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ABSTRACT 

The objective of this work is to study experimentally and theoretically novel multiphase 

microreactors and characterize them in relation to hydrodynamics and mass transfer, in order 

to evaluate, understand and improve their performance. In order to achieve this CO2 

absorption in sodium hydroxide and amine solutions an example of a fast gas-liquid reaction 

has been investigated in a single microstructured metallic mesh reactor, CRL reactor, PTFE 

single channel membrane reactor and the silicon nitride mesh reactor. 

CO2 absorption in sodium hydroxide solution was initially studied experimentally and 

theoretically in a metal microstructured mesh reactor. The differential mass balances to 

describe the concentration profiles of components in the three domains 

(gas/membrane/liquid), were solved with Comsol Multiphysics (modeling software for finite 

element analysis of partial differential equations). The model indicated that the carbon 

dioxide is consumed within few microns from the gas – liquid interface, and the dominant 

resistance for mass transfer is located in the mesh because it is wetted by the liquid reactant. 

In order to overcome the limitation of the extra resistance to the mass transfer in the metallic 

mesh, PTFE membranes were used in the single channel reactor, which are considered as 

hydrophobic to aqueous solutions of NaOH and amines. Monoethanolamine solution (MEA) 

absorbed more CO2 than diethanolamine (DEA) since the reaction rate constant for MEA is 

higher than DEA. 8 channel (PTFE) microreactor showed much higher CO2 removal 

efficiency than the metallic mesh microreactor. Furthermore the model indicated partial-

wetting of the PTFE membrane when NaOH solution was used as an absorbent. 

In order to enhance mass transfer staggered herringbones were used on the floor of the liquid 

side of the single channel PTFE microreactor. No enhancement of mass transfer was observed 

with the use of staggered herringbones. A possible reason for that is that a limit for the fast 
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second-order reaction is reached for enhancement and that the apparent reaction rate is 

independent from mass transfer for our case, or that the herringbones are far away from the 

reaction zone and cannot create the appropriate stirring for enhancement. 

In order to increase throughput, carbon dioxide absorption in sodium hydroxide solution was 

performed in the metallic mesh ‘scale-out’ reactor (with 4 meshes). CO2 removal efficiency 

for the ‘scale-out’ reactor was significantly lower than the single mesh reactor, which is 

probably due to breakthrough of liquid in the gas phase (stagnant liquid) or uneven flow 

distribution in each plate of the ‘scale-out’ reactor. 

Finally a silicon nitride mesh reactor developed by Bayer Technology Services and FluXXion 

was used for CO2 absorption in aqueous solutions of NaOH and DEA. The silicon nitride 

mesh reactor showed better performance than the PTFE single channel reactor, the metallic 8 

channel reactor and the CRL mesh reactor when NaOH was used, due to the very thin 

membrane of 1 μm thickness, which makes the resistance to mass transfer very small. 
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NOTATION 

C
 
= concentration (mol/m

3
) 

D= diffusion coefficient (m
2
/s) 

Dh = 4S/Pw (m) 

E= Enhancement factor (-) 

F = molar flowrate (mol/s)  

HTU = height of transfer unit (m) 

H= Henry’s constant (mol/m
3
atm) 

k = reaction rate constant (m
3
/mols) 

K= mass transfer coefficient (m/s)
 

Le = entrance length (m)
 

MH = Hatta number (-) 

Mi= molecular weight (g/mol) 

m = physical solubility (-) 

Pe = Peclet number (-) 

p = pressure (Pa) 

P = pressure (Pa) 

Pw = microchannel wetted perimeter (m) 

Re= ρuDh/μ 

R = overall reaction rate (mol/m
3
s) 
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rp= pore radius (m) 

Sh= Sherwood number (-) 

S = microchannel cross-section (m
2
) 

T = temperature (K) 

u = velocity (m/s) 

u


= fluid velocity vector (m/s) 

umean = mean fluid velocity among all microchannels  

u(i) = average fluid velocity in the i-th channel 

x = transverse coordinate (m)  

     
                           

Υ = volumetric flowrate (m
3
/s) 

z = axial coordinate (m)  

Greek Symbols 

δ = thickness (m) 

ε = mesh open area (-) 

εm= membrane porosity 

θ = contact angle (
ο
) 

λ= mean free path (M
2
L

2
/t

2
mol) 

μ = viscosity  ( Pa.s) 

ρ= density (Kg/m
3
) 

τ= residence time (s) 

τm= tortuosity of pores (-) 

Subscripts 

Ami = Monoethanolamine, Diethanolamine 
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Ac = acetone 

B,W= breakthrough of the wetting phase 

B,NW= breakthrough of the non-wetting phase 

b= bulk 

CO2 = carbon dioxide 

C,W= wetting phase critical filling pressure 

C,NW= non-wetting phase critical filling pressure 

DEA = diethanolamine 

G = gas phase 

gas = carbon dioxide 

g=gas phase 

 i = carbon dioxide, sodium hydroxide 

i= interface (see chapter 2) 

I= species diffuse (see chapter 2) 

L = liquid phase 

l=liquid phase 

liquid = sodium hydroxide   

MEA= monoethanolamine 

M = mesh 

m= membrane 

NaOH = sodium hydroxide 

NW= non-wetting phase 

W= wetting phase 

out = outlet 

in = inlet 
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Superscripts 

G = gas phase 

L = liquid phase 

M = mesh 
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CHAPTER 1 

INTRODUCTION 

CO2 is one of the major greenhouse gases. Capture of CO2 by various techniques has been a 

research focus in recent years. Conventional techniques such as column absorption for CO2 

capture are energy-consuming [1] and not easy to operate because of flooding and foaming 

problems. Hollow fiber membrane contactor (HFMC) is a promising alternative technique 

under rapid development. In a membrane contactor, the gas stream flows on one side and the 

absorbent liquid flows on the other side of the membrane without dispersion of one phase in 

to the other, thus avoiding the problems often encountered in the conventional apparatus such 

as flooding and foaming. Contact is achieved either with a thin membrane film as a 

intermediate or by using a microporous membrane. Furthermore, with a membrane, it is 

possible to create substantially more interfacial area per volume than is common in 

conventional methods. By using the microporous membrane to separate the two phases an 

interface is formed in the pores and mass transfer occurs by diffusion across the interface just 

as in conventional methods. Membrane systems that are designed to form an interface 

between two components (liquid/liquid, liquid/gas, gas/gas) are commonly referred to as 

membrane contactors. Microfabricated meshes are the microengineered analogue of 

membranes. Recent developments in the area of microengineered structures for chemical 

processing [2] have made it possible to manufacture micromeshes from various materials by 

techniques such as standard mask lithography or laser interference lithography [3]. Thin 

meshes with straight pores, micrometer-range pore size, and a regular arrangement can be 

obtained [4]. Such micromeshes combine the advantages of minimising mass transfer 

resistance with high porosity and regular patterned pore structured having at the same time 

good mechanical strength. They can be easily incorporated in the design of microdevices for 
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processing at microscale [5]. In microengineered systems, mass and heat transfer are 

intensified. Microreactors can be used for many chemical reaction processes to achieve high 

yields of production. This is a result of the isothermal conditions which can be achieved in the 

microchannels and generate greater conversions and selectivities. However, since this 

approach is at a micro scale, although it has been successfully used for analytical purposes 

[6], staggering microreactors, a process known as scale-out or numbering-up, can increase the 

production volume. This capability of staggering many microreactors has attracted many 

pharmaceutical and chemical production industries [7].  

The objective of this work is to study experimentally and theoretically novel multiphase 

microreactors and characterize them in relation to hydrodynamics and mass transfer, in order 

to understand and improve their performance. Furthermore, there is no research work on CO2 

absorption using mesh microstructured reactors so far, hence the significance of this work is 

the use of the advantages of mesh microreactors mentioned before (e.g. enhancement of heat 

and mass transfer) in order to intensify CO2 absorption. The performance of membrane 

microstructured reactors will be compared (chapter 6) with hollow fiber membrane reactors 

which have been used for CO2 absorption (see chapter 2). Carbon dioxide capture followed by 

sequestration, is one of the solutions being explored at international level, to achieve the 

necessary deep reductions in greenhouse gas emissions. In order to achieve these objectives 

comprehensive parametric studies were performed in a microstructured metallic mesh reactor, 

CRL mesh reactor, PTFE single channel membrane reactor and the silicon nitride mesh 

reactor for CO2 absorption in aqueous solutions of NAOH and amines. 

Chapter 2 summarizes the literature about membrane contactors and micro gas-liquid, liquid-

liquid contactors. In addition the current status of the development of CO2 capture technology 

is reviewed. 

Chapter 3 investigates the fluid flow distribution in the geometry of a single microreactor by 

varying geometrical parameters such as: width of inlet and outlet flow distribution regions, 

different shapes of inlet and outlet flow distribution regions, shifting the channels in parallel, 

effect of the channels, in order to approach a design which allows for flow uniformity over 

the microplate.  

Chapter 4 studies theoretically and experimentally carbon dioxide absorption in sodium 

hydroxide solution in a metal mesh microreactor. In order to evaluate, understand and 
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improve its performance parameters such as: gas and liquid flowrates, membranes with 

different porosities, different gas film thicknesses, type of the flow and gas residence time 

were investigated.  

Chapter 5 describes CO2 absorption in solutions of monoethanolamine (MEA) and 

diethanolamine (DEA) in a single channel membrane PTFE microstructured reactor. The use 

of the PTFE membrane is to overcome the limitation of the extra resistance to the mass 

transfer in the metallic mesh, since the pores of the metallic mesh are liquid-filled. Further 

investigation of the PTFE single channel reactor was focused on parameters such as: gas 

flowrates, membrane contact area between the gas and the liquid, different amine solutions, 

and liquid concentrations. 

Chapter 6 studies theoretically and experimentally CO2 absorption in sodium hydroxide 

solution in a single channel membrane PTFE microstructured reactor. In the case of chemical 

absorption, a higher CO2 flux is achieved using aqueous NaOH solution than aqueous amine 

solutions. Higher CO2 removal efficiency was observed when PTFE membrane in the 8 

channel reactor (contact area between gas and liquid is approximately 11.3 times larger than 

the contact area of the single channel PTFE membrane reactor) was used compared to the 

metallic mesh reactor due to less restriction in mass transfer in the membrane. The effect of 

partial wetting and the influence of the distances between pore to pore is studied theoretically. 

Further investigations were focused on parameters such as: gas flowrates, membrane contact 

area between the gas and the liquid, liquid concentrations and different liquid absorbents.  

Chapter 7 studies the effect of staggered herringbones (grooves engraved on the floor of the 

liquid channel in order to enhance mass transfer) on CO2 absorption when the PTFE single 

channel reactor was used, and NaOH was used as an absorbent liquid. For this reason two 

different structures of staggered herringbones (AB and ABCD) were used. In one case the 

staggered herringbones were engraved in the acrylic plate and in the other the staggered 

herringbones were engraved in silicon inserts which they were placed in the liquid side of the 

reactor. Furthermore, three dimensional simulations were executed with and without the 

staggered herringbones in order to examine the effect of staggered herringbones on CO2 

absorption. In addition, analytical model which describes acetone mass transfer from water 

solution to the nitrogen stream flowing co-currently was formulated in order to examine the 

effect of staggered herringbones on stripping of acetone from water. 
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Chapter 8 investigates experimentally the effect of ultrasound on carbon dioxide absorption in 

sodium hydroxide when the PTFE membrane microstructured reactor was used. Different 

orientations of the reactor were examined as well in the ultrasound bath in order to achieve 

streaming in the liquid side of the membrane reactor. 

Chapter 9 studies carbon dioxide absorption in sodium hydroxide solution when the metallic 

mesh scale-out reactor (with 4 meshes) was used, in order to compare its performance with 

the metallic mesh reactor (1-mesh). In order to ensure equal flow distribution in each plate of 

the scale out reactor, CFD simulations were carried out. In addition, to improve the 

performance of the ‘scale-out’ reactor, experiments were performed when inserts with 

different channels width (0.2, 0.5, 0.75, 1 mm) were installed in every inlet of the scale out 

reactor. 

Chapter 10 describes experimentally and theoretically CO2 absorption in sodium hydroxide 

and amine solutions when a silicon nitride mesh reactor developed by Fluxxion (Netherlands) 

and Bayer technology services was used. Various conditions such as gas and liquid flowrates, 

different types of solutions (NaOH, amines), type of the flow, liquid film thicknesses were 

investigated. The silicon nitride mesh reactor was found to have the best performance on CO2 

removal efficiency compared to the single PTFE membrane reactor, the metallic mesh rector 

and the CRL mesh reactor due to the very thin membrane of 1μm thicknes. 

Chapter 11 summarizes the results from the different reactors studied in this thesis along with 

the major contributions of this work and future areas of research. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

Multiphase liquid-liquid or gas-liquid systems, either catalytic or non-catalytic, account for a 

large number of unit operations in chemical processes. Multiple mass transfer operations 

(distillation, extraction, absorption, etc.), heat transfer operations (condensation, evaporation, 

heating, etc.) and reaction processes often use multiphase systems. One of the problems 

related to conventional methods is the interaction between the two phases such that problems 

occur due to foaming, formation of emulsions and so forth due to the interdependence of the 

two phases. Membrane technology offers an alternative method where a non-dispersive 

interface is created between the two phases. In order to separate the two phases (gas/liquid) a 

microporous membrane is used and an interface is formed in the pores and mass transfer 

occurs by diffusion across the interface. Systems that are designed to form an interface 

between two components (liquid/liquid, gas/liquid, gas/gas) are commonly refered as 

membrane contactors. Membrane contactors can be used for several applications such as gas 

absorption, stripping, distillation, pervaporation and extraction. Various topics relevant to 

membrane contactors such as continuous phase systems, phase separation in microchannels, 

membrane gas/liquid contactors are reviewed in this chapter. 
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2.2 Continuous Phase Microsystems  

In continuous – phase microcontactors the gas and the liquid phases form two streams which 

are fed separately in the liquid and gas chamber of the contactor and are also taken away 

separately at the outlet of the contactor without dispersing the one phase into the other [8]. 

The advantages of such contactors are that the phases are not intermixed, and the gas/liquid 

interfaces are well-defined. The breakthrough of one phase into the other phase may cause 

unwanted froth, foam or emulsion and makes difficult the separation of the two phases. The 

critical issue in operating the microcontactors is the maintenance of the gas/liquid interface. 

In the falling film microreactor [9] see Figure 2.1 (developed by Institute fur Mikrotechnik 

Mainz (IMM)), the main characteristic is that it generates a thin falling film of several 10 μm 

thickness flowing by the means of gravity forces. 

 

Figure 2. 1 Construction of the falling film microreactor (source: IMM, Mainz). 

Another important characteristic of this reactor is that it has high capability for heat removal 

and minimization of mass transfer resistance in the liquid phase [10]. For conventional units, 

achievable interfacial area is between 300 and 600 m
2
/m

3
 [11]. However, recent developments 

in microtechnology [11] showed that the manufacture of such reactors with interfacial area 

higher than 10000 m
2
/m

3
 [11, 12] is possible. Zanfir and Gavriilidis [10] studied carbon 

dioxide absorbtion in this type of reactor. 
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An alternative continuous-phase microsystem is the mesh microreactor manufactured by CRL 

(Central Research Laboratories). The structure of the mesh allows immiscible fluid phases 

(liquid-liquid or gas-liquid) to come into contact enabling mass transfer and reaction between 

and within the phases. The two phases are not mixed and are taken away separately at the 

outlet of the contactor without dispersing the one phase into the other [4]. This reactor was 

designed for kinetic studies for 2-phase reactions with the ability to handle sequential samples 

without excessive sample dispersion [4]. Figure 2.2 (a) shows a diagrammatic cross-section of 

the mesh detailing the reaction chamber regions. Figure 2.2 (b) shows a photograph with the 

assembled device. The microcontactor has two cavities of a depth of 100 μm each with 

reaction chamber volume of 100 μl for each phase [4]. 

 

Figure 2. 2 Mesh reactor: (a) diagrammatic cross-section, partially exploded view, (b) 

assembled device. 

Figure 2.3 (a) shows a photograph of a nickel mesh utilized in the mesh microreactor. 

Micromeshes with pore diameter, depth, and spacing each of approximately 5 μm with open 

area up to 40% is shown in Figure 2.3.  
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(a) (b) 

  

Figure 2. 3 Nickel mesh: (a) Photograph of complete mesh showing frame and struts, (b) 

scanning electron micrograph of mesh pores. 

Furthermore another good example for continuous-phase microsystem is the mesh reactor 

(see figure 2.4) used by Sun [13]. Acetone stripping and asymmetric transfer hydrogenation 

was performed in this mesh reactor. A mesh provides an interface for the gas and liquid to be 

contacted. The reactor measures 3x8 cm in size. The gaskets utilized to define the gas and 

liquid flow channels are made from brass. The mesh is placed between two gaskets and 

contains the gas liquid interface. Mesh was made out of stainless (see figure 2.5) by a 

chemical etching method with average pore size of 76 μm and an open area of 23%. 

 

Figure 2. 4 Picture of assembled reactor with Perspex cover plates [13]. 
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Figure 2. 5 Microscope image of stainless mesh [13]. 

In addition Brans et al. [14] used different microsieve mesh designs in order to investigate the 

application of yeast-cell filtration. In these microsieve meshes high fluxes are achieved, due 

to their extremely low flow resistance. The microseive (see figure 2.6) is made with silicon 

micromachining technology. This microsieve is coated with silicon nitride layer, which after 

it was etched through with KOH solution forms the mesh of 1 μm thicknes. Two different 

microsieve meshes were used, one with pores diameter of 1.2μm and porosity of 49% and one 

with slit shape pores of 0.8μm x 2.5 μm and porosity of 40%. Such a microsieve mesh designs 

can be used as continuous-phase microsystems for liquid-liquid and gas-liquid separations.  

 

 

 Figure 2. 6 SEM picture of a microsieve mesh [14]. 

1mm 
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2.3 Phase separation of gas-liquid and liquid-liquid 

microflows in microchannels 

Separations play a significant role in many chemical and biochemical processes at all scales. 

Future separation needs are primarily related to the pharmaceutical, microelectronics, water, 

energy (e.g. hydrogen) and life sciences industries [8]. Microprocess engineering is well 

placed to serve many of these needs, due to the small production scale and unique advantages 

offered by point of use and intensified operation. 

Kralj et al. [15] described continuous flow liquid-liquid phase separation in microfluidic 

devices based on capillary forces and selective wetting surfaces. They achieved liquid-liquid 

phase separation by using a thin porous fluoropolymer membrane (between microchannels) 

that selectively wetted non-aqueous solvents, had average pore sizes 0.1-1 μm range, and had 

a high pore density for high separation throughput. The aqueous phase, which does not wet 

the PTFE membrane, passes across the membrane surface to outlet 1 while the 

organic/fluorous phase wets and flows through the pores of the membrane to outlet 2 (see 

figure 2.7). 

 
 

Figure 2. 7 Schematic (top) and photograph (bottom) of the microfluidic device used for the 

liquid-liquid separation. The device dimensions are 10 mm width, 50 mm length and 20 mm 

height. Channels dimensions 0.5x0.5x20 mm [15]. 
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Hartman et al. [16] performed distillation in microchemical systems using capillary forces 

and segmented flow. In their system, vapor-liquid equilibrium was achieved using segmented 

flow (see figure 2.8). A gas-liquid membrane separator was then used to separate vapor from 

liquid, and thus realized distillation. The membrane separator consisted of a channel (2x2x40 

mm) machined into each of two pieces of stainless steel, and a PTFE membrane (0.5 μm pore 

size) was compressed between both pieces of metal (figure 2.8) using 10 1/6’’ cap screws.  

 

Figure 2. 8 System used to achieve single stage distillation [16]. 

Membrane distillation in microscale with the aid of sweeping gas for a separation of a mixture 

of methanol and water was described by Adiche and Sundmacher [17]. The novel micro-

separator consists of two horizontal polycarbonate plates (length: 60 mm, width: 30 mm, 

thickness: 1 mm) which are joined together holding a flat micro-porous polymeric membrane 

(active area: 17 1mm
2
) in between (figure 2.9). Polymeric membranes with a range of pore 

size from 0.22 μm to 0.45 μm were used to establish a stable liquid-vapour contact throughout 

the micro-channels. 
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Figure 2. 9 Exploded schematic view of the micro-separator, (1) cover plate for the permeate 

channel, (2) permeate channel, (3) membrane contactor, (4) feed channel, (5) cover plate for 

the feed channel [17]. 

Aota et al. [18] examined phase separation of liquid-liquid and gas-liquid microflows in 

microchannels and characterized by interfacial pressure balance. The phase separation 

required a single phase flow in each output of the microchannel. They considered as the 

interfacial pressure the pressure difference between the two phases and the Laplace pressure 

due to interfacial tension at the interface between the separated phases. When the pressure 

difference between the two phases was balanced by the Laplace pressure, the contact line 

between the two phases was static, but when the pressure difference between the phases 

exceeded the limiting Laplace pressure, one phase dispersed into the output channel of the 

other phase, and the separation failed Figure 2.10c. 
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Figure 2. 10 a) Illustration of phase separation (gas-liquid and liquid-liquid) in microchannels 

whose width, depth and contact length were 215 μm, 34 μm and 20 μm for the liquid-liquid 

microflows, and 100 μm, 45 μm and 20 μm for the gas-liquid microflows, b) Optical 

microscope image of the water-ethyl acetate microflow when the phase separation was 

achieved, c) Image when the phase separation failed [18]. 

Timmer et al. [19] demonstrated an electrolyte concentrator for increasing analyte 

concentrations in order to improve the detection limit of analytical systems.  The concentrator 

is of the membrane evaporator type (see figure 2.11). The analyte is fed through a channel 

covered with a hydrophobic (PTFE) membrane of 0.2 μm holes, in order to be permeable for 

water vapor, but it should be water repellent in order not to let the feed solution through. The 

concentration effect is enhanced by applying forced convection using dried nitrogen flow over 

the membrane. 

 

Figure 2. 11 Schematic diagram of the evaporation concentrator, comprising a gas channel, 

an electrolyte channel and an electrolyte conductivity (EC) sensor [19]. 
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Castell et al. [20] exploited the capillary forces on the microscale to continuous flow liquid-

liquid phase separator. Segmented flow regimes of immiscible fluids were generated and 

subsequently separated into their component phases through an array of high aspect ratio, 

laser machined, separation ducts (36 μm wide, 130 μm deep) in a planar, integrated, 

polytetrafluoroethylene (PTFE) microdevice (figure 2.12). A controlled pressure differential 

across the phase separator architecture facilitates the selective passage of the wetting, organic, 

phase through the separator ducts, enabling separation of microfluidic multiphase flows 

streams. The reported device is demonstrated to separate water and chloroform segmented 

flow regimes. 

 

Figure 2. 12 Series of schematic diagrams illustrating (i) device construction (ii) microfluidic 

channel layout (iii) Cross- sectional Gaussian profile of a single laser machined separation 

duct as measured by serial z-axis optical microscopy and the approximated triangular 

geometry (iv) Cartoon illustration of the separator in operation [20]. 

TeGrotenhuis and Stenkamp [21] used a single channel phase separator device in order to 

separate liquid from gas. The fundamental approach for their microchannel phase separator is 

to utilize capillary, surface, and hydrodynamic forces to collect one of the phases into specific 

flow regions while excluding the other. In this kind of separators, separation is accomplished 

using combinations of capture, wicking, and pore throat structures within the microchannels 
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as it can be seen from Figure 2.13. The pore throat/wick structure provides a path for the 

liquid only to flow to a liquid outlet, while the gas exits from a separate outlet. 

 

Figure 2. 13 Schematic of the single channel separator [21]. 

TeGrotenhuis et al. [22] used microchannel devices for efficient contacting of liquids in 

solvent extraction. The micromashined channels are separated by a contactor plate as shown 

in Figure 2.14. Solvent extraction requires intimate contact of two immiscible liquids to 

facilitate mass transfer of one or more solutes from one fluid to another. Two micromachined 

contactor plates of 25 μm and 50 μm thick were used in the micro mesh contactor. The holes 

were conical and made by laser drilling, averaging 25 μm in diameter on one side and 35 μm 

in diameter on the other side of the plate. Porosity was estimated at 26%. The micromachined 

contactors were coated with Teflon to make them more non-wetting to water. 

 

Figure 2. 14 Microchannel contactor device [23]. 

Chan et al. [23] developed a micro-channel contactor-separator for immiscible liquids. The 

microchannel was made in glass using a photo-chemical etching process, including etching 

across a gap to produce sections of shallow channel. The device (see figure 2.15) used a 
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simple T-junction to produce slugs of typically the oil phase in the water phase. The slugs 

flowed along a straight channel toward a separation section. The separator consisted of small 

side channels running perpendicular from the main through channel, which carried the water 

to the water outlet, whilst the oil flowed out along the main channel. The oil phase prevented 

from entering the side channels by the extra interfacial force associated with the small 

opening dimension at the junction. 

 

 

Figure 2. 15 Plan-view of micro-channel network design [23]. 
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2.4 Membrane gas-liquid contactors 

Membrane technology is a rapidly emerging field and has since the 1980’s been applied in 

numbers of fields for large scale gas purification. Reliable and selective polymer membranes 

have been developed for a number of applications such as: absorption, stripping, distillation, 

pervaporation and extraction. The membrane acts as an interface and keeps the gas/liquid 

phase separated while the transport of organics can take place through the membrane. 

Advantages of membrane contactors compared to the conventional devices including packed 

tower, venturi scrubber and bubble column are [24]: 

 The gas stream flows on one side and the absorbent liquid flows on the other side of 

the membrane without phase dispersion, thus avoiding problems such as flooding, 

foaming and emulsion formation which are often encountered in packed/tray columns. 

 Interfacial area is known and constant. As a result, it is easier to predict the 

performance of a membrane contactor [24]. 

 The compact modular structure of membrane contactors provides much larger gas-

liquid interfaces and the flexibility to scale-up or down [24]. 

 It was reported that hollow fiber contactors are 30 times more efficient for gas 

absorption than conventional equipment [25]. 

 More economic. Due to the compact nature of the membrane device, it is less energy-

consuming, less voluminous, and hence, more economic. Feron and Jansen [26] found 

that the membrane contactor could lead to a 10-fold reduction in absorber size 

compared with packed columns. 

 Solvent hold-up is low, which is attractive feature when using expensive solvents [24]. 

 Modular design of membrane contactor allows flexibility in plant operation and 

modification. Small and large capacity can be obtained by altering the number of 

modules [24]. 
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On the other hand membrane contactors have several disadvantages compared to conventional 

devices [24]: 

 The membrane introduces an additional resistance to mass transfer that is not found in 

conventional methods. This resistance in many cases is not important and there are 

ways to minimize it. 

 Membranes pores may become wetted. In this case, the mass transfer will be reduced 

because of a liquid stagnant film in the membranes pores. 

 Membranes have finite life and generally represent a high investment cost for the 

replacement of membrane modules. 

 The membrane itself is prone to fouling which reduces the mass transfer efficiency. 

Although it is more critical in pressure-driven processes than concentration-driven 

process, the problem of membrane fouling needs to be addressed to maintain system 

performance. 

Despite the fact there are a number of disadvantages related to membrane contactors their 

advantages make them attractive compared to conventional methods often overcome these. 

Since the introduction of membrane contactors, several studies have been conducted to 

understand and improve the performance of the process and develop efficient module designs. 

Membrane contactors have been used in a wide range of applications from 

medical/pharmaceutical to industrial and environmental engineering processes [27].  

As it was mentioned in chapter 1 microfabricated meshes are the microengineered analogue of 

membranes with various advantages (e.g. heat and mass transfer are intensified). CO2 

absorption in aqueous solutions of NAOH and amines was performed in a microstructured 

metallic mesh reactor, CRL mesh reactor, PTFE single channel membrane reactor and the 

silicon nitride mesh reactor in order to understand, evaluate and improve their performance. In 

the rest of the chapter follows literature review on the hollow fiber membrane reactors which 

are the only existing membrane reactors which have been used for CO2 absorption. 
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2.4.1 Membrane materials and contactor modules 

Membranes can be considered as a permselective barrier or interface between two phases and 

at the heart of every membrane process. Membranes can be thick or thin and their structure 

can be homogeneous or heterogeneous. Synthetic membranes are generally classified by two 

groups; 1) organic or polymeric membranes, and 2) inorganic membranes [28], also referred 

to as ceramic or mineral membranes. The larger group of membranes is by far the polymeric 

membranes and a wide variety of polymers are used such as; polyvinylidenefluoride (PVDF), 

polytetrafluoroethylene (PTFE), polypropylene (PP), polyamide, cellulose-esters, polysulfone 

(PSF), poly (ether-imide), polyetheretherketone (PEEK). 

PTFE is highly crystalline and exhibits excellent thermal stability. It is not soluble in any 

common solvent and hence also shows high chemical resistance. PVDF shows good thermal 

and chemical resistance however not quite as good as PTFE. PVDF is soluble in aprotic 

solvents such us dimethylformamide (DMF), dimethylacatamide (DAMC) and in 

triethylphosphate (TEP). PP is an excellent solvent resistance polymer when it is in the 

isotactic configuration. The three polymers PTFE, PVDF and PP have some properties which 

are similar and they all exhibit good to excellent chemical and thermal stability. Because of 

their hydrophobic nature water cannot wet these membranes spontaneously [13]. 

Another class of membrane polymers are the polyamides which have outstanding mechanical, 

thermal, chemical and hydrolytic stability. PSF possess very good chemical and thermal 

stability and is widely used as basic materials for ultrafiltration membranes and as support 

materials for composite membranes. Polyetherketones is a new group of chemically and 

thermally resistant polymers. PEEK is only soluble at room temperature in concentrated 

inorganic acids such as sulphuric acid or chlorosulfonic acid [13]. 

Inorganic materials generally possess superior chemical and thermal stability relative to 

polymeric materials. Four different types of classes, ceramic membranes, glass membranes, 

metallic membranes and zeolitic membranes are generally used to distinguish inorganic 

membranes. Polymers are not thermally stable membranes, while the melting point of 

inorganic membranes is very high and for certain types can have values above 4000
o
C [13]. 

This property makes inorganic membranes very interesting and suitable for processes that 

require high temperature (i.e. gas separation) and also opens for the possibility of cleaning 
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and sterilization in for example medical/pharmaceutical industrial applications. The chemical 

stability of inorganic materials is superior and they can generally be applied at any pH and in 

any organic solvent. All kinds of cleaning agents can be used and at various temperatures 

which is an important issue from an operation and maintenance perspective for the control of 

fouling. 

All membrane modules are generally based on the two membrane configurations that are 

available, flat sheets or tubular membranes (figure 2.16). Plate-and-frame and spiral-wound 

modules involve flat membranes whereas tubular, capillary and hollow fiber modules are 

based on tubular membrane configurations. The basic principle governing a module design is 

the objective of achieving the greatest membrane surface area possible per volume. 

When choosing a certain membrane module design different criteria are necessary to consider. 

An economic evaluation is of course required combined with engineering factors such us type 

of separation problem, ease of operation, maintenance and cleaning requirements, number and 

size of units and so forth. The characteristics of all modules can be compared qualitatively in 

Table 2.1 [28]. 

The costs of the various modules can vary appreciably; each of them has its field applications. 

Despite being the most expensive configuration, the tubular module is well suited for 

application with high fouling tendency because of its good process control and ease of 

membrane cleaning. On the other hand, hollow fiber modules are very susceptible to fouling 

and are difficult to clean. Pretreatment of the feed stream is most important in hollow fiber 

systems. Many module concepts for hollow fiber membranes have been developed to reduce 

the fouling potential and to increase fluxes. 
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Figure 2. 16 Membrane Modules (a) Plate-and-frame, (b) Tubular, (c) Spiral-wood, (d) 

Hollow fiber [28]. 
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Table 2. 1 Qualitatively comparison of various membrane configurations [28]. 

 Tubular Plate-and-

frame 

Spiral-

wound 

Capillary Hollow 

fiber 

Packing density Low  Very high 

Investment High  Low 

Fouling tendency Low  Very high 

Cleaning Good  Poor 

Membrane replacement Yes/no Yes No No No 

2.4.2 Flow patterns in membrane modules 

The membrane is a critical component of any membrane separation process. Important design 

features of a module include the regularity of fibers (polydispersity and spatial arrangements 

of fibers), packing density and the relative flow directions suchas parallel, i.e., concurrently 

and countercurrently, and cross flows of the two phases. Membrane modules can be 

categorised into two groups depending on the relative flow directions of the two phases, the 

longitudinal-flow module and the cross-flow module [1].  

In the longitudinal flow module, the gas and the liquid phases flow in parallel (either 

concurrently or countercurrently) to each other on the opposite sides of the fibers. Figure 2.17 

shows a schematic description of this type of module. The simplicity in manufacturing is the 

advantage of this module. In contrast, its disadvantage is mainly seen in is mediocre 

efficiency in mass transfer compared with the cross-flow module. 
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Figure 2. 17 A schematic diagram of a parallel-flow hollow fiber membrane contactor [1]. 

The characteristic of cross flow module is to integrate some baffles in the module design 

compared to the longitudinal flow module as it is shown in Fig 2.18. Mass transfer efficiency 

can be improved with the use of baffles by minimizing shell-side bypass and providing a 

velocity component normal to the membrane surface. Therefore, the cross flow module can 

maintain higher mass transfer coefficients; TNO of the Netherlands patented a cross flow 

membrane module design, which offers good mass transfer characteristic and scale-up 

potential [26]. In this specific module, CO2 flows in the shell-side perpendicular to the fiber, 

but overall, the two phases flow countercurrently through the module. The schematic drawing 

of the TNO cross –flow module is shown in Fig 2.19. 

 

Figure 2. 18 A schematic diagram of a cross-flow hollow fiber membrane contactor [1].  
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Figure 2. 19 TNO cross-flow membrane module [26]. 

2.4.3 Applications of membrane contactors 

2.4.3.1 Membrane gas absorption and stripping 

Membrane gas absorption process is a good alternative to conventional techniques such as 

column absorption. Various investigators have studied CO2 absorption in membrane 

contactors. A membrane contactor acts as a gas absorber, with the gas flowing on one side 

and the absorbent liquid flowing on the other side of the membrane without either phase being 

dispersed in the other. Current gas stripping processes operate in an identical manner as the 

devices used for gas absorption except that species are transferred from the liquid to the gas 

side. The membranes can be hydrophobic or hydrophilic, and the pores can be either gas filled 

or absorbent filled. The presence of a membrane adds an additional resistance to the overall 

mass transfer process. In the ideal case, when the pores are gas filled (non-wetted mode) the 

mass transfer resistance is negligible. On the other hand, when the pores are liquid filled 

(wetted mode), the mass transfer resistance is significant. This is due to the fact that the 

diffusion coefficient of the gas is 3-4 orders of magnitude larger than the diffusion coefficient 

of liquid. The gas-liquid interface is immobilized at the pore mouth. Through such an 

interface, one or more gas species may be absorbed into the aqueous solution or one or more 

gas species may be stripped from the aqueous solution. This mode of nondispersive gas 

absorption or stripping was first introduced in blood oxygenation. Blood flowed on one side 
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of a microporous hydrophobic membrane of Teflon [29] or hollow- fiber membranes of 

polypropylene [30]. On the other side of the membrane, oxygen flowed either as pure oxygen 

or as air at a pressure slightly lower than the blood pressure. Oxygen was absorbed into the 

blood, as CO2 from the blood was stripped out to the O2-containing gas stream. 

Membrane technology is being increasingly investigated for possible application in larger 

scale gas absorption [31] and gas stripping [32]. Qi and Cussler were the first to use 

microporous polypropylene membranes for H2S, SO2 and CO2 absorption in a NaOH solution, 

and NH3 absorption in water [31, 33]. In the cases of H2S, SO2 and NH3 they found that the 

absorption is mainly controlled by diffusion across the membrane. However, their results on 

CO2 absorption in aqueous NaOH and amine solutions showed that the main resistance to 

mass transfer existed in the liquid phase, with membrane resistance being very small. They 

also showed that, for cases where membrane resistance is relatively small, hollow fiber 

membrane modules have a distinct advantage over the conventional packed columns, due to 

lower HTUs (Height of Tower Transfer Unit) and independence of gas and liquid flows. 

Cypes and Engstrom [34] in their analysis of toluene stripping process, they observed that the 

microfabricated stripping column possesses a higher volumetric efficiency as compared to a 

conventional packed column. This was attributed to the fact that the obtainable values for the 

overall mass transfer coefficient were higher for the microfabricated stripping column. In 

addition they showed that the height of transfer unit is substantially greater in the packed 

tower than the microfabricated stripping column.  

Karoor and Sirkar [35] conducted comprehensive studies on the gas absorption of CO2, SO2, 

CO2-N2 and SO2-air mixtures using distilled water in microporous hydrophobic hollow fiber 

devices. For CO2 absorption in water, the wetted mode of operation increased the mass 

transfer resistance when compared with the non-wetted mode of operation. The 

experimentally obtained KLa values for the membrane contactors were considerably larger 

than those for packed columns. In addition they showed that increasing the contact area in a 

given module for a given fiber size increases the CO2 removal capacity. Kreulen et al. [36, 

37] investigated the effects of various factors such as porosity, hollow fiber dimension, liquid 

viscosity, chemical reaction on the mass transfer in the hollow fiber contactor using the gas-

liquid systems of CO2-water/glycerol and CO2 (N2O, H2S)-NAOH aqueous solutions. Also 

they developed the modelling of the gas absorption with and without chemical reaction to 

simulate the mass transfer occurring in the contactor. Rangwala [38] has noted that the overall 
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mass transfer rates in a hollow fiber membrane contactor can be up to 9 times higher than 

those found in the conventional packed columns. In their work the membrane transfer 

coefficient for all the aqueous solutions studied (NaOH 2M, DEA 0.5M), were much lower 

than those theoretically calculated for a completely non-wetted pore indicating that the pores 

were partially wetted. In addition to that they showed that even marginal (<2%) wetting of the 

pores can result in a membrane resistance that can be as high as 60% of the total mass transfer 

resistance. Kim and Yang [39] used polytetrafluoroethylene (PTFE) microporous membrane 

contactors to capture CO2 from CO2-N2 mixture with different aqueous amine solutions 

including 2-amino-2-methyl-l-propanol (AMP), monoethanolamine (MEA) and 

methyldiethanolamine (MDEA). They found that as temperature rose, the absorption rate of 

carbon dioxide increased as well. In addition they showed that among the absorbents they 

used, AMP exhibited a high absorption capacity and moderate absorption rate without the 

high energy requirement of MEA. Bhaumik et al. [40] conducted an experimental study of 

CO2 absorption in a hollow fiber device with gas flowing in the fiber lumen and water 

flowing in the shell side perpendicular to the gas flow. They illustrated that the increase in 

water flow rate led to an increase in the amount of CO2 absorbed, which suggested that mass 

transfer was controlled by the liquid-side film resistance and the gas-phase resistances (gas-

side film and pore resistance) were negligible compared to the liquid resistance.  

Wang et al. [41] performed a theoretical simulation to study CO2 capture using three 

alkanolamine solutions of AMP, DEA and MDEA in a hollow fiber membrane contactor. 

They showed that AMP and DEA solutions have much higher CO2 absorption fluxes than 

MDEA, but they exhibit strong radial concentration gradients inside the fibres.   Thus the 

separation efficiency and the consumption of the absorbent should be taken into consideration 

simultaneously for absorbent selection. Feron and Jansen [42] used (CORAL) absorbents 

(mixtures of salts and amino-acids) in conjunction with polypropylene membrane contactors 

for CO2 removal. The use of salt solutions has the advantage that the vapour pressure of the 

active components is zero and the solvent is not lost through evaporation. The novel 

absorption liquids showed an excellent performance in terms of system stability and mass 

transfer, when used in combination with commercially available, inexpensive polyolefin 

membranes. The CORAL liquids also showed higher mass transfer when compared with other 

membrane gas absorption systems, based on MEA and AMP. Dindore et al. [43] studied CO2 

absorption into propylene carbonate using hollow fiber membrane contactors at elevated 

pressures. This work showed that the decrease in the binary gas phase diffusivity and hence 
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the membrane mass transfer coefficient due to increase in the gas pressures does not have a 

significant effect on mass transfer coefficient. Thus the overall mass transfer coefficient is 

controlled by the liquid film resistance even at elevated pressures. Atchariyawut et al. [44] 

investigated the effect of membrane structure on mass-transfer in the microporous PVDF 

hollow fiber membrane contactors. In that work PVDF microporous hollow fiber membranes 

fabricated using three different dope solutions containing N-methyl-2-pyrrolidone (NMP) and 

different additives. The resultant hollow fibers, were used to make membrane modules, which 

were then applied as gas-liquid membrane contactors for CO2 absorption in water. Results 

showed that the different structures of hollow fibers affect CO2 absorption when used as 

contactors. All the membranes were partially wetted by water and based on the additives used 

in each of the three types of membranes the partial wetting was altered as a result to affect 

CO2 absorption. 

Paul et al. [45] studied theoretically CO2 absorption by different single and blended 

alkanolamine solvents using flat sheet membrane contactor. The solvents they considered for 

their work included aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), 

N-methyldiethanolamine (MDEA) and 2-amino-methyl-1-propanol (AMP) as well as aqueous 

blends MEA or DEA with AMP or MDEA. From the theoretical analysis of the absorption of 

CO2 in different alkalolamine solvents they showed that the aqueous solution of MEA has the 

highest absorption flux for CO2 among the single amine solutions. Finally they showed that 

the performance of the flat sheet membrane contactor is better than the hollow fiber 

membrane contactor if only the absorption flux of CO2 is the amine is considered. Rongwong 

et al. [46] investigated the CO2 absorption capability and membrane wetting of various types 

of amine absorbents. Monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-

methyl-1-propanol (AMP) and their mixtures were used as absorbent solutions. The 

membrane used for the experiments was a hollow fiber polyvinylidenefluoride (PVDF) 

membrane. NaCl (inorganic salt) and SG (organic salt) were employed as additives in the 

amine solutions. It was found that the absorption performance of single absorbents was in the 

order of MEA>AMP>DEA. The mixed amine absorbents consisting of MEA provided higher 

absorption flux and CO2 flux was in the sequence of MEA/AMP>MEA/DEA>DEA/AMP. 

The addition of NaCl in to MEA introduced the salting out effect (gas solubility in liquid is 

decreased with increasing salt concentration) leading to the decrease of CO2 flux. On the other 

hand the addition of SG into MEA solution enhanced CO2 flux due to the chemical reaction of 

both SG and MEA with CO2. 
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Rajabzadeh et al. [47] studied CO2 absorption in membrane contactors using MEA solutions 

as the absorbent by using seven different in-house made PVDF and a commercial PTFE 

hollow fiber membrane with different structures at the outer surface membrane. Experiments 

with liquid flowing through the fibers (case 1 operation) and experiments with liquid flowing 

through the shell side of the module (case 2 operation) were performed. They found that when 

the absorbent was flown in tube side (case1), the membrane diameter affected CO2 absorption 

flux. However, CO2 absorption rate per fiber was almost the same for all membranes. This 

behaviour could be explained by the theory of gas absorption with instantaneous chemical 

reaction, for instantaneous chemical reaction regime (their case) mass transfer kL is inversely 

proportional to the membrane diameter, as a result CO2 absorption rate per fiber remains the 

same for all membranes. On the other hand, when the absorbent was flown in shell side, CO2 

absorption flux hardly changed with membrane diameter. For the same absorbent volumetric 

flow rate, CO2 flux observed in (case1) was about three times higher than those in (case 2) 

due to the higher absorbent velocity in tube side and thus, the mass transfer coefficient in 

(case 1) was larger than in (case 2). Delgado et al. [48] studied theoretically the absorption of 

carbon dioxide into aqueous DEA solution using hollow fiber contactor in order to obtain the 

effect of several operational variables (liquid velocity, fiber length, lean carbon dioxide 

loading, and amine solution) on productivity and amine solution to carbon dioxide ratio. They 

found that productivity increases as liquid velocity was increased (which keeps the DEA 

concentration high as a result, increasing the driving force for CO2 removal). Increasing the 

fiber length has a negative effect on performance because of the increase of module size and 

the enhancement of the mass transfer resistance in the shell side. In addition they found an 

optimum value of the lean carbon dioxide loading (total[CO2]in/total[DEA], because 

increasing this parameter has a positive effect (reduction of the regeneration energy) and a 

negative effect (reduction of productivity) at the same time. Finally they showed that the 

performance parameter (α.LCL/β, where α=productivity, LCL=lean carbon dioxide loading, 

β=amine solution to carbon dioxide ratio) improves when the amine concentration is 

increased within the range of (total[DEA]=2-5M), mainly due to the reduction of the required 

amine solution to carbon dioxide ratio. 

Khaisri et al. [49] investigated carbon dioxide absorption into an aqueous solution of 

monoethaloamine (MEA) using PTFE membrane contactor. Partial membrane wetting was 

investigated to determine the effect of membrane mass transfer resistance on the absorption 

performance and the overall mass transfer coefficient. An increase of the percent wetting 
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decreased the absorption flux and the overall mass transfer coefficient. In addition to that, 

they compared their experimental results with the model and they showed that the absorption 

performance dropped roughly 56%, 72%, 85% and 90% at 10%, 20%, 50% and 100% wetting 

respectively.  Finally they showed that the operation temperature had a significant effect on 

membrane wetting.  

Zhang et al. [50] studied CO2 absorption in polypropylene (PP) and polyvinylidene fluoride 

(PVDF) membrane modules using water and aqueous DEA solutions as absorbents. The 

simulation results showed that for the physical absorption of CO2 in water, the proportion of 

membrane phase resistance in the overall mass transfer resistance increased from less than 5 

to 90% when the operation mode was shifted from the non-wetted to wetted. As for the 

chemical absorption, analysis on the mass transfer resistance revealed that the ratio of the 

membrane resistance increased sharply from 10 to 70% when only 10% of membrane length 

was wetted. Aronu et al. [51] investigated amine amino acid salts for carbon dioxide 

absorption. Experimental results showed that amine amino acid salts have similar CO2 

absorption properties to monoethanolamine (MEA) of the same concentration. In addition 

amino acid salt from an inorganic base, KOH, showed lower performance in CO2 absorption 

than the amine amino acid salt (AAAS) mainly due to lower equilibrium temperature 

sensitivity. AAAS showed better performance than the MEA of same concentration. Finally 

AAAS from neutralization of sarcosine with 3-(methyllamino) propylamine (MAPA) showed 

the best performance and the performance could be further enhanced when promoted with 

excess MAPA. Boucif et al. [52] studied numerically CO2 absorption in a hollow fiber 

membrane contactor using typical amine solutions of diethanolamine (DEA), 2-amino-2-

methyl-1-propanol (AMP), and diisopropanalamine (DIPA). They found that the liquid 

velocity, external mass transfer coefficient and initial absorbent concentrations as well ass the 

fiber inner diameter and length have a large effect on the carbon dioxide removal 

performance. In addition they showed that AMP solution has a higher absorption capacity and 

a better selectivity than DEA and DIPA. 

2.4.3.2 Membrane Distillation 

Membrane distillation (MD) [53] is a relatively new process that is being worldwide 

investigated as a low cost, energy saving alternative to conventional separator process. 

Membrane distillation is a thermally driven process for separating volatile solvent (or 
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solvents) from solution on one side of a nonwetted microporous membrane. Generally, the 

evaporated solvent is condensed or removed on the other side of the microporous membrane. 

Assume a hot aqueous solution is placed on one side of hydrophobic microporous membrane 

and a cold aqueous solution is placed on the other side of the membrane, such that neither 

solution wets the membrane pores Fig 2.20(a). If the pressure of the water vapor of the hot 

solution is greater than that of the cold solution then water vapor diffuses from the hot 

solution/membrane interface where the water vapor condenses. In general, water vapor will 

diffuse in the microporous membrane, through air or any other noncondensable gaseous phase 

trapped in the pores. If there is no gaseous phase, the pores will have only water vapor. If the 

cold solution happens to be only water, the process achieves evaporation of water from the 

hot solution and the condensation of it in the cold liquid in a simple fashion. As long as the 

two liquids don’t wet the membrane pores, they may be at any pressure. As water evaporation 

continuous the microporous membrane is functioning here as a liquid phase barrier. The 

membrane distillation process described above is one of the common configurations of the 

membrane distillation and is identified as direct contact membrane distillation, because the 

microporous membrane is in direct contact with liquid on both sides. This concept was first 

proposed by Findley [54], but none of the membranes used by Findley was good enough for 

extended duration membrane distillation. Sarti and Gostoli [55], Schofield et al. [56] have 

successfully demonstrated membrane distillation using microporous hydrophobic membranes 

of polytetrafluoroethylene (PTFE), polypropylene (PP), and polyvinylidenefluoride (PVDF). 

There are several common configurations for membrane distillation process (Sarti and 

Gostoli) [55]. These are: 

1. Direct contact membrane distillation: It has already been described. 

2. Air gap membrane distillation: There is now air gap between the membrane and the 

condensation surface, instead of using the other side of the membrane as a condensing 

surface Figure 2.20(b). 

3. Vacuum membrane distillation: No condensation surface is provided in the device. 

The vapor is withdrawn by pulling a vacuum on the other side of the membrane.   

4. Sweep gas membrane distillation: A sweep gas is used to carry away the vapor from 

the MD device. It is a thermally driven process and there is temperature difference 
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across the membrane, while in the membrane air stripping which often confused with, 

is isothermal process. 

The membrane distillation process has some similarities with the osmotic distillation (OD) 

process [57, 58]. For example both use hydrophobic microporous membranes with aqueous 

solutions on the two sides such the pores are not wetted. Another similarity is that, in both 

cases, water vapour is transferred through the pore due to its partial pressure gradient from the 

feed to the other side. In contrast, a temperature gradient drives the partial pressure gradient of 

water in MD in the same direction whereas in OD, with both solutions at the same bulk 

temperature, an osmotic pressure gradient drives the water vapour in the opposite direction 

Fig 2.20(c). A highly concentrated brine solution (for example) with a high osmotic pressure 

is maintained on the other side at the same temperature, instead of the condensate stream in 

MD. Water vapour is transferred from the feed solution to this high osmotic pressure solution, 

which has a much lower water vapour pressure. 

 

Figure 2. 20 Schematics of (a) direct contact membrane distillation with a hydrophobic 

microporous membrane (b) air gap membrane distillation and (c) osmotic distillation with a 

hydrophobic microporous membrane [59]. 

Separation of aqueous solutions via membrane distillation requires lower operating 

temperature and pressure, reduces vapor spaces and provides significant interfacial area [60] 

compared to other more popular separation processes. However, there is lack of general 

interest in membrane distillation process, because the process solution should not wet the 

microporous membrane.  
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2.4.3.3 Membrane Pervaporation 

Membrane pervaporation is an effective process tool for separation of liquid mixtures. The 

process is shown in Figure 2.21.  

 

Figure 2. 21 Pervaporation process [59]. 

Pervaporation is a membrane separation process involving a feed mixture of two or more 

components passing through a dense membrane, in which one of the components permeates 

preferentially, and is removed as a vapor from the other side. Transport through the 

membrane is induced by the vapor pressure difference between the feed solution and the 

permeate vapor. There are several ways to maintain this vapor pressure difference. In the lab a 

vacuum pump is usually used to draw a vacuum on the permeate side of the system. 

Industrially, the permeate vacuum is most economically generated by cooling the permeate 

vapor, causing it to condense (fig 2.21); condensation spontaneously creates a partial vacuum 

[61]. The process was first studied in a systematic fashion by Binning and co-workers at 

American Oil in the 1950s [62]. Binning was interested in applying the process to the 

separation of organic mixtures.  

Pervaporation systems are now commercially available for two applications. The most 

important is the removal of water from concentrated alcohol solutions. GFT (Germany), the 

leader in this field, installed its first pilot plant in 1982 [63]. The second commercial 

application of pervaporation is the removal of small amounts of volatile organic compounds 

(VOCs) from contaminated water. This technology was developed by Membrane Technology 

and Research [64]. No commercial pervaporation systems have yet been developed for the 
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separation of organic/organic mixtures. However, current membrane technology makes 

pervaporation for separation of organic/organic mixtures possible, and the pervaporation 

processes is being actively developed by a number of companies. The first pilot-plant results 

for an organic-organic application the separation of methanol from methyl tert-butyl 

ether/isobutene mixtures, was reported by Separex in 1988 [65]. More recently ExxonMobil, 

started a pervaporation pilot plant for the separation of aromatic/aliphatic mixtures [66].  

2.4.3.4 Membrane Extraction 

Liquid-liquid (L-L) extraction is among the oldest of preconcentration and matrix isolation 

techniques in analytical chemistry [67]. Supported liquid membrane extraction is the most 

versatile membrane extraction technique for analytical sample preparation [68]. This 

technique is based on three-phase system where analytes are extracted from an aqueous 

sample into another aqueous phase through an organic liquid. The organic phase is held 

between the aqueous phases by a porous, hydrophobic supporting membrane, immobilized by 

means of capillary forces. Hence, two different equilibria are involved, which makes the 

system chemically analogous to extraction and back-extraction in classic liquid-liquid 

extraction. Supported liquid membrane extraction is applicable to analytes of high or 

moderate polarity [68]. Also, supported liquid membrane extraction provides unique 

possibilities extracting polar, ionisable and even permanently charged compounds, including 

metal ions, which are more difficult to extract with other techniques [68]. Another type of 

membrane extraction is microporous membrane liquid-liquid extraction, where an aqueous 

phase and an organic phase are separated by a hydrophobic membrane, and the organic phase 

also fills the pores of the membrane to provide a direct contact through a liquid-liquid 

interface without mixing the phases. Figure 2.22 shows examples for typical membrane units 

for extraction. The membrane extraction units are made of two blocks of inert material with a 

machined groove in each. The blocks are clamped together with a membrane between them. 

In principle these membranes are applicable to all versions of membrane extraction for 

analytical sample preparation or sampling. 
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(a)                                                                         (b) 

 

Figure 2. 22 Membrane units for liquid extraction. Shown are flat membrane modules with 

(a) 1μl and (b) 10μl channel volumes [68]. 

2.4.4 Mass transfer in membrane contactors 

For the local rate of interphase transport of any species being absorbed from the gas into the 

liquid through a microporous hydrophobic membrane not wetted by the liquid, consider the 

concentration profile shown in Figure 2.23 (a). Species i diffuse through the gas film, the gas-

filled membrane pore, and the liquid film in series. The species I flux expressions for the three 

regions are [59]: 

NI = kIg  (pIgb – pImi) =kIm  (pImi – pIi) = kIl  (cIi – cIlb)                                                           (2.1) 

At the gas/liquid interface, concentration in the two phases is at equilibrium and may be 

related by Henry’s law: 

CIi = HIpIi                                                                                                                               (2.2) 

where HI is the Henry’s constant and p is the partial pressure of I at the gas/liquid interface. 

 In terms of an overall mass transfer coefficient Kg based on the gas phase, or Kl based on the 

liquid phase, 

NI = Kg  (pIgb – pI*) = Kl  (cI* – cIlb)                                                                                     (2.3) 
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where  

cIlb = HIpI* and cI* = HIpIgb                                                                                                   (2.4) 

where pI* is the partial pressure of gaseous I in equilibrium with liquid of concentration  cIi 

and cI* is the liquid concentration of I in equilibrium with gas with partial pressure of pI.  

Recognizing that 

PIgb – pI* = (pIgb – pImi) + (pImi – pIi) + (pIi – pI*)                                                                  (2.5) 

one can get 

1/Kg = 1/kIg + 1/kIm + 1/kIlHI                                                                                                 (2.6) 

The overall resistance to gas transfer comes from three resistances in series: the gas film 

resistance, the membrane resistance, and the liquid film resistance. 

For the case where the membrane’s pores are wetted (figure 2.23 (b)) by the liquid absorbent, 

the flux expressions for species I are: 

NI = kIg (pIgb – pImi) = kIm (cImi – cIi)  

     = kIl (cIi – cIlb) = Kg (pIgb – pI*) 

      = Kl (cI*-cIlb).                                                                                                                  (2.7) 

This leads to  

1/Kg = 1/kIg + 1/kImHI + 1/kIlHI                                                                                             (2.8) 

and 

1/Kl = HI/kIg + 1/kIm + 1/kIl                                                                                                   (2.9) 

 

 

                             (a)                                                                      (b) 
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Figure 2. 23 Two operating modes of a hollow fiber membrane contactor: (a) gas-filled pores 

and (b) absorbent-filled pores [59]. 

Various correlations are available in the literature [25] to determine the individual mass 

transfer coefficient KIg ad KIl , mainly determined by the geometry and the flow conditions in 

membrane contactor. The membrane mass transfer resistance when the pores are wetted by 

the absorbent liquid may be described by Eq. (2.10) [69]:  

KIm = DIlεm/τmδ                                                                                                                    (2.10) 

where DIl is the diffusion coefficient of species i in the absorbent liquid, εm is the membrane 

porosity, τm is the tortuosity of pores in a membrane and δ is membrane thickness. 

When the membrane’s pores are gas-filled, the membrane transfer coefficient expression will 

depend on the regime of gas diffusion in the membrane pore. If the ratio of the membrane 

pore radius rp to the mean free path of the gas λ, rp/ λ, is much smaller than 1, Knudsen flow 

regime exists. The membrane transfer coefficient kIm can then be obtained from Knudsen flux 

expression as [59]:  

KIm = 2rp/3 (8RT/πMI)
1/2

 εm/τmδ                                                                                          (2.11) 

where MI is the molecular weight of the ith gas species . 

When rp/ λ is much larger than 1 viscous flow exists. For ratios rp/ λ between the two limits, 

transitional flow regime conditions are operative. In case of absorption of a species I through 
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a stagnant gas in the membrane pore under viscous flow conditions, conventional expressions 

for molecular diffusion may be used for KIm with allowances for εm and τm [59]. 

2.4.5 Phase breakthrough 

Mesh microcontactors are devices that allow immiscible fluid phases (liquid-liquid or gas-

liquid) to come in contact via the pores of the mesh without dispersing one phase into the 

other. The critical issue in operating the mesh microcontactor is the maintenance of the 

gas/liquid interface. If the pressure difference exceeds a critical value, then the one phase will 

break and disperse into the other phase. The breakthrough of one phase into another may 

cause unwanted froth, foam or emulsion. Such breakthrough can be controlled by applying a 

higher pressure on the phase which does not wet the pores. In order to avoid the dispersion of 

one phase into the other the gas-liquid or liquid-liquid interface should remain within the 

pores for the range of pressure differences existing between the two phases during operation 

and modified along the membrane due to pressure drop. 

In Figure 2.24 we can see a mesh microreactor where a liquid phase comes into direct contact 

with a fluid phase through the pores of the mesh. 

 

Figure 2. 24 Schematic diagram of mesh microreactor [70]. 

Based on Adamson and Gast [71] a pore in the mesh can be considered as a capillary and the 

interface inside each pore can be modelled with capillary rise concept. The mesh 

breakthrough pressure may be described by the Young-Laplace equation as [72]:   

ΔP =  














21 r

1

r

1
cosθγl                                                                                                             (2.12) 
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Where 
l
γ the liquid surface tension, θ is is the contact angle between the liquid and the solid 

(the membrane material). 1r and 2r  are the two characteristic radii of an elliptic shaped pore. 

For a circular pore the equation is simplified to:             

ΔP = 
r

γcosθ2
                                                                                                                       (2.13) 

with ΔP defined as: 

ΔP = PNW-PW                                                                                      (2.14)                                  

Positive breakthrough pressures (Pw-PNW) of wetting phases in membranes have been reported 

[73, 74, 75], which seemingly contradict the prediction of the Laplace equation. This is 

probably due to the fact that the solid wall inclination change at the pores ends (for regular 

pore membranes) or at pore interior (for tortuous pore membrane) is not accounted for [76]. 

The above indicates that one needs to use with care the Laplace equation.  

The term critical entry pressure of one phase refers to the pressure difference necessary for 

this phase to enter a pore. Even more important than critical entry pressure is the critical 

filling pressure of one phase ΔPC, defined as the pressure difference necessary to completely 

fill the pores with that phase. Critical and entry and filling pressures are identical for constant 

cross section pores but they differ for tapered pores when the wetting phase is on the small 

pore opening side. Thus, there are two critical filling pressures defined as critical filling 

pressure of the wetting phase ΔPC,W and the non-wetting phase ΔPC,NW, 

ΔPC,W = (PW-PNW)C,W                                        (2.15) 

ΔPC,NW= (PNW-PW)C,NW                                        (2.16) 

and two breakthrough pressures ∆PB,W and ∆PB,NW for the wetting and the non-wetting phases 

respectively. 

∆PB,W = (PW-PNW)B,W                              (2.17) 

∆PB,NW = (PNW-PW)B,NW                            (2.18) 

The contact angle measured for a liquid advancing slowly across a surface, A, exceeds that of 

the liquid receding on the surface, R, and all intermediate contact angles correspond to 

metastable equilibrium states [77]. This phenomenon is called contact angle hysteresis. The 

contact angle hysteresis is in general attributed to surface roughness and heterogeneity, 
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solution impurities, swelling, rearrangement or alteration of the surface by the solvent [71].  

Because of the contact angle hysteresis, the Laplace-Young equation is written as equation 

(2.19) to calculate the wetting phase critical filling pressure and equation (2.20) to calculate 

the non-wetting phase critical filling pressure: 

r

cosθ2
ΔP A

WC,

γ
                                                     (2.19) 

r

cosθ2
ΔP R

NWC,

γ
                                                             (2.20) 

where A is advancing contact angle and R is receding contact angle. Due to the fact that at 

the pore end the solid wall changes inclination from vertical to horizontal, an apparent contact 

angle needs to be defined. For an axisymmetric straight pore, it is defined as the angle that the 

meniscus forms at the three phase contact line with vertical plane.  

There are two mechanisms by which one phase can break through into the other:  

1) Breakthrough by spreading, when the apparent contact angle becomes equal to the sum of 

advancing contact angle and maximum solid wall inclination at the pore ends inclination 90
o
, 

θAPP = θA + 90
o
 <180

o
 

The wetting phase breaks through into the non-wetting phase by spreading out horizontally 

along the mesh. In this case, breakthrough pressure difference is calculated  by equation 2.21 

based on Amador’s work [70]:  

ΔPB,W = PL – PG = - r
)90cos(2 A


                                                                                   (2.21)                             

Equation (2-21) indicates that 
r

2
P0 W,B


 , which is consistent with positive breakthrough 

pressure. 

2) Breakthrough by maximum curvature, when  

θAPP = θA + 90
o
 ≥180

o
  

The meniscus at the non-wetting pore opening will reach its maximum curvature of 

hemispherical shape, which can accommodate the largest pressure difference between the two 
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phases. Beyond this point, breakthrough happens by bubble/droplet formation. Breakthrough 

by maximum curvature is the common mechanism for breakthrough of a non-wetting phase in 

a wetting phase. The breakthrough pressure of the non-wetting phase can be calculated by 

equation 2.22: 

ΔPB,NW = PG – PL = - r
os(0)2γc

 = r
2γ

                                                                               (2.22) 

Based on the above discussion, the meniscus position can be determined knowing pore 

geometry, A, R, as shown in Table 2.2 

Table 2. 2 Meniscus position as a function of apparent contact angle (θAPP). 

Condition Meniscus position 

0
o
<θApp< θR  Wetting pore end 

θR <θApp < θA Any part of the pore 

θA<θApp< θA+90
o
 Non-wetting pore end 

A cylindrical pore and a fluid pair with θA = 60°, θR = 30° is considered by Amador work [70] 

for illustration of the shape and stability of the gas-liquid interface and reproduced in Figure 

2.25. Figure 2.25 shows the dimensionless meniscus area and position versus the 

dimensionless pressure difference between the phases considering that the apparent contact 

angle can change from 0º at the wetting pore end to θA+ 90º= 150º at the non-wetting pore end 

(see Table 2.2). At contact angles θR< θApp < θA, the meniscus is located at any part within the 

pore, at θApp < θR the meniscus is pinned at the wetting end and at θApp > θA at the non-wetting 

end. As the contact angle gets closer to 0º at the wetting end, small changes in the pressure 

difference modify the meniscus area and curvature significantly. 
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Figure 2. 25 Dimensionless meniscus height h
#
 and area A

#
 given as a function of the 

pressure difference across the meniscus ∆P
#

 = P
#

NW- P
#

W [70]. 

Microfabricated meshes usually have supports either to keep the mesh from bending or to 

provide the necessary spacing between the mesh capping plates [4]. It has been 

experimentally observed that these supports can result in a decrease of the meniscus stability 

since they increase the effective diameter of the meniscus in the membrane pores adjacent to 

the supports as shown in Figure 2.26 [70]. A similar effect can happen at the edges of the 

mesh, where gaskets or O-rings are used for sealing. In addition mesh must be carefully 

cleaned before use because small particles can rest on it and increase the effective diameter as 

well. As a result of the increase of effective diameter is the decrease of breakthrough pressure 

when mesh is wetting by the absorbent liquid. Breakthrough pressure is unaffected by the 

supports for non-wetting mesh based on Amador work [70]. 



Literature Survey  

66  

 

  

Figure 2. 26 Illustration of effective diameter increase by built in support (edge effect) [70]. 

In order to prevent wetting of the pores of the membrane as a result less resistance to mass 

transfer the following measures can be considered: 

(a) Using hydrophobic membranes. Since the solvents for CO2 absorption are aqueous 

solutions, using hydrophobic membranes minimize the wetting problems [78]. The 

wettability of different liquid absorbent is summarized in Table 2.3. Due to its higher 

hydrophobicity, PTFE is more resistance to wetting by aqueous solutions. The 

disadvantage of using this material is the high production cost and lack of commercial 

availabilities, especially of those with smaller diameter [1]. PP fibers are less 

expensive and commercially available in a wider size, but they are not fit for operation 

with common absorbent liquids. PP is less chemical stable than PTFE. Wang et al. 

[79] examined the impacts of a common solvent used for CO2 absorption, 

diethanolamine (DEA) solutions, on two types of PP. They observed that chemical 

reaction occurred between PP membrane and DEA, which reduced the surface tension 

and hence its hydrophobicity. 

(b) Surface modification of a membrane. Hydrophobic modification of membrane surface 

can also improve its non-wettability. Nishikawa et al. [80] showed that the 

performance of polyethylene (PE) membrane could be greatly improved by 

hydrophobic treatment to its surface using fluocarbonic materials. In addition wetting 

problems can also alleviated by coating the membrane with a very thin permeable 

layer [81]. 

(c) Using membranes with a dense top layer and a microporous support effective in 

preventing wetting problems [1]. The top layer in contact with the liquid phase avails 

d 
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built in 

 

MESH 
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as a stabilization layer. The material of this layer should be highly permeable to the 

targeted gas components and be hydrophobic enough to prevent wetting by water. 

(d) Using liquids with suitable surface tension, because liquids with lower surface tension 

have a greater tendency to penetrate into the pores of a hydrophobic membrane owing 

to less capillary pressure. 

(e) Use a smaller pore size. This can be easily concluded from Young-Laplace equation. 

Table 2. 3 Wettability of membranes by liquid absorbents [1]. 

Membrane Absorption liquid Wettability Cause of wetting 

 

PTFE 

 

Aqueous MEA                          

 

_ 

 

PE Aqueous MEA                          +  Hydrophobicityof PE is 

not enough 

PP Aqueous NaOH solutions            + Possible modification of 

pores by trace impurities 

and ionic species 

 Aqueous amines solutions +  

PTFE Aqueous  amines                                    _  

PP    Aqueous alkanolamines                          _  

 Aqueous  amino acid salt 

solutions         

_  

PTFE       Aqueous MEA                                        +   Larger pore size of PTFE 

PVDF   Aqueous MEA                                         _  
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PP   Water, aqueous NaOH, 

Aqueous MEA   

+ (MEA) Not given, but 

possibly due to low 

surface tension of MEA, 

Insufficient, 

Hydrophobicity and 

chemical instability of 

membrane 

PE  +   (MEA) 

PTFE  _  

PE+F  _  

PP Aqueous amines solutions + Cause of wetting was not 

given;  

PTFE is more chemically 

stable 

PES+PDMS  +  

PP+PDMS  +  

PTFE      _  

PP Aqueous NaOH _ Possibly the low surface 

tension of aqueous MDEA 

 Aqueous MDEA   +  

PTFE Aqueous KOH solutions _  

+: wetted; -: non-wetted; F: coated with fluoropolymer; PP: polypropylene; PE: polyethylene;    

PES: poly (ether sulphone); PDMS: coated with poldimethyl-siloxane (silicon rubber); PTFE: 

polyTetrafluoroethylene (Teflon); PVDF: polyvinylidenefluoride; AMP: 2-amino-2-methyl-1-

prpanol; DEA: methyl-di-ethanolamine; EAE:2-(ethylamino)-ethanol; MEA: 

momoethanolamine; DEA: Diethanolamine; and TEA: tri-ethanolamine. 
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2.5 CO2 Capture systems 

There are three basic systems for capturing CO2 from coal-derived generation. 

 Post-combustion capture 

 Pre-combustion capture 

 Oxy-fuel combustion capture. 

These systems are illustrated in Figure 2.27. 

 

Figure 2. 27 CO2 capture systems [82]. 
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2.5.1 Post-combustion capture 

Post-combustion capture involves the removal of CO2 from flue gases produced by 

combustion of fossil fuels in air. Flue gas is passed through equipment which separates most 

of the CO2, instead of being discharged directly to the atmosphere. The CO2 is fed to a storage 

reservoir and the remaining flue gas is discharged to the atmosphere. A chemical sorbent 

process would normally be used for CO2 separation. Other techniques are also being 

considered but are not at such an advance stage of development. Post-combustion capture can 

also be applied to coal and oil fired power stations but some additional measures are needed 

to minimize contamination of the CO2 capture solvent by impurities in the flue gas, such us 

sulphur and nitrogen oxides. In many respects, post-combustion capture of CO2 is analogous 

to wet flue gas desulphurisation (FGD) techniques, which is widely used on coal and oil fired 

power stations to reduce emissions of SO2 [83]. 

2.5.2 Pre-combustion capture 

In pre-combustion capture a fuel reacts with oxygen or air and/or stream to give mainly 

a‘synthesis gas (syngas)’ or ‘fuel gas’ a mixture of mainly CO and H2. The syngas, with 

added steam, is then sent to a catalytic reactor (shift converter), to convert CO to CO2 and 

give more H2. CO2 is then separated, usually by a physical or chemical absorption process, 

resulting in a hydrogen-rich fuel which can be used in many applications such as boilers, 

furnaces, gas turbines, engines and fuel cells. These systems are considered to be strategically 

important but the power plant systems of reference today are 4GWe of both oil and coal-

based, integrated gasification combined cycles (IGCC) which are around 0.1% of total 

installed capacity worldwide [83]. 

2.5.3 Oxy-fuel combustion capture 

In oxy-fuel combustion capture the fuel is burned with nearly pure oxygen mixed with 

recycled flue gas (mainly CO2 and H2O). The pure oxygen is mixed with recycled flue gas to 

maintain combustion conditions similar to an air fire configuration. This is necessary because, 
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if the fuel is burnt in pure oxygen, the flame temperature is excessively high. Oxygen is 

usually produced by low temperature (cryogenic) air separation and novel techniques to 

supply oxygen to the fuel, such as membranes and chemical looping cycles are being 

developed [82]. The advantage of this technology is the elimination of NOx control equipment 

and the CO2 separation step [84]. The main systems for reference for oxy-fuel combustion are 

the same as those mentioned above for post-combustion capture. 

2.5.4 Advantages and Disadvantages of the CO2 capture 

systems 

Table 2.4 shows a summary of the advantages and disadvantages of each of these systems. 

Table 2. 4 Advantages and Disadvantages of different CO2 capture approaches [82]. 

 Advantages Barriers to implementation 

Post-combustion  Applicable to the 

majority of existing 

coal-fired power plants 

 Retrofit technology 

option 

 Flue gas is: 

 Dilute in CO2 

 At ambient pressure 

Resulting in: 

 Low CO2 partial pressure 

 Significantly higher performance 

or circulation volume required for 

high capture levels 

 CO2 produced at low pressure 

compared to sequestration 

requirements 

Pre-combustion Synthesis gas is: 

 Concentrated in CO2  

 High pressure 

 Applicable mainly to new plants, as 

few gasification plants are currently in 

operation 

 Barriers to commercial application of 
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Resulting in: 

 High CO2 partial 

pressure 

 Increased driving 

force for 

separation 

 More technologies 

available for 

separation 

 Potential for reduction 

in compression 

costs/loads 

gasification are common to pre-

combustion capture 

 Availability 

 Cost of equipment 

 Extensive supporting systems 

requirements 

Oxy-combustion  Very high CO2 

concentration in flue 

gas 

 Retrofit and repowering 

technology option 

 Large cryogenic O2 production 

requirement may be cost prohibitive 

 Cooled CO2 recycle required to 

maintain temperatures within limits of 

combustor materials 

 Decreased process efficiency 

 Added auxiliary load 

2.5.5 Types of CO2 capture technologies 

2.5.5.1 CO2 capture with sorbents 

A number of solids can be used to react with CO2 to form stable compounds under a set of 

conditions, and then under a different set of conditions, be regenerated after being heated, 

after a pressure decrease or after any other change in the conditions around the sorbent, to 

release the absorbed CO2 and reform the original compound. After the regeneration step the 

sorbent is sent back to capture more CO2 in a cyclic process. In some variants of this process 

the sorbent is solid and does not circulate between vessels because the sorption and 

regeneration are achieved by cyclic changes (in pressure or temperature) in the vessel where 
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the sorbent is contained [85]. A make-up flow of fresh sorbent is always required to 

compensate for the natural decay of activity and/or sorbent losses. No solid sorbent systems 

for large scale recovery of CO2 from flue gas have yet been commercialized, because solids 

are inherently more difficult to work with than liquids, although molecular sieve systems are 

used to remove impurities from a number of streams, such as in the production of pure H2. 

Figure 2.28 shows the separation process [82]. 

 

Figure 2. 28 Separation with sorbents. 

2.5.5.2 Chemical solvent scrubbing 

Currently the favoured method to remove CO2 from flue gases is using chemical solvents. 

The most common solvents for capturing CO2 from low pressure flue gas, is 

monothanolamine (MEA) and tertiary methyldiethanolamine (MDEA), due to the high CO2 

loading possible and the low regenerator heating load, relative to other solvents [85]. The 

solvent removes CO2 from flue gas by means of chemical reaction, which can be reversed by 

pressure reduction and heating. Prior to CO2 removal the flue gas is cooled and particulates 

and other impurities are removed as far as possible. After that, it is passing into an absorption 

vessel where it comes into contact with the chemical solvent, which absorbs much of the CO2 

by chemically reacting with it to form a loosely bound compound. To reverse the CO2 

absorption reactions the CO2 – rich solvent from the bottom of the absorber is passing into a 

stripping column where it is heated with steam. After the release of CO2 in the striper is 

compressed for transport and storage and the CO2 free solvent is recycled to the absorption 

vessel [85]. Around 98% CO2 recovery can be achieved, though around 90% capture is 

usually proposed for power stations, and product purity can be excess of 99% [86]. 
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2.5.5.3 Physical solvent process 

A physical solvent selectively absorbs CO2 without chemical reaction. Physical solvent 

processes are mostly applicable to gas streams which have a high CO2 partial pressure and/or 

a high total pressure. They are mostly used to remove the CO2 from the mixed stream of CO2 

and H2 that comes from the shift reaction in pre-combustion CO2 process (see figure 2.22), 

such as product from partial oxidation of coal and hydrocarbons [85]. The regeneration of 

solvent is carried out by release of pressure at which CO2 evolves from the solvent, in one or 

more stages. If further regeneration is needed the solvent would be stripped by heating. The 

energy consumption for the process is low, as only the energy for pressurizing the solvent 

(liquid pumping) is required. In a pre-combustion capture process the use of high sulphur 

fossil fuels result in syngas with H2S. Acid gas components must be removed. If transport and 

storage of mixed CO2 and H2S is possible then both components can be removed together. 

Sulphinol was developed to achieve significantly higher solubilities of acidic components 

compared to amine solvents, without added problems of excessive corrosion, foaming, or 

solution degradation [85]. It consists of a mixture of sulpholane (tetrahydrothiophene 1,1-

dioxide), an alkanolamine and water in various proportions depending on the duty. The main 

physical solvents that could be used for CO2 capture are cold methanol (Rectisol process), 

dimethylether of polyethylene glycol (Selexol process), propylene carbonate (Fluor process) 

and sulpholane [82]. 

2.5.5.4 Chemical looping combustion 

In chemical looping process, no air separation unit is required for the production of 

concentrated CO2 stream. In this process oxygen is supplied by a suitable metal oxide as an 

oxygen carrier, rather than by air or gaseous oxygen. Chemical looping is used to carry out in 

two fluidized beds [87]. In the first bed (oxydiser), a metal compound (Me) is oxidised with 

air to form an oxide (MeO) and produce a hot flue gas (reaction (1-7)), which is necessary to 

raise steam for the steam turbines that runs the generator. In the second bed reactor (reducer) 

the MeO is reduced to its initial state by the fuel (reaction (1-8)), while producing a gas with a 

high concentration of CO2 that can be captured and sequestered. The effect of having 

combustion in two reactors compared to conventional combustion in a single stage is that the 

CO2 is not diluted with nitrogen gas, but is almost pure after separation from water, without 

requiring any extra energy demand and costly external equipment for CO2 separation [85]. 
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Air Reactor: O2 + 2Me → 2MeO                                                                                        (2.23) 

Fuel Reactor:  CnH2m + (2n + m) MeO →  nCO2 + mH2O + (2n + m)Me                          (2.24) 

Chemical looping is in the early stage of process development. Bench and laboratory-scale 

experimentation is currently being conducted. Key hurdles include the handling of multiple 

solid streams and the development of adequate oxygen carrier materials [82]. 
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CHAPTER 3 
 

OPTIMAL DESIGN FOR FLOW 

UNIFORMITY IN 

MICROCHANNEL PLATE 

3.1 Introduction 

Fluid flow distribution in the geometry of a single microreactor plate plays a crucial role in 

the performances of the latter in chemical reaction. An uneven distribution of fluid flow over 

the channels would introduce dispersion, leading to loss in conversion and selectivity. In 

addition, a non-uniform flow distribution would increase the pressure drop over a 

microstructured plate leading to strong limitations in the throughput of the microdevice [88]. 

The use of microreactors for industrial-scale production of chemicals requires a large number 

of reactors in parallel, since each reactor provides only a small volume dedicated to reaction. 

Unfortunately, process design based on this ‘‘numbering-up’’ approach, is not exempt from 

some of the same difficulties encountered in traditional scale-up [89]. In particular, the 

parallel process structures may exhibit poor uniformity in the fluid distribution between 

microchannels, which is generally undesirable and can limit severely the inherent advantages 

of microchannel reactors [89]. Therefore, it is important, to design reactor geometries 

enabling narrow velocity distributions between channels. 
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In this Chapter fluid flow distribution in the geometry of a single microreactor is investigated 

in order to approach a design which allows the flow distribution to be as uniform as possible 

over the plate. For this purpose, 3D CFD models were formulated by varying in turn 

geometrical parameters such as: width of inlet and outlet flow distribution regions, different 

shapes of inlet and outlet flow distribution regions, shifting the channels in parallel, effect of 

the channels and the results of the simulations are presented in terms of fluid bypass and the 

uniformity of the fluid flow into the channels area. 

3.2 Simulation Conditions 

The fluid flow in microchannels is considered to be laminar. In this work, the density and the 

dynamic viscosity of the gas stream used for all the simulations (20vol% CO2/N2) have been 

set to ρgas=1.327 Kg/m
3
 and μgas=1.69e

-5 
Pa.s respectively and for the liquid stream (2M 

NaOH) ρliquid=1088 Kg/m
3
 and μliquid=1.67e

-3 
Pa.s respectively. For laminar flow in the 

microchannels to be applicable, Reynolds numbers should be lower than 2,000 for a Reynolds 

number defined as: 

iμ

H
Diuiρ

Re 

                                                                                                                     (3.1) 

where iu is the characteristic velocity of the gas or liquid stream, and 
H

D the hydraulic 

diameter. 

The Reynolds numbers for the channels were well below the critical value in all cases (a 

maximum value of Re=21 for each of the channels was found for a velocity of 0.162 m/s for 

the gas stream and a maximum value of Re=1.3 was found for a velocity of 5.0x10
-3 

m/s for 

the liquid stream, the highest figure taken into account,(these velocities were chosen based on 

the experimental gas and liquid flowrates, which will be used in the next chapters for CO2 

absorption)), allowing the flow to be regarded to as laminar.  

The governing equations for this model are the Navier-Stokes equations [90]: 
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combined with the equation of continuity, 

 uρ
t

ρ
i

i 






                                                                                                                   (3.3)
 

where u


is the fluid velocity vector, t  , time, p  , pressure and g


, gravity vector. 

For incompressible fluids at steady state hydrodynamics and isothermal conditions with 

negligible gravity, equations (3.2) and (3.3) become respectively: 

uμpuu 2
i




                                                                                                      (3.4)
 

And 

0u 


                                                                                                                            (3.5) 

Equations (3.4) and (3.5) are to be solved in the fluid domain in order to obtain the velocity 

distribution within the channels. 

Comsol 3.5a
®
, specific modelling software for finite element analysis of partial differential 

equations, was used to solve equations (3.4) and (3.5). A mesh consisting of 66273 number of 

elements and 163887degrees of freedom was used to execute the simulations in Windows XP 

with Pentium 4 processor 3.00GHz and 4GB RAM. Increasing the numbers of degree of 

freedom in the computentional domain from 66273 to 402300, no significant variation in the 

results could be detected meaning that the calculated distribution was not influence by the 

mesh grid. 

3.3 3D Simulations 

In order to calculate the velocity distribution over the microplate, preliminary 3D simulations 

have been carried out. Four different simplified 2D plates, namely A1, A2, A3, A4 (see figure 
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3.1-3.4), have been considered in order to study the fluid flow over the microplate. In addition 

three-dimensional computational domain of the plates A1 and A2 are shown in Figures 3.5-

3.6. In order to solve the Navier-Stokes and the continuity equations, (3.4) and (3.5), for the 

3D model, no-slip boundary conditions have been set at all walls, being the fluid treatable as a 

continuum medium. At the outlet, a fixed pressure has been specified (P0 N  ּ m
-2

). The 

solution was checked from 66273 to 402300 number of Degrees of Freedom, and no 

significant variation in the results could be detected indicating that the solution was mesh 

independent. By considering four different plates A1 (4 channels), A2 (8 channels) and A3, A4 

(channels are shifted in parallel), the goal was to examine the effects of those on the velocity 

profile along the channels,  in order to attain the most favourable design of microstructured 

plate that allows the fluid to be distributed equally into each channel. 

 

Figure 3. 1 Microplate geometry A1. The dimensions are: 850 μm chamber thickness for the 

gas side and 200 μm for the liquid side, 90 mm channel length (Lr). The inlet and outlet 

widths are 20mm (Winlet and Woutlet, respectively). 

 

Figure 3. 2 Microplate geometry A2. The dimensions are 850 μm chamber thickness for the 

gas side and 200 μm for the liquid side with 90 mm channel length (Lr). The inlet and outlet 

widths are 20 mm (Winlet and Woutlet, respectively). 
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Figure 3. 3 Microplate geometry A3. The dimensions are 850 μm thickness and 90 mm 

channel length (Lr). 

 

Figure 3. 4 Microplate geometry A4. The dimensions are 850 μm thickness and 90 mm 

channel length (Lr). 

 

Figure 3. 5 Three-dimensional computational domain of the microplate A1. 
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Figure 3. 6 Three-dimensional computational domain of the microplate A2. 

3.4 Results and discussion 

As already mentioned, the main objective of this work is to consider the effect of geometrical 

parameters of the microplate in order to approach a design which allows the flow distribution 

to be as uniform as possible over the plate for the gas and liquid phase. As it can be seen from 

Figure 3.7 and 3.8 (velocity profiles at the mid-height of the gas chamber from the CFD 

simulation for the maximum gas flowrate used in the experiments) the number of channels 

affect the flow distribution in the same way. In both geometries (A1 and A2) it is clear that 

two small regions appear at each corner of the plates, where the fluid has significantly smaller 

velocity compared to the velocity inside the channels (fluid bypass). However, since the gas-

liquid contact occurs only in the channel area these stagnation regions are not detrimental and 

they will not affect the performances of the plate. In order to compare the quality of flow 

distribution within the channels, average velocities u(i) within each channel are calculated by 

integration of the velocity profiles in y and z plane. In Figures 3.9 and 3.10 normalized 

average velocities u(i)/umean in geometries A1 and A2 are shown where the mean velocity is 

given by equation (3.5): 





n

1i
mean u(i)

n

1
u

                                                                                                                     

(3.5) 
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The maximum difference between average velocities was found to be [ui(max)- ui(min)] / 

umean< 0.1%  for both geometries (A1 and A2) confirming flow uniformity within the channels. 

Simulations were performed on geometries A1 and A2 for the minimum gas flowrate used in 

the experiments (Vgas=177 ml/min). Maximum difference between average velocities was 

found to be <0.1% as well. 

Comparing the geometries A3, A4 with A1, A2 plates apart from the fluid bypassing that exists 

(more in geometry A4 less in geometry A3) see Figures 3.11 and 3.12 a maldistribution of the 

fluid appears among the channels. As it can be seen from normalized velocity distribution 

within microchannels for geometries A3 and A4 (figures 3.13 and 3.14), fluid tends to flow 

with higher velocity in the middle channels for geometry A3 and with lower for geometry A4 

as shown in Figures 3.11 and 3.12. Thus, it leads to worsening the performance of the plate. 

In addition it can be seen that the velocity is higher at the beginning and at the end of the 

supporting bars in comparison with the velocity inside the channels. This is due to the fact 

that these are the areas where the fluid hits or leaves the solid boundaries of the supporting 

bars, hence there is a velocity change. 

 

Figure 3. 7 Velocity profile in geometry A1 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 
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Figure 3. 8 Velocity profile in geometry A2 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min.  

 

 

Figure 3. 9 Normalized velocity distribution in geometry A1 within microchannels at inlet gas 

flow rate Yg=354 ml/min and Re=21. 
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Figure 3. 10 Normalized velocity distribution in geometry A2 within microchannels at inlet 

gas flow rate Yg=354 ml/min and Re=20. 

 

Figure 3. 11 Velocity profile in geometry A3 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 
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Figure 3. 12 Velocity profile in geometry A4 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 

 

 

Figure 3. 13 Normalized velocity distribution in geometry A3 within microchannels at inlet 

gas flow rate Yg=354 ml/min. 

 

0.88

0.92

0.96

1

1.04

1.08

1 2 3 4

U
i/

U
m

ea
n

 

Channel Number 



Optimal Design For Flow Uniformity in Microchannel Plate  

86  

 

 

Figure 3. 14 Normalized velocity distribution in geometry A4 within microchannels at inlet 

gas flow rate Yg=354 ml/min. 

3.4.1 Effect of the width of inlet and outlet flow 

distribution chambers 

The influence of the width of inlet and outlet flow distribution regions is discussed in this 

section. Two microplates have been considered, namely A5 and A6, in which the width of both 

inlet and outlet flow distribution chambers was 10 mm, in order to study the effects of these 

modifications on the fluid arrangement within the microchannels. In contrast, all other 

geometrical parameters have been kept equal to those given in Figure 3.1 and 3.2, for plate A1 

and A2 respectively. As it can seen from Figure 3.15 and 3.16 by decreasing the width of the 

inlet and outlet chamber the fluid tends to flow on the top and the bottom channels with a 

higher velocity compared to the middle area of the plate (see normalized velocity distribution 

within microchannels as well, Figures 3.17 and 3.18). In both plates the velocity distribution 

becomes much worse than in plates A1 and A2, as it was discussed above that the fluid 

distribution inside the channels was uniform.  

Tonomura et al. [90] examined the influence of manifold area on flow distribution over 

microstructured plates by means of CFD-calculations. They considered microplate geometries 
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with constant inlet and outlet flow distribution chamber widths where water was fed at a 

uniform inlet velocity of 0.5 m/s. They observed that by doubling both inlet and outlet 

manifold areas the flow distribution became more uniform, the same trend was shown in the 

present work (see section 3.4 where the inlet and outlet widths are double).  

 

Figure 3. 15 Velocity profile in geometry A5 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 

 

 

Figure 3. 16 Velocity profile in geometry A6 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 
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Figure 3. 17 Normalized velocity distribution in geometry A5 within microchannels at inlet 

gas flow rate Yg=354 ml/min. 

 

 

 

Figure 3. 18 Normalized velocity distribution in geometry A6 withmicrochannels at inlet gas 

flow rate Yg=354 ml/min. 
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3.4.2 Effect of the shape of flow distribution chambers 

This section examines the effects of different shapes of inlet and outlet flow distribution 

regions on the flow uniformity through the microchannels. Along these lines two new 

microplate outlines have been designed, namely B1 and B2, shown in Figures 3.19 and 3.20.  

 

Figure 3. 19 Microplate geometry B1. The dimensions are 850 μm plate thickness and 90 mm 

channel length (Lr). 

  

Figure 3. 20 Microplate geometry B2. The dimensions are 850 μm plate thickness and 90 mm 

channel length (Lr). 

As it can been seen from the Figure 3.21 and Figure 3.22, the shape of the inlet and outlet 

manifolds is an important factor to take into consideration as it can significantly affect the 

quality of the flow distribution within the microchannels. As it emerges from these two 

Figures the uniformity of the fluid flow is very good (see also figures 3.23 and 3.24 for 

normalized average velocities) and in addition fluid bypass was managed to be eliminated. 

Furthermore Figure 3.22 shows that by increasing the profile angle at the sides of the plate 
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more than the plate B1 fluid bypassing can be eliminated completely. Tonomura et al. [86] in 

their work trimmed away 25% of the corners of their initial design in order to eliminate the 

dead volumes of the corners. 

 

Figure 3. 21 Velocity profile in geometry B1 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 

 

Figure 3. 22 Velocity profile in geometry B2 in the gas chamber at channel mid- height=425 

μm. Inlet gas flow rate Yg=354 ml/min. 
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Figure 3. 23 Normalized velocity distribution in geometry B1 within microchannels at inlet 

gas flow rate Yg=354 ml/min. 

 

Figure 3. 24 Normalized velocity distribution in geometry B2 within microchannels at inlet 

gas flow rate Yg=354 ml/min. Re=20. 
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3.4.3 Effect of the number of channels on the flow 

distribution 

A preliminary investigation was carried out on a microplate without channels, so that the role 

of these on the uniformity of the fluid flow distribution over the plate can be examined. For 

this purpose the geometry of the microplate B2 was used in simulations, except that no 

channels have been employed for B2, so that the fluid is not constrained in any way and is free 

to flow over the whole microplate. 

It is clear from Figure 3.25 that fluid bypass exists, which causes the two zones highlighted to 

show very low fluid velocities compared to the central part of the plate. 

This means that the fluid tends to cover the middle area of the plate with higher velocity 

compared to that in the stagnation regions. As a result, a particularly uneven flow distribution 

emerges over the plate, hence leading to worsening in the performances of the plate. This 

analysis shows that is important to use channels when the fluid must be distributed over the 

microplate with uniform velocity. Griffini and Gavriilidis [91] showed that the flow 

distribution improves by including fins in the plate to guide the flow. Their simulations in a 

blank microreactor showed that fluid by-pass existed.  

 

Figure 3. 25 Velocity profile in geometry B2 in the gas chamber at channel mid-height=425 

μm. Inlet gas flowrate Yg=354 ml/min. 
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3.4.4 Flow distribution in the microplate when the fluid is 

liquid 

Similar simulations were performed for the liquid chamber, where channel height was 200 μm 

and maximum liquid flowrate was 2.56 ml/min (Re=1.3). 

The geometries of the microplates A1 and A2 were used in our simulations to investigate the 

uniformity of the fluid flow distribution over the plate when liquid (2M NaOH) was used. It 

can be seen from Figures 3.26 and 3.27  that the uniformity of the liquid flow is the same with 

the gas flow (examined in section 2.3.4) and the maximum difference between average 

velocities was found to be <0.1% as it was found for gas fluid. In addition simulations were 

performed for the minimum liquid flowrate used in the experiments (Yliquid=1.28 ml/min). 

Maximum difference between average velocities was found to be <0.1% as well (see figures 

3.28 and 3.29 for normalized average velocities). 

 

Figure 3. 26 Velocity profile in geometry A1 in the liquid chamber at channel mid-

height=100 μm. Inlet liquid flowrate Yl=2.56 ml/min. 
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Figure 3. 27 Velocity profile in geometry A2 in the liquid chamber at channel mid- 

height=100 μm. Liquid flowrate Yl=2.56 ml/min. 

 

 

Figure 3. 28 Normalized velocity distribution in geometry A1 within microchannels at inlet 

liquid flow rate Yl=2.56 ml/min. 
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Figure 3. 29 Normalized velocity distribution in geometry A2 within microchannels at inlet 

liquid flow rate Yl=2.56 ml/min. 

3.5 Conclusions 

The distribution of fluids has been calculated using 3D CFD models in order to develop a 

design which allows the flow distribution to be as uniform as possible over the plate, by 

changing the geometrical parameters of the microplate. 

A preliminary investigation was carried out on a microplate without channels and the 

calculations have revealed that fluid bypass exists, leading to the formation of two stagnation 

regions (figure 3.25) with very low fluid velocities compared to the central part of the plate. 

As a result, a particularly uneven flow distribution emerges over the plate, hence leading to 

worsening in the performances of the plate. 

As a result, the use of channels over the microplate appears to be crucial when the fluid must 

be distributed over the microplate with uniform velocity, so that fluid bypass can be avoided 

and even distribution of flow achieved.  

Then by taking the original plates A1 and A2 as a starting point, geometrical parameters such 

as: width of inlet and outlet flow distribution regions, different shapes of inlet and outlet flow 
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distribution regions, shifting the channels in parallel, have been varied in turn and the results 

of the simulations have been presented in terms of fluid bypass and the uniformity of the fluid 

flow into the channels area. 

It has been shown by decreasing the width (plates A4, A5) of the inlet and outlet chamber the 

fluid tends to cover the top and the bottom channels with a higher velocity compared to the 

middle area of the plate. In both plates the velocity distribution becomes much worse than in 

plates A1 and A2, where the fluid distribution inside the channels was found to be uniform.  

Furthermore, the shape of the flow distribution chambers was investigated and the results 

showed that the shape of the inlet and outlet manifolds is an important factor to take into 

consideration as it can significantly affect the quality of the flow distribution within the 

microchannels. As it emerged from Figure 3.21 and Figure 3.22 the uniformity of the fluid 

flow is perfect and in addition we managed to eliminate the fluid bypass. In addition Figure 

3.22 shows that by increasing the profile angle at the sides of the plate more than the plate B1 

fluid bypassing can be eliminated completely. 

It can be finally concluded that the best results were obtained by using plate B2, but for 

reasons that they will be explained in the next chapter plate A2 was chosen for the micromesh 

contactor. 
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CHAPTER 4 

CO2 ABSORPTION IN METALLIC 

MESH REACTOR USING AQUEOUS 

SOLUTION OF NaOH 

4.1 Introduction 

In recent years, chemical engineers have been able to create devices with the help of 

microfabrication principles that open a new way of performing traditional chemistry. A 

microreactor has traditionally mean a small tubular reactor for testing catalytic performance, 

but with the widening use of microfabrication technologies it is now used to designate a 

reactor built with techniques used for electronic circuits [92]. The main advantages of 

microreactors are that due to its large surface to volume ratio, mass and heat transfer are 

intensified, this allows achieving isothermal conditions very easily resulting in greater 

conversions and selectivities than in conventional reactors [93]. Carbon dioxide capture 

followed by sequestration, is one of the solutions being explored at international level, to 

achieve the necessary deep reductions in greenhouse gas emissions. 

In this Chapter, CO2 absorption in sodium hydroxide solution was conducted in a metal 

microstructured mesh reactor. Breakthrough was investigated first in the microreactor in order 

to establish the operation pressure difference between gas and liquid phase. Carbon dioxide 

absorption in sodium hydroxide solution was then conducted in the metal mesh microreactor 

in order to evaluate, understand and improve its performance. For this reason, various 
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conditions such as gas and liquid flowrates, gas film thickness, mesh open area, type of the 

flow and gas residence time were investigated.  

4.2 Reactor design and experimental conditions   

The reactor was conceived by examining previous designs and attempting to improve on the 

previous drawbacks. One of the problems in the past designs (see figure 4.1) was the blockage 

of the inlet/outlet posts by the membrane (membrane sag) when we were tightening the two 

plates together in order to get the appropriate sealing. To eliminate the blockage problem 

supporting posts were incorporated in the inlet/outlet locations creating a support structure for 

the membrane (see figure 4.1). Another improvement was achieved in sealing by changing the 

plate profile from plate B2 (see figure 3.20) to plate A2 (see figure 4.2). With design A2 where 

the sides of the plates are nearly vertical, the gasket material was more firmly supported and 

compressed, providing better sealing, whereas with design B2 the gasket is not 

supported/compressed as fully by the upper and lower plates, allowing liquid to migrate 

between the gasket and the plate, resulting to stagnant liquid regions in the gasket areas (see 

figure 4.1). The final version of the mesh microreactor is shown in Figure 4.1. 

The reactor used in this work comprises of a microstructured mesh placed between two 18 

mm thick acrylic plates (S.I.M, UK), containing inlet and outlet ports for the fluids. Channels 

are machined in the acrylic plates with 0.85 mm and 0.2 mm depth forming the areas where 

gas and liquid flow respectively. The reactor measures 192 mm x 97 mm (see figure 4.1). 

Two viton gaskets 0.5 mm thick (Altec, UK) are placed in 0.4 mm deep grooves machined 

(using miiling machine SM 1500, UK) in the acrylic plates to provide the sealing. The mesh is 

made from nickel by electroforming (Tecan, UK). It is 25 μm thick and contains holes 25 μm 

diameter in a hexagonal pore arrangement (see figure 4.2a). The pores are concentrated in 

eight rectangular areas separated by seven bars and correspond to the eight channels of the 

acrylic plates. The porous area of the mesh is 43.8 mm x 90 mm (figure 4.1) with an open 

area of 15% and defines the reaction area between the two fluids. To investigate the effect of 

the open area on CO2 removal two other nickel meshes were used, also with 25 μm thickness. 

One with slit-type pores (25 μm x 75 μm), and an open area of 25% (see figure 4.2b) and the 

other one with square pores (35 μm x 35 μm) and an open area of 20% (see figure 4.2c). It 
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was necessary to include supports in the acrylic plates to prevent the mesh buckling, which is 

a consequence of its large surface area. Seven supporting bars were designed with 0.6 mm 

width and with a distance of 5.48 mm from each other. In addition 36 posts were incorporated 

in the entrance and outlet regions of the acrylic plates (see figure 4.1). Two pin holes were 

employed in both plates and mesh for alignment, while 16 screws were used for clamping all 

components together. A picture of the assembled reactor and a schematic of all components of 

the reactor are shown in Figure 4.1. In order to investigate the influence of the gas film 

thickness on CO2 removal an additional stainless steel gasket (0.1 mm) thick, and an 

additional viton gasket were used to increase the gas flow channel depth from 0.85 mm to 

1.45 mm. 

 

 

(a) 

(b) 
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(f) 

 

Figure 4. 1 Mesh microstructured reactor: (a) Schematic of acrylic plate (b) Schematic   of 

mesh, (c) Picture of assembled device (d) Picture of assembled device based on plate B2 (e) 

Picture of the assembled device of the preliminary design. (f) Exploded schematic view of the   

reactor. Dimensions are in mm. 
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(a) 

(b) 

(c) 

Figure 4. 2 Microscope images of the microstructured meshes: (a) Pore diameter=25 μm, 

open area=15%, thickness=25 μm (b) Pore 25 μm x 75 μm, open area=25%, thickness=25 μm  

(c)  Pore 35 μm x 35 μm , open area=20%, thickness 25 μm. 



CO2 Absorption in Metallic Mesh Reactor using Aqueous Solution of NaOH  

103  

 

A schematic of the experimental set up for CO2 absorption is shown in Figure 4.3. An HPLC  

pump (Waters 5100) was used to drive the liquid 2M NaOH in the bottom chamber of the 

reactor, while the gas 20vol% CO2/N2 was controlled by a mass flow controller (Brooks 

5850) and flowed above the mesh. The differential pressure between the two phases was 

controlled by a metering valve (Swagelok) at the outlet of the liquid phase. The gas phase 

pressure and liquid phase pressures were measured by pressure sensors (Honeywell; pressure 

range 0-15psi, power supply; Traco 5V, use of the Labview program running by computer for 

pressure readings). The outlet of the gas phase passed through a liquid trap to avoid any liquid 

getting into the gas chromatograph (GC) in case of breakthrough of the liquid in the gas 

phase, and then connected to a GC (Shimadzu GC-14B) for carbon dioxide concentration 

determination. Experimental data were obtained varying the liquid flow rate in the range 1.28-

2.56 ml/min and gas flowrate in the range 177-354 ml/min. These flowrates resulted to 

residence times, based on the gas/liquid volumes in contact with the perforated mesh area, 

0.56-1.12 s for the gas and 18-36 s for the liquid respectively.  All the experiments were 

carried out at room temperature (approximately 20
o
C). Based on carbon balance below:  

Fin – Fout –     
Fin = 0                                                                                                           (4.1) 

The CO2 removal efficiency was calculated from: 

    
   

       

      
                                                                                                             (4.2) 

where F is the molar flowrate of CO2. The experimental error in CO2 removal was assessed to 

be ± 5%. Two to three chromatographs were taken for each measurement and the deviation 

between them was about ± 5%. 

In addition a preliminary investigation of the mesh microreactor manufactured by CRL 

(Central Research Laboratories) for CO2 absorption was performed. The CRL microreactor 

consists of the mesh in an enclosure formed from glass and copper. Figure 2.2 (Chapter 2) 

shows a diagrammatic cross-section of the reactor detailing the reactor regions, and the 

assembled device, while Figure 2.3 shows a photograph of a nickel mesh utilized in the CRL 

microreactor. More details about CRL microreactor are described in section 4.5.7. The 

experimental set-up used for CRL microreactor, is the same to the one described previously 

for the metallic mesh microstructured reactor (see figure 4.3), except that the gas phase 

pressure and the liquid phase pressures were measured by a manometer. 
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Figure 4. 3 Schematic diagram of the experimental set-up used in this work. P indicates 

pressure sensor. Experiments were carried out at room temperature (approximately 20
0
C). 

4.3 Mathematical Model Development 

A two-dimensional model of the microstructured mesh reactor was formulated and the 

following assumptions were made: (1) The system is at steady state (system was allowed to 

reach steady state conditions, no change of pressure, temperature with time). (2) Ideal gas 

behavior is valid for the gas phase. (3) Henry’s Law is applicable (Henry’s law is applied to 

connect CO2 interfacial concentrations in the liquid and gas phase). (4) Plug flow profiles are 

assumed in the gas and liquid phases. (5) Mesh pores are completely filled by the liquid 

(NaOH solution wets the hydrophilic mesh), so that the gas-liquid interface is situated at the 

same location as the mesh-gas interface. (6) Pressure drop along the reactor is neglected 

(pressure drop for gas and liquid phase was found experimentally and it was trivial see Figure 

4.6). The reactor model is divided in three main domains: the gas phase, the mesh, and the 

liquid phase (figure 4.4). The differential mass balances to describe the concentration profiles 
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of components in the three domains are given below, and they were solved with COMSOL 

3.a. 

 

Figure 4. 4 Mathematical model domains with coordinates and boundaries. 

Mass balances in the liquid phase: 

The differential mass balances of components in the liquid phase along with the associated 

boundary conditions are [35]: 

                                                     (4.3) 

                                                                                                                                               (4.4) 

where R is the reaction rate, D is  the diffusion coefficient, c is the concentration, and u the 

velocity. 
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Mass balances in the mesh: 

The differential mass balances of components in the mesh, along with the associated 

boundary conditions are: 
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where m is dimensionless Henry’s law constant.  

Mass balances in the gas phase: 

The differential mass balances in the gas phase, along with the associated boundary 

conditions are: 
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at z=0,   
initial2,CO

G
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Two variations of the model were implemented. The first one, called “segregated model”, 

where the solid part of the perforated area is neglected and the open area of the mesh is 

utilised to modify the effective length of the reactor, i.e. the reactor length in this case is “εL”, 

and the second one, called “pseudo-homogeneous model”, where the mesh is considered as a 

homogeneous medium with diffusivities “εD”. The solution was checked from 109219 to 

227947 number of Degrees of Freedom, and no significant variation in the results could be 

detected indicating that the solution was mesh independent. 

4.4 Reaction System 

The reaction system considered refers to the absorption of CO2 from a 20vol% CO2/N2 

mixture within a solution of 2M NaOH. Three steps occur during the absorption of CO2 into 

aqueous hydroxide solutions (Pohorecki and Moniuk) [94]: 

CO2(g) ↔ CO2(l)                                                                                                                    (4.18) 

CO2(l) + OH
-
 → HCO3

-
                                                                                                        (4.19) 

HCO3
-
 + OH

-
 ↔ CO3

2-
 + H2O                                                                                             (4.20) 

The overall reaction can be written as: 

2NaOH + CO2 → Na2CO3 + H2O                                                                                       (4.21) 
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The rate of reaction (4.19) is significantly slower than reaction (4.20), and hence it governs 

the overall rate of absorption: 

NaOH2CO2CO CkCR                                                                                                               (4.22) 

NaOH
2

CONaOH
C2kCR                                                                                                           (4.23) 

All the parameters used in the calculations were taken from previous CO2/NaOH studies and 

are reported in table 4.1. 

Table 4. 1 Values of parameters used in the simulations for T=20
0
C. 

Parameter Value Reference 

    

 
 (m

2
/s) 1.64x10

-5
  Cussler [95] 

    

 
 (m

2
/s) 2.35x10

-6
exp(-2119/T) Versteeg and Van  Swaaij [96] 

D
L

NaOH (m
2
/s)          

  Nijsing et al. [97] 

m (dimensionless) 0.8314 Zanfir et al. [10] 

k (m
3
/mol s) 10

(11.916-2382/T)
 Pohorecki and Moniuk [94]            

4.5 Results and Discussion 

4.5.1 Phase Breakthrough 

Breakthrough was investigated in order to establish the acceptable operational pressure 

difference between gas and liquid which keeps the two phases separated. If the pressure 

difference exceeds a critical value, then one phase will break through and disperse into the 

other phase [1]. Figure 4.5 shows an experiment where liquid from the bottom chamber has 

entered the gas-phase channel when increasing the liquid phase pressure beyond the 
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breakthrough pressure. The theoretical breakthrough pressure of NaOH, can be calculated by 

equation 4.24 which is equation 2.21 based on Amador’s work [70]:  

        
          

           

 
                                                                 (4.24)                             

where γ is the surface tension of NaOH, r the radius of the mesh.  

The breakthrough pressure of CO2/N2 can be calculated by equation 4.25 which is derived 

from equation 2.22: 

          
         

        

 
 

  

 
                                                                      (4.25) 

Table 4.2 shows a comparison of breakthrough pressure between the experimental results and 

the prediction from equations (4.24) and (4.25) for different meshes. The theoretical values 

are higher than the experimental ones. These discrepancies between theoretical and 

experimental results might be explained by the edge effect (see section 2.5.3.1). In the case of 

CRL mesh the supports which keep the mesh from bending can cause the edge effect. The 

supports can decrease the meniscus stability since they are increasing the effective diameter of 

the meniscus in the membranes pores adjacent to the supports. Similar discrepancies between 

theoretical and experimental values of breakthrough pressures were observed from Amador 

[70] when he performed experiments using CRL mesh for water/air system. Amador [70] 

pointed out that the edge effect or particles resting on the mesh may cause these 

discrepancies. In addition similar effect of meniscus stability can take place at the edges of the 

membrane, where gaskets are used for sealing. In all the experiments with nickel membranes, 

breakthrough of liquid in the gas phase firstly occurred at the locations where the gaskets 

were in contact with the membrane and at the locations where the membrane were in contact 

with the supporting bars of the microplate. Furthermore SEM images of the meshes have to be 

taken in order to ensure that there are no defective pores in the mesh. Breakthrough occurs 

first on the pore with the largest diameter [98] and hence defective pores can reduce the 

breakthrough pressure. 
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Table 4. 2  Breakthrough pressure of different membranes for the NaOH - CO2/N2 system. 

 

Membrane 

Breakthrough pressure 

(G→L) 

PG-PL (cm H2O) 

Breakthrough pressure 

(L→G) 

PL-PG (cm H2O) 

Experiment Equation 

(4.25) 

Experiment Equation 

(4.24) 

Nickel Mesh 

Pore size (35μm) 

15-20 85 0-3 0 

Nickel Mesh Pore 

size (25μm) 

27-31 118 0-3 0 

Nickel Mesh (CRL) 

Pore size (5μm) 

40-44 595 0-3 0 

During typical operation (YG=354 ml/min, YL=2.56 ml/min) in the acrylic mesh microreactor, 

the pressure drop in the gas phase was 1.6cm H2O and in the liquid phase was 1.9 cm H2O. 

The pressure difference between gas and liquid phase was kept at (PG-PL)inlet=30 cm H2O and 

(PG-PL)outlet=30.2 cm H2O (see figure 4.6) when the nickel mesh of 25 μm pores diameter was 

used. 

The theoretical values for gas and liquid phase pressure drop were 0.1 cm H2O and 2.3 cm 

H2O respectively, based on the equation below [99]: 

   
     

                                  (4.26) 

where u is the velocity, d is the hydrolic diameter, μ is the viscosity and L is the length of the 

channel. 

The discrepancy between the theoretical and experimental value for the gas phase pressure 

drop, might be due to the fact that the equation does not count for the pressure drop along the 

fittings of inlet/outlet, while the pressure sensors used in the experiments measured the 

pressure drop along the fittings of inlet/outlet (see figure 4.7). Also blockage of the outlet of 

the gas phase due to the deposition of sodium carbonate (product of the reaction between 

                , which was observed in the outlet of the gas phase during the 

experiment) could increase the pressure drop along the gas phase and cause the discrepancy. 
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In addition fluctuations of flowrates, which was caused by the mass flow controller, might 

cause this deviation. 

 

Figure 4. 5 Picture of the top (gas) side of the reactor, during a breakthrough experiment. The 

arrows indicate breakthrough of the liquid into the gas phase. 

 

 

Figure 4.6 Pressure profile in gas liquid phases in (a) co-current operation membrane 

contactor. 
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Figure 4.7 Picture of a part of the top (gas) side of the reactor, showing the distance of the 

pressure sensor from the inlet of the reactor. 

4.5.2 Model prediction for CO2 absorption in NaOH 

solution  

The predictions of the segregated model and pseudo-homogeneous model are compared   with 

experimental results, obtained from carbon dioxide absorption in sodium hydroxide solution. 

The pseudo-homogeneous model has been used by various investigators for the modelling of 

membrane contactors [100, 101]. However, as shown in Figure 4.8 this model shows 

significant deviation from the experimental results. The segregated model shows a much 

better agreement with the experimental results. 18-30% of the carbon dioxide contained in the 

inlet stream was removed within 0.5-1.2 s experimental gas residence time.  

These results are comparable with similar research where CO2 absorption was investigated in 

microchannel separated-flow contactors. In a falling film microreactor, 69% of CO2 from a 

26vol% CO2 stream was absorbed in ca. 11 s gas residence time, using 2M NaOH [10]. In that 

case, the liquid film and gas film thickness were 100 μm and 5.5 mm respectively, and the 

inlet molar ratio CO2:NaOH was 0.4, while in our work the inlet molar ratio CO2:NaOH is 

0.6. TeGrotenhuis et al. [102] observed that in a microchannel membrane device with 100μm 

thick gas and liquid layers, using polymeric membranes of 10-50 μm thick, with pore size of 

0.1-5 μm, more than 30% of CO2 from a 25%vol CO2 stream was absorbed in ca. 3 s 

residence time in 20% diethanolamine solution. 
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It is worth noting that even though the CO2 removal decreases with increasing gas flowrate, 

the CO2 flux remains constant at almost 2x10
-3 

mol/m
2 s (based on the mesh area) indicating 

the absence of mass transfer resistance in the gas phase. In addition to that, if there was a 

resistance in the gas phase by increasing the gas flowrate, CO2 flux should increase due to the 

fact that the gas boundary layer resistance decreases.  Simulations were performed also with 

laminar flow profiles and the results were practically the same with the results when plug 

flow profiles were used (figure 4.8) for gas and liquid phase. This proves that our assumption 

for plug flow in both phases was reasonable. Sensitivity analysis of the model was carried out 

where G

2COD , L

2COD , L
NaOHD  and k were varied by ±20%. While in Figure 4.8 average deviation 

from experimental data is 3.3%, varying G

2COD by ±20% did not produce any detectable 

changes. When varying L

2COD by ±20% or L
NaOHD  by ±20%, the average deviation became 4% 

and 4.1%, respectively. When varying the rate constant by ±20% the average deviation was 

still found to be 3.3%. 

 

 

Figure 4.8 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and by the segregated and pseudo-homogeneous models. Mesh open 

area=15%, δG=850 μm, δL=200 μm, YG/YL=139.5, NaOH=2M. 
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4.5.3 Influence of liquid and gas flowrates 

Figure 4.9 shows the comparison of the model with the experimental results for CO2 removal 

as a function of gas and liquid flowrates. For each of these plots (figure 4.9) the gas flowrate 

was kept constant while the liquid flowrate was varied. The percentage of CO2 removal 

increases by increasing the liquid flowrate and decreasing the gas flowrate. The increase of 

the gas flowrate reduces the residence time in the reactor; hence, it results in a lower rate of 

removal of carbon dioxide as shown in Figure 4.8. On the other hand, as the liquid flowrate 

increases, the concentration of NaOH inside the mesh is kept higher, increasing the driving 

force for CO2 removal. The increase of CO2 absorption is however relatively small, in 

agreement with similar trends observed by Al-Marzouqi et al. [100] for CO2 absorption in 

NaOH in wetting hollow fiber membranes. This work further indicated that increase of CO2 

removal with liquid flowrate became more significant for non-wetting membranes. By filling 

the pores with the absorbent liquid, the membrane-phase resistance is increased as the liquid 

offers additional resistance to the transport; this behaviour indicates the existence of mass 

transfer resistances in the bulk liquid phase. Zhang et al. [103] observed a small increase in 

CO2 flux as liquid velocity increased at low velocities but no effect at larger velocities, for 

CO2 absorption in DEA solution in non wetting hollow fibers. In that work, the rate-

determining step was located in the gas phase, as demonstrated by the increase of CO2 flux 

with gas velocity. In our case, CO2 flux remains constant not only with gas flowrate (as 

discussed previously) but also with liquid flowrate (e.g. the CO2 flux was approximately 

2x10
-3 

mol/m
2 s for 354 ml/min gas flowrate). 
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Figure 4.9 Amount of CO2 removed from the gas phase as a function of liquid flowrate 

obtained experimentally and theoretically by the segregated model, for various gas flowrates. 

Mesh open area=15%, δG=850 μm, δL=200 μm, NaOH=2M. 

4.5.4 Influence of mesh open area  

The results so far indicated that there is no mass transfer resistance in the gas or bulk liquid 

phases. Since the mesh is wetting, one would expect mass transfer resistance to exist in the 

mesh. In order to investigate this, experiments and simulations were performed for meshes 

with different open contact area. As shown in Figure 4.10, increasing open area significantly 

increases CO2 removal. For example by increasing open area from 15% to 25%, CO2 removal 

increases almost linearly from 17.8% to 27% (see figure 4.10 for gas flowrate=354 ml/min). 

The agreement with the segregated model and the experiments is good, providing further 

confidence on the model predictive behaviour. Next, the segregated model was used to 

calculate transverse concentration profiles (see section 4.3 for mass balances) in the mesh. As 

can be seen in Figure 4.11 there is a sharp decrease in CO2 concentration in the mesh liquid, 

confirming that mass transfer resistance exists in the mesh. In addition the model indicates 

that the carbon dioxide is consumed within 3.5 μm from the gas–mesh liquid interface. For 

lower NaOH concentration provides lower reaction rate and leads to penetration of carbon 

dioxide deeper in the mesh liquid. Such small penetration distances were also observed for 

CO2 absorption in NaOH solution in a falling film microstructured reactor [10]. Figure 4.12 
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shows the transverse concentration profiles for 2M and 1M NaOH in the mesh liquid, 

confirming that lower NaOH concentrations lead to lower reaction rates and hence, less 

NaOH consumption.  

 

 

Figure 4.10 Amount of CO2 removed from the gas phase as a function of gas flowrate 

obtained experimentally and theoretically by the segregated model, for meshes with different 

open areas. δG=850 μm, δL=200 μm, YG/YL=139.5, NaOH=2M. 
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Figure 4.11 Transverse concentration profile of CO2 in the mesh. Mesh open area=15%, 

δG=850 μm, δL=200 μm, YG/YL=139.5, gas flowrate =354 ml/min, z=4.5 cm, mesh 

thickness=25 μm.  

 

Figure 4.12 Transverse concentration profile of NaOH in the mesh. Mesh open area=15%, 

δG=850 μm, δL=200 μm, YG/YL=139.5, gas flowrate =354 ml/min, z=4.5 cm, mesh 

thickness=25 μm.  

4.5.5 Influence of gas film thickness 

Figure 4.13 shows the CO2 removal for two different gas chamber heights, 850 μm and    

1450 μm as a function of gas residence time. The percentage of CO2 removal increases by 

increasing the gas residence time. Both experimental and modelling results demonstrate lower 

CO2 removal for the higher, gas chamber height. This is related to the fact that as chamber 

height increases the ratio of gas volume over gas-liquid surface area increases. This is 

expected to be a key parameter for such a mass-transfer limited system.  
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Figure 4.13 Amount of CO2 removed from the gas phase as a function of gas flowrate 

obtained experimentally and theoretically by the segregated model, for different gas chamber 

thickness. YG/YL=139.5, mesh open area=15%, δL=200 μm, NaOH=2M. 

4.5.6 Influence of the type of flow 

Figure 4.14 shows the performance of the mesh microreactor when the gas flow is counter or 

co-current to the liquid flow. As it can be seen from Figure 4.14 the operating flow patterns 

become unimportant as both co-current and counter current flow patterns show the same 

results for CO2 removal. This could be due to the fact that the mesh is wetting, hence the 

dominant resistance for mass transfer is located in the mesh, and this, in turn, minimises the 

effect of flow patterns on the CO2 removal. In addition to that, laminar flow and plug flow 

profiles showed the same influence on CO2 removal, since the mass transfer resistance exists 

in the mesh. Li and Teo [104] showed that when gas and liquid flow in parallel, the difference 

between cocurrent and counter-current flows are much less significant in the membrane 

absorption compared to conventional gas permeation. 
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Figure 4.14 Effect of the flow (counter or co-current) on CO2 removal obtained 

experimentally. Mesh open area=20%, δG=850 μm, δL=200 μm, YG/YL=139.5, NaOH=2M. 

4.5.7 Preliminary investigation of CO2 absorption in 

NaOH solution using CRL microreactor 

4.5.7.1 Reactor design and experimental conditions 

The mesh microreactor consists of the mesh in an enclosure formed from glass and copper. 

Figure 2.2 in chapter 2 shows a diagrammatic cross-section and the assembled device of the 

mesh microreactor detailing the reaction chamber regions [4]. The reaction chamber depth is 

set at 100 μm in the active area on each side of the mesh by supports formed on the chamber 

walls. Mesh area was chosen so that the reaction chamber volume for each phase to be 100 μl, 

and the surface area of the mesh to be 5.23 cm
2
. Each chamber wall has a milled low flow 

resistance manifold channel (cross-section of 0.7 mm by 1 mm, with volume 37 μl). Due to its 

chemical inertness and transparency glass material was chosen for the reaction chamber wall. 

Copper blocks were milled to form the structural components, which included provision for 

fluid connections and heaters, with a recess in each to accept the glass chamber wall 

components [4]. The blocks were electroplated with nickel in order to obtain chemical 
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compatibility similar to that of the mesh. Finally, a glass component was fixed into each 

copper block with Epotek 353ND-T epoxy. The complete device comprises of two blocks 

(mentioned above) with a mesh between them. A viton gasket is placed in a recess in one of 

the copper blocks to provide the sealing. The mesh was made from nickel (see figure 2.3) 

using a two stage-stage electroplating method. The pore diameter, depth, and the spacing 

between the hexagonal pores were approximately 5 μm with an open area of 20% is shown in 

Figure 2.3. 

The experimental set-up was identical to the one described in section 4.2, except that  a 

single- syringe pump (Cole- Palmer 74900 series) was used to drive the liquid fluid (NaOH 

2M) into the bottom of the reactor. Experimental data were obtained varying the liquid flow 

rate from 10-20 ml/h using NAOH inlet concentration of 2M and gas flow rate of 23-45 

ml/min for CO2 inlet concentration of 20%vol. These flow rates resulted to residence times, 

0.13-0.26 s for the gas and 18-36 s for the liquid respectively. All the experiments were 

carried out at room temperature (approximately 20°C). 

4.5.7.2 Experimental results and conclusions 

Figure 4.15 shows the performance of CRL mesh microreactor in CO2 absorption. Over 75% 

of the carbon dioxide was absorbed in less than 0.3s experimental gas residence time from a 

stream containing 20vol% CO2. In the micromesh reactor studied before 30% of CO2 from a 

20vol% CO2 stream was absorbed in 1.2 s gas residence time. In that case the gas film and the 

liquid film thickness were 850 μm and 200 μm respectively, while in the CRL mesh reactor 

the liquid film and gas film thickness were 100 μm each. Since both reactors operate in the 

wetted mode the main resistance is inside the mesh. CRL mesh is 5 μm thick, while in the 

microstructured reactor mesh is 25 μm thick. This is expected to be the key parameter for 

having more CO2 removal in the CRL mesh reactor since the thickness of the CRL mesh is 5 

times thinner than the mesh of the microstructured reactor, hence less resistance to mass 

transfer. 
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Figure 4.15 Amount of CO2 removed from the gas phase as a function of gas residence time, 

obtained experimentally. Mesh open area=20%, δG=100 μm, δL=100 μm, YG/YL=139.5, 

NaOH=2M. 

4.6 Conclusions 

A microstructured mesh reactor was used for studying carbon dioxide absortion in NaOH 

solution, which is an example of a fast gas-liquid reaction. Four different nickel meshes were 

used: (a) Pore diameter 25 μm, open area 15%, thickness 25 μm (b) Pore 25 μm x 75 μm, 

open area 25%, thickness 25 μm (c) Pore 35 μm x 35 μm, open area 20%, thickness 25 μm, 

(d) Pore 5 μm, open area 20%, thickness 5 μm. The mesh helped to stabilize the gas/liquid 

interface and keep the two phases separated. Significant absorption was observed with gas 

residence times below 1 s.  Two models with no adjustable parameters were formulated 

utilizing the open area of the membrane either to adjust the effective reactor length 

(segregated model) or to adjust the effective diffusivity in the mesh. The segregated model 

showed much better agreement with experimental data. Parametric studies showed that the 

percentage of CO2 removal increases by increasing the liquid flowrate and decreasing the gas 

flowrate. The model indicated that the carbon dioxide is consumed within few microns from 

the gas – liquid interface, and the dominant resistance for mass transfer is located in the mesh 
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because is wetted by the liquid reactant. Increase of the open area of the mesh from 15% to 

25% increases the CO2 removal significantly. In addition the operating flow patterns are 

unimportant as both co-current and counter current flow patterns show the same results for 

CO2 removal. Finally CO2 removal was increased using CRL reactor. This related to the fact 

that in the CRL reactor the thickness of the mesh was 5 times thinner from the mesh used in 

the acrylic reactor, hence less resistance to mass transfer.  
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CHAPTER 5  

CO2 ABSORPTION IN PTFE 

MEMBRANE REACTOR USING 

AQUEOUS SOLUTIONS OF AMINES 

5.1 Introduction 

For technical, economical and environmental concerns, aqueous solutions of alkanolamines 

are widely applied for: (a) acid gases (CO2, H2S) removal during natural gas sweetening and 

(b) CO2 capture from fossil-fuel-fired power plants, as well as some other important industries 

such chemical and petrochemical, steel, and cement production. Industrially more often used 

alkanolamines are monoethanolamine (MEA), diethanolamine (DEA), diisopropalamine 

(DIPA), N-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP) [105]. The 

choice of a certain amine (single or blended amine) is mainly based on the absorption 

capacity, reaction kinetics and regenerative potential and facility. In recent years, the 

efficiency of membrane contactor for CO2 capture has been extensively studied. Results 

showed that the membrane gas absorption process is a good alternative to conventional 

techniques as it was explained extensively in the literature review. 

In this Chapter, CO2 absorption in solutions of monoethanolamine (MEA) and diethanolamine 

(DEA) was performed in a membrane PTFE microstructured reactor. In order to evaluate, 

understand and improve the performance of the membrane microreactor, various conditions 
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such as gas flowrates, membrane contact area between the gas and the liquid, different amine 

solutions, and liquid concentrations were investigated. 

5.2 CO2 Absorption in Amine solutions 

5.2.1 Reactor design and experimental conditions 

The reactor used in this work comprises of a microstructured membrane placed between two 

18 mm thick acrylic plates (S.I.M, UK), containing inlet and outlet ports for the fluids. One 

channel is machined in each acrylic plate with 0.85 mm and 0.2 mm depth forming the areas 

where gas and liquid flow respectively. The reactor measures 192 mm x 97 mm (see figure 

5.1). Two viton gaskets 0.5 mm thick (Altec, UK) are placed in 0.4 mm deep grooves 

machined in the acrylic plates to provide the sealing. The membrane (see figure 5.2) is made 

from pure PTFE (Teflon) (Sterlitech, US) laminated onto a polypropylene layer. The pure 

PTFE is 20 μm thick and contains holes approximately 0.5-5 μm diameter as observed by 

SEM. The polypropylene layer is 80 μm thick and consists of holes in an approximately 

rectangular shape with dimensions of 0.8 x 0.324 mm (see figure 5.2). The porous area of the 

membrane is 5.48 mm x 90 mm with an open area of 67-70% and defines the reaction area 

between the two fluids. Two pin holes were employed in both plates and membrane for 

alignment, while 16 screws were used for clamping all components together. A picture of the 

assembled reactor and a schematic of all components of the reactor are shown in Figure 5.1. 

In order to investigate the influence of the gas/liquid contact area experiments were performed 

with the 8 channel reactor using the PTFE membrane (see figure 5.1). The 8 channel reactor 

uses the same top/bottom plates as the reactor used with metallic mesh in chapter four, for 

CO2 absorption in NaOH solution. The 8 channel reactor has approximately 11.3 times larger 

contact area (gas/liquid contact area 55.9 cm
2
) between gas and liquid, than the contact area of 

the single channel reactor (gas/liquid contact area 4.9 cm
2
).    

A picture of the experimental set up for CO2 absorption is shown in Figure 5.3. An HPLC 

pump (Waters 5100) was used to drive the liquid solution in the bottom chamber of the 

reactor which were aqueous amine solutions of 10%w.t MEA, 16.6%w.t DEA. These 

concentrations were chosen in order to compare equal molarities of DEA and MEA, which in 
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our case correspond to 1.62M. The gas 20vol% CO2/N2 was controlled by a mass flow 

controller (Brooks 5850) and flowed above the mesh. The differential pressure between the 

two phases was controlled by a metering valve (Swagelok) at the outlet of the liquid phase. 

The gas phase and liquid phase pressures were measured by a digital manometer (Comark; 

pressure range 0-30psi). The outlet of the gas phase passed through a liquid trap to avoid any 

liquid getting into the gas chromatograph (GC) in case of breakthrough of the liquid in the gas 

phase, and then connected to a GC (Shimadzu GC-14B) for carbon dioxide concentration 

determination. Experimental data were obtained varying the liquid flow rate in the range 1.66-

2.56 ml/min and gas flowrate in the range 160-247 ml/min. These flowrates resulted to 

residence times, (based on the gas/liquid volumes in contact with the membrane area), 0.10-

0.16 s for the gas and 2.3-3.54 s for the liquid respectively.  All the experiments were carried 

out at room temperature (approximately 20
o
C). The CO2 removal efficiency was calculated 

from: 

    
  -

       

      
                                                                                                             (5.1) 

where F is the molar flowrate of CO2. The experimental error in CO2 removal was assessed to 

be ± 5%. Two to three chromatographs were taken for each measurement and the deviation 

between them was about ± 5%. 

  

(a) 
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 Figure 5. 1 Membrane microstructured reactors: (a) schematic of acrylic plate (b) 

schematic of the 8 channel PTFE reactor (c) picture of assembled device of the PTFE single 
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channel reactor and (d) picture of the assembled device of the 8 channel PTFE reactor (e) 

Exploded schematic view of the reactor. Dimensions are in mm. 

 

(a) 

 
(b)  

 
 (c)  
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Figure 5. 2 (a) SEM picture of pure PTFE membranes with magnification of x9000, non-

coated, (b SEM picture of pure PTFE membranes with magnification of x5000, gold coated, 

(c) Optical image of the laminated part of the PTFE membrane (polypropylene). 

 

Figure 5. 3 Picture of the experimental set-up used in this work. 

5.2 Mathematical Model Development 

A two-dimensional model of the microstructured membrane reactor was formulated and the 

following assumptions were made: (1) The system is at steady state (system was allowed to 

reach steady state conditions, no change of pressure, temperature with time). (2) Ideal gas 

behavior is valid for the gas phase. (3) Henry’s Law is applicable (4) No evaporation of water 

in the gas phase is assumed. (5) Plug flow profiles are assumed in the gas and liquid phases. 

(6) Membranes pores considered as gas filled. (7) No change in gas flowrate along channel. 

The reactor model is divided in three main domains: the gas phase, the membrane, and the 

liquid phase (figure 5.4). The differential mass balances to describe the concentration profiles 

of components in the three domains are given below, and they were solved with COMSOL 

3.5a. 
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Figure 5.4 Mathematical model domains with coordinates and boundaries. 

Mass balance in the liquid phase: 

The differential mass balance of components in the liquid phase along with the associated 

boundary conditions are: 
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Mass balance in the membrane: 

The differential mass balance of components in the mesh, along with the associated boundary 

conditions are: 
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Mass balance in the gas phase: 

 The differential mass balances in the gas phase, along with the associated boundary 

conditions are: 
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The model is a “pseudo-homogeneous model”, where the membrane is considered as a 

homogeneous medium with G

2CO
M

2CO D
τ

ε
D  , where ε is the membrane porosity and τ  is the 

tortuosity (an adjustment parameter which corrects for the pore geometry). COMSOL 

Myltiphysics 3.5.a was used to solve the differential mass balances. A mesh consisting of 

52000 number of elements and 313983 degrees of freedom was used to execute the 

simulations in Windows XP with Pentium IV 2.93GHz CPU and 4GB of RAM. At this 

number of elements the solution was found to be mesh independent. 

5.3 Reaction System 

For monoethanolamine (MEA) and diethanolamine (DEA) the overall reaction system can be 

written as [106, 107]: 

CO2 + 2MEANH2 → MEANHCOO
-
 + MEANH3

+
                          (5.16) 

where MEA formula is = NH2 –CH2 –CH2   

CO2 + 2DEANH2 → DEANHCOO
-
 + DEANH3

+
                          (5.17) 

where DEA formula is = HN(CH2CH2OH)2  

The overall rate of absorption can be written as [108]: 

    
= kAmi[CO2][Ami]                                   (5.18) 

RAmi = 2kAmi[CO2][Ami]                            (5.19) 

All the parameters used in the calculations were taken from previous CO2/Amines studies and 

are reported in table 5.1 
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Table 5. 1 Values of parameters used in the simulations. All the parameters were taken for 

T=20
o
C. 

Parameter Value Reference 

    

 
 (m

2
/s) 1.64x10

-5
 Cussler [95] 

    

 
 (m

2
/s) 1.4x10

-9
      Dankwerts [107]  

    
 

  (m
2
/s) 7.7x10

-10
 Dankwerts [107] 

mMEA (dimensionless) 0.76  Paul et al. [109] 

kMEA (m
3
/mol       3.8 Rivera et al. [110] 

    

 
 (m

2
/s) 1.05x10

-9
 Zhang et al. [50]          

    
  (m

2
/s) 4.97x10

-10
                  Zhang et al. [50]    

mDEA (dimensionnelles) 0.8 Paul et al. [109] 

kDEA (m
3
/mol  ) 2.3 Zhang et al. [50] 

5.4 Results and Discussion 

5.4.1 Membrane characterisation 

The porosity of the membrane was measured using the helium pycnometer method and it was 

found to be approximately 67-70%. The helium pycnometer method uses helium. The 

pycnometer consists of two chambers, connected by a tube with a valve in it. The rationale is 

to measure the pressure difference between the two containers, one of which has the sample 

material in it. The porosity is determined by the difference in the pressures caused by the 

opening of the valve at constant temperature. 

In order to examine the pores of the membrane scanning electron microscopy (SEM) was 

exploited. A scanning electron microscope (SEM) is a type of electron microscope that 

images a sample by scanning it with a high- energy beam of electrons in a raster scan pattern. 

Figure 5.2 shows SEM images with magnification of x5000 and x9000, gold coated and non-

coated and the accelerating voltage used was 5kV. Gold coating improvs the quality of the 

image and avoids scanning faults, since the surface of the membrane is a more electrically 

conductive than a non-coated membrane. From Figure 5.2 it can be seen that the diameter of 

the pores varies from 0.5-5 μm or even larger. 
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5.4.2 Breakthrough studies 

Breakthrough experiments identified that the breakthrough of liquid in the gas phase for DEA 

solution occurred at a pressure difference PL-PG of about 180-210 cm H2O. During typical 

operation (YG=247 ml/min, YL=2.56 ml/min) the pressure difference between liquid and gas 

phase was kept at PL-PG≈90 cm H2O. The theoretical breakthrough pressure of DEA was 

calculated based on equation (6.23) and it was found 166.3 cm H2O, with surface tension 

γ=0.066 N/m, pore diameter 5 μm and contact angle approximately 108  which is in 

agreement with the experimental values. The experimental and theoretical breakthrough 

values for MEA solution were similar with DEA solution, due to the fact that the solutions 

were dilute (DEA, MEA =1.62M) and hence, surface tension and apparent contact angle were 

similar. 

5.4.3 Contact angle measurement 

The value of the contact angle of aqueous solution of DEA 1.62M was measured on the 

porous PTFE membrane and pure PTFE. A droplet of the solution was placed on a piece of 

porous PTFE membrane and then on the pure PTFE and the analysis was performed with 

Keyence microscope (VHX-600) see chapter 6. The apparent contact angle on porous PTFE 

was found to be around 140  (see figure 5.5a) while the contact angle on pure PTFE was 

found around 108  (see figure 5.5b). The apparent contact angle measured experimentally is 

in a good agreement with Cassie and Baxter equation [111], was found around 142 , which 

proposed that the apparent contact angle θ formed by liquid droplet on a porous surface is 

related to the contact angle φ1, for the homogeneous solid material, by: 

cosθ= α1cosφ1- α2                                                                                                                (5.20) 

where α1 is the fraction of the surface which is solid and α2 the fraction which is open area. 

 

 



CO2 Absorption in PTFE Membrane Reactor Using Aqueous Solutions of Amines  

136  

 

 (a) 

 

(b) 

 

 

 

Figure 5. 5 Optical image of a droplet of DEA 1.62M solution on (a) porous PTFE membrane 

(b) pure PTFE. 

5.4.4 Model prediction for CO2 absorption in amine 

solutions 

The predictions of the pseudo-homogeneous model are compared with experimental results, 

obtained from carbon dioxide absorption in DEA (diethanolamine) solution. As it can be seen 

from Figure 5.6 the experimental results are in a very good agreement with model’s 

prediction. Figure 5.6 shows the comparison of the model with the experimental results for 

CO2 removal as a function of gas flowrates. It can be seen that the percentage of CO2 removal 

decreases by increasing the gas flowrate. The increase of the gas flowrate reduces the 

residence time in the reactor; hence, it results to lower removal of carbon dioxide. In addition 
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it shows that 11-14% of the carbon dioxide contained in the inlet stream was removed within 

0.1-0.16 s experimental gas residence time, based on 0.419 cm
3
 volume of contact area. These 

results are comparable with similar research where CO2 absorption was investigated in 

microchannel separated-flow contactors. As it was mentioned in section 4.5.2 TeGrotenhuis et 

al. [102] observed that in a microchannel membrane device with 100 μm thick gas and liquid 

layers, using polymeric membranes of 10-50μm thick, with pore size of 0.1-5 μm, more than 

30% of CO2 from a 25vol%CO2 stream was absorbed in ca. 3 s residence time in 20% 

diethanolamine solution. Furthermore, in the metallic mesh microreactor used in Chapter 4 

approximately 30% of the carbon dioxide contained in the inlet stream was absorbed in 

ca.1.12 s residence time in 2M NaOH solution. 

 

    Figure 5. 6 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and by the pseudo-homogeneous model. Membrane porosity≈67-

70%, δG=850 μm, δL=200 μm,     
/YDEA=96.4, DEA=16.6%w.t. 

5.4.5 Influence of different amine solutions in CO2 removal 

Figure 5.7 shows the CO2 removal for two different amine solutions DEA, MEA 

(diethanolamine, monoethanolamine). Both experimental and modelling results show that 

MEA solution absorbed more CO2 than DEA. Based on Rongwong et al. [46] this is due to 

the fact that MEA has higher reaction rate constants than DEA. In their work they studied 
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CO2 absorption using PVDF hollow fiber membrane with three different amine solutions 

(MEA, DEA, AMP, all of them 1M). They showed that CO2 absorption fluxes were increased 

in the following order MEA>AMP>DEA. Paul et al. [45] in their work about theoretical 

studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat 

sheet membrane reactor they showed that the aqueous solution of MEA has the highest CO2 

flux followed by AMP, DEA and MDEA in sequence, which is again due to the fact MEA has 

the highest reaction rate constant than the other amine solutions.  

 

Figure 5. 7 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and theoretically by DEA and MEA solutions. Membrane 

porosity≈67-70%, δG=850 μm, δL=200 μm, MEA=10%w.t, DEA=16.6%w.t,     
/YAmi =96.4. 

5.4.6 Influence of MEA concentration in CO2 removal 

Experiments were also performed with 6%w.t (0.97M) MEA concentration. Figure 5.8 shows 

the comparison of the model with the experimental results for CO2 removal as a function of 

gas flowrates. As it can be seen from Figure 5.8 for lower MEA concentration, less CO2 

removal efficiency was obtained. This is because lower MEA concentration provides lower 

reaction rate, hence results to less CO2 removal efficiency. Rongwong et al. [47] performed 

experiments with different concentrations of MEA and they showed that by increasing the 
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concentration of MEA from 0.25M to 1M the CO2 flux was increased for the same reason 

explained above. Marzouqi and Faiz [112] performed mathematical modeling for the 

simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors 

and they showed by increasing the MEA concentration from 1M to 3M, CO2 removal 

efficiency was increased due to higher reaction rates. 

 

Figure 5. 8 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and theoretically by MEA 6%w.t and MEA 10%w.t. Membrane 

porosity≈67-70%, δG=850 μm, δL=200 μm,     
/YMEA=96.4. 

5.4.7 Influence of the gas liquid contact area 

In order to examine the influence of the gas/liquid contact area on CO2 removal efficiency 

experiments were performed with the 8 channel PTFE reactor (55.9 cm
2
 gas/liquid contact area) 

and the single channel PTFE reactor (4.9 cm
2
 gas/liquid contact area). Figure 5.9 shows the CO2 

removal for the 8 channel PTFE reactor (see chapter 4 for more information) and the single 

channel PTFE reactor as a function of gas flowrates. 63-76% of the carbon dioxide contained in 

the inlet stream was removed within 1.15-1.78 s experimental gas residence time, while in the 

single channel reactor 13-19% of carbon dioxide was removed within 0.1-0.16s experimental gas 

residence time. From Figure 5.9 it can be seen that both model and experimental results 
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demonstrate higher CO2 removal for the 8 channel reactor. This is due to the fact the reaction 

area between CO2 and MEA for the 8 channel reactor is much larger (approximately the contact 

area between gas and liquid is 11.3 times larger than the contact area of the single channel 

reactor) than the single channel reactor. Hence higher gas residence times for CO2 to react with 

MEA solution results to higher CO2 removal efficiency. 

 

Figure 5. 9 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and theoretically by the single channel reactor and the 8 channel 

reactor. Membrane porosity≈67-70%, δG=850 μm, δL=200 μm, MEA 10%w.t, 

    
/YMEA=96.4. 

5.6 Conclusions 

Carbon dioxide absorption in amine solutions was studied in a membrane PTFE 

microstructured reactor. Experimental data were obtained for aqueous amine solutions of 

(10%w.t MEA, 16.6% DEA) and 20vol%CO2 inlet concentration, for various liquid and gas 

flowrates, while keeping the molar flowrate ratio CO2/Amine at 0.4 in order to keep amine 

solution in excess (25%). Significant absorption was observed with gas residence times below 

0.2 s. A two dimensional model with no adjustable parameters was formulated to simulate the 

reactor, and experimental results were compared to model predictions in terms of CO2 

removal efficiency. The model shows very good agreement with experimental data. Both 
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model and experimental results showed that, MEA solution absorbed more CO2 than DEA. In 

addition experiments were performed with 6%w.t MEA concentration. Both model and 

experiments showed less CO2 removal efficiency with lower MEA concentration. Finally 

experiments performed with larger contact area between gas and liquid. CO2 removal 

efficiency increases by increasing the contact area between gas and liquid when keeping the 

gas and liquid flowrates the same. 
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CHAPTER 6 
 

CO2 ABSORPTION IN PTFE 

MEMBRANE REACTOR USING 

AQUEOUS SOLUTION OF NaOH 

6.1 Introduction  

Carbon dioxide absorption in NaOH solution is an example of a fast gas-liquid reaction. 

Sodium hydroxide is well used for actual industrial absorption processes of CO2 [113]. Due to 

the fast chemical reaction between the CO2 and NaOH reduces the liquid film resistance with 

respect to CO2 transfer [104]. Atchariyawut et al. [114] in their work for separation of CO2 

from CH4 by using gas-liquid membrane contactors, they showed that, in the case of chemical 

absorption, a higher CO2 flux was achieved using aqueous NaOH solution than aqueous 

amine solutions of monoethanolamine (MEA) with the same concentration. This result can be 

explained by the fact that the reaction rate constant of CO2 and OH
-
 is higher than that of CO2 

and MEA, as reported by many researchers. 

In this Chapter, CO2 absorption in sodium hydroxide solution was conducted in a PTFE 

microstructured membrane reactor. Breakthrough was investigated first in the microreactor in 

order to establish the operation pressure difference between gas and liquid phase. Various 

conditions such as gas flowrates, membrane contact area between the gas and the liquid and 
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liquid concentrations, acceptable distance between the pores were investigated, in order to 

evaluate, understand and improve its performance of the PTFE membrane reactor.  

6.2. CO2 Absorption in NaOH solutions 

6.2.1 Reactor design and experimental conditions 

The reactor design and the experimental set-up used for CO2 absorption in aqueous solution of 

NaOH are identical to the ones used in Chapter 5 for the single channel PTFE membrane 

reactor (see figure 5.1c and 5.3). During typical operation the pressure difference between 

liquid and gas phase was kept at PL-PG≈100 cm H2O. Experimental data were obtained 

varying the liquid (NaOH 2M) flow rate in the range 1.66-2.56 ml/min and gas (20%vol CO2) 

flowrate in the range 160-247 ml/min. These flowrates resulted to residence times, (based on 

the gas/liquid volumes in contact with the membrane area), 0.10-0.16 s for the gas and 2.3-

3.54 s for the liquid respectively.  All the experiments were carried out at room temperature 

(approximately 20
o
C). The CO2 removal efficiency was calculated from: 

    
   

       

      

                                                                                                                (6.1) 

where F is the molar flowrate of CO2. The experimental error in CO2 removal was assessed to 

be ± 5%. Two to three chromatographs were taken for each measurement and the deviation 

between them was about ± 5%. 

6.2.2 Mathematical Model 

In order to compare the experimental results with theory a two-dimensional model of the 

microstructured membrane reactor was formulated. The model is a “pseudo-homogeneous 

model”, where the membrane is considered as a homogeneous medium with G

2CO
M

2CO D
τ

ε
D  , 

where ε  is the membrane porosity and τ  is the tortuosity (an adjustment parameter which 

corrects for the pore geometry). 
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Two variations of the model were implemented. One which considered the membrane pores 

as gas filled (see Chapter 5) and the second as liquid filled (see Chapter 4). The differential 

mass balances to describe the concentration profiles of components in the three domains can 

be seen in Chapters 4 and 5. In addition, the reaction system of NaOH with CO2 along with all 

the parameters used for the calculations, are shown in Chapter 4. 

6.3 Results and Discussion 

6.3.1 Model Prediction for CO2 Absorption in NaOH 

Solution 

The predictions of the pseudo-homogeneous model for the wetted (pores are considered 100% 

liquid filled) and the non-wetted (the pores are considered 100% gas filled) mode are 

compared with experimental results, obtained from carbon dioxide absorption in sodium 

hydroxide solution using the single channel PTFE membrane reactor. From Figure 6.1 it can 

be seen that the percentage of CO2 removal decreases by increasing the gas flowrate, due to 

the decreasing of the residence time in the reactor. In addition it shows that 14.7-20% of the 

carbon dioxide contained in the inlet stream was removed. Although CO2–NaOH system with 

PTFE membrane has often considered to be non-wetting, partial wetting (some pores are 

completely filled with liquid and some pores are completely gas filled) is considered in this 

work. As it can be seen from Figure 6.1 the experimental results have better agreement with 

the wetted-mode conditions. This is due to the fact that the pores of the PTFE membrane 

during the experiments were partially wetted and not 100% gas filled. Marzouqi et al. [94] in 

their modelling studies of CO2 absorption in NaOH solution using membrane contactors 

showed a partial wetting of the polypropylene membrane. Although CO2-NaOH with 

polypropylene hollow fiber membrane is considered to be non-wetting, their experimental 

results showed agreement with the theoretical results when 20% of the membrane was 

considered to be wetted. SEM image of their polypropylene (PP) membrane showed large 

pores, which expected to be easily filled with the solution, which might explain the partial 

wetting of NaOH solution. Same observation we noticed with our membranes after SEM 

analysis. Figure 5.2 in Chapter 5 shows SEM pictures of the PTFE membranes used for our 
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experiments. Despite the fact the membranes pore diameters should be around 1μm, pores 

with bigger diameter can be seen. Dindore et al. [43] in their work of CO2 absorption at 

elevated pressures using hollow fiber contactors, they observed that the long-term application 

results in changes in the membrane surface morphology and consequently wetting behaviour 

of the polypropylene fiber. SEM analysis of the hollow fiber before and after the use, showed 

that the number of smaller pores present in the membrane are reduced significantly after use, 

while the larger pores seemed to have increased in size. This can be explained by the intrusion 

of solvent into larger pores and subsequent enlargement of larger pores. It is easier to have 

intrusion into the larger pores than into the smaller pores. After the larger pores are wetted by 

the solvent, the additional intrusion into the larger pores exerts lateral force on the pore walls 

causing the displacement of these walls. This displacement of the pore walls of larger pores 

results in the decrease in the size of smaller pores and possibly blocking of these pores. 

Similar observations were made by Barbe et al. [98] after they examined the membranes 

using scanning electron microscope (SEM). They observed that the surface morphology of the 

polypropylene membranes change permanently after they were exposed to water for 72 h, due 

to the intrusion of the water meniscus into some pores resulting to enlargement of pore 

entrance. However, membrane wettability also depends on several factors such as contact 

angle, surface tension, membrane pore size, and breakthrough pressure [1]. 

Kaisri et al. [49] developed a mathematical model for carbon dioxide absorption membrane 

(PTFE) contactors that studied the effect of partially wetted membranes. Partial membrane 

wetting was modelled to investigate the effect of membrane mass transfer resistance on the 

absorption performance and the overall mass transfer coefficient. They showed that, an 

increase in the percentage of the membrane wetting decreased the absorption flux and the 

overall mass transfer coefficient significantly. In addition to that, they compared their 

experimental results with the model and they showed that the absorption performance 

dropped roughly 56%, 72%, 85% and 90% at the 10%, 20%, 50% and 100% wetting 

respectively. 
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Figure 6. 1 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and by pseudo-homogeneous model for the wetted and the non-

wetted mode using the single channel PTFE membrane reactor. PTFE porosity≈67-70%, 

δG=850 μm, δL=200 μm, NaOH 2M,     
/YNaOH=96.4. 

6.3.2 Influence of membrane’s wetting on CO2 removal 

Figure 6.2 shows the experimental results of the 8 channel (PTFE) membrane microreactor 

(see figure 5.1d) and mesh (metallic) microreactor (see figure 4.1b) in CO2 absorption as a 

function of gas residence time. Experimental data were obtained varying the liquid flowrate in 

the range 1.66-2.56 ml/min and gas flowrates in the range of 230-354 ml/min for both of the 

reactors. The gas/liquid contact area is 55.9 cm
2
 for the 8 channel reactor and 38.7 cm

2
 for the 

metallic mesh reactor. As it can be seen increasing the gas residence time in the reactor 

increases the CO2 removal efficiency. Despite the fact that the residence times are only 

slightly larger in the membrane reactor, the CO2 removal efficiency is much higher than the 

mesh reactor. This is due to the fact that the pores of the metallic mesh are completely liquid 

filled and hence, there is more resistance to mass transfer than the PTFE membrane whose 

pores are considered to be partially wetted (some pores are completely liquid filled and some 

pores are completely gas filled). In addition the PTFE membrane used in the experiments 

consisted of 20 microns thick pure PTFE and 80 microns thick polypropylene layer for 
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support (see figure 5.2c). As it was shown in Figure 5.2c the pores of the polypropylene layer 

are very large and hence, they are considered to be liquid filled. From the Figure below it can 

be seen that CO2 removal efficiency is higher when the polypropylene layer is on the gas side, 

than when it is on the liquid side. This is because the polypropylene layer is on the liquid side, 

since the polypropylene layer is considered to be liquid filled and hence, increases the 

resistance to mass transfer.  

 

Figure 6. 2 Experimental comparison between the 8 channel (PTFE) membrane reactor with 

mesh (metallic) reactor. PTFE porosity 65-70%, Mesh porosity=15%, δG=850 μm, δL=200 

μm, NaOH 2M, YG/YL=139.5. 

6.3.3 Influence of the gas liquid contact area 

Figure 6.3 shows the experimental results of CO2 removal for the 8 channel PTFE membrane 

reactor as a function of gas flowrates. Experimental results were compared with the 

predictions of the pseudo-homogeneous model for the wetted and the non-wetted conditions. 

As it can be seen from Figure 6.3 the experimental results have better agreement with the 

wetted-mode conditions for the same reasons explained in section 6.3.1. In addition the 

percentage of CO2 removal increases by decreasing the gas flowrate. Furthermore, from the 

comparison between the experimental results of Figure 6.3 and 6.1 it can be seen that the CO2 

removal efficiency is much higher for the 8 channel reactor than the single channel reactor. 
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63-72% of the carbon dioxide contained in the inlet stream was removed within 0.8-1.24 s 

experimental gas residence time for the 8 channel reactor, while in the single channel reactor 

14.7-20% of carbon dioxide was removed within 0.1-0.16 s experimental gas residence time. 

This is due to the fact the gas/liquid contact area (55.9 cm
2
) between CO2 and NaOH for the 8 

channel reactor is much larger (approximately 11.3 times larger than the contact area of the 

single channel reactor) than the single channel reactor (4.9 cm
2
 gas/liquid contact area) and 

hence, higher gas residence times for CO2 to react with NaOH solution as a result higher CO2 

removal efficiency.  

 

Figure 6. 3 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and theoretically by the 8 channel PTFE reactor. Membrane 

porosity≈67-70%, δG=850 μm, δL=200 μm, NaOH 2M, YG/YL=139.5, Polypropylene layer in 

the gas side. 

6.3.4 Influence of NaOH concentration on CO2 removal 

Experiments also performed with 1M NaOH concentration. Figure 6.4 shows the 

experimental comparison between two different NaOH concentrations for CO2 removal as a 

function of gas flowrates. Lower NaOH concentration, leads to less CO2 removal efficiency. 

This is due to the fact lower NaOH concentration provides lower reaction rate, hence less CO2 

removal efficiency. Same observation was reported from Marzouqi et al. [100] in their work 
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of chemical absorption of CO2 in polypropylene membrane contactors. They showed that by 

increasing the concentration of NaOH from 0.005M to 0.01M, %CO2 removal efficiency was 

increased. Aroonwilas et al. [115] in their studies ‘behaviour of the mass transfer coefficient 

of structured packings in CO2 absorbers with chemical reactions’, showed that increasing the 

NaOH concentration induces higher CO2 absorption performance.  

 

Figure 6. 4 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally. Membrane porosity≈67-70%, δG=850 μm, δL=200 μm, 

    
/YNaOH=96.4. 

6.3.5 Influence of the absorbent type 

Figure 6.5 shows the experimental prediction of CO2 removal using aqueous solutions of 

NaOH (2M) and DEA (1.62M) as a function of gas flowrate. It can be seen that CO2 removal 

efficiency is higher when NaOH is used as an absorbent liquid. The reason for that is not only 

due to the fact that NaOH concentration is slightly higher than DEA concentration, but is 

mainly because the reaction rate constant of CO2 and OH
-
 is higher than that of CO2 and 

DEA, as a result higher CO2 removal efficiency. Similar trends were observed from other 

researchers. Aroonwilas et al. [115] they examined the behaviour of mass-transfer coefficient 

of structured packings in CO2 absorbers with chemical reactors, and they observed that the 
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use of NaOH as an absorbent gives higher mass transfer than when AMP (2-amino-2-methyl-

1-1-propanol) was used as an absorbent for CO2.  

 

Figure 6. 5 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally using NaOH 2M and DEA 1.62M as absorbent liquids in the single 

channel PTFE membrane reactor. Membrane porosity≈67-70%, δG=850 μm, δL=200 μm, 

    
/YNaOH=96.4. 

6.3.6 Comparison between PTFE membrane reactor with 

hollow fiber reactors from literature 

In this paragraph a comparison of our experimental results obtained by the PTFE membrane 

reactor with hollow fiber membrane reactors from literature is shown. Table 6.1 shows the 

governing properties of the various reactors. In the single channel PTFE membrane 

microreactor used in this chapter, 20% of CO2 from a 20 vol% CO2 stream was absorbed in 

ca. 0.16 s gas residence time, using 2M NaOH . The membrane used in our experiments was 

made out of PTFE, with pore size of 0.5-5 μm and porosity of 67-70%. In addition, 

membrane’s length was 9 cm with a contact area of 4.9 cm
2
. Furthermore, experiments were 

performed also with the 8 channel PTFE membrane reactor (see figure 5.1 Chapter 5). 
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Approximately 72% of the CO2 was captured using the same liquid and gas concentrations as 

above in 1.24s gas residence time. The characteristics of the membrane were the same as 

above except that the length and the contact area of the membrane change to 13 cm and 55.9 

cm
2
 respectively. Shirazian and Ashrafizadeh [113] observed that in a hollow-fiber membrane 

contactor 52% of CO2 was removed from a stream of 10vol% CO2/N2 in 50 s gas residence 

time in 2M diethanolamine (DEA) solution. They used polypropylene membranes with pore 

size of 0.04 μm, porosity of 40%, and fiber length of 113 mm, diameter of 0.3 mm, and a 

contact area of 0.09m
2
. Kim and Yang [39] investigated absorption of carbon dioxide through 

hollow fiber using various aqueous absorbents. They almost reached 100% capture of CO2 

from a stream of 40vol% CO2/N2 in 16 s gas residence time in 2M monoethanolamine (MEA) 

solution. They used PTFE membranes with pore size of 0.8 μm, porosity of 62%, and fiber 

length of 240 mm, diameter of 0.9 mm, and a contact area of 0.034 m
2
. Marzouqi et al. [100] 

performed experiments with polypropylene (PP) hollow fiber membrane contactors. They 

removed up to 80% of CO2 from a stream of 10 vol% CO2/CH4 in 57 s gas residence time in 

0.01M NaOH solution. The characteristics of their membrane were: pore size of 0.36 μm, 

porosity of 40%, and fiber length of 228.86 mm, diameter of 0.3 mm and a contact area of 

0.57 m
2
. In order to compare all the modules together, modified residence times were 

calculated. Modified gas residence time is defined as the surface area of gas/liquid contact 

area over inlet volumetric gas flowrate. As it can be seen from the Figure 6.6 the 8 channel 

PTFE membrane reactor has the best performance among the modules, since for the smallest 

modified gas residence time has removed 72% of CO2. 
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Table 6. 1 Comparison between the PTFE membrane reactor with hollow fibre membrane 

reactors from literature. 

Reactor type/ 

Governing 

properties 

Single 

channel 

PTFE 

membrane 

reactor 

Eight channel 

PTFE 

membrane 

reactor 

Hollow 

fibre 

membrane 

reactor 

[113] 

Hollow 

fibre 

membrane 

reactor 

[39] 

Hollow 

fibre 

membrane 

reactor 

[100] 

CO2 removal (%) 20 72 52 100 80 

Gas Residence 

Time (s) 

0.16 1.24 50 16 57 

Membrane’s pore 

size (µm) 

1 1 0.04 0.8 0.36 

Membrane 

porosity (%) 

67-70 67-70 40 62 40 

Membrane length 

(cm) 

9 13 11.3 24 22.9 

Fibre diameter 

(mm) 

  0.3 0.9 0.3 

Gas-liquid 

contact area (m
2
) 

0.00049 0.00559 0.09 0.034 0.57 

Absorbent type 

(in M) 

2 NaOH 2NaOH 2DEA 2MEA 0.01NaOH 

Gas mixture 

(%vol.) 

20 CO2/N2 20 CO2/N2 20 CO2/N2 40 CO2/N2 10 

CO2/CH4 
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Figure 6. 6 Amount of CO2 removed from the gas phase as a function of modified gas 

residence times. Comparison between the 8 channel reactor with hollow fiber membrane 

reactors from literature. 

6.3.7 Phase Breakthrough 

6.3.7.1 Contact angle measurements  

The value of the contact angle of the aqueous solution of NaOH 2M was measured on the 

porous PTFE membrane and on pure PTFE. A drop of the solution was placed on a piece of 

porous PTFE membrane and on a pure PTFE and the analysis was performed with Keyence 

microscope (VHX-600). The apparent contact angle on the porous PTFE membrane was 

found around 145° (see figure 6.7b) while the contact angle on pure PTFE was found around 

115.18°
 
(see figure 6.7c). The apparent contact angle measured experimentally is in a good 

agreement with Cassie and Baxter equation (see chapter 5 equation 4) and it was found 

around 145.7°. Figure 6.7 shows the experimental set-up used for the measurements, and the 

optical image of the NaOH droplet on the porous and pure PTFE membrane. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6. 7 (a) Experimental set-up for the contact angle measurement (b) Optical images of a 

2M NaOH droplet on the porous PTFE membrane (c) Optical images of  a NaOH droplet on 

the pure PTFE membrane. 
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6.3.7.2 Breakthrough studies 

Breakthrough was investigated in order to establish the acceptable operational pressure 

difference between gas and liquid which keeps the two phases separated. Figure 6.8 shows an 

experiment where liquid from the bottom chamber has entered the gas-phase channel when 

increasing the liquid phase pressure beyond the breakthrough pressure. The theoretical 

breakthrough pressure of NaOH solution can be calculated by the Young-Laplace equation as:                                                                            

ΔP = 
r

cosθ2γ

                                                                                                                    
(6.23)

 

where γ is the surface tension of  2M NaOH, r is the radius of the membrane pore, and θ is the 

contact angle of the liquid with the membrane material. 

 

Figure 6. 8 Picture of the top (gas) side of the single channel reactor, during a breakthrough 

experiment. The arrows indicate breakthrough of the liquid into the gas phase. 

Breakthrough experiments identify that the breakthrough of liquid in gas the phase occurred 

at pressure difference PL-PG of about 200-220 cm H2O. Based on equation (6.23) the 

theoretical value of breakthrough should be 247 cm H2O, with surface tension γ=0.073 N/m, 

pore diameter 5 μm and contact angle approximately 115.18° which is in agreement with the 

experimental values.  
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6.3.8 One pore model 

In order to examine the influence of the distance between the pores (i.e how close the pores 

can be to each other without causing overlap of the diffusion fields around the individual 

pores) in the PTFE membrane, on the performance of the microreactor. 2D simulations of a 

single pore were performed in order to examine the concentration profiles of CO2 and NaOH 

in the liquid side of the microreactor. The differential mass balances to describe the 

concentration profiles of components in the three domains (gas/pore/liquid) were the 

convection-diffusion-reaction equations coupled with the Navier-Stokes equation (Navier-

Stokes for the liquid side). Non-slip boundary conditions were applied to all boundary walls. 

The differential mass balances and the assumptions used in this model are identical with the 

ones used for the absorption of CO2 in the PTFE membrane reactor and are reported in section 

5.2, except that laminar flow profile was considered in the liquid phase instead of plug flow. 

The pore is considered to be gas filled. Figure 6.9 shows the concentration profile of CO2 in 

the liquid phase (pore and liquid phase are enlarged in order to observe the concentration 

profiles adjacent to the pore). From Figure 6.9 and 6.10 (transverse concentration profile of 

CO2 in the liquid phase at z2) it can be seen that CO2 was consumed approximately within 2-3 

μm from the pore-liquid interface. Such small penetration distances were also observed for 

CO2 absorption in NaOH solution in a falling film microstructured reactor by Zanfir and 

Gavriilidis [10]. 

 

Figure 6. 9 Concentration map of CO2 in the liquid phase at z2. Pore diameter 50 μm, 

δG=850 μm, δL=200μm, δM=20 μm,     
/YNaOH=96.4, NaOH=2M. 
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Figure 6. 10 Transverse concentration profiles of CO2 in the liquid phase at z2. Pore 

diameter 50 μm, δG=850 μm, δL=200 μm,     
/YNaOH=96.4, NaOH=2M. 

Furthermore it can be seen that CO2 exists in a distance of approximately 2-3 μm (z direction) 

adjacent to the pore walls, which means that when the micropores in the membrane are in a 

distance of more than 2-3 μm they do not cause overlap of diffusion fields (around the 

individual pores), which might affect the %CO2 removal effeciency.  Similar results were 

observed when simulations were performed with plug flow profile in the liquid phase (results 

are not shown). In addition the model was used to calculate the concentration profile of NaOH 

in the liquid phase. Figure 6.11 shows the concentration map of NaOH and Figure 6.12 the 

transverse concentration profile of NaOH in the liquid phase at z2. As it can be seen from 

Figure 6.12 the NaOH concentration is almost constant and drops  just 1% in 0.1μm distance 

from the pore/liquid interface, while as it was reported above  CO2 was consumed 100% in 2-

3μm from the liquid-pore interface. Finally transverse concentration profiles of CO2 and 

NaOH in the liquid phase were calculated along the pore at positions z1 and z3 (results are not 

shown). The transverse concentration profiles of CO2 and NaOH do not change signifigantly 

compared to Fig 6.10 and Figure 6.12 (at position z2), due to the fact that the distance between 

z1 and z3 is very small (50 μm).  
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Figure 6. 11 Concentration map of NaOH in the liquid phase. Pore diameter=50 μm, δG=850 

μm, δL=200 μm,     
/YNaOH=96.4, NaOH=2M. 

 

 Figure 6. 12 Transverse concentration profiles of NaOH in the liquid phase at z2. Pore 

diameter=50 μm, δG=850 μm, δL=200 μm,     
/YNaOH=96.4, NaOH=2M. 

Finally to examine the effect of the pore diameter, simulations were performed with pore 

diameters larger than 50 μm. Figure 6.13 shows the concentration map of CO2 in the liquid 
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side for 100 μm pore diameter incorporated by the velocity profile (red arrows in figure 6.13). 

From Figure 6.13 it can be seen that the concentration profile adjacent to the pore walls 

remains the same with the concentration profile examined before for 50 μm pore diameter. In 

addition it can be seen from the velocity profile that by increasing the pore diameter a small 

circulation of the fluid starts to be created below the membrane area, which might help in 

mass transfer enhancement.  

 

Figure 6. 13 Concentration map of CO2 in the liquid phase, incorporated by the velocity 

profile (red arrows). Pore diameter 100μm, δG=850 μm, δL=200 μm,     
/YNaOH=96.4, 

NaOH=2M. 

6.4 Conclusions 

Carbon dioxide absorption in NaOH solution was studied in a PTFE membrane 

microstructured reactor. Significant absorption was observed with gas residence times below 

0.2s. A two dimensional model with no adjustable parameters using wetted and  non-wetted 

operation conditions was formulated to simulate the reactor, and experimental results were 

compared to model predictions in terms of CO2 removal efficiency. Experimental results 

showed better agreement with the wetted-mode conditions than the non-wetted conditions. An 

explanation to that might be the fact that the pores of the PTFE membrane are partially wetted 
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and not 100% gas filled. Comparison between (PTFE) microreactor and mesh (metallic) 

microreactor showed much higher CO2 removal efficiency for the PTFE membrane reactor 

than the mesh microreactor. This is due to the fact that the pores of the PTFE membrane are 

considered to be partially wetted (some pores are completely liquid filled and some pores are 

completely gas filled) and hence, there is less resistance to mass transfer than the metallic 

mesh which the pores of the mesh are completely liquid filled. Experiments showed that the 

CO2 removal efficiency reduces with lower concentration of NaOH, since lower concentration 

provides lower reaction rate. Furthermore, experiments performed with larger contact area 

between gas and liquid. CO2 removal efficiency increases by increasing the contact area 

between gas and liquid. Using NaOH as an absorbent liquid showed higher CO2 removal 

efficiency than when DEA was used as an absorbent liquid. Finally simulations were 

performed using just a single pore in order to understand the effect of the distance between 

the pores (i.e how close the pores can be to each other without causing overlap of the 

diffusion fields around the individual pores) in the PTFE membrane, on the performance of 

the microreactor. 2D simulations showed that CO2 exists in a distance of approximately 2-

3μm (z direction) adjacent to the pore walls, which means that when the micropores in the 

membrane are in a distance of more than 2-3μm they do not cause overlap of diffusion fields, 

which might affect the CO2 removal efficiency. In addition CO2 was consumed 100% 

approximately within 2-3μm from the liquid-pore interface, while the NaOH concentration 

was almost constant and dropped just 1% in 0.1 μm distance from the pore/liquid interface. 

Furthermore, simulations were performed with pore diameter of 100 μm. The concentration 

profiles of CO2 in the liquid phase adjacent to the pore walls remained the same with the 

concentration profiles examined for 50 μm pore diameter. Finally from the velocity profile in 

the liquid phase it was showed that by increasing the pore diameter more than 100 μm a small 

circulation of the liquid starts to be created below the membrane area. 
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CHAPTER 7 

EFFECT OF STAGGERED 

HERRINGBONES ON CO2 

ABSORPTION USING AQUEOUS 

SOLUTION OF NAOH IN PTFE 

MEMBRANE REACTOR 

7.1 Introduction 

The minimization of chemical processes is becoming a popular trend in the chemical 

engineering field. Due to the small dimensions of the microchannels, the surface to volume 

ratio is several orders of magnitude higher compared to conventional equipment. Based on 

this the rates of heat and mass transfer are high, resulting to a greater reaction yield and 

selectivity. However, for applications with high Peclet number, Pe=ud/D>100, radial mass 

transfer is purely diffusive, thus, ways of stirring to intensify mass transfer are necessary. 

Stroock et al. [116] in their work for chaotic mixing in microchannels proposed the staggered 

herringbone micromixer, which has been shown to be effective for mixing applications [117, 

118, 119, 120, 121, 122, 123, 124, 125, 126]. Recently it was shown that the presence of 

staggered herringbones in a channel has a higher mass transfer rate compared to a standard 
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rectangular channel. Kirtland et al. [127] simulated mass transfer on the top wall of a channel 

with floor staggered herringbone structures by tracking passive tracers over a range of Peclet 

number with an instantaneous kinetics at the reactive boundary. They found that the staggered 

herringbones leads to increased rates of mass transfer compared to a standard rectangular 

channel. Yoon et al. [128] described 3 methods to overcome mass transfer limitation to 

reactive surfaces: (i) removing the depleted zone through multiple periodically-placed outlets, 

(ii) adding fresh reactants through multiple periodically-placed inlets along the reactive 

surface, or (iii) producing a spiralling, transverse flow through the integration of herringbone 

ridges along the channel walls. They showed that approaches (i) and (ii) are better at 

improving the reactant conversions rate; on the other hand the space required for operation 

and the pressure drop is higher than approach (iii). Golden et al. [129] used grooves for 

redirecting the flow and enhancing delivery of the molecules from the bulk to the surface and 

preventing the formation of a depletion layer at the surface. Comparing assay results in 

grooved and plain channels showed that the mixers improved assay results by 26-46%. Lopez 

and Graham [130] have shown that the shear induced diffusion in flowing suspensions can 

also enhance mass transfer to boundaries. They showed that the most effective way to 

enhance mass transfer is through a combination of both herringbones structures and shear-

induced diffusion. The shear-induced diffusion was found to enhance transport across the 

boundary layer, while the herringbones structures were found to be effective at circulating 

fluid between the bulk and the boundary layer. 

In this chapter carbon dioxide absorption in sodium hydroxide solution was studied in a PTFE 

membrane microstructured reactor with and without the use of staggered herringbones on the 

floor of the liquid channel of the reactor, in order to examine the effect of staggered 

herringbones in CO2 removal efficiency. In addition a 3D model was formulated in order to 

compare theoretically the CO2 removal efficiency between a channel with the staggered 

herringbones on it and a channel without the herringbones. Furthermore, analytical model 

which describes acetone mass transfer from water solution to the nitrogen stream flowing co-

currently was formulated in order to examine the effect of staggered herringbones on 

stripping of acetone from water. Further information about the experimental part of this work 

can be found elswere [131]. 
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7.2 Reactor design and experimental conditions 

The reactor design and the experimental set-up used for CO2 absorption in aqueous solution of 

NaOH with and without the used of staggered herringbones are identical to the ones described 

in detail in previously (chapter 5) for the absorption of CO2 in aqueous solutions of amines 

and NaOH in the acrylic single channel PTFE membrane microreactor. The herringbone 

structures employed on the microchannel floor of the liquid channel are presented in figure 

7.1 and are similar to the ones proposed by Stroock et al. [116]. In our case the channel width 

is 5.47 mm and the channel height is 200 μm, while in Stroock’s paper channel width is 200 

μm and channel height is 85 μm. In our case groove depth is 60 μm, groove width is 100 μm, 

and the groove length is 400 μm. The grooves are placed at an angle of θ=45° with respect to 

the channel width. In Stroock’s work groove depth is 30 μm, groove width is 50 μm, and the 

groove length is 200 μm. The grooves are placed at an angle of θ=45°. By factor of two 

groove depth, width and length are larger than Strook’s herringbones. Furthermore, multiple 

herringbones exist along the channel width in order to cover the entire channel width with 

herringbones (since herringbone groove’s length is 400 μm and the channel width is 5.47 

mm). In addition the channel is divided in cycles, each one consisting of 13 herringbones (in 

the entire width of the channel) of twelve asymmetric grooves along length (AB structure) 

Figure 7.1, for our case while in Stroock’s work each cycle consists of one herringbone in the 

entire width of twelve asymmetric grooves. The position of the asymmetry changes every half 

cycle. An alternative herringbone structure (ABCD) suggested by Cantu-Perez [137], is 

shown in Figure 7.1. The ABCD structure is the AB herringbone structure with CD 

herringbone structure, combined together to form ABCD herringbone structure. Each cycle 

changes form AB structure to CD structure. In the CD structure instead of having 13 

herringbones spanning the entire width of the channel, there are 26 herringbones, covering the 

entire width. The fabrication of the herringbones structures at the microchannel floor of the 

acrylic reactor was done by using a milling machine (SM 1500, UK). The fabrication of such 

small grooves (depth=60 μm, width=100 μm) on the acrylic microchannel floor has it limits, 

as a result an alternative fabrication method has to be considered to improve the quality of 

herringbones. In order to improve the imperfections of the staggered herringbones (see figure 

7.1c,d) during the fabrication on the floor of the acrylic plate, which could make the staggered 

herringbones insufficient to create sufficient stirring, silicon inserts (525 μm thick) with the 

staggered herringbones on it were fabricated using conventional semi-conductor processing 
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techniques (see Appendix B) and placed in 725 μm deep liquid channel of the acrylic reactor 

in order to provide 200 μm liquid channel thickness (see figure 7.1f,g). In order to compare 

the staggered herringbones with a channel without herringbones on CO2 removal efficiency, 

flat silicon insert of 525 μm thick with dimensions of 90 mm x 5.47 mm (LxW) was 

fabricated as well.  

Experimental data were obtained varying the liquid (NaOH 2M) flow rate in the range 1.66-

2.56 ml/min and gas (20%vol CO2) flowrate in the range 160-247 ml/min. During typical 

operation (YG=247 ml/min, YL=2.56 ml/min) the pressure difference between liquid and gas 

phase was kept at PL-PG≈90 cm H2O. 

(a) 
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Figure 7. 1 (a) Schematic of the acrylic plate with the staggered herringbones structures 

(AB), (CD) and (ABCD) (b) 3D schematic of a part of the liquid channel with the staggered 

herringbones on the floor of the channel. Dimensions are in mm (c) Optical image of the SHB 

AB structure on the floor of the acrylic liquid channel (d) Optical image of the SHB ABCD 

structure on the floor of the acrylic liquid channel (f) Optical image of silicon insert of the 

SHB AB structure (g) Optical image of silicon insert of the SHB ABCD structure (h) Bottom 

plate (liquid side) of the acrylic reactor with silicon insert. 

7.3 Mathematical model development 

7.3.1 Numerical model for CO2 absorption with and 

without the use of herringbones  

In order to study the effect of the staggered herringbones on the CO2 removal efficiency a 

three-dimensional model (see figure 7.2 for the geometries used in the 3D models) of the 

microstructured membrane reactor was formulated with and without the use of the staggered 

herringbones on the floor of the liquid side. The numerical simulations were performed with 

COMSOL Multiphysics 3.5.a, commercial modelling software based on the finite element 

method that solves the Navier-Stokes and mass conservation equations simultaneously. The 

velocity field is solved using periodic boundary conditions so that the velocity at the outlet 

boundary is the same as the inlet one, with a constant flowrate throughout the channel. This 

allows using the simulated velocity field for one cycle, over many successive cycles if 

entrance effects are neglected (Very small entrance length of 0.01 cm, while the total length is 

9 cm). The volumetric flowrate is calculated by integrating the velocity profile which is 

obtained after specifying a pressure drop across the cycle and setting the outlet pressure equal 

to the inlet minus the pressure drop. Non-slip boundary conditions are applied to all boundary 

walls. The differential mass balances to describe the concentration profiles of components for 

the reaction occurring, can be found by solving the convection-diffusion-reaction equations 

coupled with the Navier-Stokes equation. The differential mass balances used to describe the 

concentration profiles of the components in the three domains gas/membrane/liquid phase are 

identical with the ones used in Chapter 5 for CO2 absorption by NaOH solution using non-
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wetted conditions. A mesh consisting of 561421 number of elements and 1252378 degrees of 

freedom is used to execute the simulations in Windows XP with Pentium IV 2.93GHz CPU 

and 24GB of RAM. At this number of elements the solution was found to be mesh 

independent. Cell peclet number was checked and it was found 1.4 which implies that we had 

stable model without numerical errors (often called numerical diffusion) [132]. 

 

(a)                                                                   (b) 

Figure 7. 2 3D geometry used in the simulations (a) SHB for AB structure (b) Single channel 

without SHB. 

7.3.2 Analytical model of stripping of acetone from water 

Analytical model which describes acetone mass transfer from water solution to the nitrogen 

stream flowing co-currently was formulated under the assumptions of (a) constant gas and 

liquid flowrates, (b) dilute mixtures, (c) isothermal and isobaric conditions and (d) constant 

mass transfer coefficient. The analytical model solution of the model provides the outlet 

actone concentration in the liquid phase of the PTFE membrane contactor CAc,out as function 

of the inlet concentration CAc,in, the contactor length L and two dimensionless parameters β 

and Ω (for more details see Appendix C):  
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β
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


                                                              (7.3) 

where Fg and Fl are gas and liquid volumetric flowrates, H, is the Henry’s law coefficient 

(defined as ratio of liquid to gas concentrations), KT , overall mass transfer coefficient based 

on the liquid phase, τl , liquid residence time, δl , liquid channel thickness. The overall mass 

transfer coefficient is calculated from [59]: 

gmlT k

H

k

H

k

1

K

1
                                                      (7.4) 

where kl, km, kg, re the mass transfer coefficients in the liquid phase, the membrane phase and 

the gas respectively. When the Graetz number, Gz=Re Sc 2δ/L<20 the laminar flow can be 

considered as fully developed in rectangular channels [133]. Then the Nusselt number has a 

constant value of 4.86 [134] for one wall transferring heat. Due to heat-mass transfer analogy 

this will be the same value for the Sherwood number (k 2δ/D) and can be used for the 

calculation of the gas and liquid mass transfer coefficients. The Gz number for nitrogen 

flowrates studied (160-280 ml/min) was in the range of 0.4-0.7 and for liquid flowrates used 

(0.13-0.3 ml/min) was in the range of 0.8-1.8. The mass transfer coefficient in the membrane 

was calculated from equation (7.5) for gas filled membranes pores. 

εD

τδH

K

H

g

m

m 


                                                (7.5) 

where  gD is the diffusion coefficient of the gas,   is the porosity, mδ  is the thickness and τ  is 

the tortuosity of the membrane(calculated as =(2- ε )
2
/ ε  [135]). The model was formulated in 

order to study theoretically the effect of staggered herringbones on 
inAc,

outAc,

C

C
for the stripping of 

acetone from water. 
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7.4 Results and Discussion 

7.4.1 Influence of different structures of staggered 

herringbones fabricated in acrylic plates on CO2 removal 

effciency  

Figure 7.3 shows the experimental results on CO2 removal efficiency with and without the use 

of staggered herringbones on the liquid channel floor of the single channel PTFE membrane 

contactor. The different structures of staggered herringbones (AB and ABCD) shown in 

Figure 7.3 are the ones fabricated on the acrylic microchannel floor. From the graph it can be 

seen that CO2 removal efficiency is slightly lower for the AB structure compared with the 

channel without herringbones (flat channel) and the ABCD structure, while CO2 removal 

efficiency is almost the same for the flat channel and ABCD structure. The experimental 

results obtained from the staggered herringbones show that staggered herringbones did not 

have the effect on mass transfer as reported in literature [127, 136]. A reason that might 

explain this behaviour is that the PTFE membrane is partially wetted and not fully gas filled 

and hence, the use of staggered herringbones will not improve the mass transfer coefficient, 

since the wetting in the pores of the membrane will increase the mass transfer resistance in the 

membrane. In addition imperfections of the staggered herringbones on the acylic floor of the 

reactor (see figure 7.1c,d) during the fabrication might prevent the fluid of penetrating in the 

herringbone grooves, as a result the staggered herringbones  might be insufficient to create 

sufficient stirring of the fluid, which is necessary for the enhancement of mass transfer. 

Despite the imperfections of staggered herringbones, from Figure 7.4 it can be seen that the 

fluid penetrates inside the staggered herringbones grooves (gas air bubbles in liquid fluid). 

Furthermore considering the 60 μm of the depth of the staggered herringbone grooves on the 

total volume of the liquid phase it can be said that a slight improvement was achieved with 

the ABCD structure, because by increasing the volume of the liquid side the residence time in 

the liquid chamber is increased. In Chapter 4 it was showed that by increasing the liquid 

residence time CO2 removal efficiency decreases. Based on that the advantage of ABCD 

structure is that, an increase of the residence time (10-15%) in the liquid side can be acheived 

without decreasing CO2 removal efficiency compared with the flat channel. Finally, 
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experiments were performed using 1M NaOH. Figure 7.5 shows the comparison between the 

flat channel with the AB herringbone structure. The idea of using lower NaOH concentration 

is due to the fact that NaOH will be consumed slower near the membrane/liquid interface and 

leads to penetration of carbon dioxide deeper in the liquid phase, hence the staggered 

herringbones might help to move the unreacted NaOH from the bottom of the liquid chamber 

to the membrane/liquid interface, and hence more CO2 will be consumed. In Figure 7.5 it can 

be seen that CO2 removal is slightly higher when AB structure was used compared with the 

flat channel. This might be due to the reason mentioned above or due to experimental error 

which was found to be ± 5%. Further explanations of the reasons why staggered herringbones 

are insufficient to improve mass transfer in our case will be discussed more in next sections. 

 

Figure 7. 3 Experimental comparison between the flat channel with two different structures 

of staggered herringbones (AB and ABCD) engraved on the liquid channel floor of the acrylic 

reactor. PTFE porosity=65-70%, δG=850 μm, δL=200 μm,     
/YNaOH=96.4, NaOH 2M. 
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Figure 7. 4 Optical picture of a section of staggered herringbones on the acrylic floor of the 

liquid channel indicating the existence of liquid (see gas air bubbles) in the grooves of 

herringbones. 

 

Figure 7. 5 Comparison between the flat channel with the staggered herringbones (AB 

structure) engraved on the liquid channel floor of the acrylic reactor. PTFE porosity 65-70%, 

δG=850 μm, δL=200 μm,     
/YNaOH=96.4, 1M NaOH. 
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7.4.2 Influence of different structures of staggered 

herringbones fabricated in silicon inserts on CO2 removal 

effciency 

     In order to examine if the imperfections of the staggered herringbones on the floor of the 

acrylic plate (see figure 7.1 b, c) was the reason of the non improvement of the mass transfer 

due to insufficient stirring, silicon inserts silicon (525 μm thick) with and without the 

staggered herringbones were placed in 725 μm deep liquid channel (see figure 7.1 f) in order 

to provide 200 μm liquid channel thickness. As it can be seen from Figure 7.1 f and g, the 

staggered herringbones are much more precisely made on the silicon inserts than the floor of 

the acrylic plates (figure 1c, d). Figure 7.6 shows the comparison between the flat silicon 

insert with two different silicon inserts structures of staggered herringbones (AB and ABCD). 

It can be seen that CO2 removal efficiency is slightly lower for the ABCD structure compared 

with the flat insert and the AB structure, while CO2 removal efficiency is slightly higher for 

the AB structure compared with the flat insert. As it can be seen from the results the 

imperfections of the staggered herringbones on the acrylic plates was not the reason of the 

non improvement of the mass transfer. A reason might explain this behaviour of non 

improvement of mass transfer is that the staggered herringbones are too far from the 

liquid/membrane interface where the reaction takes place, and hence, the staggered 

herringbones do not influence the mass transfer near the liquid/membrane interface. Cantu 

Perez [137] showed in his work that the highest stirring intensity, therefore higher convecting 

mass transfer was found close to the channel floor. In the following sections follow further 

explanations for the reasons that might cause the non improvement of mass transfer with the 

use of staggered herringbones are provided. 
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Figure 7. 6 Experimental comparison between two different structures of staggered 

herringbones (AB and ABCD) fabricated on silicon inserts with a flat silicon insert. PTFE 

porosity 65-70%, δG=850 μm, δL=200 μm,     
/YNaOH =96.4, NaOH 2M. 

7.4.3 Model prediction for CO2 removal with and without 

the use of staggered herringbones  

In order to investigate the reasons of the non improvement of staggered herringbones in mass 

transfer, theoretical simulations were executed with and without the use of staggered 

herringbones. Figure 7.7 shows the comparison between a channel with staggered 

herringbones AB structure with a flat channel for CO2 removal efficiency as a function of gas 

flowrate. It can be seen that the staggered herringbones do not show any improvement on CO2 

removal efficiency compared with the flat channel. Figure 7.8 and 7.9 show the cross-

sectional concentration profiles of NaOH in the liquid side with and without the use of 

staggered herringbones at a length of (z/ δL =77.5). It can be seen that the herringbones stir the 

liquid so that the reacted material from the liquid/membrane interface is distributed along the 

centre of the channel compared to the channel without herringbones where the liquid is not 

distributed along the cross section (see figure 7.9). This trend for the staggered herringbone 

channel is in agreement with literature [137]. In addition Figure 7.10 shows the cross-

sectional concentration profile of CO2 in the liquid side at a length of (z/ δL =77.5) which is 

0

5

10

15

20

25

100 150 200 250 300

%
C

O
2
 R

em
o
v
a
l 

E
ff

ic
ie

n
cy

 

Gas Flowrate (ml/min) 

SHM with AB

structure

SHM with ABCD

structure

Flat silicon insert



Effect of Staggered HerRingbones on CO2 Absorption Using Aqueous Solution of NaOH in PTFE MeMbrane Reactor  

175  

 

the same for both cases (with and without staggered herringbones). Since the penetration of 

CO2 in the liquid side takes place only for few microns from the liquid/membrane interface as 

it can be seen from Figure 7.10 the use of staggered herringbones on the floor of the liquid 

side does not have any effect on the concentration profile of CO2. This is why the cross-

sectional concentration profile of CO2 with and without the herringbones is identical as shown 

in Figure 7.10. 

 

Figure 7. 7 Theoretical simulations with and without the staggered herringbones for CO2 

removal efficiency at a length of (z/ δL =77.5). PTFE porosity 65-70%, δG=850 μm, δL=200 

μm, NaOH 2M,     
/YNaOH=96.4. 

0

2

4

6

8

10

12

14

16

18

90 120 150 180 210 240 270

%
C

O
2
 R

em
o
v
a
l 

E
ff

ic
ie

n
cy

 

Gas Flowrate (ml/min) 

SHB AB structure

Flat channel



Effect of Staggered HerRingbones on CO2 Absorption Using Aqueous Solution of NaOH in PTFE MeMbrane Reactor  

176  

 

 

Figure 7. 8 Cross-sectional concentration map of NaOH in the liquid side at a length of (z/ δL 

=77.5) with the use of staggered herringbones. PTFE porosity 65-70%, δG=850 μm, δL=200 

μm, NaOH 2M,     
/YNaOH=96.4, Pe~10

3
. 

 

Figure 7. 9 Cross-sectional concentration map of NaOH in the liquid side at a length of (z/ δL 

=77.5) without the use of staggered herringbones. PTFE porosity 65-70%, δG=850 μm, 

δL=200 μm, NaOH 2M,     
/YNaOH=96.4, Pe~10

3
. 
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Figure 7. 10 Cross-sectional concentration profile of CO2 in the liquid side at a length of (z/ 

δL =77.5) with the use of staggered herringbones. PTFE porosity 65-70%, δG=850 μm, δL=200 

μm, NaOH 2M,     
/YNaOH=96.4, Pe~10

3
. 

7.4.4 Model prediction for stripping of acetone from water 

with and without the use of staggered herringbones  

In order to investigate more the effect of staggered herringbones on mass transfer, an 

analytical model for the stripping of acetone from water was formulated. Furthermore, the 

idea is to calculate the mass transfer coefficient of acetone kl in the liquid phase (with and 

without the staggered herringbones) according to Sherwood numbers from Kirtlands paper 

[127] and then to see the effect of the kl on the ratio
inAc,

outAc,

C

C

 

.

  

Figure 7.12 shows the 

calculated kl using the Sherwood numbers from Kirtlands paper (figure 6) [127] with and 

without the use of staggered herringbones for Peclet number~10
3
 as a function of length 

(z/H). As it can be seen the kl number with SHB diverges from the kl without the SHB at z/ δL 

~20. kl reaches its plateau at earlier and higher value than without SHB which is in agreement 

with kirtland’s results [127] . Furthermore, from equation (7.1) 
inAc,

outAc,

C

C

 

was calculated 

with the use of kl from Figure 7.12 for (z/ δL) from 20-100. As it can be seen from Figure 7.12 

the ratio 
inAc,

outAc,

C

C
is not improved by the kl values with the staggered herringbones and is 
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almost the same for both cases (kl with and without SHB). This observation of the non 

improvement of the ratio 
inAc,

outAc,

C

C
 with the use of staggered herringbones is in agreement with 

the theoretical and experimental studies on CO2 absorption (showed before) with and without 

the use of staggered herringbones which showed no improvement on CO2 removal with the 

use of SHB. 

 

 
 

Figure 7. 11 Acetone mass transfer kl as a function of axial distance (z/ δL). PTFE 

porosity 65-70%, δG=850 μm, δL=200 μm, Acetone 1M, Pe~10
3
, DAc=1.16x10

-9 
m

2
/s, 

Le=0.002 cm. 
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Figure 7. 12 Model prediction for acetone stripping in PTFE membrane contactor for kl 

values with and without the use of SHB. PTFE porosity 65-70%, δG=850 μm, δL=200 μm, 

Acetone 1M, Pe~10
3
, DAc=1.16x10

-9 
m

2
/s, DN2=1.15x10

-5 
m/s, Le=0.002 cm, τl=50 s, 

YN2/YAc=1200, H=1127. 

7.4.5 Hatta number analysis for CO2 into 2M NaOH 

In order to understand the reasons for the non improvement of mass transfer when staggered 

herringbones were used in our experiments the Hatta number  HM  and Enhancement factor 

(E) were calculated. Hatta number was calculated from equation 7.1 [138] for second order 

reaction: 

l

BA
H

k

kCD
M                                                                                                                         (7.6) 

where AD  is the diffusivity of CO2 in the liquid phase, k  is the second order reaction rate 

constant, CB is the initial concentration of NaOH, and lk is the mass transfer of CO2 in the 

liquid phase. The Sherwood number 






 

D

2δk
 has constant value of 4.86 for a fully developed 

flow based on Shah and London [134] and can be used for the calculation of gas and liquid 

mass transfer coefficients. The calculated values for Hatta number and Enhancement factor 

are reported in Table 7.1 [138]. 
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Table 7. 1 Estimated values for Hatta number and Enhancement factor with all the parameters 

used in the calculations. 

According to the Figure 7.13 and from the calculated values from Table 7.1 for MH=292 and 

Ei=221.23 the enhancement factor is around 150, which indicates that enhancement factor is 

almost in the plateau of the graph for the fast second-order reaction. For second order 

reactions when Hatta number exceeds a specific value (see Hatta diagram) the Enhancement 

factor reaches a limit (plateau of the graph), which does not happen for first order reactions 

(Kirtland’s case)[127] where Enhancement goes to infinity. For second order fast reactions in 

liquid film with high concentration of NaOH the apparent rate equation is independent from 

lk  [138]. Any change of mass transfer lk  achieved by staggered herringbones will not 

increase the apparent rate equation and consequently will not increase the CO2 removal 

efficiency as it was shown also from our experimental results in previous sections. In 

addition, the transverse concentration profiles of CO2 and NaOH in the liquid phase were 

calculated (see figure 7.14) from the model for CO2 removal at a length of (z/ δL =77.5) 

without the use of SHB on the floor of the liquid channel and are in agreement with 

Levenspiel’s plot [128] (case D: Fast Reactions; High CB) where the apparent rate equation is 

independent from lk . 

MH=(DAkCB)
1/2

/kAl Ei = 1+DBCBHA/bDApAi NaOH 
E (Enhancement 

factor) 

292 221.23 2M ≈150 

kl DA DB k 

HA   (defined 

as 

iCHp
AAAi  ) 

pAi 

1.56x10
-5

 (m/s) 
1.7x10

-9
 

(m
2
/s) [96] 

2.8x10
-9 

(m/s) [97] 

6.1 

(m
3
/mol.s) 

[94] 
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(m
3
atm/mol) 

[10] 
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Figure 7. 13 The enhancement factor for fluid-fluid reactions as a function of MH and Ei [138, 

p.530]. 

 

Figure 7. 14 Transverse concentration profiles of CO2 and NaOH in the liquid phase at a 

length of (z/ δL =77.5) for the flat channel. PTFE porosity 65-70%, δG=850 μm, δL=200 μm, 

NaOH 2M,     
/YNaOH=96.4. 
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7.5 Conclusions 

Carbon dioxide absorption in sodium hydroxide was studied in a membrane microstructured 

reactor with and without the use of staggered herringbones on the floor of the liquid channel 

of the reactor. Experimental comparison between the flat channel with two different structures 

of staggered herringbones (AB and ABCD) when the staggered herringbones were engraved 

in the acrylic plate were performed. The experimental results obtained from the staggered 

herringbones showed that staggered herringbones did not have any effect on mass transfer 

compared to the flat channel. In order to examine if the imperfections of the staggered 

herringbones on the floor of the acrylic plate was the reason of the non improvement of the 

mass transfer due to insufficient stirring, silicon inserts (525 μm thick)  with and without the 

staggered herringbones on them were placed in 725 μm deep liquid channel. Despite the fact 

that the staggered herringbones were much more precisely made on the silicon inserts than the 

herringbones on the floor of the acrylic plates CO2 removal efficiency was similar as the flat 

channel. Tree-dimensional simulations were executed with and without the use of staggered 

herringbones which showed that the staggered herringbones on the floor of the liquid channel 

do not have any improvement on CO2 removal efficiency compared with a flat channel. 

In addition, in order to investigate more the effect of staggered herringbones on mass transfer, 

an analytical model for the stripping of acetone from water was formulated. Non 

improvement of the ratio 
inAc,

outAc,

C

C
 was observed with the use of staggered herringbones 

compared with the flat channel. 

A Hatta number analysis was carried out in order to understand the reasons for the non 

improvement of mass transfer when staggered herringbones were used in our work. The 

analysis showed that enhancement factor is almost in the plateau of the graph for the fast 

second-order reaction. For fast second order reactions in liquid film with high concentration 

of NaOH the apparent rate equation is independent from 
lk  and hence, any change of mass 

transfer lk   achieved by staggered herringbones will not increase the apparent rate equation 

and consequently will not increase the CO2 removal efficiency. 
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CHAPTER 8  
 

PRELIMINARY INVESTIGATION OF 

THE EFFECT OF ULTRASOUND ON 

CO2 ABSORPTION 

8.1 Introduction  

Ultrasound has found numerous applications in the field of sonochemistry [139]. For example 

with the use of ultrasound the reactivity of metal powders can be increased by more than 

100000 times. The main reason responsible for this activation is cavitation [140]. Through a 

series of compression and expansion cycles created by acoustic waves, gas bubbles in the 

liquid may grow larger than 100 μm. The bubbles eventually become unstable and implode, 

producing high-speed microjets of liquid, intense localized heating and high pressure shock 

waves [141]. Ultrasound has also been shown to improve mass transport in gas and liquid 

systems by acoustic streaming [142]. It has been reported for many researches that the use of 

ultrasound can enhance mass transfer [143,144,145,146,147].  

Sohbi et al. [148] studied the effect of vibration on the absorption of CO2 with chemical 

reaction in aqueous solution of calcium hydroxide. They found that the vibration with a 

higher frequency increased the mass transfer coefficient, but vibration with lower frequency 

did not improve it. Schueller and Yang [149] in their work of ultrasound enhanced adsorption 

and desorption of phenol on activated carbon and polymeric resin, they observed that for 
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adsorption in a batch adsorber, ultrasound was found to act like a mixer, improving the mass-

transfer coefficient through cavitation and acoustic streaming. For desorption ultrasound was 

found to enhance the surface diffusivity. Yamashita et al. [150] in their studies for enhanced 

mass transfer in peritoneal dialysis with application of ultrasound they observed that the 

ultrasound of an ultrasonic cleaner enhanced the rate of the peritoneal mass transfer and the 

effects were dependent on the frequency of ultrasound. Riera et al. [151] they used high-

intensity ultrasound to produce a small scale agitation in order to enhance mass transfer on 

supercritical fluids (SF) extraction processes. They observed from their results that power 

ultrasound significantly accelerates the kinetics of the process and improves the final 

extraction yield. These improvements may be basically attributed to an increase in the mass 

transfer coefficient. Ben Yi and Yi Gang [152] developed a mathematical model of the mass-

transfer enhanced factor which shows that the ultrasound enhances the mass-transfer in the 

supercritical carbon dioxide extraction process. The results calculated by the model are in a 

good agreement with experimental results. In addition they showed that mass-transfer 

enhanced factor is in direct proportion to the ultrasonic power, and in inverse proportion to 

the ultrasonic frequency, i.e. when using the ultrasonic to enhance the mass transfer process, 

we must choose an ultrasonic instrument with high power and low frequency. 

In this Chapter carbon dioxide absorption in sodium hydroxide was studied in the PTFE 

membrane microstructured reactor with and without the use of ultrasound, in order to 

investigate if ultrasound has an effect in CO2 removal efficiency. 

8.2 Experimental set-up and conditions 

The reactor used for CO2 absorption in aqueous solution of NaOH with and without the used 

of ultrasound is the same single channel PTFE membrane microreactor showed in previous 

chapters for the absorption of CO2 in aqueous solutions of amines and NaOH. For the 

ultrasound experiments the membrane reactor was completely submerged in a water bath of 

an ultrasonic cleaner (UW, UK) of 30kHz as shown in Figure 8.1. An HPLC  pump (Waters 

5100) was used to drive the liquid 2M aqueous NaOH solution in the bottom chamber of the 

reactor, while the gas 20vol% CO2/N2 was controlled by a mass flow controller (Brooks 

5850) and flowed above the membrane. The outlet of the gas phase passed through a liquid 

trap to avoid any liquid getting into the gas chromatograph (GC) in case of breakthrough of 
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the liquid in the gas phase, and then connected to a GC (Shimadzu GC-14B) for carbon 

dioxide concentration determination. A water bath (Julabo F25, Germany) was used to keep 

the temperature inside the ultrasonic cleaner at 20°C. Experimental data were obtained 

varying the liquid flow rate in the range 1.66-2.56  ml/min and gas flowrate in the range 160-

247 ml/min. Figure 8.2 shows the experimental set-up used for the ultrasound experiments. 

Furthermore, an aluminium foil was used to dermine the distribution of the cavitation 

intensity in the ultrasonic cleaner [153]. 

 

Figure 8. 1 Membrane microreactor submerged completely in a water bath of an ultrasound 

cleaner. 

Water bath 

Ultrasonic bath
Mass flow controller

HPLC pump

Water bath 

Ultrasonic bath
Mass flow controller

HPLC pump

 

Figure 8. 2 Experimental set-up for the ultrasound experiments. 
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8.3 Results and Discussion 

In order to determine the distribution of cavitation intensity in the ultrasonic cleaner, an 

aluminium foil (same height with the level of the water inside the ultrasonic bath) was 

submerged into the ultrasonic bath [153]. After the application of ultrasound for 5-10 minutes 

the aluminium foil (see figure 8.3) was eroded in different positions. From the erosion pattern 

that was created on the aluminium foil the cavitation intensity of the ultrasonic cleaner can be 

determined. From Figure 8.3 can be inferred that the cavitation intensity is concentrated at the 

midheight of the ultrasonic cleaner (see dashed line of figure 8.3), as a result the liquid 

chamber of the PTFE membrane reactor was located at the midheight of the ultrasonic cleaner 

in order to see the effect of cavitation on CO2 removal. 

 

 

 

 

 

 

 

Figure 8. 3 Aluminium foil used to determine the distribution of cavitation intensity in the 

ultrasonic cleaner. 

8.3.1 Influence of ultrasound on CO2 removal efficiency 

Figure 8.4 shows the performance of the membrane (PTFE) microreactor with and without the 

use of ultrasound in CO2 absorption efficiency as a function of gas flowrate. As it can be seen 

from Figure 8.4, with and without the use of ultrasound the experimental results for CO2 

removal efficiency were the same. Despite the fact that the cavitation intensity was 

determined at the mid-height of the ultrasonic bath, hence the liquid chamber of the 
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membrane contactor was located at the mid-height of the ultrasonic bath, no enhancement of 

CO2 removal efficiency with the use of ultrasound was observed. Schueller and Yang [149] 

showed that cavitation has only a slight effect on the mass- transfer coefficient, compared to 

the increase due to acoustic streaming. Based on the observation of Schueller and Yang that 

cavitation might not have an effect on mass transfer it might be a good explanation for our 

case that ultrasound did not have any effect on mass transfer and hence, the CO2 removal 

efficiency did not improve.  Another reason that might explain the non improvement of mass 

transfer with the use of ultrasound is that the acrylic plate which the liquid chamber is 

engraved on it is quite thick 15 mm, so the ultrasound cannot create  acoustic streaming 

strong enough inside the liquid chamber in order to increase mass transfer  and hence CO2 

removal. 

 

Figure 8. 4 CO2  removal efficiency as a function of gas flowrate with and without the 

use of ultrasound. PTFE open area 65-70%, δG=850 μm, δL=200 μm, NaOH 2M, 

    
/YNaOH=96.4. 
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Since the behaviour of the acoustic field in the ultrasound bath is unknown experiments were 

performed with different orientations of the membrane reactor inside the ultrasonic bath, in 

order to achieve streaming in the liquid side of the membrane reactor. Figures 8.5 and 8.6 

show the different orientations of the membrane reactor used for the ultrasound experiments. 

Despite the different orientation of the membrane reactor inside the ultrasonic bath the 

experimental results for CO2 removal efficiency did not improve and are identical with the 

results obtained for Figure 8.4. Further investigation and understanding of the acoustic field 

inside the ultrasonic cleaner is worth carrying out in order to achieve acoustic streaming in the 

liquid side of the membrane reactor which might enhance mass transfer and hence CO2 

removal. 

 

Figure 8. 5 The reactor is placed vertically inside the ultrasonic bath. 

 

Figure 8. 6 The reactor is placed in an inclined position inside the ultrasonic bath. 
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8.4 Conclusions 

Carbon dioxide absorption in sodium hydroxide was studied in the single channel membrane 

microstructured reactor with and without the use of ultrasound in order to examine the effect 

of ultrasound on the CO2 removal efficiency. The experimental results obtained from the use 

of ultrasound did not have any effect on mass transfer compared to the experimental results 

without the use of ultrasound and hence, no improvement on CO2 removal efficiency was 

observed. A possible explanation for that might be the fact that cavitation does not have an 

effect on the mass- transfer coefficient or due to the fact that the acrylic plate which the liquid 

chamber is engrave on it is quite thick 15mm, so the ultrasound cannot create acoustic 

streaming strong enough inside the liquid chamber in order to increase mass transfer and 

hence, enhance CO2 removal efficiency. Furthermore, experiments were performed with 

different orientations of the membrane reactor inside the ultrasonic bath, in order to achieve 

streaming in the liquid side of the membrane reactor. Despite the different orientation of the 

membrane reactor inside the ultrasonic bath, we did not achieve any enhancement of mass 

transfer and the experimental results for CO2 removal efficiency did not show any 

improvement compare with results without the use of ultrasound. 
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CHAPTER 9  

INVESTIGATION OF SCALE-OUT OF 

THE METALLIC MESH REACTOR 

9.1 Introduction 

In some cases the amount of reaction product may not meet a required output, even though 

the reaction yield may be improved by using a microreactor. To increase production volume, 

the number of reactors is simply increased using an approach referred as scale out or 

numbering up. Numbering-up can be performed in two ways. External numbering-up [154] is 

reffered to as the connection of many devices in parallel fashion and internal numbering-up 

means the parallel conection of the functional elements only, rather than of the complete 

devices [154]. When using micro-fluidic systems, a reaction is first optimised using a single 

microreactor. Therefore, a reaction is only optimised once and then all sequential reactors are 

controlled using the same operating conditions. This approach is therefore cost-effective, 

time-efficient, and flexible, enabling changes in production volume by simply increasing or 

decreasing the number of reactors employed [155, 156, 157, 158, 159, 160, 161]. However, in 

the scale out approach uniform flow distribution must be achieved so that each parallel unit 

shows identical reagent flow rates. 

There are two different structures used for distributing flows. The consecutive type manifold 

(our case) consists of a header distributing to a number of outlets while in the bifurcation 

manifold structure flow is split into two streams repeatedly. In general there are two main 

approaches to achieve even flow distribution in consecutive headers. The first approach 
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achieves uniform flow distribution by careful design of the shapes of both distributing and 

collecting header geometries. Optimal header geometries were obtained via CFD 

investigations, taking into consideration among other things, the effects of header shape and 

channel geometry [89, 90]. In the second approach uniform flow distribution is achieved by 

making the average pressure drop across the microchannel outlets substantially larger than the 

preesure variation along the length of the distribution header [162]. Although the second 

approach is simpler the first approach which involves careful design of distributing and 

collecting header geometries might be preferable. 

Kikutani et al. [163] made a pile up microreactor in which ten levels of microchannel circuits 

were integrated to form a single glass entity. An amide formation reaction between amine in 

aqueous solution and acid chloride in organic solution was carried out using the pile-up 

reactor. The maximum throughput for ten-layered pile-up reactor was ten times larger than 

that of a single-layered one. They suggested that many conventional plants producing fine 

chemicals can be replaced by microreactors through the numbering-up technology based on 

their results. Tonkovich et al. [164] in their studies microchannel technology scale-up to 

commercial capacity they pointed out that the keys to success transition from lab-scale to 

industrial-scale are: solving challenges around device fabrication, flow distribution and 

catalyst integration. Kikutani et al. [165] performed 2 x 2 amide formation reactions using a 

microchip and the possibility of the parallel micro-flowreactor system for combinatorial 

chemistry was demonstrated. They observed problems of dispersing equal amounts of 

solutions to each reaction channel, most probably due to imperfections in fabrication of the 

chip. 

In this Chapter carbon dioxide absorption in sodium hydroxide solution was performed in the 

metallic mesh scale out microreactor. 4 meshes were integrated in the metallic meh 

microreactor of chapter 4. CFD simulations were carried out in the scale out microreactor in 

order to ensure equal flow distribution in each plate of the scale out 9amicoreactor.  

9.2 Reactor design and experimental conditions 

In this Chapter, ‘scale-out’ of the metallic micromesh reactor shown in Chapter 4 (see figure 

4.1c  and 4.2a for the mesh used) for CO2 absorption in NaOH solution was investigated. A 
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‘scale-out’ micromesh was made in which four meshes (see figure 4.2a for the mesh used) 

were integrated. The plates of the single metallic mesh reactor were designed based on the 

CFDs simulations (see Chapter 3) by varying geometrical parameters such as: width of inlet 

and outlet flow distribution regions, different shapes of inlet and outlet flow distribution 

regions, shifting the channels in parallel, effect of the channels in order to achieve uniformity 

of the fluid flow over the plates of the reactor. The scaled out reactor was designed based on 

the results of the CFDs (see section 9.4.1) which showed even flow distribution in each plate 

of the scale out metallic mesh reactor.   

Figure 9.1 shows the flow configuration which was implemented for the ‘scale-out’ metallic 

mesh and a picture of the components of the scale out reactor with three meshes for 

simplifications. In order to use four meshes in the scale out microreactor and have the flow 

configuration of Figure 9.1 three acrylic plates were machined in both sides (one side gas 

chamber and the other side liquid chamber) and placed in parallel between the top and the 

bottom plates of the metallic mesh reactor. All the dimensions of these three plates (for the 

gas and liquid chambers) are the same with the dimensions of the top and the bottom plates 

(see chapter 4) apart from the thickness of the plates which are 18 mm for the top and bottom 

plates and 8 mm for the three middle plates. The experimental set-up used for the scale out 

metallic mesh reactor is the same with the one used in Chapter 4 (figure 4.3). Gas flowrate 

varied from 920-1416 ml/min and liquid flowrate varied from 6.64-10.24 ml/min based on 4 

times larger flowrate of the metallic mesh reactor (see Chapter 4). The pressure difference 

between gas and liquid phase was kept at PG-PL≈15-20 cm H2O. Figure 9.1 shows the 

assemble device of the scale out metallic mesh reactor used in our experiments. 
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(a) 

 

(b)  
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(c) 

 

Figure 9. 1 (a) Flow configuration of the scale out microreactor (b) Picture of the components 

of the scale out microreactor (c) Picture of assembled scale out micromesh reactor. 

9.3 Flow distribution in the scale out metallic mesh 

reactor 

In order to ensure equal flow distribution in each layer of the scale out microreactor CFD 

simulations carried out. For the CFD simulations the incompressible Navier-Stokes equations:                                                                                          

uμpuu 2
i


                                                                                     (9.1) 

combined with the equation of continuity,  

0u 


                                                                            (9.2) 
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where u


 is the fluid velocity vector, and p is the pressure, are solved with COMSOL 3.5a. A 

three-dimensional model was employed with, no-slip boundary conditions at all walls, and a 

fixed pressure at the outlet (p0N m
-2

). A mesh consisting of 317001 number of elements and 

1633752 degrees of freedom is used to execute the simulations in Windows XP with Pentium 

IV 2.93GHz CPU and 24GB of RAM. At this number of elements the solution was found to 

be mesh independent Figure 9.2 shows the three- dimensional computational domain of the 

scale out microreactor. 

 

 Figure 9. 2 Three-dimensional computational domain of the scale out microreactor. 

9.4 Results and Discussion 

9.4.1 Flow distribution in the scale-out mesh reactor 

As already mentioned, it is important to ensure equal flow distribution in each plate of the 

scale out microreactor. In order to compare the quality of flow distribution within the 

channels of each plate, average velocities u(i) within each channel are calculated by 

integration of the velocity profiles in the y and z planes. In Figure 9.3, normalized average 
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velocities within channels (each plate consists of 8 channels) u(i)/umean  are shown where the 

mean velocity is given by:  




n
u(i)

n

1
u

1i
mean                                                                                                                        (9.3) 

The maximum difference between average velocities was found to be [u(i)max-u(i)min] / 

umean<0.1%. For each one of the four plates (gas side) of the scale out microreactor the 

normalized average velocities were found the same and are shown below, confirming equal 

flow distribution in each plate of the scale out microreactor. In addition, simulations were 

performed for the plates (liquid side) of the scale out microreactor. Maximum difference 

between average velocities within channels was found to be <0.1% for each plate (liquid side) 

as well (results are not shown), confirming equal flow distribution in each plate (liquid side) 

of the scale out metallic mesh reactor. 

 

Figure 9. 3 Normalized velocity distribution within microchannels for the plate (gas side) of 

the scale out microreactor at inlet gas flow rate ΥG=1416 ml/min. 
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9.4.2 Comparison between the metallic mesh reactor with 

the scale-out metallic mesh reactor  

Figure 9.4 shows the comparison between the scale out metallic mesh reactor (4 meshes were 

integrated) with the metallic mesh reactor (1 mesh see Chapter 4) for CO2 absorption in 

NaOH solution as a function of plate gas flowrates. As it can be seen CO2 removal efficiency 

for the scale out reactor is significantly lower than the metallic mesh reactor. Such a poor 

performance might be caused by uneven distribution to each plate. Despite the fact that CFD 

simulations indicate even flow distribution to every plate, maldistribution can be the reason 

for such a poor performance. Yue et al. [166] in their studies of flow distribution and mass 

transfer in a parallel microchannel contactor, observed significant flow maldistribution across 

parallel channels, despite the fact that the CFD simulations showed even distribution. To 

ensure equal distribution to each plate in a scale out reactor, each plate must be accurate 

made. Imperfections in fabrication of any of the plates can cause uneven flow distribution. In 

addition to that in our case after measuring the gas and liquid chambers heights, imperfections 

on the fabrication of the plates were observed (chamber heights from the inlet to the outlet of 

each plate varied by about 10%) , which can lead to uneven distribution to each plate of the 

reactor. Furthermore, a possible explanation for the different behaviour of the scale out 

metallic mesh reactor might be the fact that breakthrough of liquid in the gas phase occurs in 

the second or in the third plate where visualisation is not possible. Such a breakthrough most 

likely would cause the formation of stagnant liquid in the gas side of the plates which might 

affect the gas residence times and hence lower CO2 removal efficiency. 
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Figure 9. 4 Experimental comparison between the metallic mesh reactor (1-mesh) 

with the scale out metallic mesh reactor (4-mesh) for CO2 absorption in 2M NaOH solution. 

δG=850 μm, δL=200 μm,      
/YNaOH=139.5, mesh porosity 15%. 

In order to improve the flow distribution in each plate of the scale out reactor, which might 

have caused the problem of lower performance for the scale out metallic mesh reactor, 

experiments were performed by installing inserts with different channel widths (0.2, 0.5, 0.75, 

1 mm) in every inlet of each plate (gas and liquid side) of the scale out reactor (see figure 

9.5), in order to control better the pressure drop along each plate of the scale out reactor and 

keep it the same in each plate. This should lead the same volumetric flowrates in each plate. 

Despite the new modification by installing different inserts at all the inlets of each plate of the 

scale out metallic mesh reactor the performance of the ‘scale-out’ reactor was less efficient 

compared with the metallic mesh reactor and the experimental results were identical to the 

original as shown in Figure 9.4 before the modifications were made. In order to improve the 

performance of the scale out reactor a good idea which might help, is the installation of one 

metering valve in each plate (at each liquid outlet), hence each plate can be controlled better 

(better control of pressure drop along each plate) and not just by one metering valve at the 

liquid outlet of the bottom plate of the scale out reactor and hence, breakthrough and 

maldistribution in each plate can be avoided. 
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Figure 9. 5 Schematic of acrylic insert of 0.5 mm channel width, and a part of acrylic plate of 

the scale out metallic mesh reactor showing the inlet of the plate where the insert was 

installed. 

9.6 Conclusions 

Carbon dioxide absorption in sodium hydroxide solution was performed in metallic mesh 

scale out microreactor (4-mesh) in order to compare its performance with the metallic mesh 

microreactor (1-mesh). CO2 removal efficiency for the scale out reactor was significantly 

lower than the metallic mesh reactor. Despite the fact that CFD simulations indicates even 

flow distribution to every plate, such a poor performance might be caused by uneven 

distribution to each plate. Breakthrough of liquid in the gas phase (stagnant liquid) in the 

second or in the third plate where visualisation is not possible might be a possible reason for 

such a poor performance as well. Furthermore, in order to improve the flow distribution in 

each one of the plates of the scale out reactor inserts with different channel widths (0.2, 0.5, 

0.75, 1 mm) were installed in every inlet of each plate (gas and liquid side) of the scale out 

reactor in order to control better the pressure drop along each plate of the scale out reactor and 

keep it the same in each plate. Despite the new modification by installing different inserts at 

all the inlets of each plate of the scale out reactor the performance of the scale out metallic 

mesh reactor did not improve. 
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CHAPTER 10 

CO2 ABSORPTION IN SILICON 

NITRIDE MESH CONTACTOR 

10.1 Introduction 

Silicon nitride microsieves [167, 168, 169, 170, 171, 172, 173, 174, 175, 176] are mesh 

manufactured with photolithographic techniques developed in the semi-conductor industry. 

Microsieves are mostly used for analytical purposes and also, are under investigation for the 

clarification of beer and filtration of milk [177, 178] for large scale applications. Due to their 

thin silicon nitride layer, their relatively large porosity, and their open support structure the 

fluxes can be two or three orders of magnitude larger than for conventional membranes, even 

when using very low transmembrane pressures. 

The study of this chapter concerns the use of a new type of silicon nitride mesh contactor, 

developed by Bayer Technology Services and FluXXion’s microstructure technology to 

improve the mass transfer efficiency. The use of this new technology could provide modular 

micro-structured contactor devices enabling mass and heat transfer efficiency to increase 

compared to conventional techniques for mass transfer. As a result the following advantages 

can be pointed out [179]: 

 Less energy intensive than conventional processes 

 Less initial investment in infrastructure, lower overall investment 
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 Small size, weight; high surface area to contactor volume, low hold-up volume 

 Large turndown ratio; high flexibility with flowrates 

 Highly modular and scalable 

 Supports “green chemistry” and “process intensifications” initiatives 

 Independent pressure control of gas and liquid streams 

 Independent flow control of gas and liquid streams (may obviate typical column 

problems: flooding, weeping, priming, dumping, entrainment, and channelling) 

 No physical mixing of phases (bubble-less gasification controls froth and foam) 

In this chapter, CO2 absorption in sodium hydroxide and amine solutions was conducted in 

the silicon nitride mesh contactor. Breakthrough was investigated first in the silicon nitride 

mesh contactor in order to establish the operation pressure difference between gas and liquid 

phase. Various conditions such as gas and liquid flowrates, different types of solutions 

(NaOH, Amines), type of the flow, were investigated, in order to evaluate, understand and 

improve its performance of the silicon nitride mesh contactor.  

10.2 Reactor design and experimental conditions 

The silicon nitride mesh contactor comprised of a silicon microstructured plate with a one-

micron thick mesh layer of silicon nitride, placed between two polycarbonate plates 12 mm 

thick, containing inlet and outlet ports for the fluids. The 1 μm thick silicon nitride layer 

forms the mesh which after it was etched through using advanced semiconductor processes, 

contains a very high density of very uniform 0.5 µm pores (see figure 10.1a) with porosity of 

20.3%. A top foil made of stainless steel defined the liquid channel of 25 μm height, while the 

gas channel height approximately is 500 μm, (note that the gas channel is largely within the 

wafer and is more complicated than the 500 μm that suggested). In addition to this 500μm 

there is an extra height from the gas channel of 340 μm and another 2.37 mm height from a 

nickel support which makes the total gas channel height at 3210 μm , see figure 10.2).The gas 

chamber volume is 1.39 cm
3
 based on the total height of 3210 μm, and the liquid chamber 
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volume is 0.01 cm
3
. The reactor measures 80 mm x 64 mm (see figure 10.1b). Two viton 

gaskets 1 mm thick are placed in 0.75 mm deep grooves in the polycarbonate plates to 

provide the sealing. The silicon microstructured plate consists of 4 blocks (see figure 10.1c) 

and the directions of the fluid streams are perpendicular to the distribution channels. The 

porous area of the mesh is 42.68 x 9 mm and defines the contact area between the two fluids. 

Two pin holes were employed in both polycarbonate plates for alignment, while 6 screws 

were used for clamping all components together. A schematic of all components of the reactor 

is shown in Figure 10.1d. A picture and a schematic of the experimental set up for CO2 

absorption is shown in Figure 10.3. An HPLC pump (Waters 5100) was used to drive the 

liquid 2M NaOH solution or the 2M diethanolamine solution on the top chamber of the 

reactor, while the gas 20vol% CO2/N2 was controlled by a mass flow controller (Brooks 

5850) and flowed below the mesh. The differential pressure between the two phases was 

controlled by two metering valve (Swagelok) at the outlet of the gas and the liquid phases. 

The gas phase pressure and liquid phase pressures were measured by pressure sensors 

(Honeywell; pressure range 0-15 psi, power supply; Traco 5V, use of the Labview program 

running by computer for pressure readings) located at the inlets/outlets of the gas and liquid 

channels. During typical operation the pressure difference between gas and liquid phase was 

kept at PG-PL≈130-170cm H2O. The outlet of the gas phase passed through a liquid trap to 

avoid any liquid getting into the gas chromatograph (GC) in case of breakthrough of the 

liquid in the gas phase, and then connected to a GC (Shimadzu GC-14B) for carbon dioxide 

concentration determination. Experimental data were obtained varying the liquid flow rate in 

the range 1.28-2.56 ml/min and gas flowrate in the range 160-246.7 ml/min. These flowrates 

resulted to residence times, based on the gas/liquid volumes in contact with the mesh area, 

0.3-0.5 s for the gas and 0.23-0.36 s for the liquid respectively.  All the experiments were 

carried out at room temperature (approximately 20
o
C). The CO2 removal efficiency was 

calculated from: 

    
  -

       

      
                                                                                                           (10.1) 

where F is the molar flowrate of CO2. The experimental error in CO2 removal was assessed to 

be ± 5%. Two to three chromatographs were taken for each measurement and the deviation 

between them was about ± 5%. 
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(d) 

  
 

Figure 10. 1  (a) SEM picture of the silicon nitride mesh  (b) Picture of the mesh reactor (the 

reactor measures 80 mm x 64 mm) (c) Schematic of the mesh plate for the silicon nitride 

mesh contactor with liquid flow direction (see arrows) (dimensions are in mm) (d) Exploded 

schematic view of the silicon nitride mesh reactor. 
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               Figure 10. 2  Module cross-section between A-A
’
 see figure 10.1b. 

(a) 
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(b) 

 

Figure 10. 3  (a) Picture of the experimental set-up used in this work (b) Schematic of the 

experimental set-up. 

10.3 Mathematical model development 

In order to compare the experimental results with theory a two-dimensional model of the 

microstructured mesh reactor was formulated.  The model called “pseudo-homogeneous 

model”, where the mesh is considered as a homogeneous medium with L
L

M
lL εDD  . Since as the 

gas chamber height was not 500 μm but more complicated as it is shown in Figure 10.2, two 

extreme cases were taken into account for the “pseudo-homogeneous model”. The first one 

uses as a total gas height of 840 μm (see figure 10.2), and the second one takes account also 

the extra 2.37 mm of the nickel support which makes the total gas channel height at 3210 μm. 

The reason of choosing the two different heights for the gas channel is to observe the 
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contribution of this extra height of 2.37 mm, which is created from the nickel support on the 

performance of the reactor. The differential mass balances to describe the concentration 

profiles of components in the three domains gas, mesh, and liquid with the assumptions made 

are shown in Chapter 5. All the parameters used for the calculations are shown in table 10.1 

while the reaction systems of NaOH and DEA with CO2 are shown in Chapter 5 and 6 

respectively.  COMSOL Myltiphysics 3.5.a was used to solve the differential mass balances. 

A mesh consisting of 84000 number of elements and 442303 degrees of freedom was used to 

execute the simulations in Windows XP with Pentium IV 2.93GHz CPU and 24GB of RAM. 

At this number of elements the solution was found to be mesh independent. 

Table 10. 1 Values of parameters used in the simulations. All the parameters were taken for 

T= 20
o
C. 

Parameter Value Reference 

    

 (m
2
/s) 1.64x10

-5
  Cussler [95] 

    

  (m
2
/s) 2.35x10

-6
exp(-2119/T) Versteeg and Van  Swaaij [96] 

     
 

   (m
2
/s)          

  Nijsing et al. [97] 

     NaOH (-)  0.8314 Zanfir et al. [10] 

      (m
3
/mol s) 10

(11.916-2382/T)
 Pohorecki and Moniuk [94]            

    

 
   (m

2
/s) 1.05x10

-9
 Zhang et al. [50]          

    
 

   (m
2
/s) 4.97x10

-10 
                 Zhang et al. [50]    

     DEA (-) 0.8 Paul et al. [109] 

kDEA (m
3
/mol s) 2.3 Zhang et al. [50] 
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10.4 Results and Discussion 

10.4.1 Phase Breakthrough 

Breakthrough was investigated in order to establish the acceptable operational pressure 

difference between gas and liquid which keeps the two phases separated. Figure 10.4 shows 

an experiment with indication of breakthrough, where gas from the bottom chamber has 

entered the liquid-phase (top channel) when the mesh cracked after the first use of the 

module. The theoretical breakthrough pressure of NaOH can be calculated by the Young-

Laplace equation (4.24) and it was found to be 0cm H2O, while the theoretical breakthrough 

pressure of CO2 /N2 was calculated by equation (4.25) and it was found 6756 cm H2O. Due to 

limitation of the sealing material (acceptable operational pressure without leakage is 1000 cm 

H2O) it was not feasible to test the module in its maximum operational pressure difference 

which keeps the two phases separated. During typical operation, pressure difference between 

gas and liquid phase was kept at (PG-PL)inlet≈130-170 cm H2O (Figure 10.5 shows the 

indications of the pressure sensors at the gas and liquid phase). 

 

Figure 10. 4 Picture of the top (liquid) side of the reactor, during breakthrough of gas 

in the liquid side. The arrows indicate air bubbles in the liquid chamber. 
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Figure 10. 5 Pressure profile in gas liquid phases in a co-current operation. 

10.4.2 Model Prediction for CO2 Absorption in NaOH 

Solution 

As it was mentioned before, in order to observe the influence of the two different heights of 

the gas chamber (see figure 10.2) in the performance of the silicon nitride mesh reactor, two 

extreme cases were taken into account. The predictions of the two extremes of the pseudo-

homogeneous model are compared with experimental results, obtained from carbon dioxide 

absorption in sodium hydroxide solution and are shown in Figure 10.6. The model shows 

better agreement with the experimental results when the gas channel height is considered to 

be 3210 μm instead of 840 μm. 19.7-23.1% of the carbon dioxide contained in the inlet stream 

was removed within 0.3-0.5 s experimental gas residence time (see figure 10.7). It can be seen 

from Figure 10.6 that the percentage of CO2 removal decreases by increasing the gas flowrate. 

This is due to the fact that the increase of the gas flowrate reduces the residence time in the 

module, hence it results to lower removal of carbon dioxide. 
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Figure 10. 6  Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and by the pseudo-homogeneous model for the two extreme cases. 

Mesh porosity=20.3%,     
/YNaOH=96.4, δL=25 μm, NaOH=2M. 

 

 

                      Figure 10. 7 Amount of CO2 removed from the gas phase as a function of gas 

residence time based on the total height of 3210 μm , obtained experimentally. Mesh 

porosity=20.3%,     
/YNaOH=96.4, δL=25 μm, NaOH=2M. 
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10.4.3 Influence of liquid flowrates 

Figure 10.8 shows the comparison of the model with the experimental results for CO2 

removal as a function of liquid flowrates when the gas flowrate was kept constant. The 

percentage of CO2 removal increases by increasing the liquid flowrate. As the liquid flowrate 

increases, the concentration of NaOH is kept higher since more fresh liquid is replacing the 

consumed NaOH and hence, increasing the driving force for CO2 removal. The increase of 

CO2 absorption is however relatively small, in agreement with similar trends observed. 

Rongwong et al. [46] in their experimental studies on membrane wetting in gas-liquid 

membrane contacting process for CO2 absorption by single and mixed absorbents they 

observed that the CO2 absorption flux increased with increasing liquid phase velocity. For 1M 

MEA solution and for liquid velocity between 0.5-1.4  m/s their fluxes were around 0.00033-

0.00038 mol/m
2
s while in our case for 2M NaOH and for a liquid velocity between 0.023-

0.035 m/s our fluxes were found to be 0.013-0.016 mol/m
2
s.  Yan et al. [180] studied 

experimentally the separation of CO2 from flue gas using hollow fiber membrane contactors 

with aqueous MEA, MDEA and potassium glycinate as absorbent liquids. They observed that 

the mass transfer rate of CO2 increases slightly with liquid flow rate.   

 

Figure 10.8 Amount of CO2 removed from the gas phase as a function of liquid flowrate 

obtained experimentally and theoretically by the pseudo-homogeneous model, for constant 

gas flowrate. Mesh porosity=20.3%, δG=3210 μm, δL=25 μm, YG=246.7 ml/min, NaOH 2M. 

10

15

20

25

1 1.5 2 2.5 3

%
C

O
2
 R

em
o
v
a
l 

E
ff

ic
ie

n
cy

 

Liquid Flowrate (ml/min) 

Theoretical

Experimental



CO2 Absorption in Silicon Nitride Mesh contactor  

212  

 

10.4.4 Influence of liquid phase height 

In order to observe the influence of the liquid channel height on CO2 removal efficiency 

simulations were performed for two different liquid channel heights, one with 25 μm and one 

with 50 μm. Figure 10.9 shows the theoretical comparison of the two different heights for 

CO2 removal as a function of gas flowrates when the liquid velocities were kept the same in 

order to have the same residence times for the two different heights. As it can be seen from 

the graph by increasing the liquid side height from 25 to 50 μm the CO2 removal efficiency 

remains the same. An explanation for that might be the fact that the reaction is too fast and 

hence, the CO2 consumed within 2-3 μm from the mesh/liquid interface so an extra increase 

of liquid side height will not create more resistance to mass transfer and as a result, no effect 

on CO2 removal efficiency. 

 

Figure 10. 9 Amount of CO2 removed from the gas phase as a function of gas flowrate 

obtained theoretically by the pseudo-homogeneous model. Mesh porosity=20.3%, δG=3210 μm, 

NaOH 2M,    
/YNaOH=96.4 for the 25 μm height and     

/YNaOH=50.4 for the 50 μm height . 
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10.4.5 Model Prediction for CO2 Absorption in DEA 

Solution 

Two extreme cases were taken into account (see figure 10.2) in order to simulate the silicon 

nitride mesh reactor. The predictions of the two extremes of the pseudo-homogeneous model 

are compared with experimental results, obtained from carbon dioxide absorption in 2M 

diethanolamine (DEA) solution and are shown in Figure 10.10. The model shows better 

agreement with the experimental results when the gas channel height is considered to be 840 

μm instead of 3210 μm. 16.8-20.4% of the carbon dioxide contained in the inlet stream was 

removed within 0.3-0.5 s experimental gas residence time. In addition it can be seen from the 

graph below that the percentage of CO2 removal decreases by increasing the gas flowrate. 

 

 

Figure 10. 10 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally and by the pseudo-homogeneous model for the two extreme cases. 

Mesh porosity=20.3%,     
/YNaOH=96.4, δL=25 μm, DEA 2M. 
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10.4.6 Influence of the type of the flow 

Experiments were performed with two different flow patterns co-current and counter current 

in order to observe the influence of the type of the flow on CO2 removal when 2M 

diethanolamine solution (DEA) was used. Figure 10.11 shows the performance of the mesh 

microreactor when the gas flow is counter or co-current to the liquid flow. As it can be seen 

from Figure 10.11 the operating flow pattern does not have an effect as both co-current and 

counter current flow patterns show the same results for CO2 removal under the conditions 

were investigated. This is due to the fact that the diethanolamine is in excess (25%), which 

maximise the CO2 driving force and this, in turn, minimises the effect of flow patterns on the 

CO2 removal efficiency. Hoff et al. [181] performed experiments and modelling of carbon 

dioxide absorption in aqueous alkaloamine solutions using membrane contactors and they 

pointed out that the concentrations changes in a single module are modest, thus making the 

difference between counter and co-current flow very small.  

 

 

Figure 10. 11 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally for two different flow patterns co-current and counter current. Mesh 

porosity=20.3%,     
/YDEA=96.4, δG=3210 μm, δL=25 μm, DEA 2M. 
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10.4.7 Influence of the type of the absorbent solution 

Experiments were performed with two different absorbent solutions 2M NaOH and 2M DEA 

in order to examine the effect on CO2 removal. Figure 10.12 shows the experimental 

prediction of CO2 removal using aqueous solutions of NaOH and DEA as a function of gas 

flowrate. As it can be seen from the graph below the CO2 removal efficiency is higher when 

NaOH is used for absorbent liquid. The reaction rate constant of CO2 and OH
-
 is higher than 

that of CO2 and DEA, as a result higher CO2 removal efficiency. Atchariyawut et al. [114] 

showed that in the case of chemical reaction, a higher CO2 flux was achieved using NaOH 

than MEA for CO2 absorption in hollow fiber membrane contactor for the reason mentioned 

above. 

 

 

Figure 10. 12 Amount of CO2 removed from the gas phase as a function of gas flowrate, 

obtained experimentally for two different types of solutions. Mesh porosity=20.3%, 

    
/YNaOH=96.4,     

/YDEA=96.4 δG=3210 μm, δL=25 μm, DEA 2M, NaOH 2M. 

0

5

10

15

20

25

100 150 200 250 300

%
C

O
2
 R

em
o
v
a
l 

E
ff

ic
ie

n
cy

 

Gas Flowrate (ml/min) 

NaOH 2M Exp.

DEA 2M Exp.



CO2 Absorption in Silicon Nitride Mesh contactor  

216  

 

10.4.8 Comparison between the fluxxion module with other 

contactors 

Figure 10.14 shows the comparison of the silicon nitride mesh reactor with the PTFE 

membrane single channel reactor (see chapter 5), the metallic mesh reactor (see chapter 4) and 

the CRL mesh reactor (see chapter 4) for CO2 absorption using aqueous solution of NaOH 

2M. Since the gas chamber height is not only the height inside the silicon wafer but also is 

defined from  an extra height form the nickel support (see figure 10.2), is more precise to 

compare with other module based on the modified residence times. Modified gas residence 

time is defined as the surface area of the mesh over inlet volumetric flowrate. Figure 10.13 

shows the shapes of the gas/liquid contact areas of the four modules used for the comparison. 

Table 10.2 shows the conditions used to calculate the modified residence times for the four 

different modules. As it can be seen from the Figure below silicon nitride mesh reactor has 

the best performance among the modules. CO2 removal efficiency is higher than the single 

channel PTFE membrane reactor for smaller modified residence times and it is around the 

same with the metallic mesh reactor for much lower modified residence times. Finally CRL 

mesh reactor has higher removal efficiency than the metallic mesh but it seems that, by 

extrapolating the data from Figure 10.14 for the silicon nitride mesh reactor, for the same 

modified residence time, CO2 removal efficiency of the CRL will be close to the silicon 

nitride mesh reactor. Silicon nitride mesh reactor has the best performance due to the very 

thin mesh (just 1μm thick), which makes the resistance to mass transfer very small compared 

to the other reactors. 

(a)  
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Figure 10. 13 Schematics of the gas/liquid contact areas for (a) metallic mesh microreactor 

(b) PTFE membrane microreactor (c) CRL microreactor (d) silicon nitride mesh microreacror. 
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Table 10. 2 Conditions used for calculations of the modified residence times for four different 

modules. 

Silicon nitride mesh Metallic mesh PTFE membrane CRL mesh 

    

Gas flow rate [cm
3
/s] 

Gas flow rate 

[cm
3
/s] 

Gas flow rate [cm
3
/s] 

Gas flow rate 

[cm
3
/s] 

 

4.11 5.90 4.11 0.75 

3.49 5.12 3.49 0.66 

3.08 4.45 3.08 0.59 

2.67 3.75 2.67 0.51 

    

Surface area [cm
2
] Surface area [cm

2
] Surface area [cm

2
] Surface area [cm

2
] 

4.34 39.42 4.93 5.23 

    

Modified gas 

residence time [s/cm] 

Modified gas 

residence time 

[s/cm] 

Modified gas residence 

time [s/cm] 

Modified gas 

residence time 

[s/cm] 

1.06 6.68 1.20 6.95 

1.25 7.70 1.41 7.89 

1.41 8.86 1.60 8.86 

1.63 10.51 1.85 10.25 
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Figure 10. 14 Amount of CO2 removed from the gas phase as a function of modified 

residence times, obtained experimentally for four different modules: silicon nitride mesh, 

PTFE membrane, metallic mesh  and CRL mesh, NaOH 2M. 

10.4.9 Comparison between silicon nitride mesh reactor 

and conventional packed contactors from literature based 

on height of transfer unit (HTU) 

Figure 10.15 shows the comparison between the silicon nitride mesh reactor with a 

conventional packed contactor from literature [182] for CO2 absorption in monoethanolamine 

solution (MEA). The HTU (height of transfer unit) was calculated from equation 10.2 [183] 

(for details see Appendix D): 

αK

u
HTU


                                                                                                                      (10.2)                                      

where u  is the velocity (m/s), K is the overall mass transfer (m/s) and  

 )/m(m
volumecontactor

areacontactgas/liquid
α 32  

0

10

20

30

40

50

60

70

80

0 5 10

%
 C

O
2
 r

em
o

v
a

l 

Modified gas residence time [s/cm] 

Silicon nitride mesh

reactor

Metallic mesh

PTFE membrane

CRL mesh



CO2 Absorption in Silicon Nitride Mesh contactor  

220  

 

The overall mass transfer coefficient can be calculated from equation 10.3 based on the liquid 

driving force as followed: 

lmg k

1

k

1

k

H

K

1
                                                                                        (10.3)                     

where lk  , mk , gk  are the liquid, mesh , gas mass transfer coefficients, and H the henry’s 

constant. 

 

Figure 10. 15 Comparison of the height of transfer unit (HTU) between silicon nitride mesh 

reactor and conventional packed columns from literature for CO2 absorption using MEA 

solution. 

Figure 10.15 shows the comparison of the silicon nitride mesh reactor with a packed column 

from literature [182] when two different packing materials were used. The internal diameter 

of the column is 20.32 cm and height is 173cm. When Tellerettes packing (1.9 x 5.1 x 2 cm 

polyethylene) was used gas and liquid velocities were 0.73cm/s and 1.271 cm/s respectively 

with temperature between 38-48
o
C using of 3.2M MEA as absorbent solution, with 2-10%vol 

of CO2 inlet concentration, while when  Rasching packing (2.54 x 2.54 x 0.16cm carbon steel) 

was used gas and liquid velocities were 0.11cm/s and 0.19cm/s respectively with temperature 

between 38-48 C, with 3.2 MEA solution and 2-10%vol of CO2 inlet concentration. In our 

case gas and liquid velocities were 1.73 cm/s and 2.3 cm/s respectively for T=20
o
C, with 2M 
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MEA solution and CO2 inlet concentration of 20%vol. As it can be seen from the Figure 

10.15 the HTU values for the silicon nitride mesh reactor are significantly lower (≈6-9 times) 

than those of a conventional packed contactor for CO2 absorption in MEA solution. This leads 

to lower specific area requirements and, hence, to a reduction in absorber investment costs 

compared to packed towers. 

10.5 Conclusions 

Carbon dioxide absorption was studied in aqueous solutions of NaOH and diethanolamines 

(DEA) in the silicon nitride mesh reactor. Significant absorption was observed with gas 

residence time around 0.5 s. In order to compare the experimental results with theory, and 

examine the influence of the two different heights of the gas chamber (see figure 10.2) on the 

reactor performance two extreme cases were implemented. For the NaOH simulations the 

model shows better agreement with the experimental results when the gas channel height 

considered to be 3210 μm instead of 840 μm. Furthermore, model predictions and 

experimental results showed that, the percentage of CO2 removal increases by increasing the 

liquid flowrate, due to the fact that the concentration of NaOH is kept higher as a result, the 

driving force for CO2 removal is increased. Simulations showed that the height of the liquid 

channel does not affect the CO2 removal efficiency. In addition the predictions of the two 

extremes of the pseudo-homogeneous model are compared with experimental results, when 

2M diethanolamine (DEA) solution was used as absorbent. The model showed better 

agreement with the experimental results when the gas channel height is considered to be 840 

μm instead of 3210 μm. Experiments showed that the operating flow pattern does not have an 

effect as both co-current and counter current flow patterns showed the same results for CO2 

removal under the conditions were investigated for CO2 absorption in DEA solution. This can 

be explained by the fact that the diethanolamine is in excess, which maximises the CO2 

driving force and this, in turn, minimises the effect of flow patterns on the CO2 removal 

efficiency. CO2 removal efficiency was higher when NaOH was used for absorbent liquid 

than DEA since the reaction rate constant of CO2 and OH
-
 is higher than that of CO2 and 

DEA. Comparison between the silicon nitride mesh reactor with the PTFE single channel 

reactor, the metallic mesh reactor, and the CRL reactor using NaOH as absorbent based on the 

modified residence times, showed that the silicon nitride mesh reactor had the best 
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performance among the four modules due to the very thin mesh of 1μm thick, which makes 

the resistance to mass transfer very small. Finally the HTU analysis showed that the HTU 

values for the silicon nitride mesh reactor are significantly lower (≈6-9 times) than those of a 

conventional packed contactor, which leads to a reduction in absorber investment costs 

compared to packed towers.  
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CHAPTER 11 

CONCLUSIONS & FUTURE WORK 

The objective of this work was to study experimentally and theoretically novel reactors, 

particularly ones manufactured through microtechnology, for carbon dioxide absorption in 

sodium hydroxide and amine solutions in order to evaluate, understand and improve their 

performance. For these reasons CO2 absorption in sodium hydroxide and amine solutions has 

been performed in a microstructured metallic mesh reactor, PTFE single channel membrane 

reactor and the High Efficiency Contactor with silicon nitride membrane. Various parameters 

such as gas and liquid flowrates, gas and liquid film thickness, membrane open area, type of 

the flow, type of absorbent liquid, concentration of the absorbent liquids, gas residence time, 

influence of ultrasound, influence of staggered herringbones and numbering up were 

investigated.  

In Chapter 3 3D CFD models were performed by varying in turn geometrical parameters such 

as: width of inlet and outlet flow distribution regions, different shapes of inlet and outlet flow 

distribution regions, shifting the channels in parallel, effect of the channels, in order to 

approach a design which allows the flow distribution to be as uniform as possible over the 

plate. Simulations performed on a plate without channels and the results have revealed that 

fluid bypass exists, leading to the formation of two stagnation regions with very low fluid 

velocities compared to the central part of the plate. As a result the use of channels over the 

microplate appears to be crucial when the fluid must be distributed over the plate with 

uniform velocity. Furthermore, it has been shown by decreasing the width of the inlet and 

outlet chamber the fluid tends to cover the top and the bottom channels with a higher velocity 

compared to the middle area of the plate. Finally the results showed that the shape of the inlet 
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and outlet manifolds is an important factor to take into consideration as it can significantly 

affect the quality of the flow distribution within the microchannels. 

In Chapter 4 CO2 absorption in sodium hydroxide solution was conducted in a metal 

microstructured mesh reactor. A two-dimensional model was formulated to simulate the 

reactor. Two variations of the model were implemented in order to compare the experimental 

results with theory. The first one, called “segregated model”, where the solid part of the 

perforated area is neglected and the open area of the mesh is utilised to modify the effective 

length of the reactor, and the second called “pseudo-homogeneous model”, where the mesh is 

considered as a homogeneous medium. Results showed that in less than 1.2 s gas residence 

time approximately 30% of the carbon dioxide was removed. The segregated model showed 

much better agreement with experimental data. Parametric studies showed that CO2 removal 

efficiency increases by increasing the liquid flowrate and decreasing the gas flowrate. The 

model indicated that the carbon dioxide is consumed within few microns from the gas-liquid 

interface, and the dominant resistance for mass transfer is located in the mesh because it is 

wetted by the liquid reactant. As a consequence, increasing the open area of the mesh from 

15% to 25% increased the CO2 removal efficiency significantly. Finally, experiments 

performed in the CRL mesh reactor. CO2 removal was increased using CRL reactor. This is 

due to the fact that in the CRL reactor the thickness of the mesh was 5 times thinner from the 

mesh used in the acrylic reactor, hence it has less resistance to mass transfer. 

In Chapter 5 in order to overcome the limitation of the extra resistance to the mass transfer in 

the metallic mesh, since the pores of the metallic mesh are liquid filled, PTFE membranes 

were used, which are considered as hydrophobic to aqueous solutions of amines. CO2 

absorption in amine solutions of monoethanolamine (MEA) and diethanolamine (DEA), 

which are widely used for industrial absorption processes, was performed in a membrane 

PTFE single channel microreactor. A two dimensional model was formulated to simulate the 

reactor, and experimental results were compared to model predictions in terms of CO2 

removal efficiency. The model showed very good agreement with experimental data. Both 

model and experimental results showed that, MEA solution absorbed more CO2 than DEA. 

Experimental and model results showed less CO2 removal efficiency with lower MEA 

concentration. Experiments were performed with larger contact area between gas and liquid. 

CO2 removal efficiency increased by increasing the contact area between gas and liquid. 
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In Chapter 6 CO2 absorption in NaOH solution was contacted in a membrane PTFE single 

channel microreactor. A two dimensional model with using wetted and non-wetted operation 

conditions was formulated to simulate the reactor, and experimental results were compared to 

model predictions in terms of CO2 removal efficiency. Experimental results showed better 

agreement with the wetted-mode operation conditions than the non-wetted conditions. An 

explanation to that might be the fact that the pores of the PTFE membrane are partially wetted 

(some pores are completely liquid filled and some pores are completely gas filled) and not 

100% gas filled. Experiments showed that the CO2 removal efficiency reduces with 

decreasing concentration of NaOH. Furthermore, experiments were performed with larger 

contact area between gas and liquid. CO2 removal efficiency increases by increasing the 

contact area between gas and liquid. Using NaOH as an absorbent liquid showed higher CO2 

removal efficiency than when DEA was used as an absorbent liquid. Comparison between the 

8 channel (PTFE) microreactor and mesh (metallic) microreactor showed much higher CO2 

removal efficiency for the PTFE membrane reactor than the mesh microreactor, due to less 

restriction to mass transfer when the PTFE membrane was used. In order to understand the 

effect of the pore-to pore distances on the PTFE membrane, on the performance of the 

microreactor, a single pore was simulated in order to examine the concentration profiles of 

CO2 and NaOH in the liquid side of the microreactor. Results showed that CO2 concentration 

exists in a distance of approximately 2-3 μm (x direction) adjacent to the pore walls, which 

indicates that the micropores in the membrane can be close together in a distance of more than 

2-3 μm without causing overlap of diffusion fields which might affect the performance of the 

reactor. Future investigations should focus on further understanding of partial wetting in the 

hydrophobic membranes which is not fully established by researchers so far, and particularly 

to examine the behaviour of the fluid meniscus into the non-wetting pores, since the structure 

of the pores inside the PTFE membrane is more complex than the pores in the metallic mesh 

which are straight.  

In Chapter 7, carbon dioxide absorption in sodium hydroxide was studied in the single 

channel PTFE membrane reactor with the use of staggered herringbones on the floor of the 

liquid channel of the reactor, in order to enhance mass transfer. Experiments were performed 

with the staggered herringbones engraved on the floor of the liquid channel of the acrylic 

reactor and by using silicon inserts with the staggered herringbones on them placed in the 

liquid side of the acrylic reactor. Results showed no improvement of CO2 removal efficiency 

compared with the flat channel when the acrylic or the silicon inserts herringbones were used. 
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A three-dimensional model with and without the use of staggered herringbones was employed 

which agreed with the experimental results that the staggered herringbones do not have any 

improvement on CO2 removal efficiency compared to a flat channel without the staggered 

herringbones. Based on Hatta number analysis a possible reason for that behaviour is due to 

the fact that enhancement factor is practically constant. For a fast second order reaction in 

liquid film with high concentration of NaOH the apparent rate equation is independent from 

lk  and hence, any change of mass transfer lk   achieved by staggered herringbones will not 

increase the apparent reaction rate and consequently will not increase the CO2 removal 

efficiency.  Furthermore, an analytical model for the stripping of acetone from water was 

formulated. Non improvement of the ratio 
in,Ac

out,Ac

C

C
 was observed with the use of staggered 

herringbones compared with the flat channel. Based on Candu Perez [147] work which 

showed that the highest stirring intensity therefore, higher convecting mass transfer was found 

close to the channel floor, it will be a good idea for future work to execute 3D simulations 

with the staggered herringbones as closer as possible to the liquid/membrane interface or even 

incorporate them in the membrane in order to examine the efficiency of stirring on mass 

transfer when we are close to the reaction zone between CO2 and NaOH.   

In Chapter 8 preliminary investigation of the effect of ultrasound on carbon dioxide 

absorption in sodium hydroxide solution is presented when the single channel PTFE 

membrane reactor was used. The experimental results obtained from the use of ultrasound did 

not have any effect on mass transfer compared to the experimental results without the use of 

ultrasound. Furthermore, experiments were performed with different orientations of the 

membrane reactor inside the ultrasonic bath, in order to achieve streaming in the liquid side of 

the membrane reactor. No improvement was observed when experiments were performed 

with different orientations of the reactor. Further investigation and understanding of the 

acoustic field inside the ultrasonic cleaner is worth carrying out in order to achieve acoustic 

streaming in the liquid side of the membrane reactor. Micro PIV (particle image velocimetry) 

could be used to observe the velocity profile inside the liquid side of the reactor in order to 

understand if the ultrasound creates the appropriate streaming which will increase the mass 

transfer. 

In Chapter 9 in order to increase throughput carbon dioxide absorption in sodium hydroxide 

solution was performed in the metallic mesh scale out microreactor (4 mesh), and its 

performance was compared with the metallic mesh microreactor (1 mesh). CO2 removal 
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efficiency for the metallic mesh scale out reactor was significantly lower than the metallic 

mesh reactor. This might be caused by uneven flow distribution to each plate, despite the fact 

that CFD simulations showed even flow distribution to every plate of the scale out reactor or 

by breakthrough of liquid in the gas phase (stagnant liquid) in the second or in the third plate 

where visualisation was not possible. In order to control better the pressure drop along each 

plate of the scale out reactor and keep it the same inserts with different channel widths were 

installed in every inlet of each plate (gas and liquid side) of the scale out reactor. Despite the 

new modification on the metallic mesh scale out reactor, CO2 removal was significantly less 

than the metallic mesh reactor. For better control of each plate a good idea, is the installation 

of one metering valve in each plate (at each liquid outlet) hence, breakthrough and 

maldistribution in each plate can be avoided. 

In Chapter 10 the silicon nitride mesh contactor developed by Bayer Technology Services and 

FluXXion was used for CO2 absorption in aqueous solutions of NaOH and DEA. Two 

extreme cases were implemented for the “pseudo-homogeneous model”, since the gas channel 

height was more complicated than the suggested height. Model predictions and experimental 

results when NaOH was used as absorbent showed that the percentage of CO2 removal 

increases by increasing the liquid flowrate. Experiments showed that the operating flow 

patterns become unimportant as both co-current and counter current flow patterns showed the 

same results for CO2 removal under the conditions investigated for CO2 absorption in DEA 

solution. When NaOH was used as absorbent liquid, CO2 removal efficiency was higher since 

the reaction rate constant of CO2 and OH
-
 is higher than that of CO2 and DEA. The silicon 

nitride mesh contactor showed better performance (regarding CO2 removal efficiency) than 

the PTFE single channel reactor, the metallic mesh reactor reactor and the CRL reactor, due to 

the very thin mesh (1 μm thick), which makes the resistance to mass transfer very small. 

Finally the calculated HTU values for the silicon nitride mesh contactor are significantly 

lower (≈6-9 times) than those of a conventional packed contactor, resulting to lower 

investment costs compared to packed towers. Future investigations should focus on a more 

detailed model which can describe more precisely the gas height of the module, and 

particularly to examine what is the influence of the gas channels (located between the support 

structure of the silicon sieve and the membrane) in the performance of the module. 

Physical and chemical characteristics of small micro scale spaces, namely short diffusion 

length, large specific surface area can be effective for improvement of mass and heat transfer 
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processes. As a result, precise control of reaction conditions becomes possible in 

microreactors and potentially leads to higher yields.  In general these advantages have been 

clearly demonstrated. Miniaturized continuous flow reactors are expected to replace some 

large batch-type reactors commonly used in conventional chemical plants. Scale-up issues 

have not received as much development attention so far. The transition from lab-scale to 

industrial scale chemical processing will probably gain more attention in the coming years. 
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APPENDIX  A 

 

STANDARD OPERATING 

PROCEDURES 

Operation of CO2 Absorption with Microstructure 

Membrane Reactor Set-up 
 

 

1.0  Introduction 

1.1  For information regarding the operations of the instruments refer to the 

appropriate manuals 

Mass Flow Controllers: BROOKS 5850. 

Gas Chromatograph: SHIMADZU GC-14B. 

4 Channel Readout: 0154. 

HPLC Pump: Waters 510. 

1.2  Refer to figure of the set-up (Figure A.1). 

2.0  Pre-operation Checks 
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2.1  Check electrical power of GC, extract fan, CO2 alarm, and mass flow 

controllers (MFCs). 

2.2  The extract fan of fume cupboard and CO2 alarm must be on before 

opening the gas cylinders.  

2.3  Calibration of the MFCs at least once a month.  

2.4  Calibration of the GC every month. 

2.5  Calibration of the HPLC pump (Waters 510) every month. 

3.0  Start-up and Normal Operation 

3.1  Make sure GC is ready for analysis. 

3.2  Set MFCs at desired flow rates. 

3.3  Set HPLC pump (Waters 510) at desired flow rates. 

3.4  Make sure GC and integrator are ready for the analysis. 

3.5  Open CO2/N2 gas cylinder (Set the outlet pressure at 0.5 bar). 

3.6  Switch the MFCs on. 

3.7  Switch the HPLC pump (Waters 510) on. 

3.8  Check for leaks around the connections of the reactor and around the gas 

cylinder. 

3.9  Check the concentration of CO2 with the GC. 

3.10  Clean the reactor with D.I water. 

3.11  Fill the reactor with ethanol (70%wt) and keep the ethanol inside the 

reactor until the next experiment. 
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3.12  The MFCs and the HPLC pump are connected with filters to avoid any 

particles to get in the reactor and block the membrane’s pores. 

3.13  Priming of the reactor 

3.14  Close the on-off valves 1&2 at the gas inlet/outlet. 

3.15  Set HPLC pump (Waters 510) at desired flow rates 

3.16  Fill the liquid and the gas phase with ethanol. 

3.17  Set MFCs at desired flow rates. 

3.18  Begin to turn on the on-off valves 1&2 slowly. 

3.19  Wait until you have the desire pressure deference between the gas and the 

liquid phase ( PGin=220, PGout  220, PLin =160, PLout=110), and you 

have complete separation of the two phases. 

3.20  3.1.8     After a successful separation with ethanol you repeat the priming 

procedure twice, once using D.I water (to clean the reactor from ethanol) 

and the second time with NaOH (for CO2 absorption). 

4.0 Shut Down 

4.1.  Switch off TCD current.  

4.2.  Set GC oven to 30
o
C. 

4.3.  Wait for temperature to cool down. 

4.4.  Switch off GC. 

4.5.  Turn off the cylinders (CO2/N2, He). 

4.6.  Turn the MFC of N2 off. 

4.7.  Turn the HPLC pump (Waters 510) off. 
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4.8.  Open the purge valve from the cylinder (CO2/N2). 

4.9.  Close the purge valve when the regulator is zero. 

4.10.  Turn regulator knob fully anticlockwise.  

5.0 Emergency Shut Down 

5.1 Close all gas cylinders. 

5.2 Switch all electric power off at the wall. 

5.3 Inform people in the lab, supervisor and / or safety officer about the 

emergency.  

6.0 Safety Measures 

6.1 People enter the lab must wear protective equipment such as: labcoat, 

goggles and gloves. 

6.2 In case of contact with the chemicals (NaOH, Amines solutions) (MSDS 

are kept in 303B Combustion lab). 

6.3 Eye contact- Irrigate with eye wash for at least 10 minutes, seek medical 

attention. 

6.4 Skin contact- Drench skin with water. Seek medical attention unless 

contact  has been slight. 

6.5 Ingestion- Wash mouth thoroughly, and drink plenty of water, seek 

medical  advice. 

6.6 Eyes can be protected by wearing protective goggles during the 

experiment.     

7.0       Additional Information 
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7.1 Schematic of the CO2 Absorption with Fluxxion Membrane Reactor Set-

up. 

 

Figure A. 1 Schematic of the CO2 Absorption with the Fluxxion Membrane Reactor 

Set-up. 

Operation of Gas Chromatograph: SHIMADZU GC-14B 

1.0  Pre-operation Checks 

1.1  Calibration of the GC every month. 

2.0  Start-up and Normal Operation 

2.1  Open CO2/N2 gas cylinder (Set the outlet pressure at 0.5 bar). 
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2.2  Open Helium gas cylinder (Set the outlet pressure at 6 bar). 

2.3  Turn power on for the GC. 

2.4  Turn power on for the integrator. 

2.5  Set GC (P) pressure at 600 KPa. 

2.6  Set GC (M) pressure at 280 KPa. 

2.7  Turn the heater on. 

2.8  Set GC column temperature at 190
 o
C. 

2.9  Set GC gas sampling valve temperature (AUX2) at 50
 o
C. 

2.10  Set GC detector temperature at 200
 o
C . 

2.11  Switch on TCD current. 

2.12  Set GC injector temperature at 200
 o
C. 

2.13  Set GC detector current at 35 mA. 

2.14  Leave the GC and the detector signal on the integrator to stabilize for 1 

hr. 

2.15  Check the gas sampling valve to be anticlockwise. 

2.16  Press the start1 button from the GC integrator and turn the sampling 

valve clockwise and wait for ten seconds. 

2.17  Turn the sampling valve anticlockwise. 

2.18  Check the concentration of CO2 with the GC and press stop1 on the 

integrator to finish.           

3.0  Shut Down 
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3.1 Switch off TCD current.  

3.2 Set GC oven to 30
o
C. 

3.3 Wait for temperature to cool down. 

3.4 Switch off heater. 

3.5 Switch off GC. 

3.6 Turn off the cylinders (CO2/N2, He). 

5.0 Emergency Shut Down 

4.1 Close all gas cylinders. 

4.2 Switch all electric power off at the wall. 

Inform people in the lab, supervisor and / or safety officer about the emergency. 

Calibration of the GC 

Two different concentrations of 20:80 CO2:N2 (vol%) and 100 (vol%) CO2 were analyzed in 

the GC. Three measurements for each concentration of (20:80, 100%) were taken and after 

averaging them a graph (Figure A.1) was plotted. A linear relation between the peak area and 

the concentration of CO2 is shown in Figure A.1. The calibration curve will be used to 

calculate the (vol%) concentration of CO2 in the outlet of the reactor based on the peak areas.  
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Figure A. 2 Calibration curve of CO2 

 

 

Figure A. 3 A typical GC chromatograph for 20:80 CO2:N2 
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APPENDIX B 
 

FABRICATION METHOD FOR 

STAGGERED HERRINGBONES 

(WORK BY LOUIS LAM) 

Fabrication 

Silicon inserts with the staggered herringbones on them used in chapter four were fabricated 

using conventional semi-conductor processing techniques. In brief, purchased silicon wafers 

(n-type, <100>, 525um thick) were pre-cleaned by Piranha solution (50vol% H2SO4 and 

50vol% H2O2) at 100
o
C for 15 minutes. After rinsing by de-ionised water and drying at 200

o
C 

for 10 minutes, a thick photoresist layer (Rohm and Haas, SPR-220-7) was spin-coated on the 

wafer at 4000rpm, followed by soft-baking at 110
o
C for 90 seconds. The designed 

herringbones structures on a photomask were transferred to the photoresist layer using a 

contact aligner (Quintel Q4000-6). The exposure energy for the photoresist was 470mJ/cm
2
, 

which was approximately equivalent to exposure of 300nm UV light for 36 seconds. The 

photoresist was then aged for 45 minutes at room conditions to reinforce the adhesion of 

photoresist on the silicon surface. The patterns were developed by immersing the wafers into 

a standard photoresist developer (Shipley Microposit MF-26A), for 90 seconds. After 

thorough rinsing, a final post-baking process at 110
o
C for 90 seconds was carried out. 
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The patterned wafers were etched by deep reactive ion etching (STS ASE
®
). The etched depth 

of the micro-channels was measured by surface profiler (Veeco Dektak 8). 

 

P hotolithography

P re-
cleaned S i 
wafer

Deep R eactive 
Ion E tching

P hotores is t

 
 

Figure B. 1 Microfabrication procedure of silicon inserts 
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APPENDIX C 

DESIGN EQUATIONS FOR CO-

CURRENT FLOW MESH 

CONTACTOR 

A detailed derivation of eq. (1) is shown below:  

The analysis below was made for the system represented in figure 1-B and is based on the 

assumptions: 

 Isothermal and isobaric conditions. 

 Gas flowrate and liquid flowrate are constant. 

 The mixtures are considered to be dilute. 

 Mass transfer coefficients are constant.  
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Figure C. 1 Schematic of a membrane gas-liquid contactor with co-current flow. 

First the following parameters are defined: 
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The flux is 
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In general, the equation for the mass transfer is expressed as: 

                                                                           (1) 

Defining a fictitious mole fraction in the gas phase that is in equilibrium with the liquid phase: 

 y*= m                                                                                                                                     (2) 

where m is the solubility of acetone  

              y                                           (3) 

       y              x              (4) 

Considering that the moles of acetone leaving the liquid phase is the same as those taken up 

by the gas phase: 

                                                (5) 

 For the gas phase 

This amount is also the same as the flux of acetone through the membrane in the 

corresponding volume. 

                                   (6) 

                                     (7) 

                                  (8) 

Using eq. (2) and (4) 
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                                                       (10) 

Now this relationship can be integrated: 

∫   
 

 
 

 

    
 ∫
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     because at the inlet in the gas phase there is no acetone 



Design Equations for Co-current Flow Mesh Contactor  

260  

 

∫   
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 The same relationship can be developed for the liquid 
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Substituting in eq. (4)                 

where    
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Now this relationship can be integrated: 
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(19) 

Where x1 is the liquid phase inlet mole fraction and x2 is the outlet liquid phase mole fraction 
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Now we can analyze eq. (11):    ∫   
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From the mole balance between z=0 and z: 
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Defining   
m  

L  A
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∫
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Next we calculate the integral 
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Substituting    
   

      

 
 

       
     (  

   

  )   

    
  

 

       
           

 

      

    
                                                  

(26) 

From the molar balance eq. (20)         
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The same can be done for the liquid starting from eq. (19):  ∫   
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From the molar balance eq. (20): 

  
  

 
    

  

 
    

Substituting it into the starting equation: 
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                            (28) 

Defining    
L 

m  
 B  

∫
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The integral is 

                                                                                  (31) 

This has to be calculated between x2 and x1: 

                                                               (32) 

So the result is: 



Design Equations for Co-current Flow Mesh Contactor  

262  

 

 
 

   
   

             

             
  

 

   
   

             

  
                                       (33) 

Substituting    
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m  
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From the molar balance eq.(20)    y  
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So now we can come back to the expression of the contactor length in eq. (11) we substitute 

eq. (26): 

  
 

    
 [ 

 

       
       

    
]  

  

    
   

 

  
 

  

   (
       

    
)                                                  

(36) 

To find the exit concentration we can substitute eq. (32) in eq. (19): 
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Rearranging this equation: 
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Taking the exponential of both terms: 
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                                      (39) 

Solving for 
  

  
  and substituting B: 
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Now multiplying top and bottom of the last fraction with 
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Using: 
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we calculate 
   

   

   

  
 

          
         

 
         

     
    

     

 
  

  
 

 

  
   

Introducing the total mass transfer coefficient in terms of concentration:    
  

      
 

Now remember that   
  

 
 , where        , the term  

    

    can be calculated: 

    

  
 

          
   

     
    

     

 
 

  
      

  

     
 

     

    
   

Then equation (40) becomes 
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where: 

   
  

  
 

 

  
  

  
     

    
  

and    is the height of the liquid channel, τ  the liquid residence time and   the contactor 

length. 
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Notation 

      gas flow rate (ml/min) 

      liquid flow rate (ml/min) 

   
        

 

        
 

 
Henry constant (-) 

   height of the liquid channel (m) 

   
 l

Fl

 
liquid residence time (s) 

     cross sectional area of the contactor (m
2
) 

a surface of the interface per unit volume of the reactor (1/m) 

     height of the contactor (m) 

KT  total mass transfer coefficient (m/s) 

     Length of contactor (m) 

     molar mass (g/mol) 

  ideal gas constant (l Pa/K mol) 

  temperature (K) 

  width of contactor (m) 

      density of solution (Kg/m
3
) 

  gas phase mole fraction 

  liquid phase mole fraction 
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Subscript 

  inlet 

  outlet 

   gas 

   liquid 

  interface 
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APPENDIX D 

HTU CALCULATIONS 

Parameters and equations used for HTU determination in silicon 

nitride mesh contactor 

Membrane surface= 4.34cm
2
  

  = 0.321 cm 

              

             

ε  0 203  

τ  1  

L=0.9cm 

W= 4.8cm 

H= 0.8314 (-) 
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