment 

probability. This is because current WSN architecture is designed and 

optimised for the extremely low traffic network, which is no longer true for the 

WSN applications with high traffic load. As a consequent, the network 

performance including the energy efficiency, throughput and latency will all 

decreased significantly. This phenomenon has been witnessed not only in 

the pure CSMA based networks, i.e. IEEE 802.15.4 MAC, but also other 

specially designed protocols derived from CSMA like the famous S-MAC and 

B-MAC..  

Figure 3.1 shows an ideal example in the channel contention period, 

where two devices are competing to access the wireless channel. In the 

standard IEEE802.15.4 MAC protocol, once a packet has arrived from the 

upper layer, the MAC/PHY layer will first asses the wireless channel to 

determine its status. If the channel is free, the device starts the data 

transmission immediately. During the data transmission process, if another 

device has a packet to be sent, its channel assessment will return a busy 

status. As a result, the second device will enter the backoff stage and 

attempts again after the backoff period. Obviously, since the channel 

assessment only determines whether the channel is free or busy, the second 
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device has no information about how long the packet transmission will last. 

Therefore, a random backoff scheme has to be adopted [16] and the backoff 

length is blindly selected. It may be longer than the data transmission, which 

results in a gap of free channel between two successive data transmissions. 

It may be shorter than the data transmission and a much longer backoff 

length is re-scheduled. In both cases, it is highly possible that a gap exists 

between two successive data transmission and the time in the gap is wasted 

in vain. This causes a low channel utilisation which is common in all CSMA-

like protocols under heavy traffic load.  

Opportunities do exist to increase the efficiency of the wireless sensor 

network performance within data intensive applications through other 

medium access technologies, such as Time Division Multiple Access (TDMA) 

[69] or Code Division Multiple Access (CDMA) [70]. In a TDMA style network, 

the transmission is based on super-frames where each super-frame is 

divided into several time slots allocated to different users. Although this 

scheme can increase the channel utilisation efficiency, we suggest that this 

technology may not be suitable for wireless sensor networks for the following 

reasons. Firstly, this method is a centralised, non-distributed algorithm. 

Secondly, the implementation of time synchronisation will cost 

communication overhead. Thirdly, the data traffic in a WSN system is not 

truly random as typically assumed in data networks, but correlated with the 

sensing events in the system. Therefore, pre-allocated, fixed time-slot 

allocation will lead to less flexibility and lower channel utilisation. A CDMA 

based network will further require accurate power and time synchronisation 

to level the received power of all incoming signals to avoid interference, 

which could be overly complex for a low cost based sensor network system. 

Therefore, the CSMA style network, in particularly the IEEE 802.15.4 system, 

is still the most popular choice of WSN systems, due to its scalability and 

flexibility. Multi-channel based solutions are another popular approach to 

increase the efficiency of wireless network, which allows transmission 

multiple channels to increase the network performance of WSNs. However, 

the multi-channel approaches are mainly increase the network performance 

by allowing concurrent transmission. Since the device can only switch 
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between channels, the receiver can only listen and receive from only one 

channel at the same time. Furthermore, in the multi-hop network, the multi-

channel solution may face coordination problems, e.g. multi-channel hidden 

terminal problems and missing receiver problems [40]. To solve these 

problems, some protocols simply assume the hardware to have the ability to 

listen to multiple frequencies at the same time [36-38], which is beyond the 

ability of any existing wireless transceiver in WSNs. As a comparison, the 

multi-radio multi-channel approaches usually have significant performance 

improvement. This is because these systems are equipped with multiple 

wireless transceivers, therefore the system is able to receive and transmit 

data concurrently over multiple channels at the same time. However, 

considering that the radio transceiver consumes most of the energy in a 

WSN platform, multiple radio transceivers will certainly increase power 

consumption. It must be noted that this performance increase is obtained at 

the expense of increased power consumption and system cost. Therefore, 

such a solution is not suitable for the energy constrained and cost sensitive 

WSNs. 

Therefore, we introduced an Orthogonal Frequency Division Multiple 

Access (OFDMA) liked multi-carrier architecture into WSN systems, in which 

the bandwidth of the shared wireless channel can be divided into several 

sub-channels and assigned to different nodes. Since the device can access 

the wireless channel using only part of the bandwidth, several nodes sharing 

the nearby wireless medium are allowed to transmit information concurrently 

(i.e. achieve similar performance gain with multi-radio multi-channel system). 

Thus the possibility of collision would be reduced, which will increase the 

efficiency of the channel contention period as well as the re-transmission rate. 

In other words, the system will have similar performance gain with the multi-

radio multi-channel approaches, but realised with the existing bandwidth with 

a single transceiver design with is both cost and energy efficient. As a result, 

better network performance and energy efficiency of the CSMA based WSN 

systems could be expected. As illustrated in Figure 3.1, given each device 

only occupies a half of the bandwidth, when the first device is transmitting, 

the channel assessment operation of the second device will return the 
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information that another half of the channel is still available. Then the second 

device can utilise the rest of the channel to start its transmission 

immediately. Thus both devices transmit their data concurrently without 

backoff and collision. It should be noted that the bandwidth can be 

configured into more sub-channels. Therefore, more devices can transmit at 

the same time with further divided sub-channels. As a result, the efficiency of 

the contention period can be enhanced in data intensive applications.  
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Figure 3.1. Adaptive Bandwidth System Architecture 

Such a multi-carrier architecture will be similar to the OFDMA scheme, 

but can be applied with multi-hop distributed network. Although OFDMA 

system has the advantages of high channel utilisation which has been well 

studied and successfully deployed in cellular and data networks (e.g. LTE 

and WiMax system), its disadvantages of sensitivity to Carrier Frequency 

Offset (CFO) and the high Peak to Average Power Ratio (PAPR) pose 

challenges to its deployment in low cost, multi-hop sensor network. In 

particularly, the adverse impacts of CFO and PAPR are much worse in the 

scenario of multi-senders, where the carrier frequency offset caused by 

frequency variations among different sender‟s Local Oscillators (LO) would 

cause significant Inter Channel Interference (ICI) and Multi User Interference 

(MUI) [71]. For example, in WiMax and LTE systems, OFDMA is deployed 

only in the down link mode where the base station is the only transmitter, 
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whereas the uplink employs Single Carrier Frequency Division Multiple 

Access (SCFDMA) mode to avoid CFO problem. Considering that WSNs are 

mainly for data collection from distributed devices (as shown in Figure 3.2), 

the main traffic load is in the uplink mode. If OFDMA were to be used in 

WSNs, without any doubt, these effects caused by CFO would dramatically 

degrade the system performance. In addition, the high PAPR can cause 

lower power efficiency and increase device cost, since it requires highly 

linear power amplifiers to avoid signal distortion. As such problems have 

already been significant in existing cellular systems, we suggest that in a 

WSNs consisting of hundreds of nodes and tens of hops, the multi-carrier 

architecture without any modification will be even more challenging to 

implement.  
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Figure 3.2. Traffic direction in WSN system 
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In this chapter, in order to avoid these disadvantages of OFDMA like 

multi-carrier system but benefit from its advantages (i.e. spectrum flexibility 

and resistant to multi-path effect), we will analytically examine the causes of 

these problems and demonstrate one possible modification of the multi-

carrier architecture for WSNs. Unlike the widely used but complicated CFO 

estimation method, we propose a low cost solution for WSNs by integrating 

pulse shaping, differential modulation and chip spreading techniques to 

increase the CFO resistance and decrease the PAPR. The proposed 

physical layer design has been validated by the experiments, where a very 

good performance has been demonstrated in terms of against the CFO and 

PAPR problems.  

In the later part of this chapter, we also investigate to what degree the 

WSNs can benefit from the proposed multi-carrier based architecture. In 

[72;73], researchers have argued that the simple increase of spectrum 

flexibility without an increase in overall bandwidth will not increase the 

throughput performance of a network. However, as we expected, the multi-

carrier architecture can offer other benefits such as energy efficiency and 

service latency because of the increased efficiency of channel contention 

process. Due to experiment limitations in demonstration of the network 

performance, we present an analytical approach to demonstrate the 

performance of this multi-carrier system in the MAC layer and show that 

energy efficiency can be achieved while still maintaining high throughput 

when exposed to heavy offered traffic load, which is the general character of 

the advanced sensor network applications.  

3.2 System architecture 

3.2.1 CFO problem in multi-carrier system  

In order to pave the way to mitigate the adverse effects of, the error 

performance of OFDMA subjected to frequency offset between carriers is 

first analysed and, a simple, low power and low cost modification of multi-

carrier architecture is proposed, which is still compatible with the essential 

requirements of WSNs. 

The transmit signal in a multi-carrier system can be defined as: 
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 (3.1) 

where    is the sub-carrier number,   is the sub-carrier index, n is the 

symbol index,      is the raw data.         is the up-converting base function 

given by: 

                          (3.2) 

where g(t) is pulse shaping function,    is the transmission time interval,    is 

the carrier frequency of k-th sub-carrier.  

The signal      propagates through an Additive White Gaussian Noise 

(AWGN) channel, where an AWGN noise    is added to      to give the 

received signal. It should be noted that the frequency offset will affect the 

error performance in both AWGN and fading channel. To simplify the 

analyses we only considered the AWGN channel in this chapter. Another 

consideration comes from the experimental limitations of validating the 

proposal, i.e. to replicate a controllable fading channel requires expensive 

channel emulators. Similar approaches have been adopted in many other 

research works [71;74] in the multi-carrier field. As with the standard multi-

carrier system, the scheme proposed in this chapter may suffer further 

performance degradation from fading effects but still with significant 

performance improvement comparing to system without such a design. 

At the receiver side, the demodulation process is implemented by 

projecting the received signal on the complex conjugates of the base function 

  
      : 
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(3.3) 

In an ideal multi-carrier system scenario,           
       

         
 
  . Therefore, the received signal can be successfully 

demodulated into              
  .  

Then, if we consider a situation where the multi-carrier scheme been 

employed in the downlink mode of a wireless system, the carrier frequency 

generated by the local oscillator in both the transmitter and receiver will be 

shifted from the ideal frequency2. To simplify the analysis, we normalise all 

frequency offsets to the transmitter side. In this case, the base function is 

rewritten as: 

   
                                (3.4) 

where    is the frequency offset between the transmitter and receiver. It is 

worth noting that in this scenario    is same for all sub-carriers, since the    

can only be introduced between the only transmitter and current receiver. 

As the receiver has no information about the transmitter‟s parameters, 

the receiver has to use the predefined   
       to demodulate the incoming 

signal: 

                 
         

      

  

    

    

   

    
 

  

    

 (3.5) 

                                            
2 In the mobile scenarios, the Doppler effect can also contribute to the carrier frequency offset. 
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We can then define the ambiguity function, introduced in [74] as: 

              

 

  

                 (3.6) 

The ambiguity function describes the orthogonality performance of a 

multi-carrier system. In the ambiguity function,    defines the time offset 

which leads to the Inter Symbol Interference (ISI), f denotes the frequency 

offset which leads to the well known ICI effect. The ambiguity function can be 

understood as: for a certain sub-carrier, due to the time offset     t and 

frequency offset f existed between the up-converting base and the down-

converting base, the affected output value will be equal to the ideal value 

multiplied by       .  

Figure 3.3 shows the rectangle based ambiguity function for standard 

OFDM, where 

          : current sub-carrier‟s demodulation output is 100%; 

     
 

  
              : other sub-carriers‟ effects on current 

sub-carrier is 0%. 
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Figure 3.3. Ambiguity function of rectangle function 

In an ideal demodulation process, no inter sub-carriers interference 

(ICI) exists, as each sub-carrier is exactly located on the zero points on all 

other sub-carriers. However, this is not true when CFO appears. Even a 

small amount of CFO between the transmitter and the receiver is able to 

make two adverse impacts on the system error performance.  

First, due to the existence of   , all sub-carriers will suffer from an 

attenuation of the wanted output by               (i.e. shifted from the 

central point of Figure 3.3). Secondly, as we highlighted, each sub-carrier is 

laid exactly on the zero point (
 

  
          ) of all other sub-carriers. 

Nonetheless, with the shifted carrier frequency, each sub-carrier will located 

in       
 

  
,  instead of the zero point  

 

  
          of other sub-carriers. 

As a result, the amplitude of            
 

  
  increases very rapidly as 

shown in Figure 3.3, which contributes to the wanted signal being regarded 

as a noise component. In addition, each sub carrier will have an effect on all 

others because of the infinite nature of the Sinc. function. In other words, 

each demodulated signal now depends on not only its own sub-carrier, but 

also on all other sub-carriers. When the number of sub-carriers is large, the 

accumulation of this effect will be very significant.  
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These explain why the multi-carrier system is very sensitive to 

frequency offset and why its tolerance to frequency offset is extremely small 

when compared with the frequency interval between sub-carriers. However, 

if the offset value of carrier frequency can be estimated using certain 

methods, e.g. Moose method [75] or schimdl-cox method [76], the adverse 

impacts of CFO can be significantly reduced by digitally modifying the down-

converting base function   
       with the estimated frequency offset        . 

As a result, the received signal can be demodulated accurately. In fact, this 

is the most common method employed in cellular and WiFi system. 

However, when the multi-carrier scheme was deployed in proposed 

WSNs with different sub-carriers allocated to different users to share the 

same wireless channel, the situation could be much worse than the downlink 

case just discussed. As illustrated in Figure 3.4, there are three transmitters 

each occupying two sub-carriers. Since all these devices have independent 

LO generating different carrier frequencies, different CFOs among sub-

carriers can be expected. In this case, it is more appropriate to use the term 

MUI to describe the ICI effects, since the inter carrier interference is caused 

by the difference of carrier frequency of multiple users. With this 

consideration, equation (3.5) is now rewritten as: 

 

      

                                
   

  

    

    

   

 

  

    

   
  

(3.7) 

where      
  is the carrier frequency offset at k-th sub-carrier, and may be different 

for sub-carriers. 
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Figure 3.4. CFO in different scenarios of multi-carrier based systems 

 To give a detailed and clear image of the error performance under 

MUI effects, we derive the error performance function. For a given i-th sub-

carrier, the error performance can be estimated by: 

          
  

       
  (3.8) 

where    is the power of transmitted  signal at k-th sub-carrier,    is the noise 

power added by the channel and      is the interference power caused by 

other sub-carriers. Here we use   as a function name, which could be 

referred to as the different error rate calculation function depending on the 

modulation3, e.g. BPSK, QPSK, or QAM etc. 

                                            
3 A practical error estimation model for IEEE 802.15.4 system can be found in chapter 4. 
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The CFO contributes to the decrease of the error performance in two 

ways: the decrease of   , and the increase of     . The decrease of    is 

calculated by 

                  (3.9) 

The calculation of the increase of      needs consider all 

contributions from other sub-carriers: 

 

                                     

            
      

  

       

 

(3.10) 

where   is the sub-carrier index;    is the total number of sub-carriers; and 
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Then, equation (3.8) can be rewritten as: 

 

  
  

       
  

   
             

              
      

  
       

  

(3.11) 

Then it is easy to understand why a multi-carrier system is very 

sensitive to the CFO with the assistance of equation (3.11) and Figure 3.3.  

Obviously, even if we are able to estimate     for each sub-carrier, it still 

won‟t be able to avoid the MUI effect. The modification of     to the down-

converting base function   
       can only cancel the attenuation of 

   component, and the error performance is still decreased by the 

interference component            
      

  
        from other sub-carriers. 

This effect has been demonstrated in [71] and explains why WiMax and LTE 

systems only use OFDMA for downlink transmission but SCFDMA for uplink 

transmissions.  
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This effect can be mitigated by rebuilding the orthogonality of received 

signal [77]  or by using a filter bank to separate all the sub-carriers [78]. All 

these approaches incur additional expense in terms of extremely high 

complexity to overcome non-orthogonality. Although this expense may be 

affordable in broadband or cellular wireless systems, it is not acceptable in 

WSNs where the computation resources and power consumption are very 

limited. 

3.2.2 PAPR problem 

Peak to average power ratio is another challenge in the 

implementation of multi-carrier systems. In a single carrier system, the 

modulated signals are almost variation of sinusoids with a low and constant 

peak to average power ratio. PAPR can be defined as: 

       
            

          
                   (3.12) 

where       is the amplitude of the transmitted waveform. 

Due to the low PAPR, the power amplifier for a single carrier system 

can be easily designed to guarantee the linearity and efficiency. However, 

due to the multi-carrier nature, various sub-carriers, each of them is similar to 

a single carrier signal, will be combined before being amplified at the power 

amplifier. As shown in Figure 3.5, the combined waveform exhibits 

pronounced envelope fluctuations in the time domain, resulting in a 

particularly high PAPR problem. As a result, the power amplifier for a multi-

carrier system has to be highly linear over a large operating range to avoid 

any signal distortion caused by the saturation of power amplifier, which will 

greatly increase the cost and decrease the energy efficiency.  
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Figure 3.5. PAPR problem 

3.3 Low cost solution for WSN 

In this section, we propose to adopt pulse shaping as an approach to 

increase the resistance to CFO and time shifting instead of more expensive 

estimation methods. A number of works have demonstrated that using pulse 

shapes other than the simple square function can increase performance and 

counteract the effects of  ISI/ICI [74;79-81].This method is highly suitable for 

WSN because it only requires a simple modification of the pulse shaping 

function. Such a modification is very simple to implement in the digital 

processing part of the RFIC and therefore requires almost no increase in 

processing complexity or power consumption.  
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Figure 3.6. Ambiguity function of Gaussian pulse shaping filter 

The performance of Ambiguity function can be significant increased by 

the employment of pulse shaping filters rather than the simple gate function, 

e.g. Gaussian function or Raised Cosine function. Here, we implemented the 

Gaussian function based pulse shaping filter as an example, the 

performance of which has been shown in Figure 3.6. Since the Gaussian 

Function has no side bands in both the time and frequency domains, it is an 

appropriate choice for the pulse shaping function in our approach. The 

benefits of using the proposed Gaussian function for pulse shaping are 

threefold4: 

 Only the adjacent sub-carriers will affect each other, leading to a lower 

accumulation of     . 

 ICI between sub-carriers will not suffer from a rapid increase with 

increased CFO as no side bands exist, leading to a smaller increase of 

    . 

 The function output decreases slowly with frequency shift around the ideal 

carrier frequency, leading to a smaller loss of   . 

                                            
4 It should be noted that the employ of Gaussian filter may not be the optimised solution. The comparison 

between different pulse shaping filters will be carried out in future work. 

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-2

-1

0

1

2
0

0.2

0.4

0.6

0.8

1

Freq (1/T)
Time (T)



Page 53 of 198 

With these three factors, the error performance is expected to 

increase within CFO scenarios. In this case, equation (3.10) can be rewritten 

as: 

  
             

              
      

   
         

  

    
             

               
                   

      
  

    
               

                   
      

             
 

  

  

                     
         

                
      

          
 

  

  

(3.13) 

where the values of     
          

   depend on      representing the difference 

between two adjacent sub-carriers. We can see that the second term in 

equation (3.11) is reduced due to the use of the Gaussian ambiguity function. 

In the implementation, it was noticed that the existence of       not 

only affects the output power of the sub-carrier but also the phase of the 

signal, which will rotate the demodulated data symbol. 

For example, in Figure 3.7, we captured the constellation diagrams 

from the output of a system with 16-subcarriers. The 1st to 8th sub-carriers 

belong to user one without      , while the 9th to16th sub-carriers belong to 

another user with a small      . It is clear that only the 8th subcarrier has 

been affected by       of the second user, which confirms the results of 

equation (3.11). Likewise, all the effected sub-carriers of the second user are 

rotations of themselves, which will cause the decision errors in the 

demodulation process. 
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c).Sub-carrier 9th 

 

d).Sub-carrier 10th 

 

Figure 3.7. Rotation effect on different sub-carriers 
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However, this problem can be easily solved. From Figure 3.8, it can 

be concluded that such rotation is linear with       within  
 

 
. The use of a 

differential demodulation scheme 5  can perfectly compensate this rotation 

effect, because the demodulation process in such systems is based on the 

correlation between the current symbol and the previous symbol. 

Figure 3.8. Gaussian Ambiguity function. 

It can be assumed that      is constant within one symbol period. It is 

well known that the output frequency shift of a crystal oscillator is mainly due 

to the change of the temperature that is a very slowly changing physical 

parameter. Normally       is in a few unit Parts Per Million (PPM) every hour 

and therefore in one symbol period, which is typically several   ,      can be 

approximated as a constant. Therefore, we are motivated to utilise this to 

solve the rotation problem. We propose to spread each symbol      into 

several chips (32 chips are used in our experiment), where the       will be 

                                            
5 In fact, most IEEE802.15.4 transceivers do employ non-coherent MSK demodulation, which is a kind of 

differential demodulation. Detail information can be found in Chapter4. 
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constant for each chips. The differential based demodulation of these chips 

can avoid the rotation effect. Although the first chip has a possibility of error, 

this only occurs when       changes with a time scale of hours. So that for 

all the other chips the error performance would be guaranteed.  
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Figure 3.9. Modified Multi-carrier based System Architecture 

In addition, as spread spectrum coding has been employed, the 

system can also take advantage of coding-gain by designing orthogonal 

spreading codes. This additional process does not increase the complexity of 

system. In theory, when all spreading codes are orthogonal, they will not 

interfere with each other and act as additional noise. However, in practice, it 

is not possible for all the spreading codes to be perfectly orthogonal. Thus 

some noise will remain. This effect will contribute a multiplicative coefficient6 

to the      calculated in equation (3.11), which will decrease according to 

the spreading code used. 

      
  

          
  (3.14) 

                                            
6  In fact, the coding gain works in a rather complex way, here we give only an approximation. Detailed 

information about the effect of coding gain can be found in Chapter 4. 



Page 58 of 198 

   

                  

          
                

          

          
 

  

  

where    is the coding gain introduced by the demodulation process (for 

instance,     is made up of two parts: processing gain and coding gain). 

From the empirical study, we found that the coding effect will make the 

second component negligible and in most cases this component can be 

roughly ignored. 

 

     
  

          
  

                   

(3.15) 

Even without the ICI disadvantage, a high PAPR will still limit the 

application of the proposed architecture due to the requirement of highly 

linear and low efficiency power amplifiers. Since PAPR is mainly contributed 

by the superposition of sub-carriers, PAPR is a function of increasing number 

of sub-carriers. Usually, an OFDMA system employs a large number of sub-

carriers to deal with the frequency selective channel over a wide bandwidth, 

e.g. 256 or 1024 sub-carriers over 20MHz. From the viewpoint of 

multiplexing, this number of sub-carriers is far too large, so that it is 

impossible in practice for a scheduling algorithm to allocate sub-carriers 

individually. For instance, the OFDMA system allocates groups of sub-

carriers together to reduce the complexity. In the multi-hop WSNs scenario 

considered here, the overall bandwidth is relatively narrow, e.g. only 2MHz, 

while the number of competing client devices within a one hop area is also 

limited, e.g. tens of device. Therefore, a smaller number of sub-carriers is 

adequate. In our experiment and analysis, 8 sub-carriers have been 

employed to reduce the PAPR value. This also helps to simplify the 

complexity of digital processing. 

The system can be further designed with two dimension scalability: 

scaling in both the output power and the bandwidth. For instance the power 

consumption of the baseband processing is proportional to the bandwidth 

occupied. Current technology enables the ADC/DAC power to scale with the 
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clock frequency, which by Nyquist theory corresponds to the baseband 

bandwidth. Instead of using the baseband generator to generate the whole 

baseband signal without any awareness of the occupied bandwidth, the 

baseband generator will only generate the required spectral width, thereby 

reduce the baseband bandwidth. In this case the reduction in occupied 

bandwidth will lead to lower power consumption of the baseband generator, 

which is the second highest power consuming component of RFIC. In this 

case the frequency synthesiser will need to generate a carrier frequency plus 

baseband offset to up convert the baseband signal to its target position. We 

estimate the power consumption profile of this architecture, as shown in 

Figure 3.10. Ranveer C. et. al. in [82] also reported similar phenomena for an 

IEEE 802.11 device. 

 

Figure 3.10. Two dimension power scalability  

3.4 Experiment Validation 

The proposed system has been evaluated by emulating the most 

popular transceiver in WSNs: CC2420 [20], which was designed and 

produced by Chipcon (now part of Texas Instrument). The functions of this 
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transceiver were divided into 3 parts, which will be emulated by different 

instruments respectively: 

 Matlab for digital processing  

 Agilent ESG 4432b for up-converting and as a Power Amplifier  

 R&S FSQ 40 for down–converting and as an Low Noise Amplifier  

Two Agilent ESG4432b were employed to emulate two independent 

transmitters, as well as one FSQ40 acting as the Rx device. They are all 

connected and controlled by GPIB. Each transmission device generates half 

the sub-carriers with the same output power. To simplify the experiment, it is 

assumed that the Rx has locked to the frequency of Tx1, while Tx2 transmits 

with a frequency offset of      . Additive noise is added at the receiver side 

during the digital processing to simply the emulation. The central carrier 

frequency is 2.4GHz.  The setup of the experiment is given in Figure 3.11, 

while the photo of experiment is given in Figure 3.12. A screen snapshot of 

the FSQ40 has been sampled and is shown in Figure 3.13 to give an 

example of the signal spectrum. 
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Figure 3.11. Experiment Setup of the multi-carrier base WSN architecture 
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Figure 3.12. Photo of the multi-carrier base WSN Experiment 

 

Figure 3.13. Signal Spectrum in experiment, captured from FSQ40 

The results in Figure 3.14 clearly show that the error performance of 

the system is acceptable within   
 

 
  . The tolerable CFO range for the 

proposed system is 
 

 
   . By carefully choosing the number of sub-carriers 

and the channel bandwidth, we can restrict most of the CFO within this 

range. In fact, by capturing the transmitting signal from a commercial IEEE 

802.15.4 transceiver, it has been noticed that the CFO of the signal is around 

42kHz, which is much less than 
 

 
   (125kHz). 
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Figure 3.14. Error performance result of the multi-carrier based system 

The PAPR factors of transmitted signals were monitored during the 

experiment. For the signal occupying all 8 sub-carriers, the PAPR factor 

monitored is 5.93 dB; the corresponding PAPR factor for only 4 sub-carriers 

is 4.42 dB. When compared to the PAPR of other popular signals, 4 dB for a 

QPSK signal, 7 dB for SCFDMA signal, and 12 dB for an OFDM signal 

(according to [83], where the signal consisted of 256 sub-carriers), this factor 

is only slightly worse than the QPSK signal. This suggests that high cost, 

linear power amplifiers will not be required, which is much preferred in WSN 

systems. This experiment has validated the performance of the proposed 

multi-carrier architecture which is suitable for adoption in the multi-hop 

sensor networks.  

3.5 Performance Evaluation 

In the previous section, one of the possible multi-carrier physical layer 

architectures has been proposed and examined through an experimental 

approach, which enables the devices in the wireless sensor network to use 

OFDMA-like multiplex with great flexibility. Differing from the traditional 

device (e.g. CC2420) that can only switch between independent channels, 
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devices with this new architecture will be able to transmit data over any 

number of sub-carriers at the same time allowing several devices to transmit 

concurrently by occupying different sub-carriers. To quantify the potential 

performance benefits, we have developed an analytic model, in which the 

overall bandwidth is equal to one channel in the traditional system, e.g. 

2MHz in IEEE 802.15.4 as shown in Figure 3.15. This restriction normalises 

the performance gain to the improvement contributed by the increased 

channel sharing flexibility not due to any bandwidth increase.  

 

Figure 3.15. Channel regulation for multi-carrier based system 

For the purpose of baseline analysis, Slotted Aloha is used in the 

proposed analytic model, as it is the simplest MAC protocol for wireless 

networking and can be regarded as the baseline, against which other MAC 

protocols can be compared. The most straightforward candidate is the CSMA 

based MAC approaches, which have been employed in IEEE 802.15.4 and 

IEEE 802.11 DCF. Within a CSMA based MAC protocol, the system will have 

acquire all the sub-carrier information in the Clear Channel Assessment 

(CCA) operation, i.e. the device will be able to know which sub-carriers being 

occupied by other devices already. Then, the device can only choose the idle 

sub-carrier to transmit packet. As a result, the CSMA style MAC could 

benefited more from the multi-carrier scheme compared with the pure 

random based Slotted Aloha, since the collision probability can be further 

decreased (i.e. the performance further increased) by avoiding occupied sub-

carriers.  

3.5.1 Renewal process of Slotted Aloha 

The analytic model was built based on the concept of a level based 

renewal process [84]. This approach can significantly simplify the 
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mathematical analysis without loss of accuracy, while other approaches e.g. 

Markov chain [85] are usually analytically complicated.  
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Figure 3.16. Renewal process of Slotted Aloha 

Figure 3.16 shows the scheme of the renewal cycle of slotted aloha. 

Each time a device has a packet ready to send, it will backoff with a random 

number of time slots following the specified retransmission policy. After the 

backoff period, the device sends a packet via the wireless channel. If there is 

only one device sending, then this attempt will be successful (marked as X2 

cycle in level 1) and the device will receive the ACK packet from the receiver 

later in that time slot. Otherwise this transmission attempt will be considered 

to fail due to a collision (marked as X1 cycle in level 1). There may be i (i>0) 

X1 cycles before one X2 cycle, where i depends on the probability of 

successful transmission.  

From level 2‟s point of view, there will always be a successful 

transmission event in each Y cycle, while the average length of Y cycle 

depends on the performance of the X cycle. After the calculation of the Y 

cycle‟s average length, the throughput of the tagged node can be easily 

deduced as well as other performance measures.  

For such a slotted aloha MAC protocol, the completion rules in the 

proposed multi-carrier architecture based mode will follow the main principle 

of slotted aloha. The only difference is in the selection of sub-carriers, where 
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a device takes only a subgroup of sub-carriers, assigned dynamically by the 

allocation algorithm. Successful transmission is conditioned on whether there 

is more than one device transmitting on the same subgroup of sub-carriers, 

rather than over the whole bandwidth. If two devices are assigned to different 

subcarriers, they can transmit concurrently without collision. Thus, channel 

competition is less fierce and the probability of collisions decreases. As a 

result, the average number of re-transmission is reduced which can increase 

the overall performance.  

 

3.5.2 Analytic Model under ideal channel conditions 

In this section, an analytic model of slotted aloha is developed and 

three retransmission policies (uniform backoff, binary exponential backoff, 

and geometric backoff) analysed. To simplify this analysis, all devices are 

considered to be placed within the transmission range of one another, so 

there will be no hidden terminals in the network. All the devices are randomly 

distributed with uniform probability around the sink device. Consider a single-

cluster wireless sensor network with N devices: when a packet transmission 

fails, a retransmission is scheduled after a random backoff period, which is 

determined by a specific retransmission policy. Let    be the  th backoff 

period with units of time slots. Then the  th retransmission takes place at the 

beginning of the   th available slot after the last failed transmission. 

3.5.2.1 Uniform Backoff 

Under a Uniform Backoff (UB) policy, all    are uniformly distributed in 

the same range from [0，    ], where w is the backoff window size. The 

current device will start to transmit in the current slot with probability  , 

defined by: 

   
 

  
 (3.16) 

where    is the average length of X cycle:  

                 (3.17) 



Page 66 of 198 

 
   

 
   

  
   

 
 

We first assume that the channel is ideal, i.e. no transmission error. 

Then, the conditional probability that a device transmits a packet successfully 

in a single carrier system can be derived by equation (3.18). The extension 

to the realistic non-ideal channel (where packets will be corrupted with an 

error probability instead of perfect transmission) will be discussed later this 

section. 

               (3.18) 

where N is the number of devices within the network. If none of the other N-1 

devices are trying to transmit in the same slot, then the current device‟s 

transmission will be successful. Hence,       represents the ratio of X1 cycle 

number to X2 cycle number in level 1 within a single carrier system, which 

means that a level 2 cycle contains a average number of         level 1 

cycles with an average length of   .  

As mentioned in pervious sections, the main performance gain of the 

multi-carrier system in this model is contributed by increased sharing of the 

wireless channel, i.e. the increase of     : 

     
             

   

 
 

   

   

 (3.19) 

Compared with equation (3.18), the probability of successful 

transmission is constituted of two parts: the first part is identical to equation 

(3.16): the current device will not transmit in the current slot, while the 

second part can be understand as: the current device will transmit in the 

current slot, but the chosen sub-carrier from the overall B sub-carriers is 

different to the one chosen by the current device. Normally     
  is much 

smaller than     , especially when the number of competing nodes is large.  

Thus, the average length of a level 2 cycle is: 
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 (3.20) 

The throughput of the tagged device can be calculated, as only one 

packet can be successfully transmitted in each level 2 cycle: 

     
 

  
 (3.21) 

where L is the payload in one slot time.  

Therefore, the network throughput at the sink node can be defined as: 

          (3.22) 

3.5.2.2 Binary Exponential Backoff 

Considering a Binary Exponential Backoff (BEB) policy, the backoff 

period is uniformly distributed in a binary, exponentially expanding range. 

After each unsuccessful transmission, the backoff window size will be 

doubled. In other words,     is uniformly distributed in [0，         ], 

where   is the number of the retransmission,   is the initial backoff window 

size. Clearly, the length of X cannot be directly estimated as in the uniform 

backoff scenario, since it depends on the successful transmission rate. With 

a given     , the average length of X cycle can be written as: 

 

           
                                              

             
    

         
      

 
  

   

              
   

     
    

        

 
 

          
 
     

    
        

 
 

(3.23) 

where M is maximum retry number, after which the current device will 

discard the packet.      
    is the expectation of back off slot given by:  
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 (3.24) 

Applying    
  to equation (3.23) gives: 

 

                
 

   

   

 
 

     
 

   
   

   
 

          
 
 

     
 

     
   

 
 

(3.25) 

As we expected, the average length of X is highly dependent on the 

value of     . Then, we can build a non-linear system shown in equation 

(3.26) by combining the equation (3.18) with equation (3.25). The 

performance of a single carrier based network can be obtained through the 

calculation of this non-linear system. 

 

 
 
 
 
 

 
 
 
 

    

             
 

   

   

 
 

     
 

   
   

   

          
 
 

     
 

   
   

 

        
 

  
 
   

  (3.26) 

Similarly, we can obtain the non-linear system for multi-carrier 

scenario in equation (3.27) by applying     
  from equation (3.19). 

 

 

 
 
 
 
 

 
 
 
 

    

             
 

   

   

 
 

     
 

   
   

   

          
 
 

     
 

     
   

 

    
        

 

  
  

 

  
 
   

 
 

   

   

  (3.27) 
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Equations (3.26) and (3.27) represent a non-linear system with two 

unknown variables,    and     . For a given scenario, this non-linear system 

can be solved numerically [86]. 

3.5.2.3 Geometric Backoff 

For a Geometric Backoff (GB) policy, the backoff period is 

geometrically distributed with parameter q, where the device will start 

transmission in the current slot with probability of q. Obviously, the 

expectation of     is only determined by q, which can be expressed as    . 

Thus, the average length of the X cycle can be expressed as: 

 

           

 
 

 
   

(3.28) 

All the other equations needed for the GB model for both single carrier 

systems and multi-carrier systems are similar to the UB model discussed 

previously, and can be easily solved following the same approach. 

3.5.3 Model Extension  

A. Non- ideal channel 

A non-ideal channel will cause unsuccessful reception of packets in a 

real deployment. In this more realistic assumption, equation (3.16) should be 

modified with the condition that both payload packets and ACK packets are 

transmitted with error probability. 

     
                     

        
  (3.29) 

where       is the Packet Receive Rate (PRR) for device n: 

     
              (3.30) 

where the Bit Error Rate (BER) is a function of the distance between device 

n and sink device, which can be calculated using equation (3.13) with the 

condition        .   is the length of packet in Bytes. In this condition, 

equation (3.19) should be rewritten as:    
 
    since each device will have a 

different BER based on their different distance from the sink device. 
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Obviously, this modification will make the analytic model hard to solve. With 

the assumption that all the devices are uniformly random distributed around 

the sink device, a constant value of PRR expectation can be used to instead:  

 

       

 

   

 

  
      

 

  

 

   

 

   
                 

        
 

  
 

                 
        

  

(3.31) 

where      is a constant value which can be calculated by numerical 

solution. 

B. Service delay 

Service delay is defined as the duration from the time when the packet 

is generated to the end of its successful transmission. The average length of 

a level 2 cycle represents the time period between two successful 

transmissions. If    , in other words, a packet will never be discarded and 

   will be the exact service delay. However, a packet will be discarded after M 

attempts in a real deployment so that    should be redefined as a 

combination of the service time for discarded packets and the service time 

for the current packet.  

Let       denotes the probability that a packet will be discarded by the 

current device after M unsuccessful transmissions,      can be calculated as: 

              
  (3.32) 

We note that there will be only one successful transmitted packet in 

every  
 

    
 attempted transmission. Thus, the average service delay   is the 

average length of level 2 minus the average length contributed by discarded 

packets: 
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         (3.33) 

The delay distributions can also be derived from this analytic model 

when required, more details can be found in [87]. 

C. Energy consumption 

Power efficiency in this model is evaluated by the average power 

consumed for each of the level 2 cycles, i.e., the power consumed for each 

successfully transmitted packet. As stated previous, each successful 

transmission is based on several level 1 cycles, which are consisted of three 

stages: backoff, transmission and receive, with each stage, consuming 

power with rates:   ,    and    respectively. It should be noted that the power 

consumed in that slot will always be the same whether or not the ACK is 

successfully received. As a result, the power consumed in this stage has 

been normalised to a single rate    to simplify the calculation. The energy 

consumption for each transmission attempt can be defined as: 

                     (3.34) 

where     and     are related to different scenarios, which can be derived 

from equations (3.17), (3.23), (3.27). 

Considering that current transmission attempt is a success transmission with 

probability     , then the energy consumption for each successfully 

transmitted packet can be defined as   : 

    
 

    
 
             

    
 (3.35) 

3.5.4 Performance Analyses  

All three retransmission policies have been implemented in the open 

source network simulator OMNet++ 4.0 to validate the accuracy of proposed 

analytic model. In the simulation, all the devices are uniformly distributed 

within the Dmax = 40m area. For comparison, two RF physical modes have 

been implemented in the simulation for network performance evaluation: the 

first mode is the standard IEEE 802.15.4 PHY mode as a bench mark, where 
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the RF front-end occupies a bandwidth of 2 MHz and enables a 250 kbps 

data rate; the second one is the proposed multi-carrier system, where the 

2 MHz overall bandwidth is divided into 4 groups of sharable sub-carriers, 

each of which has a data rate of 62.5 kbps (250kbps/4). We configured that 

      follows normal distribution with mean       and stand deviation 

        (i.e. 50 kHz, according to the 42 kHz frequency offset monitored in 

an IEEE802.15.4 system through an experimental approach). Therefore the 

PRR expectation for the analytic model was derived from the experiment 

data. It is worth noting that, as discussed in [88], although the proposed 

multi-carrier system has acceptable performance when the frequency shift is 

within  
 

 
  , the error expectation of multi-carrier system will still be slightly 

worse than a single-carrier system in the same network scenario. The time 

slot length was set to be      , (Ts is set to be one symbol duration: 16 

 sec, according to [16]), which equates to 80 bits of data in the packet. The 

initial backoff window size W is set to 8, with the maximum retransmission 

attempts M=4, and the geometric probability q used in the GB model is set to 

0.1. The transmission error performance is derived from the previous 

experiment results in section 3.4. Each simulation program lasts around 

30min, and is repeated 10 times to give a reliable average result. 

 

Figure 3.17. Simulation result versus Analytic result (W=8, M=4, Q=0.1, B =4) 
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Throughput is calculated in the sink device and shows how many data 

packets arrived at the sink device successfully in a given period.  The results 

in Figure 3.17 show a high degree of correlation between the simulation and 

the proposed analytic model. Therefore, although the throughput of the 

proposed system is lower than the traditional system because of the lower 

available traffic load with lower node numbers (since the simulation works in 

saturation mode, the offered traffic load is only decided by node number), the 

throughput of the proposed system will be greater than the standard system 

when the node number crosses a threshold. Furthermore, the throughput of 

the single-carrier system will trend to zero when the size of network is 

extremely large, while the proposed system still shows very good 

performance. The results suggest that the proposed system is more suitable 

for data intensive applications in large scale networks.  

 

Figure 3.18. Average Service Delay 

Figure 3.18 shows the average service delay of the single carrier 

system and the proposed multi-carrier system in the three different backoff 

policies. In the UB backoff, the general trends of the service delay can be 

described as: the service delay of single-carrier increases rapidly to the 

upper bound, while the delay of the multi-carrier system increases slowly and 

converges to the upper bound as the network size goes large. Similar trends 

can be seen obviously in the GB and BEB polices. However, as the average 
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cycle lengths in these two models are larger than the UB model, these trends 

have been significantly amplified.  

In order to calculate the energy performance, an approximation of the 

power consumption of the CC2420 transceiver (as shown in Table 1) is 

deduced from the datasheet of the CC2420 [20]. In the CC2420, the currents 

are mainly drawn by four components: front-end, baseband processing, 

digital processing and the system basic components (i.e. clock sources, I2C 

bus communication and other basic functionalities). According to the 

datasheet, CC2420 has an idle state with power consumption of 400µA. 

Thus, the 400µA is regarded as the power consumption for the system basic 

component. However, the datasheet only provides the total power 

consumption of 17.4mA for Tx and 19.7mA for Rx modes without 

distinguishing how much of the current is consumed by each of the 

components. It is reasonable to approximate the power consumption of the 

transmitter front end at 0dBm transmission power by 9mA and the remaining 

8.4mA consumption consists of 4mA by baseband processing, 4mA by digital 

processing and 0.4mA by the basic component. Similarly, in the Rx mode, 

the Rx front end power consumption is approximated by 11.3mA, and 8mA 

for both baseband processing and digital processing.  

Table 3.1 Power consumption settings  

 Power Consumption(mA) 

Tx front-end (PA) 9 (output 0 dBm) 

Rx front-end(LNA) 11.3 

Baseband (DAC,ADC) 4 

Digital Processing 4 

Idle (CLK, bus) 0.4 

Therefore,     is set to 8.4mA and    is set to 18.5mA in equation 

(3.30). The proposed multi-carrier based WSNs system has been considered 

with a 1mA increase in power consumption in the digital processing 

component due to the additional signal processing function proposed in [7].  

The result, shown in Figure 3.19, is in the form of energy consumption per 

cycle, which can be understood as how much energy has been consumed to 

successfully transmit a packet. The result demonstrates that the proposed 

multi-carrier system has a superior performance over the traditional single-

carrier system. For instance, the energy consumption in the single carrier 
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system increases rapidly with increasing network size, while the multi-carrier 

system maintains relatively low power consumption until the network size is 

as large as 40. This excellent performance in energy efficiency is due to the 

high availability of the shared wireless channel, i.e. a higher     .  

 

Figure 3.19. Average Energy Consumption every level 2 cycle 
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Figure 3.20. Performance for similar throughput 

The experiment results verify that, although the proposed multi-carrier 

based WSNs may not be able to achieve a significant performance 

improvement in terms of network throughput, i.e. in the form of maximum 

achieved throughput, the proposed multi-carrier scheme does improve other 

important performance metrics, notably, service delay and energy efficiency 

without scarifying the throughput put performance. The deliverable 

throughput improves when exposed to heavy offered traffic load in dense 

networks.  
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standard IEEE802.15.4 system. Nevertheless, the proposed analytic model 

may still apply for these scenarios, and the extension should be very 

straightforward. 

3.6 Conclusion 

In this chapter, we introduced an OFDMA liked multi-carrier 

architecture for WSN systems intending to increase the network performance 

in the channel contention period. We first analysed the cause of CFO and 

PAPR problems for multi-carrier system, based on which a low cost solution 

for multi-carrier system has been proposed to mitigate these problems. Such 

architecture can be utilised for the intelligent bandwidth management by 

dividing the overall channel into several sub-carriers, which can be allocated 

to different WSN devices to enable concurrent transmission. Beside of this, 

as each sub-carrier operates in a relatively narrow band, the system will 

have high resistance to the frequency selective fading channel caused by 

multi-path effects. The proposed solution is compatible to the essential low 

cost and energy efficiency requirements of WSNs. 

An emulation based experiment has been set up to prove the 

feasibility and show error performance of the proposed architecture. An 

analytic model has been proposed to evaluate the potential performance 

improvement of the proposed multi-carrier architecture for wireless networks. 

The performance improvement has been validated by intensive simulations 

in OMNet++4.0. Compared with the single carrier system, the proposed 

scheme demonstrates a number of benefits. First, superior energy efficiency 

can be achieved, because of the efficient channel contention process which 

reduces backoff time, collisions and retransmissions. Second, the proposed 

multi-carrier scheme has a better throughput performance in larger networks 

with intensive traffic load for the WSN applications with high traffic load. 

These performance improvements are the result of the significantly 

increased success probability of the contention period.  

In addition, there is another important benefit of this proposal: 

dynamic bandwidth assignment for WSNs. The proposed multi-carrier 

system can allocate different bandwidth to devices according to their 
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application requirements. This flexibility allows differentiation of QoS 

requirements by allocating more bandwidth to the task with high priority, time 

critical requirement, or large quantities of data to be transferred. However, 

since the assignment of sub-carriers at the network level is expected to be 

an extremely complex problem [89;90], we defer to future work the 

examination of the resource allocation problem. 
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Chapter 4. Error Performance Estimation 

for Adaptive Spreading Code Length 

based WSN  

4.1 Introduction 

The Direct Sequence Spread Spectrum (DSSS) technique utilised in 

the most prevalent wireless sensor network standard, IEEE 802.15.4, 

provides high reliability in high interference environments. The scheme 

converts each information symbol into a 32 bit chip sequence. This 

spreading operation utilises a wider bandwidth to suppress interference from 

the environment or self interference caused by multi-path effects. However, 

in many deployments the wireless link may provide far higher Signal to Noise 

Ratio (SNR) than required and therefore this spreading unnecessarily 

decreases the datarate. Such an operation will prolong the transmission 

period of packets, which reduces the throughput and wastes energy. 

However, as the spreading code length is adjustable7, it is possible to employ 

a shorter spreading code to increase the data rate in higher SNR scenarios. 

Therefore, we are motivated to exploit this to improve the performance of 

WSN systems by finding the trade-off between transmission resilience and 

channel quality. 

There exist other approaches to achieve a similar improvement, the 

most popular of which is to adapt the modulation order, e.g. from 2-PSK to 8-

PSK. This scheme can offer more scalability within the varying wireless 

channel, but also requires more complexity. In the adaptive spreading code 

length, the system can switch the datarate by simply changing the mapping 

scheme with multiple code sets in the decoding stage. In contrast, adaption 

of the modulation order requires several modulation and demodulation 

functions to be utilised, entailing the reconfiguration of the whole receiving 

chain rather than just the digital decoding stage. As a result, the complexity 

                                            
7 Such feature can be easy implemented with very simple modification in the mapping stage of transceiver. 

Several IEEE 802.15.4 transceivers from Atmel and Freescale have already supported this incompatible 

function.  
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and energy consumption will increase for adaptive modulation order 

approaches. Considering the low cost and low energy nature of the WSNs, 

the adaptive spreading code length is a more reasonable solution. 

The expected system should be able to transmit packets at a datarate 

optimised to the SNR margin of the particular wireless link. Obviously, an 

optimisation process is required in the upper layer to decide when and how 

to adapt the spreading mode to achieve optimum performance. Such a 

mechanism should be able to identify the potential link capacity for each of 

the spreading code length modes, which is vital to utilise the adaptive 

spreading code length to increase the network performance. Therefore, in 

this chapter we try to propose an accurate estimation model for the error 

performance of different spreading modes in the AWGN channel. Later in 

Chapter 5, we will deal with how to estimate the channel quality with limited 

calculation resource.  

To better understand these problems, we base our analysis and 

experiment on a Commercial off-the-shelf (COTS) platform, the ATMEL 

AT86RF231 [21], which supports an evolution of the adaptive spreading 

code length from the IEEE 802.15.4 standard [16]. The standard employs 32 

chips DSSS to provide a fixed 250kbps data rate at 2Mchip/s. In the 

AT86RF231, three additional operating modes with spreading code lengths: 

4 chips, 8 chips and 16 chips along with the standard 32 chips mode are 

realised, which enable the experimental demonstration of the trade off 

between the data rate and the error performance. It is shown that the 

accuracy of error performance estimation is highly dependent on the 

composition of the spreading code sets. We examined the error performance 

for different spreading code lengths through an analytic approach and 

proposed an accurate model to estimate the error performance of an 

adaptive spreading code length scheme. To validate this model, we designed 

an attenuator based experiment to obtain the error performance of different 

modes. The experimental results have been compared with the analytic 

results to demonstrate the accuracy of proposed model.  

This chapter is organised as follows: The adaptive spreading code 

length technique has been briefly introduced in section 4.2. In section 4.3, we 
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present an analysis of the error performance of different spreading modes. 

An experiment based on a COTS platform is implemented to obtain the error 

performance for different spreading modes in section 4.4. The experimental 

results have been compared with the analytic model results to demonstrate 

the accuracy of proposed estimation model. To conclude, we summarise our 

findings and discuss some potential benefited applications in section 4.5. 

4.2 Adaptive Spreading Code Length in IEEE 802.15.4 System 

In this work, we outline a performance estimation model for the 

adaptive spreading code length based on the IEEE802.15.4 architecture, 

which is one of the most popular physical layer solutions for wireless sensor 

networks. As introduced in Chapter 2, four information bits (a symbol) are 

used to select one of 16 code words from a nearly orthogonal code set to be 

transmitted during each data symbol period in the physical layer of IEEE 

802.15.4. Hence, the rate adaptation will be enabled by adjusting the length 

of these code words in the mapping stage, as shown in Figure 4.1. As the 

length of these code words increases, the data transmission rate decreases 

in addition to an increased SNR requirement. Such a scheme will be an 

evolution of the IEEE 802.15.4 solution, compliant in its basic mode and 

backwards compatible. The work in [50] proposed an adaptive spreading 

code length scheme based on this evolution and demonstrated the great 

potential of this technique, but due to hardware limitations a full experimental 

demonstration was not presented. Therefore, although proposed method in 

[50] is able to show the trends of different spreading code length, it may be 

hard to guide the practical implementation due to the loss of accuracy in 

error performance estimation.  
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Figure 4.1. Modification in the mapping scheme of IEEE 802.15.4 standard 

An accurate analytic model for the error performance of an IEEE 

802.15.4 based system must consider the coding effect of DSSS. We first 

refer to the analytic model of transmission error performance for IEEE 

802.15.4 systems coming with the standard [16], which is described by (4.1). 

This equation is obviously derived from the Bit Error Rate (BER) function for 

non-coherent 16-ary orthogonal signals using envelop detection method. As 

the spreading code set used by IEEE802.15.4 is not formed of a true 

orthogonal code set, such a model can only be considered as a roughly 

approximation and failed to be extended to other spreading lengths. For 

instance, some researchers have reported significant deviation between (4.1) 

and experimental results [91]. 

      
 

  
 
 

  
       

  
 
 

  

   

            
 
 
    

 (4.1) 

Another approach to calculate the BER performance of IEEE 802.15.4 

has been proposed in [51] by expressing the spectrum spreading effect as 

the combination of Coding Gain (CG) and Processing Gain (PG). Processing 

Gain is well studied for DSSS systems, and is commonly defined as: 
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 (4.2) 

where b is the number of bits carried in one symbol (in IEEE802.15.4 each 

symbol contains 4 bits of information) and    is the length of spreading code.  

Coding gain is much more complex, and is usually defined as the 

reduction in the required       due to the error performance properties of 

the coding. For a soft decision based demodulator, an approximate 

expression of coding gain can be estimated using equation (4.3) according to 

[51]: 

           
  

 
 

   

    
  (4.3) 

where    is the mean Hamming distance of a certain spreading code set. For 

the linear block code employed by IEEE 802.15.4, the Hamming distance 

can be bounded using the equation: 

           
      (4.4) 

However, coding gain in a real implementation is usually far from the 

upper-bound provided by equation (4.3), which is believed to be highly 

related to the compromises made in choosing the code set. Therefore, 

although this approach is able to show the trends of different spreading code 

length, as shown in Figure 4.2, it is still not able to guide the practical 

implementation.  
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Figure 4.2. Theoretic BER Performance estimated using hamming distance method 

In addition, a number of attempts have been published aiming to 

provide an error performance estimation method for IEEE 802.15.4 system 
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performance and energy efficiency. An accurate error performance 

estimation model is critical when an adaptive spreading code length is to be 

employed in IEEE 802.15.4 based WSNs. This motivated us to examine the 

error performance and propose an accurate error performance estimation 

model to guide the upper layer design and maximise the potential 

performance increase. 
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AT86RF231 uses a hard decision scheme, which can be divided into a two 

step process. The first step demodulates the 32 chips before feeding them to 

the detector. It should be noted that the non-coherent differential MSK 

demodulation is usually employed instead of coherent O-QPSK 

demodulation to enable low cost and low complex transceiver design as 

discussed in [94;95]. The complexity of demodulation can be greatly 

simplified by removing the need for accurate frequency and phase 

synchronisation. It is well accepted that non-coherent demodulation for MSK 

system has the same error performance as non-coherent 2-FSK [96].  

The demodulated chip sequence will then be correlated with all the 

possible code words to generate the de-coded decision in the second step. It 

should be noted that the non-coherent MSK demodulation mechanism is 

implemented by comparing the phase different between the current chip and 

the previous chip. In other words, the direct demodulation output can be 

seen as a differential encoded variation of the original chip sequence. 

Therefore, in the correlation stage the system can either re-code the output 

result or re-code the code words. The later solution has been widely 

adopted, since the first choice requires a dynamic re-coding process. In this 

case, the spreading code set provided in the IEEE 802.15.4 regulation can 

not be directly used in the correlation stage, and the provided code set 

should be re-coded in advance following the differential approach instead. 

Such scheme has been examined and discussed in [97]. The re-encoded 

code sets for the demodulator have been provided in Table 4.1. Clearly, the 

first step should have same error performance as a non-coherent MSK 

system. The coding gain and processing gain is contributed by the de-

spreading process of the second step, as an incorrect decision can only be 

made when the number of error chips exceeds a certain threshold (defined 

as the largest number of chips that the code set can correct within each 

block of n chips, denoted as   for the following discussion). 

A Monte Carlo simulation has been implemented in Matlab to 

determine the    performance of IEEE 802.15.4 code set. The results, 

shown in Figure 4.3, provide a better understanding of the effect of coding in 

IEEE 802.15.4: 



Page 86 of 198 

 The    in this scheme is not a constant value. Instead, a normal 

distribution could better express the coding effect.  

 There is an imbalance among the code sets. It is clear that the code 

set can be divided into two groups: code word 1~8 and code word 

9~16. The first group has a higher mean value than the second group, 

as shown in Figure 4.3. 

 

Figure 4.3. Histogram of maximum tolerant number of the error chip 

We assume that the distribution of    is closely related to the exact 

composition of the code sets. Although the code set used for 250kbps mode 

has been provided by IEEE 802.15.4 regulation, the code sets employed by 

the other 3 modes are not revealed in the datasheet of AT86RF231 or any 

other documents. Therefore, we designed an experiment to obtain these 

code sets by using a Vector Signal Analyser to capture the RF signal from 

AT86RF231 and digitally down convert it to a baseband I-Q sequence. We 

then examined the baseband signal by comparing the phase difference 

between chips, which is a common differential MSK demodulation method. 

We have successfully demodulated the first 3 modes of 250kbps, 500kbps, 

and 1Mbps to determine the unique spreading code sets employed, which 

have been provided in Table 4.1. It was discovered that the 2Mbps mode 
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also employs a chip scrambling scheme to improve its spectral properties8, 

which results in different performance from the first 3 modes. Thus, it would 

require an entire different analytic model to predict error performance, which 

persuaded us to defer the study of the 2Mbps mode to future work.  

Table 4.1Spreading code sets employed by AT86RF231 in MSK format 

Symbol Code Length 32 Code Length 16 Code Length 8 

0x0 0x 6077AE6C 0x 68C5 0x 36 

0x1 0x 4E077AE6 0x 7A31 0x 1B 

0x2 0x 6CE077AE 0x 5E8D 0x 0D 

0x3 0x 66CE077A 0x 17A2 0x 46 

0x4 0x 2E6CE077 0x 45E9 0x 63 

0x5 0x 7AE6CE07 0x 317A 0x 31 

0x6 0x 77AE6CE0 0x 0C5E 0x 58 

0x7 0x 077AE6CE 0x 2316 0x 6C 

0x8 0x 1F885193 0x 173A 0x 49 

0x9 0x 31F88519 0x 05CE 0x 64 

0xA 0x 131F8851 0x 2173 0x 72 

0xB 0x 1931F885 0x 685C 0x 39 

0xC 0x 51931F88 0x 3A17 0x 1C 

0xD 0x 051931F8 0x 4E85 0x 4E 

0xE 0x 0851931F 0x 73A1 0x 27 

0xF 0x 78851931 0x 5CE8 0x 13 

Mean value of    8.8 3.15 0.77 

With knowledge of code sets obtained, it is now possible to build an 

error performance model for the adaptive spreading code length modes. In 

the IEEE 802.15.4 system, it is the chip stream, instead of the bit stream, 

that is transmitted in the channel, and received by the receiver. Therefore the 

energy per chip to noise spectral density ratio (       ) should be equal to 

the SNR of the wireless channel as shown in (4.5). 

           (4.5) 

As discussed above, although the modulation is O-QPSK with half 

sine pulse shape filter, the demodulation used by the AT86RF231 is based 

on the non-coherent MSK system to avoid complex synchronisation. Thus, 

the Chip Error Rate (CER) function can be expressed as: 

                                            
8 This has been confirmed by the designer of this transceiver. 
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        (4.6) 

Therefore, a symbol is detected incorrectly only in the condition that 

more than    of the chips were demodulated in error. If    is a constant 

value, the Symbol Error Rate (SER) function can be defined as [98]: 
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where n is the spreading code length for different modes, for instance 32, 16, 

8 respectively,   is equal to the     of current code set, and CER is defined in 

equation (4.6). However, since Figure 4.3 shows that    is a distribution 

rather than a constant value in the IEEE 802.15.4 system, equation (4.7) 

should be modified as: 

     
 

 
      

 

   

 

   

 

 
     

 
      

            
 

     

 (4.8) 

where c =16, is the number of code words in a code set and    is the 

Probability Distribution Function (PDF) of    for current code word. 

We are now able to calculate the error performance for an IEEE 

802.15.4 system and its adaptive spreading code length evolutions, through 

equations (4.6) and (4.8). As a rough approximation, equation (4.7) with the 

mean value of    can be used. The mean values of    for different modes 

have also been provided in Table 4.1, and can be rounded to the nearest 

integer: 9, 3, and 1 respectively.  

4.4 Empirical Validation of the Model 

4.4.1 Experiment setup 

To collect a reliable measurement from the practical implementation, a 

COTS (Commercial off-the-shelf) device based experiment has been 

designed and constructed using an attenuator system to implement a 

controllable AWGN channel, where the SNR can be accurately configured 

and all errors are caused by the additive noise. It should be noted that, in the 
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real deployment, WSN networks are posed with a wireless channel with 

fading effects as we discussed in Chapter 2. The error estimation models for 

the fading channel are usually complex and environment dependent (e.g. the 

degree of fading is location correlated), which makes it unaffordable in the 

low cost WSN platform. Therefore, we only discuss the AWGN based 

estimation model and use a controllable AWGN channel to validate the 

accuracy. This does not mean this scheme is only lab applicable. To make 

the proposed models works with the real deployment, we will discuss a new 

channel indicator in the next Chapter, which will consider the fading effect 

and generate a new indicator equalised to SNR value in AWGN channel to 

achieve the same error performance. As a result, these two schemes will 

work closely with each other to accurately estimate the capacity of the 

current channel state with affordable processing cost to enable deployment 

in low cost WSN platforms. 

Figure 4.4 describes the architecture of this experiment, while Figure 

4.5 shows a photo of the experiment. The RF signal from the transmitter will 

be fed to the attenuator system, consisting of a 6 dB fixed attenuator and an 

adjustable attenuator with a range of 0dB ~ 71dB. Using a Power Combiner, 

an emulated environment noise signal generated from an HP ESG4432B 

Vector Signal Generator has been added to the transmitted signal.  After that 

a Power Divider will split the signal to two even parts. One signal will be fed 

to the receiver, while another will be fed to a spectrum analyser to monitor 

the signal strength. Prior to the experiment, the whole transmission system 

has been characterised using an AGILENT 8714ET Vector Network 

Analyser.  

 

Figure 4.4. Experiment architecture to determine the error performance in an AWGN channel 
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Figure 4.5. Photo of Experiment setup to determine the error performance in an AWGN channel 

In the experiment, the transmitter has been configured to work in the 

saturated model9 using the IEEE802.15.4 un-slotted MAC protocol without 

ACK (the scheme is shown in Figure 4.6 and discussed in Chapter 2). The 

payload length of packet, transmitted power and spreading code length 

are configurable parameters within the experiment. The receiver will 

generate the statistical information of successfully received packets during 

each period (default value is 5 seconds in this experiment).  

 
Figure 4.6. IEEE 802.15.4 un-slotted MAC scheme 

4.4.2 Validation of error performance estimation model 

The experiment result was first presented in the form of Packet 

Received Rate (PRR, defined as the received packet number compared with 

the maximum receivable packets number, which is equal to 1 - PER ) versus 

Received Signal Strength (RSS) as shown in Figure 4.7 by comparing the 

result with the maximum number of packets received per period in the 

                                            
9 In the saturated model, there will always be a packet ready in the queue to be sent. 
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experiment, e.g. the extremely high SNR scenario. Without loss of generality, 

all the variable of figures have been normalised to the Received Signal 

Strength (RSS) to simplify the comparison in this chapter. The normalised 

received signal strength is defined as the received signal strength to achieve 

the same performance without any additional environment noise. We validate 

our experimental results by comparison with the receiver sensitivity provided 

by the datasheet of AT86RF231 [21]. As shown in Figure 4.7, the thresholds 

of sensitivities for different modes provided by [21]  show good agreement 

with the experiment results. 

Given the fact that the experimental results are tested with different 

packet lengths from 20 Bytes to 100 Bytes, it will be inaccurate to validate 

our experiment using the PRR information. The IEEE802.15.4 standard 

employs a Cyclic Redundancy Check (CRC) with a length of 16 bits as the 

frame check to indicate bit errors [21], which means a single symbol error will 

flag the entire packet as in the „error received‟ state. Therefore, we are able 

to convert the obtained PRR vectors into the form of SER versus Received 

Signal Strength (RSS). Then, the reliable experimental results can be 

compared with the output from analytic model (both accurate method and 

approximation) in Figure 4.8. Although the set of results at each received 

power value shown a variance, the overall trend for each spreading mode 

shows an excellent relation to the output of analytic model. These prove that 

our analytic model is accurate for future usage. 
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Figure 4.7. Recovered Packet Received Rate from Experiment Results 

 

Figure 4.8. Error performances of different spreading code lengths 
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                     (4.9) 

Then the RMS and STD for N data samples can be defined as:  
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(4.10) 

where     is the mean value of the N samples. The RMS, STD of the residual 

error for different analytic models have been provided in table 4.2.   

Table 4.2 RMS/STD of analytic model 

 Code Length 32 Code Length 16 Code Length 8 

RMSs 9.0283e-005 1.2721e-005 8.4049e-006 

STDs 6.7269e-007 2.2312e-006 6.5868e-007 

 

The proposed analytic model can be employed by the upper layer 

protocols for the estimation of error performance. Within this usage, the 

calculation complexity could be an important factor when considering the 

relatively constrained computation resource in WSN systems. Therefore, we 

present a calculation cost of proposed model in table 4.3, including the 

analytic and approximation models. The complexity is defined by the 

calculation time used in Matlab. Although the absolute value is high related 

to the CPU, the comparison between two models can assist to understand 

the trade-off of these two models between accuracy and computation 

complexity. 

Table 4.3 Calculation complexity 

 Code Length 32 Code Length 16 Code Length 8 

Calculation cost  
(second) 

Analytic  Approximation Analytic  Approximation Analytic  Approximation 

1.4518 0.0028 0.4637 0.0018 0.1881 0.0015 

 

4.4.3 Analysis of throughput Performance 

We are now able to analyse the throughput performance of the 

experimental results to illustrate what benefits can be expected with the 

adaptive spreading code length feature. Since the experimental setup only 
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involves a single transmission pair working in the saturated model, and with 

the validated error performance estimation model, the throughput 

performance can be easily estimated using equation (4.11):  

   
                        

                            
        

       
       

 
 (4.11) 

where     is the symbol error rate, which can be estimated by equation (4.8) 

and        is the expectation of the Back Off (BO) time. The value of        

can be calculated by  
 

 
           

   
   , in which            is the period 

for each back off count and   is equal to      . BE is set to 3 by default, 

which means that the backoff count is uniformly chosen from (0~7); 

        is the expectation of Channel Clear Assessment (CCA) time. 

According to [16], CCA period lasts 128  ; 

     
          is the expectation of preamble transmitting time with the 

data rate of 250kbps; 

      
         is the expectation of payload transmitting time with a data 

rate from 250kbps to 1Mbps; 

        is time cost to write a packet to the AT86RF231 through SPI. 

The results of throughput performance are shown in following figures. 

It is clear that the proposed model fits the experimental results very well. As 

a result of the variations in temperature, which normally affect the noise floor 

and the performance of the attenuator network, a random shift existed in 

some results but such measurement noise is usually slight less than 0.2dB 

for all the tested results. Generally, due to the high data rate, the spreading 

modes with shorter code lengths have better throughput as long as there is 

sufficient SNR. As the signal strength falls, the error rate will increase rapidly, 

which will lead to a fall in throughput in the high data rate modes. In this 

region the longer spreading code length based modes have better 

throughput performance. This trend has been shown by all the experimental 

results and analytic models, which demonstrates that an optimum mode 

exists for a given SNR condition to achieve the best system performance. 
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Figure 4.9 shows the results when the emulated environment noise 

was fixed at -40dBm and the attenuator was adjusted to reduce the signal 

strength. The second experiment was implemented with the signal strength 

fixed and the power of environment noise adjusted shown in Figure 4.10. As 

expected, the results show almost the same curve for each investigated case 

regardless of the experiment methods. These results demonstrate that the 

SNR is sufficient to predict the error performance in the AWGN channel.  

 
 

Figure 4.9. Throughput performance with variable signal strengths 

 

 
Figure 4.10. Throughput performance with variable noise levels 
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Figure 4.11. Throughput performance with varying packet lengths 
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3 spreading code length modes decreases to 37.31, 40.32 and 42.02 kbps 

respectively, compared to 53.19, 59.52, and 63.29 kbps respectively. The 

analysis reveals that a longer back off window size will increase the 

overhead per packet, hence, decreasing the throughput for a single device. 

At the same time, it may increase the throughput for the network as a whole 

due to the decreased chance of collision. Therefore, in the high layer 

protocols, the MAC layer parameters are usually tuneable to obtain the 

optimum performance. The comparisons between the experimental results 

and analytic model results, shown Figure 4.12 and Figure 4.13, guarantee 

the accuracy for the extension to the large scale network with the current 

MAC layer model. It is noted that although the proposed model has only 

been validated in the implemented experiments with the simplest network 

topology, it  is very straightforward for it to be extended to more complex 

topology and MAC protocols, e.g. S-MAC or B-MAC [12;99] if desired. 

 
Figure 4.12. Effect of backoff window size BE=4 
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Figure 4.13. Effect of backoff window size BE=5 

Generally, a throughput versus distance result is more straightforward 

to be understood and to guide the practical deployed wireless system. 

Equation (4.12) is a well accepted free space propagation model for omni-

direction transmission. In [100], ATMEL demonstrated the experimental 

validation of this model for its low cost wireless transceiver AT86RF230. As it 

is widely known that AT86RF230 and AT86RF231 share most of their 

architecture except the spreading logical, this propagation model is believed 

to be also valid for the AT86RF231. 

           
 

   
 
 

 (4.12) 

where     is the power of transmitted, 

  is the wavelength of transmitted signal, 

  is the distance between transmitter and receiver,  

By applying            and the sensitivity of -101dBm to equation 

(4.12), it is possible to show an effective distance of 1.56km. We 

implemented an outdoor experiment over a lake environment with this 

transceiver, which resulted with a 1008m effective range at 5% PER. 
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threshold would be reached around 1km which perfectly matches the 

experimental results. 

It is now possible to illustrate the throughput versus distance 

performance in Figure 4.14 by substituting     into equation (4.12), which 

shows the potential optimisation space of several hundreds meters. 

 

Figure 4.14. Throughput versus Distance 

4.4.4 Power efficiency 
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Figure 4.15. Power consumption for different spreading modes 

4.5 Conclusion 
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scheme can be expected to increase the energy efficiency as well as 

increasing throughput. 

The particular benefit will be obtained by WSNs deployed in industrial 

environments, considered the largest WSNs market. In such an environment, 

WSNs equipped with spreading code length adaptation can be expected to 

automatically adjust to the RF environment to provide optimum performance 

against a stated requirement. With an appropriately designed upper layer 

protocol, i.e. MAC and Routing, such a system can also be application-

aware, by assigning better Quality of Service (e.g. higher capacity and short 

hop numbers, etc.) to the tasks with higher priority (e.g. fault detection, gas 

leaking detection, etc.).  

The work shown in this chapter is the foundation for the design of 

appropriate upper layer algorithms, which will be discussed in the following 

chapters. 
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Chapter 5. Effective-SNR Estimation for 

Wireless Sensor Network Using Kalman 

Filter 

5.1 Introduction  

In Chapter 4, we have presented an accurate error performance 

estimation model for adaptive spreading code lengths in WSN systems. 

However, problems still exist, preventing this technology from being fully 

utilised by the MAC and other upper layer algorithms. In particular, the 

question remains of how to obtain the input parameters, i.e. the channel 

quality, required for the error estimation model? Furthermore, the error 

performance model was built considering the ideal AWGN channel, while in 

some cases the WSN system need to be deployed in harsh RF 

environments, especially for the advanced applications as discussed in 

Chapter 2. A harsh RF environment often possesses characteristics in terms 

of multi-path effects due to stationary or moving metallic structures and RF 

interferences from machine (i.e. power generator and motor) or other RF 

device. These effects contribute to the time-varying fading channel, which 

has been demonstrated by field tests [53;56;101] and our own investigation 

and can adversely affect the quality of the wireless communication. Thus, 

how to estimate the quality of the wireless channel in an agile and low cost 

manner poses the biggest challenge to the utilisation of adaptive spreading 

code lengths for WSNs. 

As  witnessed and discussed by many researchers, the raw Received 

Signal Strength Indicator (RSSI) provided by WSN transceivers may not be a 

good indicator to predict successful delivery of data packets [58], due to 

fading effect and device impairments. In order to improve the quality of the 

link estimation, a number of recently proposed methods make use of learning 

algorithms to estimate the link quality [93;102;103] instead of using the SNR. 

However, these learning based methods require that the sensor node must 

be active all the time to overhear all wireless transmissions, which is not 
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suitable for energy constrained WSNs. Other approaches calibrate the 

relationship between SNR and Packet Receive Rate (PRR) by exchanging 

probe packets. Such operation will cause a relatively high overhead, which 

rises rapidly with the square of the network size. At least one WSN 

deployment crashed due to the unexpected high volume of overhead packets 

[104]. 

As specified in the IEEE 802.15.4 standard [16], all IEEE 802.15.4 

compatible devices [20;21] have to provide a Link Quality Indicator (LQI) to 

represent the quality of the wireless link. Usually this value results from the 

correlation of multiple symbols within the received packet and indicates the 

error performance directly. It is believed that LQI is more accurate and 

reliable than the SNR in representing the link quality. Our experimental 

results, as well as previously published results [101;105], have shown that 

the average LQI has a high correlation with the error performance10. This 

feature of IEEE 802.15.4 makes it possible to accurately estimate the link 

quality without the overhead of probe based calibration. Therefore, LQI is 

recommended by many standards including ZigBee [17], IETF 6LoWPAN 

WG [18]. Nevertheless, the utilisation of LQI has been challenged by many 

problems in this implementation. Firstly, the LQI is related to the error 

performance and yet only available within the transition area, i.e. PRR is less 

than 100%, which means it fails to show the wider link margin. Secondly, the 

instantaneous raw LQI is known to vary over a wide range. As a result, many 

algorithms rely on the average of LQI over many packets to achieve 

acceptable accuracy and thus fail to capture a fast changing channel. In 

WSN applications with high traffic load, although there could be sufficient 

traffic load for the average operation to give adequate performance, a fast 

converging indicator is usually required for high layer optimisation.  

 We are consequently motivated to exploit the redundancy between 

the LQI and SNR to assist in providing a better link quality indicator, which is 

                                            
10  Although different vendors calculated LQI in different ways, (e.g. AT86RF231 provided by ATMEL 

correlated with the packet error rate, while CC2420 provides an indicator of the chip error rate). 
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referred to as the Effective-SNR11, which should be able to provide reliable 

and fast estimation without additional overhead or hardware support. The 

proposed method is expected to be not only accurate but also easily 

implemented. Accordingly, several immediate questions should be 

addressed. Firstly, is the LQI good enough to express the link quality? 

Secondly, if so, is there a simple but effective approach to combine LQI and 

SNR to produce a trusted output? Thirdly, is the cost of such an algorithm 

acceptable in resource constrained WSN? To address these questions, in 

this chapter, we first investigate the different relationships between SNR, 

LQI, and PRR. Based on the analysis of experiment results, we decompose 

the link quality into multiple components and build an Effective-SNR model to 

represent the underlying relationship among these components. This model 

enables us to make use of mature Kalman Filter techniques to reduce the 

measurement noise and enhance the accuracy of the estimation. To the best 

of our knowledge, this is the first deployment of Kalman filter tracking of the 

variation of signal strength, environment noise strength, and signal 

impairment at the same time, while most pervious work focuses only on the 

signal strength using simple, average based approaches. With the help of 

this framework, LQI and SNR can be combined to generate a trustable 

Effective-SNR indicator, which provides an accurate estimation of the link 

quality margin to allow concurrent transmission as well as rate adaptation. In 

comparison with other approaches, the main advantage of our method is that 

it can avoid the overhead of probe packets or constant monitoring of the 

channel (overhearing), which makes it suitable for WSN deployment. The 

proposed algorithm can be easily employed by many other higher level 

algorithms to increase their performance. We also demonstrate that such a 

filter can be easily deployed with fixed-point computation and is therefore 

acceptable for implementation in simple 8-bit microprocessors which are 

widely employed by many WSN platforms. 

We start in section 5.2, in which we formulise the problem and provide 

the general model of link quality based on empirical evidence. Section 5.3 

                                            
11 The concept of using E-SNR was originally proposed in space-time modulation systems [106] and OFDM 

systems [107] to predict the error performance. In this work we use this name but with an entirely new 

formulation for WSNs. 
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introduces the design of the Kalman filter and shows how to deploy the 

algorithm in a resource constraint platform. Section 5.4, presents 

experimental results based on a COTS (Commercial off-the-shelf) platform 

are provided to illustrate the performance of the proposed method. This 

chapter concludes by discussing some key issues of potential future work in 

section 5.5. 

5.2 Problem Formulation 

According to the discussion in Chapter 4, it can be concluded that if 

sensor networks are deployed in an ideal Additive White Gaussian Noise 

(AWGN) channel, then the capacity of the wireless link can be accurately 

estimated by the SNR. However, in reality the channel will include fading 

effects which can not be accurately represented by the SNR, due to the 

distortion of signals. It is still possible to estimate the system capacity in a 

fading channel, but this usually requires a high complexity analytic model, 

which can not be afforded by resource constraint WSN platforms. Therefore, 

we propose the estimation of Effective-SNR, by which the channel quality in 

harsh RF environments is simply mapped to a corresponding effective SNR 

in an AWGN channel. Then, the channel capacity can be obtained by 

substituting this indicator into a system performance model for an AWGN 

channel. The following section will discuss how to estimate this indicator 

through the analysis of the varying RF channel and by utilising existed 

measurements available in COTS platforms.  

5.2.1 Notation 

In this chapter, the following notation and assumptions have been 

used: 

 Transmission Power (   ): We define the signal power at the antenna 

of the transmitter as the transmission power. 

 Received Signal Strength (    ): We define the signal power after the 

antenna of the receiver as the received signal strength. 
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 Internal Noise (  ): We define all the noise added to the signal after 

the antenna of the receiver device as internal noise. The internal noise 

mainly consists of thermal noise generated by the radio components, 

which could be influenced by the noise figure as well as temperature. It 

has previously been demonstrate that due to manufacturing 

tolerances, different devices may have different noise figures, which 

can be easily calibrated offline. 

 Environment Noise (  ): We define the noise from devices outside the 

network as environment noise, which may be from other RF devices 

(i.e. WiFi, other narrow band devices working in ISM band) or the EM 

noise generated by machinery (i.e. power generator, motor, or 

microwave oven). In our application, the latter tends to be a more 

important issue since it is a common effect in industrial locations. 

Through field trials it has been shown that such noise can be as high 

as -30dBm around 2.4GHz in the engine test site of Rolls Royce 

[55;108]. Similar effects have been reported in [14] for a power plant 

site around 915MHz with a lower value of -64dBm.  

 Interference: We define the signal from other network devices while the 

current transmission is ongoing as interference. This gives rise to the 

well known hidden terminal problem, exposed terminal problem, as 

well as the capture effect. 

 Signal Quality Degradation (SQD): Wireless channels suffer from 

reflection and diffraction caused by objects in the environment or 

refractions in the medium. Such effects, usually termed fading effects, 

will cause distortion of the signal at receiver device and will further 

increase the error probability. Therefore, we define SQD as the 

degradation of signal when compared with the same signal transmitted 

via an AWGN channel. 

5.2.2 Propagation Model in the Harsh RF Environment 

There are two main types of propagation, depending on their effects 

on the different source:  
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1) Slowly fading, which can be further divided into pathloss and 

shadowing, is the largest contributor to signal loss. One of the most common 

radio propagation models is the log-normal shadowing path loss model [109]. 

2) Fast fading, often termed multipath fading or frequency selective 

fading, causes signal distortion. If only the strength of the received signal is 

considered, then the multi-path effect can be described with the same 

random process   . 

These relationships can be expressed by equation (5.1) according to 

[109]. 

 

                  

                     
 

  
     

(5.1) 

where       is the pathloss at the distance  ,    is a reference distance,   is 

the pathloss exponent, and    is a zero-mean Gaussian random process 

with standard deviation   to express the shadowing effect. 

     
    

     
 (5.2) 

Therefore, the SNR at the receiver side can be expressed in equation 

(5.2) by subtracting internal noise and environment noise. If the transmitter 

and receiver are connected through an AWGN channel, the components of 

   can be avoided, which means no variance and more importantly no 

distortion to the signal. Thus we can assume that the error performance can 

be accurately estimated by the SNR, which has been validated by the 

discussion in chapter 4. 

The calculation of SNR requires both information on the received 

signal strength and the noise power at the receiver. However, due to 

constraints on cost and power, Received Signal Strength Indicator (RSSI) 

provided by IEEE 802.15.4 is generally believed to be unreliable because of 

the measurement noise and device impairment. Furthermore, it should also 

be noted that the RSSI contains both RSS and the environment noise arrived 

in the transceiver. Therefore, although the RSSI can be used to calculate 



Page 108 of 198 

SNR, the calculated results are typically inaccurate. A recent study [110] has 

also reported such effect in an anechoic chamber environment (i.e. almost 

AWGN channel) and therefore, we cannot rely on pure RSSI values to obtain 

an accurate SNR. Due to the effects of fading and multi-path, the relationship 

between RSSI and the received signal strength (     ) and noise (Ne) 

becomes a nonlinear function.  

 We first consider the impact of fading on RSSI. Similarly to the 

AWGN channel, the fading effect can be modelled as a variance of the 

power of the transmitted signal, as shown by equation (5.1). Aware that the 

RSSI measurement consists not only of the measurement noise but also of 

the variance caused by the fading effect, the RSSI can be expressed as 

following:  

                           (5.3) 

where   is a zero-mean Gaussian distribution expressing the measurement 

noise. The RSSI variable only detects the received signal strength at the 

antenna without attempting to distinguish whether it is due to signal or noise, 

as the noise power of            also contributes to the RSSI value. In the 

worst case, where the noise power is high, the signal strength is masked by 

the noise and the value of RSSI deviates from the true RSS. The relationship 

between RSSI,      and    is given by equation (5.4). Let     denote the 

actual value of the real received signal strength, which can be obtained 

through the deduction of    from RSSI. 

               
      
     

    
    (5.4) 

where   is the base value of RSSI detection, which is normally around -

91dBm, but calibration is required for different devices.  

Although the variation factor    has been added, the trend of received 

signal strength can be tracked by     measurement as well and therefore, 

the link quality can be estimated accordingly. Although this operation needs 

additional computations to deal with the measurement noise and small 

timescale fading effects, it is simple enough to be implemented in low cost 
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WSN nodes, for example, a moving average method has been employed in 

[110]. Environmental noise    can also be tracked using a similar approach 

as it still follows the propagation law of RF signals. Such an approach is 

being employed by IEEE 802.11k [111] to estimate the environment noise 

and interference. In applications without high environmental noise, e.g. 

remote sensing applications, the proposed architecture would be equal to a 

simplified tracking filter, that takes only RSSI as the input parameter, yet 

uses the offline measured internal noise floor to calculate the SNR. 

Therefore, this simplification would have the same performance as the work 

shown in [61]. 

If we consider that the measurement noise caused by the RSSI 

function has already been filtered, the observed     and    can be used to 

estimate the PRR performance by using a combination of equation (5.2) and 

the look up table generated from the error performance estimation model 

discussed in Chapter 4.  

5.2.3 Effective-SNR model  

It is well known that multipath and other factors cause signal 

distortion, which increases error probability. Without any doubt, such effects 

will make offline tested SNR-PRR measurements unreliable. For example, 

although a measured SNR margin is 8dB, the real margin may only be 6 dB. 

Based on this inaccurate indicator, the higher-level application algorithm will 

make an incorrect decision to decrease the system performance, e.g. allow 

concurrent transmissions which should not occur, or switch to a high data 

rate which cannot be supported, causing a decrease in capacity instead of 

the expected increase. In order to provide an accurate estimation of link 

margin, some algorithms [93;110] rely on the probe packets and online 

calibration to rebuild the SNR to PRR relationship in various environments, 

or even give an offline measurement [102]. As discussed previously, these 

techniques are able to mitigate this problem but suffer from several 

drawbacks including transmission overheads and long converge times. 

In this chapter, Effective-SNR is defined as the equalised value of 

SNR to achieve the same error performance as would be expected in an 
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AWGN channel. Effective-SNR can be obtained by including all negative 

effects on the signal quality as factors in the Signal Quality Degradation 

(SQD) calculation, as shown in equation (5.5). Without loss of generality, we 

assume SQD is a large time-scale factor, since the multi-path effect can be 

roughly assumed to be constant for a static sensor network system12. 

              (5.5) 

If we have already estimated SQD and combined it with the SNR, the 

error performance PRR can be simply obtained through a look up table 

measured off-line with Effective-SNR as an input which can avoid the high 

overhead as well as achieve high accuracy. The only problem is how to 

estimate SQD in a low cost device. The straightforward calculation of SQD 

requires a very detailed specification of the low level demodulator employed 

in the RFIC. This may be possible in expensive software define radio 

development kits, but is impractical for low cost COTS products. 

 

Figure 5.1. PER-LQI Empirical Result 

The acquisition of SQD in widely used WSN platforms is not 

straightforward, because this variable is usually embedded behind the 

complex combination of several indicators provided by the low cost WSN 

system. Notwithstanding, it is possible to obtain the Effective-SNR at a low 

                                            
12 Most deployments of WSN system are static, although we understand that some applications require mobile 

WSN devices. 
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cost from raw LQI, one of the indicators provided by IEEE 802.15.4 system. 

As reported in many test reports, the output of the LQI has significant 

correlation with PRR. As discussed earlier, Effective-SNR is linked with PRR, 

which implies a correlation between LQI and Effective-SNR. However, as 

indicated by the vendor [21]: a reliable estimation of the packet error cannot 

be based on a single or a small number of LQI values.  This hypothesis has 

been validated in our experiments with different parameters and in different 

environments, as shown in Figure 5.113 and Figure 5.2. The result in Figure 

5.1 was provided in the format of PRR in one second versus the average LQI 

per second. As the LQI can be understood as the error probability of the 

current packet, the average LQI in one second can be considered to be the 

best indicator of error performance for that second. Therefore, in the results 

provided in Figure 5.1 show very high correlations with the PRR regardless 

with the different packet lengths (performances of three different lengths 20, 

40 and 100 have been examined). To better understand the relationship 

between the averaged LQI and the instantaneous LQI, a snapshot of the 

experiment result has been illustrated in Figure 5.2. As expected, only the 

averaged LQI shows the similar trends with the channel capacity, the 

instantaneous LQI varies over a much wider range and less correlated with 

the error performance. However it should be noted that, the averaged LQI is 

only a posterior statistical value which cannot be utilised to predict the 

channel quality. In this context, a low cost statistical method is required to 

obtain a reliable a priori indicator, which is the motivation of this work. 

The experimental results discussed above can be combined to 

generate a look-up table to convert the LQI input to an Effective-SNR output 

(i.e. corresponding SNR in AWGN channel). However, the relationship 

between LQI and Effective-SNR is segmented, resulting in values for SQD 

not always being available. Such nonlinearity increases the complexity in 

estimating Effective-SNR. Indeed, the system cannot rely on estimating 

Effective-SNR directly from LQI for each transmission. Nonetheless, aware 

that the SQD is mainly caused by multi-path effects, after the location of 

                                            
13 We are aware that different vendors provide LQI in different ways, e.g. RF231 provided by ATMEL is 

correlated with PER, while CC2420 provided by TI is correlated with BER. However, this difference can be 

easily fixed in implementation of algorithm. 
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devices has been fixed, the SQD for each tagged link can be approximated 

as a static value. Hence, we propose to estimate SQD through Effective-

SNR in the situation where the LQI is provided. Values of SQD can be easily 

calculated by applying the estimated Effective-SNR to equation (5.5) with the 

SNR detected using the RSSI function discussed in section 5.2.2. The 

estimated SQD can be maintained to estimate Effective-SNR for other 

situations.  

 

Figure 5.2. Average LQI vs Instantaneous LQI 

Based on the analysis above, it can be concluded that a better 

estimation of SNR and the link quality margin can be achieved by using the 

information redundancy among RSSI, LQI, and the measured noise 

power   . In fact, we define a new variable Effective-SNR to replace the 

SNR, and it is expected that the Effective-SNR should give a better 

description of the channel condition than the original SNR directly provided 

by the RFIC. Furthermore, as shown in the Effective-SNR model, the 

information redundancy between SNR and LQI is accounted for in the 

estimation of Effective-SNR, where the information redundancy helps to 

improve the accuracy of the SNR estimation. However, due to the 

nonlinearity which exists in both models, it is challenging to get an accurate 
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such an estimator must be able to be deployed on low cost devices. In this 

section, we will introduce the design of a Kalman Filter and show that it can 

be implemented to achieve higher estimation accuracy while avoiding the 

transmission overheads required by other techniques such as probe packets. 

5.3 Kalman Filter Design 

According to the discussion in the last section, it is clear to notice that 

this problem is a typical dynamic system with measurement noise. In 

particular, the measurement noise in WSNs is accentuated due to the low 

cost hardware platform used. It is necessary to improve the estimation of the 

channel quality by getting rid of the measurement noise.  Since the mature 

Kalman filter has show the ability to track (estimate) the system parameters 

(states) from noisy measurements, we are motivated to designing and 

deploying a Kalman filter to track the variation of channel quality against the 

measurement noise from low cost hardware platform. Other state of art 

approaches for similar scenarios include the moving average filter which has 

been deployed in a rate adaptation algorithm  for WiFi systems [43] and a 

Geometric based solution [112]. Compared with these methods, Kalman 

filters typically converge much faster than moving average filters due to a 

better modelling and understanding of the signal relationship and 

measurement noise. The Kalman filter provides quantised accurate channel 

quality estimation14 comparing with the simple good or bad result generated 

by the Geometric methods. Therefore, the Kalman filter is a good trade-off 

between the performance and the computation costs, which has motivated 

us choosing Kalman filter as our solution to solve this problem. 

Based on the two models presented in the preceding section, a 

linearisation algorithm is first proposed to derive a linear model. Then, a 

novel Bi-KF (meaning double Kalman Filter) estimator is proposed to deal 

with the measurement noise and stochastic fading effects resulting in a more 

reliable estimate of Effective-SNR while tracking the time varying link quality 

with high accuracy. The advantages of using KF are threefold:  

                                            
14  The quantised estimation result is vital to be worked with the capacity estimation model discussed in Chapter 

4. 
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(1) The link quality is a time varying variable, for example, the 

shadowing effects caused by a moving object have a dramatic affect on the 

link quality. Since the KF is good at tracking time varying systems, the 

proposed Bi-KF estimator is able to track the variation quickly (usually able to 

converge in less than ten inputs according to empirical experience).  

(2) The linear KF is of low computation cost. In comparison with 

probe-base and learning-based methods, the proposed Bi-KF method can 

give an acceptable estimation of Effective-SNR without the additional probe 

packets or increased energy consumption.  

(3) The information redundancy between signals is fully utilised by the 

KF. Such information redundancy contributes significantly to the accuracy of 

the estimation. 

 

Figure 5.3. Architecture of Kalman Filter 

Figure 5.3 illustrates the structure of the proposed Bi-KF estimator. 

The first Kalman Filter (KF1) filters the measurement noise from the RSSI-

SNR model while the second Kalman Filter (KF2) generates Effective-SNR 
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redundancy between SNR and LQI to improve the Effective-SNR estimation. 
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immediately available when a packet arrives, KF1 provides a filtered SNR 
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update the observed equation of KF2. In this situation the estimation is only 

updated by the state equations of KF2. 

5.3.1 Linearisation of the measurements 

Based on the discussion in section 5.2, we note that the object system 

is nonlinear. For a nonlinear system, an improved version of Kalman Filter, 

referred as an Extended Kalman Filer (EKF), has to be designed. However, 

the design of an EKF requires higher computation costs, which is not suitable 

for WSN nodes with low computation recourses.  

In order to build a linear estimator with lower computation 

requirements, the nonlinear system has to be transformed into a linear 

system. It is worth noting that, although the system defined in (5.4)-(5.5) is 

highly nonlinear, the nonlinearity exists only in the system inputs and the 

main dynamics of the system can be described by a linear system. Such a 

nonlinear system can be fitted by the Hammerstein model [113], where a 

pre-linearisation process is employed to convert the nonlinear system into a 

linear system. Therefore, the system state can be easily estimated using a 

linear Kalman filter at lower computation cost, instead of a complex Extended 

Kalman Filter. The nonlinearity embedded in the RSSI and NOI can be easily 

eliminated with the help of equation (5.4). Meanwhile the process of LQI is 

rather complex. As shown in Figure 5.1, the LQI shows a significant 

correlation with PRR, and thus a one to one mapping function can be set up 

to obtain PRR probability of the current packet through LQI. As specified in 

the standard, IEEE802.15.4 employs a Cyclic Redundancy Check (CRC) 

with a length of 16 bits as the frame check to indicate bit errors [21], which 

means a single symbol error will flag the entire packet as in the error 

received state.  

                           (5.6) 

Therefore, once the PRR value is ready, a SER value can be 

calculated using equation (5.6) and the packet length. The packet length is 

also provided once a packet was successfully received. By indexing the 

empirical data (shown in Figure 5.1), it will be easy to find out the equalised 
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signal to noise ratio in an AWGN channel, which is the expected Effective-

SNR. In addition, it is also easy to notice that all these processes can be 

calculated offline to build a two-dimension look up table, thus avoiding the 

computation costs of floating point calculations. Hence, in the online process, 

once a packet has been successfully received, the Effective-SNR can be 

simply obtained through searching the look up table with the index of LQI 

and packet length. 

5.3.2 Kalman Filter Design  

The design of KF1 is to address the variation of signal strength (RSS 

and environment noise) by filtering the measurement noise. Although the 

function of KF1 is similar to the average filtering method, KF may give higher 

accuracy with faster tracking ability. Considering that the packet transmission 

and environment noise are subjected to the fading effects,     and    can 

be assumed to be slowly changing variables. Therefore, the system can be 

modelled as: 

  
                 

               

  (5.7) 

where           represent the impact of fading on the signal and the 

environment noise, respectively.           are assumed independent with 

zero mean Gaussian distributions. 

For the sake of compact notation, equation (5.7) can be rewritten in 

vector form, which gives the following state evolution equation: 

              (5.8) 

where    
   
  

  is the state variable of the dynamic system,    
  
  

 , 

   
  
  
 . In the RSSI-SNR model, it can be seen that the state variable can 

be observed by the RFIC 15  directly and subject to measurement noise. 

Therefore the observation equation can be written as: 

                                            
15 To obtain the environment noise indicator may involve a carefully design in MAC protocol to avoid 

the effect of interference, especially for the application which intends to enable concurrent 
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            (5.9) 

where    
    
   

 ,    
  
  

 , and     
 
 
 .   is the measurement noise 

vector caused by the impairment of hardware 

Once the state space model has been setup by equations (5.7~5.9), 

the associated Kalman filter is straightforward [114]. 

Priori Update:   
        

  (5.10) 

Priori Error covariance:   
          

    (5.11) 

Kalman Gain:       
           

          (5.12) 

Posteriori Update:      
              

   (5.13) 

Posteriori Error covariance:               
  (5.14) 

where   
  is the a priori estimation of state,    is the a posteriori estimation of 

state,   
       is the a priori estimated error covariance,         is the a 

posteriori estimated error covariance.         is the Kalman gain, Q is the 

variance of state noise, R is the variance of measurement noise. Since the 

initial value P does not affect the optimal value of  , a non-zero matrix can 

be assigned to P as the initial value, and   will automatically converged to 

the optimal value. The appropriate values of P and Q will be determined 

empirically and discussed in the next section. 

Unlike the first Kalman filter, the second Kalman filter can only be 

trigged if the LQI of received packet is less than 255. Once the second 

Kalman filter has been activated, it will use the output of the first Kalman filter 

as one of its measurements through a simply deduction of two states 

variables. As discussed in section 5.3, the SQD can be approximated to be a 

static variable over short time-scales. Hence, the estimated SQD rather than 

Effective-SNR can be more useful in this Kalman filter design, because the 

                                                                                                                           
transmission. In this chapter, as only one transmission pair was employed, we simply start an 

additional energy detection operation just after the receiving interrupt of packet to obtain the NOI. 
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maintained variable could be used to estimate Effective-SNR when the LQI is 

not provided. Then the state equation is given by (5.15). 

                  (5.15) 

where     
   
   

 ,     
  
  

 , and     
    
    

 .               represent the 

variations of the SNR and SQD, from the view of the signal strength 

degradation and signal distortion, respectively. Theoretically, these two 

noises depend on the environment and channel status, but change following 

different models as discussed in section 5.2, which can be assumed to be 

independent. However, in the implementation, the SQD is calculated through 

a linear process from SNR and LQI, making these two noises correlated. As 

a result, the independence between               is not met to some degree, 

which will degraded the tracking performance. However, our preliminary 

experiments show that the correlation between these two noises is relatively 

small. In order to reduce the computation costs, it is assumed that these two 

noise are independent. Although the assumption may degrade the 

performance, the performance drop is slight. This is verified by our 

experiments where the proposed Kalman filter system can still converge and 

track the system variation. 

Then the observation equation can be written in equation (5.16). 

                (5.16) 

where     
   
    

 ,     
  
   

 , and     
    
    

 .               are the 

measurement noise caused by tolerances in the hardware design, which are 

independent and with zero mean Gaussian distributions.  

In common with the evolution of KF1, the second Kalman Filter can be 

solved by applying equation (10)~(14) to the model described in (15)-(16) . 

Note that, the parameter matrices of KF1 (i.e., A,B,C,D, P, Q, etc.) in (10)-

(14) should be replaced by the parameter matrices of KF2, respectively.  

Therefore, the overall estimation algorithm can be described by 

Algorithm 5.1. 
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Algorithm 5.1: Effective-SNR estimation Algorithm  

Trigger: Receive a packet 

{  

y[0] = read_RSSI(); 

y[1] = measure_NOI(); 

Linearisation(y); 

SNR = Kalman_One(y); 

 

LQI = read_LQI(); 

If(LQI<255) 

{ 

PL = read_Packet_Length(); 

ESNR = Look_up_table(LQI,PL); 

y[0] = SNR; 

y[1] = ESNR; 

ESNR_hat=Kalman_two(y,&SNR_hat,&SQD_hat); 

} 

else 

{ 

ESNR_hat = SNR-SQD_hat; 

} 

return ESNR_hat; 

} 

5.3.3 Estimating the covariance matrices 

It is well known that the performance of a Kalman Filter depends on 

the accuracy of the parameter matrices, particularly the process noise 

covariance matrix Q and the measurement noise covariance matrix R. In the 

practice, the selection of Q and R play an important role on the evaluation of 

Kalman Filter. Since the measurement noises are device dependent, 

different hardware platforms may have different noise features and the 

theoretic derivation of these covariance matrices may not be accurate 

enough for all platforms. This is particularly true of low cost WSN platforms. 

In practice, it is more straightforward and accurate to obtain these covariance 

matrices from carefully designed experiments in an offline fashion before the 

deployment. In the following sections, we will describe the process of 
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obtaining these parameters for one hardware platform although the same 

process can be applied to other platform as well. 

5.3.3.1  Measurement noise 

The variance of the measurement noise can be accurately calculated 

through an AWGN based experiment discussed in Chapter 4. In this 

experiment the values of            are set manually, external noise 

removed and fading can be negated. Therefore, it is reasonable to consider 

this as the true value of received signal strength. This can be validated with 

standard measurement equipment, i.e. spectrum analysers.  

 

Figure 5.4. Measurement noise 

We are then able to determine the measurement noise through a 

comparison between the RSS measured and the RSSI measurement 

produced. Using statistical methods on 20000 measurement samples over 

around 30 minutes, it is straightforward to calculate the variance R as shown 

in sub-figure A of Figure 5.4. As the measurement of RSSI and NOI are 

obtained using the same method at different time points, the variances 

should be same. Due to manufacturing and component tolerances, the 

devices used exhibit slightly differing performance parameters. As shown in 

the sub-figure B of Figure 5.4, a similar method can be employed to 

determine the variance of the LQI detection and finally calculate the 

measurement variance of the Effective-SNR. Differing from the RSSI 
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measurement, the detection of LQI is only based on the correlation of 

symbols inside the data frame and thus can expect to be hardware 

independent. 

5.3.3.2 Process noise 

Unfortunately, the process noise in the proposed Kalman filter is 

caused by the fading channel, hence, its variance will be highly dependent 

on the deployed location of the WSNs system. Similar effects have been 

reported in [110], which implemented the experiment in different locations 

and showed variance changes between 1.9 dB and 12.34 dB. Due to the 

implementation limitation, the noises on SNR and SQD are correlated and 

the off-diagonal entries of the covariance matrices are non-zero. However, 

according to our implementation experience, their correlation is relatively 

small which means that the off-diagonal entries are close to zero. Thus it is 

convenient to assume they are independent and adopt diagonal covariance 

matrices for the purpose of reducing the computation costs of Kalman filter.  

Although some methods has been proposed to estimate the unknown 

process noises16, their computation complexity make them not applicable to 

the WSN devices with limited computational resources. To determine an 

initial value of Q to start the Kalman process, we developed an experimental 

set up in an anechoic chamber with several metal devices positioned to 

cause multi-path reflections. The process noise can be observed by 

calculating the statistical distribution of the received packet number 

compared with the maximum possible value (i.e. when LQI is equal to 255). 

The training sequence has been shown in Figure 5.5. The process noise 

required by the Bi-KF system can be obtained by applying PRR into system 

models.  

                                            
16 As reported in [115], High Gain Observer (HGO), an evolved form of Kalman filter, is able to detect and estimate 

the change of process noise. However, the computational cost is also expected to be higher and thus the 
implementation is deferred to future work. 
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Figure 5.5. Training Sequence of PRR  

5.3.4 Simplified implementation of Kalman filter  

From our experiment, it was seen that the dynamic range of the metric 

used in the Kalman filter is relatively small and bounded as shown in Figure 

5.6. Therefore, we suggest that it is unnecessary to employ floating point 

numbers in this implementation. Without significant loss of accuracy, the 16-

bit fixed point method with a scale of 128 (i.e. a measurement of 1 will be 

scaled to 128, giving a resolution around 0.01 and the full-scale of [-

256~256]) was employed.  
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Given that the two states in equation (5.5) are independent of each 

other, the vector Kalman filter can be decomposed into two independent 

scalar Kalman filters, thus transforming the matrix inverse operation in 

equation (5.11) into a simple fixed-point divide operation that greatly 

decreases the calculation cost. However, unlike the 1st Kalman filter, the 

calculations used in the second Kalman filter cannot avoid complex matrix 

operations, e.g. product and inverse. This consumes most of the calculation 

cycles required by this algorithm. Nevertheless, fixed point calculations can 

still be used for the second Kalman filter and result in a decrease in the 

computation time from 2.14ms to 0.2ms in our implementation. Considering 

that the normal interval between two packets even in the saturation mode of 

standard IEEE 802.15.4 MAC (i.e. the average time cost for back off and 

CCA) is around 1.2ms, such cost of computation and time can be well 

accepted in WSNs. 

5.4 Experiment Results 

We have implemented the proposed estimation algorithm in a COTS 

platform, where the MCU is ATmega128 working at 8MHz, without a float 

accelerator. The transceiver employed in this experiment is AT86RF231 

which is the same as that used in Chapter 4. Such a configuration is 

comparable with most of the WSNs platforms (e.g. MicaZ, TelosB.) while 

some platforms supported higher computation capacity (i.e. IMote2 equipped 

a PXA271 which can work at 103MHz with a mathematic co-processor). We 

therefore suggest that the proposed algorithm is capable of being 

implemented on almost all WSN platforms.  
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Figure 5.7. Frequency selective channel for Effective-SNR estimation experiment 

The experiment has been setup in our laboratory, which contains 

instruments and workbenches with metal surface. As it is expected, such 

environment can cause fading effect, for instance, the frequency selective 

fading channel (tested using a RF network analyser as shown in Figure 5.7). 

In the experiment, the transmitter was configured to work in saturation 

mode, meaning there is always a packet ready in the queue to be sent. A 

wideband RF source and antenna was located near the receiver and was 

used to generate noise in the wireless channel. Each packet contained a 100 

Bytes information payload. The receiver recorded several metrics including: 

the number of packets it received at one second intervals, the averaged LQI 

for the period, instantaneous values of LQI and estimated Effective-SNR and 

SNR` (i.e. calculated through the deduction of RSSI and NOI) at the start of 

the period. It should be noted that the averaged LQI cannot be employed in 

the real application as it is an a posterior statistic value, and we provide it 

only as the upper-bound of the a priori indicators. 
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Figure 5.8. Experiment result in time sequence under indoor environment with varying 

environment noise 

The experiment results shown in Figure 5.8 were undertaken in the 

presence of adjustable environment noise from a wideband signal generator. 

The signal generator has been manually adjusted from -39dBm to -28dBm. 

As a result, the link quality of the wireless channel will inevitably be affected, 

which can be observed by the decrease in the number of successfully 

received packets. To simplify the illustration, we normalised the received 

packet number to give a Packet Receive Ratio (PRR) by comparing each 

result with the maximum number of received packet number, which has been 

provided in the first sub-plot. The averaged and instantaneous LQI 

performance is shown in the second sub-plot. In the third sub-plot of Figure 

5.8, we provided the raw SNR calculated from the quantised RSSI. As can 

be seen from the recorded time sequence result shown in Figure 5.8, all the 

channel indicators are changing accordingly with the adjusted environment 

noise strength.  
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Figure 5.9. Experiment result in varying noise strengths under indoor environment  

Obviously, the results shown in Figure 5.8 are indirect to provide the 

information of how accurate the channel indicator is. Then, the sampled 

results have been statistical processed and illustrated in Figure 5.9 in the 

format of PRR and different indicators versus the environment noise 

strength. The PRR can be seen to decrease steadily with increasing 

environment noise strength as shown in Figure 5.9. In the second sub-plot of 

Figure 5.9, both LQI and instantaneous LQI decreased nonlinearly, while the 

later one demonstrates a very high degree of variance. In the third sub-plot 

of Figure 5.9, the estimated Effective-SNR and raw SNR have been shown 

with trend lines to illustrate the averaged values. These two indicators also 

decreased with increasing environment noise, while the Effective-SNR has 

much less variance and better linearity than the SNR. It is easy to 

understand that the lower the variance, the more reliable the estimation. 
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Figure 5.10. Correlation results under indoor environment with varying environment noise  

To highlight the degree of variance, the experimental data has been 

further processed to show the correlation between the indicator and the PRR 

result, which have been illustrated in Figure 5.10. Cleary, the Effective-SNR 

shows the smallest variance among the three indicators, only slightly worse 

than the chosen upper-bound; the averaged LQI. The instantaneous LQI 

values tend to show much wider variance than the Effective-SNR, while the 

quantized RSSI based indicator is loosely correlated with the PRR with lower 

resolution. 

 
Figure 5.11. Experiment result in time sequence with varying transmitting signal strengths 
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Figure 5.12. Experiment result in varying transmitting signal strengths 

 
Figure 5.13. Experiment result under indoor environment with varying transmit power 
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accuracy of proposed indicators and its independent of the cause of channel 

quality change.  

It is clear that in both experiments the Effective-SNR indicator shows 

very high correlation with the PRR, demonstrating the suitability of Effective-

SNR as a channel performance indicator. To further examine the accuracy of 

applying indicators to estimate the channel capacity, a program has been 

implemented in MATLAB, which utilise the indicators obtained to estimate 

the error performance in the corresponding time period with the help of the 

error estimation model discussed in chapter 4. In order to better understand 

the comparison between different estimated results, a Root Mean Square 

(RMS) and a standard deviation (STD) of the residual are proposed as 

performance criteria.  

Let             denotes the estimated PRR, the residual was defined as:  

                     (5.17) 

Then The RMS and STD for N data samples can be defined as:  

      
 

 
   

  
    ;      

 

   
         

  
    (5.18) 

where     is the mean value of the N samples. 

Table 5.1 RMS/STD of the different residuals 

Condition 

Average LQI  Effective-SNR LQI SNR 

RMSs STDs RMSs STDs RMSs STDs RMSs STDs 

Adjust 

Noise 0.0343 0.0296 0.0544 0.0486 0.1181 0.1067 0.1425 0.1291 

Adjust 

Tx. Power 0.0492 0.0415 0.0570 0.0452 0.1171 0.0951 0.2377 0.2101 

The RMS and STD of the residual error for different estimation 

methods are provided in Table 5.1. In general, the proposed Kalman 

estimator method significantly outperforms other methods. The performance 

of the averaged LQI is provided for reference. These results validate the 

effectiveness and improvement gained by the proposed Kalman filter based 

estimation method. In which a more reliable Effective-SNR is generated 

without high transmission overhead in WSNs.  
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5.5 Conclusion 

In order to utilise the maximum capacity of WSNs in advanced 

applications, the availability of a simple yet accurate estimation of the RF 

channel quality is vital. However, due to measurement noise in the low cost 

devices and fading effects in the time-varying wireless channel, it is usually 

estimated through probe or learning based methods, which result in high 

energy consumption or high overheads. This chapter proposes to make use 

of information redundancy among indicators provided by the IEEE 802.15.4 

system to improve the estimation of the link quality. A Kalman Filter based 

solution is used due to its ability to give an optimal estimate of the un-

measurable states of a dynamic system subject to observation noise.  

In this chapter we presented an empirical study showing that an 

improved indicator, termed Effective-SNR, can be produced by combining 

SNR and LQI with minimal additional overhead. The estimation accuracy is 

further improved through the use of Kalman Filtering techniques. Finally, 

experimental results demonstrate that the proposed algorithm can be 

implemented on resource constraints devices typical in WSNs, while the 

estimation accuracy can be increased through the proposed Effective-SNR 

solution. The estimated error performances of wireless link have shown that 

the accuracy of estimation has been increased 160% compared with raw 

SNR, and 120% when compared with the instantaneous LQI. The link quality 

estimator can be implemented in conjunction with a variety of the upper-layer 

algorithms in sensor networks. Within the context of this thesis, the proposed 

low cost Effective-SNR is able to estimate the channel capacity accurately in 

harsh RF environments with the help of the error performance model 

discussed in Chapter 4. It is possible to design an optimisation based MAC 

protocol to utilise the adaptive spreading code length, which will be 

discussed in the next chapter. 
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Chapter 6. Utilising the Adaptive Spreading 

Code Length for the MAC Protocol Design 

of WSNs 

6.1 Introduction  

This chapter presents the design of a MAC protocol aiming to utilise 

the adaptive spreading code length feature to achieve better performance in 

WSN systems by ways of improving link reliability, or by increasing 

throughput and energy efficiency. The motivation comes from the advanced 

WSNs applications discussed in Chapter 2, where deployed WSN system 

have to deal with the challenge of intensive traffic load as well as harsh RF 

environments. We suggest that the use of adaptive spreading code length in 

wireless sensor networks could be one of the most suitable candidates for 

these applications. Aided by the adaptive spreading code length feature, the 

WSN system will be able to automatically adjust the spreading code length to 

deliver the highest throughput for the current wireless link margin. In the case 

of a harsh RF environment, the system can also deliver robust service by 

increasing the spreading code length, while the system can decrease the 

spreading length to deliver information in opportunistic high data-rate mode. 

The WSN system deployed in ordinary RF environment can also be 

significantly benefited from the utilisation of adaptive spreading code length, 

since the system will be able to deliver much higher throughput comparing 

with the standard IEEE 802.15.4 based WSN system. We have named the 

proposed MAC protocol Adaptive Spreading – MAC, briefly noted as AS-

MAC for the following discussions. 

The design of the proposed AS-MAC will be grounded on the findings 

discussed in previous chapters, 4 and 5. In detail, we experimentally 

identified the error performance of different spreading length modes, based 

on which, an analytic model has been proposed to accurately estimate the 

error performance in the AWGN channel. Since we cannot expect the ideal 

AWGN channel in most deployments of WSNs, we proposed a new link 
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indicator named Effective-SNR which is able to normalise the link quality in a 

fading channel into an equalised Effective-SNR in an AWGN channel with 

the aid of a two layer Kalman filter. Due to the nature of Kalman filter, such 

an indicator is able to track the condition of the time varying wireless channel 

much faster than other approaches, e.g. moving average. Using this 

technique the receiver can easily calculate the optimum spreading code 

length for the current transmission link. However, one problem remains, 

which we will investigate in this chapter: only the transmitter can configure 

the spreading code mode for current packet, while the optimisation can only 

be calculated based on the information provided by the receiver. Then, 

clearly, the design question will be based on how to exchange this 

information between the transmitter and receiver; a feature which is not 

provided in the standard IEEE 802.15.4 MAC or its variants typically used in 

WSNs e.g. B-MAC. 

CCA pkt

pktCCA

Pkts arrive

backoff CCA

backoff CCA pktbackoff

backoff

ACK backoff CCA

Pkts arrive

ACK
Node 1

Node 2

backoff

 

Figure 6.1. IEEE 802.15.4 MAC protocol 

Obviously, the four way hand-shake scheme currently employed by 

the IEEE 802.11 DCF is one of the candidates to solve this problem. 

However, unlike the IEEE 802.11 DCF, the maximum packet length 

supported by the physical layer of IEEE 802.15.4 is much smaller: only 128 

Bytes. The overhead cost of RTS and CTS packets for this short packet 

could be too high to be afforded by the WSN system. This problem can be 

mitigated in the scenario with heavy offered traffic load through the 

aggregation of packets from the application layer. As shown in Figure 6.2, 

instead of directly sending out packets from the application layer, the MAC 

layer will buffer the packets until a block of packets are waiting for 

transmission and can be transmitted together in one four way hand-shake 

procedure.  
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Figure 6.2. Four way hand-shake based protocol 

Beyond this, the principle of this protocol design should also be 

compatible with both traditional applications with a low duty cycle and 

advanced applications with intensive data transmission tasks. It should be 

noted that even data intensive applications can consist of hybrid tasks, i.e. 

the intensive data transmissions are only triggered in a burst pattern, the 

network will still need to be able to deal with single and short packets at all 

other time. Therefore, any proposed algorithms should consider the 

requirements for both kinds of transmission. 

As observed previously, there will always be a large number of 

packets transmitted in high throughput applications and thus, we are 

motivated to wonder whether we could use the first packet of the queue as 

an RTS packet, and utilise its ACK packet as the CTS packet to exchange 

the optimisation result generated in receiver side. If there are other packets 

in the queue, they could be transmitted at a faster data-rate (depend on the 

link quality); whereas if this is the only packet waiting to be sent, the cost can 

be controlled, since there is no overhead in this procedure (the same as 

standard IEEE 802.15.4 MAC: one data packet and one ACK packet). In this 

chapter we will analyse this new protocol to see if it is able to fulfil the 

requirements of WSN applications with high traffic load, i.e. provides higher 

throughput while keeps the energy efficiency with low-cost design fashion.  

In section 6.2, we will discuss the detail design of the AS-MAC from a 

number of different perspectives, which will enable the optimisation of the 

adapted spreading code length mode. The proposed AS-MAC has been 

implemented in a COTS platform to evaluate the performance. A standard 

IEEE802.15.4 MAC has also been implemented in the same platform as a 

comparison. The recorded performance results will be provided in section 6.3 
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to demonstrate the advantage of proposed AS-MAC. Finally, our findings will 

be concluded in section 6.4. 

6.2 Design of AS-MAC protocol 

The details of the protocol will be described in this section. Different 

aspects in the implementation will be discussed separately first and the 

overall architecture of the proposed AS-MAC will be presented at the end of 

this section.  

6.2.1 Modifications to Carrier Sense 

The design of the standard IEEE 802.15.4 MAC is very similar to the 

IEEE 802.11 DCF protocol but with further simplification. Such simplification 

derived from the characteristics of the traditional WSNs system, i.e. low 

traffic load and low power oriented. For instance, the IEEE 802.11 DCF will 

freeze the backoff timer when the channel is busy and only decrease the 

backoff timer when the channel is detected to be idle. Obviously, this scheme 

will require the transceiver to be active to monitoring and report the wireless 

channel during the whole carrier sense process and will continually consume 

power. Therefore, in the design of the IEEE 802.15.4 MAC, such operation 

has been significantly simplified: as soon as a packet arrives, the MAC 

protocol will start the backoff timer following the same exponential manner. 

Unlike the IEEE 802.11 DCF scheme, the radio transceiver will be set to idle 

in this process to save energy and the backoff timer will continually 

decrease. The IEEE 802.15.4 MAC will only sense the channel after the 

backoff period for a fixed time slot (192 μs), and the feedback of this 

measurement will determine whether the channel is free or not. As a result, 

the IEEE 802.15.4 MAC gives up the possibility to learn what‟s going on in 

the wireless channel17. 

As these random backoffs were employed to de-synchronise the 

channel competition for different devices, such a scheme works fine in 

extremely low offered traffic load scenarios to provide acceptable 

                                            
17 IEEE 802.11 DCF does not try learn the transmission activity as well, but the backoff scheme keeps the 

possibility while the IEEE 802.15.4 standard MAC eliminate such possibility. 
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performance. However, as discussed in chapter 2, the WSN system has 

been more and more employed in advanced applications, where the 

character of the tasks will be slightly different. Although the overall offered 

traffic loads may still be in low level in these applications, there could be 

heavy offered traffic load concentrated in a short period which will cause high 

competition in the wireless channel, e.g. in the sample burst. In this case, 

such a simplified MAC scheme will greatly decrease the delivered system 

throughput due to less obtained information of the wireless channel and 

increased power consumption due to the higher retry and retransmission 

rate. 

The second issue is about the carrier sense operation which 

originates in wired systems. In such a scheme, the physical layer will enable 

the radio front-end for a fixed period and record the power readings of the 

detected signal. If the readings exceed a pre-configured threshold, a channel 

busy result will be reported. In a wired system, the channel can be assumed 

as a perfect media, therefore having only two states: occupied or free. Such 

a system still works fine in fully connected wireless systems (e.g. each 

devices in the network can communicate with each other), but will lose 

performance in real wireless networks due to the quantisation of the wireless 

channel status instead of the simple on and off wired channel.  

Dtx=1104m

DCCA=311m

Dinterference=2230m

Effective range of CCA

Ptx = 0dBm

Min(Prx) = -101dBm

Min(CCA) = -90dBm

Min(SINR) = 6dB

 

Figure 6.3. Effect of carrier sense  
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An example has been shown in Figure 6.3 based on the transceiver 

we are currently using for our experiments, but similar effects can also be 

expected for other IEEE802.15.4 radio transceivers. Assuming each node 

transmits a packet with 0dBm transmission power, the potential receiver 

located inside the medium cycle in Figure 6.3 can form a stable wireless link 

giving the condition that the minimum receiving sensitivity is -101dBm and 

the propagation model is the standard free space model [91]. According to 

[21], the minimum energy reading for the incoming signal is -90dBm, 

therefore the CCA can only be effective to in avoiding collisions with a 

competitor if it is located within the smallest cycle highlighted in green. 

Furthermore, considering that the minimum SINR requirement for a stable 

wireless link is 6dB, if the receiver is located in the red pot shown in the 

figure, any node located between the smallest circle and the biggest circle 

can interrupt the transmission link.  

It is easy to notice that the effect of current carrier sense operation in 

IEEE 802.15.4 MAC is very limited. If a higher spreading mode was 

employed, the SINR requirement will be further increased which has been 

demonstrated in Chapter 4. As a consequence, the wireless link will be more 

vulnerable to competitors in the network. Therefore, we are motivated to 

modify the current carrier sensing operation of the IEEE 802.15.4 MAC to 

improve the overall performance for an adaptive spreading code length 

based WSNs system. In the proposed protocol, once packets arrive from the 

application layer, the MAC layer will start the exponential backoff timer as 

well. However, the MAC protocol will set the transceiver to the receiving state 

instead of the idle state. In other words, we prefer the system to learn as 

much channel information as it can rather than saving small amount energy. 

CCA

Backoff

16us 192us

Packet transmission

4409us (100Byte payload)

 

Figure 6.4. Time constraints of the carrier sense operation  

We now demonstrate that the energy consumed in this operation is 

relatively small compared with the whole energy consumed for a packet 
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transmission. According to [16], the backoff period is uniformly distributed in 

a binary, exponentially expanding range. In detail, the backoff period is 

uniformly distributed in [0~          ], where   is the number of the 

retransmission and     is the initial backoff window size. As shown in 

Figure 6.4, each backoff slot lasts 16 µs and the CCA operation after the 

backoff period lasts 192 µs. Then, considering that the collision probability in 

the traditional low traffic scenarios can be assumed to be zero, the backoff 

period can be approximated as            . Now, we have all the 

parameters needed to calculate the proportion of power consumption in the 

backoff period within the traditional scenario, for example only 1.23% of the 

energy can be saved if the packet has a payload of 100 Bytes and was 

transmitted with the default power of 0dBm. It is easy to notice that keeping 

the transceiver idle in this operation only contributes a small proportion of the 

overall energy consumed. Therefore, forcing the transceiver to enter the 

receiving state in the backoff period will not cause significant power 

consumption, but this modification will assign the system more flexibility in 

determining the channel information. The AS-MAC will keep reading the 

energy detection value from the transceiver to gain information on the 

channel. If the channel is free, the first packet in the block will be transmitted 

after the backoff period. In this case, the recorded energy detection value 

can be assumed to be the environment noise with accumulated far away 

interference and will be fed to the Kalman filter as the statistic of the 

environment noise.  
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Figure 6.5. Carrier sense modification in AS-MAC  

If there are other activities in the channel (e.g. another transmission 

link is ongoing), two potential feedbacks can be expected. First, if such 

transmission was initialised during the backoff period, the preamble of that 

packet can be captured. Then the system will receive this packet until it 

finished. The signal strength and the packet information with the link 

parameters will be passed to Kalman filter to update the link status metric. 

Since the preamble lasts 192 µs, we also modify the backoff slot to last 192 

µs rather than 16 µs to enable the carrier sensing have enough time to 

capture the preamble. As a consequent, the protocol can determine the 

channel as busy and double the back off window. Second, if the transmission 

was started before the backoff period, the carrier sense can still report 

detection of the IEEE 802.15.4 signal, but due to the limitation of the current 

hardware implementation, we cannot force the transceiver to decode packet 

without recognition of the preamble. In this case, we simply assume the 

channel is busy and double the backoff window, and increasing the 

probability of capturing the preamble in the next backoff period. It is also 

noted that, in both cases, since different spreading modes can be employed 

in this protocol, the received packet may report a CRC failure due to the un-

synchronized spreading mode. When a packet has been received but 

reported as a CRC failure, the protocol will be cycled to the next spreading 
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mode for the next potential transmission.  The scheme has also been shown 

in Figure 6.5. 

We understand that it is possible to enable concurrent transmission to 

achieve even higher network performance. However, the current transceiver 

implementation will synchronise to any detected preamble even though there 

could be a higher SNR packet arriving later. Therefore we limited this 

possibility in this version of protocol and defer it to our future investigation. 

6.2.2 Packets Aggregation 

Once the channel is free, the MAC layer will attempt to send the first 

packet in the buffer queue. In the traditional WSN applications, it is most 

likely that the first packet is also the only packet waiting in the queue. In this 

case, just like the default IEEE 802.15.4 MAC, the packet will be sent out 

immediately. Since there is no other pending packets waiting to be sent, the 

receiver will also process this packet in the default IEEE 802.15.4 way and 

send the ACK packet. The only difference is that the proposed AS-MAC will 

feed the signal strength of received packet to the Kalman filter to enable it 

tracking the channel quality trend, if any, of the current transmission link.  

However, in advanced sensor network applications, the throughput 

demands from the upper layers could be much higher in the sample period 

than the rest of time. For instance, in the structure health monitoring 

application discussed in Chapter 2, the system samples the vibration sensor 

with a 1 kHz sample rate, thus, every second there will be around 60 packets 

(with payload length = 100 Bytes) arriving from the upper layers. Another 

example could be multi-media based applications. Considering a system 

equipped with a standard 300×200 digital camera and recording static 

pictures every second, the raw data (i.e. BMP format) generated could be as 

large as 240kB. Even if the data can be locally processed with a JPEG 

algorithm, the data needing to be transferred via the network can still exceed 

12kB (assuming 5% compression ratio), which will be converted to an offered 

traffic load of more than 120 packets per second. In traditional WSN 

applications with simple sensor inputs, the existence of aggregation 

congestion (i.e. the close to the sink device, the more aggregated packets 
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from pervious hops will occur) can result in congestion of data packets in the 

MAC layer. These packets used to cause congestion in the traditional 

wireless sensor networks, but with the aid of adaptive spreading code length, 

the AS-MAC will be able to utilise higher bandwidth to increase the 

performance of WSNs in advanced applications. 

FCFPreamble Seq Address b_ID MAC payload CRC

Frame
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…………………………………...

0 1 2 3 4 5
1

5

 

Figure 6.6. Modification of the packet structure in AS-MAC  

In the case where there is more than one pending packet in the 

queue, the AS-MAC will process them as a block, i.e. a series of packets will 

be transmitted in one hand shaking process. The first packet in the queue 

will be sent out as a probe packet. To indicate to the receiver this unique 

packet type, we have reused the frame type subfield in the Frame Control 

Field (FCF) of the IEEE 802.15.4 packet structure. Value of 0,1,2,3 have 

been used by the standard IEEE 802.15.4 to indicate the beacon, data, ACK, 

and command packets respectively. Then we define the frame type of 4 as 

the probe packet, which is the first packet in the block. After the receiving of 

probe packet, the receiver will start the optimisation algorithm based on 

learned information about the current wireless link and environment, and 

return the optimised result within the ACK packet. However, this special ACK 

packet will contain different and more important information than the 

standard ACK packet, thus we assign it a frame type of 5 to distinguish if 

from standard ACKs. After successfully decoding the first ACK, the 

transmitter will send the other packets in the block using the optimised 

configuration. These packets will be indicated with a frame type of 6. After 

the whole block has been transmitted, the receiver will terminate the link with 

a final ACK packet, which will contain the packet lost information, if any, and 

will be flagged with a frame type of 7. Finally, the transmitter will re-buffer the 

lost packets into the queue and start another cycle as long as the queue is 

non-empty. 
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Figure 6.7. Basic scheme of AS-MAC 

Besides the frame type, the AS-MAC will also need to know the block-

ID for each packet in the block, e.g. to check if the packet is lost. We then 

have to add one more Byte in the MAC header just before the payload as 

shown in Figure 6.6. This block_ID will be counted from high to low, i.e., the 

block_ID of the probe packet will be equal to the block size, and the last 

packet in the block will have a block_ID of one. Therefore, the proposed AS-

MAC will only increase the overhead over the standard IEEE802.15.4 MAC 

by one Byte, which is affordable for the low-cost and resource constraint 

designs. 

6.2.3 Optimisation of the spreading code length 

Once the receiver has detected a probe packet, the AS-MAC will first 

check the frame type field. If the frame type of the packet is equal to the 

probe packet type, the optimisation process will be triggered. The 

optimisation process‟s aim is to maximise the deliverable throughput in the 

current wireless link without interrupting any existed wireless link. This target 

can be achieved theoretically by maximising the following function: 

       
   

              (6.1) 

where R is the set of the data rates for all possible spreading code length 

modes. 

 According to the discussion in Chapter 4, given the SINR and the 

packet length for the current link request, equation (6.1) can be derived into 

the following equation (6.2), i.e. minimising the packet error rate by choosing 

the right spreading code length. 

       
   

       (6.2) 
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Nonetheless, the first step in the optimisation process is to estimate 

the link quality. However, recent published measurements [58] have shown 

that solely measuring the SINR during a short time scale, e.g. the duration of 

a packet, may not be a good predictive method to estimate the quality of 

wireless link. As discussed in Chapter 5, the Kalman filter can be one of the 

best candidates in this scenario. Firstly, it can provide an accurate estimation 

of the current wireless link. Secondly, the estimation is not only based on the 

current link states but also the historic statistic. Thirdly, a Kalman filter can 

follow changes in link quality very rapidly, e.g. in the implementation, the 

system can converge with less than 10 inputs. Furthermore, the Effective 

SNR processed by the Kalman filter has normalised the effect of the fading 

effect, thus, it will be more straightforward to calculate the best spreading 

code length mode with the Effective SNR measure in an AWGN channel 

model, rather than with SNR in a fading channel model. Therefore the 

Kalman filter has been employed to generate the link estimation rather than 

the simple moving average method used in some other rate adaptive 

protocols. 

Table 6.1 Pseudo code of the optimisation process  

Spreading_code_length_optimisation(Effective-SNR, Packet_length) 

{ 

  minPER = 1; 

  best_r = -1 

  if (converge_Kalman()!=1) 

 { 

   return 0; 

 } 

  for all r R  

  { 

     SER= get_SER(Effective-SNR); 

     PER=                      ; 

     if (PER < minPER) 

      { 

         minPER = PER; 

        best_r = r; 

      } 

  } 

  return best_r; 

} 
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As shown in Table 6.1, once the AS-MAC has detected a probe 

packet and triggered the optimisation process, it will first check whether the 

Kalman filter has converged. If not, the optimisation process will return the 

default spreading code length mode, i.e. 250 kbps. The optimisation will only 

have effect when the Kalman filter has converged, i.e. it is able to provide an 

accurate estimation. Then the AS-MAC will use the estimated Effective-SNR 

to get the corresponding Symbol Error Rate (SER). The SER can be 

obtained following the analytic method discussed in Chapter 4, however for 

reasons of simplicity, the results have been pre-generated off-line and saved 

into a look up table. In the online process, the AS-MAC will simply index the 

look up table with estimated Effective-SNR and get the corresponding SER. 

The next step is to go through all four possible spreading code length modes, 

calculate the Packet Error Rate (PER) with the SER and packet length. It 

should be noted that different packet lengths will affect the error performance 

due to the CRC scheme. Finally, the spreading mode with minimised PER 

will be returned as the optimised spreading code length mode. 

As discussed in Chapter 5, the Kalman filter implemented in our 

system will also track the change of environment noise in addition to the 

signal strength. Therefore, the Effective-SNR estimation will reflect the 

variation of both the signal strength and the environment noise. Obviously, 

the adaptation is not only optimised for the link quality but is also aware of 

changes in the environment noise, which will make the AS-MAC appropriate 

to be deployment in industrial locations with harsh RF environments where it 

will be able to track the change of environment noise strength, and deliver 

higher throughput when higher Effective-SNR exists in an opportunistic 

manner. 

The optimisation result will be embedded into an ACK packet and sent 

back to the transmitter. The receiver will then be configured to the optimised 

spreading mode while waiting for the upcoming packet block. Since the ACK 

packet may also have the possibility of error, AS-MAC will start a timeout 

timer with the upper-limit of two packet intervals. In the case that the ACK 

packet is lost the timeout event will be triggered where the AS-MAC will stop 
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the current receiving process and switch back to the idle state with the 

default spreading mode. 

6.2.4 Overall protocol architecture 
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Figure 6.8. Algorithm for transmission operation 
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Figure 6.9. Algorithm for receiving operation 

Here we will provide a description of the overall protocol architecture 

outlined by the algorithms in Figure 6.8 and Figure 6.9, for the transmission 

and receiving operation respectively. The system will be able to track and 

predict the change of link quality by employing a Kalman filter. In the case 

the Kalman filter has not converged, the system will work with the default, 

most robust spreading code length. As soon as the Kalman filter converges, 

the system carries out the optimisation process and uses the optimised 
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spreading code to deliver as high a throughput as possible, which will, of 

course, decrease the latency and reduce the energy consumption. It should 

also be noted that such a scheme should have almost the same energy 

efficiency with low offered traffic loads, but can trade the energy consumption 

for a better channel utilisation with heavy offered traffic loads. We will 

experimentally demonstrate the system performances using this approach in 

the next section. 

6.3 Performance Evaluation using Experimental approach 

The proposed AS-MAC protocol has been implemented in the same 

COTS platform employed in chapter 4 and 5. This platform is comparable 

with most common WSNs platforms (e.g. MicaZ, TmoteSky.) in terms of 

MCU frequency and memory space. As a consequent, the proposed protocol 

implemented here should also be able to be implemented and work with 

almost all other WSN platforms. The standard IEEE 802.15.4 MAC protocol 

has been implemented as well to provide a direct comparison of the AS-MAC 

performance. The experiment location is an ordinary in-door environment, 

which suffers from the multi-path effect due to reflections. Similarly to 

previous experiments, a vector signal generator, ESG4432B has been 

employed to generate the variable environment noise. 

 

Figure 6.10. Photo of the AS-MAC experiment setup 

A series of experiments have been conducted to evaluate the 

proposed MAC protocol. The packet arrival rate was pre-configured before 

the experiment following a Poisson distribution with a mean value of λ. Note 

that the default block contains 20 packets and the default payload length of a 
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packet is 100 Bytes unless otherwise specified. In all the experiments, both 

the IEEE 802.15.4 MAC protocol and the AS-MAC have been configured 

with the default MAC parameters: the initial backoff window size W was set 

to 8, maximum retransmission attempts M is set to 4. To simplify the 

analyses, we disabled the retransmission scheme in both protocols, i.e. the 

protocol will drop the current packet in the event of ACK_Timeout being 

exceeded instead of re-adding it to the buffer queue for retransmission. As a 

result of this regulation, the offered traffic loads were determined only by the 

data arrival rate. 

6.3.1 Throughput performance 

 

Figure 6.11. Capacity comparison between the proposed AS-MAC and standard IEEE 802.15.4 
MAC 

We first explore the potential throughput capacity of the proposed AS-

MAC by deploying only one transmission pair, where the channel collision 

probability can be eliminated. During the experiment, we increased the data 

arrival rate for the transmitter, i.e. increasing the offered traffic load in the 

system, until the system saturated. As expected, the standard IEEE 802.15.4 

MAC is saturated at a packet arrival rate of 160 packets per second (pps), 

where the system is able to provide the throughput of 118kbps. Only the 

payload of a packet will be treated as the effective throughput, i.e. the header 
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of MAC layer and preamble of PHY layer have been excluded when 

calculating the throughput performance. Therefore, the illustrated throughput 

in our work will be slight less than the offered traffic loads shown in Figure 

6.11, and may also be less than the reported value in other publications due 

to this calculation method. Then, as shown in Figure 6.11, by enabling the 

adaptive spreading code length, the proposed AS-MAC allows increased 

throughput enabling the system to cope with an increasing offered traffic load 

of up to 260 pps (around 208 kbps). The maximum achieved throughput 

provided by AS-MAC could be as high as 204 kbps, which is a 76% 

performance improvement comparing with the standard IEEE 802.15.4 MAC. 

 

Figure 6.12. Throughput performance in Star topology 

The throughputs shown in Figure 6.11 were monitored with a zero 

probability of collision in the wireless channel. As a result, the network 

throughput should be less than the maximum throughput shown in Figure 

6.11 when more nodes join the network and compete for the wireless 

channel. Therefore we deployed the protocol within a more realistic scenario 

to produce Figure 6.12, where a certain number of nodes formed a fully 

connected topology. All nodes will transmit packet to a central device, which 

can be understand as the sink device or the cluster head. The packet arrive 

rate in each node has been configured to a fixed rate of 60 pps (48 kbps). 

Obviously, each newly joined node will increase the offered traffic load for 

the whole network and increase the collision probability. In the results shown 
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in Figure 6.12, the delivered throughput of the IEEE 802.15.4 MAC increased 

until the network exceeded 3 nodes and achieved a maximum throughput of 

72.3 kbps. After this point, due to the increasing collision probability, the 

network throughput started to decrease with increasing network size. If we 

deployed the proposed AS-MAC protocol within the same network scenario, 

as expected, the AS-MAC was able to support a higher offered traffic load, 

not peaking until the network reached 6 nodes. At this point, the AS-MAC 

delivered a throughput of 173.3 kbps which is a 139.7% improvement over 

the standard IEEE802.15.4 MAC. Furthermore, if the results are compared 

with the capacity without collisions as shown in Figure 6.11, it is seen that 

the standard IEEE 802.15.4 can only achieve 61.3% of the capacity while 

AS-MAC is able to achieve higher ratio of 84.8%, which means the proposed 

AS-MAC can utilise the wireless channel in a more efficient way. 

0 1 3 2

 

Figure 6.13. Two flow topology. Node 1 and 3 are exposed terminals 

We have also examined the protocol performance in a multi-hop 

scenario. We first investigated the typical exposed terminal topologies 

consisting of two flows. In the topology shown in Figure 6.13, node 1 and 

node 3 were transmitters and deployed within each other‟s transmission 

range. It should be noted that all devices in this experiment have been 

equipped with a 20dB attenuator to decrease the transmission range to 

simplify the experiment setup without loss of any accuracy. Therefore, 

through careful calibration node 0 has been deployed out of the effect range 

of node 3, i.e. node 0 cannot sense or receive any packet from 3. Following 

the same principle, node 2 has been deployed out of the effect range of node 

1.  
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Figure 6.14. Throughputs in exposed terminal scenario 

 As shown in Figure 6.14, when the offered traffic load increases at 

both transmitters, the successfully delivered throughputs of flow 1->0 and 

flow 3->2 increase as well. However, due to the capacity of protocol, the 

IEEE802.15.4 MAC was saturated when the data arrival rate is 80 pps (64 

kbps). After this point, the delivered throughput cannot maintain the offered 

traffic load and remains at a constant level. As a comparison, the AS-MAC 

can steadily increase until 160 pps (128 kbps), therefore increasing the total 

network throughput by 60.7%. It should be noted that the total network 

throughput cannot go beyond the maximum throughput of a single flow in an 

ideal channel. However, in the experiment, the false channel sense 

assessment may enable the exposed terminals to transmit concurrently, 

slightly increasing the total system throughput delivered. 

1 0 3 2

 

Figure 6.15. Two flow topology. Node 3 is the hidden terminal of node 0 

We now deploy the experiment with the topology shown in Figure 

6.15, aiming to evaluate the throughput performance in the hidden terminal 

scenario. Similarly to the topology shown in Figure 6.13, both 1->0 and 3->2 

flows have been deployed with great enough link margin to achieve 
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maximum throughput, while node 3 and 1 have been deployed out of the 

range of each other to replicate the hidden terminal scenario. In the standard 

IEEE 802.15.4 MAC, the carrier sensing scheme in node 1 may fail to detect 

the hidden terminal activity of node 3, as a result the node 1 could access 

the channel with the false result and increase the collision probability in the 

channel. Therefore, the delivered throughput shows an unfair pattern in 

Figure 6.16 for the IEEE 802.15.4 MAC, i.e. the throughput of Node 0 has 

been limited to a relatively low value with respect to the total system 

throughput.  As discussed in section 6.2, the introduction of a competition 

check in the AS-MAC is able to aid Node 3 to successfully avoid the 

interruption of the transmission in link 1->0 by monitoring actions occurring in 

link 0->1. Therefore, as shown in Figure 6.16, the system throughput can 

achieve an almost fair throughput performance among both flows, while the 

overall system throughput is also higher than standard IEEE 802.15.4 MAC 

because of the high datarate achieved by the shorter spreading code length 

modes. 

 

Figure 6.16. Throughputs in the hidden terminal scenario 

6.3.2 Throughput performance with variable environment noise 

To evaluate the performance of the AS-MAC under the condition of 

channel noise, a vector signal generator ESG4432B has been employed to 
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generate environment noise. The ESG4432B has been equipped with a 

2.4GHz 0dBi antenna to feed noise directly into the wireless channel. 

 

Figure 6.17. Throughput performance of AS-MAC with variable environment noise 

Similarly, we first evaluated the performance of single transmission 

flow with variable environment noise strengths. The transmitter has been 

configured with a fixed packet arrival rate 260 pps (208 kbps), which is 

almost the saturated state. The strength of environment noise is adjusted 

and the number of received packets at the receiver side recorded to 

calculate the throughput. The results are provided in Figure 6.17. The 

delivered throughput remains at its highest level of around 204 kbps until the 

environment noise exceeds -57dBm. It is assumed that before this point, the 

SNR was high enough for the transmission pair to work with the shortest 

spreading code length mode which can lead to the highest datarate. 

Consequently, when the environment noise was higher than -57dBm, the 

Kalman filter could learn this change in the environment and signal the AS-

MAC to switch to the next spreading code length. This caused the 

degradation of the delivered throughput to around 185 kbps. However, the 

third spreading mode was relatively hard to track in Figure 6.17, since the 

SNR region for this mode is only 1dB (around -48dBm). Then, it is easy to 

notice the standard spreading mode of IEEE802.15.4 around 118 kbps from -

46dBm to -43dBm. Beyond this point, although the system can still determine 

the decrease of the SNR margin, the system was fixed in this mode until the 
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throughput trends to zero since there are no other modes for lower SNR 

margins. According to the motivation behind this protocol design, the 

experiment successfully demonstrates the ability of the protocol to be 

cognitive to the environment change and adjust itself to the best operating 

mode to maintain a reliable transmission link. 

 

Figure 6.18. Throughput performance of AS-MAC with environment noise under star topology 

We now evaluate the performance under environment noise in the 

more general star topology. The configuration of this experiment was almost 

the same as the previous experiment except the network consisted with 

three nodes with a packet arrival rate of 60 pps (48 kbps). Since there are 

three links in total deployed in different locations, the link status will change 

in an uncorrelated fashion among nodes. Therefore, the combination of 

delivered throughputs shown in Figure 6.18 is slightly different to the result 

shown in Figure 6.17. The overall deliverable throughput has been kept 

around 140kbps when the environment noise is lower than -62dBm. Then 

along with the increasing of environment noise to -58dBm, the delivered 

throughput decrease slowly to 110 kbps. In the last stage, the throughput is 

going to decrease rapidly toward zero, when the environment noise is higher 

than -53dBm. Generally, although the cognitive process of the AS-MAC is 

not as clear as the single device experiment, the system still shows the 

adaptively along with the changing environment noise, while the standard 
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IEEE 802.15.4 MAC has kept a relatively lower throughput around 60 kbps 

just before reducing to zero. As a comparison, we also implemented another 

protocol which maintains the standard IEEE 802.15.4 MAC, except that the 

datarate has been forced to the highest rate. The result of this mode is 

shown as the black curve in Figure 6.18. It demonstrates that without a 

carefully designed protocol, simply increasing the datarate cannot deliver 

consistently higher throughput. 

 

Figure 6.19. Experiment setup for protocol comparison with variable environment noise 

 

Figure 6.20. Experiment photo for protocol comparison with variable environment noise 

The performance of the multi-flow scenario with environment noise 

was evaluated, as shown in Figure 6.19 and Figure 6.20. Devices configured 

for the AS-MAC and IEEE802.15.4 MAC have been deployed together, 
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connected via a 2.4GHz Power Combiner/Divider to a single antenna to 

ensure that each pair of devices posed with an identical wireless channel 

(with a 3dB degradation in transmit power due to the Combiner/Divider). The 

two nodes have been configured with the same ID but working in different RF 

channels. Consequently, the ESG4432B has been configured to generate an 

environment noise covering both channels.  

 

(a) packet arrival rate = 60 pps, spreading length = 32 

 

(b) packet arrival rate = 120 pps, spreading length = 32 
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(c) packet arrival rate = 60 pps, spreading length = 4 

 

(d) packet arrival rate = 120 pps, spreading length = 4 

Figure 6.21.Throughput performance with environment noise in the multi-flow scenario 

A series of experiments have been implemented with this setup. Each 

of them was carried out with different MAC configurations, i.e. the offer traffic 

load and spreading code lengths. During each experiment, the strength of 

the environment noise was slowly adjusted from low to high and then 

reversed with the process being repeated for several times. The receivers 

recorded and calculated the Cumulative Distribution Function (CDF) of the 

delivered throughput, which has been presented in Figure 6.21. It should be 
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noted that since these experiments will involve manual manipulation of the 

experimental set-up (e.g. the physical process of connecting nodes to allow 

the uploading of new programmes may cause small movements of the 

devices location), we are unable to guarantee that the experiment conditions 

are exactly same for each of the four experiments. However, within each 

experiment the condition has be exactly the same for the two implemented 

protocols.  

When the offered traffic load was low, i.e. 60 pps packet arrival rate, 

as the experiment result in Figure 6.21 (a) shows, the delivered throughputs 

of AS-MAC and IEEE802.15.4 MAC show almost the same performance. 

However, when higher traffic load exists, as high as 120 pps shown in Figure 

6.21 (b), the AS-MAC can achieve higher throughput than the standard 

IEEE802.15.4 MAC. In the result shown in Figure 6.21 (c) and (d), we 

compared the AS-MAC with the standard IEEE 802.15.4 MAC with the 

shortest spreading code length. We see that this protocol can achieve higher 

throughput than the standard protocol but is still not able to deliver the 

throughput of the AS-MAC. This demonstrates that simply increasing the 

datarate could, in some circumstances expose the transmission link to a 

degraded link quality. 

6.3.3 Energy efficiency 

In this section, we will show the energy efficiency performance of the 

proposed AS-MAC. As discussed in previous sections, the AS-MAC should 

be able to achieve better energy efficiency by reducing the transmit time. To 

demonstrate this, a NI DAQ card (PCI 6209 with sample rate 10 kHz) has 

been employed to capture the current draw of the device during different 

operations. The integration of the recorded current allow us to derive the 

overall energy consumed by device in that period, which is one of the most 

accurate ways to evaluate the energy efficiency of different MAC protocols. 
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Figure 6.22. Power consumption of IEEE802.15.4 MAC 

 

Figure 6.23. Power consumption of AS-MAC 

Figure 6.22 and Figure 6.23 show the current consumption of IEEE 

802.15.4 MAC and AS-MAC respectively. The devices we employed for 

experiment are equipped with capacitors to filter noise on the power lines 

which also leads to a low-pass filtering effect in the current monitoring 

system, i.e. a gradual transition between states. However, it should be noted 

that this effect will not degrade the accuracy of the analysis of energy 
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efficiency. For the IEEE 802.15.4 MAC, we show the current drawn during 

the transmission of one packet: the device first enters the BACKOFF state 

for a random period, and then switch to the CCA state. If the CCA returns 

with a free channel event, the device will send the packet and then enter the 

RX state waiting for the ACK packet. Instead of one packet, we will show the 

power consumption of a block of packets for the AS-MAC which is more 

common in this protocol. As discussed in previous sections, the system also 

first enters the BACKOFF state, the different is the AS-MAC will enable 

receiving during its time in the BACKOFF state to gain as much as the 

channel information as possible, e.g. the exchange of packets. After the 

BACKOFF state, the MAC uses the information learned and historical data to 

decide whether the device can start the transmission. If it decides that the 

channel is free, the device will send the first packet in the block as a probe 

packet. The receiver will then calculate the optimised spreading mode and 

reply with the ACK containing the optimisation result. After receiving this 

ACK, the transmitter will send out the subsequent packets in the block with 

the optimised spreading code length. Then the transmitter will wait for the 

final ACK to report whether there have been any packets lost in this 

operation and arrange the retransmission if any. 

 

Figure 6.24. Power consumption with increased packets arrival rate for 10 min 
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Following the other experimental results analysed in this section, we 

first evaluated the power consumption for a single transmission link. The 

offered traffic load has been increased from 20 pps to 80 pps, with each 

experiment lasting 10 minutes to record an average value of power 

consumption. As shown in Figure 6.24, as the offered traffic load increases, 

the power consumption of the standard IEEE 802.15.4 MAC increases 

rapidly. As a comparison, the power consumption of AS-MAC increases 

much more slowly. For instance, when the packet arrival rate is 80 pps, the 

AS-MAC can save 54.3% of the energy used by the IEEE 802.15.4 MAC. 

Table 6.2 Power Consumption for 1 hour in extremely low traffic load,  

Block_Size = 1 and packet arrival rate = 1 pps. 

 IEEE802.15.4 MAC AS-MAC 

Power Consumption (mA Hour) 0.0197 0.0202 

 

In section 6.2, we claimed that the AS-MAC should be compatible with 

the traditional applications, i.e. the system offers extremely low traffic load 

(for example, 1 pps). Therefore, we evaluated the energy performance in this 

scenario, through the configuration of Block_Size = 1 and packets arrival rate 

of 1 pps. The experiment lasted one hour for both protocols, and the two 

protocols show almost the same performance as shown in Table 6.2: AS-

MAC consumed 0.0202 mAh, only slightly higher than the 0.0197 mAh of 

IEEE 802.15.4 MAC. If both systems were equipped with a standard 2000 

mAh battery, the system with IEEE 802.15.4 MAC can last 11.75 years, while 

the system with AS-MAC can last 11.45 years. The additional power is 

consumed by the increase in energy used in the BACKOFF state. However, 

due to the extremely low offered traffic load, the probability of channel 

contention has been limited as well. Therefore, the energy consumed by the 

BACKOFF state can be regulated to an affordable level as we discussed in 

section 6.2.  
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Figure 6.25. Power consumption with increased node number, 20 pps for 10 min 

Then now evaluate the energy efficiency of the proposed AS-MAC in 

a general star topology. Due to the experimental limitations 18 , we only 

recorded the power consumption for only a small number of devices. To 

compensate, we increase the packet arrival rate to increase the offered 

traffic load in the network, which will cause competition and collisions. Also it 

is believed the trend of power consumption will scale with the node number. 

In the results shown in Figure 6.25, both systems were offered a traffic load 

of 20pps. In this scenario, the IEEE 802.15.4 MAC consumed more energy 

when the competition probability was increased due to the scaling of the 

network size. As a comparison, the energy consumed by AS-MAC can be 

kept at almost the same level. For example, the AS-MAC only consumed 

43% of the energy consumed by IEEE802.15.4 MAC when the network size 

was 3. This demonstrates that the AS-MAC has better energy efficiency as 

well as ability to handle increased competition in the network. 

To further validate this hypothesises, the offered traffic loads have 

been increased to 80 pps in the experiment shown in Figure 6.26. Because 

of the heavy offered traffic load, the competition probability also increased to 

a higher level, and therefore the AS-MAC consumed more energy in the 

BACKOFF state. However, if we recall the results shown in Figure 6.12, we 

                                            
18 We used a 8-channel ADC card, and 8 devices for the experiment. However, two of them are acting as the sink 

node, which means only three pairs of nodes can be monitored in these experiments.  
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can conclude that AS-MAC can trade this increase in energy usage for a 

better channel utilisation which guarantees the delivered throughput in a high 

competition scenario. Even in this condition, AS-MAC still shows better 

energy efficiency than the IEEE 802.15.4 MAC, i.e. AS-MAC consumed only 

84.7% of IEEE 802.15.4 MAC when the network size was 3. 

 

Figure 6.26. Power consumption with increased node number, 80 pps for 10 min 

6.4 Conclusion 

The proposed protocol jointly considers the signal strength, 

environment noise and competitors in the network to calculate the optimised 

spreading mode for the wireless sensor network. Our experimental results 

show that, in ordinary scenarios the AS-MAC can use less than half the 

energy to deliver more than double the throughput.  

The advantages of proposed AS-MAC can be summarised as follows: 

 The protocol will be able to deliver 139% higher throughput as well as 

save more than half of the power consumption for the standard IEEE 

802.15.4 system. 

 The protocol is robust to harsh RF environments by adapting the 

spreading code length to match the available link quality. 

 The protocol is backwards compatible, e.g. it offers support for both 

extremely low duty cycle and data intensive scenarios. 
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 The implementation of the protocol is very low cost within resource 

constrained nodes. 

Despite these benefits, the system based on the AS-MAC will also be 

able to provide multi-constraint QoS for the WSN systems which have 

different QoS requirements for different tasks running within one network. 

For instance, the MAC will report the current link capacity to the route layer, 

thus, the route protocol could assign links with higher capacity to packets 

with higher priority. Since the link capacity will be adapted from time to time, 

the routing protocols will need to be able to self-learning. The investigation of 

compatible routing protocol will be a possible direction for future work. 
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Chapter 7. Utilising the battery recovery 

effect in WSN with high traffic load 

applications 

7.1  Introduction 

Many applications of wireless sensor networks require batteries as 

energy source for the sensors. However, the small form factors of devices 

often prohibit the use of large and long lasting batteries. Also, the ad-hoc 

deployment of sensor networks and the inconvenience of sensor collection 

usually constrain frequent replacements of batteries. Hence, the design of 

energy saving algorithms and protocols has become a crucial topic in WSNs. 

There are a variety of energy optimisation studies in the literature that mostly 

consider batteries as ideal energy reservoirs, from which energy can be 

drained at a constant discharging voltage, and can be halted and resumed at 

anytime to regain the same voltage. However, most commercial batteries are 

governed by complex non-linear internal chemical reactions to provide 

energy. Such chemical reactions are known by chemical engineers to be 

dependent on a variety of environmental factors and operational parameters 

(e.g. discharge duration, discharge current, memory of past discharge 

profiles). 

Particularly, there is a subtle phenomenon named battery recovery 

effect, which refers to the process whereby the active chemical substances 

in a battery will replenish themselves if left idling for a sufficient period of 

time, and hence, the deliverable energy of a battery can, to some extent, be 

recharged. Thus, we are motivated to exploit battery recovery effect as a 

viable approach of energy optimisation for sensor networks. Even in the early 

age of WSN, battery recovery effect had already been reported [116]. As we 

discussed in the chapter 2, in the traditional working pattern of WSN, the 

duty cycle is pretty low, e.g. less than 1%. Therefore, the battery effect can 

be automatically maximised without any specify design. However, as the 

application requirement changes in advanced sensor network applications, 
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the offered traffic load could be much heavier and the work pattern be much 

more complex, i.e. bursts of data in vibration and ECG monitoring systems. 

Thus, we have to examine the effect of battery recovery and design an 

algorithm to benefit from the battery recovery gain in the high traffic load 

sensor applications. 

There are several immediate questions. First, is the battery recovery 

effect sufficiently significant to extend battery runtime? Second, if so, is there 

a simple but effective approach to take advantage of battery recovery effect 

in sensor networks? Third, does such an approach affect the performance of 

sensor networks and if so, how will the induced performance (e.g. latency of 

data delivery) be affected? 

To address these questions, we first empirically examine the gain in 

battery lifetime due to the battery recovery effect, through extensive test-bed 

experiments on COTS sensors platforms. Since radio transceivers consume 

a significant proportion of the available energy (even in listening mode), as 

compared to processing and sensing activities, we focus on measuring the 

battery lifetime in the presence of duty cycled radio operations. We found 

that there is a gain of up to 25% ~ 45% of the normalised battery lifetime 

between cycled and continuous radio operations. Moreover, we empirically 

study some key characteristics of the battery recovery effect with respect to 

different duty cycle schedules. We observe that there exists a saturation 

threshold, beyond which an increased idle time will have little contribution to 

battery recovery. The immediate ramification to sensor networking is that if 

we carefully adjust the sleep time period of device before reaching the 

saturation threshold, the system may benefit from the battery recovery effect 

without exacerbating the latency of data delivery. Through simulation in a 

large scale multi-hop network, we demonstrated such possibility, which 

shows the network life time can be increased by 20% by using the battery 

recovery aware design. This suggests that a system may be able to 

maximise such benefits by an adaptive duty cycle algorithm, which would be 

discussed in our future work. 
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7.2  Experiment demonstration of battery recovery effect in WSN 

platforms 

In this section, we present the experimental results from our sensor 

network test-bed to show the significance of the battery recovery effect. 

These experiments were carried out on two types of commercial sensors 

from Crossbow: TelosB and Imote2. Both are popular models for wireless 

sensor networking. The TelosB consists of an MSP430 MCU and a CC2420 

radio transceiver. The Imote2 consists of a PXA271 CPU and a CC2420 

radio transceiver. The TelosB allows more energy-saving settings with low 

energy consumption, whereas Imote2 is equipped with more computation 

ability and therefore higher energy consumption. We mainly studied the 

effectiveness of battery recovery effect on the TelosB nodes. 

 

Figure 7.1. The experiment setup of battery recovery effect 

In the experiments, we use an analogue-to-digital conversion (ADC) 

interface card and LabVIEW software to measure and record the discharge 

profiles of a pair of communicating sensors (see Figure 7.1). Each sensor is 

powered by standard AAA NiMH 600 mAh batteries (TelosB has two and 

Imote2 has three). When the supply voltage of the battery is lower than a 

certain threshold (called the stop voltage), the device can no longer operate, 

which is considered as completely discharged. We set different duty cycle 

rates on the sensors by putting the radio transceiver in active and sleep 

modes periodically and measuring the induced battery runtime. The duty 

cycle rate is defined as the fraction of the active time period. 
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Figure 7.2. The normalised lifetime gain with constant active time 

 

Figure 7.3. The normalised lifetime gain with constant sleep time 

The result presented in Figure 7.2 has been obtained from an 

experiment using the TelosB platform. The devices have been set with a 10 

seconds fixed active period, while the length of sleep period has been 

adjusted from 0 to 14 seconds. The normalised gain was obtained by first 

multiplying the measured system lifetime with the duty cycle rate, and then 

compared with the continuous radio operation (i.e. always on). Along with the 
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prolonged sleep time, the deliverable energy increases rapidly until the sleep 

time is equal to 5 seconds. After this point, although the lifetime gain is still 

increasing, the trend is much slower. The lifetime gain with 5 seconds sleep 

time is around 22.3%, while the lifetime gain with 14 seconds sleep time is 

just 25%. 

Similarly, we show the performance for the TelosB with a constant 

sleep time (5 seconds) and variable active time from 3 seconds to 19 

seconds in Figure 7.3. The lifetime gain decreases rapidly with increased 

active time, again with the trend slowing after 6 seconds of active time. The 

performance of the Imote2 platform has been shown in Figure 7.4. Although 

the power consumptions and experiment configurations for Imote2 are quite 

different to those of the TelosB platform, a very similar trend to Figure 7.2 

can be found in Figure 7.4. 

 

 

Figure 7.4. The normalised lifetime gain of Imote2with constant active time 

There are a number of key observations from the experiments: 

1) There are clear signs of battery recovery effect. With the same 

active time period, a longer sleep time period induces a longer normalised 

battery runtime and hence a larger deliverable energy from the battery. 
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2) The effect of the sleep time period is non-linear. It appears that 

sleep time periods greater than a certain threshold will contribute much less 

to battery recovery, which we call a saturation threshold. 

3) The effect of the active time period is also non-linear. Very small 

active time periods appear to cause a large gain in normalised battery 

runtime (up to 45% in TelosB). 

4) Even if the sensor is in sleep mode on the radio transceiver, there 

is still energy consumption due to the timer and other processing activities. 

The TelosB consumes 6.1 µA in sleep mode, whereas Imote2 consumes 

0.38mA. We observe that battery recovery can take place under low battery 

consumption, and the impact of background consumption is not substantial 

to battery recovery. 

Note that the actual battery runtime is much longer than the 

normalised battery runtime (which is multiplied by the duty cycle rate). 

Hence, duty cycle schedules not only prolong the network lifetime by placing 

the node in a sleep mode, but also increase the deliverable energy by 

allowing battery recovery. 

Although our measurement of the gains due to the battery recovery 

may differ in other environmental settings (e.g. different temperature, 

different battery type), the insights revealed by our experiments will still be 

useful to the modelling and optimisation of battery recovery in sensor 

networks. In general, under a duty cycled discharge profile, a battery is able 

to recover charge during idle time periods, which effectively increases the 

deliverable energy of the battery. However, the effectiveness of battery 

recovery is critically determined by the active and sleep time periods. The 

presence of a saturation threshold appears universal in different duty cycle 

schedules. We envisage that one can evaluate the saturation threshold (in 

some intervals) for certain environments in a priori manner through 

experiments.  
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7.3 Lifetime and latency trade-off in large scale sensor network 

Due to the effects witness previously, we are motivated to design 

networking protocols to exploit battery recovery by taking the estimated 

saturation threshold as a parameter. In multi-hop sensor networks, duty 

cycles are always employed to regulate the transceiver, i.e. in sleep mode 

the radio is off, while in active mode the radio is on for all operations. This 

can reduce unnecessary energy consumption and harness battery recovery. 

As a result, it is possible to design an algorithm which can maximise the 

battery recovery effect by adjusting the duty cycle pattern. In this section, we 

will present the analysis of the proposed algorithm and examine its 

performance in large scale multi-hop scenarios. 

7.3.1 Introduction of the simplified battery model 

Our experiments corroborated the presence of battery recovery effect 

and saturation threshold. It is useful to employ a simple model to capture 

these essential characteristics qualitatively, which enables further analysis 

and larger scale simulation on various battery consumption patterns. Hence, 

combining the previous well accepted battery model described in [117;118] 

and the analysis of experimental results, a simplified battery model has been 

presented [119]. The state of a battery is characterised by a tuple <n,c,t>, 

where n,c are non-negative integers. n is the theoretical capacity determined 

by the amount of chemicals in the electrode and electrolyte. c is the nominal 

capacity determined by the amount of available active chemicals for 

chemical reactions in the battery. t is the number of idle slots (time is 

discretised as slots here) since the last discharging. The use of <n,c> follows 

the previous definition in [117;118], while the introduction of t is first 

presented in this model and related to the saturation threshold. 

In the discharging process, both n and c are decreasing. The amount 

of available active chemicals constrains the energy a battery can deliver, 

despite the presence of unused chemicals in the battery. Thus, we require n 

≤ c, but when the battery stops discharging, there is a recovery process, as a 

diffusion process between electrode and electrolyte to replenish available 

active chemicals, effectively increasing n, which, however, cannot increase 
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beyond the theoretical capacity c. There is a saturation threshold tsat for t, 

such that more consecutive idle slots t > tsat will not contribute additional 

recovery. Here, the units of n and c have been normalised, at each idle slot, 

n can be recovered by only one unit. More detail discussion about this model 

can be found in [119]. 

7.3.2 Battery recovery awareness design in large scale WSN  

In a multi-hop sensor network, we rely on the simulation implemented 

in OMNet++ to study the network performance. We implemented the simple 

discrete battery model discussed in section 7.3.1 for each sensor. We 

assumed that the data arrival rates of all sensors follow an independent 

Poisson distribution. The transmission will follow the block transmission 

protocol discussed in Chapter 6, except, we assumed the wireless channel in 

this simulation is ideal, without any environmental noise. 

Without the battery recovery awareness design, in the synchronised 

wake up time slot, the transmission pair will attempt to send all the packets in 

the buffer queue through one hand-shake process. To extend this scheme by 

considering the battery recovery effect, we propose a simple scheme of 

forced sleep. This scheme is a two-folder action applied in both the 

transmitting operation and receiving operation. The first step is simple: 

suppose the receiver determined from the probe link after the rate 

optimisation that current operation could be active for more than Bmax busy 

slots, then the ACK packet will be sent back to notify the transmitter to send 

only Nmax packets in this block. In the second step, the device, either as a 

transmitter or receiver, will check the active time slot at the end of each block 

transmission. The active time can be contributed by one large block or 

several small blocks in different roles. If a device has been active for more 

than Bmax consecutive slots before the current slot, then it must go to sleep 

for the next Sbuf slots for some Sbuf ≤ tsat. This allows sufficient battery 

recovery to improve the deliverable energy of a battery. After Sbuf slots, the 

device will resume normal active schedule.  

Inevitably, this scheme will decrease the deliverable throughput and 

increase the latency while increasing the network lifetime by utilising the 
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battery recovery effect. However, if we carefully chose the sleep time periods 

within the saturation threshold, we can maximise battery recovery without 

exacerbating the latency of data delivery. Parameters will be adjusted in the 

simulation to investigate the impact of battery recovery aware design on 

network performance, for instance, throughput, latency and energy 

efficiency. By simulation, we will compare the network lifetime of battery-

aware schemes with the normal operation which has the best throughput and 

latency performance. To demonstrate the effectiveness, we select some 

typical parameters, i.e. tslot=100ms, c = 2500 and n = 1000. 

7.3.3 Analysis of simulation results  

We first demonstrate the performance of the proposed battery aware 

algorithm in a single transmission pair. The offered traffic load in the network 

has been steadily increased from 2 pps to 26 pps. The network has been 

configured in three modes: without battery aware mode, battery aware model 

with Bmax =5, and battery aware model Bmax =3. Sbuf has been set to be equal 

with tsat : 1.  As shown in Figure 7.5, the proposed battery aware algorithm is 

sufficient to deliver similar traffic load as the non-aware system in all 

situations. Now, we will analyse the energy efficiency and latency 

performance. 

 

Figure 7.5. Throughput performance of single transmission pair 
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The lifetimes of the network with different configurations have been 

illustrated in Figure 7.6.a, while the recovered battery energies have been 

provided in Figure 7.6.b. With low offered traffic load, all three systems can 

automatically maximise the battery recovery effect, which can be 

demonstrated by the fact that performance is almost the same with 2 and 4 

pps. As the offered traffic load increases, the system lifetimes show different 

trends. The lifetime of system without battery recovery aware design 

decreases rapidly. Without battery recovery aware algorithm, the recovered 

energy only contributes when there are no packets waiting to be sent. The 

probability of this situation will trend to zero with increasing offered traffic 

load. However, if the system is configured to be battery recovery aware, the 

system will be forced into sleep when it has been working for more than Bmax 

time slots. Therefore, even with heavy traffic loads, the system can still 

benefit from the battery recovery effect. It is clear that the recovered energy 

will tend to a constant bound rather than zero.  

It can also be seen that performance will be dependent on the setting 

of the Bmax, i.e. a shorter Bmax will provide better energy efficiency. For 

example, when the offered traffic load is 26 pps, the system with Bmax = 3 

recovered 556 units of energy and increased system lifetime by 214 seconds 

(82% gain, compare with the system without battery recovery aware). With 

the same traffic load, the system with Bmax = 5 is only able to recover 164 

units of energy resulting in a 40% extension of the lifetime. 
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(a). Lifetime of the system 

 

(b). Recovered battery energy 

Figure 7.6. Energy performance of the battery recovery aware algorithm 
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Figure 7.7. Latency performance of the battery recovery aware algorithm 

However, it is very important to note that a shorter Bmax time not only 

contributes to the increased deliverable energy but also increased packet 

delivery latency, which has been illustrated in Figure 7.7. The packet delivery 
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more time the packet will have to wait. However, this increase in latency 

does show an exponential characteristic, converging to a constant value. In 

conclusion, the battery recovery aware algorithm with Bmax = 3 trades 40% 

increase latency with 82% lifetime gain, while the Bmax = 5 mode trades 26% 

latency with 40% lifetime.  
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Figure 7.8. Network topology of the multi-hop simulations 

We now extend the network into a multi-hop topology and 

demonstrate the network performance in such scenario. As shown in Figure 

7.8, 20 devices have been randomly generated and located in the network. It 

should be noted that all the connections in the topology figure are only 

indications of the pre-fixed route; the actual packet transmissions will follow 

the propagation mode discussed in Chapter 5, which considers pathloss and 

slow fading effects. To create a more realistic simulation environment, we 

implemented accumulative interference in this simulation. For example, 

although the signal transmitted by device 1 cannot be demodulated by 

device 16 in the tail of the topology, the signal still has an effect on device 

16. Clearly, the accumulation of this kind of interferences will cause a 

decrease of SINR in devices. All the PER calculations and power 

consumption are sourced from the experimental results discussed in Chapter 

4. 
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Figure 7.9. Throughput performance of multi-hop scenario 
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Figure 7.10. Lifetime performance of multi-hop scenario 

 

Figure 7.11. Normalised lifetime gain of multi-hop scenario 
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5 are decreased from 300 seconds to 278 seconds, and 236 seconds to 218 

seconds respectively. The recorded results have been further processed to 

generate the lifetime gain for different Bmax, which have been provided in 

Figure 7.11.  Clearly, the battery recovery aware algorithm does increase the 

system lifetime significantly. Due the congestion problem, the effective traffic 

load will not increase rapidly with the increased packet generation rate. 

Therefore, unlike the single transmission pair, the system will not show a 

stead increase in the lifetime gain, instead the lifetime gain increased from 

51% to 60% for Bmax = 3 and 18% to 26% for Bmax = 5. 

 

Figure 7.12. Normalised latency of multi-hop scenario 
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Figure 7.13. Performance change with varied Bmax 

We are now motivated to examine how this profit changes with 

different Bmax configurations, which have been demonstrated in Figure 7.13. 
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7.4  Conclusion 

WSN systems usually rely on the duty cycle (i.e. active and sleep 

pattern) to prolong the network lifetime. In traditional applications, due to the 

low traffic load, systems are usually configured with very long sleep periods, 

where the systems achieve excellent energy performance. Such energy 

efficiency is contributed by two factors: firstly, the system only consumes 

energy for short active periods during the whole life time; and secondly, in 

the long sleep period, the battery recovery effect has been fully utilised 

automatically. However, this has also resulted in a failure to consider battery 

recovery effects. In WSN applications with high traffic load, the system is 

usually configured to deliver a large number of packets with specific QoS 

requirements and long active periods while still having high energy efficiency 

expectations. We were then motivated to consider whether it is possible to 

divide the long active period into several small duty cycles to utilise the 

battery recovery effect.  

In this chapter, through a series of experiments, we first demonstrate 

the existence of the battery recovery effect. Moreover, we found that 

appropriate duty cycle schedules may increase the deliverable energy of a 

battery without significantly increasing the latency of data delivery. This is 

particularly useful to sensor network systems with energy and latency 

constraints in WSN applications with high traffic load. The simulation results 

for a multi-hop network scenario show that if we carefully set the duty cycle, 

the battery recovery effect can be utilised while guaranteeing acceptable 

packet delivery latency even with heavy traffic loads.  

The analytical results in this chapter provide an insight into the battery 

recovery effect and demonstrate the possibility to utilise this effect for the 

WSN applications with high traffic loads. The network can significantly 

benefit from the battery recovery effect by carefully setting the duty cycle 

ratio, but the duty cycle ratio should be configured according to the traffic 

load and QoS requirement. Therefore, in the future work, the designer may 

consider an online adaptive duty cycle algorithm to maximise this effect, e.g. 

the device should consider the local traffic load (both generated and 
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forwarded), and the QoS of this traffic load to set its duty cycle ratio 

dynamically.   
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Chapter 8. Conclusion and Future Work  

8.1 Conclusion 

Recently, there has been growing interest in and demand for modern 

WSN applications with high traffic loads, including structure health monitoring 

systems, multimedia surveillance systems, health care systems and 

intelligent manufacturing systems. We first analysed the system characters 

of these applications, which shown that the wireless system are generally 

expected to deliver intensive throughput in harsh RF environments in these 

scenarios. Most of the previous studies in the WSN area focused on 

traditional applications and are optimised for extremely low traffic loads with 

almost ideal RF environments for indoor or remote scenarios. As a result, the 

newly posed challenges are usually beyond the ability of traditional WSN 

technologies (represented by the IEEE802.15.4 standard and Berkeley „Mica‟ 

Mote platform). Therefore, a new architecture of WSN system has been 

proposed in this thesis aiming to improve the performance in advanced 

scenarios while keeping compatibility with the essential energy efficiency, 

low cost and distributed nature of sensor networks.  

Many applications of wireless sensor networks require batteries as 

energy source for the sensors. However, the small form factors of devices 

often prohibit the use of large, long-lasting batteries, which means that 

energy efficiency is always a crucial topic in WSNs. As addressed by many 

researchers, energy can be saved by using a very low sleep-active duty 

cycle. However, it can be shown that traditional architectures make very 

inefficient use of energy when devices wake up in the active period. 

Typically, WSN devices have to listen for some time before accessing the 

network, which is termed as the channel contention stage. Traditional WSN 

architecture employed a simplified random access scheme, which works fine 

with extremely low traffic loads. However, it was noticed that the network 

performance drops rapidly with intensive traffic load, as false channel busy 

assessment and collision probabilities significantly increase. As a result, 

devices have to wait longer to access the channel. In fact, most energy and 
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time are consumed in the channel contention period not, as is widely 

believed, in the transmission period. It was also noticed that typically packets 

are transmitted at a fixed data-rate often much above the required SNR 

margin in the traditional WSN architecture. Since the wireless channel is time 

varying, even harsh industrial environments can support higher data-rates 

most of the time. Therefore, the fixed modulation is rather an inefficient 

scheme to utilise the wireless channel.  

In chapter 3, we argued that the efficiency of the channel contention 

stage can be increased by introducing the multi-carrier approach. To be 

compatible with the distributed scalability, the wireless system should be able 

to allocate and utilise the sub-carriers independently. However, the well 

documented CFO problem acts as a barrier to this feature in the multi-user 

scenarios. Therefore, we have analytically examined the cause of the CFO 

problem and presented a low cost mitigation solution for WSNs. An 

emulation based experiment has been implemented to validate the proposed 

solution showing that the error performance is acceptable when the CFO is 

within   
 

 
  . The problem of high PAPR caused by multi-carrier 

architectures is well known and typically requires high quality RF front ends 

to avoid signal distortion. However, as only a small number of carriers have 

been employed, the experiment results demonstrated that the PAPR has 

only been slightly increased. Therefore, the proposed architecture can still 

work with the low-cost front-ends typical of sensor systems, since most of the 

modifications have been limited in the digital processing part.  

An analytic model has been used to evaluate the MAC performance of 

WSNs with such a multi-carrier based architecture. The result of which was 

shown to compare well with the simulation results. The most significant 

benefit of this scheme is the superior energy efficiency, due to the efficient 

channel contention process, which reduces backoff times, collisions, and 

retransmissions. Secondly, due to the reduced channel contention period, 

the proposed multi-carrier scheme can deliver a higher throughput under 

intensive traffic loads. These performance improvements are the results of 

the significantly increased efficiency of the contention period. 



Page 185 of 198 

In chapters 4 to 6, we implemented and analysed a novel system 

utilising adaptive spreading code length for opportunistic high data-rate 

transmission, which is expected to increase the efficiency of channel 

utilisation. This solution was proposed to improve throughput as well as 

provide reliable service within harsh RF environments. To utilise this feature, 

there is a need for an optimisation algorithm that can accurately detect the 

channel quality as well as estimate the current channel capacity. Although 

analytic models exist to estimate performance in fading channels, their 

complexity is typically too high for a low cost WSN platform. Therefore, we 

are motivated to propose a simpler way to estimate the system capacity to 

accurately enable the selection of the appropriate spreading mode.  

The study first examined the error performance of variable spreading 

lengths before proposing an analytic error performance model for an AWGN 

channel. An emulated experiment was employed to validate the accuracy of 

the proposed model. A series of experiments were then conducted with a 

standard IEEE802.15.4 MAC protocol but different spreading modes 

deployed to demonstrate the potential throughput and power consumption 

advantages. The experiment results demonstrate the possibility to utilise 

adaptive spreading code length to increase the network performance during 

the packet transmission stage.  

We then proposed a new channel indicator in chapter 5, which will 

work closely of the analytic model proposed in chapter 4 to inform the 

optimisation algorithm with the potential link capacity. This indicator has been 

named Effective-SNR, defined as the required SNR value to achieve the 

same error performance as in an AWGN channel. The indicator is based on 

a two layer Kalman filter to take advantage of the redundancy between the 

standard channel indicators: SNR and LQI. Due to the nature of the Kalman 

filter, the system also showed good performance against measurement noise 

and successfully tracked varying channel quality. The error residue shows 

that proposed scheme achieves 160% better accuracy comparing with the 

raw SNR and 120% comparing with instantaneous LQI. 

Finally, in chapter 6 we combined these two innovations and designed 

a MAC protocol capably of fully utilising the new indicator and adaptive 
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spreading codes. The design of this protocol has considered both the 

requirements of traditional WSN application and WSN applications with high 

traffic load. Under low traffic load the system operation is very similar to the 

standard IEEE 802.15.4 system. However, once the system detected 

increased traffic load, the system can automatically enable the adaptive 

spreading code length mode to opportunistically utilise channel conditions to 

deliver packets as efficiently as possible. The protocol has been 

implemented in a COTS platform with the experimental results demonstrating 

a significant performance increase, in detail more than 200% of the 

deliverable throughput than IEEE 802.15.4 system, as well as save more 

than 50% of the power consumption.  

In chapter 7, we presented an investigation of the battery recovery 

effect. This is a natural effect of chemical batteries, previously ignored in the 

WSN area as the extremely long duty cycles typical of traditional WSNs 

automatically utilise this feature. However, in heavy offered traffic load, a 

carefully designed algorithm can be employed to take advantage of this 

effect without decreasing performances, especially the latency of packet 

delivery. A series of experiments have been implemented to demonstrate the 

potential increase of more than 25% deliverable energy when the battery 

recovery effect is utilised. Then we try to demonstrate that by carefully 

design the duty cycle parameters, the large scale network can benefit from 

the battery recovery effect. The simulation results shown that the system can 

increase the network lifetime by more than half without exacerbating the 

latency of data delivery. 

8.2 Suggestion for Future Works 

In this thesis, we have proposed an improved architecture for WSN 

applications with high traffic load. Due to equipment limitations, we have to 

investigate the performance of different aspects separately. An obvious next 

stage would be to implement an integrated prototype with all the features 

proposed and demonstrate its performance in network scenarios. Designing 

an ASIC based wireless transceiver could be both costly and lack flexibility. 

Such a solution is not affordable for academic research purpose. Therefore, 
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we plan to seek help from the Software Define Radio (SDR) platform to 

implement the integrated prototype. The GNU radio, unlike the previous SDR 

platforms, does not require any knowledge of FPGA or DSP programming. 

The hardware of GNU radio is only responsible for the front end processing 

and the down-converted baseband signal will be transmitted back to the 

computer via USB for the signal processing. Therefore, the complex digital 

signal processing algorithms can be implemented in the computer using 

standard C++ within an open source framework, which maximises the 

flexibility of the transceiver design and testing. 

The integrated system is expected to have high flexibility in the 

allocation of both channel bandwidth and spreading code length. As 

described in Chapter 2, unlike the traditional WSN applications, modern, 

advanced applications usually consist of various tasks with differing QoS 

requirements. Therefore, we suggest that our proposed architecture may be 

able to deliver differential QoS by utilising flexibility in bandwidth assignment 

and adaptive spreading coding length. We understand that an optimisation 

can usually only be achieved with information from the whole network. 

Therefore, the corresponding algorithm is usually implemented in a centrally 

controlled fashion. However, unlike WiFi or WiMax which forms a one-hop 

star topology, WSN are formed in a large scale, multi-hop topology which 

means all the algorithms should be distributed for ease of deployment. In a 

distributed algorithm, all the devices normally have only local information and 

partial information from neighbours, therefore optimisation is hard to achieve. 

Instead, distributed machine learning can be employed to achieve a sub-

optimisation with the help from local convex optimisation and the global 

gradient problem formed by the Q-Learning based routing selection. The 

expected architecture will not only be able to increase the overall network 

performance but also provide differential QoS support for WSN applications 

with high traffic load. 
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