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Abstract
Research on the psychology and neuroscience of simple, evidence-based choices has

led to an impressive progress in capturing the underlying mental processes as opti-

mal mechanisms that make the fastest decision for a specified accuracy. The idea that

decision-making is an optimal process stands in contrast with findings in more com-

plex, motivation-based decisions, focussed on multiple goals with trade-offs. Here,

a number of paradoxical and puzzling choice behaviours have been revealed, posing

a serious challenge to the development of a unified theory of choice. These choice

anomalies have been traditionally attributed to oddities at the representation of values

and little is known about the role of the process under which information is integrated

towards a decision. In a series of experiments, by controlling the temporal distribution

of the decision-relevant information (i.e., sensory evidence or value), I demonstrate

that the characteristics of this process cause many puzzling choice paradoxes, such as

temporal, risk and framing biases, as well as preference reversal.

In Chapter 3, I show that information integration is characterized by temporal biases

(Experimental Studies 1-2, Computational Studies 1-3). In Chapter 4, I examine the

way the integration process is affected by the immediate decision context (Experi-

mental Studies 3-4, Computational Study 4), demonstrating that prior to integration,

the momentary ranking of a sample modifies its magnitude. This principle is further

scrutinized in Chapter 5, where a rank-dependent accumulation model is developed

(Computational Study 5). The rank-dependent model is shown to underlie preference

reversal in multi-attribute choice problems and to predict that choice is sensitive, not

only to the mean strength of the information, but also to its variance, favouring riskier

options (Computational Study 6). This prediction is further confirmed in Chapter 6, in

a number of experiments (Experimental Studies 5-7) while the direction of risk pref-

erences is found to be modulated by the cognitive perspective induced by the task

framing (Experimental Study 8). I conclude that choice arises from a deliberative pro-

cess which gathers samples of decision-relevant information, weighs them according

to their salience and subsequently accumulates them. The salience of a sample is de-

termined by i) its temporal order and ii) its local ranking in the decision context, while

the direction of the weighting is controlled by the task framing. The implications of

this simple, microprocess model are discussed with respect to choice optimality while

directions for future research, towards the development of a unified theory of choice,

are suggested.
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Chapter 1

Introduction

Background

Decision-making is ubiquitous across all domains of cognition that require behavioural

output, from simple, perceptual choices on the basis of sensory evidence, to more

complex, value-based ones, exhibited in daily life activities. These two classes of

choice have been the subject of separate investigations, within different paradigms and

disciplines. Perceptual decisions have been traditionally studied within experimental

psychology and neuroscience, using choice accuracy and response latencies in simple

psychophysical tasks in which the observer has to classify the perceived sensory in-

put into one out of two or more competing hypotheses (Laming, 1968; Vickers, 1979;

Britten, Shadlen, Newsome, & Movshon, 1993; Smith & Ratcliff, 2004). On the other

hand, value-based or preferential choices, such as when deciding which laptop to buy

out of many alternatives differing in several attributes, have been mainly studied within

behavioural economics and social sciences, using primarily reports of choice prefer-

ence in laboratory tasks that emulate real decision problems (Simon, 1982; Kahneman

& Tversky, 2000).

Research on these two distinct areas, differing in methods and techniques, has pro-

duced divergent proposals regarding the competence of the decision-makers. In percep-

tual choice, the tasks are simple and well-defined, with the observer’s responses being

either correct or incorrect. In this type of tasks, where the choice accuracy and response

times can be objectively measured, optimality is defined in statistical terms based on

the Sequential Probability Ratio Test benchmark (SPRT; Barnard, 1946; Wald, 1947),

15



Chapter 1. Introduction 16

which produces the fastest responses for a given level of accuracy. A central tenet,

arising from almost forty years of research on behavioural psychophysics (Audley,

1960; Stone, 1960; Vickers, 1970; Link & Heath, 1975; Ratcliff, 1978; Ratcliff &

Rouder, 1998; Ratcliff & Smith, 2004) and complemented by physiological data (Gold

& Shadlen, 2001, 2002, 2007; Bogacz & Gurney, 2007; Donner, Siegel, Fries, & En-

gel, 2009), holds that the process underlying perceptual decisions is an approximation

of the SPRT test and hence approaches statistical optimality (Bogacz, Brown, Moehlis,

Holmes, & Cohen, 2006; Bogacz, 2007, 2009). On the other hand, in the value-based

paradigm, choice cannot be settled on sensory information only and each alternative

is evaluated by examining its consequences in relation to internal motivations. The

normative benchmark is provided by the expected utility theory, the cornerstone of

economic theory and rational choice explanation (Von Neuman & Morgenstern, 1947;

Debreu, 1960). The abundance of decision biases, highlighted in the seminal work

of Tversky and Kahneman (e.g., Kahneman & Tversky, 1979; Tversky & Kahneman,

1981; Huber, Payne, & Puto, 1982; Tversky & Kahneman, 1986; Knetsch, 1989; Si-

monson, 1989; Kahneman & Tversky, 2000; Gilovich, Griffin, & Kahneman, 2002),

has given rise to the general view that humans are fundamentally irrational and the

normative axioms elusive.

This tension, that behaviour is nearly optimal in the perceptual domain and subopti-

mal in the value-based one, is also reflected at the different theoretical frameworks

proposed in the two areas. In perceptual choice, models have evolved around the op-

timal SPRT test attempting to implement it algorithmically, based on the hypothesis

that choice is the result of the accumulation of sequentially sampled sensory evidence,

towards a response criterion (Laming, 1968; ?, ?; Ratcliff, 1978). Therefore the pro-

totype model is dynamic in nature, explicitly describing the deliberation process and

determining the response time of the decision. On the other side, value-based models

have initially attempted to achieve descriptive adequacy by gradually modifying the

normative theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992; Tversky

& Simonson, 1993). These models similar to their predecessor, the expected utility

theory, are algebraic and static in nature, providing choice output but saying noth-

ing about the underlying deliberation process. An alternative route has been taken by

completely abandoning the mathematical formalisms and assumptions of the rational

theory. In this line of research, emphasis was placed on capturing the behavioural regu-

larities independently of the expected utility theory, as algorithms that are not optimal
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but can produce fast and reasonable choices under certain situations. This research

has led to the generic proposal that decision-makers use a set of disparate heuristics,

each addressing some other aspect of choice behaviour (Todd & Gigerenzer, 2000;

Gigerenzer, 2006; Harvey, 2007).

Determining the relationship between perceptual and value-based choice is central for

our broader understanding of decision-making. One viable way to explore this rela-

tionship is through the direct comparison of the two classes of theories. This has been

particularly difficult since, as described above, the two types of choice have been anal-

ysed at different levels using completely different theoretical frameworks. However,

the recent development of mathematically formalized dynamic models, which address

the time course of preference formation (Busemeyer & Townsend, 1993; Roe, Buse-

meyer, & Townsend, 2001; Usher & McClelland, 2004; Stewart, Chater, & Brown,

2006; Stewart & Simpson, 2008; Krajbich & Rangel, 2011), promises to initiate a the-

oretical link between perceptual and value-based choice. These models build upon the

sequential sampling tradition of perceptual choice, with the assumption that value (and

not evidence) is accumulated across time, towards a response criterion. The advantages

of the dynamic models of preference over previous approaches are several. First, as

opposed to descriptive, algebraic models, they bear explanatory power, accounting not

only for the overt choice behaviour but also for its exact time course and for phenomena

such as vacillations and changes of mind. Second, contrary to the heuristic framework

that assumes different, ad-hoc algorithms for different choice problems (Chater, 2001),

dynamic models are predictive and parsimonious, consisting of fixed sets of indepen-

dently motivated principles 1 . Finally, if biologically constrained, these models, can be

naturally mapped on physiological data offering that way the possibility of a detailed

understanding of the neural underpinnings of decision-making.

The advent of process models of preference has revived the interest for recording in-

formation acquisition in the course of value-based decision-making (Russo & Rosen,

1975; Rayner, 1978; Armel, Beaumel, & Rangel, 2008; Reutskaja, Nagel, Camerer,

& Rangel, 2011; Glöckner & Herbold, 2011), to track the regularities in the sam-

pling of information and to determine the exact timing and amount of the input that

the decision-maker receives. Knowing what aspects of choice alternatives are consid-

1In dynamic models, the choice input is transformed to behaviour through the synergy of predeter-
mined mechanisms. Under the heuristic doctrine, since different algorithms are employed for different
problems, it appears that the choice input transforms the mechanisms to produce output that matches
the experimental data.
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ered during deliberation, can be particularly useful but only if the way under which

value is processed and integrated is known. Contrary to perceptual choice models

whose computational elements have been scrutinized for years, little is known about

the micro-process of value-integration. And although process models of evidence and

preference share a common conceptual framework, it should not be assumed a priori

that both theories share the exact same mechanisms. Understanding the way that value

is integrated, in comparison to the mechanisms of evidence integration, is essential for

the further refinement of process models of preference, which in turn can delineate the

relationship between perceptual and value-based choice.

The aim of this thesis is to probe the computations that are performed when samples of

information, either corresponding to sensory input or to values, are integrated towards

a choice. Setting the micro-foundations of information integration in decision-making

will not only determine the relationship between perceptual and value-based choice but

will ultimately lead us to more complete choice models which will encompass accounts

for both information acquisition [stemming from the recent advances in recording eye-

tracking data (Armel et al., 2008; Reutskaja et al., 2011; Glöckner & Herbold, 2011)]

and information processing.

Information Weighting in Decision-making

Two specific aspects of information processing will be addressed using a combined

experimental and computational method: a) how does the temporal order of informa-

tion affect its weighting and b) how does the immediate context influence information

integration? Understanding the differential weighting of decision-relevant information

as a function of its temporal order and of the immediate context is theoretically crit-

ical since, as summarized below, both types of weighting undermine the ideas of the

optimal and rational decision-maker.

For example the optimality assumption in the perceptual literature, resulting from the

partial descriptive success of the SPRT, imposes that choice is the result of Bayesian

inference, whereby all pieces of evidence confer equally to the making of the deci-

sion. In other words a decision that is made based on a particular evidence-set should

not change if the exact same evidence appears in a different order. Contrary to this

claim, experiments in perceptual choice in both primates (Huk & Shadlen, 2005; Kiani,
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Hanks, & Shadlen, 2008) and humans (Pietsch & Vickers, 1997; Usher & McClelland,

2001; Tsetsos, Usher, & McClelland, 2011) have revealed order effects, showing that

decisions are weighted by either primacy or recency. Thus, order effects undermine

the proposal of the ideal observer and exploring their basis might improve our under-

standing of the very nature of optimality.

On the opposite pole, within the value-based literature, the falsification of the rational

man assumption has been mainly driven by contextual effects. The goodness value

assigned to an alternative is dependent on the context in which it is presented. Al-

though the underlying psychological assumption of the rational choice theory, that

people should behave consistently, has been significantly undermined by contextual

biases, it has not been totally dispensed. The program of ecological rationality has

highlighted that decisions that may appear poor in ecologically invalid or unstable

contexts (e.g. laboratory tasks), may be highly efficient and rational in the natural

environment (Gigerenzer, 1991; Gigerenzer & Hoffrage, 1995; Oaksford & Chater,

1998) and thus, rationality should not be assessed independently of the environmen-

tal context and its stability (Oaksford & Chater, 1995; Shanks, Tunney, & McCarthy,

2002). It still remains unclear whether people are inherently inconsistent or whether

they behave so under specific contextual peculiarities.

To summarize, order and context effects play a pivotal role in the toggling between

optimality/ suboptimality and rationality/ irrationality. The experimental scrutiny of

these effects that is pursued in this thesis, is expected to shed light on the cognitive

mechanisms that generate them. Admittedly, human decision making is multifaceted,

violating sometimes the norms and complying with them others, with the “nearly op-

timal” and “definitely irrational” popular statements, resembling the “half full or half

empty glass” rhetorical argument and reflecting mostly different viewpoints when it

comes to the interpretation of the empirical truth. This inconclusiveness, characteriz-

ing the psychology of decision-making, has influenced the current project at the theo-

retical front. In particular, the decision models developed in this thesis are not shaped

to a priori comply with or violate the normative theory, but are constructed bottom-up

from the synthesis of simple mechanisms of information integration that capture the

empirical reality.

In the remaining part of the current, introductory chapter, previous research that I did

on order effects in perceptual choice (Tsetsos, Gao, Usher, & McClelland, 2011) and

on context effects in value-based choice (Tsetsos, Usher, & Chater, 2010; Usher, Tset-
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sos, & Chater, 2010), will be presented along with the relevant literature. This will set

the scene for the following chapters where order and context effects are experimen-

tally examined, jointly on perceptual and preferential choice, helping to infer the core

computational elements of evidence and value integration.

1.1 Order Effects in Perceptual Choice

Almost sixty years of research on perceptual choice, starting from the early signal de-

tection theory (Stone, 1960; Laming, 1968; Vickers, 1970; Link & Heath, 1975) and

ending with recent neuroeconomics studies (Rorie, Gao, McClelland, & Newsome,

2010; Summerfield & Koechlin, 2010; Krajbich & Rangel, 2011), has converged to

the idea that the most likely cause of a perceived experience is inferred using multiple

samples of noisy evidence (Ratcliff, 1978; ?, ?; Ratcliff & Rouder, 1998; Usher & Mc-

Clelland, 2001; Bogacz et al., 2006; Smith & Ratcliff, 2004; Wong, Huk, Shadlen, &

Wang, 2007; Ratcliff & McKoon, 2008). These samples are accrued up to a response

criterion, with the time needed to breach the criterion determining the response latency.

This simple principle has been descriptively successful, explaining a fundamental be-

havioural pattern, the speed-accuracy tradeoff: with more time available, one can take

more samples of evidence and thus be more accurate. Further support to the sequential

sampling hypothesis has been provided by neurophysiological studies of motion dis-

crimination with behaving animals. There, neurons in visual-motor integration areas

(e.g. the lateral intraparetial cortex), showed ramped activity which correlated with the

amount of the integrated evidence (Gold & Shadlen, 2001, 2002; Roitman & Shadlen,

2002).

One advantage of the integrate-to-threshold principle is that, under specific conditions,

it can be statistically optimal, generating the fastest decisions for a given error rate

(Wald & Wolfowitz, 1948). The optimality of perceptual decisions can be understood

with evolutionary terms, assuming that animals capable of making fast and accurate

decisions are promoted. Many theories have been developed within the sequential

sampling framework, differing in aspects like the stopping rule or the boundary of in-

tegration, and although optimality is not always achieved it helps constrain the existing

models and the interpretation of the empirical data. I will start by statistically formu-

lating an abstract binary perceptual decision problem and defining the strategy of the

ideal observer. This will be useful for the next subsection where two of the most promi-
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nent mathematical models of perceptual choice, the classical drift-diffusion (Laming,

1968) and race models (Vickers, 1970) will be introduced.

1.1.1 Sequential Probability Ratio Test

Lets assume that the observer receives sensory information at discrete time-steps. The

sensory evidence at time t, supporting alternative i is denoted as xi(t). According to

Gold and Shadlen (2001) the choice problem can be formalized statistically by assum-

ing that evidence xi(t) comes from a normal distribution with mean µi and standard

deviation σ. The observer needs to determine which µi is the highest. In other words

hypothesis Hi states that the evidence supporting alternative i is stronger. For a binary

choice task the two hypotheses become:

H1 : µ1 = µ+,µ2 = µ−;H2 : µ1 = µ−,µ2 = µ+ (1.1)

with µ+ > µ−. Wald (1947) provided the optimal procedure to distinguish between

the two competing hypothesis, the Sequential Probability Ratio Test. According to the

SPRT, at each time t the ratio of the likelihood of the evidence given the hypothesis is

computed:

R =
P(x(1..t)|H1)

P(x(1..t)|H2)
, (1.2)

with x(1..t) corresponding to the sensory evidence presented until time t (i.e. x1(1),x2(1)

, ...,x1(t),x2(t)). When R reaches an upper threshold Z1 then a choice is made in favour

of H1 whereas when it goes below a lower threshold Z2 then H2 is the most likely cause

of the perceived experience. If neither of the thresholds is crossed then an extra sample

of evidence is considered, until the process distinguishes between the two hypotheses.

1.1.2 Psychological Models of Choice: Diffusion and Race

The first two psychological models to capitalize on the sequential sampling aspect

of the SPRT were the race (Vickers, 1970) and the diffusion models (Stone, 1960;

Laming, 1968; Ratcliff, 1978). The two models, albeit similar in assuming integrate-

to-criterion mechanisms, differ in their definition of the criterion that terminates the

decision. Lets denote the integrated evidence for alternative i at time t by:
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yi(t) =
t

∑
τ=1

xi(τ), (1.3)

and assume a choice problem between two competing hypotheses. In the race model

a choice is initiated once the integrated evidence, yi, of any of the two alternatives i

exceeds a threshold. In the diffusion model the process is terminated once the differ-

ence between the integrated evidence of the two alternatives exceeds a threshold. An

equivalent way to implement the diffusion’s stopping criterion is by assuming a single

decision variable that accumulates the difference between the sensory evidence sup-

porting the two alternatives, i.e. d = y1− y2. In that case, the choice is made once the

accumulated difference d crosses a positive (decision in favour of H1) or a negative

(decision for H2) boundary.

As Bogacz (2009) has shown, the accumulated difference, d, between the two percep-

tual hypotheses is exactly proportional to the logarithm of R in equation 1.2. Therefore

the diffusion model is an implementation of the optimal SPRT, providing the fastest

decisions for a given accuracy level. For example if the thresholds of both the race

and the diffusion model are set so as to produce correct responses 90% of the time, the

diffusion model, on average, will be faster. The optimality of the diffusion model lies

on its stopping rule which considers relative rather than absolute levels of evidence.

Intuitively, the accumulation of relative evidence makes the diffusion model adaptable

to the difficulty of the task at hand. If the loosing alternative is much worse than the

winning one, then the diffusion model will generate a fast decision. On the contrary

if the evidence for the two alternatives is very ambivalent then the decision will take

much longer because discrimination between the two hypotheses will be much harder.

This is not the case in the race model which predicts that the stronger the evidence

for the loosing alternative is the faster the decision will be. This property of the race

model, known as statistical facilitation (Raab, 1962; Townsend & Nozawa, 1995), can

be conceptualized by thinking the decision process as two athletes running an inde-

pendent race (i.e. not being able to help or hinder each other). Now two different races

are assumed: in the first race, one fast athlete (F) runs against a medium one (M); in

the second race, the same fast athlete (F) runs against a very slow one (S). On average,

the termination time of the first race will be faster compared to the second race. This

happens since the fast runner (F) is just as fast in both races but runner (M) is faster

than runner (S). So, runner (F) loses more of his slower runs to runner (M) than to

runner (S), resulting in a speed-up of the overall finishing times.
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1.1.3 Variants of the classical diffusion model

Overall the diffusion model has outperformed race in fitting the choice patterns and the

distributions of the response times in a variety of choice tasks and paradigms (Ratcliff

& Rouder, 2000; Ratcliff, Gomez, & McKoon, 2004; Ratcliff & Smith, 2004). More-

over, at the neural level, the growth of information in the decision relevant neurons has

been better approximated by the dynamics of the diffusion model (Ratcliff, Cherian,

& Segraves, 2003) while microstimulation studies have provided support for the ac-

cumulation of relative, rather than absolute (i.e. race), evidence (Ditterich, Mazurek,

& Shadlen, 2003; Hanks, Ditterich, & Shadlen, 2006). Despite its success in account-

ing for behavioural and neural data, the classical drift-diffusion model has been chal-

lenged by a striking behavioural pattern; for weak evidence, choice accuracy does not

improve with time after some critical interval of about 400 ms but rather saturates at

an asymptotic level (Swensson, 1972). This finding contradicts the principle of perfect

integration, held within the classical diffusion, according to which the quality of the

decision should keep improving with the accumulation of more samples of evidence.

Two assumptions have been proposed, within the drift-diffusion model, in order to ac-

count for the saturation in decision accuracy. First, the drift or the mean value, µi, of

the evidence is subject not only to variability within a trial, due to external noise in

the sampled evidence or internal noise in the neural responses, but also to variabil-

ity between trials of the same experimental condition (Ratcliff & Rouder, 1998). In

other words, the mean drift value is not fixed but sampled in each trial from a nor-

mal distribution with mean µi and standard deviation σd . For example in the motion

discrimination task where the observer needs to decide the dominant direction in the

movement of a cloud of dots, in a small fraction of trials with rightward dominant

motion, the sampled dominant direction will be leftward. Therefore decision accuracy

will eventually saturate since in trials such as the aforementioned, observing the signal

for longer does not improve the decision quality.

The second assumption that has been employed to account for the accuracy saturation

holds that the integration of evidence stops when an absorbing boundary is reached

even under conditions in which the response time is under the experimenter’s control

(bounded diffusion, Ratcliff, 2006). In practice this means that once the boundary

is reached the decision is finalized and later evidence is still perceived but virtually

neglected. Note that while the drift-variance diffusion maintains the principle of the
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SPRT that all pieces of evidence are equally weighted, the bounded diffusion assigns

higher weights to the early evidence, since late evidence will be ignored in those tri-

als where the boundary is reached before the end of the stimulus presentation. Huk

and Shadlen (2005) provided empirical support for the bounded integration mecha-

nism by applying small perturbations to the evidence and showing a larger impact of

the perturbations that were applied at the beginning of the trial. More recently, the

bounded diffusion model and the primacy bias were supported in a neurophysiologi-

cal study (Kiani et al., 2008). Using the interrogation procedure (i.e. response under

experimental control), Kiani et al. (2008) measured behavioral and neural responses

from monkeys that engaged in the discrimination of the motion direction of moving-

dot stimuli that varied both in the motion coherency (i.e. quality of the evidence) and

in the time for inspection. First, the behavioral data confirmed that for coherency lev-

els below 13%, accuracy asymptotes at a level that does not exceed 90%, and that the

saturation comes in play for intervals longer than 420 ms. Second, a reverse correla-

tion analysis 2 revealed that the evidence was weighted by primacy, as predicted by the

bounded diffusion model (Figure 1.1).

Figure 1.1: Reverse correlations (reproduced from Kiani et al., 2008) show-

ing primacy. Left, signals aligned with motion onset. Right, signals aligned

with motion offset. The difference between the evidence that favours the re-

sponse (red) and the one that opposes it (blue) is larger at the beginning of

the trial.

These results indicating primacy bias, stand in contrast with an experimental study

by Usher and McClelland (2001) (Experiment 3), that was performed to examine the
2In this analysis the zero-coherency trials, where the motion of dots is totally random, are considered.

The average evidence that favoured the chosen alternative is compared to the average evidence for the
non-chosen alternative. This technique is similar to a logistic regression, showing the relative weight of
evidence at different moments.
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temporal weighting of evidence. In that experiment participants saw a fast sequence

involving two alternative letters (H/S) and had to decide what letter was presented

more often. While most of the trials (i.e. regular trials) involved sequences with a

majority of either S or H, a subset (i.e. experimental trials) of them was constructed

with equal fractions of H and S. In these trials, the time-course of the events was

manipulated so that the one alternative was better in the first half and worse in the

second. Unlike to the clear primacy results in Kiani et al. (2008), individual differences

were observed. Among six observers, some showed primacy bias, others recency bias

and others were perfectly balanced, having also the highest accuracy in the regular

trials. As discussed above, the diffusion model and its variants is able to account

only for uniform or primacy weighting, being unable to capture any recency bias in

the integration of evidence. In the next subsection I discuss a more versatile neural

model, the leaky competing accumulators (LCA, Usher & McClelland, 2001) which,

under different parameters, extrapolates between balanced and temporally weighted

(i.e. primacy and recency) evidence integration.

1.1.4 A Neural Model of Choice: The Leaky Competing Accumula-

tors

Recently, a series of neurocomputational models have offered an explanation of the

neural mechanism underlying both psychological measures and neurophysiological

data of perceptual choice. One such model is the Leaky Competing Accumulator

(LCA, Usher & McClelland, 2001), which is sufficiently simple to allow a detailed

mathematical analysis. Like in the race model, in LCA a choice between two alter-

native hypotheses is encoded in the activation states of two accumulators that race

against each other. However, unlike to race where the accumulators are independent,

in LCA the two decision units compete to each other via lateral inhibition. Another

important principle of the LCA model is that it assumes that the decision units are

subject to decay or leakage, having a finite effective time constant. The leaky nature of

the integration, allows the model to explain the imperfect accuracy levels even at long

observation intervals, since integrating evidence for much longer than the integration

time constant does not increase the total amount of the accumulated evidence.

For binary choice, the LCA is a stochastic 2 dimensional system, described by two

variables, y1 and y2, that correspond to the accumulated evidence in favor of the two
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alternatives. Each accumulator unit, yi, integrates evidence from an input unit with

mean activity Ii and independent white noise fluctuations dWi of amplitude ci (dWi

denote independent Wiener processes). These units also inhibit each other by way of a

connection of weight β. Hence, during the choice process, information is accumulated

according to:

dy1 = (I1−κy1−β f (y2))dt + c1dW1,

dy2 = (I2−κy2−β f (y1))dt + c2dW2,
(1.4)

with κ denoting the leakage and f a non-linear activation function which truncates

negative values of the accumulators back to zero 3 before they inhibit each other. The

LCA model in the free response paradigm, where the observer is free to respond at

any time, assumes that a response is made as soon as either accumulator exceeds a

predefined threshold Z. In the interrogation paradigm, where the response time is

under experimental control, a choice is made in favour of the accumulator with the

highest activation at the moment when the choice is requested.

For positive y-values the LCA behaviour can be approximated by the difference in the

activation of the two accumulators, y = y1− y2, as a 1-dimensional diffusion. In that

case the model becomes equivalent to an Ornstein-Uhlenbeck (OU) diffusion with a

leak or expansion coefficient (Busemeyer & Townsend, 1993; Usher & McClelland,

2001):

dy = (I− (κ−β)y)dt + cdW, (1.5)

The LCA, depending on the values of leak and inhibition, weighs evidence either dif-

ferentially, based on its temporal order, or uniformly. First, when the decay exceeds

the inhibition parameter (κ > β), a leaky diffusion takes place. In this case the acti-

vation difference decays, resulting in both bounded accuracy and recency bias. If, on

the other hand, the inhibition parameter exceeds the leak (κ < β), the diffusion coef-

ficient becomes positive, resulting in expanding trajectories and unbounded y1− y2

3The non-linearity assumption in the LCA model is biologically motivated: the activation states of
the accumulators correspond to firing rates of neuronal populations and therefore cannot be negative.
The non-linearity of the LCA is computationally efficient for multi-alternative choice problems (Bogacz,
Usher, Zhang, & McClelland, 2007), since it discards, early in the process, poor and uninformative
options by inhibiting their accumulators to zero. In a recent study we demonstrated that the non-linearity
is also the key mechanism in accounting for context effects in alternatives with non-stationary evidence
(Tsetsos, Usher, & McClelland, 2011).
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differences; in this case small differences in the activations of the two accumulators

that occur early on are expanded, resulting in a primacy bias. Finally, for the special

case in which the leak and the inhibition are in balance, the model behaves optimally,

mimicking the diffusion model (Bogacz et al., 2006).

1.1.5 An Experimental Study on Order Effects

The inhibition-dominant LCA and the bounded diffusion both weigh evidence by pri-

macy, consistent with the experimental findings in Kiani et al. (2008). If primacy was

a universal property of evidence integration these two models would be equally good

candidates for explaining the underlying mechanisms of choice. However, as the study

by Usher and McClelland (2001, experiment 3) indicates, evidence weighting is quite

diverse involving, apart from primacy and unbiased weighting, also recency. Before

delving into model comparison, which would promote the more versatile LCA that is

able to account for interpersonal differences (i.e. capturing both primacy and recency),

it is important to understand whether the profile of evidence weighting depends on con-

tingencies such as task demands. To achieve so, we conducted two experiments with

human observers (Tsetsos, Gao, et al., 2011), using the moving dots paradigm which

provides optimal control of the evidence manipulation and a relative long integration-

interval.

The first study followed a design similar to Kiani et al. (2008). Observers were asked

to discriminate the direction of moving dots displays. The coherency and the duration

of the displays were varied and the observers were trained to respond within a window

of 300 ms from a response signal that appeared upon stimulus termination. As in

Kiani et al. (2008), the duration of the trials was exponentially distributed, ranging

from 150 to 1750 ms. The critical manipulation was applied in a subset of trials (80%

of the trials with durations 300 ms or longer), in the form of a pulse which resulted in

a change in the motion coherency of ±3.2% for 200 ms. All the observers learned to

respond within the 300 ms response window and their accuracy increased with motion-

coherency. Figure 1.2 shows how the pulse shifts the psychometric function, for one of

the observers (similar results were obtained for the rest of the participants). Of special

interest is the effect of the timing of the pulse on this shift for all observers (Figure 1.3),

with the effect being larger at the start of the trial, indicating primacy and replicating

the results of Kiani et al. (2008) with human observers.
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Figure 1.2: Effect of motion pulse on detection of motion for one observer.

Red line shows probability of choosing “right” when a rightward perturbation

is introduced and blue curve the same for leftward perturbations. The pulse

is equivalent to a change pf ±3.2% in coherency.
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Figure 1.3: The effect of the pulse timing on the shift of the psychometric

function for one observer from early in the trial (left) to late (right).
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The second experiment was carried out in order to obtain a more robust measure for

the recency-primacy bias and understand it with regards to the task characteristics. To

do so, for each coherency and duration, 3 conditions were created: i) the constant con-

dition corresponding to a fixed coherency during the whole trial (as in Experiment 1),

ii) the early condition, corresponding to a fixed coherency during the first half of the

stimulus, which is set to zero (random motion) during the second half, iii) the late con-

dition in which the first half has random motion and the second half a fixed coherency.

Comparison between the accuracy in early and late conditions provides a measure of

the order bias. The experiment was conducted on two groups with the between subjects

factor being the task characteristics. In particular for the first group the trials duration

followed an exponential distribution from 150 to 1750 ms while the response deadline

was 300 ms, identical to Experiment 1 (and to Kiani et al., 2008). For the second group

the trial durations where uniformly distributed from 150 to 1750 ms and the response

deadline was relaxed to 1000 ms. The primacy score, calculated as the mean accuracy

in the early condition minus the mean accuracy in the late condition, was significantly

larger for the first group (11% against 2%; t[8] = 2.98; p < 0.02). Furthermore, while

all the observers in the short-deadline condition showed the primacy effect, there was

considerable variation in the bias for the observers in the second group.

This reduction in the primacy bias can be understood in relation to the two procedural

differences between the two groups. The first difference is the response deadline which

was stringent in the first group (i.e. 300 ms) and relaxed in the second (i.e. 1000 ms).

A stringent deadline encourages participants to prepare a response before the stimulus

termination and response signal, so that they do not miss the deadline. The second

procedural difference involves the exponential distribution of stimulus duration in the

first group which changed into a uniform distribution in the second group. The reason

why Kiani et al. (2008) used an exponential distribution for the stimulus duration was

to ensure that observers have no information about the time when the response signal

will appear 4. On the other hand it is possible to argue that knowing that the stimulus

is about to end during the course of the trial is less relevant to temporal biases than

knowing that the trial duration is likely to be short in advance of the trial. The latter is

the case when the trial duration is selected from an exponential distribution, resulting

in an optimal policy (assuming a capacity limited resource pool) that allocates more
4An exponential distribution has a flat hazard function which means that the observer cannot tell in

the course of the trial whether the trial is ending or not. On the other hand the uniform distribution has a
peaked hazard function and when the time gets close to the upper bound of the distribution the observer
knows that the response cue is approaching.
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attention to the evidence at the start of the trial.

No clear recency was found in any of the subjects in the two above experimental stud-

ies and also in Kiani et al. (2008). One factor that may explain the lack of recency,

is the degree of practice which was quite extensive. As Brown and Heathcote (2005)

suggested, practice increases the efficiency of evidence accumulation by reducing the

effective leak. Future research is thus needed to better understand the various factors

that affect the temporal weighting of evidence. Nevertheless, the conclusion drawn by

Kiani et al. (2008) that bounded integration is a universal decision principle that ap-

plies not only to self-paced decisions but also to experimentally controlled ones, needs

to be reconsidered and understood with respect to the task contingencies. At the the-

oretical level both the bounded diffusion and the LCA model are able to account for

the inefficiency in evidence integration (e.g. imperfect performance even at long dura-

tions). However within the bounded diffusion model this inefficiency is exaggerated

by assigning to late evidence, not lower (i.e. like in LCA) but zero weight.

1.1.6 Summary

When people make decisions on the basis of sensory information they integrate noisy

samples of evidence up to a criterion. This mechanism, motivated by the statistically

optimal SPRT which conceptualizes choice as a Bayesian inference problem, is central

in a series of mathematical models. The most successful of them has been for years

the diffusion model which holds that the relative, rather than the absolute, evidence

is accumulated across time, virtually implementing the optimal bayesian procedure.

One direct implication of the perfect integration that the diffusion model assumes, is

that all pieces of evidence are equally weighted. Despite its success in accounting

for a rich set of psychological and neural data, the classical diffusion model has been

challenged by the fact that human choice behaviour is often suboptimal. First, for

weak evidence, observers’ performance is not perfect even when the observation time

is infinite. Second, a series of experimental studies revealed temporal biases in the

weighting of evidence.

These two challenges have been addressed by two separate revisions of the diffusion

model. The saturation of performance for long intervals was accounted by a diffusion

with drift-variance which, however, maintains the balanced and unbiased weighting

of evidence across time. The second challenge of temporal biases was accounted by
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a bounded diffusion which assumes that evidence integration ceases and the choice is

finalized once the decision boundary is reached, even if new evidence keeps flowing

in. The bounded diffusion model gives a clear-cut primacy prediction, accounting also

for the saturation in accuracy. Nevertheless human choice behaviour is more diverse

being subject to both primacy and recency biases. The diffusion framework though

is unable to capture this diversity in evidence weighting, producing either unbiased or

primacy-biased choices.

This is not the case with the more flexible and neurally inspired LCA model. The

LCA model assumes that evidence integration is leaky with competition among the

decision units triggered by lateral inhibition. The leakiness of the accumulation process

naturally accounts for the accuracy saturation, since integration for a period longer than

the effective time constant does not improve the decision quality. Additionally the

balance between the leak and inhibition parameters is able to generate three different

modes of temporal weighting. When inhibition is larger than leak, then the model

exhibits primacy. On the other hand when the model is leak dominant then recent

information is overweighted. Finally when leak and inhibition are in balance then the

model mimics the drift-variance diffusion.

In a recent neurophysiological study with primates (Kiani et al., 2008) strong primacy

biases were obtained and the bounded diffusion model was proposed as the most suc-

cessful mechanistic account of perceptual choice. In a follow up study we did (Tsetsos,

Gao, et al., 2011), we first replicated the primacy bias with human observers and sub-

sequently revealed that it is mainly triggered by task contingencies. In particular, we

showed that a stringent response deadline and an anticipation regarding the short length

of the trial, prior to the trial onset, urges observers to assign higher weight to early ev-

idence. We concluded that choice dynamics are adaptive to the type of the task and its

characteristics and that more experimental work is required to understand the basis of

temporal biases. In the forthcoming chapters I will experimentally explore temporal

biases, emphasizing the role of recency (which challenges most existing models) and

questioning whether the same profile of temporal weighting is maintained across do-

mains, i.e. in both perceptual and value-based decisions. Next I turn into reviewing the

other important factor of differential information weighting that this thesis addresses:

context-dependent weighting.
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1.2 Context Effects in Value-based Choice

As we saw in the previous section, recent advances in the neuroscience and psychology

of perceptual choice has led to impressive progress in understanding and characteriz-

ing the central underlying process of evidence-integration, indicating a mechanism

that is regarded to be nearly optimal. This stands in contrast with the more challenging

field of complex, value-based decisions, such as deciding what car to buy or which

flat to rent, in which we are faced with a number of puzzling patterns like preference

reversals and decision-biases, as highlighted in the seminal work of Tversky and Kah-

neman (Kahneman & Tversky, 1979; Tversky & Kahneman, 1981; Huber et al., 1982;

Tversky & Kahneman, 1986; Knetsch, 1989; Simonson, 1989; Kahneman & Tversky,

2000; Gilovich et al., 2002). The seemingly endless anomalies characterizing human

choice behaviour, have directed the field of behavioural economics and psychology

into mostly experimental routes, in an attempt to reveal as many as possible regulari-

ties and paradoxes that contradict the economic theory (Von Neuman & Morgenstern,

1947; Debreu, 1960). As a consequence of using the normative account as a measure

of comparison to human choice behaviour, theorizing preferential choice was greatly

influenced by the formalisms of economic theory and the most successful models were

originally descriptive modifications of expected utility theory (Kahneman & Tversky,

1979; Tversky & Kahneman, 1992)5. More recently though the field has developed

further and several different approaches of increased predictive and explanatory power,

that address decision-making at the process level, were developed 6.

Despite the recent promising advances from the early descriptive models to process-

based and explanatory ones, all theoretical frameworks still face a central puzzle; peo-

ple’s preferences between options can be reversed by the presence of decoy options

(that are not chosen) or by the presence of other irrelevant options added to the choice

set. Three types of contextual reversal effect reported in the decision-making literature,

the attraction, compromise, and similarity effects, have been explained by a number of

independent proposals. Yet a major theoretical challenge is capturing all 3 effects si-

multaneously. In the next sections, I review the range of mechanisms that have been

proposed to account for decoy effects and analyse in more detail two computational

5In a recent review article by Vlaev, Chater, Stewart, and Brown (2011), these theories are labelled
as “value-first”.

6According to Vlaev et al. (2011) in many of these models comparison is a central mechanism. These
models can be further classifed into those that assume a representation of value versus others that rely
merely on ordinal comparisons, without assuming any internal value scales.
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models at the process level, decision field theory (Roe et al., 2001) and leaky competing

accumulators (Usher & McClelland, 2004), that aim to combine several such mecha-

nisms into an integrated account. I argue that the LCA framework, which follows

on Tversky’s relational evaluation with loss aversion (Tversky & Simonson, 1993),

provides a more robust account, potentially implying that common mechanisms are in-

volved in both high-level decision making and perceptual choice, for which LCA was

originally developed. The latter hypothesis is furthered pursued in this thesis where

the information integration mechanism, in both perceptual and value-based decisions,

is probed in relation to context effects.

1.2.1 Preference Reversal in Multi-attribute Choice

Confronted with an unusually short dessert menu, Ms. X vacillates between two op-

tions, A and B. Finally, she plumps for A, at which point the waiter responds that, in

fact, there is also the daily special, Option C. “Thank goodness you told me that,” says

Ms. X, relieved, “In that case, I’d prefer B.” There is something paradoxical about

Ms. X’s change of heart. How can the availability of a third option, C, possibly affect

whether A or B is preferred? The relative pleasure of eating Dessert A or B surely

should depend on the properties of A and B alone and not on the properties of any

other dessert C, whether that C is an available option or not. To hammer home how

paradoxical any influence of C might be, let us push the story a little further. The

waiter returns with Dessert B and says, “Actually, the chef has just told me that C is

sold out.“In that case, I’d like to switch back to A, please,” decides Ms. X.

The puzzling behaviour of Ms X in this situation is a case of contextual preference

reversal. It is fascinating that such reversals have been reported to characterize human

decision making between alternatives that vary on several dimensions, as illustrated in

Figure 1.4, where one has to choose one out of several cars that vary on two attributes

(i.e. economy and quality). Three such reversal effects have been reported in the lit-

erature. The most puzzling of them are the attraction effect (Huber et al., 1982) and

the compromise effects (Simonson, 1989), which have the form of Ms X’s preference

reversal. For the attraction effect, the irrelevant option D is a decoy (an inferior or

dominated option), similar but of less value than A. For the compromise situation, the

option C is of approximately equal value as A and B, but it is such that it places B

in the ’middle’ within the 2D attribute space, making it a compromise. A third and
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Figure 1.4: Illustration of a choice space for options that vary on two dimen-

sions. The pattern of preferences between A and B can be affected by the

presence of other, irrelevant options (C, D, P, S) in the choice set

perhaps less puzzling choice reversal is the similarity effect (Tversky, 1972). Here

the introduction of a new option S, very similar to B (and of equal value), shifts the

relative choice between A and B in favour of the dissimilar option, A. More recently,

a new type of decoy effects, the phantom decoy effects, has been observed (Pratkanis

& Farquhar, 1992; Dhar & Glazer, 1996; Choplin & Hummel, 2005; Pettibone &

Wedell, 2000, 2007) in which the introduction of an unavailable but dominant option

(P in Figure 1.4) can bias the decision towards the similar dominated option (A). These

phantom decoy effects raise an additional challenge to the theory of choice(Pettibone

& Wedell, 2007).

Such paradoxical preference reversals are, not surprisingly, ruled out by many theories

of choice. In particular, they are ruled out by any theory of choice which separately

assigns some goodness value to each option and proposes that people always or more

likely (if the choice mechanism is stochastic) prefer options with higher goodness val-

ues. I shall call such accounts option-based theories (also known as simple scalable

choice models) where the crucial assumption is that a value is assigned independently

to the available options and choice is determined by the comparison of values.

Option-based accounts of choice, require that whether A is chosen rather than B de-

pends on the relative value of A and B. And, by assumption, these values are deter-

mined by independent consideration of each option. No further option, C, can affect

the relative values of A and B. Value-based account of choice include expected utility
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theory, the cornerstone of economic theory and rational choice explanation (Von Neu-

man & Morgenstern, 1947; Debreu, 1960). Moreover, they apply to any variants of

such theories which allow noise, either in the assignment of goodness values, or the de-

cision between goodness values [e.g., stochastic expected utility (Blavatskyy, 2007)].

This class is broad, and includes many psychological theories of choice, including, for

example, prospect theory (Kahneman & Tversky, 1979; but see Tversky & Simonson,

1993) for a prospect theory variant that allows contextual preference reversal).

How can such apparent anomalies be explained? As we shall see, a wide variety of

theoretical proposals have been put forward, although no single mechanism accounts

for all three decoy effects. What is required is an integration of several mechanisms

into a single computational model. Here, we analyse two such models, both based on

principles of neural computation: the Decision Field Theory (DFT; Roe et al., 2001)

and the Leaky Competing Accumulators (LCA; Usher & McClelland, 2004). The aim

of this section is to compare in a systematic way DFT and LCA in their account to

reversal effects and to derive novel predictions from these models (see also Pettibone

& Wedell, 2007 for a comparison of models focused on phantom decoys).

In the next subsection, I will review the variety of mechanisms that have been pro-

posed to explain preference reversal and will clarify which mechanisms explain which

effects. Then, two neurocomputational approaches, DFT and LCA, will be described

in relation to the core theoretical mechanisms; and consider the similarities and dif-

ferences between them while contrasting their predictions. Two apparent problems of

the DFT approach will be raised and evaluated against empirical data; first undesired

predictions due to local inhibition and linearity and second lack of robustness of the

correlational mechanism which accounts for the compromise effect.

1.2.2 Mechanisms for reversal effects

Before plunging into details concerning DFT and LCA, it is worth considering, in gen-

eral terms, how a third option might influence the choice between two existing options.

There are three broad classes of mechanism, based on: i) attentional switching to dif-

ferent choice aspects, ii) relational, rather than independent, evaluation of properties

and loss-aversion, iii) value-shifts or contrast effects, mediated by lateral inhibition. I

consider these briefly in turn.
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1.2.2.1 Attention to choice aspects and temporal correlations

As shown by Tversky in his elimination by aspects (EBA; Tversky, 1972), the similar-

ity effect follows immediately, and fairly uncontroversially, from a stochastic criteria

shifting mechanism. Assume that, while struggling to choose between tiramisu and

fruit salad at some moments, Ms X is swayed by taste (favoring the tiramisu); at some

moments she is swayed by health (favoring the fruit salad). That is, her criterion for

choice (or in the language of the EBA, her attention to the choice-aspects) is contin-

ually shifting. Suppose that there is a 0.6 probability that she will choose fruit salad.

But before she can choose, then waiter points out that there is a third option, “fruit

surprise”, which turns out to be almost exactly the same as, and no better or worse

than, fruit salad. Ms X resumes her oscillations between taste and health. Now if, as

before, there is a 0.6 chance that health will win out, and she will choose fruit, note

that she now has a further choice: between fruit salad and fruit surprise. If she makes

this choice randomly, then the probability of choosing fruit salad is now 0.3—i.e., less

than the 0.4 probability of choosing tiramisu. But before “fruit surprise” was added,

the probability of choosing fruit salad was greater than the probability of choosing

tiramisu.

The preference reversal described above can also be seen as an instantiation of a more

general principle of fluctuating and temporally correlated preference. What happens

to Ms X above, is that her preferences fluctuate and that the preference for fruit-salad

and fruit-surprise are positive correlated (they raise and fall together). In this case

the correlation is caused by the switching of attention to different choice-attributes,

but as we will see below, such correlations can be also caused by other mechanisms.

The general idea, however, is that when temporal correlations between momentary

preference exist, the correlated options split their wins, and hence loose share, relative

to the uncorrelated options.

1.2.2.2 Relational evaluation of options and loss-aversion

The impact of relational, rather than independent, evaluation of options or properties

is best illustrated by considering the attraction effect. This corresponds to the addition

to the menu of a “second-tiramisu”, which is just like tiramisu, but marginally inferior

in every way (or, more strictly, marginally inferior in at least one way, and no better

in any other way). Now consider the relative goodness of each option. If we are not
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sure how to weigh up the different dimensions of desserts, we may feel that fruit salad

is roughly as good as tiramisu; and fruit salad is roughly as good as second tiramisu;

but however we weigh the dimensions, it is clear that tiramisu is better than second

tiramisu. The specific account of why tiramisu is now relatively favoured can take

various forms. For example, according to reason-based decision making (Simonson,

1989; Pennington & Hastie, 1993), people choose by searching for a justification for

their choice. The choice of tiramisu may be justified by its clear superiority to second

tiramisu (i.e., it is clearly relatively better, even if we are not sure how much we like

either option, in absolute terms); but fruit salad has no clear justification, being difficult

to compare with either alternative option.

Alternatively, both the attraction and the compromise effects could be explained, with-

out appealing to a justification process 7, by assuming that values are computed via

pairwise comparisons. For example, we might assume that each option is compared

with each other option and that the differences, advantages or disadvantages (on each

dimension, separately) are transformed into utilities via a value function (Tversky &

Simonson, 1993), characterized by loss-aversion (a steeper slope in the domain of

losses than in that of gains, so that losses loom larger than gains)8.

1.2.2.3 Inhibition as contrast-enhancement between similar options

An alternative way to explain the attraction effect is a type of local contrast enhance-

ment, as observed in visual perception (e.g. a circle appears larger when surrounded by

smaller circles; Massaro & Anderson, 1971). One mechanism that can mediate such

a process is lateral inhibition between similar items, so that only alternatives that are

similar inhibit each other. To cause an enhancement of the dominating option, one

needs to assume that the local inhibition operates on a relational attribute evaluation

function (inferior options, A’ have negative values, while superior options A have pos-

itive values; thus A’ causes an enhancement in the value of A since passing negative

activation via an inhibitory link results in excitation).

The mechanisms described above are not the only ones that can account for reversal

effects. Other mechanisms, such as dimensional weight change, ranking, grouping,

7Note that decoy effects have been found in other non-human species (Hurly & Oseen, 1999;
S. Shafir, Waite, & Smith, 2002) suggesting that justification is not crucial for such effects to occur.

8Loss aversion explains the endowment effect (Knetsch, 1989) reflecting the fact that people tend to
stick with the current choice because they overweight losses incurred from switching, relative to gains.
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etc, have been proposed in various models (Guo & Holyoak, 2002; Stewart et al.,

2006; Pettibone & Wedell, 2007). I focus here on these three mechanisms, because

they are used in the models that are contrasted. In particular, the first two are used in

the LCA, which implements key elements of two of Tversky’s models, EBA (Tversky,

1972) and the context-dependent advantage model (Tversky & Simonson, 1993), while

the first and the last are used in DFT.

1.2.3 Two Neurocomputational Approaches

Although the mechanisms described above can explain the various decoy effects, no

single mechanism appears to explain the full range of effects. A computational ac-

count integrating several mechanisms appears to be required to provide an adequate

explanation of the effects and make parametric predictions for choice as a function of

how the options are situated in the attribute-space. Recently, a number of dynamical

theories of value-based decision making have been proposed accounting not only for

the choice outcome, but also for the dynamics of the decision process as it unfolds over

time. In contrast to heuristics and computational theories with static parametrisation,

dynamical models can make predictions on temporal aspects of decision-making such

as vacillations and decision times, and they are also in the position make contact with

recent neurophysiological studies of perceptual choice. Here we focus on two such the-

ories, the decision-field theory for multi-attribute choice (DFT; Roe et al., 2001) and

the leaky-competing accumulators (LCA; Usher & McClelland, 2004), which account

simultaneously, for all the three contextual reversal effects.

Both DFT and LCA conceptualize choice as an Ornstein-Uhlenbeck (OU) diffusion

process (see also equation 1.5 in the previous section for similar dynamics), or in other

words, a leaky integration of preference subject to choice competition and driven by at-

tentional shifts. This allows both models to account for the similarity effect, following

Tversky (1972) as a result of a stochastic attention shift. Despite many processing sim-

ilarities between the models there are also few important differences. While DFT is a

linear model, which has the appeal of mathematical tractability, the LCA assumes two

types of non-linearity. The first concerns value of the activations which (corresponding

to firing-rates) are not allowed to go negative. The second non-linearity is carried over

from prospect theory, in the form of an asymmetric value function with loss-aversion

(losses weighted higher than gains), which is taken by LCA as a primitive. Unlike the
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LCA, which maintains most of the aspects of Tversky’s theories, DFT does not assume

loss-aversion as a primitive but rather derives it as an emergent property. To do so, it

assumes that the inhibition between the choice alternatives is a decreasing function of

their similarity in the attribute space.

Below the exact instantiation of the two models is reviewed. Both models are instanti-

ated in four-layered connectionist networks as illustrated in Figure 1.5. The first layer

corresponds to the choice-attributes (two attributes are illustrated here). In both mod-

els, it is assumed that the attention of the decision maker switches stochastically across

dimensions (D1,D2), according to a Bernoulli process hence at any time step, only one

of the attributes is active. The 2D-characterization of each alternative on the D1/D2

space (Figure 1.4), is given by the connectivity between the first and the second layer

(i.e., a 2x3 matrix mi j). Each node in the second layer corresponds to the integrated

attribute values of each choice-alternative according to the following equation:

Ui(t) = ∑
j=1,2

w j(t)mi j + εi(t), (1.6)

where ε is the probability of attending irrelevant dimensions, and w j is 0 or 1 depending

on which dimension is attended.

The two models differ slightly on the intermediate computations performed in the third

layer and on the way in which the preferences are integrated in the fourth layer. In DFT

the third layer computes contrasts between each option and the other alternatives (also

mentioned as valences), as the difference between the value of the option and the mean

value of the other options, with respect to the active dimension:

vi(t) =Ui(t)−
∑k 6= j Uk(t)

n−1
(1.7)

In LCA, the third layer computes advantages and disadvantages between all pairs of

options, which are transformed by a non-linear, asymmetric (loss-averse) value func-

tion:

Ii(t) = ∑
j 6=i

V (di j)+ I0, (1.8)

with di j being the advantage or disadvantage of option i to option j on the active

dimension, V is a non-linear value function with loss-aversion and I0 is a positive
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(a)

(b)

Figure 1.5: Illustration of decision field theory and leaky competing accumu-

lators models in neural networks; circle arrow heads correspond to inhibition.

a: Connectionist network for decision field theory. b: Connectionist network

for leaky competing accumulators.
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constant that promotes the alternatives to the choice process, namely, prevents the Ii

of the inferior options from being negative. Finally, in both models, the fourth layer

integrates the contrasted differences (valences or sum of advantages/disadvantages in

DFT and LCA respectively), as preferences, across time. For DFT:

Pi(t +1) = vi(t)+∑
j

si j ·Pj(t)+ξ(t), (1.9)

and for LCA:

Pi(t +1) = Ii(t)+∑
j

si j ·Pj(t)+ξ(t), (1.10)

with ξ standing for additive, Gaussian noise.

The integration of preference for each option is imperfect (leaky) and subject to com-

petition with the preferences of the other options (see equations 1.9 and 1.10). The

leaky integration of preferences and the competitive interactions between the options

are implemented in a connectivity matrix, whose diagonal term corresponds to a self

connectivity coefficient (or the leak parameter), and whose off-diagonal elements si j,

correspond to inhibitory connections. While in LCA all the off-diagonal elements are

constant (global inhibition), in DFT their magnitude depends on the distance between

the alternatives i and j, in the 2D attribute space). Finally, as mentioned above, DFT is

linear and thus preference states can take both positive and negative values, as opposed

to LCA where negative activations at the fourth layer, are truncated to zero.

While the two models explain identically the similarity effect, their explanation for the

attraction and compromise effects are very different. In DFT it is the contrast enhance-

ment mediated by local inhibition that accounts for the attraction effect; the value of

the dominating option, A, is enhanced by the similar decoy. In particular, the similarity

between nearby alternatives (A and D in Figure 1.4) results in their being coupled by

strong local inhibition. As option D is inferior to both A and B, it has negative valence.

Therefore, option D boosts the preference of option A by passing its negative activation

value through a negative connection (I will call this activation by negated inhibition).

The function that specifies the local inhibition relates the psychological distance (i.e.,

similarity) of the options and the degree they compete by lateral inhibition.

The compromise effect is also accounted by DFT due to the distance-dependent inhi-

bition; however, the key mechanism is correlation, not contrast enhancement. In this

case, the extremes (A and B) and the compromise (C) interact via strong inhibitory
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links whereas the extremes, A and B, are too distant from each other to compete. As

the extremes do not inhibit each other, while they inhibit the compromise option, their

momentary preference becomes decorrelated from the compromise, but correlated with

each other. Thus the correlated extremes split their wins making the compromise op-

tion stand out and take a larger share of choices (see Roe et al., 2001 for details).

Unlike in DFT, the LCA account of the attraction and the compromise effects is similar

to the context-dependent advantage model (Tversky & Simonson, 1993), and does not

require a distance-dependent inhibitory mechanism. Instead, it follows the principles

suggested by Tversky and Simonson (1993), according to which the value for each

option is evaluated in relation to all other options in the choice set (so far, this is not

fundamentally different from DFT) via a nonlinear loss-aversion value-function. In

particular, for the attraction effect when option D is introduced, option B is penalized

more by having two large disadvantages (relative to A and D, when dimension of

Economy is attended) relative to A (which has one large disadvantage only). The

same principle, helps the LCA account for the compromise effect; the extreme options

(A and B) have one large and one small disadvantage each, whereas the compromise

option has two small disadvantages. Due to the asymmetry of the value function,

large disadvantages are penalized more, favouring that way the compromise option. A

summary of the accounts that each model gives for each effect is given in Table 1.1.

Table 1.1: A summary of DFT and LCA accounts for the contextual preference reversal

effects.

Model

Effect DFT LCA

Similarity Attentional switching across dimensions Attentional switching across dimensions

Attraction Excitation by negated local inhibition Loss-averse value function

Compromise Correlations due to local inhibition Loss-averse value function

1.2.4 Contrasting DFT and LCA

In this section, I explore parametrically how the choices depends on the locations of

the choice alternatives in the attribute space. Specifically, two options (i.e., A and

B) remain constant, while the third option (i.e., C) moves across the two dimensional
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space with an increment of .05 at each step. I consider only results at or below the

diagonal between A and B, as above the diagonal option C is always chosen. Details

about the parameters used for each model are given in Tsetsos et al. (2010). In Figure

1.6 I present the magnitude of the attraction and similarity effects with respect to op-

tion A, as the difference between the probability of choosing A and the probability of

choosing B, for different locations of the option C in the 2-d lattice. I use a gray scale,

where brighter points correspond to a stronger enhancement of the preference of A by

the introduction of C. For both models we can see the similarity effect illustrated as a

thin white line close to option B (1,3) and adjacent to the diagonal (i.e., the introduc-

tion of an option C similar- neither dominating nor dominated by- option B results in

boosting the preference for the dissimilar option A).

However, predictions for the attraction effect diverge. For the LCA model (Figure

1.6(b)) the attraction effect is present in the triangular white area close to option A.

The magnitude of the effect gradually decreases as the distance between the decoy

(option C) and the target (option A) increases. On the other hand DFT gives a more di-

chotomous prediction regarding the magnitude and the location of the attraction effect

(Figure 1.6(b)). More importantly, the DFT predicts that the magnitude of the effect

is relatively flat within the area where is takes place. This discontinuity directly stems

from the relatively abrupt distance inhibition functions (i.e., step function see Tsetsos

et al., 2010 for details).

 

 

A

B

Q
u
al
it
y

Economy
0 2 4

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

(a)

 

 

A

B

Q
u
al
it
y

Economy
0 2 4

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

(b)

Figure 1.6: Illustration of the attraction and similarity effects as the boost that

A gets relative to B by the introduction of C (i.e., P[A|A,B,C]−P[B|A,B,C]

in various places of the two-dimensional lattice. a: Predictions for DFT, sig-

moidal inhibition function. b: Predictions for LCA.
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The attraction effect in DFT is a type of contrast effect, in which the decoy enhances the

dominating option with which it is contrasted. While this works well in the attraction

situation, this mechanism has the danger of causing dominance-reversals for options

that are in a strict domination order, as illustrated in Figure 1.7(a) (C dominates B and

B dominates A). Such reversals may take place (depending on the magnitude of the

inhibition), when the distance between the options is such that A and B inhibit each

other, while C is more distant and outside the inhibition range of the two dominated

options.
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Figure 1.7: a: A choice scenario where Option C has the highest additive

utility. b: Probability of choice for the three options in decision field theory

DFT); after approximately 200 time steps, the inferior Option B outplays C

due to the sharp boundaries of the inhibition. c: Single-trial trajectory for

DFT. d: Predictions for the leaky competing accumulators model.

In the simulation result in Figure 1.7(b), a localized distance function that allows DFT

to reproduce all three reversal effects was used. As we can see, although the activations
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are bounded (all eigenvalues of the s-matrix are smaller than 1) after approximately 200

time steps, the dominated option B emerges as the choice winner (Figure 1.7(c) shows

a single trial trajectory for DFT). Intuitively this prediction results from the fact that

the superior option, C, does not benefit from the boosting by negated inhibition from

any option since it does not interact with either A or B. On the other hand the inferior

decoy, A, which has a negative valence, confers excitation on B. On the contrary as

illustrated in Figure 1.7(d), the LCA gives the correct prediction, since due to the non-

linearity in the preference states, uninformative options are deactivated (stuck at zero)

at early stages of the decision process. In Appendix C in Tsetsos et al. (2010) we show

how one needs to constrain the DFT parameters in order to avoid dominance reversals

and at the same time account for all three effects.

Another diverging point in the two models is the way they account for the compromise

effect. According to the original DFT model (Roe et al., 2001), the compromise effect

occurs because the preferences of the extremes are correlated in time. This account

for the nature of the effect is very different from the one offered by the LCA, which

follows Tversky and Simonson (1993) proposal that it is a result of the pairwise com-

parisons between the options, and the large penalties applied on the disadvantages. If

the compromise effect arises from the temporal correlation of the extremes, it should

be possible, in principle, to detect a signature of this correlation. One way to investi-

gate this, was recently explored experimentally (Usher, Elhalal, & McClelland, 2008).

In this study, participants were presented with a three-choice compromise choice-set,

and in some cases, following the participants’ choice of an extreme option, this op-

tion was announced to be unavailable and a speeded 2nd choice was requested for

one of the remaining two options. If the two extremes are indeed correlated, one may

predict that, at the moment when one of them reaches a response-criterion, the other

extreme is also high in its activation and therefore, is more likely to be selected very

fast. The experimental results, also reported in Tsetsos et al. (2010), showed that after

the choice of an unavailable extreme, the participants had an overwhelming tendency

to choose the compromise, rather than the other extreme. Furthermore the selection

times were longer when participants chose the other extreme than when they chose the

compromise.

These results contradict the correlational account of the compromise effect assumed by

the DFT model. Within the DFT framework an alternative explanation for this effect

has been provided(Busemeyer & Johnson, 2004). According to this account, avail-
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ability can be seen as a third choice-attribute, which makes an unavailable option less

desirable, but allows it to compete for selection. According to this, the unavailable op-

tion bears negative valence due to its low attribute value in the availability dimension,

and boosts the compromise, due to their mutually inhibition. The availability mecha-

nism can be tested by considering a choice set with three options, as in the attraction

case. During the deliberation we announce that the decoy is unavailable. According

to the availability assumption, this will make the valence of the decoy option even

more negative and thus the boost it should give to the dominant option should be fur-

ther enhanced. On the other hand, if unavailable options are simply eliminated from

the choice-set, we should expect that the attraction effect will diminish towards the

baseline for a binary choice. To test this in Tsetsos et al. (2010) we presented to 30

participants , three choice problems, all of which involving the same two alternatives

A and B, which create a tradeoff between two choice attributes. The first problem

was a binary choice between A and B. The second problem, was a ternary choice, in

which a decoy dominated by A and similar to it was added, and the third problem was

identical to the second, except that after 15 seconds of deliberation, the decoy was

announced to the participants as unavailable. The results, did not fit with this alterna-

tive explanation of the decoy effects. The decoy induces a strong attraction effect in

favour of the dominating option (χ2(1,N = 30) = 6.67, p < .01 between ternary and

binary). When the decoy is announced as unavailable during the deliberation, its im-

pact disappears and the choice between A and B option reverses very close to baseline

(χ2(1,N = 30) = .07, p > .78 between ternary-unavailable and binary). These results

rule out the unavailability hypothesis and shows that unavailable options do not con-

tinue competing for choice but are rather removed from the selection process.

1.2.5 Alternative Models

So far I focused only on DFT and LCA as they are the only two theories which have ac-

counted for the three contextual preference reversal effects simultaneously. Alternative

theories have been proposed for multi-alternative, multi-attribute choice, namely Deci-

sion by Sampling (DbS; Stewart et al., 2006) and the ECHO model (Guo & Holyoak,

2002) with the latter accounting for a subset of the reversal effects. Three particular

mechanisms stand out of the two models as promising; ranking, grouping and bidirec-

tional connections in the neural network.
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In DbS no underlying psychoeconomic scales are assumed. Instead the subjective

value of an attribute is its rank in the decision sample which consists of attribute val-

ues both present in the decision context and drawn from memory. Thus, the value of

a given option is constructed online using basic cognitive tools such as binary com-

parisons and frequency accumulation. Drawing from simple psychological principles

DbS accounts for a large set of decision phenomena such as loss-aversion, temporal

discounting and the overestimation of small probabilities. Being explanatory robust

in several domains, the DbS and its mechanisms (ranking and ordinal comparisons)

appear to be promising for the case of contextual preference reversal effects. Recently,

the DbS was integrated with leaky competing accumulators in a dynamical model for

decisions under risk (Stewart & Simpson, 2008). This model can also be extended for

multi-attribute decisions and its descriptive power in that domain can be the subject of

future computational explorations.

The second alternative model, the ECHO model proposed by Guo and Holyoak (2002),

has been applied for the similarity and the attraction effects. Its central assumption is

that decisions follow a sequential two stage process. At the first stage the two similar

options are grouped and processed together. The first-stage, preference states of the

similar options are carried over as initial activations at the second stage, where all the

three alternatives are compared together. Thus the similar, grouped options receive

more processing overall. Note that the mechanism of grouping can be comparable to

the step sigmoid inhibitory function in DFT, which involves competition only between

the similar options. Another assumption in the ECHO model is that the preference

states of the alternatives are passed backwards to the attribute nodes, providing positive

feedback. Therefore it is predicted that during deliberation, the attribute values of

the option that is dominating the preference, will be enhanced and thus appear to be

more important, which has been tested experimentally (Holyoak & Simon, 1999). It is

interesting to test what further predictions the LCA and DFT models would yield, by

changing their connectionist networks from feedforward to bidirectional.

1.2.6 Summary

Contextual reversal effects have been challenging decision theories for years. Two

computational models, DFT and LCA, provided accounts for all the effects under sin-

gle frameworks. The two models share many properties and use similar connectionist
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framework, but they differ in the way they account for the attraction and compromise

effects. While the LCA follows the more traditional account offered by Tversky and

Simonson (1993), in which the effects arise from the asymmetry of the value function

and the fact that options are compared with each other, DFT does not assume asymmet-

ric loss-aversion value functions. Instead it derives the attraction and the compromise

effects from the emergent properties of the local inhibition within a linear network.

The attraction effect is viewed as a contrast effect, which results from the fact that the

decoy boosts the preference of the similar dominating alternative by the mechanism of

activation-by-negated-inhibition. The compromise effect is the outcome of an emer-

gent correlation between the extremes, which share their wins in the choice, favouring

the compromise option.

Simulations showed that, as a result of the local inhibition boundary, the range of the

attribute space in which DFT produces reversal effects has also relatively sharp bound-

aries, which stand in contrast with the more continuous effects obtained in the LCA

model. As a result, the predictions of DFT are less robust to the introduction of new

options in the choice set (see Figure 1.7), resulting also in a smaller parameter space

which accounts for all the effects simultaneously . The second point that was addressed

was the correlational explanation of the compromise effect, which is probably the most

original mechanism in the DFT account of multi-attribute decision-making. To exam-

ine the correlational prediction, decision-makers were presented with a choice between

three alternatives that form a compromise situation, and following the choice of an ex-

treme option, that option was announced as unavailable and a second speeded choice

was requested. The overwhelming fraction of speeded choices went to the compromise

option, rather than to the other extreme which rules out the correlational explanation.

In one version of DFT, such a result can be accounted by assuming that “unavailabil-

ity” is a third attribute, which does not eliminate an option from the choice process, but

only reduces its valence, making it less attractive. Under such a mechanism, the un-

available extreme would activate the compromise via activation by negated inhibition.

To test this, we carried out an experiment, which compared the attraction effect in a

normal situation, to that in a situation in which the decoy is announced as unavailable

after 15 seconds of deliberation . We found, that conversely to the prediction that the

unavailability of the decoy reduces its valence enhancing the attraction effect, this ef-

fect is reduced towards the baseline of binary choice. This suggests that unavailability

should not be viewed as a third choice-dimension (making unavailable options slightly
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less desirable), but rather that it maintains their desirability, while eliminating them

from the decision-process.

While the contrast between two state of the art models of context effects, presented

here and in Tsetsos et al. (2010) and Usher et al. (2010), was quite useful for the refine-

ment and improvement of a specific theory (Hotaling, Busemeyer, & Li, 2010), here

we face a paradox; in the field of multi-attribute choice there is an abundance of the-

oretical models which try to simultaneously account for three basic phenomena (i.e.,

attraction, compromise and similarity effects). Most of our comparison focused on

ruling out some of the DFT mechanisms that were computationally erratic. Although

small experiments were conducted, they were tailored on specific model predictions

aiming mostly to rule out particular mechanisms. Importantly, the three preference

reversal effects have never been replicated under the same experimental paradigm or

within subjects. It is therefore conceivable that the attempt to capture the three phe-

nomena under a unique parametrization of a single model of choice is elusive. And

yet, the psychological basis and realism of the process-based approach is not experi-

mentally corroborated on value-based experiments but rather heavily inspired by the

sequentially sampling models of evidence accumulation in perceptual choice.

Ruling out the DFT account does not prove on its own that the LCA account is correct.

And in fact the latter model, although descriptively robust and potentially explanatory,

involves a variety of neural (i.e. leaky integration and global competition) and psy-

chological (i.e. asymmetric value functions as in prospect theory) mechanisms, which

are too detailed to be tested using conventional behavioural experiments. Facing a

reality where the computational models are more advanced than our understanding

of the behaviour we try to explain, I take in this thesis a step back and question the

very principle of dynamic models of preference, i.e. that preferential choice, sharing

the same underlying assumption with perceptual choice where evidence is integrated

across time, is driven by value integration. Thus, the main question I will address is

whether preference is shaped via integration of value and whether this process is sub-

ject to context effects. Additionally, by examining the presence of context effects in

perceptual choice, I will also examine the similarities in the mechanisms that underlie

value and evidence integration.
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1.3 Summary and Overview of the Thesis

The working hypothesis in this thesis is that decision-making is driven by sampling of

information which can either correspond to sensory input or to values. My aim is to

examine the presence of order and context effects in both perceptual and preferential

choice. Through this examination, and using computational modelling, I will deter-

mine the mechanistic interplay between sensory and motivational choice, expecting to

ultimately deduce the principles that underlie decision making in both domains.

Chapter 2 will introduce the main experimental methodology that will be used through-

out the thesis. In the perceptual literature, experimental paradigms involve the presen-

tation of dynamic evidence and hence results can be readily related to process mod-

els. On the contrary, in the value-based literature experiments traditionally involve

the static presentation of alternatives and as a result the deliberation stage of the de-

cision is covert to the experimenter. In order to overcome this problem, I introduce

a new experimental paradigm which interpolates between psychophysics and prefer-

ential decisions. There, participants are presented with two or three fast sequences of

numerical values and need to indicate which sequence had the highest average. I label

this paradigm fast value integration. One additional novelty in the experimental tech-

niques I used in this thesis, is the presentation of non-stationary information. As I will

discuss in Chapter 2, non-stationary information provides a way to externally induce

dynamics similar to deliberation phenomena that are covert to the experimenter during

complex decisions (e.g., vacillations or changes of focus to different aspects).

In Chapter 3, I will focus on order effects in evidence and value integration. I will

start with a surprising prediction that the LCA model gives due to its non-linearity;

within the same parameter set, the type of the temporal bias depends on the length of

the trial. In particular, and as we will see in more detail, for short trial durations the

model predicts primacy while for longer durations recency (Computational Study 1).

This surprising prediction is supported in a perceptual experiment using the moving

dots paradigm where participants show a transition from primacy to recency as the

trial duration increases (Experimental Study 1). This, however, is not the case when

a similar experiment is conducted using the fast value integration paradigm. There,

participants still show an increase in recency with trial duration but they do not show

any sign of primacy (Experimental Study 2 and Computational Study 2). Finally I

perform a formal optimality analysis for decisions under uncertainty, showing that
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the optimal model in a dynamically changing environment is leaky and not perfect

integration (Computational Study 3). Therefore the fact that human choice is subject to

order effects and thus to imperfect integration mechanisms, does not necessarily violate

the principle of optimality since the latter must be defined afresh for each different

environment. On the contrary, the fact that humans evolved in uncertain environments

squares well with the claim that information integration is subject to leakage .

In Chapter 4, I move on to examining the presence of context effects in decision be-

haviour. My key approach departs from traditional ones and involves the presentation

of non-stationary information. By manipulating the dynamics of the information I in-

duce temporal correlations between the alternatives, reducing that way multi-attribute

choice problems into a single attribute, and looking for decoy effects; the attraction,

similarity and compromise effects. I start with a perceptual experiment where attrac-

tion and compromise effects are not obtained, but participants show a very strong sim-

ilarity effect (Experimental Study 3). An analysis using the prominent sequential sam-

pling models of perceptual choice follows, to reveal that the key mechanism to account

for the observed effects is the zero non-linearity of the LCA (Computational Study 4).

A similar experiment is performed using the fast-value integration paradigm and there

participants show systematically the patterns predicted by the attraction and similarity

effects (Experimental Study 4).

The latter finding leads to Chapter 5 where a computational model, that accounts for

the fast-value integration context effects, is developed. The model holds that in value

integration, the absolute value of an alternative and its relative rank in the current

context are combined (Computational Study 5). In particular, the absolute value of

each alternative is weighted by its momentary rank and this product is subsequently

integrated in a leaky accumulator. I label this model rank-dependent leaky integration

and demonstrate how it accounts for decoy effects, in a much simpler way compared

to DFT and LCA. Additionally, I will bring to light a surprising prediction of this

model for the fast-value integration paradigm; risk-seeking in the domain of gains

(Computational Study 6).

In Chapter 6, the predictions of the rank-dependent model regarding the way that risk

is dealt within the fast-value integration, is tested experimentally. In a series of experi-

ments (Experimental Studies 5-10), I confirm that people when asked to make choices

on the basis of fast numerical sequences, are risk-seeking (Experimental Study 5).

This pattern persists even when the numerical values correspond to losses (Experimen-
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tal Study 6). However it switches to risk-aversion, when the sequences are mixed i.e.

involving both gains and losses (Experimental Study 7). These findings are quite sur-

prising and contradict decisions by description and prospect theory. In order to better

understand the basis of these findings, I conducted another series of experiments which

revealed that choice behaviour switches from risk-seeking to risk-averse, depending

on the framing of the problem at hand (Experimental Study 8). When people select

a sequence they are risk-seeking but when they have to reject one sequence they are

risk-averse. These results integrate well with previous research on high-order decision

making and the reason-based framework and help the further refinement of the rank-

dependent model. Finally, the relationship between the fast value integration paradigm

and decisions-by-experience is further explored (Experimental Studies 9-10).



Chapter 2

General Methods and Techniques

2.1 Overview

In this chapter, I give a general description of the experimental and computational

methods and techniques used throughout this thesis. I start by describing the stimuli

and protocols employed in perceptual (i.e., moving dots and brightness discrimination

tasks) and value-based (i.e., fast-value integration task) experiments. Next, I outline

a novel aspect of most of the experimental designs presented here, the use of non-

stationary information. As I discuss below, using non-stationary information in combi-

nation with an interrogation response protocol is ideal for the study of temporal biases.

Furthermore, it allows the experimenter to induce complex temporal correlations be-

tween the options, in a way that emulates the deliberative process over multi-attribute

alternatives with trade-offs. Finally, I outline the basic techniques of simulating and

evaluating computational models against the empirical data.

2.2 Experimental Methods

2.2.1 Stimuli and Tasks

Perceptual Choice

For the study of perceptual decisions, I used two different psychophysical tasks. First,

when examining order effects (Chapter 3) in binary choice, I adopted a paradigm

53



Chapter 2. General Methods and Techniques 54

extensively used in the neuroscience of decision making, the moving dots paradigm

(Britten, Shadlen, Newsome, & Movshon, 1992; Shadlen & Newsome, 2001; Roitman

& Shadlen, 2002; Gold & Shadlen, 2003; Kiani et al., 2008). In each trial of this task,

participants observe a display of noisy, dynamic moving dots. A fraction of dots (de-

pending on the difficulty of the trial) moves coherently towards one direction and the

observer has, when prompted by a response cue, to discriminate whether the direction

of the coherent motion is left or right (i.e. 2 alternative forced choice). The time course

of a typical trial in this task is depicted in Figure 2.1(a) (for a detailed description see

also Roitman & Shadlen, 2002).

Although the moving dots paradigm has been applied to neuroscience studies of multi-

choice (Niwa & Ditterich, 2008; Churchland, Kiani, & Shadlen, 2008), when exam-

ining context effects in multi-alternative decisions, I used a brightness discrimination

task (Caspi, Beutter, & Eckstein, 2004; Ludwig, Gilchrist, McSorley, & Baddeley,

2005). There, participants saw four patches whose brightness fluctuated across the

course of the trial (the brightness of each spot was normally distributed) and when

prompted they had to indicate which of the four spots was the brightest overall (Fig-

ure 2.1(b)). The advantage of the brightness discrimination task is that it allows the

independent manipulation of the evidence for each alternative. On the contrary, in

the motion detection task the evidence for the different hypotheses is interdependent.

Assume a 4-choice alternative task, with four possible motion directions: up, down,

left and right. The up-down and left-right directions are not orthogonal e.g., support

for upward motion subtracts evidence for the downward direction (and same for the

left-right directions). In previous studies, this lack of independence among the dif-

ferent hypotheses was explicitly taken into account in the developed computational

models (e.g., Churchland et al., 2008). However, the purpose of the contextual effects

study I conducted (Chapter 4) was to conclude whether there is interaction among

alternative options at the decisional (i.e. integration) level. Consequently, due to the

pre-decisional, confounding competition (i.e. at the input level) in the motion detection

task, the brightness paradigm was preferred.

Value-based Choice

Value integration is an essential process in decision-making between alternatives that

are characterized by multiple values (Hertwig, Barron, Weber, & Erev, 2004; Ludvig &
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Figure 2.1: Stimuli used in the perceptual choice tasks. a: The time course of

a trial in the moving dots paradigm (Chapter 3); red arrows indicate the dots

with coherent rightward motion, b: The time course of a trial in the brightness

discrimination task (Chapter 4); the brightness of each spot fluctuates across

time and the observer needs to indicate which spot is the brightest overall.
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Spetch, 2011) or attributes (Tversky, 1972; Huber et al., 1982; Tversky & Simonson,

1993). For example, to decide what car to buy or which flat to rent, the cognitive system

needs to integrate a multitude of goodness values across different dimensions. Our

understanding of this mechanism, although of central importance in recent dynamic

models of preference (Roe et al., 2001; Usher & McClelland, 2004; Tsetsos et al.,

2010), is impeded due to covert processes involved in complex decisions. For instance

when trying to decide among alternatives that differ in several dimensions, the decision

maker might internally switch focus to different choice aspects or allocate a different

amount of processing to each alternative.

53 47 
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Figure 2.2: The timeline of stimulus in the binary choice version of the fast

value integration task. Participants observe a rapid stream of pairs of numeri-

cal values and at the end of the presentation have to decide which sequence,

left or right, had the highest average value or which sequence they would like

to draw an extra sample from.

In this thesis, I propose a way to directly probe the micro-mechanisms of value integra-

tion, by introducing a decision task of reduced complexity, where the values that the

decision-maker receives are defined on a common currency and their time-course is ex-

ternally controlled by the experimenter. Participants are presented with rapid, varying

sequences of pairs or triples of numerical values and are asked to select the one asso-
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ciated with the best overall value or the one they would like to draw an extra sample

from (Figure 2.2). Importantly, the structure that underlies this paradigm is identical to

dynamic perceptual tasks (e.g. brightness discrimination) and the only difference is the

presentation of symbolic, numerical values instead of sensory evidence. Based on the

remarkable capacity of the cognitive system to make numerosity judgments (Barth et

al., 2006) and to integrate affect associated with numerical rewards (Bechara, Damasio,

Tranel, & Damasio, 2005), I expected that humans would be able to integrate values

across time and select the alternative with the highest payoff, even at a fast presentation

rate. This dynamic decision paradigm, which I label fast value integration, lies at the

intersection of low and higher order decisions and can be used as a proxy to access the

underlying process of more complex decisions (e.g. multi-attribute choice; Chapter 4,

reason-based choice; Chapter 6).

2.2.2 Non-stationary Information

In most of the psychophysical tasks with dynamic evidence reported in the perceptual

literature, the evidence is stationary with its distributional characteristics remaining

fixed throughout the experimental trial. This is quite appropriate in the free-response

protocol, where both the choice and the response time are of interest and where core

aspects of the decision mechanism are examined. Recently though, in studies that fol-

lowed the interrogation protocol (i.e. the observer responds when prompted and not

freely) temporal biases were probed using non-stationary evidence (Usher & McClel-

land, 2001; Huk & Shadlen, 2005). The merit of using non-stationary evidence with

regards to order effects, is that the direction of the evidence can switch midway the

trial. For example, in the motion detection task, the dominant motion might be left in

the first half of the trial and right during the second half. The observer’s responses in

trials like this, reveal which half, the first or the second, is more strongly weighted or

in other words the type of the temporal bias.

Information with non-stationary characteristics bears ecological validity, since it re-

flects the dynamics of volatile environments where the underlying structure of the

world can unexpectedly change (Summerfield, Behrens, & Koechlin, 2011). Proba-

bly mirroring the volatility of the real world, people’s views of the environment are

often quite flexible. This flexibility manifests itself also in decision-making; decisions

are rarely ballistic and humans are known to vacillate, change their minds or endlessly
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procrastinate their decisions. What triggers these dynamic effects in the preference

state of the decision-maker is of particular interest especially when the environment is

stable and the choice is made under certainty. In that case, changes of mind should be

attributed to overt (e.g. reflected in the visual fixations) or covert (e.g. internal states)

switches of focus to different choice aspects.
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Figure 2.3: Unfolding a multi-attribute choice problem (a) in time (b). As-

suming that each of the two dimensions can be translated into a common

currency (i.e. value) and that the decision-maker switches focus among the

choice aspects, the time course and amount of the processed information for

alternatives A and B can be reconstructed (b).

For example, when having to decide which car to buy among many alternatives that

differ in two dimensions, i.e. economy and quality (Figure 2.3(a)), the decision maker’s

attention might fluctuate between the two dimensions. In moments, she might consider

the quality of the cars, in which case B is favoured over A, while in others the economy

might stand out as important, in which case A should look better. This switching of

attention squares well with the trade-off inconsistency observed in humans (Stewart,

Chater, Stott, & Reimers, 2003); when deciding among qualitatively different options,

such as the luxurious and expensive car B and the more basic and economical car

A, it is impossible to compare them holistically, on a single dimension of value. In

other words the integrated value of complex, multi-attribute alternatives is not readily

available to the decision-maker but instead needs to be constructed afresh in any given

situation. A plausible mechanism of online value construction for multi-dimensional

options, is the fluctuation of attention, the within-attribute evaluation of the alternatives

and the subsequent integration of the momentary values across time. This mechanism
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is central to dynamic models of preference (Roe et al., 2001; Usher & McClelland,

2004) which, following Tversky’s original idea (Tversky, 1972), assume the sequential

sampling of different choice attributes until a decision is reached.

Given that the attentional switching to different choice aspects can be external but also

internal, it is hard to experimentally observe it and hence test its validity. The route

that I will take in this thesis is, instead of measuring the process of attentional switch-

ing, to induce temporal fluctuations in dynamic stimulus which mimic this switching.

To understand this technique better, I demonstrate in Figure 2.3 how a decision be-

tween car A and B can be collapsed and unfolded across time. The decision-maker

first considers the quality of the cars and car A receives strong support (i.e. labelled as

value in the y-axis at the bottom panel of Figure 2.3) while car B a much weaker input.

Subsequently, the focus switches from the quality of the cars to their economy and the

situation reverses; now A appears quite disadvantageous and B receives stronger input.

After considering economy the attention switches again back to quality and eventually

the decision-maker finalizes her decision. All these changes of focus can be translated

into two input signals, one for A and one for B, which are anti-correlated in time as the

two alternatives are in the 2-D choice space (Figure 2.3(a)). If despite this reduction,

well-known phenomena in multi-attribute choice, such as decoy effects, persist (Chap-

ter 4) with one-dimensional and temporally manipulated input, then two aims will be

achieved. First the attentional switching hypothesis will be corroborated and second

the micro-mechanism leading to contextual reversal will be further understood.

To summarize, the merits of presenting non-stationary information will be fully ex-

ploited in the rest of the thesis. First when examining temporal biases, the trials will be

often divided in two halves with the support to the alternatives changing direction from

the one half to the other. Second, in multi-alternative choice problems information will

be finely manipulated so as temporal correlations are induced among alternatives. That

way the process of attentional switching between choice attributes will be mimicked

in the decision input, causing specific internal mental states that are presumably un-

derlying contextual reversal effects. This technique is expected to shed light on the

underlying process of multi-attribute choice and also validate the assumption that de-

cisions are driven by the sequential scanning of different choice aspects.
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2.3 Computational Techniques

2.3.1 Monte Carlo Model Simulations

All models were simulated using Matlab 7.11.0 (Mathworks Inc., Natick, MA, USA)

as stochastic Monte Carlo algorithms that approximated the probability of a certain

choice outcome under a specific parameter set, by running multiple trial runs. The

core element in all models was a stochastic difference equation (updated over several

simulation steps) that described the dynamics of the preference states (the decision

variable) for each alternative. The mapping of the simulation steps to the actual ex-

perimental time was arbitrary (given for each model in the corresponding sections) in

perceptual models were the flow of the perceptual experimental input was very fast. On

the contrary, in the fast value integration models the number of the model time-steps

coincided with the actual (discrete) experimental frames. In all experiments presented

here, an interrogation response protocol was used with a response requested by the

experimenter at specific times. Accordingly, a choice was issued in a given model, in

favour of the alternative whose decision variable was the highest at the moment of the

interrogation. The model choices were collected over several simulation runs and at

the end averaged together, to derive the model’s choice-probability prediction for each

alternative.

2.3.2 Optimization Procedure

For data fitting I used the Matlab toolbox developed by Bogacz and Cohen (2004),

which estimates the parameters of a model based on least squares. This toolbox is

cast as a Matlab function (“fitparam”) which receives as a primary argument the name

of the script where the model is implemented. The model script takes as input argu-

ments the model parameters and generates as output data points (predictions) which

are evaluated against the empirical data points (see next subsection). The advantage

of the method developed by Bogacz and Cohen (2004) is that it extends the multi-

dimensional simplex algorithm in order to better handle noisy functions. The fact that

the models used throughout this thesis are implemented using Monte-Carlo simula-

tions, renders this technique more robust compared to others that are designed to deal

with deterministic functions (e.g. the simplex method in Matlab). The cost function

that the optimization routine minimizes is defined as: cost = ∑
N
i=1(

ei−mi
ni

)2, where mi
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are the statistics of the model, ei the statistics obtained from the experiment and N

the number of the statistics that are fitted. A normalization factor, ni , is introduced

for each statistic i. This is to ensure that all data points contribute equally to the cost

function despite differences in the scale across the statistics. As described in detail in

Bogacz and Cohen (2004), the selection of the value of the normalization factor varies

across the different stages of the optimization process to maximize efficiency. During

the initial stages of the optimization process (i.e., searching for starting points and first

optimization), ni takes the value of the average value of the empirical statistics (ei).

At the final stage of the process (i.e., tuning of parameters) ni becomes the standard

deviation of statistic i, obtained after running the model with the same parameters 10

times.

2.3.3 Model Evaluation

In order to evaluate the quantitative fits of a model, I used the Bayesian informa-

tion criterion (BIC, Schwarz, 1978), which takes into account both the goodness of

fit and the complexity of the model. The BIC penalizes the extra free parameters much

more strongly than other similar measures (e.g., Akaike information criterion; Akaike,

1974). The BIC is computed as:−2[∑i Neiln(mi)]+Mln(N), where M is the number

of the free parameters of the model.



Chapter 3

Time-dependent Weighting of

Information

3.1 Overview

When people make decisions on the basis of dynamic evidence, they often weigh in-

formation differentially depending on its temporal order. In a recent neurophysiologi-

cal study, Kiani et al. (2008) concluded that perceptual decisions are characterized by

primacy and that this is a universal property of evidence integration. In follow-up exer-

piments (Tsetsos, Gao, et al., 2011) we showed that the strong primacy pattern, found

in Kiani et al. (2008), can be attributed to special procedural aspects of the task, which

encouraged observers to have increased attention at the beginning of the trial. Despite

our showing the importance of task contingencies in the study of evidence weighting,

it yet remains unclear what drives the direction of order effects, with both primacy and

recency being reported in different participants of the same task (Usher & McClelland,

2001). In the first section of this chapter (Computational Study 1), I will bring to light

a novel prediction of the LCA, due to the model’s non-linearity: the direction of the

order effect interacts with the trial duration; for moderate inhibition dominance, the

model predicts primacy weighting for trials of short duration and recency for longer

trials. Therefore, according to this prediction, different types of temporal biases might

coexist within a single decision strategy (i.e. single parameter set) and be triggered

bottom-up, beyond the observer’s control (i.e. by the evidence duration). In the second

section (Experimental Study 1), this prediction is tested in the motion detection task

62
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and its signature is found in two participants. In the third section (Experimental Study

2), I examine the influence of the sequence length on the direction and magnitude of

the order effect, in the fast value integration paradigm. There, no sign of primacy is

found, but consistent with the prediction obtained in Computational Study 1, recency

increases with the length of the trial. This result is realized using a leaky diffusion

model (Computational Study 2). Finally in the last section of this chapter, I discuss

the principle of optimality in decisions under uncertainty, showing that in volatile en-

vironments the optimal strategy is the imperfect (i.e. leaky) integration of information

(Computational Study 3).

3.2 Order Effects and Trial Duration (Computational Study

1)

As demonstrated in Tsetsos, Gao, et al. (2011), in perceptual choice tasks, the direction

of the temporal bias in evidence integration might be explained by the task character-

istics and demands. For example in the study of Kiani et al. (2008), where a strong

primacy effect was found, the distribution of the duration of the trials was skewed

(i.e. exponential), containing mostly short trials which encouraged the observers to

allocate more attention to the beginning of the trial. The dependence of order phe-

nomena on task characteristics is reminiscent of the influential work of Hogarth and

Einhorn (1992) who examined how the response mode (i.e. step by step or at the end

of the sequence responses), the task complexity and the length of the series of evidence

items affect information processing in sequential belief updating tasks. Their proposed

anchoring and adjustment model, captured a lot of variance in existing studies and de-

rived novel predictions regarding the interaction of task characteristics with temporal

biases.

Contrary to belief updating and higher order reasoning, perceptual choice tasks are

much simpler. As a result, from the factors examined in Hogarth and Einhorn (1992)

the response mode and task complexity are not relevant since they do not vary across

experiments. On the other hand, the length of the presented evidence is a factor that

is often varied within the same perceptual task. For instance, the effect of the trial

duration on response accuracy has been extensively studied, revealing that accuracy

levels off for longer durations (Swensson, 1972; Usher & McClelland, 2001; Kiani et
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al., 2008). However, the effect of evidence length on the direction of the order effect

has never been addressed. In the current Computational Study, I examine the dynamics

of information processing as a function of the duration of the trial, using the non-linear

LCA model (Usher & McClelland, 2001). The reason I rely on the LCA model is

that, for different parameters, it can operate under three different modes of information

weighting: i) uniform weighting, ii) primacy, iii) recency. This versatility of the LCA

stands in contrast with other models of perceptual choice such as the diffusion model

which can predict either uniform weighting or clear-cut primacy (Ratcliff, 2006), by

assuming that when a decision boundary is breached new information that arrives is

ignored. In the following, I first demonstrate that, for different parameters, LCA can

weigh information by primacy or recency and subsequently I show that, for fixed pa-

rameters, information weighting switches from primacy to recency, as the length of the

trial increases.

3.2.1 Method

The LCA model was implemented with three free parameters. The first two parame-

ters, β and κ stood for the values of inhibition and leak respectively:

dy1 = (I1−κy1−β f (y2))dt +σdW1,

dy2 = (I2−κy2−β f (y1))dt +σdW2,
(3.1)

A decision among the two perceptual hypotheses was only made at the end of the stim-

ulus presentation on the basis of the unit with the highest integrated evidence at that

moment. The function f is a non-linear function, which truncates negative activations

to zero (equivalent to a reflecting boundary; see Usher & McClelland, 2001, Equation

4 and Appendix-A). The last free parameter was the standard deviation of the noise σ.

The variables I1 and I2 denoted the stimulus strength for each perceptual hypothesis.

3.2.2 Results and Discussion

The LCA model can operate in three modes of evidence weighting: i) β = κ results in

uniform weighting, ii) β > κ gives primacy and ii) β < κ generates recency weighting.

To illustrate the recency/primacy bias of the LCA, for different parameters, the model

was simulated with zero input (i.e. I1 = I2 = 0) and noise (i.e. σ = 0.1) for 30000

trials of duration 200 time-steps each. In Figure 3.1, the average input for the winning
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accumulator versus the average input for the losing accumulator is presented for two

instantiations of the model; the inhibition dominant and leak dominant LCA. For the

inhibition dominant LCA (β > κ), what drives the choice is the noise fluctuations in

favour of the winning accumulator at the beginning of the trial (Figure 3.1(a)). On the

contrary, for the leak dominant LCA (β < κ) when an alternative is chosen (i.e., the

winning accumulator) this is due to the noise favouring that alternative towards the end

of the trial (Figure 3.1(b)).
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Figure 3.1: Reverse correlations for the LCA model, showing the average

input of the winning and losing accumulators in 30000 trials. a: Inhibition

dominance resulting in primacy, b: Leak dominance resulting in recency.

Under some parameters, the nonlinear inhibition-dominant LCA can predict both pri-

macy and recency, depending on stimulus duration. To illustrate this, I simulate LCA in

trials where the evidence favours the one alternative in the first half and the other in the

second half, so that the overall evidence is equal for both alternatives. The parameters

for the model are β = 0.748,κ = 0.172 and σ = 0.1. The input that the accumulators

received were I1 = 0.11 and I2 = 0.08 during the first half (i.e. from t = 1...T
2 ) and

I1 = 0.08 and I2 = 0.11 during the second half (i.e. from t = T
2 + 1...T ). In Figure

(3.2) the preference for the 1st accumulator that is associated with I1 is shown for five

different trial durations (N = 30000 trials for each data point). One can see that, while

for short stimulus durations the choice favours the alternative associated with primacy

(early evidence), the situation reverses at longer durations.

In order to explain this pattern I show typical single trial activations of the two ac-

cumulators, for one short and one long trial (Figure 3.3). For short duration (Figure

3.3(a)), the accumulator associated with early evidence (blue-line) wins. This happens

because at the time of the swap the inhibition is quite strong and although the second



Chapter 3. Time-dependent Weighting of Information 66

Duration (time-steps)

P
e
rc
e
n
ta
g
e
o
f
1
st
-h

a
lf

ch
o
ic
e

0 100 200 300 400
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 3.2: Fraction of trials in which the accumulator associated with early

evidence wins.
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Figure 3.3: Single trial activation of the accumulators in the simulation in Fig-

ure 3.2 for short (a) and for long (b) durations. The accumulator associated

with 1st half evidence is shown with blue line and the one associated with

2nd half evidence with red. For the long duration the linear model activations

(dashed lines) are also plotted.
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accumulator (red) starts to rise, it does not turn over the situation. For longer dura-

tion (Figure 3.3(b), solid lines), the second accumulator (red) hits the zero-activation

boundary relatively early (t = 100 time steps). From that moment and on, the activa-

tion of the first accumulator stops increasing (while in a linear system, depicted with

dotted lines, it keeps increasing) and the LCA becomes leak dominated, maintaining

the same level of activation until t = T/2 when the evidence swaps. After the swap,

the accumulator associated with the strong evidence in the second half (red) moves up

from the zero boundary and the system becomes inhibition dominant again. This unit

now has enough time to overtake the first accumulator (note that this would not happen

in the linear system; dotted lines).

The key mechanism for the interaction of the temporal bias with the length of the

trial, is the non-linearity of the LCA model. In particular, the non-linearity imposes

a restriction on the activation of the units and keeps their difference bounded. As a

result in any long trial, there will be a point whereby the dynamics will stop evolving

and the winning unit will cease benefiting from the extra evidence it receives. Keeping

the difference of the two accumulators bounded means that when the evidence swaps

direction the, up to the point, losing unit will be close enough (being stuck at zero)

and will have enough time (if the trial is long) to reverse the situation and dominate its

competing unit. The intuition behind this prediction is that the longer the trial the more

likely is the early evidence to be forgotten (i.e. to decay) and therefore the stronger the

recency. Interestingly, no other model, including Hogarth and Einhorn (1992) model

of belief updating, has ever generated a similar transition from primacy to recency as

the length of the sequence increases. In the next section this unique prediction of LCA

is probed in a motion detection perceptual task.

3.3 Order Effects in Evidence Integration (Experimen-

tal Study 1)

Data from two experiments, presented in Tsetsos, Gao, et al. (2011), are re-examined

in an attempt to find support for the intriguing prediction of the LCA, regarding the in-

teraction of the temporal bias with the trial duration. Note that (as also described in the

Introduction of this thesis) the purpose of the experiments in Tsetsos, Gao, et al. (2011)

was to investigate the dependence of the primacy bias reported in Kiani et al. (2008)
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on the task contingencies such as the distribution of the trial lengths and the duration

of the response deadline. Therefore the design of the experiments, although the trial

duration was varied systematically and the temporal biases were explicitly examined,

has some extra characteristics that might be confounding. For example in Experiment

1a (presented below) the distribution of the trial durations was exponential, containing

mostly short trials which enhanced primacy patterns. Despite the limitations due to the

task design, the data of these experiments will be considered and the signature of the

non-linear LCA will be looked for.

3.3.1 Experiment 1a

3.3.1.1 Method

Stimulus

The moving dot stimuli were created following the method described in Kiani et al.

(2008). The motion stimulus consisted of circular dots of radius 2 pixels, moving hori-

zontally at a speed of 5 degrees per second. Total dot density was 16.7 dots per degree

squared per second. The stimulus was viewed through a circular aperture of radius 5

degrees. Within these parameters, the total number of dots was divided into three sets.

One set of dots was displayed per frame. Each set of dots appeared on the monitor

once every three frames (frame-triples). In addition, the coherence of the motion stim-

ulus varied between trials. On every displayed frame, each dot had a (1− coherence)

probability of being redrawn at random coordinates within the circular aperture. For

instance, at 100% coherence, every dot would be redrawn to move horizontally in the

direction specified by the trial, left or right. At 0% coherence, every dot would be

redrawn randomly on every frame.

Procedure

Each trial began with a fixation cross at the center of the screen. The moving dots stim-

ulus was displayed 1000 ms later. The coherence levels employed were 6.4%, 12.8%,

25.6%, and 51.2%. Stimulus duration followed an exponential distribution taking val-

ues from 100 to 1750 with an increment of 50 ms. The stimulus termination occurred

simultaneously with an auditory go signal. In order to receive rewards, participants

had to respond by pressing keys on the keyboard of a standard computer, within a 300

ms response window following the go-cue.
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Conditions

For each coherency and duration four conditions were created: i) the constant condi-

tion corresponding to a fixed coherency during the whole trial, ii) the early-condition,

corresponding to a fixed coherency during the first half of the stimulus, which is set to

zero (random motion) during the second half, iii) the late condition (the first half with

zero-coherence and the second half with fixed coherency) and iv) the switch condition

in which the coherency values stays constant in magnitude but the direction of motion

switches in the middle of the trial.

Observers

Three participants (two male, one female) with normal or corrected-to-normal vision

were tested in several one-hour sessions over several weeks. In each session, partici-

pants completed 9 blocks of 100 trials. A self-paced break occurred between blocks

to allow rest. Initial sessions were participants familiarized themselves with the task

(and hence in which their performance had not fully stabilized) were excluded from

the analysis, leaving 14, 17 and 12 sessions for CS, MT and SC, respectively.

3.3.1.2 Results

There are two critical tests regarding the temporal bias. The first one is the accuracy

order between the early and the late conditions and the second one is the preference in

the swap-condition where the one alternative is supported in the first half of the trial

and the other alternative in the second half. The accuracy (averaged across coherency

levels) is displayed as a function of condition (constant/early/late) and duration, for

the 3 observers in the left panels of Figure 3.4. In all observers, performance improves

with stimulus duration (with saturation at longer trials) and the accuracy is higher for

the early (green) compared to the late (red) condition. This confirms the Kiani et al.

(2008) result, of a primacy bias. The amount of this bias, however, varies among the

3 observers. It is very high in one observer (MT), who totally discarded late evidence,

but is smaller in the other two. In one of the observers (SC) one can see a pattern that

is indicative of the recency-primacy interaction with the trial duration; the advantage

of the early condition is larger for short duration and disappears at longer durations.

This is also apparent in the swap condition of the SC observer where primacy in the

short trials changes to recency in the longer durations.
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Figure 3.4: Left: accuracy as a function of stimulus duration and condition

(blue-constant; green-early; red-late;). Right: proportion of choice for the

direction supported early in the trial, as a function of stimulus duration and

condition. Error bars correspond to 95% CI.
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3.3.2 Experiment 1b

3.3.2.1 Method

Stimulus

Same as in Experiment 1a.

Procedure

Each trial began with a fixation cross at the center of the screen. The moving dots stim-

ulus was displayed 1000 ms later. The coherence levels employed were 6.4%, 12.8%,

25.6%, and 51.2%. Stimulus duration followed a uniform distribution taking values

from 100 to 1750 with an increment of 50 ms. The stimulus termination occurred si-

multaneously with an auditory go signal. In order to receive rewards, participants had

to respond by pressing keys on the keyboard of a standard computer, within a 1000 ms

response window following the go-cue.

Conditions

Same as in Experiment 1a, except the swap conditions which was omitted in this ver-

sion.

Observers

Four participants (one male, three female) with normal or corrected-to-normal vision

were tested in 11 to 25 1-hour sessions over several weeks. The sessions in which par-

ticipants familiarized themselves with the experiment were not included in the analy-

sis, resulting in 16, 19, 25, 11 sessions respectively, for DG, LK, MM, WW. In each

session, participants completed 9 blocks of 100 trials. A self-timed break occurred

between blocks.

3.3.2.2 Results

The choice accuracy, for the four observers of Experiment 1b, as a function of stimu-

lus duration and condition (constant/early/late), averaged over coherency is shown in

Figure 3.5. As a first observation, the procedural changes in this experiment resulted in

a reduced difference in the early-late conditions (i.e. reduced primacy bias). The more

balanced distribution of the trial durations (i.e. uniform distribution compared to the

exponential in Experiment 1a), afforded a statistical analysis of the weighting profile
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for each participant. This was made possible due to the multiple sessions that allowed

enough trials for each condition and each trial duration. To carry out this analysis, the

data of each observer were divided into mini-sessions or “quasi-subjects” that corre-

sponded to all the session × coherency combinations. Each such “quasi-subject” con-

tributed equal number of trials to the relevant dependent variables (i.e. performance for

four durations in early and performance for four durations in late), factoring out com-

mon variability related to fatigue/practice or performance levels. Thus, one repeated

measure (4x2) ANOVA, with 4 temporal durations and 2 conditions (early/ late) was

performed.
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Figure 3.5: Accuracy as a function of stimulus duration and condition in Ex-

periment 1b. Error bars correspond to 95% CI.

The ANOVA results are given in Table 3.1. As opposed to Experiment 1a, where all

three observers showed primacy bias, only one out of the four observers (LK) showed

a significant primacy effect. Interestingly, one observer (WW) did not show a main

effect of primacy, but exhibited a significant interaction between the temporal bias and

duration (i.e., primacy at short durations and recency at longer durations), as predicted
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by the non-linear inhibition dominant LCA.

Table 3.1: Statistical analysis for the four participants of Experiment 1b (main order

effect and its interaction with trial duration).

Subject Main effect (early/ late) Interaction: Duration X Bias

DG F(1,63) = 2.715; p = 0.104 F(3,63) = 1.353; p = 0.259

LK F(1,75) = 40.527; p < 0.001 F(3,75) = 1.297; p = 0.276

MM F(1,59) = 0.001; p = 0.982 F(3,75) = 1.392; p = 0.247

WW F(1,43) = 0.062; p = 0.805 F(3,43) = 3.410; p = 0.020

3.3.3 Discussion

The results of the experiments 1a and 1b, beyond their original scope which was the

reduction of the primacy bias due to procedural changes (see Tsetsos, Gao, et al., 2011

for details) revealed individual differences. Of particular interest was to test if any

of the observers showed the unique prediction of the non-linear, inhibition-dominant

LCA. This was the the case for one observer in each of the experiments (CS and WW)

who exhibited the predicted signature of the nonlinear inhibition dominant LCA, i.e.

the interaction between the temporal bias and the length of the trial.

Although the bias-duration interaction was not universal across all participants, it still

poses a major challenge to models of evidence integration. The coexistence of two

different weighting profiles within a single decision strategy and the triggering of each

profile by bottom-up factors (i.e. trial duration), can be accounted only within the non-

linear LCA. Note that the non-linearity of the LCA model is not arbitrary but has

biological motivation, capturing the fact that neural firing rates cannot be negative.

One interim conclusion that can be drawn, is that this mechanism has the advantage of

prioritizing early information, in a flexible, reversible manner.

One caveat of the current Experimental Study is that the two experiments were not de-

signed to explicitly test the interaction between the temporal bias and the trial length.

On the contrary, there were factors, especially in Experiment 1a, which encouraged pri-

macy weighting and which might have suppressed the bias-duration interaction. Given

that in a number of other experimental paradigms strong recency patterns (Pietsch &

Vickers, 1997; Usher & McClelland, 2001; Newell, Wong, Cheung, & Rakow, 2009)
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have been obtained, it is important to explicitly test the interaction pattern with dif-

ferent experimental stimuli and protocols. This is done in the next section where the

effect of the sequence length on the temporal weighting profile is tested in the value

integration paradigm (Experimental Study 2).

3.4 Order Effects in Value Integration (Experimental Study

2)

Order effects have been extensively studied in sensory decisions but also in higher-

order inference problems where information is presented sequentially (Walker, Thibaut,

& Andreoli, 1972; Hogarth & Einhorn, 1992; Furnham, 1986; Lagnado & Channon,

2008; McKenzie, Lee, & Chen, 2002; Trueblood & Busemeyer, 2010; Gerstenberg,

Lagnado, Speekenbrink, & Cheung, 2011). Temporal biases are also relevant in cases

where the information presentation is not sequential or externally controlled, like when

people decide among value-based alternatives which are presented to them simultane-

ously. There, assuming that during deliberation a covert sequential scanning of the

relevant choice-aspects takes place, the order with which different dimensions are pro-

cessed might determine the choice outcome.

For instance, imagine a choice between two cars differing in quality and economy. The

first car is luxurious and expensive (A) while the second is basic and much cheaper (B).

The alternatives are equivalent in terms of overall subjective value and in the absence

of temporal biases the decision-maker is indifferent. However, if the decision maker

exhibits primacy weighting and starts by considering the quality dimension first then,

even if the two dimensions are equally important to her, she will end choosing the

luxurious car (A). On the contrary if the decision-maker weighs information by recency

then the cheap car (B) will be chosen because it is the last one to be favoured. And to

push the story a little further, assuming an interaction between information weighting

and deliberation length, fast decisions will lead to alternative A while more elongated

ones to B, even if the choice-aspects are processed with the exact same order in both

cases, starting by considering quality first.

In this section I will examine the profile of temporal weighting in value integration,

using the fast value integration paradigm (see Chapter 2). Participants see rapid, vary-

ing sequences of pairs of numerical values and choose the sequence with the highest
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overall value. In some trials, the two alternatives will have equal means but the tem-

poral distribution of the numbers will be controlled such that the one sequence will

appear better in the beginning and worse towards the end of the presentation. The

choice preference in these trials will provide a direct measure of temporal weighting.

Additionally, building on the interaction between bias and duration, demonstrated in

Computational Study 1, and following on the results of Experimental Study 2, the se-

quence length will be varied in order to examine the way it influences the order effect.

3.4.1 Method

Participants

Sixteen adults (9 females; aged 19-35; mean age 23.4 years) were recruited from

UCL’s subject pool and were paid for their participation. The experiment was con-

ducted in two sessions with a maximum of 3 days lag between the two sessions.

Stimuli and Experimental Task

At each trial, participants saw pairs of numbers presented sequentially and had to de-

cide, within 1500 ms, which of the 2 sequences had the highest average value. Each

trial started with a presentation of a white fixation cross for 1000 ms, which was po-

sitioned at the centre of a black background screen. Afterwards, sequences of pairs

of white numbers were presented at a rate of 2 or 4 items per second. The pre-

sentation of the last pair of numbers was followed by a green question mark at the

centre of the screen for 1500 ms, which prompted the participants to indicate their

response (left or right sequence) by pressing the left or the right arrow on the QW-

ERTY keypad of a standard PC. After the response of the participant a black screen

stayed on for 250 ms and then the next trial started. For incorrect responses error-

feedback (a beep sound) was provided. Failure to respond within 1500 seconds af-

ter the response cue’s appearance was followed by a “deadline missed” message and

a beep sound. Stimulus display and response recording were controlled by Mat-

lab 7.11.0 (Mathworks Inc., Natick, MA, USA) using the COGENT 2000 toolbox

(http://www.vislab.ucl.ac.uk/cogent.php). The time course of an experimental trial is

given in Figure 3.6.

Procedure

Participants were assigned to two different groups. The “slow” group (N=8) per-
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Figure 3.6: The timeline of an experimental trial in Experimental Study 2.

Participants saw pairs of numbers which alternated rapidly, and at the end

of the presentation they had to decide which sequence had the highest av-

erage.

formed the task at a presentation rate of 2 pairs/ second while the “fast” group at a

rate of 4 pairs/ second. Before the experiment a 10 minutes calibration process was

conducted in order to adjust the difficulty of the task for each participant. At each

trial of the process, participants saw two sequences of 10 numbers each. One of the

sequences was “high” and the other “low”, with their numerical values being gen-

erated from Gaussian distributions with mean 50 and 42 respectively. The position

of the options was always randomized. The standard deviation of the Gaussians was

adapted through a staircase procedure such that the standard deviation of the Gaus-

sians, resulting in 79% accuracy, was estimated at the end (3 up 1 down procedure and

step=0.5 units, see also Levitt (1971)). The process started with a standard deviation

randomly chosen between 5 and 20 and was terminated after 30 swaps in the direc-

tion of the staircase. The obtained standard deviation was used throughout the main

experiment for each participant. There was no significant difference in the values of

the estimated standard deviations between the participants of the two presentation rate

groups (t(14) =−0.71, p = 0.49). The mean value of the standard deviation was 11.68

(SD = 2.78).

Experimental Conditions

The main experiment consisted of 3 conditions and the repeated measure factor was

the sequence length which was varied at 3 levels: 6, 12 and 24 pairs. Each session

consisted of 300 trials (600 overall), 100 (overall 200) for each sequence length. The
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trials were fully randomized and there were 10 (overall 20) blocks of 30 trials each. At

the end of each block the participants were informed about their accuracy score up to

that point.

The two first conditions, called hereafter “unbalanced”, involved the selection between

two sequences which were generated by one “high” and one “low” distribution (the

standard deviation of both distributions was tailored to each participant through the

staircase procedure described above, see also Figure 3.7). In both conditions the de-

pendent variable was the decision accuracy (i.e. the fraction of choices for the “high”

distribution sequence). In the 1st condition the mean value of the high distribution

was between 45 and 55 (randomly determined at each trial) while the mean value of

the low distribution was always 8 units smaller. Overall 150 Condition-1 trials (50

for each sequence length) were presented. The 2nd condition was identical to the 1st

however the highest number was always placed in the “low” sequence. To match the

two conditions for difficulty we created Condition-2 trials by taking Condition-1 trials

and modifying the low sequences. We did so by adding a constant to one of the low

sequence numbers in order to make it the largest of the trial. To maintain the summed

difference between the two sequences equal, we subtracted from another number of the

low sequence the same constant that was added. Condition-2 trials were necessary to

examine whether participants applied a rule of thumb, according to which the sequence

where the largest number appeared is chosen. One hundred and fifty Condition-2 trials

(50 for each sequence length) were presented. The sequences of the two first condi-

tions were re-sampled until they were equated in difficulty, for all sequence lengths (to

diminish the effect of sampling error).

The third condition, hereafter called “balanced”, consisted of two sequences generated

from the same distribution whose mean was randomly determined by a uniform dis-

tribution in the 45-55 range. Crucially, in the first half of each trial the values of the

1st option (labelled “high-first”) were sampled from a truncated Gaussian, clipped one

standard deviation below the mean (Figure 3.8(a)). At the second half of the trial the

values of that option were sampled from the truncated Gaussian clipped one standard

deviation above the mean. The values of the second option, labelled “low-first”, fol-

lowed the exactly opposite time-course to those of the “high-first” option, with lower

values appearing in the 1st half and higher in the 2nd (Figure 3.8(b)). Overall both

options had, by definition, the same mean value and no feedback was provided in these

trials (also these trials were excluded from the calculation of accuracy scores presented
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Unbalanced

High vs. Low

Figure 3.7: In the unbalanced conditions the numbers of the one sequence

are always drawn from a distribution with higher (i.e. 8 units) mean.

at the end of the blocks). Overall 300 balanced trials (100 per sequence length) were

presented.

Balanced

Low

Low

High

(a)

Early strong/ Late weak 

Early weak/ Late strong 

(b)

Figure 3.8: The balanced condition experimental condition. a: Clipping of a

normal distribution one standard deviation above the mean (blue) and one

standard deviation below the mean (red), b: Outline of a balanced trial; for

one option (early first) the values of the first half are sampled from the high

end of the distribution (red area) and from the low end during the second

half. The time course of the other option is exactly opposite.
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3.4.2 Results

The participants’ ability to perform the task is reflected in their accuracy in the un-

balanced conditions. At both presentation rates, participants were able to select the

alternative associated with the highest overall value (t(14) = 18.93, p < 0.001) and

their accuracy increased with the length of the sequence (F(1,14) = 91.09, p < 0.001,

Figure 3.9), indicating integration. This conclusion is further supported by the re-

jection of a simple heuristic decision rule according to which participants choose

the sequence where the highest number appeared. In particular, Condition 2 trials

were identical to those in Condition 1. However in these trials the maximum num-

ber appeared in the low-average sequence. Yet, in Condition 2, participants were

able to choose the high-average sequence above the chance level (red line in Figure

3.9, t(15) = 16.43, p < 0.001) which rules out a maximum-number choice strategy.

The difference in the accuracy between the two conditions is marginally significant

(F(1,15) = 4.96, p = 0.042) indicating that the presence of the maximum number in

the low-sequence affected but did not reverse the choice outcome.
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Figure 3.9: Performance in the two conditions of the unbalanced trials. Con-

dition 2 differs from Condition 1 in that the maximum number appears always

in the low-average sequence. In both conditions accuracy keeps increasing

with the sequence length. Error bars correspond to 95% CI.
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To understand the properties of the value integration mechanism, I subsequently ques-

tioned the presence of order effects. This was done by examining the choice preference

for alternatives with the same mean (balanced sequences), but which differ in the tem-

poral distribution of values, such that one option appears better in the first half and

worse in the second. Both presentation rates show a clear recency effect: the values

of recent pairs are more strongly weighted (t(15) = 7.76, p < 0.001). Moreover, re-

cency increases with sequence length (F(1,14) = 15.89, p < 0.005, Figure 3.10), as

the impact of earlier values decays, consistent with leaky (decay-based) integration.

The interaction between the temporal bias and the trial length, predicted in Computa-

tional Study 1, is clearly found; the longer the trial the higher the recency. However,

as opposed to Computational Study 1 and the two participants in Experimental Study

2, no primacy pattern is found and thus there is no qualitative transition of the order

effect from primacy to recency.
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Figure 3.10: Choice preference in the balanced trials showing increased

preference for the sequence that begins with low numbers and ends up with

high (low-first). The recency bias increases with the sequence length. Error

bars correspond to 95% CI.

In order to further confirm the strong recency bias, a logistic regression of the actual

input the participants saw in the unbalanced sequences was conducted. As Figure 3.11
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shows, the last items in the sequence receive higher weights, for all the three different

sequence lengths.
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Figure 3.11: Logistic-regression weights in the unbalanced trials in Study 1

for all participants. The weights of the items at different positions in the trial

are shown, for trials with different sequence lengths (length= 6, 12, 24 in A,

B and C). The dashed red regression lines show the increasing trend in the

weights of the later items (i.e. recency effect).

3.4.3 Computational Models (Computational Study 2) and Discus-

sion

When dealing with novel choice alternatives, the cognitive system must integrate in-

formation about the features of these alternatives. A central question I addressed in

Experimental Study 2, is how such “value integration” occurs in a simplified context

where many instances of values on the same currency are presented sequentially. The
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main questions of interest were the dependence of the evaluation accuracy on sequence

length (the integration bound), and the temporal profile with which decision-makers

weigh the values (recency/ primacy). The results demonstrated a significant range of

integration since accuracy improved, even in the range of 12-24 items, and a significant

recency which increases with sequence length.

In order to characterize the mechanism of value integration I test several models that

could account for the data. These are: i) a perfect integrator, ii) a leaky integrator, iii)

a model which samples k-pairs (randomly) and forms a decision based on that sample,

iv) a model in which each pair has a probability of p to be ignored, and v) a model

which considers items only if they are above a threshold. All these models assume

some type of integration, since simpler heuristic strategies are rejected by the data (see

Figure 3.9).

First I consider models iii-v) on a qualitative basis. The k-samples model is not in a

position to account for the increase in performance, unless it assumes that k is close

to the maximum sequence length, in which case it becomes equivalent to perfect inte-

gration. Furthermore, this model does not make any prediction regarding order effects

and recency. Model iv) assumes that the probability of encoding and thus integrating

a pair is a free parameter p. This model, can predict the increase of performance with

sequence length. The longer the sequence the more items will be integrated and thus

more noise will be average out. However, no prediction regarding the temporal order

of information is provided. This is also the case with model v) which assumes that the

observers adopt a strategy whereby items below a threshold are ignored. Again, this

model predicts the performance improvement but says nothing about order effects 1.

Next, I focus on the two first models the perfect and leaky integrator. These models

assume continuous integration in a fashion similar to the diffusion model of percep-

tual choice. In order to model the value integration task, I assume two sequence of

numbers, VA and VB, presented sequentially for N frames (t = 1..N with step = 1).

The distributional characteristics of the sequence values were identical to those of the

actual experiment (see Methods) The preference state at time t is defined as:

P(t) = λ ·P(t−1)+ [VA−VB]+N(0,σ). (3.2)

At the end of the trial (t = N), if the preference state is positive a decision is made
1Variations of these models have been suggested to account for a similar paradigm where decisions

are based on samples of values, actively obtained by the participant (Hertwig et al., 2004)
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in favour of A and otherwise for B. There are 2 parameters; λ is the decay parameter

which is fixed at 1 for the perfect integration and is a free parameter (between 0 and

1) in the leaky integration, determining the time constant of the integration. The other

parameter σ defines the additive/internal noise. By definition, the perfect integration

model assigns uniform weights to all items and thus cannot produce order effects. On

the other hand the leaky integration model can generate recency weighting since, due

to the decay, early information dissipates.

In order to assess the descriptive adequacy of the two models, I fitted them on the

average data in the balanced and unbalanced trials (Figure 3.12). As expected, both

models captured perfectly the performance improvement with sequence length. Re-

garding the recency pattern, the perfect integration model missed both the main effect

and the interaction with the duration (Figure 3.12(b)). On the contrary, the leaky in-

tegration accounted well for recency, predicting also that it increases with sequence

length. A summary of the fitted parameters and the BIC values of the two models is

given in table 3.2.
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Figure 3.12: Data fits of perfect (blue) and leaky (red) integration with two

parameters (Equation 3.2). a: Unbalanced trials, b: Balanced trials.

Despite that the leaky integration captured all the range of patterns in the data, the

quantitative fit on the balanced trials was not satisfactory. To improve that and to also

allow the perfect integration model to capture the recency effect, I assumed that the last
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Table 3.2: Model parameters and BIC values for perfect and leaky integration).

Model Processing noise Leak BIC

Perfect Integration 26.2 1 33

Leaky Integration 28.9 0.86 23

pair of the sequence is overweighted, since it is presented last and unmasked. Thus, I

introduced an extra free parameter w in both models and fitted again the average data

based on the following equation:

P(t) = λ ·P(t−1)+wt [VA−VB]+N(0,σ), (3.3)

with wt = 1 for t < N and wt = w for t = N. As Figure 3.13(a)) shows, both models

are able to capture the increasing performance in the unbalanced trials. The addition

of parameter w, allowed the perfect integration model to account for the main effect

of primacy by overweighting the very last pair. However the model predicts that the

temporal bias is flat and that it does not depend on the sequence length. A summary of

the fitted parameters and the BIC values is given in table 3.3.
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Figure 3.13: Data fits of perfect (blue) and leaky (red) integration with three

parameters (Equation 3.3). a: Unbalanced trials, b: Balanced trials.

Thus, the only model capable of simultaneously capturing the increase of recency and

the improvement in accuracy with longer trial durations, was the leaky integration. In
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Table 3.3: Model parameters and BIC values for perfect and leaky integration).

Model Processing noise Leak Weight (w) BIC

Perfect Integration 5.3 1 8.1 20

Leaky Integration 14.1 0.94 3.4 12

order to demonstrate how the increasing recency pattern is accounted by leaky inte-

gration, I recast equation 3.2 in the form of a differential equation, assuming also that

there is no internal noise and that the input of the accumulator is fixed to I:

dP
dt

= (λ−1) ·P+ I.

The solution of the differential equation is:

P =
I
λ
(1− eλ·t−t).

Therefore the weights assigned to the pieces of information decrease exponentially

from the last to the first item. As a result the longer the sequences are the less the

impact of the early items will be because the effective time constant of the integration

is finite and equal to 1/λ. Intuitively the leaky integration suggests that as time passes

early items are forgotten more.

To conclude, leaky integration, a simple and parsimonious mechanism, can account

for fast and automatic value-integration in tasks that require the online construction

of preference to novel alternatives. Leaky-integration in combination with lateral (re-

sponse) inhibition, is proposed to underlie the accumulation of evidence in perceptual

choice (Usher & McClelland, 2001). However, unlike in perceptual choice where the

temporal profile of evidence weighting indicates primacy (see Experimental Study 1)

consistent with inhibition dominance, here the temporal profile indicates recency, con-

sistent with leak-dominance (see also Hertwig et al., 2004 for a similar weighting pro-

file in feedback-driven value decisions). This qualitative discrepancy can be explained

by considering the differences in typical perceptual choice tasks and the fast value in-

tegration paradigm. While in the perceptual experiments of Study 1 the maximum trial

length was 1750 ms, in the current study the maximum duration was 6000 ms (the fast

group and 12000 ms in the slow group). One additional factor that might have sup-

pressed primacy in the value integration experiment could be the fact that the last pair

of numbers was presented unmasked and, inevitably, was overweighted. Despite the

differences in the direction of the order effect found in the two studies, a fundamental
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aspect characterizing both experiments is that information, either sensory or value re-

lated, is integrated in a continuous fashion with a limited effective time constant (i.e.

subject to decay). This leads to differential information weighting (whose profile de-

pends on factors such as task attributes or interpersonal differences) which violates the

statistical optimality imposed by Bayesian inference and the SPRT. In the next section

I recast the principle of optimality in decisions under uncertainty, showing that when

the environment unpredictably changes the SPRT is a suboptimal decision strategy.

3.5 Optimality in Decisions under Uncertainty (Compu-

tational Study 3)

It is customary to interpret mechanistic models with evolutionary terms assuming that

cognitive mechanisms that favour survival are more likely to have been maintained

by natural selection. Across these lines, it is reasonable to assume that humans are

equipped with decision mechanisms that generate fast and accurate decisions about

the most likely causes of sensory experiences. As discussed earlier (see section 1.1),

the view that humans make perceptual decisions in an optimal fashion is widespread,

inspiring mechanistic models that are statistically optimal (e.g. the diffusion model

which implements the SPRT Wald, 1947; Bogacz et al., 2006). However, as under-

scored in this chapter (sections 3.3 and 3.4) and also by a series of empirical findings

on temporal biases (Hogarth & Einhorn, 1992; Usher & McClelland, 2001; Kiani et al.,

2008; Gerstenberg et al., 2011), the order with which information is perceived causes

distortions to its relative importance.

Order effects undermine the idea that humans, when confronted with noisy informa-

tion, conform to the principles of Bayesian inference, weighing equally all pieces of

evidence. A likely explanation for order effects is that the integration is continuous

(i.e. all pieces of information are considered) but also subject to leakage or decay. If

leakage is indeed an inherent aspect of information integration then one can super-

ficially deduce that humans are suboptimal. Nevertheless, optimality is environment

dependent and can be realized only in relation to the task at hand. Real world choice

problems are often framed in volatile contexts, where the underlying structure of the

environment can change without warning. It is thus more likely that natural evolution

has promoted the flexibility and the ability to adapt in response to the environmental



Chapter 3. Time-dependent Weighting of Information 88

demands rather than a mechanism that is optimal only in stationary environments (i.e.

SPRT).

In unpredictable and non-stationary environments, observers need to discriminate whether

unexpected events happen due to noise or due to a change in the state of the world (Yu

& Dayan, 2005). For instance, an online order might be late, either because of typical

delays (i.e. noise) or because the dispatch company closed (i.e. change of state). In

order to assess the merits of leaky integration in such environments, I simulated a task

where participants need to detect signals embedded in a continuous stream of noise.

As I will demonstrate in the next section, perfect integration in an ever changing world

proves to be a suboptimal decision strategy.

3.5.1 Methods

Each trial consisted of 400 time-steps. In half of the trials (N = 10000, labelled as

“no signal trials”, Figure 3.14(a)) the input consisted of white noise only. In the other

half (N = 10000, labelled as “signal trials”, Figure 3.14(b)), the input was constructed

by embedding on top of white noise (i.e. N(0,1)) a transient event (sampled from

N(1,1)) of 10 time-steps duration. The onset of the signal was sampled from a uniform

distribution between 10 and 390 time-steps.

The input was integrated in one leaky accumulator according to the following equation:
dy
dt

=−λy+ input(t). (3.4)

For the special case where leakage is zero the integration is perfect and equivalent to

the diffusion model in the 2AFC task. Once the activation y of the accumulator reaches

a threshold (A) a response is initiated. If the response is made within the signal interval,

in the signal trials, it is classified as a hit. On the other hand, if a response is made in

the absence of signal (both in signal and no signal trials) then it is counted as a false

alarm. If no response is generated in a signal trial it is a miss. Finally, if no response

is made in a no signal trial it is considered to be a correct rejection.

3.5.2 Results and Discussion

The model in equation 3.4 was simulated for different values of the decay parameter

and different criterion values (A= 1...28 with step= 3). For each instance of the model
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Figure 3.14: a: Input in the no signal trials corresponds to white noise; b:

Input in the signal trials corresponds to Gaussian signal of N(1,1) superim-

posed on white noise for 10 time-steps, at a random point in the stream. The

blue line indicates the actual input while the red curve shows the onset and

duration of the signal.

the True Positive Rate (TPR) was calculated as: T PR = Hit/(Hit +Miss) while the

False Positive Rate (FPR) as: FPR=False Alarm/(False Alarm+Correct Re jection).

The ROC curves in Figure (3.15) show that the perfect integration (decay = 0, black

line) performs poorly being even below the line of “no discrimination” (black dashed

line) 2. The reason why perfect integration fails in this task, is that noise is accu-

mulated before the occurrence of the signal, resulting into a very high False Alarm

rate. On the other hand, leakage enhances performance by limiting the accumulation

of noise. From all the leakage (decay) values used, the optimal one was λ = 0.1. This

value of leakage restricts the effective time constant to 1/λ = 10 time-steps, which

coincides with the duration of the signal.

In order to better understand the dependence of the optimal time constant on the length

of the signal, I simulated the “signal trials” of the same task by varying this time the

length of the inserted signal across four levels: 10, 20, 40 and 80 time-steps. For each

leak value the criterion (A) that results in 20% False Alarm rate (in trials where there

is only noise) was estimated. Subsequently, the stimulus strength was adjusted such

that for each duration and leak value the Hit Rate is 80%. Figure 3.16 shows the signal

2An ROC curve below the “no discrimination” line implies that the model has negative predictive
power. In that case the model obtains positive predictive power by reversing its decisions.
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Figure 3.15: ROC detection curves for signal embedded in continuous noise

for different levels of decay (λ in equation 3.4).

strength as a function of signal duration for each leak level.
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Figure 3.16: Signal strength as a function of the signal duration for each leak

level in the log-log space.

For the shortest signal duration (10 time-steps) short time-constants (i.e. λ = 0.2,0.1

and τ= 5,10 time-steps) work better, requiring the weakest signal to achieve a Hit Rate

of 80%. However, short time-constants are outperformed by longer time-constants (i.e.

λ = 0.05,0.03,0.01 and τ = 20,33,100 time-steps) for the longest signal duration (80

time-steps, see Figure 3.17). Therefore, different leak values are ideal for different
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signal durations with short time-constants being tailored to short durations but being

less sensitive when the signal is longer and weaker (and vice-versa for long time-

constants which are insensitive to the short signals).
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Figure 3.17: Single trial activations (top) for long (magenta) and short (cyan)

time constants, when the injected signal has duration 80 time-steps (bottom).

The integrator with long time constant detects the signal. The strength of the

signal is too low to cause a response in the short time-constant integrator,

whose activation remains below threshold during the presence of the signal.

To conclude, when there is uncertainty about the timing of the signal, perfect integra-

tion is sensitive to noise fluctuations and responds before the occurrence of the event.

In these situations “forgetting” makes the decision process less susceptible to noise and

improves the decision quality. However, when the duration of the signal varies there

is no single forgetting rate (i.e. leak) for which the process is globally, for all signal

durations, optimized. Whether a single optimal model exists, when the durations of

the events are unpredictable is an open theoretical question. Additionally, future ex-

perimental work is needed to examine whether the time constant of the integration is

adaptable to the statistics of the task (e.g. whether observers change their time constant

in blocks where they anticipate mostly short signals compared to blocks where there

are mostly long signals).
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3.6 Summary and General Discussion

The present chapter addressed the differential weighting of information as a function

of its temporal order. The dynamics of order effects were explored by questioning

how deliberation length influences their magnitude and direction. In Computational

Study 1, I showed a novel prediction generated by a neurally inspired process model

of choice (LCA; Usher & McClelland, 2001): within the same parameter set, the in-

formation weighting automatically switches from primacy to recency as the length of

the evaluated information increases. This prediction brings to light the possibility that

order effects might be triggered by the bottom-up interaction of the input with a fixed

decision algorithm (or strategy). It is important to note that this pattern emerges from a

neurally plausible aspect of LCA, that activation cannot go below 0. And although the

interaction of information processing with the input characteristics has been addressed

in the past (Hogarth & Einhorn, 1992), it has never been done without assuming that

model parameters are ad-hoc adjusted to reflect input or task contingencies.

In Experimental Study 1, I reanalyzed data from a perceptual experiment (Tsetsos, Gao,

et al., 2011), aiming to detect a signature of the distinctive LCA prediction. Although

the original scope of the experiment was to show the dependence of order effects on

task demands (i.e. trial durations and response deadline), reviewing the data with the

bias-duration interaction in mind, I detected this pattern in 2/7 participants. One limi-

tation of this study was the task design which, encouraging primacy weighting, might

have suppressed the interaction of the order effect with the trial length. This was not

the case in Experimental Study 2 where the interaction of length and weighting was

explicitly looked for, using the fast value integration paradigm. There, recency was a

universal pattern across all participants and it increased with the length sequence. The

best fitting model for this experiment was a leaky integrator, which can be viewed as a

leak-dominant instance of the perceptual LCA (which has additional parameters such

as response competition and zero non-linearity applied on the preference states).

Comparing evidence (Experimental Study 1) to value integration (Experimental Study

2), one notices that mostly primacy is found in the first and recency dominates the

latter. This discrepancy can be attributed to the different time scales used in the two

different domains (much shorter trials in sensory decisions). This difference might

underscore, in each case, different aspects of a single decision mechanism. Future ex-

perimental work needs to address whether the absolute duration of the decision drives
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the main direction of the order effect, regardless of the decision domain. If so, support

for a single, domain-independent decision mechanism will be provided. Meanwhile

the theoretical analyses in this chapter (Computational Studies 1 & 2) are consistent

with a single decision mechanism which enhances response competition in fast, sen-

sory decisions and leakage in slower, value-based decisions. Intuitively, these different

modes of information weighting can be understood in terms of response urgency. With

a limited amount of samples, it makes sense to engage into comparative processing

(which implies response inhibition) in order to quickly figure out which alternative

is the best. On the other hand, when the time pressure is removed, it is likely that

competition between the alternatives is relaxed and each of them is evaluated more

independently in terms of its attributes only (i.e. a feed-forward integration).

The common factors underlying both the inhibition (i.e. perceptual decisions) and leak

dominant (i.e. value-based decisions) computational accounts, is that choice is driven

by the continuous integration of samples of information with the integration effective

time-constant being finite. The latter, leads to imperfect integration which contradicts

the optimal decision algorithm proposed by the SPRT for stationary environments. The

suboptimality of leaky integration in stable, noisy environments, questions its evolu-

tionary merit. Considered, however, within volatile environments, leaky integration

is a robust and flexible decision mechanism as opposed to perfect integration which

is vulnerable to noise fluctuations (Computational Study 3). Whether the amount of

leakage that governs information integration in simple decisions is hard-wired or sub-

ject to adaptation to the environmental statistics is an interesting, open question which

will, potentially, recast human optimality as the ability to modify choice strategies in

response to the world demands.



Chapter 4

Context-dependent Weighting of

Information

4.1 Overview

As discussed in the previous chapter, determining the goodness of an alternative is

the result of the non-linear summation of its components, with the temporal order of

the processing determining the relative importance of each component. Order biases,

however, are not the only source of judgemental non-linearities. Contextual biases or

the effect of the context 1 on the subjective magnitude or goodness of an alternative,

are widespread in cognition, from perception (Garner, 1953; Holland & Lockhead,

1968; Stevens, 1975; Luce, Nosofsky, Green, & Smith, 1982; Lockhead & King, 1983;

Laming, 1997; Stewart, Brown, & Chater, 2005) to high-level judgement and decision-

making (Tversky, 1972; Huber et al., 1982; Simonson, 1989; Birnbaum, 1992; Read

& Loewenstein, 1995; Dhar & Glazer, 1996; Benartzi & Thaler, 1998; Dhar, Nowlis,

& Sherman, 2000; Stewart et al., 2003; Pettibone & Wedell, 2007) and suggest that

information is weighed differentially, depending on the context. One instance of con-

textual biases is when preferences between alternatives are reversed by the presence

of decoy options (that are not chosen) or by the presence of other irrelevant options

added to the choice set (see also section 1.2). This type of distortions, induced by

the immediate context, beyond posing challenges for any theory of choice, can be

1The context can refer either to the current choice set (i.e. immediate context) or to both the current
environment and to items retrieved from memory (i.e. sampled context). Here I examine the influence
of the immediate context.

94
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revealing about the computational basis of preference construction. In this chapter,

I will use contextual preference reversals (i.e., similarity, attraction and compromise

effect) as a tool to elucidate the dynamics of evidence and value integration, in multi-

alternative decisions. In the first section (Experimental Study 3), I use non-stationary,

dynamic evidence in order to emulate multi-attribute, multi-alternative choice prob-

lems in a brightness discrimination task. There, from the three contextual effects, only

a very strong similarity effect is found. The results are analysed within the sequen-

tial sampling framework of evidence integration (Computational Study 4) and reveal

that context dependent weighting arises from the synergy of two mechanisms: the zero

non-linearity of the preference states and the decisional (response) competition. Next,

in the second section (Experimental Study 4), the presence of decoy effects are looked

for in the fast value integration paradigm, with the results indicating robust attraction

and similarity effects. These results, beyond their empirical significance 2, considered

together with the findings of Experimental Study 3, indicate that evidence and value

integration might be governed by distinct mechanisms.

4.2 Context Effects in Evidence Integration (Experimen-

tal Study 3)

The recent development of process models of multi-attribute decisions (Roe et al.,

2001; Usher & McClelland, 2004; Tsetsos et al., 2010; Hotaling et al., 2010) has been

based on the idea that, similar to evidence integration, value-based choice is driven by

the integration of samples of values. Building upon earlier work by Tversky (1972),

these theories assume that the samples of values are collected via a stochastic process

which sequentially allocates attention to different choice aspects. One direct impli-

cation of this assumption is that preference states for different alternatives will have a

temporal evolution that will reflect the similarity of the alternatives in the choice space.

For example the preference state of two options that are similar, being advantageous

and disadvantageous on the same dimensions, will be correlated rising and falling to-

gether. On the contrary, the consideration of two alternatives that are dissimilar will

generate preference states that are anti-correlated across time.

2Attraction and similarity effects have never been reproduced within the same paradigm and within
participants.
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Although choice alternatives are often presented in different dimensions and value cur-

rencies, preference states are encoded in a single dimension, the firing rates of neural

populations. Observing preference states, although possible using advanced neuro-

science techniques, becomes more and more difficult when the decision problem is

complex and the representation of the alternatives unknown. One alternative way to

study preference dynamics is not to measure them directly but to invoke them by stim-

ulating the cognitive system with dynamic information whose temporal profile is pre-

cisely controlled by the experimenter. That way it is possible to emulate the dynamics

of preference that presumably occur in multi-attribute, multi-alternative problems, as-

suming of course that choice is driven by attentional switching across choice aspects.

In order to test whether the attentional switching hypothesis is valid and whether stim-

ulating the cognitive system can be a useful technique for the study of computational

micro-mechanisms that are obscured by covert mental states involved in decision mak-

ing, I created a psychophysical task where non-stationary, perceptual evidence is pre-

sented to the observer (see also section 2.2.2 for a more detailed description of the

stimulus construction rationale). By manipulating the time course of the evidence, I

created situations analogous to the attraction, similarity and compromise effects (see

section 1.2 for a description of the effects) that are widespread in more complex, multi-

attribute domains.

4.2.1 Method

Participants

Sixteen participants recruited from the University College London subject pool were

tested over two sessions that took place in different days with a maximum difference

of one week.

Stimuli

Each trial involved four alternatives of varying brightness, with mean brightness spec-

ified separately for each of the two phases. Thus, the brightness was non-stationary,

based on a stochastic transition between two phases. In phase 1, the brightness of each

patch (m) was sampled (at each time frame) from a normal distribution, N(µm1,σin),

while in phase 2 it was sampled from N(µm2,σin) (σin = 0.1429). One of the four

patches (D) was so dim that it was virtually never chosen, with the effect that the ex-



Chapter 4. Context-dependent Weighting of Information 97

periment effectively involves only three meaningful choice alternatives. The extra dim

spot was added to balance the positions of the meaningful alternatives around the cor-

ners of an imaginary square. For the dim patch (D), the brightness fluctuation SD was

only 0.01. The screen positions of the A, B, C, and D alternatives were randomized.
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Figure 4.1: Density distribution that determines the time of switching from

one phase to the other.

Each trial started randomly with either phase 1 or phase 2. The transition times from

the one phase to the other were selected from the distribution in Figure 4.1.Although

the stimuli were presented on a monitor without applying a Gamma correction, the

measurement of the monitor non-linearity with a photometer showed that the deviation

from linearity was very small in the range (0.4-0.8). Gaussian noise added to the stim-

ulus value could cause brightness to fall above 0.8, however, and the largest brightness

value allowed was 1.0.

Conditions

A total of eight conditions were interleaved in the experiment. Each condition involved

four alternatives of varying brightness, with mean brightness specified for each of the

two phases. The critical conditions corresponded to the attraction, similarity and com-

promise effects. One fourth critical condition, labelled anti-compromise, was added.

The non-critical or filler conditions were such that there was always one alternative

with the highest integrated evidence (treated as the correct response and used to de-

termine the participant feedback). The precise stimulus value in the critical and filler
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conditions are given in Table 4.1. In total, for each condition, 50 trials were presented

(25 at each session). At the critical conditions the integral of the evidence for two (or

three) options had the same average value across the two phases. However, because

the duration of the trials is limited, a small imbalance can occur, such that the alterna-

tive(s) that receive(s) more support at the beginning also receive(s) the most support

on 65% of the trials.

Table 4.1: Experimental conditions. The mean values of the dim option D are omitted

here since they were always the same: µ1 = 0.1 and µ2 = 0.1 .

Conditions Option A Option B Option C

µ1 µ2 Avg. µ1 µ2 Avg. µ1 µ2 Avg.

Attraction(C) 0.8 0.4 0.6 0.45 0.13 0.29 0.4 0.8 0.6

Similarity(C) 0.8 0.4 0.6 0.8 0.4 0.6 0.4 0.8 0.6

Compromise(C) 0.8 0.4 0.6 0.4 0.8 0.6 0.6 0.6 0.6

Anti-compromise(C) 0.8 0.4 0.6 0.8 0.4 0.6 0.6 0.6 0.6

Inconsistent-hard(NC) 0.55 0.3 0.425 0.3 0.5 0.4 0.3 0.4 0.35

Inconsistent-easy(NC) 0.7 0.6 0.65 0.4 0.7 0.55 0.4 0.2 0.3

Consistent-hard(NC) 0.6 0.7 0.65 0.55 0.4 0.475 0.2 0.4 0.3

Consistent-easy(NC) 0.8 0.6 0.7 0.3 0.5 0.4 0.4 0.2 0.3

For the critical conditions, the logic was to create temporal correlations in the evidence

similar to attentional switches to dimensions that favour trade-off alternatives. In the

attraction condition, options A and B were correlated, with option A always domi-

nating B. Option C was anti-correlated to both A and C. In the similarity condition,

options A and B were correlated and equal to each other, and anti-correlated with C

(see Figure 4.2 for an example of a similarity trial). In the compromise condition, A

and B were anti-correlated and equal on average, with option C being stationary and

having always brightness equal to the average brightness of A and B. Finally, the anti-

compromise condition was created in a similar way to the compromise condition with

the difference that A and B are overall equal but correlated.

The filler or non-critical conditions, were labelled, inconsistenthard, inconsistenteasy,

consistenthard, and consistenteasy, where consistent indicates that the evidence favours

one of the alternatives at all time (consistent evidence), and inconsistent that the evi-

dence favors different alternatives at different times.
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Figure 4.2: The non-stationary evidence to three alternatives in a single trial

of the similarity condition, with 5 s duration. The evidence includes Gaussian

noise on top of a changing baseline. A-blue, B-green, C-red (phase switches

are marked by vertical black lines).

Procedure

The sessions were run on different days with a maximum of a week difference. Before

the beginning of the experiment a brief explanation of the task was given and the

participant was presented with 510 examples of the stimulus. The input values for

these trials were randomly chosen. Immediately after the introductory trials, 2550 trials

sampled from the experimental conditions were presented for practice (the introductory

and practice trials were given in the first session only). The practice period ended when

no error-beeps occurred for five consecutive trials (see below), but no earlier than 25

trials and no later than 50 trials. The main experiment had 200 trials per session (400

trials overall) and 8 conditions (50 trials for each condition). The 200 trials for each

session were broken into 5 blocks (40 trials each). Trials within each session were

randomized across all eight stimulus conditions. After each block participants were

shown their accuracy score up to that point in the experiment and took a short break

(15 min).

Each trial began with the presentation of a fixation cross. After 1 s, four patches ap-

peared on the screen around the fixation cross, in a square formation. The brightness

of each patch fluctuated across time (the brightness was updated every 13.3 ms, corre-
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Figure 4.3: The time course of an experimental trial.

sponding to the frame rate of the monitor) and the participants had to select the patch

that was the brightest overall (see Figure 4.3). The duration of the stimulus presen-

tation was chosen randomly from a uniform distribution between 5 and 10 s. Upon

termination of the stimulus presentation the participants had 1 s to make a response.

If the participant failed to respond within this interval, a “Response deadline missed”

screen was shown and the next trial started. For incorrect responses (in the non criti-

cal conditions, see Table 4.1) the participants received negative (error) feedback (beep

sounds). For correct responses in these conditions and for trials in the correlation con-

dition no feedback was given. The correct option in each trial was defined based on

the average input brightnesses (average of µ1 and µ2, in Table 4.1).

4.2.2 Results

The mean accuracy (averaged across the 16 participants) in the four non-critical (filler)

conditions is shown in Figure 4.4, in terms of probability to choose the predominant

(A) option. On average, participants chose the predominant option (A) more than

50% of the time in both inconsistent conditions (paired t-tests: p < 0.001 in both

conditions); however, accuracy in both of these conditions was relatively low. For the

consistent-hard and consistent-easy conditions, where the correct option dominated at

all moments in a given trial, the subjects achieved very high accuracy. In particular,

there was a big discrepancy between inconsistent-easy and consistent-hard, in favour
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of the latter condition (22±13% SD; t(15) = 6.46; p < 0.001).This large difference in

accuracy indicates that consistent information (i.e., evidence not reversing in time) has

a positive impact on choice accuracy beyond what would be expected based simply on

the integrated evidence advantage for the correct alternative; this advantage is 0.025,

0.1, 0.175, 0.3, in the four filler conditions, I-H, I-E, C-H, C-E, respectively.
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Figure 4.4: Mean accuracy in the non critical conditions (preference for op-

tion A). Error bars correspond to 1 SE.

Turning now to the critical trials, I first consider the attraction condition where the aver-

age brightness of options A and C are equal. The presence of option B (decoy), which

is correlated but inferior to A, according to the attraction effect in multi-attribute choice

(Huber et al., 1982), was expected to boost the preference for A (target). However, as

Figure 4.5 shows the target option (A) does not benefit from the presence of a similar

decoy. Instead, there is no difference between the mean preference for the target (A)

and its competitor (C) (paired samples t-test: t(15) = 1.18; p = 0.26), suggesting that

the placement of the decoy (B) has no effect in the choice outcome.

The situation is different in the similarity condition (Figure 4.6). There, all three alter-

natives have equal average brightness with options A and B being correlated to each

other and anti-correlated to the dissimilar option C. If only the absolute brightness of

each spot determined its probability to be chosen, one would expect the three alterna-

tives to split their shares. Nevertheless, the preference for the dissimilar option C is

much above the 1/3 chance level (t(15) = 5.09; p< 0.001) suggesting that the fact that

C rises and falls on its own, increases its probability of being perceived as the brightest.
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Figure 4.5: Mean choice for the target (A) and the competitor (C) in the

attraction condition. Error bars correspond to 1 SE.

The increased preference for C is consistent with the similarity effect in multi-attribute

choice (Tversky, 1972). As the individual data (blue symbols in Figure 4.6) indicate,

the effect is robust but its magnitude varies a lot across the participants.
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Figure 4.6: Mean choice for the target dissimilar option (C) in the similarity

condition. Blue symbols show the P(C) in each of the sixteen participants.

Error bars correspond to 1 SE.

In both the attraction and similarity conditions, all three alternatives have non-stationary

brightness. This is not the case in the two last conditions, the compromise and anti-
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compromise, where the brightness of one option (C) is stationary. In the compromise

condition, the stationary option competed for choice with two, anti-correlated to each

other, alternatives. According to the multi-attribute choice literature, when confronted

with a choice among two extreme options and an all-average, people are biased to-

wards the compromise, all-average alternative (Simonson, 1989). Contrary to this

phenomenon, in the current experiment the preference for the stationary option was

much below the chance level (Figure 4.7 left, t(15) = −6.7; p < 0.001), suggesting

that observers avoided it in favour of either of the two, anti-correlated extremes. This

finding is surprising for one more reason; the representation of brightness is known

to be logarithmically compressed which should set the two non-stationary options in

a disadvantage. However, what seems to penalize the stationary option in the cur-

rent experiment, is the fact that it is always dominated (i.e. always ranking second)

by one of the two non-stationary alternatives. This conjecture is supported by the in-

creased (but yet not above chance; t(15) = −0.47; p = 0.65) choice preference for

the stationary option in the anti-compromise condition (P(C,anti− compromise) >

P(C,compromise), t(15) = 3.6; p < 0.01;Figure 4.7, right). There, the fact that the

two non-stationary alternatives are correlated, makes the stationary option salient (i.e.

there are moments where it ranks first), consistent with the increased preference that

the dissimilar alternative C received in the similarity condition.
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Figure 4.7: Mean choice for the stationary option (C) in the compromise and

anti-compromise conditions. Error bars correspond to 1 SE.

To conclude, the attraction and compromise 3 effects were not obtained, however, the

3Note that the way the compromise effect was measured in the current experiment is not completely
valid and analogous to the compromise situation in multi-attribute choice. This is because the baseline
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data in the other conditions provided support for a context-dependent integration mech-

anism. In particular, in the filler conditions the large performance improvement from

the inconsistent to consistent trials, undermines a decision model where the brightness

of each option is accumulated independently, in a feed-forward way. Additionally, the

increased preference for the dissimilar option in the similarity condition and the boost

that the stationary option received in the anti-compromise condition (compared to the

compromise condition), indicate that the choice mechanism favours alternatives with

peaks in their evidence that make them appear momentarily dominant (i.e. ranking

first). In the next section these choice patterns will be further analysed by scrutinizing

the individual data and using existing sequential sampling models of multi-alternative

choice.

4.2.3 Computational Models of Multi-alternative Perceptual Choice

(Computational Study 4)

As reviewed in Chapter 3, a series of process models have been proposed to charac-

terize the integration of evidence in sensory decisions between two options (Ratcliff,

1978; ?, ?; Usher & McClelland, 2001) when the response time is externally controlled.

In this section, I extend the race, diffusion and LCA models for choice involving more

than two alternatives, in an attempt to determine the mechanisms that give rise to the

context effects in Experimental Study 3 and in particular the similarity effect result.

The first step in extending the models to multi-alternative choice, for the interrogation

response protocol, is to assume a separate accumulator for each alternative (see Figure

4.8). Within the LCA or the race model, this extension is straightforward (?, ?; Usher

& McClelland, 2001; Usher, Olami, & McClelland, 2002; Brown & Heathcote, 2008).

In the n-choice race model, each alternative is assigned to a separate accumulator,

whose dynamics are governed by the following simple differential equation:

dxm = Im +N(0,σ). (4.1)

Here the quantity dxm represents the change in activation of accumulator m, Im repre-

sents the external input, and N(0,σ) represents processing noise thought to be intrinsic

preference for the stationary option when it is competing with one non-stationary target only, was not
known.
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Figure 4.8: Neural implementation of perceptual choice models for the in-

terrogation paradigm (top row): Pure race model; (middle row) Niwa and

Ditterich (2008) diffusion model; (bottom row) LCA model (Usher & McClel-

land, 2001)). Green arrows correspond to excitation and red to inhibition.

Blue “tears” represent leakage in the LCA model.

to the accumulators. This noise process, included in all the models, is assumed to be

Gaussian, with 0 mean and standard deviation σ. In the n-choice LCA, each alter-

native is also assigned to a separate accumulator. The property of relative evidence

integration is achieved through lateral inhibition, and the accumulators are also sub-

ject to leakage. The activation level of accumulator m is updated with each simulation

time-step according to:

dxm = Im− kxm−β

n

∑
i6=m

xi +N(0,σ),

xm(t +1) = Max(0,xm(t)+dxm).

(4.2)

Here k is the leak, β the inhibition, and the other terms are as before. The Max func-

tion in the second line of the equation implements a lower (reflecting) bound or floor

imposed on the activations. The inclusion of the reflecting boundary was motivated by

the fact that neural activity can never go below a minimum level (Usher & McClelland,

2001, p. 14 and Appendix-A; and also Bogacz et al., 2007). For the special case when

k = β = 0, the LCA reduces to a classical race or pure accumulator model as long as

all activations are greater than 0. When k and β are both non-zero but equal, the leak
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and inhibition are said to be balanced, and the linearized 2-alternative version of this

model is equivalent to the classical drift diffusion model (Bogacz et al., 2006).

It is less obvious how to extend the diffusion model to multi-alternative choice. One ap-

proach has been suggested by Niwa and Ditterich (2008) (see also Roe et al., 2001 for a

similar scheme). For the case of 3 alternatives, 3 accumulators race towards a common

decision criterion. The input to each accumulator, however, is the net evidence signal

for that accumulator, defined as the momentary evidence for that alternative minus the

evidence against it, which is in turn defined as the average of the evidence for the other

two alternatives. Accordingly, the differential equation for the m− th accumulator4 is:

dxm = Im−
∑i 6=m Ii

2
+N(0,σ). (4.3)

In both race and diffusion models, the choice was finalized even before the stimulus

termination, if a decision criterion (A) was hit by any of the accumulators (i.e. absorb-

ing boundary). In LCA, no decision criterion was assumed and the choice was made at

the end of the stimulus presentation, on the basis of the accumulator with the highest

activity. The models differ in the way with which they utilize stimulus information,

with the race assuming independent accumulation and diffusion and LCA assuming

competitive integration. In the following, I will focus on the individual differences

obtained in the similarity condition and the boost that the dissimilar/ anti-correlated

alternative received. I will attempt to explain this context-weighting pattern by uti-

lizing the existing sequential sampling models described above and I will defer for

the Discussion of this section a proposal for other mechanisms that could explain the

similarity effect.

4.2.3.1 Method

Evidence alternation protocol

The transitions between the two phases of evidence (Table 4.1 and Figure 4.1) are

simulated using a Markov process with a transition rate that increases at long inter-

vals. In particular after staying to phase j for n time steps the probability of switching

to phase k is p(n) = 5 · 10−4n .This transition formula resulted in the distribution of

phase durations that is shown in Figure 4.1. Within each phase, for each alternative

4In the Niwa and Ditterich (2008) model, the noise variance is input dependent. Here we use a
simpler variant of this model, with input-independent noise variance.
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m, Gaussian noise with standard deviation σin (set to be 0.1429 - the value used in the

experiment reported below corresponding to variability in evidence on a time scale

faster than the characteristic Markov switch time), was added on top of the mean value

of the evidence (designated µm1 and µm2, see Figure 4.1, for an illustration of the input

and Table 4.1 for the exact mean values that were used). The evidence values were re-

stricted between 0 and 1, which correspond to minimal and maximal brightness values

(in the RGB scale), in the experimental study.

Stimulus duration

Each simulation time-step corresponded to 13.3 ms (or 1 frame on a 75 HZ refresh

rate monitor). The stimulus duration was uniformly chosen from the range 375-750

time-steps (or 5-10 seconds). Note that the duration of the last phase is truncated by

the end of the trial, making the distribution of last phase durations different from the

distribution shown in Figure 4.1.

Accumulator initialization and choice policy

In all three models, accumulators were initialized at 0 at the start of each simulated

trial. For race and diffusion, if the bound was reached, the accumulator that reached

the bound was chosen as the response on that trial. When the bound was not reached,

or in the LCA where there is no bound, the alternative chosen is the one that is most

active when the stimulus input is terminated.

Information integration in the three models.

Race. The race model involved three independent accumulators. Each of them (m)

was updated according to Equation 4.1 above. Only two free parameters are needed in

this model. The SD of the processing noise (σ), and the activation value corresponding

to the upper absorbing bound, A. In accordance with the behavioural experiment, the

inputs Im vary in each time frame due to signal noise according to a Gaussian with

mean sµmi (with µmi corresponding to the evidence for alternative m during phase− i

and with SD = σin: Im ∼ N(µmi,σin).

Diffusion. The diffusion model was implemented using the same processing noise

and absorbing bound parameters as in the race model. The activation state of each

accumulator m was updated according to Equation 4.3.

LCA. In the following simulations, the LCA model was implemented using 4 free

parameters including β, k and σ, which stand for the values of inhibition, leak and
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processing noise (see Equation 4.2). The inputs Im are computed as N(µmi + I0,σin),

where I0 is an additive input affecting all of the accumulators (set by default at 0.2

except from the simulation of Figure 4.11 where it was varied). This last parameter

modulates the degree to which the model is affected by the reflecting boundary at 0;

when the value of I0 is large, activations tend to remain positive, avoiding the reflecting

boundary.

4.2.3.2 Results

Temporal correlations in the 3 models

I start with an informal illustration of the models’ choice pattern with two example

stimuli chosen from the similarity-condition which is shown in Figure 4.2. Input pa-

rameters and simulations protocol is as described above. To keep the illustration sim-

ple, no processing noise is used (σ = 0) and the stimulus noise is reduced (from 0.1429

to 0.04). For this illustration only, I also constrain the total presentation time to be such

that it gives an equal amount of time to the 2 phases of evidence. In Figure 4.9 (left

panels) I show the response of the pure race model the model that simply accumulates

incoming information. I consider two contrasting cases; in the first, the stimulus starts

with evidence that favours alternatives A and B (the correlated options). In the second,

the stimulus starts with evidence that favours C.

One can observe that, towards the end of the observation period, the activations of

the accumulators converge, since all receive the same amount of input overall. At

earlier integration times, however, one can see intervals where one of the correlated

alternatives (A or B) dominates or where the uncorrelated alternative C dominates. If

an absorbing bound is reached before the end of the observation period (as assumed

by Kiani et al. (2008)), one finds that the likelihood of the dissimilar option to win is

approximately 0.5, since the A and B activations (red and blue) are almost identical

and therefore will be equally likely to cross the criterion at about the same time and

thus split their wins. If extra noise (not correlated with the evidence) is introduced,

then the likelihood to choose the dissimilar alternative decreases towards the chance

level (0.33).

In the middle and right panels of Figure 4.9, I present the response of the diffusion

model and the non-linear inhibition dominant LCA (β = 0.019,k = 0.015), using the

same two example stimulus sequences that were used for the race model in the left
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Figure 4.9: Single trial activations for race (left panels), diffusion (middle

panels) and LCA (right panels) for initial evidence supporting A/B (top pan-

els) and supporting C (bottom panels). The same two random streams (top/

bottom panels) of evidence were used for all the models shown in this figure.

Blue and red curves show the activations for the two correlated options (A-B)

while the green curve shows the activation for the anti-correlated option (C).

The processing noise σ is zero while the stimulus noise is reduced to 0.04.
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panels. The activations for the diffusion model correspond to the differences between

the activations of the accumulators in the race model. Looking directly at these differ-

ences, one can clearly observe moments in which either C or one of A or B dominates

the choice. Again, since the total evidence to the 3 accumulators is equal, the 3 diffu-

sion processes end up at the same level. If an absorbing bound is reached, this is likely

to favour the alternative associated with the stimulus presented at the beginning of the

trial; on average, then, C is likely to be chosen about 50% of the time. As before, with

higher noise C may be chosen less than 50% of the time.

The situation is different for the non-linear LCA, when inhibition is larger than leak

so that the process is inhibition-dominant. Here in the right panels we observe a clear

advantage for the dissimilar option, C. Due to the non-linearity at zero-activation, the

low evidence phases of the anti-correlated option C are not suppressed as much as

they would be in the linear diffusion model or if their activation were allowed to go

below 0. Also, since A and B are low when C is high, while A and B are both high

together, the mutual inhibition causes A and B to suppress each other when they are

high, while when C is high it receives no such suppression. This asymmetry allows

the activation of C to rise more quickly than the activations of A and B, and tends to

give C an advantage over A and B. As a result, within a particular range of parameter

values, the LCA predicts a tendency to decide in favour of the dissimilar option more

than 50% of the time, independent of whether the stimulus starts with A/B (as in the

top panel) or with C (as in the bottom panel). As we shall see in more detail below, this

phenomenon, an order-independent dissimilarity advantage, is not exhibited by either

of the other models under consideration.

In order to demonstrate these differences in the conditions that are in force in the be-

havioural experiment, I present a second set of simulations. I ran simulations with

stimuli of the type illustrated in Figure 4.2, driving the accumulators with inputs in

accordance with the visual stimulation protocol used in the behavioural experiment.

Note that the trials in the behavioural experiment differ from the single trial illustra-

tions in Figure 4.9, where the total duration of the stimulus was set up to result in equal

amount of time for the two phases. As noted in earlier (section 4.2.1), with a stimulus

starting with one type of evidence, and then switching at random intervals, and with

the trial ending at an independently chosen time, the evidence associated with the first

event is more likely to be larger overall (this bias weakens and eventually disappears

as the total length of the observation interval increases). For the protocol used in the
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experiment, the proportion of trials that have C predominance in trials that start with C

is 0.65. However, note that the degree of preponderance is moderate: the ratio between

the integrated evidence corresponding to the 2 phases (A/B vs. C) only ranges in the

interval 0.9-1.1.

I ran sets of 2000 simulation trials with such stimuli, for each of the 3 models (race,

diffusion and LCA) with no processing noise (σ = 0; Figure 4.10, top panels) and high

processing noise (σ = 0.6; Figure 4.10, bottom panels). For the race and the diffu-

sion model, I examined the impact of an absorbing decision boundary A (Kiani et al.,

2008); if the decision criterion is reached before stimulus termination, the evidence is

not integrated after that time. I varied the boundary over a wide range to understand

its effects. The fraction of C choices is shown as a function of decision boundary for

the diffusion model (Figure 4.10, left) and the race model (Figure 4.10 middle). For

the LCA, I plot the fraction of C-choices as a function of the ratio between leak (which

was fixed at k = 0.0457) and inhibition, which varies in the range (0.00043,0.08571)

(Figure 4.10, right). For each model three curves are shown. The green curve corre-

sponds to the trials where the initial evidence favours the dissimilar option C, the blue

curve is obtained from the trials in which the early evidence favours the similar options

A and B; the red curve is the average of the two other curves.

For low levels of processing noise, we observe that in most models, the total fraction

of C-choices is at the 50% range for some range of parameters (red lines, top panels)

while with higher processing noise the mean preference for C can go below 50% (red

lines, bottom panels). In both the race and the diffusion models, we observe that the

fraction of C-choices is above 50% when the evidence starts favouring C (green lines),

and below 50% when the evidence starts favouring A and B (blue lines), which is

consistent with the fraction of trials that have more A/B or more C evidence, overall.

Note that, while true chance level is 33%, a 50% baseline is predicted by any model

that decides on the basis of a random sample of momentary evidence, as the correlated

alternatives are splitting their wins. On the other hand, since for the stimuli used here,

the fraction of trials that have C predominance in trials that start with C is 0.65, a

perfect integrator should converge to this choice value. Indeed this value is reached

with high decision boundary values in both the race and diffusion models.

An important deviation from the primacy pattern shown by the race and diffusion mod-

els occurs in the non-linear LCA, where we see an order-independent advantage for the

dissimilar alternative. With low noise, and when the inhibition-leak imbalance is small
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Figure 4.10: Predictions for the bounded diffusion and race models and the

LCA model with zero (σ = 0, top) and high (σ = 0.6, bottom) levels of pro-

cessing noise. The green curve shows the choice probability for C in trials

when it is favoured at the beginning; blue shows the same when A and B

are favoured at the beginning, and the red curve is the average of the other

two. For the diffusion model (left panels) and the race model (middle pan-

els) these probabilities are graphed as a function of the decision boundary

position. For the LCA (right panels) they are shown as a function of the

inhibition/leak ratio.
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(Figure 4.10, top right panel, range between vertical black lines), the probability of

choosing C is independent of whether the initial evidence favours C (green curve) or

A and B (blue curve) and is higher than 50%. This arises from the advantage that the

dissimilar option gains from the non-linear dynamic as previously discussed in relation

to the single trial trajectories in Figure 4.9.

The area to the right of the second vertical line shows the probability of choosing

the uncorrelated alternative, when inhibition becomes more than a little bit stronger

than leak. Here the green (strong evidence for C at the beginning) and blue (weak

evidence for C at the beginning) are initially both maintained above 50%, but start to

progressively diverge as the relative strength of inhibition increases further. Eventually

for inhibition much higher than leak, the LCA shows a strong primacy (large difference

between green and blue lines), like in the diffusion/race models. For the LCA as well as

the other models, the impact of an increase in processing noise is to push the fraction

of C-choices down, towards the 33% chance level (Figure 4.10 bottom panels). In

summary, we see that with low levels of processing noise, and in a particular range of

the ratio between inhibition and leak, the LCA shows an advantage for the uncorrelated

alternative over the correlated alternatives, even when the uncorrelated alternatives

receive stronger activation at the beginning of the trial.

There is a situation within the diffusion model in which the C choice is made on more

than 50% of trials. This occurs in the diffusion model for low decision boundary

(left of the vertical black line, at A = 42, in the left panels of Figure 4.10). The low

decision boundary strongly favours stimuli with larger initial support. It especially

favours C, however, because the diffusion associated with the dissimilar option (Figure

4.10 left panels) raises with higher rate (green curve) and thus it is more likely to hit

the decision boundary at the beginning of the trial than when the trial begins with

greater support for the similar options A/B, which mutually suppress each other and

thus have lower slopes. These differences produce the result that, averaging over trials

where the evidence supports C first and those where it supports A and B first (red

curves in left panels) the probably of choosing C can be greater than 50%. Crucially,

though, the probability of choosing C is never above 50% in trials where the evidence

associated with A and B is stronger at the beginning, so that the model never exhibits

the order-independent advantage for C that we can observe in the LCA model. Thus

a distinctive prediction of the non-linear LCA is that P(C) can exceed 50%, both for

the trials when C starts with stronger evidence, as well as for those when it starts with
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weaker evidence. This prediction takes place for low additional noise (σ) and with

inhibition moderately stronger than leak (close to the second vertical line in Figure

4.10, right panel).

To summarize, using the input protocol for 3-alternative choice in which the evidence

is non-stationary and temporally modulated, I examined the effect of temporal cor-

relations in the evidence for the various alternatives. I demonstrated that the LCA

(with inhibition > leak) can predict an advantage beyond 50% for the dissimilar op-

tion, which is independent of evidence at the stimulus onset and is a result of inhibition

dominance, combined with non-linear dynamics. This distinctive pattern the probabil-

ity of choosing the dissimilar option more than 50%, independent of order of presenta-

tion distinguishes the LCA from the race and diffusion variants. Both of these patterns

are examined in the individual data of the behavioural experiment (Experimental Study

3).

Individual differences in the similarity condition

In Figure 4.11 (upper-left) I report the C-choice pattern for each participant of the

behavioural experiment, in a 2D plot, in which the x-axis corresponds to the preference

for the dissimilar option, P(C), in the trials where A/B received stronger input at the

beginning of the trial, while the y-axis corresponds to P(C), when it received stronger

evidence at the beginning of stimulus presentation. Each o-symbol corresponds to

the mean choice pattern of a participant and error-bars correspond to 90% confidence

intervals. The red diagonal line in Figure 4.11 indicates the range of choice patterns

expected if the choice mechanism is not sensitive to the initial evidence. Eight out

of sixteen subjects conform to that pattern and for 5 of them in the top-right, P(C)

is significantly greater than 50% in both conditions. The other eight participants (in

the upper left quarter) showed an increased preference for C when it received stronger

input in the beginning. The magenta cross [at point (0.35,0.65)] indicates where the

preference of a perfect integrator should lie since, given the limited duration of the

trials, the options that receive strong evidence in the beginning will receive more total

evidence 65% of the time. I next examine how the 3 choice models can account for

these individual differences in the choice of the C alternative.

Model predictions (for the race, diffusion and the LCA, indicated by cyan dots on the

figure) were generated by systematically varying the parameters in each model. For

the diffusion/race models this involved varying the variance of the Gaussian noise, σ,
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Figure 4.11: Individual choice for the dissimilar alternative, P(C), in the simi-

larity condition of the experiment (upper left) and in the models (others pan-

els). Open-circles show the fraction of C-choices for each participant (error

bars are 90% confidence intervals). The pink cross at (0.35, 0.65), indicates

where the preference of a perfect integrator should be, based on the input

statistics. The model predictions are shown with cyan.
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and the evidence value corresponding to the decision criterion on a 2-D grid. For these

two models noise was varied in the interval (0.1, 4) with increments of 0.1 while the

threshold (A) was varied in the interval (5, 400) with increments of 5 for the diffusion

and in the interval (10, 1600) with increment 40 for race. Overall 3200 points were

derived for each of these models. For LCA, the predictions in Figure 4.11 were derived

using two sets of simulations. In the first set I varied four parameters (a 4-d grid): inhi-

bition (0-0.384, step=0.024, leak (0-0.192, step=0.012, (0-2, step=0.5) and processing

noise σ (0-3, step=0.5). In the second set of LCA simulations, I0 was constant at 0.3,

processing noise σ was set to zero and six levels (three low and three high) of leak were

used (0.0076, 0.0051, 0.0038, 0.0305, 0.0457, 0.0610). For each leak level, inhibition

started equal to leak and increased with a step of 0.00014 for 150 values. This set of

parameters was chosen on the basis of the simulations reported above, as well as novel

exploratory simulations, as they covered the relevant behaviours in the models. For

example, the noise parameter did not exceed 3, so as to maintain accuracy levels in

the range obtained in the experiment, and the value of the inhibition parameter in the

LCA did not exceed 0.384; stronger inhibition would cause evidence early in the trial

to predominate to the extent that it produces decisions that are too fast and of a too low

level of accuracy.

Consistent with the simulations reported above, (Figure 4.10, right panels), we find

that the non-linear LCA is the only model that is able to predict an order-independent

advantage for the dissimilar alternative, as exhibited by the four participants whose

choice pattern falls near the diagonal in the upper right quadrant of Figure 4.11 (it

must be noted, however, that none of the models accounts for the extreme participant

near the (1,1) corner). Data points on the upper-right portion of the main diagonal

correspond to choice rates higher that 50% in favour of the dissimilar option, C, both

when the evidence starts with a C-phase and when it does not. As previously discussed,

this pattern is exhibited by the LCA with low noise, in the area of modest inhibition-

dominance (left of the second vertical lines in Figure 4.10 right panels). As previously

noted, a perfect integrator would choose C with a rate of 65%, when the trial begins

with C>(A/B) and with a rate of 35% when the trial begins with (A/B) > C. The

ability of the LCA to predict data points on the upper diagonal implies that the model’s

choice (like the participants in the upper right quadrant) can be insensitive both to

primacy and to the small differences in overall evidence. This is the case in the LCA

with leak dominance (where early evidence has little weight), and for the LCA with
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moderate inhibition dominance.

Additionally, LCA (with higher internal noise; see Figure 4.10, bottom-right panel) is

the only model able to account for the C-choices of the other three participants near

(0.5, 0.5), who show a preference for the dissimilar option of about 50%, but are still

invariant to initial evidence. To account for the individual differences in C-choice

probability among these participants, the LCA mainly varies the amount of processing

noise in the simulation. This leads to a simple prediction. The five “low noise suspects”

(participants with data in the upper right quadrant) should have a higher accuracy in the

predominant trials, compared with the 3 “high-noise suspects” (those near the center

of the figure, with P(C) close to 50% regardless of the identity of the first stimulus).

This prediction is confirmed: 83%± 7% vs. 73%± 6%, for low-noise vs. high-noise

suspects, respectively. As illustrated in Figure 4.11, the diffusion and the race models

cannot account for the C-choices of the 8 participants on the diagonal. As Figure

4.10 suggests, diffusion and race both predict that when C initially receives stronger

evidence it will be preferred more than when A/B receive stronger initial evidence.

Therefore both the models are restricted to the upper-left quarter of Figure 4.11.

Finally the third group of subjects (in the upper-left quadrant) show a primacy pattern

which can be explained qualitatively by all three models, with the race slightly worse

for the two data points near (x=0.4, y=0.8). The LCA can encompass a wider range

of patterns, spanning the participants whose performance falls near y=0.5 in Figure

4.11. The choice values for these participants are consistent with the LCA model with

moderate noise and stronger inhibition dominance (inhibition right of the second black

line in Figure 4.10, right-bottom panel).

4.2.4 Discussion

As the pattern of choices of the dissimilar alternative in the similarity condition was

subject to considerable individual differences, I examined how well the models can

capture this variance. First, I found that some of the participants (ellipse, in Figure

4.11 upper-left) showed a preference for the dissimilar option (C) that is larger for

stimuli that start with evidence that favours that option than for stimuli where the initial

evidence favours the A and B options. This pattern can be accounted for in all 3 models

and it can also be accounted for by a perfect integrator, since the preponderance of

evidence tends to favour the option that starts the trial. Second, I found that the pattern
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of individual performance is better covered by the LCA. These participants showed

little or no sensitivity to order effects (red-diagonal). This pattern is difficult to explain

under the race and diffusion models (they can do so only if the overall proportion

of C choices is very low, by assuming high noise levels), but is naturally explained

by the LCA. Two properties of LCA model work together to produce a preference

for the uncorrelated option with little or no primacy bias (Figure 4.10, upper-right,

between the 2 vertical lines): moderate inhibition dominance and non-linear dynamics

(preventing activation from going below 0). This mechanism is also in a position to

explain why the preference for the compromise option was very low; the activation

of the stationary alternative has a smaller slope compared to the two extremes and

the zero non-linearity turns the high steepness into an advantage (by suppressing the

“falls” or disadvantages). The situation improves for the stationary option in the anti-

compromise condition where its activation has a higher slope due to the correlation

among the two other, non-stationary alternatives. Note that these two mechanisms

(inhibition and non-linearity) were also responsible for the unique LCA prediction

regarding the interaction between the trial duration and the order effect (Computational

Study 1).

Within this computational account, no attraction effect is predicted. For the attrac-

tion effect case, the presence of the decoy is negligible since the activation state of

the inferior option will be soon suppressed to the zero boundary resulting in a binary

competition between the two stronger alternatives. This, although complying with the

data of the current experiment, stands in contrast to the multi-attribute domain findings

where the decoy option has a pivotal role in shifting the choice preference. One rea-

son why this effect was not obtained in the current experiment, might have been that

the average brightness of the decoy was significantly lower compared to the stronger,

anti-correlated alternatives (i.e. 0.29 compared to 0.6), which might have caused its

elimination from the choice process. It is still conceivable that the use of a relatively

better, but still inferior, decoy (e.g. with average brightness of 0.5) will bias the choice

towards the correlated dominant option. In that case, the multi-alternative LCA will not

be able to capture this pattern since the competition between the two similar alterna-

tives (the decoy and the target) will boost the probabilities of choosing the competitor,

as in the similarity condition.

Since the crucial mechanisms accounting for the similarity data are the response inhi-

bition and the zero non-linearity, one can equip the, inherently competitive, diffusion
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model with a similar non-linear mechanism and examine its predictions. Since the ac-

tivation of the dissimilar option in the diffusion model (Equation 4.3) raises and falls

faster, the zero non-linearity might enable it to encompass the data. Second, an al-

ternative extension of the diffusion model to n− alternatives has been suggested by

McMillen and Holmes (2006) and is equivalent to the multi-hypothesis sequential ratio

test (MSPRT; Bogacz, 2009). In this model, N accumulators integrate evidence inde-

pendently and at each moment, the quantity L is computed, where L is the state of the

accumulator with the maximum activity minus the activity of the next highest accumu-

lator. When L exceeds a threshold a decision is made. This approach is asymptotically

optimal but its neural realization is complex requiring the online computation of the

max and the next-max functions. Unlike the diffusion model I focussed on here, this

(max-next) diffusion model can account better for the tendency to choose the dissimi-

lar option in the similarity condition. This is due to the fact that the decision criterion

is applied to the two maximally activated alternatives, and this penalises alternatives

that have correlated evidence (their support goes up together). The LCA can be seen

as a natural biological approximation of this optimal choice model, without requiring a

complex architecture or a complex computational algorithm. Indeed, inhibition among

any number of alternatives can closely approximate the max-next computation. This

happens since in LCA, all the choice units compete with each other, but the weak units

drop out of the process due to the non-linearity at zero activation, leaving the ones that

have the strongest evidence to compete at the end (Bogacz et al., 2007), and thus it

does not require a change of weights with set-size.

The possibility that participants may shift their attention among the alternatives, either

covertly or overtly via eye movements is not examined in the current experiment. It

is conceivable that that the attended alternative could exert a stronger influence on the

corresponding accumulator (Krajbich & Rangel, 2011), and/or that shifts of attention

could reset the integrators. If there were also a tendency to direct attention to the mo-

mentarily brightest alternative, these factors could potentially lead to a preference for

the uncorrelated alternative; the dissimilar alternative will be more times the brightest

(since it peaks alone) compared to the correlated options which will alternate, in their

strong phase, in the first rank. Accordingly, the attraction effect is not predicted since

the two competitors have the same amount of positive peaks, regardless of the pres-

ence or not of the decoy alternative. The low preference for the stationary option in the

compromise condition can also be captured by the fact that it is always dominated by
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one of the two non-stationary alternatives. This rank-dependent (where the alternative

that is first in rank is further boosted) alternative model, captures simultaneously the

competition induced by the LCA and the prioritization of the positive peaks caused

by the zero non-linearity. Therefore, these two computational accounts are perfectly

compatible and can be viewed as capturing the same function at different levels (i.e.

neural versus more cognitive).

The emulation of multi-attribute choice problems using perceptual evidence bears lim-

itations. Sensory evidence is processed in a much faster and parallel way compared

to attribute values of multi-dimensional items whose representation is discrete. As a

result of the continuous and noisy flow of brightness (i.e. noise is updated at each re-

fresh frame which is every 13.3 ms), attention might focus only to the maximum and

ignore the other options that rank lower (which can explain why the attraction effect

did not occur). On the contrary, in the value integration paradigm where each sample

has a symbolic representation, a full ranking of all alternatives could be achievable in

each integration time-step. If so, due to the difference processing mode, one would

expect different choice patterns to be observed. This possibility will be examined in

the next section where context effects will be examined using the fast value integration

paradigm.

4.3 Context Effects in Value Integration (Experimental

Study 4)

Contextual reversals have been traditionally studied within value-based tasks (Tversky,

1972; Huber et al., 1982; Simonson, 1989). There, participants are typically con-

fronted with a choice among alternatives that are statically presented and they are free

to sample the presented information at will. The information sampling process, al-

though crucial for the decision outcome, is covert to the experimenter. This difficulty

to measure the information sampling process motivated Experimental Study 3 where

the evidence time course shares the same dynamic properties with the decisional input,

when attention fluctuates to different choice aspects. In this first attempt to emulate

multi-attribute choice problems in one dimension, only the similarity effect was ob-

tained.

In this section, the fast value integration paradigm replaces the perceptual task of Ex-
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perimental Study 3 while the logic of presenting non-stationary information is main-

tained. In a way, using numerical values to represent the input to the decision making

process, is closer to preferential choice problems. This is because each information

sample has a discrete, symbolic representation similar to the representation that at-

tribute values might have in multi-attribute choice problems. Representing samples

of information symbolically allows more complex computations to take place, such

as the full ranking of all the alternatives at any given step, as opposed to perceptual

tasks where evidence fluctuated at a much faster rate and where the mode of process-

ing might have been more automatic. Because of the limitations in measuring the

compromise effect without first obtaining a binary baseline (i.e., preference for the

compromise versus the one extreme) and due to the stationary-option aversion that

participants showed in the previous study (Experimental Study 3), Experimental Study

4 focused only on the attraction and similarity effects.

4.3.1 Method

Participants

Participants were 20 adults (12 females; aged 21-44; mean age 28.4) recruited from

UCL’s subject pool that participated for payment.

Stimuli and Experimental Task

At each trial, participants saw 12 triples of numbers presented sequentially and in tri-

angular arrangement (Figure 4.12), around a white fixation cross that stayed on screen

throughout the trial. The numbers associated to the different options had different

colours (orange for left, magenta for top and green for right) and were surrounded by

a white frame. The background of the screen was gray. At the end of the presentation

a white question mark appeared at the centre of the screen and the participant had to

determine, within 3 seconds, which of the three sequences had the highest mean value.

Error feedback (beep sound) was provided. Responses were indicated by the press of

the left, right or top arrow on the QWERTY keypad of a standard PC.

Experimental Conditions

Overall there were 4 conditions. In each condition, each option was associated with

two distributions labelled here as “blue” and “red”, with standard deviations fixed at

7. The distributions are named after colours in order to facilitate the description of
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Figure 4.12: The time course of an experimental trial in the fast value inte-

gration among three alternatives.

the design. Participants were unaware that each alternative was associated to two dis-

tributions and what they perceived was the sequences of numbers without further in-

formation on the underlying structure. The positions of the alternatives were always

randomized. At each trial, 6 triples were generated from the “blue” distributions while

the other 6 triples were obtained from the “red” ones (the switching in the distribution

type was covert to the participants and not indicated by any external cue). The triples

were reshuffled and thus at each frame there was a 50% probability for all three val-

ues to be sampled from either the “blue” or the “red” distributions. Table 4.2 shows

the means of the “blue”- “red” distributions for each option in each condition (Figure

4.13). In the attraction condition the values were sampled such that A-values were

always greater or equal to B values. In the consistent condition the values were con-

strained such that A > B >C at each frame, while in the inconsistent condition for the

“blue” distribution frames B >C > A and for the “red” distribution frames A >C > B.

Procedure Participants were assigned to two different groups (between subjects fac-

tor). The ”slow” group performed the task at a presentation rate of 1 triple/ second

while the ”fast” group at a rate of 2 triples/ second. Overall there were 4 conditions,

with each condition having 55 trials each. The trials were fully randomized and pre-

sented in 11 blocks (20 trials) each. After each block the participant could see her

accuracy up to that point. Error-feedback was given only in the dominance conditions

and accuracy scores were presented at the end of each block, after the exclusion of the
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Table 4.2: The mean values of the sequences in the 4 experimental conditions.

Alternatives Decoy Conditions Dominance Conditions

Attraction Similarity Consistent Inconsistent

Blue Red Blue Red Blue Red Blue Red

A 70 40 70 40 60 65 75 40

B 65 35 70 40 55 55 55 55

C 40 70 40 70 40 60 40 60

7040

Attraction

7040

Similarity

6560

Consistent

7540

Inconsistent

6535 7040 55 55

7040 7040 6040 6040 6040

Figure 4.13: Each alternative is associated with two distributions, one red

and one blue (colours used for illustration purposes only), and at each frame

the values for all three alternatives are sampled from either the red or the

blue Gaussian distributions (randomly determined, p=0.5).The mean values

of the distributions for the 4 experimental conditions are shown for options A

(top row), B (middle row) and C (bottom row).

decoy conditions trials.

4.3.2 Results and Discussion

The effect of the presentation rate was examined by comparing the choice patterns of

the two groups in the 4 conditions, using independent-samples t-tests. The response

mode had no effect in any of the conditions [DV was preference for A and t(18)=0.52,
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p=0.61 for attraction; t(18)=0.89, DV was preference for C and p=0.39 for similarity;

DV was preference for A and t(18)=1.52, p=0.15 for consistent; DV was preference

for A and t(18)=-0.22, p=0.82 for inconsistent condition]. In the attraction condition

the magnitude of the effect was quantified by comparing the relative preference for A

to the one for C [i.e. P(A)/(P(A)+P(C)) vs. P(C)/(P(A)+P(C))] using a paired

t-test, while in the similarity condition the effect was quantified by comparing P(C) to

the chance level preference (33%), using a one sample t-test. In the two dominance

conditions the preference for option A was the accuracy measure and was compared

with one sample t-tests against the 33% chance level 5. Additionally the preference for

the two dominated options was used for subsequent analysis of the error pattern [P(B)

vs. P(C), paired t-test].

In the dominance conditions, participants successfully chose the highest value alterna-

tive (t(19) = 27.77, p < 0.001, Figure 4.14, right panels). Furthermore, they showed

the predicted choice patterns corresponding to preference reversals, both in the at-

traction and in the similarity condition. They preferred the alternative A that domi-

nates the decoy (B), at every time step, instead of the anti-correlated alternative (C)

(t(19) = 5.04, p < 0.001;Fig.2D, left). In the similarity condition, where overall all

three alternatives had equal net values, the observers preferred the anti-correlated al-

ternative (C), compared to the two correlated ones (A and B) (t(19) = 3.40, p < 0.005;

Figure 4.14, second from left).

The attraction and similarity effects provide constraints on the decision mechanism,

ruling out a context-independent integration of values, according to which alternatives

with the same net mean values should be equally preferred. In order to better un-

derstand how the decoys effect might arise in the fast value integration paradigm, I

analysed the error pattern in the dominant-inconsistent condition (Figure 4.14 right).

When failing to select the best option (A), the observers chose the worst overall option

(C) significantly more than the second best (B) (t(19) = 4.37, p < 0.001). What makes

C stand out is that in half of the frames its values are ranked first (red distribution)

while option B is always ranked second.

This pattern indicates that momentary ranks play an important role in the integration

mechanism that drives preference formation. However, the higher than chance accu-

5Note that A and B in this conditions are indistinguishable. One could measure the similarity effect
by comparing the preference for C against the average preference to A and B. This is equivalent to
one-sampled t-test of P(C) against the chance level preference.
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Figure 4.14: Results for the four conditions. From left to right the choice

preference in the attraction, similarity, consistent and inconsistent conditions.

Error bars correspond to 95% CI.

racy in the dominant-inconsistent condition, in which options A and C are identical

in terms of ranks, rules out a model based solely on ordinal comparisons and indi-

cates a decision mechanism that combines absolute magnitudes with momentary ranks

(e.g. by weighing the values by their ranks). Accordingly, in the attraction condition,

alternative A is preferred because it is overall higher ranked (1st and 2nd) compared

to C (1st and 3rd). In the similarity condition, the preferred alternative C is ranked

1st (red) or 3rd (blue). By contrast, A and B alternate in the 1st /2nd (blue) and 2nd

/3rd (red) positions and this shared advantage in the blue distributions, weakens their

overall value.

The co-occurrence of attraction and similarity effects within participants and within

the same study is an important empirical finding. The coexistence of these effects

have challenged many theories of choice (with theories being able to predict the one

or the other effect, within the same parameter set). In particular, the attraction effect

rules out the Elimination by Aspects model that explains the similarity effect (Tversky,

1972). As proven in Appendix A in Roe et al. (2001), the context-dependent advantage

model developed by Tversky and Simonson (1993) to account for the attraction and

compromise effects, cannot explain the similarity effect. The similarity and attraction

effects are maintained in DFT (Roe et al., 2001) and LCA (Usher & McClelland, 2004)

for multi-attribute choice, however in both models the two effects are in tension (i.e.,

parameters that boost the similarity effect diminish the attraction effect and vice versa;

see Tsetsos et al., 2010 for details). The data of the current experiment do not reveal
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any significant negative correlation (r = −0.303,n = 20, p = 0.195) between the two

effects.

Note that a rank-dependent weighting scheme could explain the data in the percep-

tual experiment (Experimental Study 3) but with one crucial difference. While in the

perceptual paradigm only the maximum (brightest) is boosted, here, in the fast value

integration task, the attraction effect indicates that participants are able to fully rank

all the options and assign weights accordingly. In other words, the symbolic input in

the current study, triggers a ranking computation that might be more efficient when

the information is consistent but potentially leads to biases when information changes

directions (i.e. inconsistent and decoy conditions).

4.4 Summary and General Discussion

In the current chapter, I examined the influence of the context on the weighting of in-

formation. By using non-stationary input, which allowed for reversals in the direction

of evidence, I emulated multi-attribute choice problems with one dimensional stimuli

and questioned the existence of well-known context effects such as the attraction, the

similarity and the compromise effects. The potential benefit of looking for contextual

effects using dynamic, one dimensional stimulus is twofold. First, it is empirically in-

teresting to obtain preference reversal in a less conventional paradigm which relies on

one dimensional stimulus. And second, the psychophysical nature of the experimen-

tal tasks, constrains significantly the number of mechanisms and models that could be

tested to account for the behavioural patterns. Thus, obtaining the contextual effects

within these paradigms can lead to the bottom-up construction of novel accounts for

these effects and more generally to simpler theories of multi-attribute choice.

In Experimental Study 3, I emulated contextual effects (i.e. attraction, similarity and

compromise) in a brightness discrimination task. The findings indicated a very strong

similarity effect, no attraction effect and a negative compromise effect. These re-

sults were further analysed in Computational Study 4 using existing models of multi-

alternative perceptual choice (i.e. race, diffusion and LCA). From all the models, the

non-linear LCA was able to provide the best account. In particular, the increased pref-

erence for the dissimilar option in the similarity condition, was accounted for by the

interplay of the non-linearity and response competition; due to mutual inhibition at the
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decision layer, the preference state of the anti-correlated option raises and falls faster

and because preference states are bounded from below at zero, the dissimilar option

accumulates overall more evidence. In practice, this mechanism favours positive peaks

in the evidence and can be realized at the cognitive level as increased attention towards

the momentarily brightest alternative. It is noteworthy that in the previous chapter

(Computational Study 1, Chapter 3) the same synergy between inhibition and non-

linearity generated a unique prediction regarding the interaction between the temporal

bias and the stimulus length.

In Experimental Study 4, the attraction and similarity effects were obtained using the

fast value integration paradigm with three alternative numerical sequences. Note that

given the negative compromise effect that was obtained in the brightness discrimina-

tion task and the need for extra binary measurements (between the compromise option

and the one extreme), I deferred the study of the compromise effect for future studies.

The obtained attraction and similarity effects in combination with the results in two

novel conditions (i.e. dominance conditions) indicated a simple mechanism in play,

whereby the absolute numerical values are combined with the momentary ranks of the

alternatives. A model based on this mechanism is further developed in the next chapter

(Chapter 5).

Comparing the results of the two experimental studies, one can see clear differences.

While only a strong similarity effect was obtained in the perceptual experiment, a

weaker similarity effect together with an attraction effect occurred in the numerical

integration task. The brightness task results were realized within existing mechanisms

provided within LCA, however at a different level of analysis they could be captured

within a rank-dependent model, similar to the one underlying the numerical task, where

attention prioritizes the processing of the momentarily best option. Therefore evidence

and value integration across multiple alternatives, can be realized within the same rank-

dependent model and the only difference would be that in the sensory decision task the

boost goes only to the momentarily best option whereas in the value integration task it

is allocated to all options and is proportional to their momentary rank order. Hence, the

differences in the behavioural patterns in the two decision domains can be attributed to

the stimuli characteristics, with the faster dynamics of the perceptual task resulting in

more automatic processing and a weaker influence of qualitative aspects of the stim-

ulus (i.e. ranks) on the choice outcome. Future experimental work is needed in order

to seek convergence between the two domains. One possibility would be to repeat the
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brightness discrimination task but update the Gaussian noise that is superimposed on

the brightness values much slower. That way the temporal correlation pattern would

be more easily detectable by the observers and could encourage more cognitive pro-

cessing, such as rank-based weighting, which would lead to an attraction effect bias.



Chapter 5

Rank-dependent Leaky Integration

5.1 Overview

The experimental studies so far revealed two main distortions in the information in-

tegration mechanism. The first distortion, induces differential weights on the pieces

of information based on their temporal order, with this type of differential weighting

being already part of existing frameworks of perceptual integration (e.g., Usher & Mc-

Clelland, 2001). The second distortion was brought to light by the presence of context

effects in both evidence (Experimental Study 3) and value integration (Experimental

Study 4). This weighting, as it occurred in sensory integration in Experimental Study 3

can be attributed to the synergy of low level mechanisms such as the zero non-linearity

and the response inhibition (Computational Study 4). However, the richer behavioural

patterns encountered in value integration in Experimental Study 4, indicated a mecha-

nism which weighs absolute values by their momentary ranks in the decision context.

Interestingly, this mechanism can capture the results of the perceptual experiment (Ex-

perimental Study 3) under the assumption that only the maximum, and not the full

rank-order, is used as an auxiliary cue in the predecisional, evidence distortion. This

assumption, that in value integration distortions are conferred on all the options while

in evidence integration only on the maximum, can be justified by taking into account

special aspects of the stimulus in each case. In particular, the perceptual stimulus

used in the brightness discrimination task changes rapidly (i.e. every 13.3 ms) and the

calculation of the full ranking of all alternatives might be computationally demand-

ing as opposed to the mere detection of the momentarily best option. Accordingly

129



Chapter 5. Rank-dependent Leaky Integration 130

the symbolic representation of the information in the value integration task and the

slower presentation rate (i.e. changes occurred the fastest i.e. every 500 ms) renders

the consideration of the full rank order feasible. Cross-validation of this account can

be achieved by tweaking the stimuli in the two domains and examining whether the

results converge (i.e. slowing down the rate of changes in the perceptual experiment or

speeding up the presentation in the value integration task).

In this chapter, I first develop the rank-dependent account for information integration

and present its mathematical implementation (Computational Study 5). Note that one

non-crucial aspect of the model is that the integration at the response layer is leaky and

not perfect. This assumption is motivated by the order effects found in Experimental

Study 2 and is accommodated to the model for completeness. Next, I demonstrate how

this model accounts for the main behavioural patterns in Experimental Study 3 and

I fit it on the behavioural results of Experimental Study 4, discussing also the rank-

dependency as a viable aspect of multi-attribute choice. Finally, I test the sensitivity

of the model to second-order aspects of the information i.e. the variance, revealing an

intriguing prediction of the model which is fully examined in the next chapter (Chapter

6): risk-seeking in the domain of gains (Computational Study 6).

5.2 Rank-dependent Leaky Integration Model (Compu-

tational Study 5)

5.2.1 Model Implementation

The intuition that underlies the proposed model is that information is weighed by its

salience. Now the salience of a given sample is determined by the momentary ranking

of the sample in the current decision context. The preference state P in favour of

alternative i at moment t is given by the following equation:

Pi(t) = λ ·P(t−1)+ [w(ranki(t)) · Ii(t)]+N(0,σ). (5.1)

In the above equation, Ii(t) is the magnitude of the sample in favour of alternative i at

time t, λ corresponds to integration leakage (motivated by the order effects found in

Chapter 3), and σ is the standard deviation of Gaussian, processing noise. The core
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weighting mechanism is implemented in w which corresponds to a decreasing function,

that assigns larger weights to high ranks (i.e. 1st) and smaller weights to low ranks (i.e.

last). The momentary rank of a sample at time t for alternative i is denoted by ranki(t)

and is always a positive integer value.

The most critical element of this model is the weighting function w which imposes

a type of relativity and competition in the processing, similar to the lateral inhibition

at the response layer posited by the perceptual LCA model (Usher & McClelland,

2001). A way to understand the practical role of this function is to assume that visual

attention fluctuates from option to option and as a result some samples are lost and do

not get to be integrated. A higher weight in the highly ranked alternatives means that

the probability that their samples are encoded and processed is larger. The exact form

of the weighting function is not assumed to be fixed but to rather change depending

on the type of the task at hand. In the next subsections I will review what form this

function needs to have in order to account for the data in Experimental Study 3 and

Experimental Study 4.

5.2.2 Rank-dependency in Perceptual Decisions

In the brightness discrimination study presented in Chapter 4 (Experimental Study 3)

the flow of the sensory evidence was temporally manipulated so as to establish tem-

poral correlations among the alternatives, analogous to shifts of attention to different

choice aspects in trade-off, multi-attribute decisions. When two of the three alterna-

tives were correlated to each other (i.e., raising and falling together) and anti-correlated

to the third one, participants preferred above 50% the third alternative. On the contrary

when the one of the two correlated options was always inferior to the other, respon-

dents turned out to be indifferent between the inferior correlated and the anti-correlated

one. Finally, between two anti-correlated alternatives and one with stable brightness in

the middle of the range of brightness of the other two, people systematically avoided

the stationary, mediocre one even if its brightness was overall equal to the brightness

of the anti-correlated options.

In order to understand what weighting function can give rise to the above patterns, I

simplify the experimental conditions by assuming that there are two alternative phases

of equal overall length 1. The mean brightness of each option in each phase is given

1In the actual experiment the length of the phases was sampled from a distribution while the trial
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symbolically in table 5.1, with H denoting high brightness, L low brightness and d a

small constant that is smaller than L.

Table 5.1: Conditions in Experimental Study 3.

Alternatives Conditions

Similarity Attraction Compromise

Ph1 Ph2 Ph1 Ph2 Ph1 Ph2

A H L H L H L

B H L H−d L−d (H +L)/2 (H +L)/2

C L H L H L H

The above table is next transformed such that the absolute brightness values are con-

verted into ranks (table 5.2). In cases where the brightness of two options is equal in

a given phase, the noise (which was present in the actual experiment) will randomly

push the one option above the other. For example, in the similarity condition in phase1,

A and B have both high brightness values and thus will randomly alternate in the first

and second ranks. Now I assume that the first in rank option will receive a weight of

a, the second b and the third c, with a≥ b≥ c. The overall goodness of an option will

be determined by adding its ranked-weighted brightness in each phase, assuming of

course that the two phases occur with equal likelihood (i.e. 50% each). In cases where

there is a tie, as for example between A and B in phase1 of the similarity condition,

the ranks of an option alternate with equal probability (e.g. option A in phase1 of the

similarity condition will rank first 25% of the time and second the other 25%, summing

up to 50% which is the probability of phase1 to occur in a given trial).

In the similarity condition the increased preference for C that was found in the exper-

iment indicates that the integrated, rank-weighted brightness V of option C is higher

than those of A and B. Given that A and B are identical the following inequality should

hold: VC > VA = VB. Expanding the inequality gives: 0.5Ha+ 0.5Lc > 0.25Ha+

0.25Hb+0.25Lb+0.25Lc or :

Ha+Lc > Hb+Lb (5.2)

duration was independent to the phase switching process. It was therefore possible that the overall phase
durations were unequal in a given trial.
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Table 5.2: Rank ordering of the options of table 5.1.

Alternatives Conditions

Similarity Attraction Compromise

Ph1 Ph2 Ph1 Ph2 Ph1 Ph2

A 1,2 2,3 1 2 1 3

B 1,2 2,3 2 3 2 2

C 3 1 3 1 3 1

The indifference between option A and C in the attraction condition is translated into

VC =VA which leads to 0.5Ha+0.5Lc = 0.5Ha+0.5Lb and finally to :

c = b. (5.3)

In other words the weighting that the second and third ranked options receive is the

same. In order to see the way this constraint affects the similarity condition, I plug

equation 5.3 back to equation 5.2:

Ha > Hb⇔ a > b. (5.4)

Now, given equations 5.3 and 5.4, I turn into the compromise condition where either

of the extremes (A, C) are systematically preferred over the stationary B. This leads

to VA > VB or 0.5Ha+ 0.5Lc > 0.5b(H +L)⇔ 0.5Ha+ 0.5Lb > 0.5b(H +L) which

turns into:

Ha > Hb⇔ a > b, (5.5)

which already holds from equation 5.4.

Overall the patterns in all three conditions are qualitatively predicted if the weights are

constrained such that a > b = c. In practice this means that the momentarily brightest

option attracts the attention while the ones that follow in the rank-order are not fur-

ther amplified. As already mentioned, this is somehow natural given the nature of the

brightness stimulus which changed every 13.3 ms, rendering as a result the computa-

tion of the full ranking at each frame demanding. Whether the form of the weighting
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function changes by slowing down the updating rate of the stimulus is an open empiri-

cal question. In the next subsection I perform a similar analysis on the value integration

task by quantitatively fitting the average data of Experimental Study 4.

5.2.3 Rank-dependency in Value Integration

In Experimental Study 4 in Chapter 4, I examined the presence of the attraction and

similarity effects in value integration. As opposed to the perceptual experiment, both

the effects were obtained, indicating differences in the underlying integration mech-

anism in the two domains. In order to examine what form the weighting function of

equation 5.1 needs to have in order to account for both the effects simultaneously, I

quantitatively fitted the data averaged across all participants. In table 5.3 the values as-

sociated with each option in each distribution (see table 4.2), are converted into ranks.

In the stochastic simulations the input to the model was constrained such that these

ranks were always maintained (e.g. in the attraction condition A values were forced

to be always higher than B values), identical to the input the experimental participants

observed.

Table 5.3: The ranking of the sequences in each distribution in the the 4 experimental

conditions of Experimental Study 4.

Alternatives Decoy Conditions Dominance Conditions

Attraction Similarity Consistent Inconsistent

Blue Red Blue Red Blue Red Blue Red

A 1 2 1,2 2,3 1 1 1 3

B 2 3 1,2 2,3 2 3 2 2

C 3 1 3 1 3 2 3 1

The model fits are given in Figure 5.1(a) and the optimized parameters in table 5.4. As

also shown in Figure 5.1(b), the weighting function linearly decreases with the rank-

order. This means that all three options in a given frame are taken into account at some

extent, and the likelihood of each sample to be considered is linearly dependent on the

local ranking. In practice though, the nearly zero weight of the third in rank sample

(i.e. c = 0.35) implies that in most frames only the two best samples get processed.
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Figure 5.1: a: Data fits of Experimental Study 4 for the attraction, similarity,

consistent and inconsistent conditions (from left to right).The three bars in

each condition correspond to the mean preference for alternative A, B and

C respectively. Error bars correspond to 95% CI; b: The optimized rank-

weighting function.
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Table 5.4: Optimized parameters of the rank-dependent model for Experimental Study

4.

Parameters

a b c λ σ

4.16 2.25 0.35 0.97 83.27

The fact that the weighting function is more continuous than the one of the percep-

tual experiment, accounts for the increased preference for option A in the attraction

condition. This follows naturally from the fact that alternative A has higher ranks

(i.e. 1st and 2nd) compared to its competitor C (i.e. 1st and 3rd) and that the 2nd

in rank sample is more amplified compared to the 3rd in rank. The similarity ef-

fect is captured by the shared advantages/ disadvantages the similar options have.

Applying the optimized weights on the actual values of the alternatives (4.2) gives

the integrated value over the two distributions. For alternative A and B this will be

VA =VB = 0.25a ·70+0.25b ·70+0.25b ·40+0.25c ·40 = 138.175. For alternative C

the integrated value will be VC = 0.5a ·70+0.5c ·40 = 152.6 and thus VA =VB <VC.

Finally, the choice pattern in the dominance conditions shows signature of rank-dependence.

First the higher accuracy in the consistent condition compared to the inconsistent one,

although the overall value of option A was better in the first case (i.e. 125 against 115),

can be attributed to the fact that in the inconsistent condition, in half of the frames al-

ternative A was ranked last (see table 5.3) and consequently it was less often preferred.

Second, in the inconsistent condition, the fact that when the respondents failed to se-

lect the best option (A) chose the worst overall (C) compared to the second best (B)

was due to rank-dependent integration; option C in half of the frames was ranked first

and thus further boosted as opposed to B which was always ranked second and never

stood out.

5.2.4 Discussion

The rank-dependent weighting account posits that the decision input is distorted by

its salience in the local decision context. With rapidly changing perceptual input (i.e.

brightness) this distortion takes the form of overweighting the momentarily maximum

option, while with slower and symbolic input (i.e. numerical sequences) it takes the
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form of more continuous differential weighting, across the whole span of ranks in the

immediate context. The simultaneous occurrence of the attraction and similarity effects

in Experimental Study 4 (through which the rank-dependent integration model was in-

spired), shows that the technique of controlling the sampling process is a good proxy

to the underlying process of decisions in richer domains. A model of multi-attribute

choice follows immediately from the combination of rank-dependent value integration

and Tversky’s proposal (Tversky, 1972), which was extended in Decision Field The-

ory (Roe et al., 2001), that people process multi-dimensional options by sequentially

switching their focus from one choice aspect to another. An account whereby the de-

cision maker’s attention emphasizes the processing of attribute values that are highly

ranked in a given dimension, provides a sufficient explanation of how people integrate

values across attributes and why their preference is subject to reversal in multi-attribute

problems.

One caveat of a rank-dependent multi-attribute account is that it cannot produce the

attraction, similarity and compromise effects simultaneously. In particular, under the

weighting function obtained for the value integration experiment (i.e. a > b > c) the

mediocre compromise option will be avoided. For this effect to be obtained one needs

to assume that the attribute values of the two best options in a given dimension are

considered equally often (i.e. a = b) and that the last in rank option is ignored or has

a very small weight (i.e. a = b > c, this weighting function accounts for the attraction

effect but predicts a negative similarity). This mode of processing can be triggered

other from different experimental material (i.e. different types of consumer products)

or merely by the distribution of the choice alternatives in the choice space. In the latter

case the presence of an all-average option, which is not outstanding in any dimension

but whose overall value seems as good as those of the extreme options, could encour-

age a more deliberative and cautious strategy where the two best options in a given

dimension are equally weighted. If the shape of the weighting function was shown to

be flexible and dependent on the structure of the choice problem, then the simultaneous

prediction of all three effects within the rank-dependent account would be feasible.
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5.3 Predictions for Binary Choice: Relativity of Value

and Risk-Attitudes (Computational Study 6)

5.3.1 Relativity of Value

The rank-dependent analysis presented so far, concerned choice among three alterna-

tives and revealed salience-based distortions in the integration of values. It is ques-

tionable whether this type of differential weighting is applicable also to binary choice

problems which bear less computational complexity and where the utilization of the

ranks might be less imperative. If indeed the local ranking distorts the absolute values

in binary problems then the evaluation of an option will be always relative and context-

dependent. For example the computed value of an alternative will be suppressed when

it is paired with a better option relative to the case when it is compared against an

inferior option (e.g., Louie, Grattan, & Glimcher, 2011).

Although the purpose of Experimental Study 2 was the examination of order effects in

value integration, two of the conditions (i.e. unbalanced) involved selection between

two sequences, with the one sequence being always better. Crucially, in one of the

two unbalanced conditions (i.e. Condition 2) the overall maximum value sample was

placed in the sequence with the lowest mean. This was done in order to check whether

respondents followed a heuristic rule whereby they chose according to the globally

maximum sample only. Despite their original scope, the data in these two unbalanced

conditions can be reviewed with a rank-dependent account in mind.

Comparing the accuracy scores in the two unbalanced conditions reveals a marginal

difference in favour of Condition 1 (Figure 5.2, F(1,15) = 4.96, p = 0.042). Note that

Condition 2 trials are identical in difficulty to those in Condition 1 2. This difference

in the accuracy scores in the two conditions is consistent with the rank-dependent

weighting model. Accordingly, attention is driven towards the momentarily maximum

values and in Condition 2 there will be certainly at least one pair in which the low

sequence has the maximum sample. This signature of rank-dependency even in binary

choices provides a potential explanation of relativity of value phenomena (Stewart et

al., 2003; Vlaev, Seymour, Dolan, & Chater, 2009; Kurniawan et al., 2010).

2The same numerical values of Condition 1 were used in Condition 2 but modified in two pairs; in
one pair I added a constant to the low sequence such that this value is globally maximum. From a second
sample of the low sequence (randomly chosen) I subtracted the same constant. Therefore the integrated
differences were equal in all trials of the two conditions.
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5.3.2 Risk Attitudes

If rank-dependency underlies binary choices, in cases where the alternatives have equal

variances and different means, this strategy might facilitate the detection of the best

sequence as, statistically, the high-mean option dominates the weak one, in most of

the pairs. Therefore overweighting the maximum value in a given pair would amplify

the accumulated differences between the two sequences, increasing the probability

to detect the best one. On the other hand though, when the two alternatives have

equal means but different variances, the focus of attention will be directed towards the

extreme large values at the right tail of the high variance distribution. Consequently,

the decision maker would be blind to the extreme low values generated from the left tail

of the high variance distribution, developing a propensity to choose the riskier option

that is associated to the broader Gaussian.

In order to demonstrate this one-sided pro-risk bias, I simulated two Gaussian se-

quences with mean at 50 and different standard deviations; the first distribution had

a standard deviation of 10 while the second of 20. Ten thousand numbers were gen-

erated from each distribution and were subsequently rank-weighted as if they were

presented paired together in a long sequence and assuming that the momentarily max-

imum number receives a higher weight (i.e., a = 2 for the maximum and b = 1 for the

second in rank). As Figure 5.3 shows, indeed the transformation of the values accord-

ing to the rank-dependent model shifts the mean of the broad distribution higher than

the mean of the narrow one. This prediction of risk-seeking behaviour is quite surpris-

ing as it collides with findings from the mainstream line of research in risky choice,

decisions by descriptions. There, people are provided with an explicit description of

the probabilistic pay-offs of monetary gambles and typically exhibit risk-aversion in

the domain of gains (Kahneman & Tversky, 1979).

5.3.3 Discussion

Despite that the rank-dependent aspect of value integration was launched for choice

among three sequences, it is possible that it underlies also binary decisions. This con-

jecture is supported by existing data (see Figure 5.2) and provides an explanation for

value relativity phenomena in other domains. Relying on the local rank can be auxil-

iary in contexts where the agent is unfamiliar with the absolute values (i.e., does not
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Unweighted Distributions

(a)

Rank-weighted Distributions

(b)

Figure 5.3: a: One narrow (red) and one broad distribution (blue) of equal

means; b: The transformation of the distributions in a) according to the rank-

dependent model.
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have a grasp of how good a value is on its own and considers also its relative ranking)

or when the two options have different means but equal variance. In these cases the

rank-weighting will accentuate the accumulated differences in favour of the best se-

quence, improving that way choice quality. One further prediction of this mechanism,

however, is that decisions will not be sensitive to the strength of the values only but

also to their variability.

When the sequences have equal means but different variances a salience-based value

integration will be sensitive to the variance of the sequences (Figure 5.3), favouring

riskier options in the domain of gains, in direct contrast to the prediction of risk aver-

sion from expected utility theory and prospect theory (Kahneman & Tversky, 1979).

However, this prediction is in the same direction with a recent finding in experience-

based decisions (Ludvig & Spetch, 2011), where people learn about probabilistic out-

comes through active sampling, and also with a qualitatively theory applied to scenario

based decisions, the reason-based decision framework (E. Shafir, 1993; E. Shafir, Si-

monson, & Tversky, 1993). According to the latter framework, the decision mech-

anism is flexible and subject to the task framing with advantages looming larger in

selection decisions and disadvantages looming larger in rejection decisions. Both the

rank-dependent integration and the reason based framework weigh information by its

salience and the relationship between these two accounts is an interesting open ques-

tion.

5.4 Summary and General Discussion

In the present chapter I proposed an implementation of an integration model which

weighs information by its salience. Based on the experimental studies presented so far,

two factors seem to affect the prominence of information. First, the temporal order with

which information is presented makes a piece of information less or more salient (i.e.

temporal biases). Second, the local ranking of the options in the immediate decision

context affects their perceived magnitude. The first factor was captured by assuming

that the integration is subject to decay, consistent with the order effects in Chapter 3.

The second factor was incorporated in the form of a weighting function which at each

time frame boosts differentially samples of information, depending on their momentary

ranking. Although the exact form of this function was not a priori specified I naturally

assumed that high ranked items are more strongly weighted. This can be understood by
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assuming that not all the pieces of information get processed but the most noticeable

ones have higher probabilities to be encoded. This is mathematically equivalent with

applying a differential multiplicative boost on the most prominent (i.e. highly ranked)

items in a given context.

As shown in Computational Study 5 the exact form of the weighting function differs

across experiments. A steep, step-function accounts for the results in the perceptual

experiment of Chapter 4 (Experimental Study 3) while a more continuous, decreasing

function explains the data in the equivalent value integration study (Experimental Study

4). Whether the shape of the weighting function depends on the type of the stimuli (i.e.,

perceptual vs. symbolic) or other aspects of the experiment (i.e., how fast the frames

are updated) is an open empirical question. Rank-based integration with a continuously

decreasing weighting function combined with a dimension-wise processing approach

(Tversky, 1972; Roe et al., 2001; Usher & McClelland, 2004), accounts for preference

reversal in multi-attribute choice. In particular the attraction and the similarity effects

are readily predicted, however, this function does not capture the compromise effect.

For the latter a steeper weighting function is required and it is questionable whether

different configurations of the alternatives in the choice space trigger different modes

of processing and different forms of weighting.

While relying on auxiliary cues of the input, such as the ranks, is justifiable in more

intensive decisions among three options, it is not immediately clear whether this is the

case in the computationally simpler case of binary decisions. Examining the choice

pattern in the value integration experiment on order effects (Experimental Study 2)

revealed a clear signature of rank-dependent integration; in trials where the globally

maximum value was placed in the low sequence alternative, performance deteriorated

even if difficulty was controlled for. This salience-driven value integration in binary

choices can explain relativity of value phenomena (e.g., the computed value of a tar-

get sequence will be lower when it is paired with a superior option relative to when it

is evaluated against a worse option). The utilization of ranks can be justifiable since

in cases where two alternatives have equal variances and different means, this strat-

egy facilitates the detection of the best sequence. However, a direct consequence of

this strategy is the sensitivity of the choice process to the variances of the sequences.

As Computational Study 6 showed, when two options have equal means but different

variances the rank-dependent integration model predicts risk-seeking, i.e. higher pref-

erence for the broad distribution. This prediction is in sharp contrast with the results
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in the standard paradigm of risky choice, decisions by description (Kahneman & Tver-

sky, 1979) but agrees with recent findings in experience-based decisions (Ludvig &

Spetch, 2011) and a qualitative theory applied on scenario-based decisions (E. Shafir

et al., 1993). In the next chapter I will attempt to further pursue this intriguing pre-

diction of the rank-dependent model, by examining risk-preferences in the fast value

integration task.



Chapter 6

Value Integration and Risk-attitudes

6.1 Overview

As the experimental and computational studies in this thesis has shown so far, the

integration mechanism is sensitive not only to the mean strength of the information

but also to its variance. This sensitivity was incorporated in a simple accumulation

model where the absolute magnitude of an alternative is weighted by its local rank

in the immediate context. Relying on the ranks is an idea that has been proposed in

other theories of choice (Parducci, 1965; Stewart et al., 2006) and in combination to

the magnitude of the information might have an ameliorative effect when the ranks are

correlated with overall goodness. For example when evaluating candidates that have

graduated from different universities, the examiner might have little idea about what

the absolute grades reflect and might use them in combination to the relative ranking of

the candidate in her department, in order to make an informed decision. On the other

hand when the options have different variances relying on the ranks will favour the

riskier option that has the highest variance (Computational Study 6). For instance when

evaluating two candidates on the basis of their grades in several courses, a candidate

with exceptionally high but also extremely low marks will be favoured compared to an

all-average candidate.

This risk-seeking prediction stemming from the rank-dependent integration model

stands in sharp contrast with findings in decisions by description. There, people are

given explicit information about monetary gambles and are typically risk-averse in the

domain of gains and risk-seeking in the domain of losses. In this chapter, I will ex-

145
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perimentally probe risk-attitudes in the value integration task. In Experimental Study

5 I start by examining the risk preference with positive sequences and confirm the

rank-dependent prediction, finding strong risk-seeking. In Experimental Study 6 I

turn into negative sequences, corresponding to losses, and surprisingly obtain again

a risk-seeking pattern. However, when examining the preference for mixed sequences

(gains and losses) participants exhibit a risk-aversion behaviour (Experimental Study

7). Risk-aversion with mixed gambles has been typically attributed to loss-aversion,

the asymmetry between gains and losses. In order to test this hypothesis I present

to participants mixed sequences; crucially in half of them a negative number in one

sequence is always paired with a positive number in the other while in the rest of

the trials the pairs are homogeneous (i.e., negative-negative/ positive-positive). The

findings suggest that risk-aversion comes into play only in the non-homogeneous se-

quences where a loss in the one side is always compared against a gain on the other

side. Hence, what seems to trigger risk-aversion is not the asymmetry between gains

and losses but a change in the cognitive perspective; while with purely positive and

purely negative sequences attention is attracted by the locally maximum sample, in

the mixed sequences in a comparison between a loss and a gain, the loss will be more

noticeable. This flexibility of the cognitive perspective leads to Experimental Study

8 where people’s risk-attitudes in gains flip from risk-seeking to risk-aversion, when

instead of choosing the best option they are given the logically equivalent task of re-

jecting the worst. Finally, in Experimental Studies 9-10, I consider the relationship

between the fast value integration task and experience-based decisions by inducing

self-paced sampling and by presenting bimodally distributed values respectively.

6.2 Risk-seeking in Gains (Experimental Study 5)

In the study of risky choice an almost universally employed tool is hypothetical mon-

etary gambles (Kahneman & Tversky, 1979; Brandstätter, Gigerenzer, & Hertwig,

2006; Birnbaum, 2008). There, a reflection effect has been revealed (Tversky & Kah-

neman, 1992); people are found to be risk-averse for gains and risk-seeking for losses,

which is attributed to the s-shaped utility curve held within prospect theory. For ex-

ample the subjective utility of gaining £1000 is less than twice as good as gaining

£500, while the disutility of losing £1000 is less than twice as bad as losing £500.

Therefore when offered a gamble of winning £500 for sure or winning £1000 with
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50% probability or £0 otherwise, people prefer the safe £500 option (and vice versa

for losses). This pattern clashes with the rank-dependent model of value integration

which predicts merely risk-seeking when the sequences are positive (Computational

Study 6). The risk-seeking prediction in the numerical integration task is paradoxical

for a further reason; research in numerical cognition has revealed that numbers are log-

arithmically compressed (Nieder & Miller, 2003) and thus a linear summation across

the sequences should yield avoidance for the high-variance alternative. In the current

study I examine whether value integration is indeed characterized by risk-seeking in

the domain of gains.

6.2.1 Method

Participants. Participants were 16 adults [8 females; aged 20-31, mean 25.3] recruited

from UCL’s subject pool, and were paid for their participation.

Stimuli and Experimental Task. At each trial, participants saw pairs of numbers pre-

sented sequentially and had to decide, within 1500 ms, which of the 2 sequences had

the highest average value. Each trial started with a presentation of a white fixation

cross for 1000 ms, which was positioned at the centre of a black background screen.

Afterwards, sequences of pairs of white numbers were presented at a rate of 2 items

per second. The presentation of the last pair of numbers was followed by a green ques-

tion mark at the centre of the screen for 1500 ms, which prompted the participants to

indicate their response (left or right sequence) by pressing the left or the right arrow on

the QWERTY keypad of a standard PC. After the response of the participant a black

screen stayed on for 250 ms and then the next trial started. For incorrect responses

error-feedback (a beep sound) was provided for the “feedback” group while the “re-

ward” group received an extra sample. Failure to respond within 1500 seconds after

the response cue’s appearance was followed by a “deadline missed” message and a

beep sound.

Procedure. The response mode was manipulated between participants. Half of the

participants (N = 8) had to choose between two sequences the one with the highest

average. Error-feedback was provided after each trial (“feedback” group). The other

half of the participants had to choose which sequence they would prefer to draw an

extra sample from (“reward” group). This division was done in order to ensure that

the results apply to preference and not only to judgements of magnitude. After their
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response, participants of the 2nd group saw on screen an extra sample, generated from

their preferred sequence. At the end of the experiment they received one of the trial-

rewards (randomly determined), with experiment units corresponding to GB pences.

The sequence length was fixed at 12 pairs and the presentation rate at 2 pairs/ sec. The

positions of the options were randomized.

Experimental Conditions. Overall 150 trials were presented fully randomized across

conditions, in 5 blocks of 30. There were 3 overall conditions as depicted at the top

panels of Figure 6.1. One alternative, labelled as “broad”, was always associated to

a Gaussian with standard deviation of 20 while the other alternative (“narrow”) was

generated from a Gaussian with standard deviation of 10. Two of the conditions were

“unbalanced” as one alternative had always the highest mean (M) with the other alter-

native having a mean value 8 units lower (M−8). In the “balanced” condition, the two

alternatives had equal means (M). The variable M was sampled from a uniform distri-

bution in the 45-55 range, at each trial. For Condition 3 no error-feedback was given

(applicable for the “feedback” group where participants received error feedback).

6.2.2 Results

The effect of the response mode was examined in the unbalanced (right-top panel

in Figure 6.1) and balanced trials (left and middle top panels in Figure 6.1) sepa-

rately. For the unbalanced conditions a mixed ANOVA was performed, with condition

(broad-best or narrow-best) being the within subjects factor and response mode the

between subjects factor. The effect of response mode was not significant (F(1,14) =

1.43, p = 0.25). The preference for the broad distribution sequence was also exam-

ined in the balanced condition by performing an independent-samples t-test between

the two response mode groups. Again the effect of response mode was not significant

(t(14) = 1.48, p = 0.21). Therefore the data of the two groups were analysed together.

Participants were able to select the best alternatives, associate to the high distributions,

in both the unbalanced conditions (Figure 6.1 left, t(15) = 8.34, p < 0.001; Figure 6.1

middle, t(15) = 13.36, p < 0.001). Furthermore, accuracy was higher when the broad

distribution had the highest mean (t(15) = 3.62, p < 0.005) indicating a bias towards

the high variance distribution. This was confirmed by the choice pattern in the critical

condition, where participants showed a clear risk-seeking attitude, preferring the high

variance alternative above chance (Figure 6.1 right t(15) = 5.39, p < 0.001).
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Figure 6.1: Experimental Study 5 conditions (top) and results (bottom).

Observers decided between two alternatives, each characterised by a se-

quence of 12 values, presented as pairs at a rate of 2/sec. Error bars corre-

spond to 95% CI.
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6.2.3 Discussion

The results revealed a propensity towards the high-variance sequence, consistent with

the predictions of the rank-dependent weighting model and Computational Study 6.

This risk-seeking pattern quite surprising, colliding with findings from the mainstream

line of research in risky choice, decisions by descriptions (Kahneman & Tversky,

1979; Tversky & Kahneman, 1992). However, this result is in the same direction with

a recent finding in experience-based decisions (Ludvig & Spetch, 2011) where peo-

ple experience probabilistic outcomes through active sampling, as opposed to the fast

value integration task where sampling is passive and very rapid. Ludvig and Spetch

(2011) found that when the risky option had two equally probable (50%) positive out-

comes it is preferred over a safe option which always generates the same positive out-

come. Moreover, when the outcomes were negative (losses) the pattern flipped to risk-

aversion, yielding overall a reversal of the reflection effect with higher risk-seeking

for gains than for losses, in contrast with the behavioural patterns in description-based

decisions. Directly applying the rank-dependent model on negative sequences predicts

the same risk-seeking pattern as the maximum (less negative) numbers will be more

noticeable. However, it is not clear whether switching from gains to losses changes

also the direction of the differential weighting, making the minimum (more negative)

numbers more salient. Thus, in the next experiment I examine the risk-preference in

negative numerical sequences.

6.3 Risk-seeking in Losses (Experimental Study 6)

6.3.1 Method

Participants. Participants were 9 adults [6 females; aged 20-33, mean 26.3] recruited

from UCL’s subject pool, and were paid for their participation £5.

Stimuli and Experimental Task. Identical to Experimental Study 5 with the only differ-

ence that the presentation rate was set to 1 pair per 750 ms.

Procedure. All of the participants had to choose between two negative sequences, the

one with the highest mean value (error-feedback in the unbalanced trials). At the end

of each block participants could see their performance up to the point. The positions
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of the options were randomized.

Experimental Conditions. The conditions and number of trials were identical to Ex-

perimental Study 5. The only difference was now that the domain was reversed from

gains to losses and the sequences were always negative. The conditions are depicted

in the top panels of Figure 6.2.
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Figure 6.2: Experimental Study 6 conditions (top) and results (bottom). Error

bars correspond to 95% CI.

6.3.2 Results

In the unbalanced conditions the participants were able to choose the sequence that was

associated with the highest distribution above chance [narrow best (left panel in Figure

6.2) t(9) = 7.63, p < 0.001; broad best (middle panel in Figure 6.2) t(9) = 7.15, p <

0.001]. There was no signature of salience-based integration in the unbalanced trials

since the difference in those two conditions was not significant (t(9) = 0.45, p = 0.66).

However, in the critical condition where the two distributions had equal means, partic-

ipants chose above chance the sequence associated with the broad distribution (t(9) =

3.37, p < 0.001), exhibiting risk-seeking behaviour.
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6.3.3 Discussion

Although performance was invariant in the two unbalanced conditions, participants

showed a clear and strong risk-seeking bias when the distributions had equal means.

The lack of difference in the two unbalanced sequences might be attributed to a dif-

ferent mode of processing being in play due to the difficulty of processing negative

sequences. In particular, because the representation of negative numbers is somehow

less automatic (i.e., that is why the presentation rate was slightly reduced in this exper-

iment), rank ordering the numbers at each frame might have been more difficult (e.g.,

ranking negative numbers might have been confusing for some participants). Never-

theless, in the balanced condition there was a clear indication of overweighting the

locally maximum number although this tendency was somehow weaker compared to

Experimental Study 5 (i.e. by comparing the t-scores), consistent with the hypothe-

sis that rank-based integration might be more difficult with negative numbers and fast

presentation rate. In their study Ludvig and Spetch (2011) found an inverse reflection

effect (i.e., risk-seeking in gains and risk-aversion in losses) and concluded that the

representation of values might differ across domains e.g., between experience-based

and description-based problems. Here, the same risk-attitude was found in both losses

and gains, according to a rank-dependent mode of value integration. This mechanism is

in a position to override any distortions possibly imposed at the representational level

of values (e.g. s-shaped value function), revealing the important role of the micro-

computations involved in choice.

6.4 Risk-aversion in Mixed Sequences (Experimental Study

7)

So far I examined the risk-attitudes in gains and losses using the fast value integration

task. The results undermine explanations at the representational level of values (i.e.

shape of value function) and favour the salience-driven integration account. However,

there is a further behavioural pattern which has been attributed to the shape of the value

function: risk-aversion with mixed gambles. In particular when a hypothetical gamble

involves both gains and losses people are risk-averse (De Martino, Kumaran, Seymour,

& Dolan, 2006; Tom, Fox, Trepel, & Poldrack, 2007).This tendency is assumed to arise

because the value function is steeper in the negative domain and thus losses loom larger
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than gains (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). In the next two

experiments I examine risk-attitudes with mixed sequences.

6.4.1 Experiment 7a

6.4.1.1 Method

Participants. Participants were 14 adults [7 females; aged 20-31, mean 23.9] recruited

from UCL’s subject pool, and were paid for their participation £5 which could be

reduced to £4 or increased to £6, depending on the choices they made during the task.

Stimuli and Experimental Task. Identical to Experimental Study 5.

Procedure. All of the participants had to choose between two sequences. The response

mode was manipulated within participants. In half of the blocks the response question

was to determine the sequence they would like to draw an extra sample from, while

in the other half they had to choose the best sequence (error-feedback was given in

these blocks). The response mode alternated from block to block, while the response

mode in the initial block was counterbalanced between respondents. The sequences

could be either purely positive or mixed, randomized across the experimental trials.

After their response, respondents saw on screen an extra sample, generated from their

preferred sequence. At the end of the experiment they received one of the trial re-

ward/penalties (randomly determined), with experiment units corresponding to GB

pences.The positions of the options were randomized. Overall there were 10 blocks

and 300 experimental trials (30 trials per block).

Experimental Conditions. There were three conditions overall one unbalanced and

two balanced (top panels in Figure 6.3). In the unbalanced condition the mean of

the highest sequence was drawn from U(0,55). The other sequence was constructed

with mean 8 units smaller. Both distributions had equal variances σ = 10. In the first

balanced condition (“positive”) the mean both distributions was equal and drawn from

U(45,55), while one distribution was broad (σ = 20) and the other narrow (σ = 10).

In the second balanced condition (“mixed”) the mean of both distributions was set to

µ = 0 and again one distribution was broad and the other narrow as above. The trials

were presented fully randomized and each condition had 100 trials.
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Figure 6.3: Experimental Study 7a conditions (top) and results (bottom). The

first condition (left) corresponds to strictly positive sequences while the sec-

ond one (right) corresponds to mixed sequences (Gaussians with µ = 0).

Error bars correspond to 95% CI.
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6.4.1.2 Results

The effect of the response mode was not significant (similar to Experimental Study

5). In particular in the balanced condition the accuracy was invariant across the two

modes (t(13) = 0.94, p = 0.362) as was the preference for the broad distribution in the

“positive” and “mixed” conditions (t(13) = −0.37, p = 0.719 and t(13) = 1.13, p =

0.278, respectively). Therefore the results for each participant were averaged across

response modes. In the unbalanced trials, participants had above chance accuracy

(M = 0.815,SD = 0.08 and t(13) = 14.1, p < 0.001). In the positive-balanced tri-

als participants showed above chance preference for the broad distribution (t(13) =

4.6, p < 0.001). However, this pattern reversed in the mixed-balanced where respon-

dents were risk-averse, preferring less than chance the sequence associated to the broad

distribution (t(13) =−3.17, p < 0.001). As also depicted in Figure 6.3, the difference

in the preference for the risky option was highly significant in the mixed vs. the posi-

tive balanced trials (t(13) = 4.7, p < 0.001). In the next experiment examine whether

this effect is driven by an asymmetry in the value function or by salience-driven inte-

gration.

6.4.2 Experiment 7b

6.4.2.1 Method

Participants. Participants were 16 adults [7 females; aged 19-36, mean 26.5] recruited

from UCL’s subject pool, and were paid for their participation £5 which could be

reduced to a minimum of £4, depending on the choices they made during the task.

Stimuli and Experimental Task. Identical to Experimental Study 5.

Procedure. All of the participants had to choose between two sequences the one they

would like to draw an extra sample from. After their response, respondents saw on

screen an extra sample, generated from their preferred sequence (could be positive,

negative or zero). At the end of the experiment they received one of the trial re-

ward/penalty (randomly determined), with experiment units corresponding to GB pen-

nies. The positions of the options were randomized. Overall there were 8 blocks and

240 experimental trials (30 trials per block). Half of the blocks involved selection be-

tween homogeneous mixed sequences, i.e. a given pair would have strictly either neg-
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ative or positive numbers (in both sequences). The second half of the blocks involved

heterogeneous sequences, i.e. in each pair if one alternative had a negative value the

other would necessarily have a positive one. Half of the participants (N = 8) did first

four “homogeneous” blocks and then proceeded with the last four “heterogeneous”

blocks (and vice versa for the other half of the participants).

Experimental Conditions. There were three conditions overall one unbalanced and

one balanced. In the unbalanced condition the mean of the highest sequence was set

to zero. The other sequence was constructed with mean 8 units smaller. In the “broad-

best” unbalanced condition the highest distribution was broader (σ = 20) compared

to the lowest distribution that was narrower (σ = 10) and conversely in the “narrow-

best” condition. In the balanced condition, the mean of both distributions was zero

but one sequence had highest standard deviation than the other (i.e., σ = 20 against

σ = 10) and again one distribution was broad and the other narrow as above. In all

trials each sequence had 6 positive and 6 negative numbers. The homogeneous and

heterogeneous trials were identical in terms of the actual values and what differed

was the order of presentation of the value samples (see Procedure). There were 60

balanced-homogeneous, 60 balanced-heterogeneous trials and 120 unbalanced trials

(60 homogeneous and 60 heterogeneous, 30 for each unbalanced condition). Trial

from the three conditions were randomized.

6.4.2.2 Results

The overall accuracy in the unbalanced trials was above chance (t(15) = 11.09, p <

0.001). A mixed ANOVA was conducted for the unbalanced trials with the type of

the trial (broad-best vs. narrow-best) and the mode of presentation (homogeneous vs.

heterogeneous) as repeated measures factors and the order of the blocks (homogeneous

first vs. heterogeneous) as between subjects factor. The order with which the blocks

were presented had no effect (F(1,14) = 1.54, p = 0.235). The effect of the trial type

was significant (F(1,14) = 8.80, p = 0.010), showing in particular that accuracy was

higher in the “narrow-best” trials (M = 0.81,SD = 0.13) compared to the “broad-best”

ones (M = 0.71,SD = 0.09). Furthermore, the mode of presentation was significant

(F(1,14) = 5.67, p = 0.032) with performance in the homogeneous trials being higher

(M = 0.78,SD = 0.08) compared to the heterogeneous trials (M = 0.73,SD = 0.12).

No interaction was significant.
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Figure 6.4: Experimental Study 7b results). The first condition (left) cor-

responds to homogeneous mixed sequences while the second one (right)

corresponds to heterogeneous mixed sequences (Gaussians with µ = 0).

Error bars correspond to 95% CI.
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The overall better accuracy in the “narrow-best” trials indicates risk-aversion (i.e., the

low negative values of the broad distribution are penalized). Moreover, the higher

accuracy in the homogeneous trials indicates a difference in the processing mode, de-

pending on the type of presentation. In order to examine this hypothesis I turn now to

the balanced trials. There, a mixed ANOVA with the type of presentation (homoge-

neous vs. heterogeneous) as repeated measures factor and the order of presentation as

between subjects factor (homogeneous first vs. heterogeneous), was performed. The

effect of the order of presentation was not significant (F(1,14) = 0.62, p = 0.443) but

the mode of presentation was (F(1,14) = 10.154, p < 0.001). As Figure 6.4 shows,

the preference for the broad sequence in the homogeneous trials, is not significantly

different to the 50% chance level (t(15) =−1.76, p = 0.099). However, in the hetero-

geneous pairs it is below chance, indicating risk-aversion (t(15) =−3.22, p < 0.001).

An interim conclusion is that in the mixed sequences the objective is to avoid the loss.

Consequently, attention is driven towards the loss, in a pair where the one sequence

has a negative sample and the other one a positive (heterogeneous trials).

6.4.3 Discussion

Risk-aversion in mixed gambles has been typically attributed to loss-aversion and the

fact that losses loom larger than gains (Kahneman & Tversky, 1979). Whether this

asymmetry in the value function is merely descriptive or reflects a hard-wired prop-

erty of the brain is an open question (Tom et al., 2007). Recently, however, the loss-

aversion hypothesis has been undermined in experience-based decisions (Hochman &

Yechiam, 2011) where no behavioural risk-aversion was found with mixed outcomes.

In the fast-value integration task, people exhibit risk-aversion (Experiment 7a) consis-

tent with a gains/losses asymmetry assumption. However, as Experiment 7b showed,

if negative numerical values were overweighted at the representational level then the

risk-preference would be invariant between the homogeneous and heterogeneous trials

where the numerical values were identical but their presentation order tweaked. The

modulation of the risk-aversion by the presentation mode reveals that this pattern does

not reflect any hard-wired value asymmetry but rather a differential attentional focus to

losses: whenever offered a gain and a loss people will avoid the loss. At the microlevel

of an experimental trial this is reflected in overweighting the negative value compared

to the positive (this is why risk-aversion is boosted in the heterogeneous trials where

evaluation of each pair penalizes further the loss, congruent with the trial objective
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to avoid receiving a loss). This salience-driven account for risk-aversion (and conse-

quently loss-aversion) is consistent with the view that loss-aversion reflects a change

in the cognitive perspective (Ariely, Huber, & Wertenbroch, 2005) (i.e., when selling

an item people focus more on what they have than on what they will gain from the

transaction).

6.5 Risk-preferences and Task Framing (Experimental

Study 8)

The experimental results so far provided ample support that salience-driven mecha-

nisms underlie value integration. As experiment 7b revealed, what determines the

salience of a sample is the long-term objective of the decision-maker. Accordingly,

when presented with positive values only, the decision maker will try to maximize

her gains and thus will overweight the maximum numbers that square well with her

broader goal. In cases where a trial can lead to either a loss or a gain, people will try

to avoid the loss which locally means that they will overweight the negative value in a

pair that contains one negative and one positive sample. The top-down modulation of

the salience of the items is reminiscent of findings in reason-based decisions (E. Shafir

et al., 1993). In particular, when offered with a list of pros and cons for two alterna-

tives, when asked to choose one, people prefer the option with the highest variability

(with more cons and pros, similar to the result of Experimental Study 5). However,

when they are given the logically equivalent task of rejecting one option, people pre-

fer the less variable one (E. Shafir, 1993). In the next experiments I will test whether

this flexibility obtained in reason-based decisions applies also to value integration and

whether the salience of a value sample depends on the task framing.

6.5.1 Experiment 8a

6.5.1.1 Method

Participants. Participants were 16 adults [7 females; aged 21-36, mean 27.8] recruited

from UCL’s subject pool, and were paid for their participation £5.

Stimuli and Experimental Task. Identical to Experimental Study 5.
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Procedure. Half of the respondents (N = 8) had to choose the best sequence between

two throughout the whole experiment, while the other half had to choose the worst

sequence (i.e. reject the worst). Error feedback was given in the unbalanced trials.

The positions of the options were randomized. Overall there were 5 blocks and 150

experimental trials (30 trials per block).

Experimental Conditions. Conditions and number of trials were dentical to Experi-

mental Study 5.

6.5.1.2 Results
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Figure 6.5: Conditions and results in Experimental Study 8a. Top: the two

unbalanced (left, middle) and the balance (right) conditions. Bottom: accu-

racy in the unbalanced conditions (left, middle) and preference for the broad

distribution in the balanced trials (right). Error bars correspond to 95% CI.

A mixed ANOVA was performed for the unbalanced trials (Figure 6.5 left and mid-

dle panels) with the type of the condition (broad-best against narrow-best) as repeated

measures factor and the task framing (accept vs. reject) as within subjects factor. The

type of the condition did not significantly affect performance (F(1,14) = 0.71, p =

0.415) neither did the task framing (F(1,14) = 0.02, p = 0.882). However, as shown

in the bottom left and middle panels of Figure 6.5, there was a significant interac-
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tion between the trial type (broad-best/ narrow-best) and the framing (accept/ reject)

(F(1,14) = 24.01, p < 0.001). Participants that chose the best option found easier the

“broad-best” trials while participants that rejected the worst option, found easier the

“narrow-best” trials. In other words the “selection” group showed a signature of risk-

seeking while the “rejection” group an indication of risk-aversion (i.e., penalizing the

low numbers). This was confirmed by comparing the preference for the broad option

in the balanced trials between the two groups. As shown in the bottom-right panel of

Figure 6.5, when selecting the best sequence people preferred the broad distribution

but when rejecting the worst one they preferred the narrow distribution (independent

samples t-test between the two groups: t(14) = −3.54, p < 0.001). This “reflection”

effect confirms that the salience of a sample is determined by its congruency with the

long term goal of the decision-maker, in accordance with reason-based theory and the

results in E. Shafir (1993). In order to see how strong the effect of the task fram-

ing in modulating risk preferences is, in the next experiment I attempt to switch the

risk-attitude within the same trial.

6.5.2 Experiment 8b

6.5.2.1 Method

Participants. Participants were 15 adults [7 females; aged 19-31, mean 24.1] recruited

from UCL’s subject pool, and were paid for their participation £3 which they could

increased up to £4, depending on their choices during the experiment.

Stimuli and Experimental Task. The background was gray and participants saw three

sequences with each sequence number having a different colour (orange for left, ma-

genta for top and green for right) and being surrounded by a frame. The position of the

sequences was counterbalanced. The rest was identical to Experimental Study 5.

Procedure. The stimulus consisted of triples of numbers. Each trial consisted of two

stages. During the first stage, participants saw 12 triples of numbers presented sequen-

tially and in triangular arrangement, around a black fixation cross at the centre of the

screen, at a rate of 750 ms. During the first stage the numbers were surrounded by

black frames. At the end of the presentation the participant saw a black question mark,

replacing the fixation cross, and had to indicate which option she wanted to eliminate

(i.e., which option was the worst). Immediately after, the discarded option disappeared
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from the screen and the two remaining options continued for another 12 frames at a

presentation rate of 2 pairs/ frame. During the second stage the fixation cross and the

frames around the numbers were white. At the end of the presentation a white ques-

tion mark appeared at the centre and the participant had to choose which option was

the best and from which she would like to draw an extra sample from. Upon selection,

the extra sample from the selected option appeared on the screen indicating the reward

at this particular trial. At the end of the experiment one of the extra samples (trial re-

wards) was randomly chosen and was given to the participant as monetary bonus (100

units corresponded to £1).

Experimental Condition. All three options were generated from Gaussians with the

same mean value (at each trial the mean value was sampled from a uniform distribution

in the 45-55 range). The two options had a standard deviation of 10 (narrow) while

the third option had a standard deviation of 20 (broad). The positions of the options

were randomized. In the trials where the broad option was eliminated at the 1st stage,

beyond the participants’ awareness, the distribution of one of the two remaining narrow

options was turned from narrow (σ = 10) into broad (σ = 20) for the 12 frames of the

second, selection stage. Overall there were 100 trials divided in 5 blocks of 20. None

of the respondents detected the switch in the distributions when the broad option was

rejected in the first stage.

6.5.2.2 Results

The results confirm the risk-attitude reversal with respondents rejecting the high risk

alternative in the first stage more than the 33% chance level (Figure 6.6, t(14) =

3.27, p < 0.001). However, they subsequently showed risk-seeking by selecting the

same alternative above chance (Figure 6.6, t(14) = 4.81, p < 0.001) at the second,

selection stage of the trial. This preference reversal confirms the modulation of sam-

ple salience by the task framing. In order to see if there is a dependency between

the first stage elimination and the second stage selection, I analysed the conditional

probability of choosing the broad distribution given the result of the elimination stage

[P(broad− chosen|broad− eliminated) vs. P(broad− chosen|narrow− eliminated].

The probability of choosing the broad distribution was independent of the option that

was eliminated in the first stage (t(14) =−0.69, p > 0.5).

The flexibility of the decision mechanism to the task framing (bottom panel in Fig-
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Figure 6.6: Two-stage decision task and results in Experimental Study 8b.

Top left: Participants saw 12 triples presented at a rate of 750ms and were

first asked to eliminate one of them (stage-1), and then to select one from

the remaining two (stage-2), which were presented as a second sequence

of 12 pairs at a rate of 500ms. Top right: In the first stage the rejection-rate

of the risky-alternative was higher than chance (33%), while in the second

stage the selection rate for it was also higher than chance (50%), consistent

with an account that weighs different sides of the distribution depending on

the task framing (bottom). Error bars correspond to 95% CI.
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ure 6.6) can be understood in terms of a top-down mechanism, which modulates the

salience of the samples depending on the framing. Assuming that some samples are

ignored and not processed at all, in selection decisions, the maximum value in a given

pair will be more noticeable and thus more often encoded while the same happens to

the minimum values in rejection decisions. To mathematically capture this pattern,

the values are weighed by their ranks and integrated in separate leaky accumulators:

Pi = λ ·Pi(t−1)+ [Vi(t) ·w(ranki(t)]+N(0,σ)

with w(maximum)> 1 and w(minimum) = 1 in selection and w(maximum)< 1 while

w(minimum) = 1 in rejection decisions.

6.5.3 Discussion

The results of the two experiments presented in this section, violate the principle of

invariance (Tversky & Kahneman, 1981) and are incompatible with theories of choice

which assume that risk-attitudes are stable and task independent (e.g., Kahneman &

Tversky, 1979). However, the findings are consistent with previous research in reason-

based choice (E. Shafir, 1993) where people were found to reject the same option

that they chose, depending on the question in the task. The relationship between the

salience-driven value integration and the reason-based framework is apparent; infor-

mation is weighted by its salience and the salience is top-down modulated by the

long-term goals of the decision-maker. Such accounts undermine explanations of risky

choice that attribute biases and reversals merely on the way values and probabilities

are represented by internal functions. It is possible though that salience-driven ac-

counts are more appropriate when information is presented sequentially rather than by

description. In that case, the value integration paradigm, developed in this thesis, and

experience-based decisions could be explained within a single framework. However,

discrepancies in the two paradigms and exist. In the next two experiments I will discuss

and further examine these differences.
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6.6 Risk-preferences and Self-paced Sampling (Exper-

imental Study 9)

The decisions-by-experience paradigm (Hertwig et al., 2004) bears many similarities

to the fast value integration task that was developed in this thesis. In particular, in both

tasks, values are sampled sequentially and a decision needs to be made on the basis of

the received samples. One procedural difference though, is that in the decisions-by-

experience paradigm, the values are sampled actively through clicking boxes associ-

ated to alternatives. On the other hand, in the fast value integration task, values are

perceived passively by the observer. Thus, in an experience-based task, the decision-

maker is free to sample at will from all the alternatives, which induces also more

complex exploration/ exploitation strategies (i.e., equally sample from both options or

focus on one only). Although big discrepancies between experience-based decisions

and the mainstream line of research in risky choice, decisions by description, have been

revealed (Hertwig et al., 2004; Hertwig & Erev, 2009; Hadar & Fox, 2009; Ludvig &

Spetch, 2011), it is not fully clear to what extent the experience-based protocol differs

from the fast value integration task.

Going back to Experimental Study 2 and order effects, the fast value-integration task

was characterized by recency weighting and a large temporal span in play (i.e., accu-

racy kept improving with longer sequences). In experience-based task, in some studies

there was an indication of recency weighting (Hertwig et al., 2004) which was not

replicated though in another case (Ungemach, Chater, & Stewart, 2009). Furthermore,

consensus has been reached that participants in experience-based decisions rely on a

small subset of samples (Hau, Pleskac, Kiefer, & Hertwig, 2008), which is ruled out by

the large time-constant and the steady improvement of accuracy with longer samples

in Experimental Study 2. While the risk-seeking bias in gains of Experimental Study 5

coincides with a recent finding in an experience-based task (Ludvig & Spetch, 2011),

the risk pattern in losses differs (i.e., risk-seeking according to the result of Experimen-

tal Study 6 and risk-aversion in Ludvig & Spetch, 2011). Additionally, the findings of

Experimental Study 7 indicated risk-aversion in mixed sequences which has not been

obtained in decisions by experience (Hochman & Yechiam, 2011). In the next exper-

iment I manipulate the type of sampling (active or passive/ fast or self-paced) in the

fast value integration task, in order to examine at what extent the way that information

is received affects risk preferences.
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6.6.1 Method

Participants. Participants were 16 adults [9 females; aged 19-45, mean 26.6] recruited

from UCL’s subject pool, and were paid for their participation £3 which they could

increased up to £4, depending on their choices during the experiment.

Stimuli and Experimental Task. Identical to Experimental Study 5.

Procedure. All respondents had to choose between two positive numerical sequences

the one they would like to draw an extra sample from. In each trial, after their choice,

the reward sample appeared on the screen. At the end of the experiment one of the trial

rewards was randomly given to them as bonus, with experimental units corresponding

to GB pennies. The experiment consisted of two blocks. In one block participants

receive values passively at a rate of 2 pairs/ second. In the other block a pair appeared

on the screen only after the participant press the space bar on the keyboard. Therefore,

the sampling was self-paced and active. Half of the participants started (N = 8) with

the self-paced block and proceeded with the passive block and vice-versa for the other

half of the respondents. Each block contained 50 trials (100 trials overall).

Experimental Condition. Identical to the balanced condition in Experimental Study 5.

6.6.2 Results

A mixed Anova was performed with the DV being the preference for the broad se-

quence, the sampling mode (active or passive) the repeated measures factor and the

order of presentation (active first or passive first) the between subjects factor. The sam-

pling mode was not significant (F(1,14) = 0.10, p= 0.756) while the order with which

the blocks were performed was marginally significant (F(1,14) = 4.6, p = 0.05). The

effect of the order, as also shown in Figure 6.7, indicates that the risk-seeking pattern

diminishes from the first block to the second (the sampling mode and order interaction

was not significant; F(1,14) = 2.18, p = 0.162), indicating a small learning effect. Fi-

nally, by averaging the preference for the broad distribution across the two sampling

modes, a highly significant risk-seeking was found (t(15) = 4.92, p < 0.001).
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Figure 6.7: Experimental Study 9 results. One half of the experiment in-

volved active sampling (pressing a space bar to receive a sample) while the

other half involved passive sampling. The order of the sampling mode was

counterbalanced between participants (i.e., the one group sampled actively

in the first half of the experiment and passively in the second and vice versa

for the other group). Error bars correspond to 95% CI.
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6.6.3 Discussion

One of the distinctive characteristics of the fast value integration task is that values are

sampled rapidly and in a passive mode. In this experiment I attempted to see whether

the fast presentation mode caused or not one of the strongest patterns encountered

up to the point: risk-seeking in the domain of gains. The results clearly reveal that

when participants are free to receive the value samples at their own pace, the risk-

seeking pattern persists. An interesting observation from the current study is that the

risk-seeking pattern diminishes from the first to the second block (regardless of the

sampling mode). Therefore it is possible that salience-driven integration is stronger at

stages where people are unfamiliar with the task (and do not have a good grasp of the

goodness of the absolute values) and rely more on auxiliary cues (i.e. local ranks), a

tendency which dissipates with learning. In the next experiment I examine whether,

similar to experience-based decisions, people underweight the rare events in the fast

value integration task.

6.7 Risk-preferences and Rare Events (Experimental Study

10)

One tenet arising from the decisions-by-experience paradigm is that rare events are

ignored or underweighted (Hertwig et al., 2004; Hertwig & Erev, 2009). This prin-

ciple, combined with others such as the reliance on small samples, explains most of

the patterns encountered in this paradigm. Considering the weight of the rare events in

experience-based decisions is reasonable since, similar to descriptive monetary gam-

bles, the alternatives are often characterized by bimodal distributions. For example

people are often confronted with one risky and one safe option with equal expected

values. The risky option might generate zeros 90% of the time and a large positive

value the rest 10%, while the safe option will yield always the same moderate value.

This stands in contrast with the fast value integration task, where the values are varying

in a more continuous way, being generated by normal distributions. In this experiment,

I use the fast value integration protocol and present to participants values generated by

bimodal (risky option) or unimodal (safe option) distributions, similar to experience-

based decisions.
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6.7.1 Method

Participants. Participants were 9 adults [6 females; aged 22-29, mean 24.8] recruited

from the University of Tel Aviv subject pool, and were paid for their participation

£3 which they could increased up to £4 (the actual amount was converted into the

corresponding Israeli currency), depending on their choices during the experiment.

Stimuli and Experimental Task. Identical to Experimental Study 5. The only difference

was that between each pair, a blank black screen was interleaved for 100 ms. This was

necessary since in some trials the same value sample was repeated sequentially within

one alternative. Without this blank interval, the alternative which had always the same

value would appear not to be updated at all, while the changing one would fluctuate

attracting that way visual attention.

Procedure. All respondents had to choose between two positive numerical sequences,

presented at a rate of 2 pairs/ second, the one they would like to draw an extra sample

from. In each trial, after their choice, the reward sample appeared on the screen. At the

end of the experiment one of the trial rewards was randomly given to them as bonus,

with experimental units corresponding to GB pennies. The experiment consisted of

two blocks. In one block participants receive values passively at a rate of 2 pairs/

second. The experiment consistent of 250 trials divided into 5 blocks.

Experimental Conditions. The task involved two types of conditions: balanced (150

trials) and unbalanced (100 trials). The balanced trials involved selection between two

sequences, one risky and one safe, of overall equal expected value. First, the additive

value of the sequences was sampled from U(40,60). In the safe sequence all twelve

values were equal, summing up to the additive value (e.g. if the additive value was 60

then all twelve values of the safe sequence were equal to 5). For the risky sequence

the probability of a non–zero value to occur in the risky option was manipulated across

three levels (50 trials for each level). In the first condition the ten value samples were

equal to zero while the two other samples had values that added up to the overall

additive value (e.g. 10 values were zero and 2 values 30, p(nonzero) = 2/12). In the

second condition, the probability of a non–zero value was p = 6/12 while in the third

condition it was p = 10/12. Therefore, for p = 2/12 the rare events had high values

while for p = 10/12 values of zero. The three balanced conditions were divided into

two types: clear vs. perturbed sequences (75 trials each). The clear sequences were

constructed as described above (i.e., with one discrete value for the safe option and
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two discrete values- zero and a positive value- for the risky option). In the perturbed

sequences a constant value sampled from U(0,5) was added independently on each

value sample. The unbalanced trials were constructed similarly (with one risky and

one safe option, and the probability of a non–zero value to occur in the risky option

manipulated across three levels), but the one option (for half of the trials the risky and

for the other half the safe) dominated the other, having a higher additive utility (i.e.,

the difference set at 95 units). All conditions were fully randomized.

6.7.2 Results

An analysis on the filler trials was performed by dividing them on the basis of the

dominating option. When the dominating option was the risky one, performance was

not significantly above chance (M = 0.52,SD = 0.27, t(8) = 0.22, p = 0.829). On the

other hand when the safe option (which always had non–zero values) was the best, per-

formance was much above chance (M = 0.83,SD = 0.13, t(8) = 7.46, p < 0.001). The

difference in the accuracy in the two types of trials was significant (t(8) =−2.67, p =

0.027). This difference in performance reveals a bias towards the safe sequence. In

the balanced trials, the probability of the non–zero sample to occur in the risky option

did not significantly affect the probability of choosing it (F(2,18) = 2.64, p = 0.102).

However, as Figure 6.8 shows, the manipulation of the probability of the non–zero

event to occur, reduced the risk-aversion behaviour (the less the non–zero events in

the risky option were, the more likely it was chosen). The lack of significance in

this trend should be considered with respect to the relatively small amount of tri-

als (25 trials for each data point in Figure 6.8). The effect of the type of sequences

(clear vs. perturbed) was highly significant (F(1,8) = 18.82, p < 0.001). As depicted

in Figure 6.8, the perturbation of the sequences with a small positive constant (ran-

domly chosen from U(0,5)) reduces risk-aversion. In particular, the preference for the

risky option (averaged across the three conditions, i.e. p = 2/12,6/12,10/12) in the

clear sequences was significantly below 50%, indicating risk-aversion (M = 0.28,SD=

0.20, t(8) =−3.23, p = 0.012) while in the perturbed sequences it did not differ from

chance (M = 0.42,SD = 0.23, t(8) =−0.99, p = 0.36).
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Figure 6.8: Experimental Study 10 results. The probability of zero (in clear

sequences) or a very small number (perturbed) appearing in the “risky” se-

quence was manipulated within participants. The other sequence (“safe”)

had always moderate values (the same value in clear sequences and slightly

differentiated in the perturbed sequences) spread evenly in all of its samples.

The two sequences had equal integrated values. Error bars correspond to 1

SE.
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6.7.3 Discussion

The fact that participants avoided the risky option in the p = 2/12 condition, where

that option had rarely non–zero positive values, is consistent with the ignoring rare

events hypothesis (i.e. the positive rare values are ignored). If ignoring the rare events

was in play, this pattern should be reversed in the p = 10/12 condition where the risky

option had rarely zero values (which should be ignored). However, in the latter con-

dition people did not show any propensity to choose the risky option above chance.

Moreover, the significant effect of perturbing the value samples on the probability to

choose the risky option, indicates the important role of the zero value-samples and

supports a salience-driven integration account. In particular, it is reasonable to assume

that in this task, the long-term objective of the respondents is to avoid getting at the

end a zero sample as reward. If this was the case then zero values should be further

penalized when paired with a small positive value (similar to penalizing the losses in

Experimental Study 7) and that might explain why the risky option is avoided in the

clear sequences. On the other hand, in the perturbed sequences, where the zeros are

replaced by small positive values, the risk-aversion attitude disappears. It is interesting

to repeat this experiment by perturbing the sequences with even higher values and see

if, and at what magnitude of perturbation, risk-seeking is obtained. To conclude, the

results of the current study suggest that the “ignoring the rare events” hypothesis does

not apply to the value integration task. This finding in combination with the study

by Ungemach et al. (2009), where people accurately (i.e., without underweighting) re-

ported the frequencies of the encountered events in an experience-based task, opens the

possibility for alternative interpretations (e.g. salience-based integration) of Hertwig et

al. (2004) original results.

6.8 Summary and General Discussion

Risk attitudes have been traditionally elicited using hypothetical monetary gambles

which provide explicit information about probabilistic outcomes (Kahneman & Tver-

sky, 1979; Tversky & Kahneman, 1992; Stewart et al., 2005; De Martino et al., 2006;

Tom et al., 2007). Findings from this line of research (i.e. decisions-by-description),

revealing risk-aversion with gains and risk-seeking with losses, have been attributed to

non-linearities in the way values or probabilities are represented by internal functions.
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In this chapter, I aimed to examine people’s risk preferences using an alternative ex-

periment tool, the fast value integration task. In the fast value integration paradigm,

similar to experience-based decisions (Hertwig et al., 2004), people experience di-

rectly value samples. The value samples are normally distributed and therefore the

risk associated with an option coincides with the variance of the numerical sequence.

For example, choosing a sample from a sequence associated with a broad distribution

can yield an extremely low or an extremely high value, while choosing a low-variance

sequence will return a more mediocre value. Probing risky choice using this task can

reveal the micromechanisms that lead to risk-biases, which potentially override expla-

nations at the representational level.

In Experimental Study 5, I confirmed the rank-dependent prediction of risk-seeking

in the domain of gains (Computational Study 6 in Chapter 5). This finding, although

clashing with results in description-based decisions (Tversky & Kahneman, 1992),

coincides with a similar pattern that was revealed in experience-based decisions by

Ludvig and Spetch (2011) who found an inverse reflection effect: risk-seeking in gains

and risk-aversion in losses. The latter finding was not replicated in the fast value

integration task, where participants showed again, as in the domain of gains, risk-

seeking (Experimental Study 6). However, in accordance with decisions by description

(De Martino et al., 2006) and contrary to experience-based decisions (Hochman &

Yechiam, 2011), participants in the fast value integration task, exhibited risk aversion

with mixed sequences that were normally distributed around zero (Experimental Study

7a). As Experimental Study 7b showed, what drives risk-aversion is not the magnitude

asymmetry between losses and gains (as factored in by hard-wired loss-aversion in

value-based accounts), but the change of cognitive perspective (e.g., Ariely et al., 2005)

and the increased salience of losses: the goal of the decision-maker to avoid a loss at

the end of the trial, is reflected at the microlevel by an increased penalty or attentional

salience applied on the loss samples. The modulation of the samples salience by the

long-term objective of the respondent was further confirmed in Experimental Studies

8a and 8b. There, asking participants to reject the worst option instead of selecting

the best one, resulted in a switch in the risk-bias from risk-seeking to risk-aversion in

the domain of gains. This switch is consistent with data (E. Shafir, 1993) and theories

(E. Shafir et al., 1993) of high-level, reason-based decisions and also with a salience-

driven account of value integration, with salience being dependent on the goals of the

agent.
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It is questionable whether and how a salience-driven account is applicable to decisions-

by description with hypothetical gambles. What is missing in order to apply the

micro-structure insights obtained here to description-based problems, is a detailed un-

derstanding of the deliberative algorithm that people undergo when faced with hypo-

thetical gambles. Recent eye-tracking studies (e.g., Glöckner & Herbold, 2011) on

risky choice promise to bridge this gap and provide a process-based description of the

information sampling regularities that characterize choice among monetary gambles.

Contrary to decisions-by-description, where the deliberative computations that peo-

ple employ are covert, a salience-driven integration account is directly applicable to

experience-based decisions, where information is actively and sequentially sampled.

Yet, however, discrepancies between the fast value integration and the experience-

based domains exist at the empirical front (i.e., risk-attitude in losses i.e., Ludvig &

Spetch, 2011 and with mixed sequences i.e., Hochman & Yechiam, 2011). In order

to further explore the basis of these discrepancies, I attempted to minimize the proce-

dural differences between those two domains by first inducing active sampling in the

fast-value integration task. The risk preferences in Experimental Study 9, were invari-

ant to the nature of the sampling (passive against active). Next (Experimental Study

10), I changed the type of the sequence-distributions from normal to more discrete uni-

modal or bimodal (similar to the standard practice in the experience-based paradigm

e.g., Hertwig et al., 2004) and examined how this change affects risk preferences. The

results ruled out the standard explanation held within the experience-based literature,

that rare events are ignored or underweighted (Hertwig & Erev, 2009), supporting

a salience-driven account where the occurrence of zero outcomes (or extremely low

ones) is more noticeable and negatively weighted. The latter finding opens the possi-

bility of re-interpreting the results in Hertwig et al. (2004) under the rank-dependent

computational framework that was developed throughout this thesis.



Chapter 7

Summary and Conclusions

The aim of this thesis was to examine the way that decision-relevant information is

integrated across time in both perceptual and value-based choice. The two specific re-

search questions I pursued, concerned how the temporal order and the decision context

distort this integration process. In a series of experimental studies, by tightly control-

ling the time-course of the decision-relevant information, I obtained order, risk and

task-framing biases as well as contextual preference reversal effects. These phenom-

ena were explained by a simple mechanism based on the integration of information,

weighted by its salience. The salience of a sampled piece of information depended

on its temporal order and local rank in the decision context, while the direction of the

weighting was determined by the task framing. That way, I demonstrated that choice

regularities, that are traditionally attributed to the way information is represented, arise

from the microstructure of the information integration process. Moreover, the salience-

driven integration model I developed here, promises to establish a common theoreti-

cal framework between evidence-based (e.g., integrating perceptual or reward infor-

mation) and goal-directed decisions, focussed on multiple goals with trade-offs (e.g.

choice among cars or flats). In this last chapter, I will summarize the main findings

of each chapter, discuss the implications of these findings and allude to outstanding

issues and future directions.

175
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7.1 Summary of Findings

In Chapter 3, I examined the presence and basis of order effects in both perceptual

and value-based choice. I started by presenting a computational exploration (Compu-

tational Study 1) of the LCA choice model (Usher & McClelland, 2001), showing that

under a single set of parameters it predicts primacy for short stimulus durations which

switches into recency for longer durations. Evidence for this unique prediction, emerg-

ing from a neurally plausible aspect of the model (that preference states correspond to

neuronal firing rates and thus cannot go below 0), was provided in a perceptual exper-

iment (Experimental Study 1). A similar pattern was obtained in the value integration

task (Experimental Study 2 and Computational Study 2), in the form of recency bias

which increased with sequence length. These results led to the conclusion that the tem-

poral span of information integration is limited. The implications of this limitation for

choice optimality were explored in Computational Study 3, showing that decay-based

information integration is ameliorative in volatile and ever changing environments.

In Chapter 4, I examined the effect of the context on the integration process, using

choice among three alternatives. By manipulating the exact time-course of the deci-

sion input, I induced temporal correlations among the alternatives in an attempt to cre-

ate analogs of the deliberative process that underlies multi-attribute choice problems.

In a brightness discrimination task (Experimental Study 2), a strong similarity effect

(Tversky, 1972) was obtained and was explained within the LCA model of perceptual

choice due to its zero non-linearity (Computational Study 4). In the corresponding

value-integration experiment (Experimental Study 3), both the attraction (Huber et al.,

1982) and the similarity effects were obtained, indicating that the fast value integration

psychophysical paradigm is a valid proxy to the underlying process of goal-directed

decisions.

Although the similarity effect could be accounted within the perceptual LCA, this was

not the case with the attraction effect that was obtained in Experimental Study 3. This

led to the development of an alternative computational model in Chapter 5, which

accounted for preference reversal effects by assuming that pieces of information are

boosted proportionally to their local/ momentary ranks (Computational Study 5). The

exact form of this differential boost was specified for Experimental Studies 3 and 4.

Finally, novel predictions from the rank-dependent model, involving risk-seeking in

gains, were derived (Computational Study 6).
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These predictions, led to Chapter 6 and the examination of risky choice using the fast

value integration paradigm. First, contrary to the standard result obtained within the

description-based literature (e.g. Tversky & Kahneman, 1992), respondents in the fast

value integration task demonstrated risk-seeking with positive sequences (Experimen-

tal Study 5). This finding is consistent with a recent study in experience-based deci-

sions which revealed a similar pattern (Ludvig & Spetch, 2011). However, contrary to

the latter study in which losses were characterized by risk-aversion, participants in the

value integration task, were still risk-seeking even when the sequences corresponded

to losses (Experimental Study 6). Their attitude reversed to risk-aversion only when

the sequences were mixed (Experimental Study 7), involving both positive and neg-

ative values, and when the task framing switched from selection (i.e. choose the best

sequence) to rejection (i.e. discard the worst sequence) (Experimental Study 8). The re-

versal of risk preferences in mixed sequences and rejection decisions, revealed that the

direction of the differential weighting applied on value samples, depends on top-down

factors and is congruent with the decision-maker’s global objective. In the final two

experiments (Experimental Studies 9, 10), I explored the relationship between the fast

value integration task and experience-based decisions with respect to risk preferences.

The results ruled out the prominent view held within the experience-based literature,

that rare events are underweighted, opening the possibility of re-interpreting data in

this field (e.g. Hertwig et al., 2004) under a salience-driven computational framework.

7.2 Implications

Value Psychophysics: A Window on Motivation-based Choice

Value-integration is an essential process embedded on dynamic models of preference

(Roe et al., 2001). There, the cognitive system integrates subjective values (rather than,

say, pieces of perceptual evidence), which depend on how each alternative matches the

decision maker’s goals (Roe et al., 2001; Usher & McClelland, 2004). In particular,

when alternatives are characterized by different attributes (e.g. price and quality of a

product), preference is shaped through shifting attention across these attributes, assess-

ing an item’s subjective value on each attribute, integrating these values across time,

and finally making a choice when some threshold is reached. A detailed understanding

of these computations might explain the systematic anomalies observed in motivation-

based decisions.
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Studying the microstructure of motivation-based choice has been difficult to pursue

because classical laboratory preference tasks provide little control of the moment-by-

moment processes of value sampling and integration. Instead, choice alternatives are

statically presented and the decision maker reports her preference after freely sampling

information related to the alternatives. Although tracking the regularities in the infor-

mation sampling process is feasible (Krajbich & Rangel, 2011; Glöckner & Herbold,

2011) internal shifts of attention between attributes cannot be measured and hence

these tasks are not properly constrained to test the underlying cognitive operations.

This stands in contrast with psychophysical paradigms for studying evidence-based

perceptual choice where the flow of sensory evidence is fully controlled by the ex-

perimenter (Britten et al., 1993). To obtain more precise control on the decision in-

put I introduced a novel experimental paradigm at the interface of psychophysics and

motivation-based decisions. Participants simultaneously viewed two or three rapidly

varying sequences of numerical values. Controlling the flow of the input values al-

lowed to directly probe how people attend to and integrate values.

How close is this paradigm to the actual deliberative process that people employ when

faced with complex trade-offs? By manipulating the temporal distributions of the value

samples and by inducing temporal correlations among the alternatives, I obtained a

number of choice patterns and paradoxes, typically encountered in motivation-based

choice problems. In particular I obtained order (e.g. Furnham, 1986) and risk (e.g.

Kahneman & Tversky, 1979) biases, violations of the invariance due to task framing

(E. Shafir, 1993) and contextual preference reversal (Tversky, 1972; Huber et al., 1982;

Maylor & Roberts, 2007). These effects link the simple, psychophysical task of value

integration to high-order, multi-dimensional decisions showing that the technique of

controlling the sampling process is a good proxy to the study of decisions in richer

domains.

The use of psychophysics as a valid abstraction of complex decision-making problems

has several advantages. First, it facilitates the construction of simple and parsimo-

nious models, that are able to account primarily for the experimental data and capture,

as a consequence, the core mechanisms that underlie more complex cognitive func-

tions. Second, it allows the “masking” of experimental manipulations (e.g. collapse

trade-off problems into one-dimensional input with covert temporal correlations) and

prevents the corruption of the results from attitudes and knowledge held by the partici-

pants independent of the experiment. Furthermore, it allows to take repeated measures
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of the same problem from the same person without the responses being affected by

memory or a tendency for responding consistently across trials. Finally, the “value

psychophysics” success in approximating the underlying process of goal-directed de-

cisions, opens the possibility for the development of similar simplified paradigms for

the induction of higher-level mental states in other domains (e.g. reasoning).

Microcomputations vs. Value Representations

The making of a decision arises from a series of computations over a set of mental

representations related to the available choice options. Traditional theories of choice

have focused especially on the representational level and attributed choice anomalies

to distortions in the functions that represent decision relevant quantities such as values

and probabilities. For example, the representation of utility in risky choices, following

the normative theory (Von Neuman & Morgenstern, 1947), is assumed to be logarith-

mically compressed. Risk-biases have led to the refinement of this value function and

the development of similar non-linear functions for the representation of probabilities

(Kahneman & Tversky, 1979). A theoretical prerequisite arising from this approach,

holds that these functions are relatively stable and their shape hard-wired. However,

the existence of context effects (Huber et al., 1982; Tversky & Simonson, 1993; Petti-

bone & Wedell, 2007) and value relativity phenomena (Stewart et al., 2003; Vlaev et

al., 2009; Kurniawan et al., 2010) has challenged, but not completely ruled out (since

these accounts can incorporate the notion of reference points that shift around these

functions without fundamentally changing their shapes), this claim.

Throughout this thesis, I focused on the algorithmic details that govern the choice pro-

cess. The obtained effects were accounted merely by the nature of the computations

towards a decision, regardless of the exact representational details of the decision-

relevant quantities. For instance, it is well established that the representation of nu-

merical values is logarithmic (Nieder & Miller, 2003). A direct implication, assuming

that numbers are integrated via linear summation, would be that when selecting from

two streams of numbers the one with the highest sum, people would avoid the one with

the highest variance (risk-aversion). Despite that, the results of this thesis revealed that

participants performing the fast value integration task exhibited risk-seeking behaviour.

In other words, the microcomputations performed with values (however these values

are represented) might exert a stronger influence on the choice outcome and override,

in some cases, biases induced by non-linearities in the representation of values.
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Process theories that emphasize the role of computations, rather than the role of the rep-

resentations, have been recently put forward (e.g. Stewart et al., 2006; Roe et al., 2001),

successfully accounting for the online construction of value and its dependency on en-

vironmental contingencies (Stewart, 2009; Ungemach, Stewart, & Reimers, 2011). I

believe that micro-level accounts like Decision by Sampling (Stewart et al., 2006) or

the salience-driven one developed here, are not necessarily at odds with the notion that

there are some regularities in the representation of values at the neural level (Trepel,

Fox, & Poldrack, 2005; Padoa-Schioppa & Assad, 2007; Tom et al., 2007; Levy, Snell,

Nelson, Rustichini, & Glimcher, 2010). And in fact some behavioural patterns might

be explained by non-linearities in these regularities alone. In most of the cases, how-

ever, decision-relevant quantities are expected to be subject to further important trans-

formations by the decision algorithm.

Sensitivity to Higher Moments of the Decision Input and Choice Optimality

Research in evidence-based (e.g. perceptual or reward) choice has traditionally focused

on the way people respond to the mean strength of the stimulus. Accordingly, the goal

of the decision-maker is to average out the noise embedded in stationary distributions.

The results of this thesis clearly show that people are also sensitive to the variance

of the decision input. This sensitivity is captured by the salience-based integration

framework, which further enhances peaks in the stimulus, and squares well with find-

ings in other domains such as perceptual categorization (Summerfield et al., 2011) and

judgemental forecasting (Harvey, 1995; Reimers & Harvey, 2011). It appears thus,

that people are not processing the decision input in a merely bottom-up and automatic

way, but rather engage into additional computations (e.g. ranking) in order to better

infer the causal and probabilistic structure of the problem (i.e. model-based reasoning

rather than pavlovian responding).

In stationary environments, picking up second-order regularities could be thought of

as redundant. Why are then people sensitive to aspects of the stimuli that are seem-

ingly irrelevant? One plausible answer is that the use of auxiliary cues can facilitate

choice even under stable conditions. For example utilizing the rank order of the al-

ternatives (Parducci, 1965; Stewart et al., 2006) in combination with their absolute

values (i.e. the rank-dependent framework developed here) might be a more robust al-

gorithm, speeding up spotting the best alternative (small differences are amplified) or

guiding decisions in novel situations where the stimulus scale is meaningless to the

decision-maker (e.g. evaluating candidates whose absolute grades mean nothing to the
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examiner). Furthermore, in volatile environments and since boosting values by ranks

magnifies small differences, changes in the underlying structure would be more readily

detected.

Of course a strategy like this one is a double-edged sword; the increased sensitivity to

differences (or changes) might lead to “overfitting” of the world’s structure and a costly

false alarm rate. Therefore the optimality question is whether people are able to adjust

the way they rely on secondary cues of the stimulus, in response to the structure of the

environment (Summerfield et al., 2011). As I demonstrated in this thesis (e.g. order

effects due to decay-based information, section 3.5), biases might be the price that

humans pay for being employed with mechanisms that enable them to be optimized on

an ever changing world. Being employed with such mechanisms should improve, on

average, choice quality and choice paradoxes might just reflect exceptional cases where

these mechanisms fail due to oddities or wittingly introduced twists in the structure of

the choice problem.

Perceptual vs. Value-based Choice

Recent research on the psychology and neuroscience of simple, evidence-based choices

(e.g., integrating perceptual or reward information) has led to an impressive progress

in capturing the underlying mental processes as optimal mechanisms that make the

fastest decision for a specified accuracy (Shadlen & Newsome, 2001; Ratcliff et al.,

2004; Rorie et al., 2010). The idea that decision-making is an optimal process stands

in contrast with findings in more complex, motivation-based decisions, focussed on

multiple goals with trade-offs (e.g., choice among cars or flats). Here, a number of

paradoxical and puzzling choice behaviours (Tversky, 1972; Huber et al., 1982; Tver-

sky & Simonson, 1993) have been revealed, posing a serious challenge to the devel-

opment of a unified theory of choice. Can a common theoretical framework between

evidence-based and motivation-based decisions be established?

So far the two fields of perceptual and value-based decisions have been studied inde-

pendently with different methods and techniques and only a set of recent theoretical

models (Roe et al., 2001; Usher & McClelland, 2004; Stewart et al., 2006; Tsetsos et

al., 2010) have attempted to bring those two fields closer, by theorizing goal-directed

behaviour under sequential sampling models. Drawing on these models, I attempted

in this thesis to create an experimental protocol where values are presented sample by

sample, in a way similar to sensory stimuli. Despite that the perceptual and value-based
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experiments differed only in the type of stimulus (sensory vs. numerical values), sev-

eral behavioural discrepancies were obtained. In particular, concerning order effects,

the perceptual experiment was characterized mostly by primacy whereas the numerical

one by strong recency. Thus, different time constants seem to underlie each paradigm

which can be presumably attributed to the longer trial durations (in absolute terms)

employed in the value-based task. Regarding context effects, different effects (and of

different magnitude) were obtained from each paradigm. Despite that, a common prin-

ciple that emerged from both experiments was that choice is driven by peaks in the

stimulus.

This led to the development of a salience-driven (rank-dependent) integration model

whereby magnitudes are weighted by their local ranks. The exact form of this rank-

dependency differed across the two experiments (sections 5.2.2 and 5.2.3). In particu-

lar, in the perceptual experiment, only the momentarily maximum option was subject

to extra boosting while in the value-based experiment all options were boosted, pro-

portionally to their rankings. This difference can be attributed to the nature of the

stimulus; quickly rank-ordering the options is much easier with symbolic, numerical

quantities as opposed to noisy sensory stimulus. Although numerical values and sen-

sory stimulus are processed by different neural circuits, what this thesis showed is that

this processing might be governed by similar abstract principles (i.e. leaky, salience-

driven integration); and this is conceivable because these simple principles are in a

position to explain phenomena from simple, brightness discrimination tasks to multi-

attribute choice problems (i.e. preference reversal) and risky choice.

7.3 Future Directions

Visual Attention and Decision-making

One central aspect of the computational framework developed in this thesis was that

magnitudes are weighted by their salience (i.e. ranks). A signature of this differential

weighting could be sought in systematic fluctuations of visual attention, with visual

gazes being directed towards the momentarily better options. An alternative possibility

is that the differential weighting is not applied on the input values, due to biased visual

attention, but at a later stage of the decision process as an internal top-down boost (e.g.

scoring high in the ranks might be an extra hint that this option is the best). A detailed
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understanding of the nature of this differential weighting and the involvement of visual

attention is expected to further refine the salience-driven model, leading also to novel

predictions. Furthermore, the role of attention is under-explored in sequential sampling

tasks with humans. There, participants are assumed to fixate their gazes at the centre of

the screen (which is not always controlled for) and to sample equally from all available

options. However, it is likely that, during the course of a decision, especially with more

than two alternatives, preference states feed-back towards the input stage, biasing the

sampling process and facilitating a “winner takes all” effect. As Krajbich and Rangel

(2011) showed, incorporating attentional parameters into classical sequential sampling

models can provide a more complete account of decision behaviour.

Emergence of Ranking Structure in Dynamic Stimulus

One important difference found in this thesis between perceptual and value-based de-

cisions among three alternatives, concerned the shape of the rank-dependent weighting

function. While in the value-based task all three options were differentially weighted,

in the perceptual experiment only the momentarily maximum option was boosted while

the second and third in rank were indistinguishable (in terms of weighting) from each

other. Two alternative hypothesis can explain this difference. First, the symbolic rep-

resentation of numerical values might have just facilitated the utilization of the rank

ordering of all three alternatives. On the contrary, sensory stimulus (i.e. brightness)

might not be appropriate (by nature due to different circuits that process it) for an

immediate and rapid rank ordering. Alternatively, the use of the full rank-order of

perceptual stimulus might have been hindered due to external reasons and in particu-

lar the very fast updating of the noise that was superimposed on top of the signal (in

the experiments presented here that was every 13.3 ms). In order to disentangle these

two hypotheses, one could attempt to slow down the noise fluctuations in a brightness

discrimination task and probably make the length of the phases longer (so as to make

the rank-order structure more apparent). If, after these changes, an analog of the at-

traction effect (which can be explained only by the use of the full ranking) is obtained

then the second hypothesis would be supported. In that case, specifying under exact

what conditions (i.e. how long does the stimuli need to be stable in order to create a

symbolic representation of the full rank order of all options) secondary cues are used

(ranks) would be the next step.
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Microcomputations vs. Perceptual Representations and Task Framing

As shown in this thesis, the computational details at the decisional level of the choice

process might induce distortions that override the representational non-linearities asso-

ciated with numerical values. In particular, people, among two numerical sequences of

equal mean, chose more often the one associated with higher variance. This might be

the case with sequentially presented physical quantities, such as brightness, which are

known to be also logarithmically compressed. For example, between two spots with

equal normally distributed brightness, observers might be biased towards the one with

the highest noise because it has more positive peaks. This was found to be the case in

one of the conditions in the brightness discrimination task (i.e. compromise condition

in section 4.2), although this experiment was conducted with three alternatives and

temporal correlations among the options. The visual attention in such an experiment

can be controlled not to freely fluctuate so as to test whether a higher preference for

the more noisy option is due to biased attention or because of non-linearities at the

accumulation level (e.g. the zero non-linearity of LCA naturally promotes alternatives

with higher drift rate/ variance without assuming that attention is fluctuating between

the options). If a variance-seeking bias is obtained in a brightness discrimination task,

it would be interesting to see whether this pattern is reversed when observers are given

the, logically equivalent, task of rejecting the spot with the lowest brightness, similar

to the task-framing bias obtained in the value integration paradigm.

Experience-based Decisions

Experience-based decisions share many common properties with the fast value integra-

tion task. In both cases, value samples are experienced (presented directly or actively

sampled) and a decision is made on the basis of the whole stream of these received

samples. Therefore, the probabilities of risky prospects are not given explicitly but are

experienced implicitly. One of the most prominent result in experience-based deci-

sions, is that people tend to underweight small probabilities (or rare events) opposite

to what happens in description-based risky choices (i.e. overweighting small probabil-

ities; Hertwig & Erev, 2009). However, a recent study by Ungemach et al. (2009),

although replicated most of the choice patterns encountered in the original study by

Hertwig et al. (2004), failed to obtain an underestimation of the small probabilities.

This finding in combination with the results of this thesis (section 6.7), opens the pos-

sibility to re-interpret the original results in Hertwig et al. (2004) under a different

computational framework where there is no explicit underestimation of rare events but
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rather a salience-driven accumulation of samples.

7.4 Conclusion

In this thesis, in a series of computational and experimental studies, I examined the

cognitive processes that underlie the integration of decision-relevant information across

time. The findings demonstrated that information integration is distorted by differential

weighting applied on the more salient samples. Two factors were found to affect the

salience of the samples: i) their temporal order (primacy or recency, depending on task

contingencies) and ii) their local ordering in the decision context (with the direction

of the latter source of distortion being modulated by the task framing). Furthermore,

the findings revealed that a simple salience-based integration model accounts for clas-

sical decision paradoxes (temporal, risk and task framing biases as well as preference

reversal) and characterizes the deliberative process employed in richer domains, such

as multi-attribute choice problems with trade-offs or decisions under risk. The ex-

planatory success of this simple, salience-driven computational account, underscores

the possibility that the roots of several decision anomalies lie on the the algorithmic

details of the choice process, rather than on non-linearities at the representational level

of decision-relevant quantities (e.g. values and probabilities). Overall, the results of

this thesis conferred new insights into the microstructure of complex decision making,

clarifying how people weigh evidence, reverse their preferences and deal with risk, and

providing a unifying neurocognitive foundation for decision making.
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