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“For when you are put into the Vortex you are given just one momentary glimpse

of the entire unimaginable infinity of creation, and somewhere in it a tiny little

marker, a microscopic dot on a microscopic dot, which says ‘You are here’. ”

−Douglas Adams, The restaurant at the end of the universe
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Abstract

The effect of the finite Rossby radius on vortex motion is examined in a two-

dimensional inviscid incompressible fluid, assuming quasigeostrophic dynamics in a

single layer of fluid with reduced gravity for two geophysically significant problems:

a vortex near a gap in a wall and a pair of steady translating vortices.

For the motion of a point vortex near a gap in an infinite barrier, a key parameter

determining the behaviour of the vortex is a, the ratio of the Rossby radius of

deformation and the half-width of the gap. For large a, depending on the location

of the vortex, a vortex sheet is placed either over the gap (gap method) or over the

two semi-infinite barriers (barrier method). When the vortex sheet is over the gap,

numerical inaccuracies are encountered when the vortex is close to the gap, therefore

the conjugate (barrier) method is used. Both integral equations contain singularities

which can be de-singularised and solved iteratively using the known exact solution

in rigid-lid limit, i.e. a → ∞. For large a, there is only slight deviation from the

analytical (a→ ∞) trajectories.

For smaller a, the integral equation from the conjugate method is solved by

numerically approximating the integral equation into a system of linear equations

and solving using matrix inversion. The integral equation is further simplified by

splitting into even and odd parts, thus reducing the problem to the half plane. It

is also found that decreasing a, increases the tendency for vortices to pass through

the gap.

Background flows influence vortex trajectories and are incorporated by modifying

the conjugate method integral equation. These equations are solved using the matrix

method. Streamlines for uniform symmetric and anti-symmetric (which has no

analogy in the rigid-lid limit) flow through the gap are computed and their effect

on the vortex trajectories are found.

The motion of finite area patches of constant vorticity near a gap in a wall is

computed using the matrix method in conjunction with contour dynamics. For
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fixed a, vortex patches are normalised to travel at the same speed as a point vortex.

The normalisation is non-trivial and depends nonlinearly on the patch area and a.

In the rigid-lid limit, it reduces to the ‘usual’ normalisation based on the patch

circulation. For near circular patches, the trajectory of the centroid of the patches

also follows the trajectory of the point vortices. When the patch becomes distorted

the agreement is not so close. The splitting and joining of contours is also computed

using contour surgery and some examples showing this sudden change of behaviour

is presented.

The next problem determines the effect of the Rossby radius of deformation, on

steady translating vortex pairs or, equivalently, a patch in steady translation near

a wall. The velocities for the normalised vortex patch are compared to the velocity

of a point vortex located at the centroid of the patch. It is found there is good

agreement for a range of patch sizes. When the patches are sufficiently far from

the wall, decreasing the Rossby radius makes the steadily translating shapes more

circular. However, when close to the wall, the effect of the Rossby radii results in

patches deforming greatly, forming long slug-like shapes. These are shown to be

stable using a time dependent contour dynamics code. Background flows are also

incorporated and give different vortical shapes for finite Rossby radii flows, ranging

from slug-like to tear-drop in shape.
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Chapter 1

Introduction

1.1 Background and motivation

The systematic study of fluid mechanics has its origins in ancient Greece. Before his

deat in 212 B.C., Archimedes famously discovered his eponymous principle relating

the displacement of fluid to buoyancy. Before the discovery of calculus, hydrostatics

was studied widely leading to the production of tools such as the hydraulic press and

the forcing pump. Euler (1757) was one of the first to extend the static principles

of fluid mechanics to dynamic ones by deriving equations of motion for an ideal

fluid based on Newton’s laws using calculus, and the formulation of these equations

allowed fluid dynamics to become a key field of applied mathematics.

Helmholtz (1858) was the the first to define the concept of a vortex filament

in his seminal work, ‘Über integrale der hydrodynamischen Gleichungen, welche den

wirbelbewegungen entsprechen’. The translation of this paper by Tait (1867) inspired

Kelvin to develop his theory of vortex atoms (Kelvin, 1867) and more importantly

his eponymous circulation theorem (Kelvin, 1869) which proves that circulation is

conserved around a material contour within an ideal fluid. By the early twentieth

century the subject of vortex dynamics had become an important subfield of fluid

dynamics owing to its many applications in physics, engineering and mathematics.
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As famously noted by Küchemann (1965), vortices are the ‘sinews and muscles of

fluid motions’.

The scope of this work has its basis in the realm of geophysical fluid dynamics,

in particular vortex-vortex and vortex-boundary interactions. It is well known that

instabilities present in ocean currents cause mesoscale (i.e. 20∼200 km in width)

eddies to be shed. These eddies are intense localised flows which rotate about

the vertical (i.e. gravitational) axis, and are roughly circular. They are stable

structures able to traverse large distances and in some cases, have been tracked for

several years. They contribute significantly to the global transport and mixing of

properties such as momentum, heat and salt. During their lifetime, ocean eddies

frequently encounter topographic features such as island chains, narrow straits and

gaps between ocean basins. Their ability to influence the large scale ocean circulation

and hence the climate system, means that understanding vortex motion, particularly

in the presence of topographic features, is of vital importance.

In such systems, a low Mach number is assumed as well as a high Reynolds

number. Hence, the fluid in the mathematical model is assumed to be incompressible

and inviscid. Furthermore, two dimensional flows are studied in particular as the

vertical displacements in the fluid are considered negligible with respect to the the

horizontal displacements.

This chapter presents a derivation of the fundamental equations considered in

the thesis as well as a discussion of the related point vortex solutions.

1.2 Model of the ocean

The problems considered in the following chapters investigate the two dimensional

motion of vortices in an ideal geophysical fluid. A reduced gravity shallow water

system is used to model the ocean. The top layer is considered to be the active

shallow layer, where the vortex resides and it is separated from the deep stagnant
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ocean by the thermocline. The thermocline is the thin but distinct transistional

layer where the temperature changes abruptly between the upper active layer and

the lower stagnant layer. Within the deep stagnant layer, the fluid has greater

density and does not interact dynamically with the top layer. Equivalently, the

active layer could represent a thin dense layer at the bottom of the ocean above

which lies a stagnant upper ocean.

Small oscillations in the free surface (the air-sea interface) are allowed. By scaling

the shallow water equations and expanding in a small parameter, the Rossby number

R0 (to be defined later) which measures the relative importance of inertial effects

to rotational effects, a quasigeostrophic system is devised. This is one of the most

widely used dynamical models for the theoretical study of the atmosphere and ocean

(see Vallis 2006). Although these approximations simplify the dynamics of the ocean,

the results obtained give insight into the effects of the Rossby radius of deformation

(to be defined) on the dynamics of ocean vortices. The derivation of reduced gravity

quasigeostrophic potential vorticity equation system is given in the next section.

1.2.1 Reduced gravity shallow water equations

Consider a shallow top layer, with density ρ = ρ0 and free upper surface given

by z = h0(x, y, t) above a layer of deep, stagnant (i.e. velocity u = 0) fluid with

a greater density ρ = ρ1. The interface between the two layers is described by

z = h1(x, y, t). The system experiences constant rotation about the k axis,

Ω =
f

2
k, (1.1)

where f is the (constant) Coriolis parameter (which is the frequency of the Earth’s

rotation) and the unit vector k is in the direction against gravity. The depth of the

undisturbed upper layer is D. A typical horizontal length scale is given by L. A

schematic of the system is shown in Fig. 1.1.
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Ω

z

η

L

g

h(x, y, t)

u = 0 ρ = ρ1

ρ = ρ0

z = h0

D

z = −h1

x −→
(y-axis into the page)

p = p0

p = p1

Figure 1.1: Two layer system. Top layer is shallow and active. The bottom layer is
deep and stagnant.

The momentum equation of the top layer is given by

Du

Dt
+ fk × u = − 1

ρ0
∇p0 − Φ + F, (1.2)

where u is the velocity field, p0(x, y, z, t) is the pressure in the top layer, Φ is the

gravitational potential per unit mass, F represents other external forces and the

operator D/Dt is given by

D

Dt
=

∂

∂t
+ u · ∇. (1.3)

For our purposes, F = 0, i.e. the effects of friction and dissipation are ignored,

this being a reasonable approximation for the large length scales involved in oceanic

mesoscale vortex dynamics. In the ocean the vertical scale of the fluid is small com-

pared to the horizontal scale (D ≪ L), so we can make the hydrostatic assumption

i.e. the vertical pressure gradient is balanced by the gravitational force. Thus, we

can calculate the pressure in the active layer:

p0 = ρ0g(h0 − z), h1 ≤ z ≤ h0 (1.4)
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and for the bottom layer, due to the added weight of the top layer,

p1 = ρ0g(h0 − h1) + ρ1g(h1 − z), z ≤ h1. (1.5)

As the bottom layer is quiescent, the horizontal pressure gradient is zero. That is,

at any given value of z, p1 must be independent of x and y. It follows that there is

a relation between the free-surface of the upper layer, at z = h0, and the interface

between the two layers, at z = h1, namely

ρ0gh0 = −ρ0g
′h1 + constant, (1.6)

where g′ is the reduced gravity given by g′ = g(ρ1 − ρ0)/ρ0 ≪ g, since typically in

the ocean ∆ρ = ρ1 − ρ0 ≪ ρ0. Note that the fact g′ ≪ g implies that displacements

in the free surface z = h0(x, y, t) are considerably smaller than the displacements

in the interface z = h1(x, y, t) between the two layers. The horizontal momentum

equation of the shallow layer can thus be written,

Du

Dt
+ fk × u = g′∇h1, (1.7)

where u = (u, v) and h1 = h1(x, y).

Also, the fluid is incompressible, i.e.

∇ · u = 0. (1.8)

As the horizontal velocities are independent of z, (1.8) can be integrated with respect

to z in the shallow layer, giving

[(

∂u

∂x
+
∂v

∂y

)

z

]z=h0

z=h1

= − [w(x, y, z, t)]z=h0

z=h1
, (1.9)
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As fluid does not pass through the interfaces, we have

w(x, y, h0, t) =
Dh0

Dt
, w(x, y, h1, t) =

Dh1

Dt
. (1.10)

Hence, the mass conservation equation (1.8) can be written as

D

Dt
(h0 − h1) +

(

∂u

∂x
+
∂v

∂y

)

(h0 − h1) = 0. (1.11)

The component form of (1.7) together with (1.11) are the reduced gravity shallow

water equations,

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
− fv = g′

∂h1

∂x
, (1.12)

∂v

∂t
+ u

∂u

∂x
+ v

∂v

∂y
+ fu = g′

∂h1

∂y
, (1.13)

1

h

Dh

Dt
+

(

∂u

∂x
+
∂v

∂y

)

= 0, (1.14)

where

h = h0 − h1. (1.15)

1.3 Quasigeostrophic scaling

Note that as the deviations in the free surface height are small compared to the

deviation of the interface between the shallow layer and the deep layer, then h ∼

−h1, and let h = D + η where, η is the deviation from the mean position of the

interface.

We non-dimensionalise the reduced gravity momentum equations (1.12-1.13) us-

ing the following scales of length, time, velocity and depth.

x = Lx̂, y = Lŷ, t = T t̂, u = Uû, v = Uv̂, η = N η̂, (1.16)
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where scale factors, L, T, U and N are the scales of magnitude of the system.

After substituting (1.16) into (1.12) and (1.13), the equations are divided through

by fU to give,

1

fT

∂û

∂t̂
+

U

fL

[

û
∂û

∂x̂
+ v̂

∂û

∂ŷ

]

− v̂ = − g′N
fUL

∂η̂

∂x̂
, (1.17)

1

fT

∂v̂

∂t̂
+

U

fL

[

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

]

+ û = − g′N
fUL

∂η̂

∂ŷ
. (1.18)

The mass continuity equation (1.14) is written

ηt + u · ∇η + (D + η)∇ · u = 0, (1.19)

which on rescaling according to (1.16) gives

N
T

∂η̂

∂t̂
+
UN
L

û · ∇η̂ +
UD

L

(

1 +
N
D
η

)

∇̂ · û = 0, (1.20)

which is divided through by D to give

N
D

[

1

T

∂η̂

∂t̂
+
U

L
û · ∇̂η̂

]

+
U

L

(

1 +
N
D
η̂

)

∇̂ · û = 0. (1.21)

We assume that time scales advectively, i.e. T = L/U , and (1.21) becomes

N
D

[

∂η̂

∂t̂
+ û · ∇̂η̂

]

+

(

1 +
N
D
η̂

)

∇̂ · û = 0. (1.22)

We can also define the Rossby number, R0, such that

R0 =
U

fL
=

1

fT
. (1.23)

N scales such that the pressure gradient term balances out the Coriolis term in

the horizontal momentum equations (i.e. geostrophic balance to leading order, this
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being the dominant force balance in mesoscale ocean dynamics)

N
D

=
fUL

g′D
=

U

fL

f 2L2

g′D
= R0

(

L

Ld

)2

, (1.24)

where Ld is the Rossby radius of deformation,

Ld =

√
g′D

f
. (1.25)

Let F = (L/Ld)
2 so (1.17-1.18) and (1.21) can be written as,

R0
∂û

∂t̂
+R0

[

û
∂û

∂x̂
+ v̂

∂û

∂ŷ

]

− v̂ = −∂η̂
∂x̂
, (1.26)

R0
∂v̂

∂t̂
+R0

[

û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

]

+ û = −∂η̂
∂ŷ
, (1.27)

R0F
Dη̂

Dt̂
+ [1 +R0F η̂]

[

∂û

∂x̂
+
∂v̂

∂ŷ

]

= 0. (1.28)

Typically for ocean vortices, F = O(1) and R0 lies in the range 0.1 to 0.3 and

this is exploited by expanding û, v̂ and η̂ as power series in R0

û =
∞
∑

i=0

Ri
0ûi, v̂ =

∞
∑

i=0

Ri
0v̂i, η̂ =

∞
∑

i=0

Ri
0η̂i. (1.29)

Substituting (1.29) into (1.17) and (1.28) gives the leading order momentum

balanced,

v̂0 =
∂η̂0

∂x̂
, û0 = −∂η̂0

∂ŷ
, (1.30)

i.e. the geostrophic balance as expected.

To leading order, the mass continuity equation (1.28) gives the divergence of the

first order velocity terms to be zero,

∂û0

∂x̂
+
∂v̂0

∂ŷ
= 0. (1.31)

This is automatically satisfied by (1.30).
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To O(R0), the momentum equations give,

∂û0

∂t̂
+ û0

∂û0

∂x̂
+ v̂0

∂û0

∂ŷ
− v̂1 = −∂η̂1

∂x̂
, (1.32)

∂v̂0

∂t̂
+ û0

∂v̂0

∂x̂
+ v̂0

∂v̂0

∂ŷ
+ û1 = −∂η̂1

∂ŷ
, (1.33)

and by differentiating (1.32) and (1.33) with respect to ŷ and x̂ respectively, and

taking the difference of the two, the following is obtained,

∂ζ̂0

∂t̂
+ û0

∂ζ̂0
∂x̂

+ v̂0
∂ζ̂0
∂ŷ

= −
(

∂û1

∂x̂
+
∂v̂1

∂ŷ

)

, (1.34)

where the vorticity of the system is,

ζ̂0 =
∂v̂0

∂x̂
− ∂û0

∂ŷ0
. (1.35)

The O(R0) of the mass continuity equation (1.28) gives,

F
∂η̂0

∂t̂
+ F

[

û0
∂η̂0

∂x̂
+ v̂0

∂η̂0

∂ŷ

]

+
∂û1

∂x̂
+
∂v̂1

∂ŷ
= 0, (1.36)

which can then be substituted into (1.34) to give,

∂ζ̂0

∂t̂
+ û0

∂ζ̂0
∂x̂

+ v̂0
∂ζ̂0
∂ŷ

= F

[

∂η̂0

∂t̂
+ û0

∂η̂0

∂x̂
+ v̂0

∂η̂0

∂ŷ

]

, (1.37)

which can be written in terms of the horizontal operator, D/Dt, as

D

Dt̂

[

ζ̂0 − F η̂0

]

= 0. (1.38)

The leading order velocity field, u = û0î+ v̂0ĵ can be derived from a streamfunc-

tion, ψ, such that,

u = k̂ ×∇ψ0, (1.39)
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where k̂ is the unit vector in the vertical direction. From (1.30) and (1.39)

ψ̂0 = η̂0, ∇̂2ψ̂0 = ζ̂0. (1.40)

Now, (1.38) can be expressed in terms of the streamfunction as

D

Dt̂

[

∇̂2ψ̂0 − Fψ̂0

]

= 0. (1.41)

On re-dimensionalisation (1.41) becomes

D

Dt

[

∇2ψ − 1

L2
d

ψ

]

= 0, (1.42)

and for convenience below we define the quantity q,

q = ∇2ψ − 1

L2
d

ψ, (1.43)

to be the reduced gravity quasigeostrophic potential vorticity and (1.42) expresses

its conservation.

For the vortical motion studied in this thesis we will examine anomalies of quasi-

geostrophic potential vorticity (1.43). One immediate observation of (1.43) is noted:

as Ld → ∞ (i.e. infinite deformation radius or rigid-lid case), q → ∇2ψ, i.e. the

‘usual’ vorticity in the two dimensional Euler equations.

1.3.1 The quasigeostrophic point vortex

The quasigeostrophic point vortex model is invaluable when considering theoretical

two dimensional vortex dynamics. The point vortex is the result of a limiting process

by which the vorticity distribution q(x, y, t) is shrunk to a point. There is therefore

infinite vorticity at a single point in the plane. Formally, the streamfunction for a

quasigeostrophic point vortex of circulation κ is obtained from the inhomogeneous
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partial differential equation

q(x, y) = ∇2ψ − 1

L2
d

ψ = κδ(x− xv)δ(y − yv), (1.44)

where (xv, yv) is the location of the vortex and δ(x− xv) is the delta function.

In polar coordinates, (r = rr̂), (1.44) may be re-written as,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− 1

L2
d

ψ = κδ(r − rv), (1.45)

where rv is the location of the vortex in polar coordinates. Assuming, rv = 0,

the streamfunction can be the written as the linear combination of modified Bessel

functions i.e.

ψ(r) = κ (AK0(r/Ld) +BI0(r/Ld)) . (1.46)

For an isolated vortex we demand, ψ(r) → 0 as r → ∞, B = 0 since I0(r/Ld) → ∞

as r → ∞.

We are left to calculate the constant A in the streamfunction,

ψ(r) = AκK0(r/Ld), (1.47)

where,
∫∫

allspace

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− 1

L2
d

ψ

)

dA = κ. (1.48)

Here κ is the circulation associated with the point vortex.

Evaluating the integral in polar coordinates gives,

∫ 2π

0

∫

∞

0

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− 1

L2
d

ψ

)

r dr dθ = κ, (1.49)

or
∫

∞

0

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− 1

L2
d

ψ

)

r dr =
κ

2π
, (1.50)
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as ψ is axisymmetric. Now ψ(r) satisfies Helmholtz’s equation, except possibly, near

r = 0. Thus
∫ δ

0

(

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− 1

L2
d

ψ

)

r dr =
κ

2π
, (1.51)

where δ ≪ 1. Note from (1.47) ψ ∼ −Aκ ln r for 0 < r ≤ δ, hence

∫ δ

0

rψ dr → 0 as δ → 0, (1.52)

thus the third term in the integrand of (1.51) vanishes as δ → 0. Now replace

ψ = −Aκ ln r by ψ = −Aκ ln(r + ǫ) in the left hand side . Hence

∫ δ

0

(ψrr +
1

r
ψr)r dr = −Aκ

∫ δ

0

[

− 1

(r + ǫ)2
+

1

r(r + ǫ)

]

r dr,

= −Aκ as ǫ→ 0. (1.53)

Thus (1.50) gives A = −1/2π and

ψ(r) = − κ

2π
K0(r/Ld). (1.54)

In Cartesian coordinates, (1.54) can be written as,

ψ(x, y) = − κ

2π
K0

(

√

(x− xv)2 + (y − yv)2/Ld

)

, (1.55)

which is the point vortex solution of the quasigeostrophic equation.

The velocity field in polar coordinates is u = urr̂ + uθθ̂. From (1.55), these can

be written as

ur = 0, uθ = − κ

2πLd
K1(r/Ld), (1.56)

which represents an axisymmetric ‘swirling’ velocity uθ about the vortex centre.

Importantly, as r → ∞, uθ decays exponentially, since K1(x) ∼ exp(−x)/√x

as x → ∞. In contrast, for the rigid-lid case (Ld → ∞), the velocity field can be
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written as

ur = 0, uθ = − κ

2πr
, (1.57)

and decays algebraically as r → ∞. The different far-field behaviour of an Euler

(i.e. rigid-lid) vortex compared to a quasigeostrophic vortex is central to interpreting

many of the results of this research.

1.4 Thesis outline

This research is split up into two main problems, both having the common ob-

jective of determining the effects of the Rossby radius of deformation on vortex

motion. In both problems, the quasigeostrophic potential vorticity equation is non-

dimensionalised using intrinsic length scales related to the specific geometry of the

problems.

The next three chapters consider the motion of a vortex near a gap in an infinitely

long wall, i.e. two semi-infinite barriers separated by a finite gap. The key parameter

is a, which, in this context, is the ratio of the Rossby radius of deformation to the

width of the gap (see equation (2.3)). A particular focus is the trajectory taken by

the vortex. A fundamental question is when does the vortex pass through the gap

and when does it leap across?

In chapter 2, a is taken to be large and the vortex model used is that of a point

vortex. For the rigid-lid case (a → ∞) the complete solution has been previously

found analytically using the Kirchoff-Routh path function. A numerical solution is

found here for large, but finite, a by using a vortex sheet to model the effects of the

gap. As a is large, the explicit rigid-lid solution is used as a basis to iteratively solve

for finite a. When the vortex passes through the gap, there is a singularity present

at the gap causing the method to fail. Hence a conjugate method is required.

This method is outlined in Appendix A and replaces the barriers with two semi-

infinite vortex sheets. The flow outside the vortical structures is again forced to be
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irrotational and solved numerically using conformal mapping techniques. This can

again be applied iteratively for finite a.

For small a however, as the initial guess of the rigid-lid solution is no longer

a good approximation, the method fails. Hence a new method is developed in

chapter 3 for small a. Here, an integral equation is formulated whose solution

determines the velocity field everywhere in the fluid enabling the vortex trajectory to

be computed. The effect of varying the deformation radius on the vortex trajectories

is investigated. The effect of background flows is also incorporated in this method

by imposing a constant value of the streamfunction along each of the semi-infinite

barriers. A variety of different vortex trajectories are found, depending on the nature

and strength of the background flow.

In chapter 4, the point vortex is replaced by a region of finite area containing

uniform vorticity − a vortex patch. Contour dynamics and contour surgery in

combination with the integral method of chapter 3 are utilised to calculate the

trajectories and behaviour of the vortex patches. For large a, it is noted that the

velocity of circular patches scale with the area of the patch. However, for small a,

a new method of normalisation is developed and implies that the value of a also

influences the velocity of patch motion.

In chapter 5, the second problem of the motion of two steadily translating (anti-

symmetric) counter-rotating vortices is examined. This is equivalent to the motion

of a vortex patch near a wall and generalises classic work on the Euler equations to

the case of arbitrary deformation radius. The parameter a is now the ratio of Rossby

radius of deformation and a measure of the distance of the patch from the line of

symmetry or wall (see equation (5.8)). A relaxation method used in conjunction

with contour dynamics is used to calculate the shape and the translational veloci-

ties of the patches. Using the normalisation technique introduced in chapter 4, the

velocities of vortex patch pairs are compared to point vortex pairs located at the

centroids of the vortex patches. A uniform flow, parallel to the wall that satisfies the
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quasigeostrophic vorticity equation is used to calculate a new family of solutions of

vortex patches. Depending on the strength and direction of the background flow and

the value of a, ‘elliptical’ vortex patches are generated. By adjusting the relaxation

algorithm, the strength of a background flow to bring a vortex pair to rest is also

calculated. Finally, conclusions and ideas for future work are presented in chapter

6.



Chapter 2

Vortex motion near a gap in a

wall: Large Rossby radius case

2.1 Introduction

Long-lived eddies play a significant role in the transport and mixing of ocean prop-

erties such as momentum, heat and salt. Meddies (i.e. Mediterranean salt lenses

typically measuring 50 km in diameter and several hundred metres in depth) carry

anomalously salty water from the Mediterranean to the North Atlantic and have

been tracked for up to several years (see Richardson et al. 2000). Such long-lived

vortices will inevitably encounter topography in the form of mid-ocean ridges, coast-

lines and seamounts. It is of interest to determine how the interaction of vortices

with such topographic features affects their transport characteristics.

Simmons and Nof (2002) investigated vortex interactions with gap-like geome-

tries in relation to the equatorial currents and eddies in the western Atlantic and

showed how fluid can be transported through a gap by eddies. High resolution

numerical experiments have recently been carried out by Kirchner et al. (2010)

examining the structure, propagation pathways and interactions of North Brazilian

current rings with the narrow pathways between islands of the Lesser Antilles. The

24
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influence of the Kuroshio Current on westward propagating eddies near the Luzon

Strait has been modelled by Sheu et al. (2010) using the Princeton Ocean Model.

Laboratory experiments have also been conducted on a single self propagating vor-

tex near two islands by Cenedese et al. (2005) showing that the interaction depends

on the size of the vortex and the distance between the islands.

The abyssal ocean contains many disjointed ridges, punctuated by gaps. A

variety of oceanic processes have been considered in the literature such as flows of

the stratified abyssal ocean in the presence of a partially blocked meridional barrier

by Pedlosky (1994) and the exchange flow between large-scale ocean basins through

narrow gaps by Nof (1994). Pratt and Spall (2003) used a ‘porous’ barrier theory

to model numerous gaps in mid-ocean ridges.

Idealised models which assume two dimensional flow of an inviscid fluid have

been used to construct the Hamiltonian for a single point vortex near a gap, in

an infinitely long and infinitesimally thin barrier in the rigid-lid case (i.e. infinite

Rossby radius) by Johnson and McDonald (2004). The main result from their work

showed that vortices that start far upstream of the gap at greater than half the gap

width from the barrier leap across the gap. Vortices starting closer to the barrier

pass through the gap. Subsequently, vortex motion near barriers with two gaps

was studied by Johnson and McDonald (2005) and later extended to an arbitrary

number of gaps by Crowdy and Marshall (2006).

Duran-Matute and Velasco Fuentes (2008) found analytical trajectories for a

barotropic line vortex near a gap in a wall within a channel in the presence of a

uniform current passing along the channel. Furthermore, numerical trajectories of

finite-area patches were computed and compared to the results found through lab-

oratory experiments conducted within a homogeneous rotating fluid, showing good

agreement for vortices that pass through the gap completely, i.e. without split-

ting. These models are mathematically equivalent to single-layer quasigeostrophic

dynamics in the limit of infinite Rossby radius of deformation (i.e. the rigid-lid
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limit). While these exact solutions are interesting and useful, in an oceanographic

context it is natural to consider the more realistic case of having a finite Rossby

radius of deformation.

The present chapter aims to generalise the work of Johnson and McDonald (2004)

to include a finite, but large, Rossby radius for the point vortex. The key non-

dimensional parameter is a, the ratio of the Rossby radius of deformation to the

half-width of the gap. Quasigeostrophic dynamics in a single layer with reduced

gravity is used to derive an integral equation whose solution gives the velocity field

at the vortex, enabling its trajectory to be computed. For finite a, the integral

equation must be solved numerically, unlike the case for the rigid-lid limit where

complex variable methods can be employed (as shown by Johnson and McDonald

(2004)).

An integral equation is found using Green’s function techniques and solved itera-

tively. However, when the vortex passes close to the gap, numerical inaccuracies are

encountered and a conjugate method is formulated, whereby the effects of the two

semi-infinite barriers on either side of the gap are modelled by vortex sheets whose

strength is determined by solving another integral equation. The two approaches

are used in conjunction to calculate the velocity field everywhere. The analytical

solution found by Johnson and McDonald (2004) is used to compare the solution

for infinite a.

In Section 2.2, the vortex-barrier interaction problem is described. In Section 2.3

the integral equation is derived for the vortex sheet over the gap. The iterative

solution of the integral equation is also detailed, including the de-singularisation of

the integral equation (which is hyper-singular). In Section 2.4, the integral equation

for the conjugate method is derived. The numerical solution for the rigid-lid case

(a→ ∞) is also described, which is used to solve the finite a case iteratively.

The results for point vortices are discussed in Section 2.5 and compared to the

analytical solutions found by Johnson and McDonald (2004). Conclusions are pre-
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sented in Section 2.6 where the need for a new method for capable of handling

smaller a is highlighted.

2.2 Point vortex near a gap in a wall

A single layer of reduced gravity fluid in a flat bottomed ocean of depth H is con-

sidered. In the quasigeostrophic limit, the potential vorticity q is conserved where,

q = ∇2ψ − 1

L2
d

ψ. (2.1)

Here ψ is the geostrophic streamfunction from which the velocity field can be recov-

ered (dx/dt = k ×∇ψ), f is the constant Coriolis parameter and g′ is the reduced

gravity. The length scale, Ld =
√
g′H/f , is the Rossby radius of deformation. As

Ld → ∞, Eulerian dynamics is recovered.

The vortex is located near a gap in an infinitesimally thin, infinitely long wall.

This is equivalent to two semi-infinite straight barriers on either side of a gap of

width 2W . The task is to compute the trajectory of the vortex with circulation κ

and determine conditions when the vortex passes through this gap. A schematic of

the system is shown in Fig. 2.1. The barriers are aligned with the x−axis and the

origin of the (x, y) coordinate system coincides with the midpoint of the gap.

��

q = κ

−W
?

W

Figure 2.1: Possible trajectories of a single vortex of circulation κ near a gap in a
wall.
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With ψ scaled on |κ|, the potential vorticity q scales like |κ|W−2, and for hori-

zontal scale W (i.e. half the gap width). The non-dimensional potential vorticity q′

can be written as

q′ = ∇2ψ′ − 1

a2
ψ′, (2.2)

where

a =
√

gD/fW (2.3)

measures the ratio of the deformation radius to the half gap width W . Henceforth,

the dashes for non-dimensional quantities are omitted.

The equation for a quasigeostrophic point vortex (see chapter 1) is,

∇2ψv −
1

a2
ψv =

κ

2π
δ(x− xv)δ(y − yv), (2.4)

where (xv, yv) is the location of the point vortex with strength κ. Everywhere else

in the fluid, the Helmholtz equation (see chapter 1) is satisfied, i.e.,

∇2ψ − 1

a2
ψ = 0. (2.5)

By assuming the presence of a vortex sheet over the gap, so that (2.5) is satisfied,

allows the velocity induced at the point vortex to be calculated.

2.3 Vortex sheet over the gap

Consider the motion of an incompressible fluid in a domain D which can be decom-

posed into subdomains D1,2 separated by the boundary G (see Fig. 2.2).

G is the single “open” gap which allows the passage of fluid between subdomains.

Let the streamfunction induced by vortices in D1 be ψ1. There is no normal flow

through the boundary, hence ψ1 = 0 on the boundary of D1. Similarly for D2, the

streamfunction is ψ2 will also have no normal flow through the boundary, hence
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D1 G D2

Figure 2.2: Subdomains D1,2 separated by gap G.

ψ2 = 0 on the boundary of D2. Let Ψ be the total streamfunction such that on the

boundary of the domain D = D1 ∪ D2, Ψ = 0 and

Ψ = ψ1 + ψ in D1 (2.6)

Ψ = ψ2 + ψ in D2. (2.7)

Now Ψ is continuous across the gap and ψ1,2 vanish there, ψ must also be con-

tinuous. The normal derivative ∂Ψ/∂n must also be continuous across G, and

[

∂

∂n
(Ψ − ψ)

]

=
∂ψ2

∂n
− ∂ψ1

∂n
(2.8)

where [·] denotes the jump in the enclosed quantity moving from D1 to D2 across G.

Hence,
[

∂ψ

∂n

]

= −∂ψ2

∂n
+
∂ψ1

∂n
= u2 − u1 (2.9)

where u2 is the tangential velocity induced along G by vortices in D2 with G being

a rigid wall and u1 is the equivalent tangential velocity for the vortices in D1. Thus

(2.9) effectively gives the strength of the vortex sheet whose streamfunction is ψ.

In the rigid-lid limit (a→ ∞), advantage can be taken of the known point vortex

behaviour of the Hamiltonian under conformal mapping (see Saffman (1992)). By

mapping the single gap geometry to a half-space, Johnson and McDonald (2004) were

able to obtain an explicit expression for the vortex Hamiltonian in the single-gap

geometry. This in turn enabled the vortex trajectories to be determined exactly.
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For a finite a, there is no such rule for the behaviour of the Hamiltonian under

conformal mapping. Hence, an integral equation method is utilised, where the effect

of the vortex sheet is computed.

2.3.1 Integral equation: Vortex sheet over the gap

The velocity field outside the vortex sheet has streamfunction ψ which satisfies

∇2ψ − 1

a2
ψ = 0, (2.10)

∂ψ

∂y
(x, 0) = f(x) for all |x| < 1, y = 0, (2.11)

ψ(x, 0) = Λ(x) for all |x| < 1, y = 0, (2.12)

ψ(x, 0) = 0 for all |x| > 1, y = 0. (2.13)

Note that f(x) (the tangential velocity across the gap owing to the presence of

vortices) is known (i.e. it is given by (2.9)), but Λ(x) is unknown.

Let

Ga(x, y, x0, y0) = − 1

2π
K0

(

√

(x− x0)2 + (y − y0)2/a
)

(2.14)

+
1

2π
K0

(

√

(x− x0)2 + (y + y0)2/a
)

,

where Ga(x, y, x0, y0) is a Green’s function satisfying

∇2Ga −
1

a2
Ga = δ(x− x0)δ(y − y0), (2.15)

Ga = 0 on the x axis, (2.16)

and K0 is the modified Bessel’s function of the second kind of order zero.

Now, using Green’s Theorem

∫ ∫

S

(

ψ∇2Ga −Ga∇2ψ
)

dx dy =

∫

∞

−∞

(

ψ
∂Ga

∂y
−Ga

∂ψ

∂y

)

dx, (2.17)
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where S denotes the entire upper-half plane, y ≥ 0 above the x−axis.

Using (2.10) and (2.15), the left hand side of (2.17) may be simplified:

∫ ∫

S

(

ψ∇2Ga −Ga∇2ψ
)

dx dy = ψ(x0, y0). (2.18)

As Ga vanishes on the x-axis, the second term on the right hand side in (2.17)

must also vanish:
∮

b

∂ψ

∂y
(x)Ga(x, 0, x0, y0) dx = 0. (2.19)

As the streamfunction derivative with respect to y vanishes along the wall, the

integral over the x-axis reduces to an integral over the gap width. Hence, using

(2.18), (2.19) and (2.12) an equation for the streamfunction is derived:

ψ(x0, y0) =

∫ 1

−1

Λ(x)
∂Ga

∂y
(x, 0, x0, y0) dx. (2.20)

On differentiation of (2.20) with respect to y0 and x0 yields

u(x0, y0) = −
∫ 1

−1

Λ(x)
∂2Ga

∂y∂y0
(x, 0, x0, y0) dx, (2.21)

v(x0, y0) =

∫ 1

−1

Λ(x)
∂2Ga

∂y∂x0
(x, 0, x0, y0) dx. (2.22)

Hence, given Λ(x) the velocity field induced by the vortex sheet can be computed

everywhere, and in particular at the vortex itself enabling the vortex trajectory to

be obtained. Hence, the task is to find Λ(x).

If we now differentiate (2.20) with respect to y0 and set y0 = 0 we have using

(2.11) for −1 < x0 < 1,

f(x0) =

∫ 1

−1

Λ(x)
∂2Ga

∂y∂y0
(x, 0, x0, 0) dx. (2.23)

Since f(x0) is known, (2.23) is an integral equation for the unknown Λ(x).
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2.3.2 Solution of the integral equation: Gap method

Let La(x− x0) = ∂2

∂y∂y0
Ga(x, 0, x0, 0). Hence, from (2.14)

La(x− x0) = −K1 (|x− x0|/a)
π|x− x0|a

. (2.24)

Now (2.23) is a hypersingular integral equation, i.e. the integrand (in this case equa-

tion (2.24)), has a singularity which goes to infinity like (x− x0)
−2 as x→ x0, since

K1(|x − x0|/a) behaves like a/|x − x0|−1 as x → x0. A simple ‘de-singularisation’

method of adding and subtracting another hypersingular term with the same be-

haviour is used here. Consider

G∞ =
1

2π
log

(
√

(x− x0)2 + (y − y0)2

(x− x0)2 + (y + y0)2

)

. (2.25)

which is the Green’s function for (2.15-2.16) in the rigid-lid (i.e. a → ∞) case.

Hence

L∞(x− x0) =
∂2

∂y∂y0

G∞(x, 0, x0, 0) = − 1

π(x− x0)2
, (2.26)

which has the same singular behaviour of (2.24) as x → x0. Now, (2.23) can be

written as

f(x0) = −
∫ 1

−1

Λ(x)(L∞(x− x0) −La(x− x0)) dx+

∫ 1

−1

Λ(x)L∞(x− x0) dx (2.27)

or

∫ 1

−1

Λ(x)L∞(x− x0) dx = f(x0) +

∫ 1

−1

Λ(x)(L∞(x− x0) −La(x− x0)) dx, (2.28)

where the integral term on the right hand side is non-singular.



Chapter 2. Vortex motion near a gap in a wall: Large Rossby radius case 33

Equation (2.28) can be solved by an iterative scheme:

∫ 1

−1

Λ(n+1)(x)L∞(x− x0) dx = f(x0) +

∫ 1

−1

Λ(n)(x)(L∞(x− x0) −La(x− x0)) dx

= f (n)(x0), (2.29)

where terms with superscripts (n) are known and used to calculate the terms with

superscripts (n + 1). All the integrations on the right hand side can be calculated

numerically as the hypersingularities are subtracted from each other. There is a

logarithmic singularity in La(x − x0) at x = x0 as well, which is treated specially

by integrating about the singularity using a variation of Simpson’s rule, which is

derived and detailed in the next Section 2.3.3.

It remains to solve

∫ 1

−1

Λ(n+1)(x)L∞(x− x0) dx = f (n)(x0). (2.30)

This solution is known from the rigid-lid problem where f (n)(x0) is half the

vortex sheet strength and Λ(n+1)(x) is the streamfunction along the gap. Johnson

and McDonald (2004) have a direct method of computing this solution using Fourier

transforms. In the present case the solution is

Λ(n+1)(x) = ℑ
∞
∑

k=1

bk
2k
ζk (2.31)

where ζ = x+i
√

(1 − x2) and bk are the real and equal sine coefficients of the Fourier

series of f (n)(x0) for −1 ≤ x0 ≤ 1. After each iteration, the value of Λ(n+1)(x) is

substituted into (2.29) to calculate f (n+1)(x0), which is used to compute the next

iteration of Λ(n+2)(x). The iterations continue until there is a maximum difference

of 10−6 between successive iterated values of Λ(n)(x). Then Λ(x) can be substituted

into (2.21) and (2.22) to compute the velocity field everywhere. The integrand still

has a logarithmic singularity and this is dealt with in the next subsection.
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2.3.3 Integrating over the logarithmic singularity

The logarithmic singularity is present in the integrand term of equation (2.30)

Λ(x) [L∞(x− x1) − La(x− x1)] , (2.32)

at x = x1 owing to the term La(x − x1). However, the logarithmic function is

analytically integrable over the singularity and its contribution to fn(x1) in (2.30)

can be calculated by interpolating the non-logarithmic part of the integrand as a

quadratic polynomial and then integrating analytically.

Over the logarithmic singularity, the integral required is

∫ x1+h

x1−h

Λ(x) [L∞(x− x1) − La(x− x1)] dx, (2.33)

where x1 denotes the location of the singularity, and h > 0 is some sufficiently small

number.

Now, the leading order behaviour of the integrand can be represented as the

product of a polynomial and the logarithmic function ln(x− x1),

Λ(x) [L∞(x− x1) − La(x− x1)] = (a0 + a1x+ a2x
2) ln(x− x1), (2.34)

where the polynomial, a0 + a1x+ a2x
2, can be calculated by quadratic interpolation

using the coefficients of the logarithmic function at three points, x1−h, x1 and x1+h.

Let the points on either side of the singularity be

x0 = x1 − h, (2.35)

x2 = x1 + h. (2.36)

The logarithmic singularity is solely present in the difference of the kernel func-
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tions i.e.

D(x− x1) = L∞(x− x1) − La(x− x1). (2.37)

The function, D(x− x1) is expanded about x = x1 up to O((x− x1)
3),

D(x− x1) ≃
−1 + 2γ − 2 ln(2a) + 2 ln(x− x1)

4πa2

+
−5 + 4γ − 4 ln(2a) + 4 ln(x− x1)

64πa4
(x− x1)

2 + O((x− x0)
3), (2.38)

where γ is the Euler-Mascheroni constant:

γ = lim
n→∞

(

n
∑

k=1

1

k
− lnn

)

. (2.39)

Hence, the coefficients of the leading order logarithmic term, ln(x− x1), can be

calculated at the points, x0,1,2 using (2.38),

c0 = Λ(x0)

(

1

2πa2
+

(x0 − x1)
2

16πa4

)

, (2.40)

c1 =
Λ(x1)

2πa2
, (2.41)

c2 = Λ(x2)

(

1

2πa2
+

(x2 − x1)
2

16πa4

)

. (2.42)

Using the polynomial interpolation in (2.34) , the quadratic coefficients a0,1,2 can

be calculated numerically using the values of the coefficients c0,1,2,

a0 = c0, (2.43)

a1 =
c0 − c2

2h
, (2.44)

a2 =
c0 − 2c1 + c2

2h2
. (2.45)

Analytically, the product of a polynomial and the logarithmic function can be

integrated. Hence the integral can be expressed solely in terms of h, the difference
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between successive points:

∫ x2

x0

(a0 + a1x+ a2x
2) ln(x− x1) dx = − 2h(a0 +

a2

9
h2 + a1x1 + a2x

2
1) (2.46)

+ 2h ln(h)(a0 +
a2h

2

3
+ a1x1 + a2x

2
1).

Now all integrations on the right hand side of (2.29) can be solved numerically

to compute the trajectory of the point vortex. However, when the vortex is close

to the gap i.e. y0 → 0, the integrals to determine the velocities in (2.21) and (2.22)

have singularities (again owing to the hypersingular behaviour of ∂2Ga/∂y∂y0 as

y0 → 0). Hence, a conjugate method is required when the vortex passes through

the gap. This is done by assuming the vortex sheets are over the barriers and is

discussed in Section 2.4.

2.4 Vortex sheets over the barriers

In this section an alternative method of solution is proposed, in which vortex sheets

are aligned with the barriers instead of along the gap. This, as we shall see, has the

advantage of remaining accurate when the vortex is close to the gap.

2.4.1 Integral equation: Vortex sheet over the barriers

Using the same Green’s function techniques as in Section 2.3.1, an integral equation

is derived, where the integration is along the barriers. Effectively, the presence

of the barriers is represented by vortex sheets along the two semi-infinite barriers

with strength such that the total normal flow across the barriers vanishes. Let

g(x) = Ψ(x, 0) be the streamfunction evaluated on the semi-infinite barriers, i.e.

g(x) = Ψ(x, 0), |x| > 1. (2.47)
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For a single point vortex at (xv, yv), Ψ = ΨPV and we have

g(x) = ΨPV (x, 0, xv, yv), |x| > 1. (2.48)

Consider ψ(x, y), as introduced in (2.5), the flow induced by the presence of the

point vortex. We need to solve the boundary value problem

∇2ψ − 1

a2
ψ = 0, (2.49)

ψ(x, 0) = −g(x), |x| > 1, (2.50)

where ψ(r) → 0 as r → ∞, where r =
√

x2 + y2, (2.51)

and g(x) → 0 as |x| → ∞. (2.52)

Note condition (2.50) implies that the barriers are streamlines, i.e. ψ+ ΨPV = 0 on

|x > 1| and so the normal velocity vanishes on the barriers.

Let

Ha(x, y, x0, y0) = − 1

2π
K0

(

√

(x− x0)2 + (y − y0)2/a
)

, (2.53)

be the infinite space Green’s function for the Helmholtz equation (2.49). Then,

∇2Ha −
1

a2
Ha = δ(x− x0)δ(y − y0). (2.54)

Now, integrating over all space D (see Fig. 2.3) and using (2.51), Green’s theorem

gives
∫∫

D

(

ψ∇2Ha −Ha∇2ψ
)

dx dy =

∫

b

(

ψ
∂Ha

∂y
−Ha

∂ψ

∂y

)

dx, (2.55)

where (2.51) has been used and the right hand side is the line integral around b the

four surfaces of the semi-infinite barriers, i.e. extending from (−∞,−1] and [1,∞)

above the barriers (y = 0+) and (−∞,−1] and [1,∞) below the barriers (y = 0−).
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D

bb

Figure 2.3: The integral over all space, D can be represented as an integral around
the boundary of D as shown by the dashed lines. The arrow indicates the direction
around which the boundary integral is taken.

Since ψ(x) is continuous across y = 0,

∫

b

ψ(x)
∂Ha

∂y
(x, 0, x0, y0) dx = 0. (2.56)

Hence, using (2.49), (2.54) and (2.56), (2.55) can be simplified to give,

ψ(x0, y0) = −
∫

b

λ(x)Ha(x, 0, x0, y0) dx, (2.57)

where λ(x) = ∂ψ/∂y is the strength of the vortex sheet on |x| > 1, y = 0.

Differentiation of (2.57) with respect to y0 and x0 gives the velocity at (x0, y0):

u(x0, y0) = −
∫

b

λ(x)
∂Ha

∂y0

(x, 0, x0, y0) dx, (2.58)

v(x0, y0) =

∫

b

λ(x)
∂Ha

∂x0
(x, 0, x0, y0) dx. (2.59)

It remains to find λ(x). On the barrier as y0 → 0 (2.57) gives

g(x0) =

∫

b

λ(x)Ha(x, 0, x0, 0) dx,

= 2

∫

∞

1

λ(x)Ha(x, 0, x0, 0) dx+ 2

∫

−1

−∞

λ(x)Ha(x, 0, x0, 0) dx. (2.60)
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which, since g(x0) is known, is an integral equation for the unknown λ(x). Once

λ(x) is determined, (2.58) and (2.59) then give the velocity field at any arbitrary

point (x0, y0).

2.4.2 Vortex sheets over the barrier: Rigid-lid solution

Let the vortex induce a velocity field ũ − iṽ on the barriers. Our task is to find a

complex potential w such that on the barriers y = 0, |x| ≥ 1

ℑ(dw) = ℑ [(u− iv)dz] = −ℑ [(ũ− iṽ)dz] , (2.61)

that is the total normal velocity vanishes on the barriers.

Consider the following pair of conformal maps and their inverses (see Fig. 2.4):

z =
1

2

(

ζ + ζ−1
)

, ζ = z +
√
z2 − 1;

ζ = i

(

1 + τ

1 − τ

)

, τ =
ζ − i

ζ + i
; (2.62)

which map the z−plane to the interior of the unit τ−disk, with the boundary of the

τ−disk being the image of the barriers. Note the square root in (2.62) has positive

imaginary part, so that the region of interest in the ζ−plane is the upper-half plane.

A

B E D

F

C A’ B’ C’ D’ E’ F’

B’’

A’’

F’’

E’’(a) (b) (c)

Figure 2.4: (a) The z-plane. (b) The ζ-plane. (c) The τ -plane. The dotted lines
represent the location of the gap and the solid lines represent the two semi-infinite
barriers. Note that the upper-half plane in (b) maps to the interior of the disc in
(c).
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On τ = eiφ, −π < φ ≤ π,

ℑ
[

dw

dφ

]

= −ℑ
[

(ũ− iṽ)
dz

dφ

]

= −ℑ
[

ieiφ(ũ− iṽ)
dz

dζ

dζ

dτ

]

,

= n(φ), (2.63)

where n(φ) is a known function.

The general solution for w inside the unit τ−disk is,

w =

∞
∑

k=1

akτ
k, (2.64)

where ak ∈ C and τ = ρeiφ, 0 ≤ ρ ≤ 1. Thus (2.63) and (2.64) give

ℑ
[

∞
∑

k=1

akkτ
k−1 dτ

dφ

]

= n(φ), (2.65)

or,

ℜ
[

∞
∑

k=1

akkτ
k−1eikφ

]

= n(φ), (2.66)

which is a Fourier-Series problem on π < φ ≤ π for the unknown ak. Hence,

kak =
1

π

∫ π

−π

n(φ)e−ikφ dφ, k = 1, 2, . . . . (2.67)

Now that ak, k = 1, 2, . . . are known, the velocity field u− iv can be determined

for arbitrary z,

u− iv =
dw

dz
=

∞
∑

k=1

akkτ
k−1dτ

dζ

dζ

dz
, (2.68)

and hence the vortex can be advected by evaluating u− iv using (2.68) at the vortex

location. In practice the infinite sum in (2.68) is truncated at k = N for some large

N = 28. Results were also compared against larger values of N = 210 and gave good

agreement.
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We distribute the points uniformly around the τ−circle i.e. τj = j2π/M, j =

0, 1, . . . ,M − 1 which in turn gives a (non-uniform) distribution of points on the

barrier.

2.4.3 Solution of the integral equation: Barrier method

The rigid-lid solution can be used to iteratively find λ(x) along the barriers in the

same way as the gap method. However, the x0 derivative of (2.57) is first taken,

n(x0) =
∂ψ(x0, 0)

∂x0
= −

∫

b

λ(x)
∂Ha

∂x0
(x, 0, x0, 0) dx, (2.69)

where n(x0) is the normal velocity to the barrier.

Define

Ka =
∂Ha

∂x0

(x, 0, x0, 0), (2.70)

so that,

Ka(x− x0) = −K1 (|x− x0|/a)
2πa

, (2.71)

and for the infinite a case,

K∞ = − 1

2π (x− x0)
. (2.72)

The integral equation (2.69) is de-singularised as in (2.27):

n(x0) = −
∫

b

λ(x)(K∞(x− x0) −Ka(x− x0)) dx+

∫

b

λ(x)K∞(x− x0) dx (2.73)

which is re-written as

∫

b

λ(x)K∞(x− x0) dx = f(x0) +

∫

b

λ(x)(K∞(x− x0) −Ka(x− x0)) dx. (2.74)

All integrals on the right hand side can be evaluated numerically.

Again iteration is used to solve for the left hand side, using all the known values



Chapter 2. Vortex motion near a gap in a wall: Large Rossby radius case 42

on the right hand side:

∫

b

λ(m+1)(x)K∞(x− x0) dx = n(x0) +

∫

b

λ(m)(x)(K∞(x− x0) −Ka(x− x0)) dx

= n(m)(x0), (2.75)

for λ(m+1)(x) given n(m)(x0).

It remains to solve

∫

b

λ(m+1)(x)K∞(x− x0) dx = n(m)(x0). (2.76)

However this is precisely the rigid-lid problem with n(m)(x0) is the normal velocity

on the barrier and λ(m+1)(x) is the derivative of the streamfunction, with respect to

x along the barrier. Using the method detailed in Section 2.4.2 the solution is

λ(m+1)(x) = ℜdw
dz

= ℜ
∞
∑

k=1

kakτ
k dτ

dz
(2.77)

from (2.68), where τ = eiφ, ak are the complex coefficients of the Fourier series of

n(m)(x0). Hence λ(x) can be substituted in to (2.58) and (2.59) the velocity field

everywhere.

2.5 Results

2.5.1 A test problem

When the vortex is far from the gap, the integral equation (2.20) is solved to find

the streamfunction Λ(x) along the gap. This is done numerically by discretizing the

gap using p = 28 points at the values of xi = cos(θi), where θi = πi/p, i = 1, . . . , p.

As a test case, the location of the vortex was taken at xv = 0, yv = 1 and the
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streamfunction computed along the gap for three different values of a. First, for

the rigid-lid case (numerically, taking a = 108 to simulate an infinite a). Here, the

‘extra’ contribution to the velocity, i.e. (L∞(x − x0) − La(x − x0)), is negligible

hence, only one iteration is required. Similarly, for a = 100, the ‘extra’ contribution

is still small but two iterations are required to accurately obtain the streamfunction.

Figure 2.5: The streamfunction along the gap, Λ, is plotted as a function of θ for
the rigid-lid case (dotted), a = 100 (dashed) and a = 2 (solid)

Note that for large a = 100, there is little difference between the streamfunction

calculated numerically, and the exact rigid-lid streamfunction. However, for a = 2,

the ‘extra’ contribution is greater and four iterations are required to calculate the

final streamfunction. The difference between a = 2 and the rigid-lid case and is

quite notable in Fig. 2.5. The impact of the deformation radius can be seen as the

exponential decay of the K0(r/a) streamfunction causes a smaller magnitude of the

streamfunction along the gap induced by the point vortex.

Similarly in Fig. 2.6, the barrier is discretized using a sequence of maps (refer to

(2.62) and Fig. 2.4 for details). A high resolution of p = 211 is used so that have a
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greater number of points along the barrier,

xi = −1

2
(cot(φi) + tan(φi)), (2.78)

dxi =
1

4
(cosec2(φi) − sec2(φi)), (2.79)

where φi = 2πi/p.

The vortex was located close to the gap at xv = 0, yv = 0.04. The difference for

the cases between the rigid-lid case and a = 2 can be seen in Fig. 2.6-2.7.

Figure 2.6: The streamfunction derivative along the semi-infinite barriers, λ, is
plotted as a function of φ for the rigid-lid case. Here a = 108.

The spikes in the streamfunction are present near the barrier tips i.e. at x = 1.

This is because for small distances from the barrier tip the solution of the Helmholtz

equation should give a velocity field which tends to that governed by Laplace’s

equation for which it is well known that such a velocity field has an inverse square

root singularity. However, due to the change of variable (see (2.78) and (2.79)), the

contribution of the weight vanishes at the tips of the barriers (where φi = π/4 for

the negative barrier tip and φi = 3π/4 for the positive barrier tip). The y−axis

values show that for a = 2, the values along the boundary are very weak. This also

highlights the quicker decay as a is reduced. The effect of the vortex sheet is that
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Figure 2.7: Same as in Fig. 2.6 but with a = 2.

its strength decreases as a decreases.

2.5.2 Point vortex trajectories

When far from the gap, the gap method is used to calculate Λ(x), which is then

substituted into (2.21) and (2.22) to calculate the velocity field at the vortex location

and then the vortex is advected using the time dependent fourth order Runge-

Kutta integration routine. However, the method requires that the horizontal velocity

u(xv, yv) caused by the vortex sheet over the gap cancels out the horizontal velocity

uim(xv, yv) = K1(2yc/a)
2πa

induced by the image of the vortex on the opposite side of the

wall. Numerically, these do not cancel out exactly, causing a loss of accuracy near

the gap. Hence, when close to the gap (|xv| < 1 and |yv| < 0.05), the barrier method

is used to calculate the streamfunction derivative, λ(x) which is then substituted

into (2.58) and (2.59) and the point vortex is advected in the same way. When the

vortex is travelling fast, close to the barrier (yv ≤ 0.1), the time step, ∆t = 0.05

and otherwise, ∆t = 0.1.

First, the analytical solution for the rigid-lid case can be used as a comparison

for the limit as a → ∞. In Fig. 2.8 the analytical trajectories are plotted over the
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numerically computed trajectories to show there is a good agreement.

Figure 2.8: The numerical trajectories (dashed) for a = ∞ of a point vortex starting
from xv = −4, yv = 0.2n, n = 1, . . . , 8 and the exact analytical trajectories (dotted)
that pass through the initial location of the numerical trajectories.

In Fig. 2.9, with a = 100, the vortex paths are similar to that of the rigid-lid

(a → ∞) case, however, the velocities are different, with point vortices decreasing

in speed. This is due to the rapid decay of the Bessel function, K1(r/a) for large r.

In Fig. 2.10, a = 2. As can be seen, the paths travel straighter taking longer

to start dipping towards the gap. This is because the point vortex takes longer

to feel the effects of the gap, with the vortex behaving as though it were near an

infinite wall. When close to the barrier, the influence of the nearer barrier is like a

single semi-infinite barrier. Although the rest of the paths look similar, the critical

trajectory (the separatrix that divides the vortices that leap across the gap and the

vortices that pass through them) has changed. It is found that vortices go through

the gap more readily.

Although the results for this look good for a > 1, for a < 1 the results are

inaccurate and implausible. In Fig. 2.11, with a = 0.5 a vortex is started at xv =

−2, yv = 0.2 and passes through the barrier which is, of course, non-physical. The

reason for this may be related to the fact that in the infinite a case the decay
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Figure 2.9: Same as in Fig. 2.8 but with a = 100.

Figure 2.10: Same as in Fig. 2.9 but with a = 2
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of the velocity along the barriers is algebraic but for finite a the increasingly rapid

exponential decay means the method is no longer valid. A new method is formulated

and discussed in the next chapter which solves the integral equation (2.57) in a

different way, which allows trajectories to be found for finite a ≤ 3.

Figure 2.11: A single vortex is tracked from xv = −2, yv = 0.2. The vortex seems
it is going through the barrier, which is impossible.

2.6 Conclusions

The effects of a large finite Rossby deformation radius on a point vortex near a

gap in a wall has been investigated. To compute the point vortex trajectories, first

we assume that there is a vortex sheet over the gap between the two semi-infinite

barriers as there is a jump in tangential velocity across the gap. The streamfunction

owing to this vortex sheet must be such that the Helmholtz equation is satisfied

everywhere and that the streamfunction along the semi-infinite barriers is zero.

Using Green’s theorem, a hyper-singular integral equation is found that when solved

yields the streamfunction associated with the vortex sheet.

The equation is de-singularised by subtracting the rigid-lid Green’s function and

solving the equation iteratively using the exact solution for the rigid-lid case found
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by Johnson and McDonald (2004) and thus, the streamfunction that satisfies the

Helmholtz equation can be found. The integral over the logarithmic singularity

present in the integrand is dealt with using quadratic polynomial interpolation and

the analytical solution of the integral over the logarithmic function. However, when

the vortex passes through the gap, there is a singularity encountered in the velocity

field equations.

Hence a conjugate method, with two vortex sheets over the semi-infinite barriers

is used when passing through the gap. The integral equation is found in the same

way and de-singularised as before. The rigid-lid solution is again used as the basis

for solving the integral equation.

The numerical results for very large a show good comparison with the analytical

trajectories found by Johnson and McDonald (2004). The energy along the path

can be calculated and remains approximately constant as expected.

Decreasing a increases the tendency of a vortex to go through the gap as it takes

longer to notice the presence of the other barrier. However, this method is slow and

fails for small a as the initial guess is based on the infinite a (rigid-lid) case. Hence

a new method, for small a is formulated and discussed in the next chapter.



Chapter 3

Vortex motion near a gap in a

wall: Small Rossby radius case

The iterative method described in Chapter 2 is effective when dealing with large a,

however, there are inaccuracies when a ≤ O(1). This chapter details a new method

for solving the integral equation. First, the problem is split into even and odd vortex

pairs so that the integral equation can be expressed as two integrals over a single

barrier in Section 3.1. The method of solving the integral equations is detailed in

Section 3.2. There is a region of overlap in a−space between the iterative solution

and solution by the new method (herein referred to as the matrix method) and the

solutions are compared in Section 3.3.1. Vortex trajectories for a < 1 are investigated

in Section 3.3.2. The integral equation method is then adapted to include a variety

of background flows through the gap in Section 3.4. A summary is presented in

Section 3.5.

50
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3.1 Integral equation: Even and odd vortex pairs

The integral equation along the barriers is (2.60) in Section 2.4. The unknown λ(x)

is the strength of the vortex sheet and it must satisfy

g(x0) =

∫

b

λ(x)Ha(x, 0, x0, 0) dx,

= 2

∫

∞

1

λ(x)Ha(x, 0, x0, 0) dx+ 2

∫

−1

−∞

λ(x)Ha(x, 0, x0, 0) dx. (3.1)

In this chapter, (3.1) is solved by discretizing the x−coordinate along the barriers

and solving the subsequent system of linear equations by matrix inversion. Note

later when we treat a vortex patch (see Chapter 4), the streamfunction g(x0) along

the barriers is not known, so the derivative with respect to x0 of (3.1) is used instead,

this being equivalent to the normal velocity, which is straightforward to determine

for vortex patches.

Thus, n(x), the normal velocity induced along the barriers by the vortex patches,

is used by differentiating (3.1) with respect to x0, i.e.,

∂g

∂x0
(x0) = n(x0)

=

∫

b

λ(x)
∂Ha

∂x0
(x, 0, x0, 0) dx,

= 2

∫

∞

1

λ(x)
∂Ha

∂x0
(x, 0, x0, 0) dx+ 2

∫

−1

−∞

λ(x)
∂Ha

∂x0
(x, 0, x0, 0) dx. (3.2)

Now, the normal velocity component at the barriers can be split into the sum of

an even and odd part as follows:

n(x0) =
n(x0) + n(−x0)

2
+
n(x0) − n(−x0)

2

= ne(x0) + no(x0). (3.3)

For the case of a point vortex at (xv, yv), the even and odd contributions to the
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Figure 3.1: Even (a) and odd (b) vortex pairing. The even and odd-ness refers to
the normal velocity along the barriers.

normal velocity component at the barrier can be explicitly written as,

ne(x0) =(x0 − xv)
κK1

(

√

(x0 − xv)2 + y2
v

)

2π
√

(x0 − xv)2 + y2
v

− (x0 + xv)
κK1

(

√

(x0 + xv)2 + y2
v

)

2π
√

(x0 + xv)2 + y2
v

, (3.4)

and

no(x0) =(x0 − xv)
κK1

(

√

(x0 − xv)2 + y2
v

)

2π
√

(x0 − xv)2 + y2
v

+ (x0 + xv)
κK1

(

√

(x0 + xv)2 + y2
v

)

2π
√

(x0 + xv)2 + y2
v

. (3.5)

The pairing of the vortices giving rise to ne(x0) and no(x0) is shown in Fig. 3.1.

For the even case, let the strength of the vortex sheet induced along the barri-

ers by the vortex be λ1(x) and use the notation used previously in Chapter 2 for

convenience,

Ka(x− x0) =
∂Ha

∂x0
(x, 0, x0, 0). (3.6)

Hence, from (3.2),

ne(x0) = 2

∫

−1

−∞

λ1(x)Ka(x− x0) dx+ 2

∫

∞

1

λ1(x)Ka(x− x0) dx. (3.7)



Chapter 3. Vortex motion near a gap in a wall: Small Rossby radius case 53

By substituting x = −x and changing the limits accordingly,

ne(x0) = −2

∫ 1

∞

λ1(−x)Ka(−x+ x0) dx− 2

∫

−∞

−1

λ1(−x)Ka(−x+ x0) dx

= 2

∫

−1

−∞

λ1(−x)Ka(−x+ x0) dx+ 2

∫

∞

1

λ1(−x)Ka(−x+ x0) dx, (3.8)

Since Ka(−x+ x0) = −Ka(x− x0),

ne(x0) = −2

∫

−1

−∞

λ1(−x)Ka(x− x0) dx− 2

∫

∞

1

λ1(−x)Ka(x− x0) dx, (3.9)

which together with (3.8) implies,

λ1(x) = −λ1(−x), (3.10)

i.e. λ1(x) is odd in x.

Using the change of variable, x = −x, the integral over the negative barrier can

be expressed with positive limits,

2

∫

−1

−∞

λ1(x)Ka(x− x0) dx = 2

∫

∞

1

λ1(x)Ka(x+ x0) dx. (3.11)

Hence, the even part of the velocity can be expressed as the integral over positive

limits:

ne(x0) = 2

∫

∞

1

λ1(x)Ka(x+ x0) dx+ 2

∫

∞

1

λ1(x)Ka(x− x0) dx

= 2

∫

∞

1

λ1(x)(Ka(x− x0) + Ka(x+ x0)) dx. (3.12)

Similarly, for the odd vortex pair, let the normal velocity induced at the barriers

be λ2(x), and it can be shown that

no(x0) = 2

∫

∞

1

λ2(x)(Ka(x− x0) −Ka(x+ x0)) dx. (3.13)
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3.2 Numerical solution of the integral equation

Integral equations (3.12) and (3.13) are singular since

Ka(x± x0) =
A

x± x0
+ O(1), as x→ ∓x0, (3.14)

where A is a constant. Thus the integrals in (3.12) and (3.13) need to be interpreted

in a Cauchy principal value sense. The solutions λ1(x) and λ2(x) are also expected

to have inverse-square-root singularities at the barrier tip. That is,

λ1,2(x) ∼
B√
x− 1

as x→ 1, (3.15)

where B is a constant. This is because for small distances from the barrier tip the

solution of the Helmholtz equation should give a velocity field which tends to that

governed by Laplace’s equation, for which it is well known that such a velocity field

has an inverse-square-root singularity.

Let

E(x, x0) = Ka(x− x0) + Ka(x+ x0), (3.16)

and approximate (3.12) as

ne(x0) = 2

∫ 1+ǫ

1

λ1(x)E(x, x0) dx+ 2

∫ L

1+ǫ

λ1(x)E(x, x0) dx, (3.17)

where L≫ 1 is the truncation length of the barrier and 0 < ǫ≪ 1. The first integral

in (3.17) encompasses the inverse square root singularity of λ1(x) and, provided x0

is not close to x = 1 (i.e. the vortex is not near the barrier tip), it is integrable and

behaves like
√
ǫ as ǫ→ 0. Thus to a good approximation, we take ǫ = 0 and (3.17)

becomes

ne(x0) ≃ 2

∫ L

1

λ1(x)E(x, x0) dx. (3.18)
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The integral in (3.18) is discretized into N equally-spaced points,

xi = 1 + (i− 1)h, i = 1, . . . , N, (3.19)

where h = (L− 1)/(N − 1). Let

xj
0 = xj +

h

2
, j = 1, . . . , N, (3.20)

be the mid-points of the [xi, xi+1] intervals values along the barrier (see Fig. 3.2).
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Figure 3.2: The x0 values are used to integrate and the singularity is positioned at
xj

0.

Vanden-Broeck and Smith (2010) used this method of discretization with the singu-

larity placed half-way between two consecutive integration points, since it implies

the singularity may be effectively ignored.

∫ L

1

E(x, x0)λ1(x) dx ≃
N
∑

i=1

λ1(xi)E(xi, x
j
0)wi, (3.21)

where wi are the usual trapezoidal weights:

wi =















h
2

i = 1, N

h otherwise.

(3.22)

That is, by considering xj
0 as the midpoints, the presence of the (x− xj

0) singularity

is accounted for (see Appendix A).

Hence the integral equation (3.12) can be approximated by the NxN linear
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system,
N
∑

i=1

E(xi, x
j
0)λ1(xi)wi ≃ ne(x

j
0), j = 1, . . . , N, (3.23)

where the unknowns λ1(xi) i = 1, . . . , N are found by numerically inverting (using

NAG library routine F07AEF) the known N ×N coefficient matrix E(xi, x
j
0) i, j =

1, . . . , N . Similarly the solution λ2(x) to (3.13) can be found.

Once the λ1,2(xi), i = 1, . . . , N are known, the velocity field at any point (x0, y0).

First note λ(x) = λ1(x) + λ2(x) and substituting in (2.58) and (2.59) gives,

u(x0, y0) = −
∫

b

λ(x)
∂Ha

∂y0
(x, 0, x0, y0) dx, (3.24)

v(x0, y0) =

∫

b

λ(x)
∂Ha

∂x0

(x, 0, x0, y0) dx. (3.25)

These integrals can be evaluated using truncation and the trapezium rule. The

length of the barrier is taken to 13a where the velocity field induced by the point

vortex is less than 10−6. A high number of points are therefore required to compute

the matrix. A value of N = 211 was taken.

3.3 Vortex trajectories

3.3.1 Comparison with iterative method

To test the matrix method we first compare it to the iterative method when a ≥ 1.

There is a good comparison between trajectories as can be seen in Figs. 3.3−3.5

where the numerical trajectories are found using the matrix method (dotted lines)

and the iterative method (dashed) for a = 10, 2 and 1. Thus we can be confident

that both the numerical approaches produce accurate results for this range of a. The

matrix method though, is not reliant on iteration using the exact a → ∞ solution.

Thus we can apply it to the case a < 1 which failed to converge using the iterative

method. This we do in the next subsection.
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Figure 3.3: Numerical trajectories for the matrix method (dotted) and iterative
method (dashed) with a = 10. Arrowheads indicate direction of motion of positive
vortices.

Figure 3.4: Same as in Fig. 3.3 but a = 2.
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Figure 3.5: Same as in Fig. 3.4 but a = 1.

3.3.2 Numerical trajectories for small a and the separatrix

In Fig. 3.6, the trajectories for a = 0.5 (dotted) and a = 1 (dashed) are plotted

together. It is clear that, although the trajectories look similar, there are differences

Figure 3.6: Numerical trajectories using the matrix method for the a = 1 (dashed)
and the a = 0.5 (dotted).

when close to the gap, with a = 1 trajectories turning into the gap sooner than the

a = 0.5 trajectories. For larger a the effect of the gap is felt earlier owing to the

increased range of influence of the gap. However, when further away, say when the

point vortex is initially at (−4, 1.2), the trajectory for a = 0.5 takes longer for the
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trajectory to start dipping but still cuts the y−axis lower than for a = 1. This is

because the vortex with a = 0.5 feels the effect of the second barrier less strongly

when over the gap.

The numerical method can be used to quantify the effect the Rossby radii has

on the separatrix i.e. the critical trajectory which divides those vortices which pass

through the gap from those that leap across. A point vortex located close to the

origin at (10−6, 10−6) is advected until the vortex passes the line, |x| = 5, where the

motion becomes effectively that of a point vortex near a wall. Let this distance y

be denoted as ysep(1/a). For the rigid-lid case, ysep(0) = 1. The quantity ysep(1/a)

has been computed for various values of a and plotted as a function against 1/a in

Fig. 3.7 which clearly shows that ysep is further from the x−axis as a decreases, i.e.

a−1 increases. That is, there is an enhanced ability for vortices to pass through the

gap as a decreases. However the effect is relatively minor, there being less than 10%

change in ysep over the range of a tested. This effect is due to the exponential decay

of K1 as a decreases; so the opposite barrier has a decreasing influence on the vortex

as a decreases.

Figure 3.7: Value of ysep against 1/a. The tendency for vortices to pass through the
gap is increased with decreasing a.



Chapter 3. Vortex motion near a gap in a wall: Small Rossby radius case 60

3.4 Background flows

The advection of vortices by ambient currents and background flows will influence

their trajectories. Two background flows are considered here.

3.4.1 Uniform symmetric flow through the gap

For uniform flow (velocity field symmetric about x = 0) through the gap with

streamfunction ψs, we can derive an integral equation identical to (3.1) with the

streamfunction along the boundary given by,

ψs(x, 0) =
F
2π

sgn(x), |x| > 1, (3.26)

where F is the flux through the gap and the subscript s denotes symmetric. Ex-

ploiting the fact that ψs(x, 0) is odd yields the following integral equation,

F
2π

= 2

∫

∞

1

λs(x)(Ha(x, 0, x0, 0) −Ha(x, 0,−x0, 0)) dx, (3.27)

where λs(x) is the strength of the vortex sheet along the barriers. Once λs(x) is

known then the streamfunction at any point (x0, y0) is found from

ψs(x0, y0) = −
∫

b

λs(x)Ha(x, 0, x0, y0) dx. (3.28)

The integral equation is solved in the same way as in the previous section. Using

the computed λs(x), streamlines with constant streamfunction, ψs(x, y) are plotted

for a = 0.5, 1, 2 and 10 in Figs. 3.8-3.11 with F = 1. The values of ψs = (1−n/10)/2π

where n = 0, . . . , 20 where ψs = ±1/2π is the value of the contour along the barriers

on the positive and negative barrier respectively and the centre line has ψs = 0.

Notice as a increases, the distance between the contours increases. Small a implies

that the background flow is strong, almost jet like, along the barriers but decreases
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in magnitude quickly further away from the gap. As a increases, the background

flow has a stronger effect further away from the gap, i.e. it decays less rapidly.

Again this behaviour is expected since with increasing a, the Green’s function K0

decays less rapidly. The flow in Fig. 3.11 is very close to that of classic potential

flow through a finite width gap.

Figure 3.8: Streamlines of ψs plotted for a = 0.5. Contours are drawn at equal
intervals with ψs = ±1/2π on the barriers. Large arrows indicate direction of flow.

If a point vortex is present, once λs(x) is obtained, the velocity field at the point

vortex location can be computed using,

u(x0, y0) =

∫

b

λs(x)
∂Ha

∂y0
(x, 0, x0, y0) dx, (3.29)

v(x0, y0) = −
∫

b

λs(x)
∂Ha

∂x0
(x, 0, x0, y0) dx. (3.30)

It is then added to the computed velocity field with zero background flow. The

discretization of the barriers is kept the same.

In Fig. 3.12, numerical trajectories of point vortices are plotted for a = 0.5
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Figure 3.9: Same as Fig. 3.8 but a = 1.

Figure 3.10: Same as Fig. 3.9 but a = 2.
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Figure 3.11: Same as Fig. 3.10 but a = 10.

and F = −1. For x < 0, y > 0, the velocity induced on the vortex owing to the

background flow and its self-advection along the wall are in the same direction,

hence, vortices starting further away from the wall will pass through the gap more

readily. For x > 0, y < 0, the background and vortex self-advection velocities are

in opposite directions. Hence vortices are pushed back away from the gap by the

background flow and need to be very close to the wall in order to generate sufficient

speed from self-advection to overcome the background flux through the gap. The

background flow is felt so strongly for a = 0.5 that it propels a vortex starting from

(4, 2) in the direction contrary to its regular propagation and forces it through the

gap. Vortices starting at negative x are advected in the same direction as they would

from regular propagation but due to the background flow, more vortices are allowed

to pass through the gap. Note, in contrast with no background flow, no vortices are

able to leap across the gap in the presence of a background flow.

For a = 1 in Fig. 3.13, the case is similar with vortices being forced towards the

gap with a = 1. As stated before in regard to the streamlines, as a increases, the
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Figure 3.12: Vortex trajectories with a = 0.5 in the presence of a symmetric back-
ground flow, F = −1. Large arrows indicate the direction of the background flow
and small arrowheads indicate the direction of positive point vortices.

effect of the background flow decreases and a vortex starting from (4,−0.6) crosses

the gap. This trend is further exemplified by Fig. 3.14 where a = 2. The vortex

path of the vortex starting from (4,−0.6) crosses the gap closer to the gap, contrary

to the direction of the background flow.

Figure 3.13: Same as in Fig. 3.12 but with a = 1.
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Figure 3.14: Same as in Fig. 3.13 but with a = 2.

3.4.2 Uniform anti-symmetric flow through the gap

Another non-trivial flow can be found by letting ψa(x, 0) = F/2π, |x| > 1, and

insisting that away from the barriers, ψa → 0 as r → ∞. Note that the subscript a

denotes anti-symmetric. This corresponds to zero net flux through the gap, i.e. the

through-gap velocity is anti-symmetric about x = 0. This results in the following

integral equation, for the vortex sheet strength λa(x) = ∂ψa/∂y on |x| > 1, y = 0,

F
2π

= 2

∫

∞

1

λa(x)(Ha(x, 0, x0, 0) +Ha(x, 0,−x0, 0)) dx. (3.31)

Interestingly, the anti-symmetric case is quite different for finite a from the rigid-

lid (a → ∞) case: as a → ∞, ψa → F/2π everywhere and the flow becomes

stagnant. In principle any linear combination of ψa and ψs can be used to generate

a non-trivial background flow. As in the previous section, the streamlines are plotted

in Figs. 3.15- 3.18 for a = 0.5, 1, 2 and 10 respectively. The values of ψs = (0.05 +

n/10)/2π where n = 0, . . . , 9 where ψs = 1/2π, where F = 1 on both barriers. Note

that in all the streamlines are contained within the domain for a = 0.5 but only

the first three streamlines are present for a = 10. This is again due to the decrease

decay of K0 as a increases. The streamlines grow further apart as a increases.
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Figure 3.15: Streamlines of ψa plotted for a = 0.5. Large arrows indicate direction
of the flow.

Figure 3.16: Same as Fig. 3.15 but a = 1.
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Figure 3.17: Same as Fig. 3.16 but a = 2. Note that the three smallest values of ψs

are not represented as the contours are outside the region plotted.

Figure 3.18: Same as Fig. 3.17 but a = 10. Fewer contours are present as the
distance between contours increases greatly. ψa = 0.85, 0.95, 1 are the only values
visible on the grid. The flow is relatively weak.
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In the presence of anti-symmetric background flows there exist a variety of vor-

tex behaviours depending on the flow strength F . For example, there exist closed

trajectories where vortices remain locally trapped (see Fig. 3.19). For F = −0.6

(Fig. 3.19(a)), there are four primary regions within the flow: the hour glass shape

which contains a region of trapped vortex paths. There are also three stagnation

points on the y-axis including one which is unstable at the origin. For large |x|

some vortices approach the gap but are turned back, travelling back towards their

initial position owing to the background flow. Note that vortices sufficiently far

from the barrier also propagate against the direction of self advection owing to the

background flow.

Gradually increasing the magnitude of the strength F squashes the hour glass

so that its height (y-direction) decreases and its width (x-direction) increases as

the two stable (elliptic) stagnation points on the y−axis coalesce. In Fig. 3.19(b)

(F = −1), the hour glass contains closed paths (with their semi-major axes lying on

the y-axis). Interestingly the centre of the gap has gone from an unstable hyperbolic

point Fig. 3.19(a) to an elliptic point Fig. 3.19(b). In Fig. 3.19(c), with stronger

background flow (F = −1.4), the centre of the gap is again hyperbolic and there

are now two stable stagnation points on the x−axis. In Fig. 3.19(d), the strongest

background flow (F = −1.6), the hour glass is further squashed and the stagnation

points are pushed further out towards the tips of the barriers.

When the background flow is cooperative, (F > 0), a larger number of vortices

pass through the gap. Fig. 3.20 shows that for vortices starting x → −∞, y > 0,

ysep increases with an increase in anti-symmetric flow strength.

The effect of changing a also influences the vortex path trajectories. As the effect

of the background flow is felt less strongly as a increases, the magnitude of F must

be increased to get results similar to those for small a.

In Fig. 3.21(a), F = −0.5, the vortex trajectories starting far from the wall

and away from the gap are advected in the opposite direction to regular (i.e. zero
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(a) F = −0.6 (b) F = −1.

(c) F = −1.4 (d) F = −1.6

Figure 3.19: Vortex trajectories (Γ = 1) over a range of anti-symmetric flows. The
strength of the flows in each figure is −F = 0.6, 1, 1.4, 1.6 in (a,b,c,d) respectively.
The large straight arrows indicate the direction of the the background velocity field.
Arrow-heads on the trajectories indicate the direction of vortex propagation.
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Figure 3.20: Value of ysep as a function of the strength F of anti-symmetric flow for
a = 1.

background flow) vortex motion. This is because the background flow strength is

felt relatively strongly. Vortices close to the wall do cross the gap as the vortex

self-advection is stronger. There are two stagnation points present along the gap

within the trapped vortex paths. In Fig. 3.21(b), F = −0.5 but the vortex paths

are similar to the zero background flow case.

Fig. 3.22, F = −2 with a = 1 in (a) and a = 2 in (b). Again, the effect on

the vortex trajectories is stronger for the smaller a with vortices going against their

self-propagation direction in Fig. 3.22(a), however, the effect of the trajectories for

a = 2 in Fig. 3.22(b) is similar to that of Fig. 3.19(a).
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(a) (b)

Figure 3.21: F = −0.5. (a) Vortices are propelled in the opposite direction to their
normal propagation near the gap for a = 0.5. (b) Vortex behaviour is similar to
that seen in the absence of background flow for a = 2.

(a) (b)

Figure 3.22: F = −2. (a) Vortices are propelled by the background flow in the
opposite direction to their propagation near the gap for a = 1. (b) Vortex behaviour
is similar to that seen in Fig. 3.19(a) for a = 2.



Chapter 3. Vortex motion near a gap in a wall: Small Rossby radius case 72

3.5 Summary

An integral equation (using vortex sheets aligned with the semi-infinite barriers)

has been solved by approximating it as a system of linear equations and solving

using matrix inversion techniques. The method does not rely on iterating about the

a = ∞ exact solution and is hence valid for a < O(1).

This method yields vortex trajectories which show good agreement (with the

iterative method) over a range of a ≥ 1. The separatrix (that divides leaping-across

and gap-penetrating trajectories) is also computed by starting the point vortex near

the gap and advecting the vortex backwards in time until the vortex moves parallel

to the wall (i.e. behaving as it would near a wall without a gap). The results show

clearly that decreasing a increases the tendency of the vortex to the pass through

the gap.

The inclusion of background flows was done using the same numerical method.

Uniform symmetric and anti-symmetric background flows were considered, giving

interesting results. For the uniform symmetric case, if the background flow was such

that it opposed the point vortex velocity with zero background flow, it decreased

the number of vortices able to pass through the gap, with the converse being true

for a cooperative background flow. The anti-symmetric background flow (which has

no analogy in the rigid-lid limit) was also of interest due to the presence of trapped

vortex paths when the background flow locally opposed the natural direction of the

point vortex’s self-advection. When the background flow is in the same direction as

the point vortex path, this increases the number of vortices that are able to pass

through the gap.

In the next chapter, this numerical method is incorporated into the contour

dynamics code so that the effects of the Rossby radius of deformation on the motion

of finite-area patches near a gap can be examined.



Chapter 4

Finite area patch vortex motion

near a gap in a wall

Contour dynamics enables the motion of a finite-area patch of vorticity to be cal-

culated efficiently by advecting the boundary of the vortex patch. The contour

dynamics algorithm, in conjunction with contour surgery (as developed by Dritschel

1989) which allows for the breaking and joining of contours, is modified to include

the gap geometry.

The normal velocity along the barriers owing to a piece-wise constant distribution

of vorticity (i.e. the vortex “patches”) is calculated using the contour dynamics

algorithm. In the same way that we treated point vortices, the normal velocity is

split into even and odd parts. The barrier is discretized over the interval 1 6 x 6

13a, which is the same as the point vortex case (see Section 3.2). The resulting

even and odd velocity fields along the barrier help us to solve the resultant integral

equations for the respective streamfunction derivatives (λ1,2(x)). We do this by using

the same method described in Chapter 3 for the point vortex case. Once obtained,

the velocity owing to the vortex sheets (aligned along the barriers) is calculated at

each node on the contour. This velocity, along with the self-induced patch velocity

(computed in a standard way by contour dynamics) is then used to advect the nodes

73
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on the vortex patch boundary. This is achieved using a fourth-order Runge-Kutta

routine with a time step ∆t = 0.1.

4.1 Vortex patch normalisation

This section derives a new way of normalising finite-area vortex patches. The nor-

malisation factor incorporates the parameter a and is defined so that point vortices

can be made to travel at the same velocity as a circular vortex patch of an arbitrary

size.

First, we derive a preliminary result for the general solution of the Helmholtz

equation,

∇2ψ − 1

a2
ψ = 0, (4.1)

with arbitrary boundary conditions on the circle, r = R. The solution can be written

for r < R as

ψ =
∞
∑

n=0

(αn cosnθ + βn sin nθ)In(r/a). (4.2)

The area-average value of ψ inside a circular vortex patch is, using (4.2), pro-

portional to α0, the value of ψ at the centre of the patch:

〈ψ〉 =
1

πR2

∫ R

0

∫ 2π

0

ψr dr dθ = 2
α0

R2

∫ R

0

I0(r/a)r dr = α0S (4.3)

where

S =
2a

R
I1(R/a). (4.4)

Note S increases monotonically from unity (the rigid-lid or a → ∞ limit) with

increasing R/a.

The x coordinate of the potential vorticity centroid of a finite area patch can be

written for a non-constant potential vorticity q(x, y) as xc =
∫

xq/Q where Q =
∫

q

is the total potential vorticity inside the vortex patch, and all integrals are evaluated
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over the area of the patch. Conservation of potential vorticity q shows that Q is a

constant of the motion and hence,

Qẋc =

∫∫

xq̇ = −
∫∫

x · ∇(uq) =

∫∫

qu · ∇x−∇ · (xuq) . (4.5)

The divergence term is reduced to a line integral around the boundary of the

patch, which for a finite patch, vanishes. The first term remains which is just

the area integral of the x component of the velocity, u, multiplied by q. This

is written as u = uv + ue where uv is the irrotational velocity induced on the

patch in isolation (i.e. from the infinite domain Green’s function) and ue is the

rotational velocity induced from external sources such as images in boundaries,

vortex sheets or superposed irrotational background flows. The usual manipulations

of the conservation of impulse show (Saffman 1992) that uv makes no contribution

to the integral and therefore,

ẋc =

∫∫

ueq/Q, (4.6)

which, for a patch of constant potential vorticity q = q0, becomes

ẋc = 〈ue〉, (4.7)

that is, the simple patch-area average velocity of ue. As ue is the derivative of some

streamfunction ψ and so satisfies Helmholtz’s equation over the patch, by (4.3) we

have,

ẋc = Sue(xc, yc). (4.8)

The analogous results hold for the y coordinate of the centroid yc and thus the

velocity of the patch centroid is S(ue, ve) = Sue(xc, yc), i.e. the same velocity field

as felt by a point vortex at (xc, yc) but multiplied by the factor S. Note also that the

external fields, independent of the potential vorticity anomaly, must also be scaled
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via the parameter S.

The velocity ue is still required. For a uniform potential vorticity, q0, inside the

vortex patch the jump in vorticity is

∇2ψ − 1

a2
ψ =















q0 r < R,

0 r > R.

(4.9)

Equation (4.9) has solution, with ψ constant and having continuous derivative

along the patch boundary,

ψ/q0 =















−a2 − aRK ′

0(R/a)I0(r/a) r < R

−aRI ′0(R/a)K0(r/a) r > R,

(4.10)

where the dashes indicate derivatives.

The field outside the patch (r > R) can be written,

ψ = S(Q/2π)K0(r/a). (4.11)

4.2 Normalisation results

Recall, (4.8), that the external field plus any imposed external field then induces a

velocity field on a patch that scales with S so that the patch moves with velocity

Sue(xc, yc). Hence, a point vortex can be made to move at the same speed near,

say, a boundary as a circular patch of arbitrary radius R provided the circulation of

the point vortex Γn = S2Q. As the rigid-lid approximation is approached, a → ∞,

Γn → Q, hence scaling directly with the circulation of the vortex. It is important to

note that this ‘usual’ scaling with the vortex circulation only holds in the a → ∞

limit, and that, more generally, the patch circulation must be scaled by S2Q.

Fig. 4.1 shows results for the motion of individual patches with different areas
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(a) (b)

Figure 4.1: The effect of various vortex patch normalisations. (a) Snapshot at
t = 28.8 for the motion of a point vortex (♦) and circular vortex patches of radius,
R = 0.25, 0.5, 0.75, 1 with centroids denoted by (+, ∗,△,�), respectively. Here
a = 10, q = 1 and patch centroids are initially located at (−2, 1.2). Circulation of
the point vortex is Γ = 1. The solid line indicates the trajectory of a point vortex.
(b) same as in (a) but zoomed in to focus on the centroids and with q scaled by the
patch size so that Γ = qπR2 = 1 for all patches.

(a) (b)

Figure 4.2: (a) Same as in Fig. 4.1(b) but with a = 1 and snapshot taken at t = 350.
Note the non-systematic spacing of the patch centroids. (b) Same as in (a) but with
vorticity, q, scaled so that S2Q = 1. Here vortices which remain close to circular
travel at the same speed as a point vortex with strength Γ = 1.
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moving near a gap in the absence of a background flow field with a = 10. As can be

seen in Fig. 4.1(a), with non-normalised flows with q = 1, the larger patches travel

faster than smaller patches. Note that patches of area πR2 < 1 with R = 0.25 and

R = 0.5 travel slower than a point vortex of strength Γ = 1 whereas patches with

area πR2 > 1 with R = 0.75 and R = 1 travel faster. The largest patch deforms

significantly due to the presence of the downstream barrier and begins to shed

vorticity causing its centroid to deviate from the equivalent point vortex trajectory.

For a = 10, each patch’s velocity can be normalised with the circulation of the

patches, as seen in Fig. 4.1(b) . The largest patch does slow down considerably due

to its interaction with the barrier causing it to become non-circular.

For a = 1, using the ‘usual’ circulation based scaling, shows that the difference

of the patch speed from the point vortex speed is significant (see Fig. 4.2(a)). In

particular this difference is not systematic as R varies, with R = 0.75, having the

greatest translation speed. Instead, Fig 4.2(b) has its vorticity q scaled such that

S2Q = 1 for all patches. This new scaling shows that there is a systematic variation

of patch speed from the point vortex speed as R varies, i.e. the smaller the radius of

the patch, the closer the speed to the point vortex. For patches which remain close

to circular throughout their evolution there is very good agreement in both their

trajectories and speed.

4.2.1 Vortex patch motion: Background flows

Similarly, the effect of background flows can be scaled so that vortex patches of

varying size follow the point vortex trajectories with the same speed. In Fig. 4.3 the

uniform symmetric flux through the gap advects the vortex patches in the positive

y direction. Here a = 1 and the background flow has been scaled by the factor S.

For a positive vorticity patch with the flux reversed, the background flow forces

the patch closer to the gap− see Fig. 4.4. Owing to the significant deformation

of the larger patches there is some observable but small change in patch speed in
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Figure 4.3: Motion of patches of varying size in a normalised uniform symmetric
flow through the gap with F = 1/S. Large arrows indicate the direction of the nor-
malised background flow. Initially, the centroid location of the normalised patches
and the point vortex is (−2, 1), with the centroids denoted in the same way as in
Fig. 4.1. Snapshots taken at t = 0, 61.6, 140 and a = 1. Centroids are indicated by
(+, ∗,△,�) symbols.
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Figure 4.4: Same as Fig. 4.3 but with F = −1/S. The large arrows indicate the
direction of the background flow. Snapshots taken at t = 0, 40.8, 80.
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comparison to that of a point vortex.

Unlike for a point vortex, the anti-symmetric flux through the gap can result in

large deformation of the patch. For example Fig. 4.5 shows a vortex patch approach-

ing the centre of the gap where the background flow is strongly sheared causing the

vortex to split.

Using the trapped point vortex paths from the previous chapter, the motion of

the centroid is also trapped in the same region for different sized vortex patches,

as can be seen in Fig. 4.6. The point vortex path is dotted and vortex patches

are advected with initial centroid location (0, .2). Here, as the vortex patches stay

roughly similar, the centroid of the patches moves at the same speed although there

are some changes to the largest vortex patch, it also follows the numerical trajectory

of the point vortex as it is still roughly circular.

4.3 Summary

The method of contour dynamics has been adapted for gap geometry with a finite

Rossby radius. Furthermore a normalisation is developed such that a point vortex

can travel at the same speed and trajectory as a circular vortex patch of arbitrary

radius as a function of a. The inclusion of background flows has also been considered

and the results show good agreement between equivalent point vortex and patches

provided the patches remain circular.
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Figure 4.5: Motion of a patch (initially circular with radius R = .75) in an anti-
symmetric background flow through the gap of strength, F = 2/S for a = 1. The
strong shear forces the patch to split when close to the centre of the gap. Note
the solid line shows the point vortex trajectory starting at the same location as the
patch. Snapshots taken at t = 0, 70, 108.5.
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(a) (b)

(c) (d)

Figure 4.6: Motion of a patch (initially circular with radius R = 0.25, 0.5, 0.75) with
an anti-symmetric background flow through the gap of strength, F = −1/S for
a = 1. The arrows indicate the direction of the background flow. The background
flow opposes the natural direction of propagation of the vortex and hence becomes
trapped as is the case with the point vortex. The dotted line shows the point vortex
trajectory starting at the same initial location as the patch. Snapshots taken at
t = 80, 320, 480, 680.



Chapter 5

Rossby radius effects on steadily

translating vortex pairs

5.1 Introduction

Distributions of vorticity that preserve their shape when propagating near bound-

aries, in variable topography or in the presence of other vortical structures have

been a subject of interest in the literature. These equilibrium distributions repre-

sent exact solutions to the two dimensional barotropic quasigeostrophic equations

(the rigid-lid limit of which is equivalent to the Euler equations). The vorticity dis-

tribution is said to be a V-state if there exists a frame of reference where the vortical

structure is invariant. Such structures are frequently stable and thus represent per-

sistent long-lived solutions of the equations of motion and, therefore, merit study.

Configurations of point vortices yield some simple examples. A pair of counter-

rotating point vortices of strengths ±κ respectively, separated by a distance h in a

rigid-lid (a→ ∞) fluid travel at constant velocity κ/2πh in the direction normal to

the line segment between the two vortices. Conversely, vortices with equal strength,

κ, rotate about the centre of the line segment connecting them with constant angular

velocity κ/πh2. Furthermore, a pair of co-rotating vortices will move in concentric

84
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circles.

The three point vortex problem (again in the rigid-lid limit, Ld → ∞) has been

well researched in the past, (see Aref 2003). For fixed equilibrium (i.e. each vortex

is stationary), the condition required is that the three vortices must be collinear and

such that

(x2 − x1) =
κ2

κ3
(x1 − x3), (5.1)

and

κ3 = − κ1κ2

κ2 + κ1

, (5.2)

where x1,2,3 are the locations of the three vortices and κ1,2,3 are the respective vortex

strengths. If the vortices have equal strength, and are located on the vertices of

an equilateral triangle, there is relative equilibrium, in which each vortex has the

same angular velocity about the centroid of the triangle. In fact, Kelvin (1878)

and Thompson (1883) showed that for any regular polygon with identical vortices

located on vertices, relative equilibrium exists in which the whole structure rotates

with constant angular velocity κ(N − 1)/4πr2, where r is the radius of the circle

on which the vertices lie. Perturbing the system by moving the nth vortex, Saffman

(1992) showed that for N < 7, the system is linearly stable but for for N ≥ 7, the

system is unstable.

An infinite row of equidistant point vortices of equal strength, κ are also sta-

tionary. If the point vortices (with Ld → ∞) are located on the x−axis at x = md,

where m = 0,±1,±2, . . ., it has been shown by Lamb (1932) that the complex po-

tential for such a system is w = iκ/2π log(cos (πz/d)). Thus, at the point vortex

at x = md, the velocity field, u − iv = dw/dz, can be shown to be exactly zero,

i.e. all vortices are stationary. Lamb also showed that for small disturbances the

system is unstable. The double row problem, also considered by Lamb (1932), in

which a second row of oppositely signed vortices is aligned parallel to the first row

is also an equilibrium configuration. In this case, the whole system advances with
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constant velocity, U = κ/2d cothπc/d, where c is the distance between rows and d is

the distance between successive vortices within a row. This system was also shown

to be unstable for small disturbances.

The double row of staggered line vortices, such that the vortices in each row

are opposite the centre of two successive vortices in the other row, was studied by

von Kármán and Rubach (1913) and is of particular interest since the configuration

models the trail of vortices shed in the wake of a cylindrical body advancing through

a fluid. Lamb (1932) showed that the double row staggered line vortex configuration

propagates with velocity V = κ tanh(πc/d)/2d, where c is the normal distance

between the two rows and d is the distance within a row. This configuration was

shown to be stable to small disturbances. The addition of a lateral rigid boundary,

such as a wall, equidistant from the medial line was discussed by Rosenhead (1929).

It was found that within a channel (i.e. two parallel walls), the staggered double

row was stable but only given a precise configuration relating the distance between

vortices and the channel walls. The symmetrical double row configuration within

channel geometry was shown to be unstable always.

Near obstacles, point vortex equilibria also exists. For example, the motion of a

vortex of strength κ, located at an initial distance rv from the centre of a cylinder

with radius rc is found to rotate around the cylinder at the same distance with a

constant angular velocity of κr2
c/2πrv(r

2
v − r2

c ).

Other models of vortical structures have been used to find relative equilibria in

the rigid-lid limit. The steadily translating Lamb dipole (also known as a modon)

is a circular vortex within which there is continuously varying vorticity. In three

dimensions the work of Fraenkel (1970) and Norbury (1972) showed the theoretical

existence of a one-parameter family of vortex rings of continuously varying vorticity.

The family consisted of vortex structures ranging from the potential (free) vortex

to Hill’s spherical vortex as the mean core radius of the vortex increased. Norbury

(1975) further showed that for the two dimensional case, such vortex pairs exist
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if the vorticity function is a locally continuous function of the streamfunction, i.e.

∇2ψ = f(ψ). The von Kármán vortex street has also been studied by Saffman and

Schatzman ((1982a),(1982b)) using an inviscid model of finite core vortices to inves-

tigate the effect of finite core size on the relation between aspect ratio (length/width)

and vortex strength.

A series of recent papers by Crowdy (e.g. Crowdy 1999,2002) construct ex-

act vortex equilibria which comprise point vortices in combination with patches of

uniform vortices. These equilibria, which either rotate steadily or are completely

stationary, are characterised by having zero net circulation.

For the case of uniform (constant) vorticity pairs (with opposite signed vortic-

ity), Deem and Zabusky (1978) numerically found a family of steadily translating

solutions, which they called ‘translating V-states’. Equivalently these solutions rep-

resent a family of patches propagating parallel to an infinite wall. Indeed this was

one of the first uses of the numerical method we now know as contour dynamics. The

properties associated with these vortex structures and a description of their shape

was obtained by Pierrehumbert (1980) using a relaxation algorithm. He calculated

the family of V-states as a function of θ = r/xc, where r is the equivalent radius (i.e.

area divided by half the perimeter) of each vortex and 2xc is the distance between

the centroids of the vortices. For small θ, the vortices remain nearly circular and

propagate at the same speed as that of a pair of point vortices with equivalent circu-

lation. As the size of the vortex increases, the vortex patches become considerably

more deformed. The limiting case of two touching vortices (or, in the wall analogy,

the vortex touches the wall) was examined numerically by Sadovski (1972) and later

by Saffman and Tanveer (1982). Steady co-rotating pairs of vortex patches were also

studied by Saffman and Szeto (1980), who solved the contour dynamics equations

numerically.

McDonald (2004) investigated a new translating quasigeostrophic V-state, incor-

porating topography. Here, the motion of a pair of co-rotating point vortices near
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an escarpment was modelled. The relative vorticity distribution resulting from fluid

crossing the escarpment causes a steady state to occur, in which the point vortices

pair up with the constant vorticity patch and propagate parallel to the escarpment.

The linear solution for small wave amplitudes was found analytically. The non-linear

case was solved using contour dynamics with a unique equilibrium solution found.

This was demonstrated to be unstable.

All the above studies are focused on the rigid-lid (a → ∞) case. Yet, it is

of interest from a geophysical perspective to investigate steady-state distributions

of vorticity for arbitrary Rossby radius of deformation as these are likely to be

persistent structures observable in the ocean and atmosphere.

This chapter determines the effect of varying the Rossby radius of deformation,

on steadily translating counter-rotating vortex pairs (or, equivalently, a single patch

near a wall) each having constant vorticity. Quasigeostrophic dynamics in a single

layer of reduced gravity inviscid, incompressible fluid are assumed. The method of

contour dynamics (Dritschel 1989) is used to calculate the velocities induced by the

patches. A relaxation algorithm based on that of Pierrehumbert (1980) is then used

to calculate the shape of structures.

The translational velocities of the vortex patch pairs are compared to the trans-

lational velocities of point vortex pairs with equivalent circulation,

ΓPV = [
2a

R
I1(R/a)]

2πR2, (5.3)

located at the centroid of the patch, where R is the mean radius of the patch. There

is good agreement for a range of patch sizes. When the patches are sufficiently small,

decreasing the Rossby radius makes the steadily translating shapes more circular.

However, when close to the wall, the effect of decreasing the Rossby radii results

in patches deforming greatly, forming long slug-like shapes. These are shown to be

stable using the time-dependent contour dynamics code (Dritschel 1989).
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Background flows can also be imposed on the system resulting in a family of

vortical shapes, ranging from the slug-like to the tear-drop in shape. The two back-

ground flows considered here are the positive and negative uniform flow parallel to

the line of symmetry of the pair (or, equivalently, parallel to the wall). Again, point

vortex pairs in a background flow can be made to travel at the same velocity as

circular patches when the background flow strength is, C = 2a
R
I1(R/a). Pierrehum-

bert’s (1980) algorithm is also modified to find the exact strength of background

flow required to render a vortex patch stationary. Furthermore, these shapes are

tested for stability by running them in a time-dependent contour dynamics code.

5.2 The barotropic quasigeostrophic equation

A single layer of reduced gravity fluid in a flat bottomed ocean of depth H is con-

sidered. In the quasigeostrophic limit, the potential vorticity q is conserved, i.e.

Dq

Dt
= 0, (5.4)

where,

q = ∇2ψ − 1

L2
d

ψ, (5.5)

and Ld is the deformation radius.

The streamfunction, ψ(x, y) is such that,

u = k ×∇ψ, (5.6)

where the velocity field of the fluid is given by u = ui + vj.

For steady motion the boundary of the vortex patches must be such that the

streamfunction along the boundary has a constant value i.e. the patch boundary is

a streamline. Equilibria are sought which travel at a constant speed perpendicular

to the line segment between the centres of the counter-rotating vortex patches. The
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Figure 5.1: The counter-rotating vortex pair. The pair travels parallel to the x−axis.
Arrows indicate the sense of circulation associated with each patch. Vt is the speed
of the pair. Equivalently, the pair is stationary when a uniform flow of velocity −Vt

at infinity is imposed.

vortex pairs have mirror symmetry about the x−axis, each having equal and opposite

vorticity (see Fig. 5.1).

As the velocity in the y−direction induced by the positive and negative vortices

cancel each other out along the x−axis, there is a constant streamfunction along it,

which can be set to zero. The system is therefore equivalent to a single vortex patch

whose nearest edge is at a distance of y1 from a wall along the x−axis. Exploiting

this symmetry, all the plots herein will feature only the top vortex patch with the

bottom vortex patch being referred as the image vortex.

The potential vorticity equation (5.5) is non-dimensionalised by choosing yN as

the length scale and |κ| for the streamfunction, thus the point of the patch furthest

from the wall is y = 1. Consequently y1 must lie in the interval 0 < y1 < 1. The

non-dimensional potential vorticity q′ can thus be written as

q′ = ∇2ψ′ − 1

a2
ψ′, (5.7)
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where

a = Ld/yN . (5.8)

For convenience the primed notation is removed.

5.3 Numerical method

5.3.1 Vortex patch discretization

The initial guess for the boundary of the vortex patch is taken to be a circle, sym-

metric about the y−axis. The half boundary is discretized into N points with the

first and last points fixed, i.e.,

(x1, y1) = (0, y1); (xN , yN) = (0, yN), (5.9)

where, yN = 1 and y1 are fixed. Let (xc, yc) = (0, yN+y1

2
) be the centre of the circle.
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(xc, yc)

(xN , yN)

(xi+1, yi+1)

(xi, yi)

(x1, y1)

dθ

θ

Figure 5.2: Initial circular vortex patch discretized about the centre by the angle θi.

The patch is discretized uniformly in the angular direction about its centre using
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θi = (i− 1)π/N such that (see Fig. 5.2), for i = 1, . . . , N

xi = R cos(θi − π/2), (5.10)

yi = yc +R sin(θi − π/2), (5.11)

where R = yN−y1

2
is the initial radius of circular patch and yc is the centroid of

the vortex patch. Note that only half of the vortex (the positive half) needs to be

discretized owing to the mirror symmetry about the y−axis possessed by the vortex

patch.

The y−coordinates, yi, of the system are kept constant and the system is solved

for x2, . . . , xN−1 and the translational velocity Vt, i.e. xi, i = 2, . . . , N − 1 and Vt

are adjusted at each iteration until the boundary becomes a streamline. Note that

the solution is steady state and the vortex patch is not advected in time. Contour

dynamics is used to find the velocity field (ui, vi), i = 1, . . . , N at each node due to

the patch and its image in y = 0. As the size of the vortex patch gets smaller, the

scale of surgery must be increased to get more accurate results. The scale of surgery

was modified so that N > 100 regardless of the size of the vortex patch.

Let, without loss of generality,

ψ(x1, y1) = 0, (5.12)

then using

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy, (5.13)

the change in successive values of ψ along the boundary can be written as,

ψi+1 − ψi = v̄idxi − ūidyi, (i = 1, . . . , N − 1), (5.14)
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where ψi = ψ(xi, yi) and

ūi =
ui+1 + ui

2
; v̄i =

vi+1 + vi

2
, (5.15)

and

dxi = xi+1 − xi; dyi = yi+1 − yi. (5.16)

When the vortex patch is at a steady state, the boundary must be a streamline

in a frame moving with the patch at a constant velocity, Vt, i.e.

Ψ(x, y)




patch boundary = (ψ(x, y) + Vty)






patch boundary
= c, (5.17)

where c is a constant. Equation (5.17) can be written as

Ψi = ψi + Vtyi = c, i = 2, . . . , N, (5.18)

which yields N − 1 equations in the N − 1 unknowns xi, i = 2, . . . , N − 1 and Vt.

The Taylor expansion of Ψi(x2, x3, . . . , Vt) about xnew
i = xj + ∆xj can be used

to form a linear system of simultaneous equations which can be solved to find the

change in xj , i.e. ∆xj at each iteration. Thus, iteratively, the solution for Ψ can be

found using Newton’s method. After Taylor expansion the system of equations can

be written in matrix form as follows,



















∂Ψ2

∂x2

∂Ψ2

∂x3
· · · ∂Ψ2

∂Vt

∂Ψ3

∂x2

. . . ∂Ψ3

∂Vt

...
. . . ∂Ψ4

∂Vt

∂ΨN

∂x2

∂ΨN

∂x3
· · · ∂ΨN

∂Vt





































∆x2

∆x3

...

∆Vt



















=



















c− Ψ2

c− Ψ3

...

c− ΨN



















. (5.19)

Each iteration involves matrix inversion to find ∆xj , ∆Vt, j = 2, . . . , N − 1. In

general, the matrix coefficients ∂Ψi/∂xj must be found numerically (see McDonald

(2004)). Instead, we use the approximation made by Pierrehumbert (1980), namely
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that only the diagonal terms in the matrix are kept in which case the matrix system

reduces to

∂Ψi

∂xi
∆xi = c− Ψi, i = 2, . . . , N − 1, (5.20)

or,

∆xi =
c− Ψi

vi
, i = 2, . . . , N − 1, (5.21)

since

vi =
∂Ψi

∂xi
. (5.22)

Thus, there is no need for matrix inversion and each iteration is very quick. There

is no real justification for neglecting the off-diagonal elements ∂Ψi/∂xj , (i 6= j),

except that the resultant numerical method works in that it converges. This may

be due to the diagonal dominance in the matrix in (5.19). Note the coefficients

∂Ψi/∂xi = vi given by (5.22) are simply the y−velocities at each node and are given

at each iteration by the contour dynamics algorithm. The translational velocity, Vt

is calculated using (5.19)

Vt =
ψN − ψ1

y1 − yN
, (5.23)

and the constant can be found at each iteration by putting i = 1 in (5.19):

c = Vty1. (5.24)

∆x is then calculated using (5.21). To ensure convergence, an under-relaxation

coefficient, µ = 0.6 is used. The resulting iterative scheme can be written

xn+1
i = xn

i + µ∆xn
i . (5.25)

The new value, xn+1
i , is used to re-calculate values of Vt, c and Ψi iteratively until the

boundary of the vortex patch has a constant streamline and the relative difference

between successive iterations of translational velocities is less than 10−6.
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Depending on the steady shape of the vortex patch and its deviation from the

initial circular shape, the number of iterations required until convergence varies.

Smaller patches stay roughly circular, therefore the number of iterations required

is less. Larger patches tend to be less circular and hence require more iterations

until the steady shape is found. The number of iterations, depends on the shape of

the final vortex varies between ten and one hundred. It is also noted that a circle

need not be the initial basis from which to start the iterations. In particular, when

examining certain background flows elliptical initial shapes were needed to achieve

convergence.

The number of points N used to discretize the patch boundary also varies de-

pending on the size of the vortex. A minimum number of fifty points for the smallest

vortex patch with R = 0.025 was used. There needs to be enough points to get an

accurate velocity field and therefore smaller vortices require higher resolution. A

maximum of four hundred points was used for the larger vortex patches having

R ∼ 0.5.

5.4 Numerical results for the finite Rossby radius

In the non-dimensional problem the value of yN is set to one, meaning y1 and a are

the only independent variables (in the absence of background flow). The top vortex

and the image vortex have non-dimensional vorticity ±1 respectively.

In Fig. 5.3, two families of solutions corresponding to a = 5, 99 for the steady

translating vortex pairs are shown. There is effectively no difference in patch shape

for a & 5 and they, not surprisingly, closely resemble the solutions computed by

Pierrehumbert (1980) in the a → ∞ limit. Note that the smaller vortex patches

are circular while the larger patches are more ‘elliptical’, flattening along the edge

closest to the line of symmetry (or wall).

There is a small difference in Vt between a = 5 and a = 99 as shown in Fig. 5.4),
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with the smaller value of a having a corresponding smaller translational velocity

Vt, since the range of influence of one vortex on the other decreases owing to the

exponential decay associated with K1(r/a). Vortex patch size is also an important

factor in determining Vt. Larger vortex pairs that are closer together move quickly,

because the velocity induced by the image vortex is stronger than for smaller vortex

pairs.

The translational velocity can be scaled by the circulation (or, equivalently, area):

let V̂t be the scaled translational velocity,

V̂t =
Vt

Q (5.26)

where the circulation is

Q =

∫∫

D

q dA, (5.27)

where q is the potential vorticity of the system and D is the area enclosed within the

contour C, i.e. the boundary of the vortex patch. Since q = 1 everywhere inside the

vortex patch, Q is simply the area of the vortex patch. The velocity of an equivalent

(i.e. same circulation) pair of point vortices located at the centroids of the patches,

(0,±ycen), is compared to V̂t, where ycen is computed from

ycen =

∫∫

D

y dA/

∫∫

D

dA. (5.28)

The location of the centroid is found numerically using Green’s theorem,

ycen =
1

Q

∫∫

D

y dA =
1

Q

∮

C

y2

4
dx− xy

2
dy. (5.29)

It is noted that by symmetry, xcen = 0.

The equivalent point vortex pair translation velocity can be written,

Vp(0, yc) =
K1(2yc/a)

2πa
, (5.30)
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Figure 5.3: Family of solutions for vortex pairs with finite a, a = 5 (dashed) a = 99
(dotted) with y1 = 0.05 + n/10, n = 0, 1 . . . , 9. The two sets of results are indistin-
guishable in this plot.

a Linestyle

Figure 5.4: Vt is plotted against y1 = 0.05 + n/50, n = 0, . . . , 45, a = 5, 99.
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Figure 5.5: The scaled translational speed T1 is plotted against y1 for a = 5, 99.
There is negligible difference in T1 for these two values of a.
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where K1 is the modified Bessel function of the second kind of order one. The ratio,

T1 = V̂t/Vp is plotted against y1 in Fig.5.5. Small vortex patches (y1 → 1) remain

roughly circular and hence the velocity is expected to approach that of a point

vortex pair. Indeed the curve does asymptotically approach unity in this limit. As

the vortex patches become larger (y1 → 0), they become more deformed, flattening

out towards the bottom and thus travelling slower in comparison to a point vortex

pair.

The effects of decreasing a further (i.e. below 5) can be seen in Fig. 5.6, where

the shapes of the vortex patches are shown for a = 1, 2, 5. While the shapes are

broadly similar there are some notable differences. For the largest vortex patch,

y1 = 0.05, the vortex patches are larger for a = 1, 2 than for a = 5. However,

for y1 > 0.05, smaller a yields slightly smaller vortex patches. This latter effect

is because of a decrease in a, there is less of an effect due to the image vortex

as the streamfunction of the vortex patches decays faster. However when y1 is

sufficiently small, the counter-rotating vortex patches form larger vortex patches.

This is because the self-induced velocity of a patch on itself also decreases with a.

At some point the self induced velocity is less than that of its image, causing the

patch to elongate near the wall. Notably, for a = 1, y1 = 0.05, the two furthest

points on the vortex are greater than 2a apart.

Let R be the mean radius of a patch, i.e. the mean distance of the patch boundary

from its centroid. The difference in R between a = 5 and a = 1 (i.e. ∆R =

R|a=5 − R|a=1) (dotted) and a = 5 and a = 2 (dashed) is plotted in Fig. 5.7 as a

function of y1. There is a clear change in mean radius in that there can be either

positive and negative values of ∆R as y1 is varied. The mean radius in both a = 1

and a = 2 cases can be either greater or less than that of a = 5. Note the magnitude

of the difference, as expected, is generally less in the a = 2 case.

The translational velocities, Vt, however, are shown to decrease with respect to

y1 in Fig. 5.8, regardless of the size of the vortex patch. Smaller a correspond to
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Figure 5.6: Family of solutions for vortex pairs with finite a, a = 1, 2, 5 with y1 =
0.05 + n/10, n = 0, 1 . . . , 9. Here, a = 1 (dotted), a = 2 (dashed) and a = 5 (dot-
dash).

a Linestyle

Figure 5.7: Difference in mean radius of steady vortex patch between different values
of a. The difference between a = 5 and a = 1 is dotted and the difference between
a = 5 and a = 2 is dashed.
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smaller Vt, again as expected on the basis of more rapid decay of the velocity field

induced by a patch.

a Linestyle

Figure 5.8: Vt is plotted against y1 for a = 1, 2, 5.

The conventional scaling method for the translation speed based on area which

is useful for larger a (see Fig. 5.5), is less appropriate for a = 1, 2 than a = 5 (see

Fig. 5.9). An increasing difference in the translation speed as a decreases.

The method used for normalising the vortex patches discussed in Section 4.1

is also employed here: see Fig. 5.10 where the new scaled speed, T2 = V ′

t /Vp is

plotted against y1, where, V ′

t is the translational velocity scaled according to the

new normalisation scheme,

V ′

t =
Vt

S2Q , (5.31)

where, recall,

S =
2a

R
I1(R/a), (5.32)



Chapter 5. Rossby radius effects on steadily translating vortex pairs 102
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Figure 5.9: T1 is plotted for a = 1, 2, 5. As a becomes smaller, there is a greater
deviation from the point vortex solution.
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and R is the mean radius of the vortex patch and I1 is the modified Bessel function

of the first kind of order one.

Fig. 5.10 gives much better agreement over a larger range of y1 than the conven-

tional scaling used in Fig. 5.9.

a Linestyle

Figure 5.10: Normalised translational velocities using the scale factor S2Q.

As is the case for large a, Fig. 5.10 shows that the smaller patches (i.e. y → 1)

that stay roughly circular have similar values of the point vortex velocity, however,

the vortex patches gradually deform from their circular shape when they get closer

to each other. These trends are further exemplified for even smaller values of a =

0.4, 0.7, 1 in Fig. 5.11, Fig. 5.12 and Fig. 5.13.
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Figure 5.11: Family of solutions for vortex pairs with finite a, a = 0.4, 0.7, 1. Here,
a = 0.4 (dotted), a = 0.7 (dashed) and a = 1 (dot-dash).

a Linestyle

Figure 5.12: Vt plotted against y1 for a = 0.4, 0.7, 1.
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Figure 5.13: Using the new normalisation technique, V ′

t for vortex patches is com-
pared to Vp for a = 0.4, 0.7, 1. T2 is plotted against y1.
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5.4.1 Time dependent advection

The stability of the steady vortex shapes can be checked by using them as the initial

conditions in a time-dependent contour dynamics algorithm. Here, contours with

y1 = 0.05 for a = 0.4, 100 are advected using the fourth order Runge-Kutta method

with time step, ∆t = 0.1 for one hundred time steps. For comparison, the original

vortex patch shape (i.e. the shape at t = 0) is plotted over the patch shape after

one hundred time-steps, (t = 10) in Fig. 5.14-5.15.

Figure 5.14: The dotted line represents the vortex patch at t = 10 with a = 0.4,
with y1− = 0.05 at t = 0. The dashed line is the original vortex patch.

Figure 5.15: Same as in Fig. 5.14 but with a = 1.

The excellent comparison shown in Fig. 5.14-5.15 suggests that the equilibria are
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stable and that their stability is independent of the deformation radius.

5.5 Vortex pair motion in the presence of back-

ground shear flow

The effect of background flows can influence the shape, speed and direction of prop-

agation of the vortex patches. V-states in the presence of such background flows

are found by adjusting the contour dynamics algorithm. The background flow must

satisfy the quasigeostrophic equation such that,

∇2ψb −
1

a2
ψb = 0, (5.33)

where ψb is the streamfunction of the background flow. We note that is trivial in the

rigid-lid case as it simply amounts to a different translation speed without change

of shape. For arbitrary deformation radius the situation is non-trivial.

For flow parallel to the direction of propagation of the vortex pair the stream-

function satisfying the quasigeostrophic equation (i.e. Helmholtz’s equation) and

bounded at infinity is

ψb = Csgn(y) exp(−|y|/a), (5.34)

where C is a constant, the sign of which determines the direction of the background

flow. Hence, there is a constant horizontal velocity induced by the background flow

at any given y is

ub(y) =
C

a
exp(−|y|/a). (5.35)

Note, that (5.35) can be interpreted as a shear flow parallel to the wall which

decays exponentially with distance from the wall.
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5.5.1 Numerical results

The velocity induced at the boundary of the patch due to the background flow, ub(y)

is used in addition to the velocity induced by the patch itself and its image. Hence,

the horizontal velocity at each node is given by,

ui = upatchi
+ uimagei

+ ub(yi). (5.36)

With this modification the algorithm described in Section 5.3 proceeds as before.

The steady shape depends on the coefficient, C, of the background flow and the value

of a. It is noted that for |C| > 0.5/π and y1 < 0.5 for a < 1 steady shapes could

not be computed due to the high level of distortion of the vortex patch boundary

i.e. convergence could not be achieved. Therefore, in Sections 5.5.2-5.5.3, the a ≥ 1

cases are considered. First, the case of positive C is examined, which will hence be

called the positive background flow. The direction of both the background flow and

the self-induced vortex pair velocity are the same, so the net translational velocity

increases.

5.5.2 Positive background shear flow

To illustrate the effect of background flow on the steady vortex shape, the previous

zero background flow (C = 0) steady shapes are plotted over the new steady shapes

(C 6= 0). For a = 99, the velocity ub → C/a (i.e. a constant background flow) and

the change that occurs in the V-state shapes compared to the zero background flow

is negligible. That is, a constant background flow has no effect on the shape, but

merely affects the net translational speed. In Fig. 5.16, where C = 1/π, this can be

seen as the C = 0 and C = 1/π patch boundaries overlap precisely.

Let the translational velocity with C 6= 0 be Vb and C = 0 be Vt. Fig.5.17

shows the translational velocities, Vt and Vb of the steady vortex patches. Note that

the difference of the translational velocity with background flow relative to zero
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Figure 5.16: Family of solutions for vortex pairs with a = 99 with a background
flow coefficient C = 1/π (dotted) and C = 0 (dashed).

background flow becomes larger as the vortex patches become smaller.

In Fig. 5.18, a = 2, ub = C exp (−|y|/2)/2, and the background flow is seen to

significantly affect the shape of the steady vortex patches. To aid convergence, the

initial shape of the vortex patch was taken to be an ellipse such that the semi-minor

axis was along the y−axis and with semi-major axis taken to be twice that of the

semi-minor axis. In the presence of background flow, the patches are more elliptical,

extending wider in the x−direction. The translational velocities, Vb and Vt for a = 2

are plotted together in Fig. 5.19 showing, as expected, an increase in translational

velocity (as is the case for a = 99) however, the difference is even greater.

In Fig. 5.20, a = 1 and the change in the patch shape in the presence of back-

ground flow is even more pronounced. The increase in the translational velocity can

be seen in Fig. 5.21

As discussed in Chapter X, Section Y, in the presence of background flow, not

only must the point vortex circulation be scaled appropriately, so must the back-

ground flow itself. Recall the circulation of the point vortex equivalent of the patch
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Figure 5.17: Vb and Vt plotted against y1 and the horizontal velocity, C = 1/π and
a = 99 (dotted) and C = 0 (dashed). The background flow and the self-induced
vortex propagation are cooperative, hence, the translational speed in the presence
of the background flow are greater.

Figure 5.18: Family of solutions for vortex pairs with a = 2 with a background flow
coefficient C = 1/π (dotted) and C = 0 (dashed).
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Figure 5.19: Vb and Vt plotted against y1 and the horizontal velocity, C = 1/π and
a = 2.

Figure 5.20: Family of solutions for vortex pairs with a = 1 with a background flow
coefficient C = 1/π (dotted) and C = 0 (dashed).
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Figure 5.21: Vb and Vt plotted against y1 and the horizontal velocity, C = 1/π and
a = 1.
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is ΓV = S2Q, where,

S =
2a

R
I1(R/a), (5.37)

and R is the mean radius of the patch. The external velocity field owing to the

background flow is scaled with S, and hence Cp = SC, is the constant associated

with the background flow. The point vortex is again located at the centroid of the

patch and can be written as,

Vp = Γp
K1(2ycen/a)

2πa
+
Cp

a
exp(−|ycen|/a). (5.38)

The velocity ratio, T3 = Vb/Vp is shown in Fig. 5.22 for a = 1, 2, 99. For the smaller,

99

Linestyle

Figure 5.22: T3 plotted against y1

circular patches (y1 → 1), the agreement of Vb with the normalised point vortex

pair velocity, Vp is good. However, for the a = 1 case, recall the rate of deformation

of the vortex shape with increase of radius is faster and hence, tapers away from
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T3 = 1 asymptote faster than the a = 2, 99 cases as y1 decreases.

5.5.3 Negative background shear flow

Using a negative coefficient C = −1/π the background flow now opposes the self

propagation velocity of the vortex pair.

Figure 5.23: Family of solutions for vortex pairs with a = 2 with a background flow
coefficient C = −1/π (dotted) and C = 0 (dashed).

As is the case for the positive background flow, when a = 99, there is little

change in the shape of the steady vortex patches and the same is true for the

negative background flow (see Fig. 5.23). Also, there is only a slight decrease in the

translational velocity Vb due to the negative background flow (see Fig. 5.24).

In Fig 5.25, a = 2 and the negative background flow forces the steady shapes

to become smaller compared to their zero background flow counterparts. Note, in

order to ensure convergence, in this case, the initial shape of the vortex patch was

taken to be an ellipse such that the semi-major axis was along the y−axis and with

semi-minor axis half that of the semi-major axis.

The translational velocity is also affected (see Fig. 5.26) with all patches going

in the opposite direction (i.e. negative velocity) to the zero background flow case.
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Figure 5.24: Vb and Vt plotted against y1 and the horizontal velocity, C = 1/π and
a = 99 (dotted) and C = 0 (dashed). The background flow and the self-induced
vortex propagation now oppose each other, hence, the translational speed in the
presence of the background flow are decreased.

Figure 5.25: Family of solutions for vortex pairs with a = 2 with a background flow
coefficient C = −1/π (dotted) and C = 0 (dashed).



Chapter 5. Rossby radius effects on steadily translating vortex pairs 116

Flow Linestyle

Figure 5.26: Vb and Vt plotted against y1 and the horizontal velocity, C = −1/π and
a = 1. The vortex patch pairs propagate in the direction of the background flow
contrary to the direction of the propagation with zero background flow.
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The velocity induced by the image vortex is never stronger than the background

flow and all the vortex patch pairs travel in the direction of the background flow.

Figure 5.27: Family of solutions for vortex pairs with a = 1 with a background flow
coefficient C = −1/π (dotted) and C = 0 (dashed).

The contrast between the shapes is even more stark for the a = 1 case in Fig. 5.27.

The vortex patches are roughly elliptical. The background flow now has a relatively

strong effect, forcing all of the vortex patches in the opposite direction (see Fig. 5.28).

The normalisation technique is used again to show the comparison with the point

vortex pair in Fig. 5.29 as before. The discrepancy, as expected, is great for large

vortex patches, however, due to the deformation from the circular shapes of the

vortex patch.

In Fig. 5.30 vortex shapes for a number of different background flow strengths

C = −(1.+ n/2)/π, n = 0, . . . , 4 for fixed y1 = 0.15 and a = 1 are shown.

The point where the translational velocity Vb changes from positive to negative

is where the vortex patch is stationary. In Fig. 5.31, Vb is plotted against C and

the point where, Vb = 0 is found using linear interpolation and marked with (+).

The relaxation algorithm can be modified slightly to accurately compute the critical

value of C. This is discussed in the next section.
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Figure 5.28: Vb and Vt plotted against y1 and the horizontal velocity, C = −1/π and
a = 0.5.
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Figure 5.29: T3 plotted against y1

Figure 5.30: For fixed a = 1, the coefficient of the background flow C is varied to
generate different vortex shapes. The dotted and dashed lines are the steady shapes
for negative and positive background flows respectively. The solid line is the zero
background flow (C = 0) case.
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Figure 5.31: Values of Vb for constant a. The (+) represents the point where the
vortex patch has zero translational velocity, Vb = 0.
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5.6 Stationary vortex patches

For sufficiently large negative C, the vortex is forced to propagate contrary to its

motion in the absence of a background flow. By adjusting the relaxation algorithm,

the required coefficient, C, to bring the vortex patch to rest can be calculated

iteratively. Previously, in the algorithm the value C was held constant. Now the

translational velocity Vb is set to zero, with the value of C updated at each iteration.

Let Vb = Vt + CUb, where Vt is the translational velocity of the patch with

zero background flow and CUb is the translational velocity calculated due to the

background flow, such that

Ub =
e−y1/a − e−1/a

(y1 − 1)
. (5.39)

Vt is calculated as before, but as Vb is zero, the coefficient C can be deduced:

C = − Vt

Ub

. (5.40)

The new streamfunction, Ψ, is simply the sum of the zero background flow

streamfunction, ψ and the background flow streamfunction, ψb i.e.

Ψ = ψ + ψb. (5.41)

The boundary of the vortex is computed until the relative difference between

successive iterations of C is less than 10−6. Depending on the size of the vortex

patch and the value of a, the number of iterations required ranged from as few as

ten (for vortex patches of radius 0.05) to 60 (for vortex patches of initial radius

0.475).

Fig. 5.32 shows the steady shapes for a = 99 in a background flow such that the

patch is at rest along with the steady solutions in the absence of a background flow.

As expected, there is no change in shape. The corresponding coefficients C that
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yield zero translational velocity are plotted against y1 in Fig. 5.33. As assumed,

for constant a = 99, as y1 increases and the vortex patch radius decreases, C also

decreases as a background flow with less strength can force the patch to a stop.

Figure 5.32: Family of solutions for vortex pairs with a = 99 such that the vortex
patch pair is brought to rest (dotted) and when C = 0 (dashed).

Figure 5.33: C plotted against y1 with a = 99.

The change in patch shape for smaller a is evident in Fig. 5.34, where a = 1.
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As the vortex patches move slower regardless of background flow, the coefficient

required for creating Vb = 0 is also smaller than the a = 99 case. These coefficients

are plotted in Fig. 5.35

Figure 5.34: Family of solutions for vortex pairs with a = 1 such that the vortex
patch pair is brought to rest (dotted) and when C = 0 (dashed).

Figure 5.35: C plotted against y1 with a = 1.

In Fig. 5.36, C is calculated and plotted against a when y1 is fixed at y1 =

0.15n, n = 1, . . . , 5. As a increases, so does the translational velocity, hence, the
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magnitude of the strength of the background flow, |C|, also increases. As the vortex

patches become smaller, the velocity induced by the image vortex also decreases,

hence the magnitude required to bring the pair to rest also decreases.
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Figure 5.36: C plotted against a with y1 = 0.15n, n = 1, . . . , 5.

5.6.1 Time dependent advection with background flow

To investigate the stability of the V-states, they are used as initial conditions in the

time-dependent contour dynamics code. We examine the effect of both the positive

and negative background flow on their evolution. If stable, the structure should

persist without changing shape for considerable time. The strength of the back-

ground flow in Fig. 5.37-5.38 is C = ±1/2π with a = 0.5 and y1 = 0.5, respectively.

The vortex propagates in the positive x−direction and was allowed to evolve up to

t = 40. In Fig. 5.37 there is no change of shape and we conclude the structure is

stable.

In Fig. 5.38 C = −/2π, the vortex is forced backwards. Again, the vortex is
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Figure 5.37: Steady vortex patch time-dependent propagation with background flow
C = 1/2π. Snapshot taken at t = 40 (dotted) and overplotted with the original
vortex patch shape (dashed).

allowed to propagate up to t = 40 and there is no discernible change in shape and

the vortex appears stable.

The completely stationary vortex patch pairs computed in Section 5.6 are also

stable as shown in Fig. 5.39-5.40 where a = 99 and a = 1 respectively.
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Figure 5.38: Same as in Fig. 5.37 but with C = −1/2π.

Figure 5.39: The dotted line represents the vortex patch advected with snapshots
taken at t = 10 with a = 99. The dashed line is the original V-state.
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Figure 5.40: Same as in Fig. 5.39 but with a = 1.
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5.7 Summary

The effects of finite Rossby deformation radius on steady vortex pair motion has been

examined. Assuming quasigeostrophic dynamics, Pierrehumbert’s (1980) relaxation

algorithm was modified to compute the steady state shapes of a pair of counter-

rotating vortex patches propagating in a straight line, or, equivalently, the shape of

a vortex patch adjacent, and propagating parallel to, an infinite wall.

First, it was noted that for large a ≥ 5, there was negligible difference in the

steady shapes compared to those computed by Pierrehumbert in the rigid-lid case,

although there was a slight decrease in the translational velocity, Vt, as a decreases

from infinity. This is due to the exponential decay of the velocity induced by the

counter-rotating vortex, K1(r/a) which is used to calculate the velocity at every

node along the vortex patch.

Furthermore, the circulation of the patch was scaled by its area to give, V̂t

and compared to the velocity of a pair of equivalent point vortices in the same

configuration, with each point vortex located at the centroid of the vortex patches.

For large vortex patches that were close together, the steady shapes were quasi-

elliptical and move more slowly than the equivalent pair of point vortices. For

smaller vortex patches, however, there was good agreement to the equivalent point

vortex configuration.

With decreasing a, the change in vortex shape from the rigid-lid case became

more apparent. The translational velocities continued to decrease with a decrease in

a, due to the exponential decay of K1(r/a). Small vortex patches with a < 5 were

more circular than the a = 5 case. This is partly due to the fact that the image

vortex is not felt as strongly. However, there is a value of a below which the mean

radius of large vortex patches starts to increase as a is reduced (see Fig. 5.11).

The method of scaling circulation based on patch area is no longer valid as

the behaviour of the translation speed is non-systematic. The method formulated

in Chapter 4.1 was used instead which gave good agreement for the small radius
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vortex patches for all values of deformation radius. As the vortex patches became

more deformed from circular, the scaling was no longer applicable.

The stability of the steady shapes were also tested by advecting the vortex

patches using the time-dependent contour dynamics code in time and comparing

to their original shape. Excellent agreement was found confirming that the vortex

pairs were indeed streamlines in a frame moving at a constant horizontal velocity.

The influence of a parallel background shear flow satisfying the Helmholtz equa-

tion was also accounted for in the relaxation algorithm. New families of shapes were

found and with translational velocities, denoted by Vb. For large a, there is little

change in the steady shape since the background flow merely advects the patch at

a constant velocity. However, decreasing a gives substantially different vortex equi-

librium shapes. As a decreases, the positive background flow stretches the vortex

patches horizontally, whereas the negative background flow shrinks the vortex patch

in the horizontal direction.

There were also a range of strengths of negative background flows that resulted

in the vortex patches travelling in the direction contrary to normal motion in the

absence of the background flow. Another modification to the algorithm allowed

strengths of background flows to be calculated such that the vortex patch pairs

were perfectly stationary.

Both the stability of the family of solutions in the presence of background flows,

and including those vortex patches which were stationary were tested using the time

dependent contour dynamics code. In all cases for arbitrary a, the equilibria were

found to be stable.



Chapter 6

Conclusions and future work

This work examines the effects of the Rossby radius of deformation on vortex inter-

actions in a two dimensional ideal rotating fluid. In chapters 2, 3 and 4, the motion

of a vortex near a gap in a wall was studied and in chapter 5 steadily propagating

vortex pairs were found.

In chapter 2, large finite a is considered. First modelling the effect of the gap by

replacing it with a vortex sheet, an integral equation is derived such that there is no

normal flow through the barriers and such that the Helmholtz equation was satisfied

at every point inside the fluid except at the point vortex. The hypersingular integral

equation was solved iteratively using the solution of the rigid-lid case (a→ ∞) found

by Johnson and McDonald (2004).

When the vortex approaches the gap, however, a further singularity is encoun-

tered in the integrand. Hence, a conjugate method (the barrier method) was also

developed for when the vortex is near the gap. The barrier method models the semi-

infinite barriers by replacing them by vortex sheets whose strength is determined by

solving an integral equation. The two methods are used to find solutions valid for

all vortex positions and give good comparisons with the analytical solutions for the

rigid-lid case.

For finite a, it was noted that as a decreased, the tendency of vortices to pass
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through the gap rather than leap across increased. For a < 1, the method fails as

the initial guess is based on the infinite a case. Thus, another method was developed

to solve the integral equation derived using the barrier method.

In chapter 3, the finite, small Rossby radius is considered. The integral equation

from the barrier method was solved by discretizing and the resulting set of linear

equations solved using matrix inversion techniques. The results using both the

iterative method and the matrix method showed good agreement for a range of

a. For small a, the point vortex propagates at a notably slower speed, due to the

exponential decay of the modified Bessel function K0 and thus takes longer to notice

the presence of the gap. Therefore, when close to the barrier the trajectory is parallel

to the wall for longer than the equivalent, larger a, point vortex. However, when

starting further from the barrier, when approaching the gap, the point vortex takes

longer to notice the downstream barrier and hence, turns into the gap and passes

through.

The separatrix, i.e. the critical trajectory separating vortices that either pass

through the gap or leap across, was calculated for various a by advecting vortices

backwards in time starting from near the origin until the point vortex was travelling

with constant horizontal velocity and negligible vertical velocity i.e. point vortex

behaviour near an infinitely long wall.

The influence of background flows were also considered by modifying the integral

equation. Two cases were considered, the symmetric flow and anti-symmetric flow

through the gap. For the symmetric flow case, if the self-induced velocity of the

point vortex and direction of the background flow are acting in the same direction

(i.e. cooperative), there is an increased ability of a vortex to pass through the gap.

By contrast, if the self-induced velocity opposes the background flow, the trajectory

will leap across the gap or turn back in on itself and travel in the opposite direction.

An example was given showing that if the symmetric flow was strong enough, all

vortices from the bottom half plane to the upper half plane pass through the gap,
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without any vortices leaping across the gap.

When the anti-symmetric flow (which has no rigid-lid analogy) is cooperative

(i.e. travelling in the same direction as the point vortex), more vortices pass through

the gap. However, when the background flow opposes a point vortex’s self-induced

velocity, trapped vortex paths near the gap form. Stagnation points were created,

the locations of which were dependent on the strength of the background flow.

In chapter 4 the motion of a finite area patch of uniform vorticity (i.e. a vortex

patch) near a gap in a wall was investigated using contour dynamics, in the presence

of the finite Rossby radius of deformation. The matrix method was used to compute

the velocity field at every node along the vortex patch boundary. A new normalisa-

tion scheme was introduced so that circular patches travel at the same velocity as

a point vortex irrespective of the value of the deformation radius and radius of the

patch.

Background flows were also implemented in the finite area patch motion algo-

rithm. Various examples were computed to exemplify the results of the normalisa-

tion using the point vortex trajectories, and these demonstrated that near-circular

vortices travel at the same speed as the point vortex path. Larger vortex patches

deform into less circular shapes which deviate from the point-vortex trajectory.

In chapter 5 the motion of a pair of steadily translating vortex patches were ex-

amined. V-states were found for finite a using a modified version of Pierrehumbert’s

(1980) algorithm. For large a, there was little difference in the shape of the vortex

patches found by Pierrehumbert for the rigid-lid case. Decreasing a had interesting

results: for small vortex patches the V-states were more circular in comparison to

their a → ∞ counterparts, as the effect of the image vortex patch was felt less

strongly; on the other hand large vortex patches were more elongated.

The normalisation technique developed in chapter 4 was used to non-dimensionalise

the results for arbitrary sized patches. Good agreement was found for circular

patches compared to an equivalent point vortex pair (i.e. the point vortex pair were
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located at the centroids of the vortex patches). The effect of positive and negative

background flows parallel to the direction of pair propagation were also investigated

with new families of steady solutions being found. For large a the effect of the back-

ground flow had no effect on the V-state shape, merely changing the translational

velocity. As a decreased, the effect on the V-state shape became more prominent,

with positive and negative flows either elongating or constricting the vortex patch

in the direction of propagation.

Obvious extensions to the vortex motion near the gap would be to investigate the

effects of the Rossby radius on multiple gaps, periodically spaced gaps or circular

islands in the same vein as the work done by Johnson and McDonald (2005) and

Crowdy and Marshall (2005-2006). Again an integral equation approach could be

used here with vortex sheets being aligned with the multiple barriers.

The interaction of a vortex with a bay (or harbour) is of interest. The problem

is similar to that considered here except the domain in, say, the lower half plane is

of finite area. The vortex would then flush, or mix, fluid between the bay and the

larger “infinite” ocean − such flushing problems are of environmental interest.

Perhaps the biggest dynamical phenomenon neglected in this study is that of

varying topography − this being more significant than neglect of friction. In the

ocean, the sea bed usually slopes uniformly upwards from the deep to the coast.

The relatively shallow water near ocean margins gives them a different potential

vorticity than the surrounding deep ocean. Any vortex will advect fluid columns

leading to a change of depth. Conservation of potential vorticity will cause relative

vorticity to be generated which, in turn, will influence the primary vortex. This

complex interaction will markedly affect the vortex trajectory. Careful numerical

study of this variable topography remains to be done.

The time-dependent interactions of V-states with each other is also of inter-

est, e.g. what happens when V-states propagating in opposite directions collide?

Equally, what happens when V-states moving at different speeds in the same di-
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rection catch up with each other? Both these questions could be tackled using

time-dependent contour dynamics.



Appendix A

Matrix method: derivation of a

system of linear equations

The integral equation (3.27) can be approximated by a system of linear equations

obtained by discretizing the barrier in the x−direction. The singularity present in

the integrand is of Cauchy principal value type: (x− x0)
−1. Hence, when |x− x0| is

small, the integrand to leading order is

E(x, x0)λ(x) =
λ(x)

x− x0

. (A.1)

The integral is discretised two ways over the interval [a, b] (see Fig. A.1). First

[a, b] is discretized uniformly into N − 1 sections

xi = a+
(b− a)

N − 1
(i− 1)

= 1 + h(i− 1), for i = 1, . . . , N, where h =
(b− a)

N − 1
. (A.2)

Second, let the midpoints of the line segments between xi and xi+1 be denoted by

xi
0:

xj
0 = xj +

h

2
, for j = 1, . . . , N − 1. (A.3)
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Figure A.1: Discretisation of the barrier [a, b] into N points xi with midpoint xi
0.

The integral can written using (A.1) as

∫ b

a

E(x, x0)λ(x) dx ≃
∫ xJ

a

E(x, x0)λ(x) dx+

∫ xJ+1

xJ

λ(x)

x− xJ
0

dx

+

∫ b

xJ+1

E(x, x0)λ(x) dx, (A.4)

where x ≃ xj
0 is taken to be the approximate location of the singularity. The non-

singular terms on the right hand side,

∫ xJ

a

E(x, x0)λ(x) dx,

∫ b

xJ+1

E(x, x0)λ(x) dx

can be integrated numerically in a standard way using the trapezoidal rule i.e.

∫ xJ

a

E(x, x0)λ(x) dx =
J
∑

i=1

E(xi, x
J
0 )λ(xi)wi, (A.5)

∫ xN

xJ+1

E(x, x0)λ(x) dx =

N
∑

i=J+1

E(xi, x
J
0 )λ(xi)wi (A.6)

where,

wi =















h
2

if i = 1, J, J + 1, N

h otherwise,

(A.7)

are the standard weightings of the trapezoidal rule.
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This leaves the integral which contains the singularity,

∫ xJ+1

xJ

E(x, x0)λ(x) dx =

∫ xJ+1

xJ

E(x, x0)(λ(x) − λ(xJ
0 )) dx

+ λ(xJ
0 )

∫ xJ+1

xJ

1

x− xJ
0

dx

=

∫ b

a

E(x, x0)(λ(x) − λ(xJ
0 )) dx (A.8)

where the second term of the first line of the right hand side of (A.8) is zero, due to

symmetry of the Cauchy Principal Value integral.

The non-singular terms can be integrated approximately as follows

∫ xJ+1

xJ

E(x, x0)(λ(x) − λ(xJ
0 )) dx ≃h

2
E(xJ+1, x

J
0 )
(

λ(xJ+1) − λ(xJ
0 )
)

+
h

2
E(xJ , x

J
0 )
(

λ(xJ) − λ(xJ
0 )
)

,

=
h

2
E(xJ+1, x

J
0 )λ(xJ+1)

+
h

2
E(xJ , x

J
0 )λ(xJ ). (A.9)

Thus, from (A.5), (A.6) and (A.9),

∫ b

a

E(x, x0)λ(x) dx ≃
N
∑

i=1

E(xi, x
J
0 )λ(xi)wi, (A.10)

where

wi =















h
2

if i = 1, N

h otherwise,

(A.11)

which is the standard trapezoidal approximation rule.

Thus we have N − 1 equations,

ne(x
i
0) =

N
∑

i=1

E(xi, x
J
0 )λ(xi)wi, for J = 1, . . . , N − 1, (A.12)
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where ne(x
i
0) is the normal velocity induced along the barrier at point xi

0, which is

known.

To close the system an extra evaluation point, xN
0 = xN + h/2, outside the

truncated barrier [a, b]. This gives an extra equation,

ne(x
N
0 ) =

N
∑

i=1

E(xi, x
N
0 )λ(xi)wi. (A.13)

In matrix form, the N equations (A.12) and (A.13) can be written,













E(x1, x
1
0)w1 · · · E(xN , x

1
0)wN

...
. . .

...

E(x1, x
N
0 )w1 · · · E(xN , x

N
0 )wN

























λ(x1)

...

λ(xN )













=













f(x1
0)

...

f(xN
0 )













. (A.14)
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