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Abstract 

Most proteins comprise several domains, segments that are clearly discernable 

in protein structure and sequence. Over the last two decades, it has become 

increasingly clear that domains are often also functional modules that can be 

duplicated and recombined in the course of  evolution. This gives rise to novel 

protein functions. Traditionally, protein domains are grouped into 

homologous domain superfamilies in resources such as SCOP and CATH. 

This is done primarily on the basis of  similarities in their three-dimensional 

structures. A biologically sound subdivision of  the domain superfamilies into 

families of  sequences with conserved function has so far been missing. Such 

families form the ideal framework to study the evolutionary and functional 

plasticity of  individual superfamilies. In the few existing resources that aim to 

classify domain families, a considerable amount of  manual curation is 

involved. Whilst immensely valuable, the latter is inherently slow and 

expensive. It can thus impede large-scale application. 

This work describes the development and application of  a fully-automatic 

pipeline for identifying functional families within superfamilies of  protein 

domains. This pipeline is built around a method for clustering large-scale 

sequence datasets in distributed computing environments. In addition, it 

implements two different protocols for identifying families on the basis of  the 

clustering results: a supervised and an unsupervised protocol. These are used 

depending on whether or not high-quality protein function annotation data 

are associated with a given superfamily. The results attained for more than 

1,500 domain superfamilies are discussed in both a qualitative and quantitative 

manner. The use of  domain sequence data in conjunction with Gene 

Ontology protein function annotations and a set of  rules and concepts to 

derive families is a novel approach to large-scale domain sequence 

classification. Importantly, the focus lies on domain, not whole-protein 

function. 
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Chapter 1. Introduction 

The superfamily and the family are the most commonly used frameworks to 

study the evolution of  protein and protein domain function. This is 

demonstrated by the non-exhaustive list of  80 studies and reviews from the 

past two decades that use these concepts, in Appendix B. Further, in the 

words of  Monica Riley, who created the first protein function ontology (Riley 

1993), ‘…a useful step would be to expand databases to provide explicit 

information on domain function’ (Riley 2007). This remark was made with 

regards to genome annotation, and certainly holds for the study of  the 

evolution of  protein function. In fact, Riley’s article was to introduce one of  

the seminal studies on the domain-based evolution of  proteins (Bashton and 

Chothia 2007).  

The overarching aim of  the presented work was the development of  a 

software pipeline (and the underlying algorithms) to identify the functionally 

conserved families within protein domain superfamilies. Such families have 

many potential uses; most importantly, they can help study the evolution of  

protein function on the domain level. As a first important part of  this, an 

efficient yet sensitive sequence clustering method for use in HPC 

environments was to be developed, with potential applications in other large-

scale clustering tasks. The second challenge was to integrate, first, the 

clustered domain sequence data and, subsequently, the available high-quality 

protein annotation data to establish a family level below the domain 

superfamily. Further, to do this on a large scale, all the necessary steps had to 

be implemented in a high-throughput pipeline for processing thousands of  

superfamilies of  highly varying size and sequence diversity. Finally, the results 

of  this endeavour had to be analysed both qualitatively, through the detailed 

analysis and discussion of  examples, and quantitatively, using statistics and 

benchmarking. 
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Specific attention is paid in this work to define all theoretical concepts 

introduced and used as clearly as possible. The lack of  such definitions is a 

frequent complication for understanding related studies, and sometimes even 

a hindrance of  progress. The latter is not always easy to trace objectively in 

bioinformatics. This makes it even more important to establish the most 

important precondition for progress: a ‘common ground’ on which research is 

conducted, that is, clearly defined terms and concepts. A striking example of  

how difficult this seems to be is the notion that even articles in high-profile 

journals still routinely talk about ‘high sequence homology’ (see, for example: 

Mair, Braks et al. 2006; Hang, Yang et al. 2010; Salmena, Poliseno et al. 2011), 

after decades of  urging researchers, sometimes in the same journals, not to do 

so (Lewin 1987; Reeck, de Haen et al. 1987; Marabotti and Facchiano 2009; 

Marabotti and Facchiano 2010). 

Several theoretical concepts for grouping protein and protein domain 

sequences are of  crucial importance to the present work, just as the notions 

of  protein and protein domain function. As these concepts are so widely used 

but, at the same time, so seldom defined or discussed, they are specifically 

addressed in the following sections (and chapters). The second part of  this 

general introduction then describes several key bioinformatics concepts, 

methods and resources that are relevant to this thesis as a whole. This chapter 

concludes with a summary of  the work conducted and provides an overview 

of  all the following chapters. 

1.1 Protein domains and superfamilies 

Two concepts build the ‘theoretical backbone’ of  the developments and 

studies described in this thesis: the protein domain and the protein (domain) 

superfamily. Both are widely used in the fields of  sequence and structural 

biology, and, in conjunction with these, especially in the bioinformatics area. 
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The following sections trace the roots of  both concepts and underline their 

specific importance to the present work.  

1.1.1 Origin and definition of  concepts 

The most important, shared aim of  research in the above-mentioned areas is 

to capture the intricate movements of  evolution on the molecular level. This 

observation supports Dobzhansky’s famous essay title, ‘Nothing makes sense 

except in the light of  evolution’ (Dobzhansky 1973), which has become a 

catch-phrase of  evolutionary research: as of  September 2011, it yields more 

than 35,000 Google hits. Further, related aims are better to understand the 

functional machinery of  individual cells and, eventually, the resulting 

macroscopic phenotypes. Therefore, it is no coincidence that both the domain 

and superfamily concepts were first explicitly introduced in the early 1970s, at 

the origin of  modern-day, computer-aided evolutionary biology (which 

paraphrases ‘bioinformatics’).  

It was in the 1970s when X-ray crystallography became a widely-used 

technology, the first phylogenetic studies on sets of  evolutionarily related 

sequences appeared, and the first steps towards developing efficient structure 

and sequence comparison algorithms were taken (as reviewed in Ouzounis 

and Valencia [2003]). Within the course of  the same year, Walter Wetlaufer 

and Margaret Dayhoff  introduced the protein ‘domain’ (Wetlaufer 1973) and 

‘superfamily’ (Dayhoff  1974) terms, respectively. Since then it has become 

increasingly clear that the synthesis of  the two concepts, the protein domain 

superfamily, is the most appropriate framework for conducting studies on the 

(long-term) evolution of  protein sequence and structure and the resulting 

(long-distance) homology relationships between proteins. This framework is 

immediately understood when the ancestral concepts are clearly defined, as 

follows. 
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1.1.1.1  Superfamilies 

The superfamily concept was introduced by the Dayhoff  group based on their 

efforts to classify evolutionarily related proteins from the 1960s onwards. 

These eventually resulted in the Protein Information Resource (PIR) (Barker, 

George et al. 1993; Nikolskaya, Arighi et al. 2006), which exists to the present 

day. Defined in a both evolutionary and pragmatic manner, the term referred 

to a group of  monophyletic protein families that can only be established using 

methods for remote homology detection, in contrast to the families 

themselves; in principle, this definition is still (implicitly) used today.  

Dayhoff ’s classification of  protein sequences did not yet take into account the 

existence of  domains, and was still largely based on establishing similarities in 

sequence. Only by the mid 1990s, when the domain concept had been widely 

established and structure-based domain classification resources such as SCOP 

(Murzin, Brenner et al. 1995) and CATH (Orengo, Michie et al. 1997) 

emerged, PIR and other protein (super)family resources started to implicitly 

incorporate the domain concept. For example, since that time protein 

superfamilies are required to be ‘homeomorphous’ in PIR, that is, they must 

share the same domain architecture (Barker, George et al. 1993).  

Following the original (protein) superfamily concept, both SCOP and CATH 

establish homologous domain superfamilies based on similarities in sequence, 

structure and function. In this, at least two of  the latter types of  similarity 

must be discernable to group two domain sequences into the same 

superfamily (see Section 1.5.2.1). This can be reformulated as the concept of  

exhaustively grouping sequences by homology relationships, including cases 

of  very weakly detectable (i.e., remote) homology (see Section 1.2.1.1); this 

superfamily concept is followed in the present work.  
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1.1.1.2 Protein domains 

According to Wetlaufer’s original definition, protein domains are compact 

structural units that can fold independently, and therefore ‘nucleate’ the 

folding of  whole-protein chains. Notably, based on observations in only 18 

protein structures, he also already included the possibility of  such domains 

being discontinuous in sequence (Wetlaufer 1973). Apart from the strict 

constraint of  independent folding, which may apply in many cases but can (so 

far) hardly be assessed on a large scale, this is the principal definition that is 

still followed by extant domain (super)family resources such as Pfam (Finn, 

Mistry et al. 2010), SCOP and CATH. It should be noted that other 

researchers, most famously Michael Rossman, shared Wetlaufer’s discovery of  

the protein domain (Rossmann, Moras et al. 1974).  

Even given that the tertiary structures of  related proteins and, therefore, 

protein domains are usually much more similar (evolutionarily conserved) 

than the underlying sequences (Chothia and Lesk 1986; Illergard, Ardell et al. 

2009), structural domains can normally be detected on the sequence level 

(Doolittle 1995; Koonin, Wolf  et al. 2002); this is also illustrated by the 

existence and modus operandi of  resources such as SUPERFAMILY (Gough, 

Karplus et al. 2001) and Gene3D (Buchan, Shepherd et al. 2002) (see Section 

1.5.2.1). Different and often overlapping definitions of  the domain concept 

have been proposed since Wetlaufer’s times, for example, those of  the folding 

unit, the structural unit, the evolutionary unit, or the functional unit (Yeats 

and Orengo 2001). A ‘dual’ definition of  the protein domain appears to 

represent the broad consensus and is, therefore, used in the present work: a 

continuous or discontinuous region that is conserved in both structure and 

sequence among related proteins, where the sequence signal may be weak.  
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1.1.2 The evolution of  multi-domain proteins 

Most proteins contain more than one domain. It has been estimated that this 

accounts for more than half  of  all prokaryotic and eighty percent of  all 

eukaryotic proteins (Apic, Gough et al. 2001). More conservative estimates lie 

in the range of  forty percent for prokaryotes and sixty to seventy percent for 

eukaryotes (Ekman, Bjorklund et al. 2005). While such estimates are highly 

method-dependent, an increase in the abundance and complexity of  domain 

architectures in the eukaryotic lineage is obvious. Protein domains usually fall 

into a size range of  100 to 250 residues (Islam, Luo et al. 1995; Chothia, 

Gough et al. 2003; Ekman, Bjorklund et al. 2005; Wang, Kurland et al. 2011), 

with the average number of  residues varying depending on the methodology 

used (for example, whether looking at only domains with known structure or 

at the much higher number of  domains assigned on a sequence basis). 

Considerably smaller and larger outliers exist. The number of  domains per 

protein has been shown to assume a power law distribution (Koonin, Wolf  et 

al. 2002), and only few proteins have more than three domains. 

Some domain types have been shown to be particularly ‘promiscuous’ 

(Marcotte, Pellegrini et al. 1999), with regards to their occurrence in many 

different domain architectures. These usually correspond to evolutionarily 

ancient and widespread domain superfamilies that fulfil basic, partial protein 

functions. Examples are domains that bind ubiquitous cofactors such as ATP 

and NAD(P) or such that serve as a general ‘linker’ between proteins, thereby 

enabling protein interactions. Promiscuous domains further play a major role 

in the extensive signalling networks of  metazoan species; examples are the 

SH2, SH3 and PDZ domain types (Pawson and Nash 2003).  

The evolutionary events that give rise to the different domain architectures 

observed in proteins in general, and the frequent reuse of  (promiscuous) 

domains in particular, are still not entirely understood. Since the pioneering 
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works of  Walter Gilbert (Gilbert 1978) on the mobility of  exons, increasing 

evidence has accumulated for the hypothesis that, domains can be ‘shuffled’ 

between eukaryotic genes (proteins) (Patthy 1999; Chothia, Gough et al. 2003). 

The concept of  ‘exon shuffling’, a practically proven phenomenon (Doolittle 

1995; Patthy 1999; Liu and Grigoriev 2004; King, Westbrook et al. 2008; Basu, 

Poliakov et al. 2009) is thought to play a major role in this, among other 

factors. This refers to the insertion of  an exonic region from one gene into an 

intronic region of  another gene (Patthy 1999), probably mediated by unequal 

crossing-over during meiosis (exon duplication) in conjunction with 

transposable elements (exon shuffling). The recipient gene (protein) in this 

manner gains one or more additional domains.  

The different extents to which exon shuffling, gene fusion and fission and 

further types of  non-homologous genetic recombination occur, and their 

relative impacts on the recombination of  domains, is still subject to 

considerable study and debate. A comprehensive review of  both is provided 

in Nagy and Patthy (2011), where it is also claimed that internal domain 

insertion and deletion events (such not occurring at the termini of  proteins) 

are a frequent phenomenon in metazoan evolution, as opposed to earlier 

studies.  

1.1.3 Existing superfamily studies 

Notwithstanding recent speculations on the continuity of  fold space 

(Shindyalov and Bourne 2000; Grishin 2001; Kolodny, Petrey et al. 2006; 

Taylor 2007; Cuff, Redfern et al. 2009), and on whether protein classification 

is necessary at all (Petrey and Honig 2009), the superfamily concept has had, 

and continues to have, a tremendous impact on how both computational and 

experimental biologists study the evolution of  protein sequence, structure and 

function. A sense of  this impact is conveyed by the selection of  publications 
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on protein and protein domain superfamilies compiled in Appendix B, coming 

from both wet-lab experimental and bioinformatics groups. 

Studies on individual superfamilies usually fall into one of  three categories: (i) 

general reviews and/or classification efforts, (ii) those that report the 

identification of  one or several novel subgroups and (iii) those that 

characterise one or more novel member sequences. While physical 

experiments usually play a major role in the last case, a core set of  

bioinformatics concepts and methods is shared by almost all of  these 

publications. In particular, these are the generation of  multiple sequence 

alignments, the construction of  phylogenetic trees from the former and the 

modelling of  protein structure, where template structures are available. 

Sequence similarity networks are increasingly used too (Song, Joseph et al. 

2008; Atkinson, Morris et al. 2009), as a fourth, powerful visualisation method. 

Most importantly in the context of  the present work, any already established 

knowledge on (or classification of) functional families within the studied 

superfamily is mapped onto these alignments, trees, structures and networks.  

Only when all that is already known about the functions and functional group 

relationships within a superfamily is put into context, the unexplored 

sequence space and the gaps in the established knowledge become apparent. 

This is illustrated by the way in which different studies and reviews on 

individual superfamilies build on their predecessors. A ‘functional skeleton’ of  

the superfamily is almost always available, and it is the unknown parts that 

need to be fleshed out. In the course of  this, classification systems for the 

identified subgroups are frequently developed, extended and sometimes 

abolished and replaced. 

1.2 Relationships between protein sequences 

At the beginning of  any effort to group protein sequences stands the 

identification of  pairwise relationships. This information can then be used to 
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establish wider groups of  sequences, following different grouping concepts. 

The pair- and group-wise relationships between protein sequences that are 

most widely used for classification are introduced in the following sections; all 

are based on evolutionary considerations. 

1.2.1 Pairwise relationships 

There exist three basic concepts that are used to describe pairwise 

evolutionary relationships between proteins. These are the notions of  

homology, orthology and paralogy. Both orthology and paralogy imply 

homology, which is therefore discussed and defined first in the following. 

1.2.1.1 Homology 

Both Richard Owen’s original homology concept that is used to compare 

common anatomical traits of  related species (Rupke 1993) and the homology 

concept that is used in molecular biology today share the core of  their 

definition, namely that ‘homology’ (from ancient Greek οµολογειν, ‘to agree’) 

refers to ‘possessing a common evolutionary origin’ (Reeck, de Haen et al. 

1987). Note that homology therefore must not necessarily imply readily 

observable similarity. In this strict sense, and when assuming a single last 

common ancestor sequence at the origin of  the DNA world, for the sake of  

the argument, all extant DNA (protein) sequences would be homologous. 

To be a useful concept, sequence homology must be defined with additional 

constraints. These can be derived in different ways, but usually include the 

notion of  observable similarity. The probably most straightforward and logical 

way, with the use of  fossils in evolutionary biology in mind, is via the 

(probabilistic) reconstruction of  ancestral sequences (Fitch 1971). This 

particularly accounts for distinguishing homologous from analogous 

sequences, which have independently evolved to a similar fold and/or 

function. In brief, if  two sequences are compared and their ancestral 
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sequences are more similar than the sequences themselves, this is a sign of  

homology; if  the opposite is true, analogy is suggested. This useful definition 

of  (or test for) sequence homology implies a certain amount of  similarity 

between the compared sequences, as a reconstruction of  ancestral character 

states with reasonable confidence is otherwise impossible. 

William Pearson, co-developer of  the FASTA algorithm for sequence 

alignment (Lipman and Pearson 1985), advocates a pragmatic definition of  

sequence homology in his talks and publications (Pearson and Sierk 2005; 

Lavelle and Pearson 2009). In brief, this says that establishing homology 

between two proteins requires statistically significant (non-random) sequence 

and/or structural similarity, that is, ‘excess similarity’ (Doolittle 1981; Pearson 

and Sierk 2005). Tools such as BLAST (Altschul, Gish et al. 1990) (see Section 

1.4.1.1) and FASTA assess this criterion for protein sequences, and structural 

comparison tools (Hasegawa and Holm 2009) do the same for structures. 

Further, according to Pearson, statistically significant sequence similarity 

always implies structural similarity, whereas the opposite is not true. As this 

definition of  homology is the most commonly (if  not always explicitly) used 

and in line with the definition of  homologous domain superfamilies in 

resources such as SCOP and CATH (see Section 1.5.2.1), it will be followed in 

the present work. 

1.2.1.2 Orthology and Paralogy 

The definitions of  orthology and paralogy that are used in sequence biology 

today were given by Walter Fitch (Fitch 1970; Fitch 2000). According to this, 

two homologous genes (proteins) should be called orthologous if  their last 

common ancestor sequence was duplicated in a speciation event (leading to 

two copies in different genomes) and paralogous if  it was duplicated in a gene 

duplication event (leading to two copies within the same genome).  
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By definition, paralogues can occur in both the same genome and different 

genomes, in contrast to orthologues. Better to distinguish between the two 

cases, the terms ‘inparalogue’ (duplication after the last speciation event) and 

‘outparalogue’ (duplication prior to the last speciation event) were introduced 

later on (Sonnhammer and Koonin 2002). Further, the term ‘xenology’ is 

sometimes used to account for events of  horizontal gene transfer (Fitch 1970), 

the lateral exchange of  genes (proteins) between species in the taxonomic tree. 

Based on the assumption that one of  the two copies of  a duplicated gene is 

subject to reduced selection pressure (Ohno 1970), as the other copy retains 

the original (protein) function, it is commonly assumed that orthologous and 

inparalogous proteins are, on average, functionally more conserved than 

outparalogous proteins.  

1.2.2 Group concepts 

Two out of  three commonly used concepts to partition protein sequence 

space into groups of  sequences are defined relatively clearly, with these 

definitions being commonly accepted among researchers in the field and not 

varying considerably between different resources. This is the sequence 

superfamily on the one hand and the orthologue cluster on the other hand. 

The following sections first briefly outline these two concepts and then put 

them into context with the less clearly defined family concept, which is 

discussed in more detail. For simplicity, it is assumed that only proteins that 

share exactly the same domain architecture are grouped. Section 1.2.3 then 

discusses in how far each concept can be used on the protein and domain 

levels, respectively.  

1.2.2.1 Superfamily 

At the superfamily level, which lies below the fold level, sequences are 

grouped based on common ancestry: all members must be homologous. This 
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can be thought of  as the most inclusive, or ‘loose’, criterion that can be 

applied and reliably tested for (see Section 1.2.1.1). Similarities of  sequences 

beyond this level are (and should) be very difficult to detect with significant 

reliability. The latter can be expected when different superfamilies share the 

same fold. Overall, the superfamily classification level is most useful in 

studying the evolution of  protein structure. As protein domains are believed 

to fold relatively independently from the rest of  the protein chain, and can be 

independently rearranged and reused throughout evolution (see Sections 

1.1.1.2and 1.1.2), superfamily resources often classify domain sequences, not 

whole proteins. 

1.2.2.2 Orthologue cluster 

At the other end of  the partition granularity scale stands the concept of  

orthologue clusters. Here, the goal is to group only very closely related 

sequences, linked by either orthology or inparalogy. The latter types of  

relationships often imply equivalence in function. They can be established by 

pair- or group-wise sequence comparisons in combination with either 

subsequent experiments that reveal functional identity or algorithms that 

evaluate the comparison results; of  course, both can also be combined. By 

definition, orthologue1 resources cluster whole proteins, not protein domains. 

They are mostly used to infer species trees in molecular phylogeny, to study 

how specific protein functions are encoded and conserved, and in protein 

function prediction (as reviewed in Li, Stoeckert et al. [2003]). 

1.2.2.3 Family 

Many different monophyletic groups become apparent when studying 

sequence-based phylogenetic trees of  large superfamilies (Iyer, Anantharaman 

et al. 2003; Zelensky and Gready 2005; Yang and Bourne 2009). Above the 

                                            
1
 For ease of reading, both orthology and inparalogy will be implied when orthologue clusters 

are referred to in the following. 
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level of  orthologue clusters, there usually exist a wide range of  non-random 

partitions in superfamily sequence space, as this is shaped by evolutionary 

processes. However, these partitions are hard to delineate, both manually and 

algorithmically. This is because, they can differ with each superfamily, 

depending on evolutionary speed, superfamily size, age, and so forth. In 

principal, the different sequence groups observed at all levels of  the tree, that 

is, between the root node and the individual orthologue clusters, are all 

candidates for the family (or ‘subfamily’2) level. This is why the family concept 

is particularly problematic: there is no clear definition per se what the clustering 

criterion to establish such families would be. 

By definition, all sequences in a superfamily, and therefore in any group of  

sequences it subsumes, are structurally highly similar. This is not always true 

for function, as relatively small modifications in sequence and structure can be 

sufficient to alter it (Seffernick, de Souza et al. 2001; Almonacid, Yera et al. 

2011). While superfamilies can thus be functionally diverse, several studies 

have illustrated that the basic reaction mechanism is usually conserved 

(Babbitt, Hasson et al. 1996; Aravind, Leipe et al. 1998; Burroughs, Allen et al. 

2006). On the other end of  the scale, close to the leafs of  the superfamily tree, 

it can often be observed that different orthologous clusters exhibit 

considerable functional similarity. Such groups mix orthologues and 

paralogues, prominent examples being the large metazoan multi-gene families. 

Interestingly, two recent studies challenge the established view after which 

orthologues are generally more conserved in function than paralogues 

altogether (Studer and Robinson-Rechavi 2009; Nehrt, Clark et al. 2011).  

It follows from the above that functional change below the superfamily and 

(closely) above the orthologue cluster level is usually gradual. This can refer, 

for example, to different substrate specificities and/or reaction rates in 

enzymes, different ligand binding characteristics in receptors, different solute 
                                            
2
 The terms family and subfamily are often used interchangeably to describe a grouping of 

sequences below the superfamily level. 
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affinities and/or flux rates in channel proteins, and so forth. When protein 

families are, therefore, defined in a way that leaves room for a certain degree 

of  variability in function, this makes them a suitable framework to study (the 

evolutionary processes that govern) functional change. For example, multiple 

sequence and structure alignments of  such families can highlight changes in 

key residues and in the orientation of  catalytic side-chains, respectively, and 

both can help to explain changes in protein function. 

1.2.3 Application to proteins and domains 

The concepts described in the above two sections can be applied to whole-

protein and protein domain sequences to different extents, since evolutionary 

events can occur asynchronously on the two levels. Specifically, this refers to 

gene duplication and speciation events on the one hand and to domain gain, 

loss and shuffling events on the other hand. It is particularly obvious for 

promiscuous domains (see Section 1.1.2), which appear in different proteins 

with widely varying domain architectures, functions and evolutionary 

backgrounds. These domains can encode conserved (partial) protein functions, 

even in cases where the corresponding parent proteins are not homologues.  

Homology, based on its definition in Section 1.2.1.1(statistically significant 

similarity), can be established or rejected for evolving sequences in general, 

not only proteins (Koonin 2005). It is therefore straightforward to use the 

superfamily concept on the domain level; in fact, it usually applies to 

individual domains only. This is why studies on specific ‘protein superfamilies’ 

often actually deal with a single core domain (set of  domains) that is shared by 

all member sequences, and then analyse the combination of  this protein core 

with additional domains throughout evolution. The family concept can equally 

well be used for domains and (multi-domain) proteins, in the latter case 

implying conserved domain architecture. The concepts of  orthology and 

paralogy, however, are inherently tied to species phylogeny (specifically, gene 
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duplication and speciation events) and can, therefore, not be applied in a 

consistent manner to protein domains. 

It could be argued that two domain sequences of  the same type that are found 

in different proteins can be called orthologous if  the proteins themselves are 

orthologues. However, this concept would be of  limited use in studying the 

evolution of  sequence, structure and function on the domain level. 

Orthologous domain clusters in this sense would be (artificially) confined to 

the size of  the corresponding protein orthologue clusters. These 

considerations equally apply for the concept of  paralogy. However, there is an 

ongoing conceptual debate as to whether both concepts could be consistently 

used (or even ‘recoined’) for the protein domain level (Koonin 2005; Song, 

Sedgewick et al. 2007; Song, Joseph et al. 2008). In this case, different parts of  

a multi-domain protein that as has acquired at least one of  its domains by 

means of  domain shuffling (see Section 1.1.2) would have to be described 

with the respective terms independently. 

1.3 Protein function annotation 

The notion of  ‘protein function’ is multi-faceted (Rentzsch and Orengo 2009), 

but three general aspects can be distinguished. Traditionally, protein function 

refers to the molecular function of  a sequence, such as the catalytic activity of  

enzymes, the scaffolding activity of  structural proteins, the transport and 

signalling activities of  transmembrane proteins, and so forth. This ‘narrow’ 

aspect of  function is solely determined by sequence and structure. In contrast, 

protein function in a ‘broad’, contextual sense describes the activities of  

proteins in the context of  cellular pathways and processes. A third type of  

information that is ancillary to functional information is location, that is, where 

a certain molecular function (a certain process) is carried out (takes place) in- 

or outside a cell.  
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1.3.1 The Gene Ontology 

In the Gene Ontology (GO) annotation system (Ashburner, Ball et al. 2000), 

each of  the three general aspects of  protein function is represented by a tree-

like structure, formally a directed acyclic graph (DAG). In these trees, terms 

that describe specific activities are found close to the leaf  nodes, whereas the 

root nodes are the most unspecific: ‘molecular function’ (MF), ‘biological 

process’ (BP) and ‘cellular component’ (CC). The terms in each DAG are 

connected in a bottom-up manner, by child-parent (‘is a’) relationships, and 

each term can have multiple parent terms.  

The different terms in each of  the three GO DAGs are arranged hierarchically, 

by the degree of  specificity to which they describe protein function. This 

leads to the so-called ‘true path rule’: a sequence annotated with a given GO 

term is inherently associated with all its parent terms. Each GO annotation 

(annotated term) is further associated with an evidence code. These codes are 

primarily used to distinguish experimentally derived and computationally 

predicted annotations, with different codes in each class to describe more 

specifically how an annotation was derived or predicted (for details, see the GO 

documentation3). 

1.3.2 Other systems  

Alternative schemes for annotating proteins with molecular functions are the 

Enzyme Commission (EC) (Webb 1992) and Transporter Classification (TC) 

(Busch and Saier 2002) systems; these are applicable to enzyme and transport 

proteins only, respectively. The EC system is still as widely used as the more 

recently introduced GO system. In contrast to the EC and TC systems, the 

Riley scheme (Riley 1993) (the first functional ontology that was devised), the 

MIPS Functional Catalogue (FUNCAT) (Ruepp, Zollner et al. 2004) and the 

                                            
3
 http://www.geneontology.org/ 
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Kyoto Encyclopaedia of  Genes and Genomes (KEGG) (Kanehisa and Goto 

2000) classify proteins according to their positions in cellular pathways and 

processes (corresponding to the GO biological process DAG). 

The EC system uses four-digit numbers to reflect a four-level hierarchy of  

enzyme functions. The first position refers to one of  six general enzyme 

classes (e.g., ligases), the second to a certain sub-class and the third and fourth 

positions (usually) distinguish between specific substrates and cofactors; for 

example, EC 1.1.1.1 captures an alcohol:NAD+ oxidoreductase activity. The 

original Riley scheme and its descendants (Rison, Hodgman et al. 2000) assign 

prokaryotic proteins to cellular processes using a hierarchical numbering 

system, similar to the EC system. FUNCAT extends this system to all 

kingdoms of  life, and to more specific processes. The KEGG Orthology (KO) 

assigns KO terms, each referring to a certain family of  supposedly 

orthologous proteins that perform the same function in an evolutionary 

conserved metabolic pathway. 

1.4 Bioinformatics methods 

The most important bioinformatics concept in the context of  the present 

work is that of  the sequence alignment profile. A necessary precondition for 

the construction of  such profiles is the alignment of  multiple sequences. In 

turn, the corresponding multiple alignment methods build on algorithms for 

the pairwise alignment of  sequences. Such algorithms, optimal or heuristic, 

form the foundation of  bioinformatics research. Starting from those, the 

basic algorithms that underlie the above concepts are described in the 

following. 

1.4.1 Sequence alignment 

The similarity of  protein sequences can be measured by the use of  sequence 

alignment methods, which try to align evolutionarily equivalent residues. In 
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this, point mutations are accounted for by using a matrix that captures the 

(observed) probabilities with which amino acid residues are replaced by other 

residues in the course of  evolution (substitution matrix; for example, PAM 

(Dayhoff, Schwartz et al. 1978) and BLOSUM (Henikoff  and Henikoff  

1992)). In addition, gaps can be introduced at different positions in the 

aligned sequences, to account for insertions and deletions.  

Alignment methods usually first generate a (normalised) match score that 

expresses how good an alignment is in comparison with any other alignment. 

This depends on the degree of  residue conservation in each column of  the 

alignment and a predefined gap penalty. A second score is then calculated that 

indicates how likely it is to attain the observed match score by chance, that is, 

how statistically significant the match is. This is based on a distribution of  

hypothetical scores for random sequences. Common methods and algorithms 

for the pair- and group-wise alignment of  sequences are described in the 

following. 

1.4.1.1 Pairwise sequence alignment 

Pairwise sequence alignment can be done in either an optimal or a heuristic 

manner, and either in a global (whole-sequence) or local manner. The classic 

algorithm for optimal global pairwise sequence alignment is the Needleman-

Wunsch algorithm (Needleman and Wunsch 1970); its local pendant is the 

Smith-Waterman algorithm (Smith and Waterman 1981). Both are based on 

the dynamic programming approach (Bellman 1952). As these algorithms 

have quadratic time complexity, heuristic methods were developed later on. 

The most widely used heuristic tools for local pairwise sequence alignment are 

FASTA (‘Fast All’) (Lipman and Pearson 1985) and BLAST (Basic Local 

Alignment Search Tool) (Altschul, Gish et al. 1990). These tools are 

commonly used to search entire databases of  (target) sequences with a given 

query sequence. As both algorithms are derived from the Smith-Waterman 
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algorithm and are very similar in principle, only BLAST is described in the 

following. 

As a heuristic method, BLAST breaks the problem of  finding a good local 

alignment between two sequences down into finding several very similar, short 

residue stretches (‘words’) first, and connecting these subsequently. The basic 

workflow is as follows. 

i) All words of  length k (the default setting for protein sequences is 3) 

that are found in the query sequence are stored in a table W. 

ii) Using a substitution matrix, all possible words of  length k that yield 

a score higher than a given threshold t (the default setting for 

protein sequences is 13) when compared with one of  the words in 

W are added to W; the insertion of  gaps is not allowed in the word 

comparisons.  

iii) The target sequence is queried with all words in W, which is referred 

to as ‘seeding’. Matches are subsequently extended to so-called high-

scoring segment pairs (HSPs) in both directions, allowing for gaps. 

This continues until the total, cumulative alignment score sinks 

below a given threshold or the end of  either sequence is reached. 

iv) The local alignments derived in this way are connected, given that 

they show a sufficiently high score and small distance to each other, 

respectively. The individual alignments scores are summed up and 

the connected alignments are reported as the BLAST result. 

The two central measures for the evaluation of  BLAST alignments are the 

overall alignment score S and the so-called expectation value E (E-value). 

These values are interdependent: E is the statistical measure of  the 

significance of  a score S. Thus, given a random sequence composition of  
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query and target sequence (of  lengths m and n), there are E alignments with a 

score of  at least S expected to occur by chance alone. E is defined as follows: 

S
enmKE

⋅−⋅⋅⋅= λ  

The lengths of  the query and target sequences are parameters in the 

calculation of  E. When either m or n are doubled, for example, the probability 

of  seeing a score S double as well. Further, E decreases exponentially with 

increasing alignment score. This seems reasonable based on the consideration 

that to double the alignment score S, a HSP must attain the given score ‘twice 

in a row’. The parameters K and λ are statistical parameters depending on the 

size of  the search space (m · n) and the applied scoring system. The latter 

refers to the substitution matrix used, which assigns a ‘cost’ to the alignment 

of  each pair of  different residues. For protein alignments this is based on the 

biochemical and biophysical (dis)similarities between amino acids and the 

respectively expected replacement frequencies. The gapped BLAST algorithm 

further penalises the insertion and extension of  gaps by different costs. By 

default, the protein BLAST program BLASTP uses the BLOSUM62 matrix 

(Henikoff  and Henikoff  1992). To account for different scoring schemes each 

alignment further gets assigned a so-called ‘bit score’ value S’. This is 

calculated based on the raw alignment score S: 
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Bit scores are directly comparable given that the size of  the search space 

remains unchanged. In contrast to E, S’ grows linearly with the length of  

alignment. Again, the E-value is a measure for the probability of  seeing a 

given bit score depending on the size of  the search space. It is connected to S’ 

by the following equation: 
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The E-values and bit scores returned by other tools that compare sequences 

or groups of  sequences are calculated in manners very similar to those 

outlined above for BLAST. 

1.4.1.2 Multiple sequence alignment 

Following from the time complexity of  optimal pairwise sequence alignment, 

a straightforward extension of  the respective dynamic programming 

algorithms to the alignment of  multiple sequences results in exponentially 

increasing runtimes. Therefore, common methods for multiple sequence 

alignment (MSA) use different heuristics, similar to those used in BLAST. The 

most important of  those is the general strategy of  ‘progressive’ MSA, that is, 

the construction of  the MSA from individual pairwise alignments. This 

requires two steps: first, the construction of  a ‘guide tree’ using an efficient 

sequence clustering method, and second, the iterative (progressive) addition 

of  sequences to a growing MSA in the order suggested by the tree (starting 

from the most similar pair of  nodes, i.e., sequences). The second step requires 

the growing alignment to be expressed as a residue profile in each iteration 

(see Section 1.4.2.1), thus ‘simulating’ a pairwise sequence alignment.  

So-called iterative alignment methods use the progressive alignment paradigm 

but refine the growing alignment in each round, by partial realignment of  

pairs of  sequences. The most popular progressive alignment tool is 

CLUSTAL (Thompson, Higgins et al. 1994). The MAFFT alignment method 

(Katoh, Kuma et al. 2005; Katoh and Toh 2008) combines both the 

progressive and iterative approaches, and is both faster and more accurate 

than CLUSTAL and most other (more sophisticated) methods (Thompson, 

Linard et al. 2011). It was therefore used for all alignment tasks in the present 

work. 
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1.4.2 Alignment profiles 

The residue distributions in multiple sequence alignments can be captured in 

(alignment) profiles (Gribskov, McLachlan et al. 1987). These can then be 

used to assess whether an arbitrary sequence is similar to the sequences in the 

alignment. Further, pairs of  profiles can be compared to measure how similar 

the sequences in two alignments are. There exist two commonly used types of  

profiles: Position-Specific Scoring Matrices (PSSMs) and profile Hidden 

Markov Models (profile HMMs). The algorithms used to construct and 

compare such profiles are outlined in the following.  

1.4.2.1 Construction 

For each residue position in an MSA, the corresponding alignment profile 

captures the probability for each residue type to occur. In the case of  protein 

MSAs, the residue types are the different amino acids. As the construction of  

both PSSMs and profile HMMs requires the same set of  initial steps, these are 

outlined first below. A description of  the additional steps necessary to create 

profile HMMs follows thereafter.  

The simplest approach to create an alignment profile is the following. For 

each alignment position (column), the occurrence counts of  all residue types 

(amino acids) are divided by the number of  rows (sequences) in the alignment. 

The result is an alignment profile, with an observed frequency (probability) 

value between zero and one for each residue and alignment position. Several 

additional steps are typically used to produce profiles of  higher quality, which 

primarily refers to their sensitivity in recognising related sequences. For 

example, weighting schemes are usually employed to account for redundancy 

in (some of) the aligned sequences (Henikoff  and Henikoff  1994).  

Many MSAs do not contain a sufficient amount of  information (sequences) to 

construct a profile that is representative of, for example, a certain sequence 
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family. If  no further related sequences are at hand (known) and can be added 

to the MSA, so-called pseudo-counts (for residue types that are not observed 

at all) can be used to add some ‘leeway’ to a profile (Dodd and Egan 1987; 

Tatusov, Altschul et al. 1994). This can serve to make the profile more 

sensitive in detecting remote family members. Instead of  pseudo-counts, 

expected residue frequencies can be used to convert a (simple) profile into a 

PSSM.  

PSSMs usually contain log-likelihood ratios instead of  frequency (probability) 

values. These are calculated for each residue in a given position from its 

observed frequency and its expected frequency. To determine the latter, an 

empirical background distribution is required that describes how frequently a 

given residue type occurs in sequences in general. This can be derived from a 

(large) collection of  manually curated MSAs, as used in the construction of  

substitution matrices, or simply a large collection of  sequences. Arbitrary 

query sequences can be ‘scanned’ with a PSSM by summing the position-

specific log-odds values (as found in the PSSM) for all residues they contain.  

Profile HMMs capture the content of  alignment profiles in a yet more 

sophisticated way. A given profile can be modelled as a (Markov) chain of  

states that each can ‘emit’ a range of  symbols from an alphabet of  size N. For 

a protein MSA, the alphabet contains 21 symbols: the 20 standard amino acid 

letters (‘match’ states) and a letter indicating a gap (‘indel’ state). Each of  the 

states is associated with an N-dimensional probability vector that describes the 

probability for the state to emit a particular symbol (‘emission probability’), 

respectively; the individual probability values in each vector sum to one. The 

states in such a chain (model) can be traversed from left to right (start to 

finish), thereby emitting a sequence of  symbols. In doing so, it is possible to 

remain in an indel state for more than one step, that is, to emit several gaps in 

a row. The probabilities of  either doing so or not doing so, that is, moving 

forward to the next node, are stored in a second probability vector of  size two 
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(‘transition probabilities’). Each state in the chain is associated with such a 

vector, however, for the match states the probability of  moving forward to the 

next state is always one.  

A Hidden Markov Model is ‘hidden’ since only the emitted symbol sequence(s) 

can usually be observed (for example, the rows in an MSA), while the 

underlying emission and transition probabilities cannot directly be inferred. In 

‘training’ on an MSA, algorithms such as the Viterbi algorithm (Viterbi 1967), 

which is similar to the dynamic programming algorithms used in pairwise 

sequence alignment, can be used to infer these probabilities, and so generate a 

profile HMM. Scoring an arbitrary sequence against such a model means to 

assess how likely it is for the model to generate this specific chain of  residues. 

Therefore, the chain is ‘fed through’ the model, multiplying the corresponding, 

subsequent emission and transition probabilities to attain an overall score.  

1.4.2.2 Comparison 

To compare a sequence to an alignment (profile), the sequence and the profile 

have to be aligned. This is implemented for PSSMs, for example, in the PSI-

BLAST (Position-Specific Iterated BLAST) method (Altschul, Madden et al. 

1997). The latter first scans a target sequence database with a query sequence, 

like BLAST (see Section 1.4.1.1). However, it then constructs a PSSM based 

on the sequences hit and uses this profile to scan the database again. This can 

be done in several iterations, leading to an enhanced ability over BLAST to 

detect remote homologues.  

To compare two alignments via their profiles, the profiles have to be aligned. 

The COMPASS (COmparison of  Multiple Protein Alignments with 

Assessment of  Statistical Significance) set of  tools (Sadreyev and Grishin 

2003), which was used in the work presented here, generates and aligns 

‘generalised’ PSSMs that incorporate position-specific gap penalties (in 

contrast to the fixed gap penalties in the BLAST suite of  methods). The 
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algorithm used to align two PSSM profiles is a straightforward extension of  

the sequence-sequence and sequence-profile alignment algorithms used in 

BLAST and PSI-BLAST. Accordingly, an E-value score is calculated to 

indicate the statistical significance of  detected similarities. Methods that 

compare alignments in the form of  profile HMMs have also been published 

(Soding 2005; Madera 2008). 

1.5 Bioinformatics resources 

The domain sequence data used in the present work was provided by Gene3D 

(Buchan, Shepherd et al. 2002), which itself  relies on the CATH (Orengo, 

Michie et al. 1997) resource and the major protein sequence databases, 

UniProtKB (Magrane and Consortium 2011), RefSeq (Pruitt, Tatusova et al. 

2009) and Ensembl (Flicek, Amode et al. 2011). In turn, CATH classifies 

structures from the PDB (Berman, Westbrook et al. 2000), and the protein 

databases are ultimately sourced from the primary nucleotide sequence 

databases. In addition, several secondary classification resources for proteins 

and protein domains are relevant to this work and/or are used for 

comparative purposes. The most important of  these resources are introduced 

in the following. 

1.5.1 Primary sequence and structure databases 

The largest existing repository for nucleotide sequences (genes) are the 

mutually mirrored INSDC (International Nucleotide Sequence Database 

Collaboration) databases (Cochrane, Karsch-Mizrachi et al. 2011), most 

prominently the GenBank resource (Benson, Karsch-Mizrachi et al. 2011) that 

is hosted at the National Center for Biotechnology Information (NCBI) in the 

United States. The largest existing repository for protein sequences is 

UniProtKB (Universal Protein Resource Knowledge Base) database, which is 

also a collaborative effort, hosted at the European Bioinformatics Institute 

(EBI) in the UK. UniProtKB is further subdivided into the SwissProt and 
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TrEMBL databases, which store curated and non-curated sequence data (and 

corresponding information), respectively. The Protein Data Bank (PDB) is the 

primary resource collecting protein three-dimensional structures, as solved by 

X-ray crystallography, NMR, EM and other methods. 

Due to the rapid progress in sequencing technologies over the last three 

decades, both GenBank and UniProtKB have been growing and continue to 

grow with exponential pace (Cochrane, Karsch-Mizrachi et al. 2011; Magrane 

and Consortium 2011). The PDB has also been growing at near-exponential 

rates in the past and continues to grow (Berman, Westbrook et al. 2000; Rose, 

Beran et al. 2011), while a decreasing number of  novel folds are being 

discovered (Chandonia and Brenner 2006; Jaroszewski, Li et al. 2009). As of  

August 2011, GenBank contains about 140 million sequences, UniProtKB 

over twelve million sequences and the PDB over 70,000 sequences. SwissProt 

contains about 500,000 sequences, that is, ~5% of  the sequences in 

UniProtKB. 

1.5.2 Protein classification resources 

A multitude of  resources exist that classify protein sequences according to 

sequence, structure and function (Henikoff  and Henikoff  2001; Mulder 2001; 

Redfern, Grant et al. 2005). These follow different grouping concepts as 

discussed in Section 1.2.2, but will be collectively referred to as ‘family 

resources’ in the following. Family resources share the following key 

characters. First, manual curation is involved, to varying extents. Second, a 

model library concept is followed, as opposed to, for example, a full clustering 

of  all available sequences. In brief, this concept entails a workflow that (i) 

starts with a set of  (curated) seed sequence groups for different families 

(classification), (ii) continues with the extension of  these groups to families 

(extension) and (iii) finishes with building one or more models to recognise 

each family, respectively (library generation). 
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1.5.2.1 Classification based on structure 

Both SCOP/SUPERFAMILY and CATH/Gene3D, respectively, are ‘sister’ 

resources for the structural classification of  protein domains. Formally, both 

distribute the above-described workflow across two separate resources, 

respectively: SCOP and CATH correspond to the classification stage (with 

PDB structures as the primary input), whereas SUPERFAMILY and Gene3D 

incorporate the extension and library generation stages (with sequence data as 

the primary input). Manual curation is used in both SCOP and CATH. While 

the former is a largely manual effort, CATH uses curation only in particularly 

difficult stages of  the classification process (Greene, Lewis et al. 2007). 

SUPERFAMILY and Gene3D are both entirely automated resources. SCOP 

and CATH both follow a hierarchical arrangement. Several superfamilies can 

share the same fold (SCOP) or topology (CATH), with both terms referring 

to a relationship of  ‘structural similarity without a significant signal of  

homology’. The superfamily level is the most relevant in the context of  this 

work and therefore focussed on in the following. 

Below the fold level, the Structural Classification of  Proteins (SCOP) resource 

defines both a superfamily and a family layer. Superfamilies of  homologous 

domains are identified manually, which includes the assignment of  domain 

boundaries to the incoming protein structures from the PDB. Each domain 

identified in this way is either assigned to an existing superfamily or nucleates 

a novel superfamily. The sequences in each superfamily are further assigned to 

families, which are identified in a semi-automatic manner: a clustering at 30% 

sequence identity is followed by a manual merging of  individual (singleton) 

clusters in cases where the clustering threshold is not met but structural 

and/or functional properties indicate shared family membership. 

The CATH database defines four hierarchically organised levels of  domain 

classification: Class, Architecture, Topology, and Homologous Superfamily; 



CHAPTER 1. INTRODUCTION 

 44 

hence the name. Superfamilies are identified using a battery of  tools for 

sequence comparison, structure comparison, clustering and domain boundary 

assignment (Greene, Lewis et al. 2007). In addition, manual curation is 

employed in the key steps of  domain boundary assignment and the 

assignment of  domains on the topology (fold) level. A pair of  domain 

sequences (structures) is assigned to the same superfamily if  it meets at least 

one of  the following criteria:  

i) A sequence identity of  at least 35% in conjunction with at least 60% 

of  the longer sequence covering the shorter (overlap). 

ii) A SSAP (Taylor and Orengo 1989; Orengo and Taylor 1996) 

(structure alignment tool) score of  at least 80 in conjunction with a 

sequence identity of  at least 20% and a minimum overlap of  60%. 

iii) A SSAP score of  at least 70 in conjunction with a minimum overlap 

of  60% and a clear similarity in function, as inferred from the 

literature and the Pfam domain family database. 

iv) Significant (if  potentially very low) sequence profile similarity in 

profile-profile comparison (see Section 1.4.2.2) with SAM (Hughey 

and Krogh 1996), HMMER (Eddy 1998; Eddy 2009) and PRC 

(Madera 2008). 

To generate SUPERFAMILY and Gene3D, one or more models (HMMs) are 

built to represent each (seed) superfamily defined in SCOP or CATH, 

respectively (Gough, Karplus et al. 2001; Lee, Grant et al. 2005). By scanning 

the major protein sequence databases with these models, the seed 

superfamilies (containing only structurally characterised sequences) are 

extended by homologous sequences from all fully or partially sequenced 

genomes (proteomes). As in SCOP and CATH, this involves the crucial step 

of  domain boundary assignment, but without the help of  structural 
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information. While the respective models hit a given protein target sequence 

in specific positions, the hits from different models frequently overlap. SCOP 

and CATH employ different algorithms to resolve such cases, as described in 

Gough, Karplus et al. (2001) and Yeats, Redfern et al. (2010), respectively. 

1.5.2.2 Classification based on sequence 

An overview of  the most important extant family resources is most easily 

achieved when looking at those that contribute to InterPro (Hunter, Apweiler 

et al. 2009), a meta-resource for protein classification that is described in detail 

in Section 5.1.2. Among the InterPro members are the most widely used 

resources for protein and domain family classification: SUPERFAMILY and 

Gene3D detect putative structural domains in protein sequences (see Section 

1.5.2.1), Pfam classifies whole-protein and domain sequences, PRODOM 

(Servant, Bru et al. 2002) and SMART (Letunic, Doerks et al. 2009) classify 

domain sequences, and PANTHER (Thomas, Campbell et al. 2003), PIRSF 

(Nikolskaya, Arighi et al. 2006) and TIGRFAMs (Haft, Loftus et al. 2001) 

classify whole-protein sequences.  

PRODOM automatically clusters evolutionary conserved sequence segments 

(putative domains) based on recursive PSI-BLAST searches of  UniProtKB. 

The other family resources mentioned above all use libraries of  HMMs to 

represent families, that is, they follow the model library concept (see above). 

For the most relevant of  those resources (in the context of  the present work) 

an overview is provided in the following, which is augmented by a discussion 

of  the individual family layers in Chapter 5. There also exist many resources 

that aim to establish clusters of  orthologous proteins (see Section 1.2.2.2). 

These are not immediately relevant to this work and are reviewed in Fang, 

Bhardwaj et al. (2010). 

Pfam, as the most widely used sequence-based family resource, classifies 

protein and domain sequences into families of  functionally related sequences 



CHAPTER 1. INTRODUCTION 

 46 

below the superfamily level, with a focus on domain function (a family 

concept has not explicitly been formulated; see also Section 1.2.2.3). Among 

the member databases of  InterPro, the manually curated Pfam-A and the 

automatically generated Pfam-B parts of  the resource together provide the 

highest coverage of  the known protein sequence space. As of  October 2011, 

more than 75% of  all protein sequences are assigned at least one Pfam 

domain, from more than 12,000 families. Pfam families were and are created 

on an ad-hoc basis, with a bias towards large families (Sonnhammer, Eddy et 

al. 1997). The sequence groups underlying the corresponding, curated seed 

alignments are compiled using a variety of  sources and tools, such as 

PROSITE (Sigrist, Cerutti et al. 2002), PRODOM, SwissProt and BLAST; 

published high-quality alignments of  individual protein (domain) families are 

also used. Following a similar goal to Pfam, SMART consists of  a 

considerably smaller but entirely manually curated set of  domain families.  

PANTHER aims to delineate functional divergence within homologous 

protein families found in metazoan species. By expert curation, the families 

are split into functionally conserved ‘subfamilies’, each annotated with GO 

molecular function and biological process terms. TIGRFAMs focuses on 

functional conservation as well, with half  of  its protein families containing so-

called ‘equivalogs’. These are defined as sequences of  conserved molecular 

function, and the families can therefore contain a mixture of  orthologues, 

paralogues and xenologues; this definition may also (implicitly) apply to many 

Pfam protein families. PIRSF compiles ‘homeomorphic’ families of  

homologues, where all members show full-length sequence similarity and 

share the same domain architecture; conserved function is not a necessary 

requirement. 
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1.6 Summary of  work and overview 

A summary of  the work presented here, in the order it was conducted, is first 

provided in the following. The subsequent section then closes the 

introduction, giving an overview of  the following chapters.  

1.6.1 Summary of  work 

The overarching aim of  the presented work was the development of  a 

software pipeline to identify the functionally conserved families within protein 

domain superfamilies. The individual steps it took to reach this aim are 

outlined in the following. After preliminary studies had shown the potential of  

using domain sequence and protein annotation data to study the functional 

plasticity of  protein domain superfamilies (Addou, Rentzsch et al. 2009), the 

development of  a clustering method for domain family identification (Lee, 

Rentzsch et al. 2010) stood at the beginning of  this work. As the potential of  

using annotation data directly, not only in training the method, had been 

recognised, it was first extended to use EC annotations. These should serve 

both to select a relevant subset of  the input data for clustering (i.e., reduce the 

computational overhead) and to guide the clustering process. The following 

switch towards using GO annotation data brought increased coverage but also 

new challenges. Further, the abandonment of  exhaustive clustering in favour 

of  a ‘leaner’ protocol, following the model library concept, required the design 

of  a pipeline.  

The integration of  the developed methods for data preparation, clustering, 

family identification and assignment into the DFX (Domain Function 

Exploration) pipeline was necessary to make the large-scale processing of  

superfamilies possible whilst maintaining usability and flexibility. With regards 

to the latter, the sequence clustering and family identification steps were 

entirely disentangled at this point. This made it possible to embed the 

GeMMA clustering protocol, the original family identification protocol (not 
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directly using annotation data) and the novel family identification protocol 

(using GO data) as independent modules in DFX. In the following, this was 

augmented with the development of  several more specific modules, for 

example, for naming the identified domain families and for their use in whole-

protein function annotation. Finally, a detailed analysis of  the results (families) 

obtained with each of  the developed methods was conducted, where this had 

not already happened. While a first version of  DFX is now stably integrated 

with the Gene3D resource, many challenges remain to be addressed in future 

work. Their identification and detailed discussion formed the last part of  the 

work presented here. An outline of  the subsequent chapters follows. 

1.6.2 Overview of  chapters 

The chapters of  this thesis are arranged in the order the work was conducted, 

with the exception of  Chapter 3, the DFX ‘overview’ chapter. This provides 

an overview of  the pipeline and its individual models. In detail, the order of  

chapters is as follows.  

Chapter 2 describes the development of  a high-throughput HPC sequence 

clustering method based on alignment profile-profile comparisons, GeMMA.  

Chapter 3 discusses the integration of  GeMMA and further developed 

methods into a pipeline for the identification of  functional families within all 

Gene3D domain superfamilies, DFX. The concept of  domain function and 

the corresponding family concept followed in DFX are also defined in this 

chapter. The pipeline embeds two alternative protocols for family 

identification, which are discussed and evaluated in the two following chapters.  

Chapter 4 introduces the unsupervised family identification protocol of  the 

DFX pipeline, which is used in cases where individual domain superfamilies 

are not associated with any high-quality protein function annotation data. This 

protocol uses the results of  domain sequence clustering with GeMMA in 
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conjunction with a generic granularity setting that is determined in an initial 

training step. 

Chapter 5 describes the supervised family identification protocol of  the DFX 

pipeline, which is used to process the majority of  domain superfamilies. This 

protocol processes the clustering results in conjunction with high-quality 

protein function annotation data to derive domain families with conserved 

(domain) function.  

Chapter 6 provides an overview of  the results obtained with DFX in a 

quantitative manner. In particular, this involves different statistics on the 

domain families produced in the first large-scale run of  the pipeline and an 

overall comparison of  the results obtainable with each of  the two family 

identification protocols. 

Chapter 7 closes this thesis, with an overall summary of  the work conducted, 

the current usage of  the already generated family data, recent and further 

possible changes to the pipeline and how these changes are expected further 

to improve its performance. DFX is also put into context with a newly 

introduced method for domain family annotation in SUPERFAMILY, the 

recent protein function prediction challenge CAFA 2011, and with several 

recent studies on particular domain superfamilies. In the context of  the latter, 

a generic protocol for such studies is proposed. The chapter closes with some 

final remarks on the state and direction of  domain-centric research, the 

possibilities it provides and the requirements for its further advancement. 
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Chapter 2. GeMMA: profile-based clustering 
of  protein sequences in distributed 
computing environments 

This work has been published in Lee, Rentzsch et al. (2010) and is partly based on 

ideas of  my colleague and co-author David A. Lee. Specifically, this refers to the two 

heuristics described in Section 2.2.3. Their theoretical foundation, implementation and 

all remaining parts of  the chapter represent my own work.  

This chapter discusses the development of  a novel, distributed method to 

cluster biological sequence data. GeMMA can be run in various HPC 

environments and is applicable to large input datasets with hundreds of  

thousands of  data points. The background section primarily discusses the 

different types of  generic algorithms that underlie individual existing sequence 

clustering methods. The implementation section then describes the GeMMA 

protocol in detail, focussing on the different heuristics and HPC strategies it 

uses to leverage the handling of  large datasets with high throughput. The 

chapter closes with an outline of  potential caveats and possible future 

improvements of  the algorithm. 

2.1 Background and aims 

In the following, the importance of  sequence clustering in general is first 

discussed, together with its main applications. Emphasis is put on the 

necessity to develop novel, flexible methods that can be used in a high-

throughput setting, in the light of  the ever increasing amounts of  sequence 

data. The related features of  the GeMMA (Genome Modelling and Model 

Annotation4) method and its advantages over existing methods are outlined. 

The rest of  this section contains a detailed classification and review of  

existing clustering algorithms, followed by a brief  summary of  clustering 

                                            
4
 The method was initially developed for structural genomics target selection. 
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evaluation strategies and an overview of  the most widely used clustering tools 

and resources. 

2.1.1 Clustering biological sequences 

A comprehensive review of  protein and protein domain sequence clustering 

by Liu and Rost (2003) concludes: ‘One point is clear: we urgently need better 

tools to dissect proteins into domains and to cluster these domains’. More 

generally, the clustering of  different types of  datasets, based on different 

similarity measures, is one of  the most common requirements in 

bioinformatics analyses. Examples of  data types to be clustered are: sequence 

data, expression profiles and scientific articles. Depending on the size of  the 

dataset and the complexity of  the clustering criterion, computational cost can 

quickly become a limiting factor. 

The two general applications of  sequence clustering are (i) redundancy 

removal and (ii) the automatic identification of  different types of  groups in 

sequence datasets. One example for the latter is the use of  GeMMA in the 

DFX pipeline, as discussed in Chapter 3. Another is structural genomics 

target selection (Liu and Rost 2003), where protein sequence clusters are used 

to choose target sequences with high ‘impact’. This refers to the number of  

other proteins for which a homology model could be built if  the respective 

protein structures were solved and used as templates. For both applications, 

large sequence datasets have to be clustered with high sensitivity.  

In 1965, George Moore correctly predicted an exponential growth rate for the 

processing power of  CPUs (Moore 1965). A similar observation has later 

been made with respect to the size (and cost) of  storage media (Walter 2005). 

However, as of  2011, the amount of  available sequence data increases even 

faster (Kahn 2011), and the genome of  Moore himself  was recently added to 

this data (Rothberg, Hinz et al. 2011). In the words of  the review article 



CHAPTER 2. GEMMA: PROFILE-BASED CLUSTERING OF PROTEIN SEQUENCES IN DISTRIBUTED COMPUTING 

ENVIRONMENTS 
 

 52 

quoted above: ‘…the growth-rate for bio-sequences continues to grow’ (Liu 

and Rost 2003). Serving as a striking example, the field of  metagenomics has 

already produced more sequence data than all whole-genome sequencing 

projects taken together (Wooley, Godzik et al. 2010).  

While some existing sequence clustering methods can handle large datasets, 

sometimes with high speed, they suffer from different limitations. In particular, 

these are limited sensitivity in the detection of  weak relationships between 

sequences, the (systematic) introduction of  clustering errors by certain 

heuristics and/or impractically high memory requirements. In general, fast 

methods often lack sensitivity and introduce errors, while well-performing 

methods are commonly slow. Most clustering methods further require an all-

by-all similarity matrix as input, which can often not efficiently be produced 

on a single standard desktop PC for large datasets (as of  2011). This is due to 

the processing power required to calculate all pair-wise similarities (speed 

bottleneck) and the amount of  system memory required to hold the resulting 

matrix (memory bottleneck).  

Based on the above considerations, the development of  novel methods for 

clustering biological sequences is an important area of  bioinformatics research. 

The GeMMA clustering protocol uses distributed computing, novel heuristics 

and a profile comparison strategy to balance speed with sensitivity. Further, it 

can process large sequence datasets in a memory-efficient manner.  

2.1.2 Clustering algorithms 

Clustering refers to a type of  unsupervised learning process in which a dataset 

is partitioned into a number of  (usually) disjoint subsets, according to the 

similarity relationships between all data points in the initial set. The generated 

subsets are called clusters. The produced clusters together form what is called 

a partitioning or clustering of  the initial dataset. Clustering methods require 
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the choice of  a (dis)similarity measure, based on which individual data points 

and/or clusters are compared. Further, the granularity of  the obtained 

partitioning can usually be controlled for, in a method- and algorithm-specific 

way. The following sections describe the clustering algorithms most frequently 

applied to datasets of  biological sequences. These broadly fall into hierarchical, 

partitional, graph-based and heuristic approaches, as explained in the 

following. 

2.1.2.1 Hierarchical clustering 

Hierarchical methods start with an all-by-all comparison of  a set of  initially 

defined clusters, usually containing individual data points. Subsequently, they 

merge or split clusters in a recursive manner. This process is best envisioned 

as the growing of  a tree of  clusters (clustering dendrogram), either from the 

leaf  nodes to the root (agglomerative hierarchical clustering) or vice versa 

(divisive hierarchical clustering) (Johnson 1967). The process is illustrated in 

Figure 2.1. While the root cluster contains all data points, the leaf  clusters 

each contain a single one. In standard agglomerative hierarchical clustering, 

the most similar pair of  clusters is merged in each iteration. In divisive 

hierarchical clustering, partitional methods (see below) are used to split the 

most diverse existing cluster into two more homogenous clusters in each 

iteration. 

The granularity of  hierarchical clustering methods, that is, at which point (and 

whether or not) the iterative clustering process is stopped, is controlled using 

specific stopping criteria. As such, simple global threshold parameters are 

frequently used; for example, a similarity value that no pair of  clusters must 

exceed, or a certain number of  clusters not to be under-run. More complex 

stopping criteria can involve cost functions, as discussed in Section 2.1.3.1. 



CHAPTER 2. GEMMA: PROFILE-BASED CLUSTERING OF PROTEIN SEQUENCES IN DISTRIBUTED COMPUTING 

ENVIRONMENTS 
 

 54 

Hierarchical clustering methods commonly use one of  three ways to measure 

cluster dissimilarity: single linkage, complete linkage or average linkage. In 

single linkage (or nearest neighbour) clustering, the distance d between two 

clusters A and B is defined as the distance between the two closest data points 

in A and B. In complete or multiple linkage (farthest neighbour) clustering, d 

is defined as the maximum distance of  two points in A and B. In average 

linkage clustering d is calculated by averaging over the distances between any 

two points in A and B; in the construction of  phylogenetic trees this 

corresponds to the UPGMA (Unweighted Pair Group Method with 

Arithmetic mean) method (Michener and Sokal 1957). In addition, numerous 

derivatives of  these three basic paradigms exist (Berkhin 2002). Based on the 

necessary initial all-by-all comparison, and depending on the dissimilarity 

measure used, naïve agglomerative clustering approaches have a non-linear 

time complexity of  maximally O(n2·log(n)). 

2.1.2.2 Partitional clustering 

Partitional methods directly cluster datasets at a single level of  granularity, not 

producing a clustering dendrogram like hierarchical methods. The most widely 

used partitional clustering algorithm is the k-means or, more generally, the k-

centres approach (Macqueen 1967). This algorithm starts with randomly 

assigning a chosen number (k) of  data points to be cluster centres and then 

iterates between two stages until convergence: (i) cluster formation, where 

each data point is assigned to the closest centre, and (ii) reassignment, where 

the centres of  all clusters are recalculated. The number of  centres k equals the 

produced number of  clusters, and therefore represents the granularity 

parameter of  the k-centres approach. Different strategies exist to calculate the 

cluster centres. Most commonly, the cluster centroids are used (k-means 

approach). If  means can not be calculated for a given data type, medoids can 

be used instead (k-medoids approach). The medoid is the data point that is, 

on average, most representative for all data points in a given cluster. 
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Figure 2.1. Hierarchical agglomerative clustering. An example dataset with data points of different 

similarity (colours) is clustered in three iterations (I-III). (a) shows the shrinking similarity matrix; (b) shows 

the distance between the individual data points; (c) shows the growing clustering dendrogram. In each 

iteration, the most similar pair of data points is merged, as indicated by the purple matrix entries in (a); if 

several pairs are equally similar, all these pairs are merged. 

K-centres clustering does not require an initial all-by-all comparison of  the 

data points but only an all-by-n comparison, where n equals the chosen 

number of  clusters k. With a linear time complexity O(n) it is faster than 

hierarchical clustering, and its implementation requires less memory (Fayech, 

Essoussi et al. 2009). Still, the k-centres approach is rarely used to cluster 

biological sequence data. This is despite the fact that k-means centroids could 

be calculated in the form of  alignment profiles. One reason for this lack of  

popularity is the requirement to specify a fixed number of  clusters initially. 

This usually implies prior manual and/or algorithmic analysis of  the input 

dataset. In addition, partitional algorithms can converge to locally optimal 
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solutions and, when initialised randomly, do not yield identical results in 

repeated runs on the same dataset.  

2.1.2.3 Graph-based clustering 

Like hierarchical clustering methods, graph-based clustering methods require 

as input an all-by-all matrix of  pair-wise similarities between the data points. 

This matrix is transformed into a graph (network), where nodes (vertices) 

represent data points and edges (connections) represent relationships between 

them; each edge can additionally be associated with a weight value. The 

‘global’ character of  graph-based approaches is thought to make them more 

powerful than hierarchical and partitional methods on some datasets 

(Jaromczyk and Toussaint 1992; Schaeffer 2007; Wang, Li et al. 2010). Based 

on iterative updates of  the initial matrix, they can take into account the 

similarity relationships between all data points at any point in clustering. 

When clustering biological sequences, the graph to be clustered is a sequence 

similarity network, in which nodes represent sequences and edges represent 

similarity relationships between them. Another example is biomolecular 

interaction networks, in which nodes represent different types of  molecules 

and edges indicate the (probabilities of) interactions between them. The 

algorithms that are most widely used to cluster such networks are Markov 

clustering (MCL) (van Dongen 2000) and affinity propagation clustering (APC) 

(Frey and Dueck 2007). Both are outlined in the following. Other potentially 

powerful algorithms are spectral clustering (Shi and Malik 2000), 

superparamagnetic clustering (Blatt, Wiseman et al. 1996) and transitivity 

clustering (Wittkop, Emig et al. 2010). However, so far these have been 

seldom applied and existing implementations are relatively slow. 

MCL was conceived by S. van Dongen in 2000. It requires as input a 

symmetric similarity matrix, from which it generates a stochastic Markov 
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matrix of  ‘transition probabilities’ between all data points. These probabilities 

are the edge weights in the corresponding sequence similarity network. The 

algorithm then iteratively simulates random walks between the nodes in this 

network, guided by the edge weights, and adjusts these weights. In each 

iteration, ‘flow’ is promoted where it is already strong (high transition 

probability) and lowered or entirely removed where it is weak (low transition 

probability). In this manner, MCL converges on a set of  disjoint clusters. The 

process is technically implemented in the form of  matrix multiplication 

operations on the underlying stochastic matrix, where flow promotion 

corresponds to matrix ‘expansion’ and lowering flow corresponds to matrix 

‘inflation’. Expansion and inflation are iterated over until convergence, that is, 

until no net change in the matrix is observed anymore (van Dongen 2000). 

The clustering granularity of  MCL is determined by setting an inflation 

parameter. An improved version of  the algorithm, based on dynamically 

decreasing the value of  the inflation parameter during clustering, was 

published by Medvés and colleagues in 2008 (Medvés, Szilágyi et al. 2008). 

APC was initially published by (Frey and Dueck 2007) and has later been 

reformulated in a simpler manner by (Givoni and Frey 2009). Since both 

formulations of  the algorithm yield equal results, the simpler version is 

summarised in the following. Somewhat similar to flow simulation in MCL, 

APC is an algorithm that passes availability and responsibility messages 

between nodes (data points) connected by edges in a similarity network. The 

aim is to converge on a set of  so called ‘exemplars’, data points that best 

represent the partitions inherent in the dataset to be clustered. Exemplars 

correspond to the centres in k-centres partitional clustering methods (see 

above). Accordingly, APC shares with these methods the strategy of  

minimising an overall cost function in each round: the sum of  distances 

between all data points and their respective exemplars. The final clusters can 

directly be derived from the exemplars, since all data points are assigned to 
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one and only one exemplar in all steps of  APC. The latter is the first of  two 

important constraints in the clustering process. The second constraint is that a 

data point can only be assigned another data point as its exemplar given that 

this other data point also is its own exemplar. The clustering granularity of  

APC is controlled by a so-called preference parameter, which corresponds to 

the inflation parameter in MCL.  

Graph-based sequence clustering is frequently used with the aim of  

partitioning arbitrary sequence datasets according to one of  the concepts 

described in Chapter 1 (protein superfamily, family or orthologue cluster). 

However, as for any other type of  clustering algorithm, this can only be done 

successfully in conjunction with an unsupervised or supervised clustering 

evaluation strategy (see Section 2.1.3), that is, a strategy to estimate optimised, 

case-dependent settings for the respective clustering granularity parameter. 

Chapters Chapter 4 and Chapter 5 discuss such combined protocols in the 

context of  protein family identification. 

2.1.2.4 Greedy incremental methods 

Greedy incremental clustering methods are frequently used to partition 

sequential data (for example, strings and vectors) in a fast but heuristic manner. 

The granularity parameter of  these methods is a global redundancy threshold 

that defines the level of  pair-wise similarity above which two data points 

should share the same cluster. The basic idea was formulated for the 

clustering of  biological sequences by Hobohm and colleagues in 1992 

(Hobohm, Scharf  et al. 1992).  

The generic workflow of  the greedy incremental algorithm (or: list removal 

algorithm) is as follows. First, all sequences in the target dataset are sorted in 

order of  decreasing length. The generated list is then traversed from top to 

bottom and each sequence is either (i) added to the (initially empty) set of  
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cluster representatives or (ii) assigned to an existing representative. This 

decision depends on whether or not the respective sequence is sufficiently 

similar to (at least) one of  the existing representative sequences. The result of  

this process is a set of  representative sequences, each representing a cluster 

that contains the representative itself  and any sequences assigned to it. In 

other words, the result is a partitioning of  the input dataset.  

Greedy incremental clustering corresponds to a k-centres approach (see above) 

without iterative cluster refinement. It only deviates from this definition in that 

it automatically delineates the number of  clusters k, based on the redundancy 

threshold value set. Generally, the algorithm operates in O(n·k) linear time. 

Existing implementations of  greedy incremental sequence clustering use 

different sequence similarity measures and follow different strategies to select 

the representative sequence to which a given sequence is assigned to.  

The most influential strain of  greedy incremental clustering methods uses a 

BLAST-like short word filtering approach (see Section 1.4.1.1) to compare 

sequences with high efficiency (Grillo, Attimonelli et al. 1996; Holm and 

Sander 1998; Li, Jaroszewski et al. 2001; Edgar 2010). Short word filtering is 

based on the notion that a certain degree of  overall sequence similarity 

between two sequences necessarily implies that the sequences also match in a 

number r of  short residue stretches with length k; these are commonly 

referred to as ‘words’ or k-tuples. For example, a sequence identity value of  

90% requires two sequences with length 100 to share at least one continuous 

stretch of  10 identical residues, a 10-tuple or decamer.  

CD-HIT (Li and Godzik 2006) is the so-far most widely used heuristic 

clustering tool and relies on the above strategy. It uses small word sizes in 

combination with in-memory lookup tables for fast sequence comparisons. 

According to (Edgar 2010) CD-HIT is outperformed by the UCLUST 

method, in terms of  speed, memory requirement and accuracy. UCLUST 
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follows a very similar algorithmic workflow but uses the USEARCH 

algorithm (Edgar 2010) to compare sequences. In general, both CD-HIT and 

UCLUST provide (profoundly) increased speed at the cost of  diminished 

accuracy when compared with methods that implement non-heuristic 

clustering algorithms such as those discussed above.  

2.1.3 Clustering evaluation measures 

Clustering methods can be used to partition input datasets at arbitrary levels 

of  granularity. This is done by adjusting the respective method-specific 

stopping criteria and granularity parameters, as discussed above. These 

options are sufficient for some important applications of  clustering, such as 

redundancy removal in biological sequence datasets or a uniform, hierarchical 

sampling of  sequence space. However, it is often necessary not only to cluster 

a given dataset but also to be able to select from a set of  different possible 

partitionings the best one.  

Clustering evaluation measures are used to estimate the degree to which an 

obtained partitioning of  a given dataset corresponds to the (assumed or 

known) ‘true’ underlying structure of  the dataset. There exist two types of  

measures. Unsupervised measures require no information apart from that 

used and/or obtained in the clustering process. They are, by definition, 

measures of  relative goodness. Supervised measures require additional, external 

information. They are frequently used in benchmarking; in particular, to 

benchmark the performance of  unsupervised measures. 

Examples for the combined use of  clustering algorithms and unsupervised 

evaluation measures are the automatic ab-initio methods for protein family 

identification discussed in Chapter 4. In contrast, the benchmarking of  

GeMMA (used in isolation for the same purpose) in the same chapter is an 
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example of  supervised evaluation. Both supervised and unsupervised 

measures are outlined in the following. 

2.1.3.1 Unsupervised measures 

Most unsupervised measures for evaluating specific partitionings of  a given 

dataset rely on the assumption that a good partitioning maximises both cluster 

cohesion and cluster separation. Cohesion or ‘compactness’ refers to the 

average similarity between all data points in a cluster. Separation or ‘isolation’ 

refers to the average similarity between all data points in a cluster and the data 

points in other clusters. It indicates how well-separated a cluster is from all 

other clusters. If  a cost function is designed that takes the cohesion and 

separation values of  all clusters in a partitioning into account, this function 

can be used as an unsupervised evaluation measure (see below).  

A general unsupervised strategy to measure the quality of  a given partitioning 

is sampling; that is, assessing it in the light of  (many) other partitionings 

generated for the same dataset. Consensus approaches assume that a 

clustering solution is good given that the partitions it proposes are robust 

towards changes in the parameter settings of  the clustering method in use. 

The same rule can be applied to the results of  repeated runs (with unchanged 

parameters) when a non-deterministic method such as k-centres is used. Cost 

function approaches assess the behaviour of  a specifically designed function 

over the range of  all sampled partitionings. Good solutions can then be 

identified at global optima or at points of  sharp transition and/or specific 

stability in slope of  this function. Commonly used cost functions are based on 

cluster cohesion and separation, the number of  produced clusters, or the size 

of  the ‘giant component’. The latter refers to the largest cluster in a given 

partitioning and can be used as another (rather coarse) measure of  its quality. 

According to this, a balanced partitioning of  a given dataset can generally be 

expected close to the point at which a giant component can be clearly 
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detected. For example, in Dokholyan, Shakhnovich et al. (2002) the authors 

estimate that a good partitioning can be found at the point at which the giant 

component contains about half  of  all data points. 

Unsupervised clustering evaluation measures, such as those described above, 

are an integral part of  ab-initio methods and protocols for protein family 

identification, as described in Chapter 4. 

2.1.3.2 Supervised measures 

Supervised measures for clustering evaluation generally rely on external 

information in the form of  ‘gold standard’ datasets. The ideal (correct) 

partitioning of  such datasets is known; that is, the individual data points are 

assigned to one of  several known classes within the dataset, respectively. The 

quality of  any given partitioning of  the same dataset can therefore be 

measured by accessing how well it matches the gold standard classification. In 

general, this is calculated using the notions of  sensitivity (are all data points 

that belong to the same class found in the same partition?) and specificity (do 

the data points in each partition belong to a single class, respectively?). Scores 

that measure sensitivity and specificity are usually integrated to yield an overall 

performance score, as only the combination of  both provides a good estimate 

of  how well the proposed and known partitionings match.  

There exist different ways for deriving values of  sensitivity and specificity in 

the context of  clustering, and different strategies to combine these values into 

a single value (for a comprehensive review see (Tan, Steinbach et al. 2005)). 

Traditionally widely used are measures that count pairs of  data points, such as 

the Rand (Rand 1971) and Jaccard (Jaccard 1901) indices. In brief, these are 

based on measuring how many pairs of  data points that are found in the same 

(in different) class(es) in the reference partitioning, respectively, show the 

same relationship in the proposed partitioning. More recently, several 
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information theoretic measures have been introduced (Vinh, Epps et al. 2010), 

with the V (Rosenberg and Hirschberg 2007) and VI (Variation of  

Information; Meila [2007]) measures being the most influential. These take 

into account both the purity and completeness of  each individual cluster in 

the proposed partitioning, with regards to the class membership of  its data 

points in the gold standard classification, respectively. The VI measure is used 

as one of  three measures in evaluating protein (domain) family partitionings in 

Chapter 4 and Chapter 6. 

2.1.4 Existing tools and resources 

Hierarchical and heuristic clustering algorithms underlie the generic tools that 

are most widely used to cluster sequences. These are BLASTClust (Altschul, 

Gish et al. 1990) and CD-HIT (Li and Godzik 2006), respectively. The former 

is part of  the NCBI BLAST package and implements standard single linkage 

agglomerative hierarchical clustering; it uses BLAST raw scores as the 

similarity measure and optional constraints on sequence overlap. CD-HIT is 

based on a greedy incremental clustering algorithm and uses short word 

matches to measure sequence identity, as described in Section 2.1.2.4. The 

only input required for either method is protein or DNA sequence data.  

Heuristic methods such as CD-HIT are very fast but not very accurate. 

Therefore, they are primarily (and very frequently) used to generate non-

redundant sequence sets at arbitrary levels of  maximum pair-wise sequence 

identity; for example, in the UniRef  (Suzek, Huang et al. 2007) and SwissProt 

parts of  UniProtKB and in the CAMERA repository for metagenomic 

sequence data (Seshadri, Kravitz et al. 2007). The NCBI still uses nr90db 

(Holm and Sander 1998) to make its DNA databases non-redundant, a Perl 

script that is a remote ancestor of  CD-HIT. 
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Hierarchical clustering algorithms can be used to obtain multi-layer libraries 

of  sequence clusters. Two resources use this approach to cluster the known 

sequence space as a whole, ProtoNet (Sasson, Vaaknin et al. 2003) and CluSTr 

(Kriventseva, Fleischmann et al. 2001). ProtoNet is based on a memory-

constrained implementation of  UPGMA (Loewenstein, Portugaly et al. 2008) 

and uses BLAST similarity scores. In contrast, CluSTr follows the single 

linkage paradigm but uses Smith-Waterman alignment Z-scores. Both 

resources use heuristics and redundancy removal schemes to cope with the 

immense sequence load. ProtoNet builds a ‘skeleton’ cluster tree from the 

sequences in SwissProt only, and subsequently assigns all TrEMBL sequences 

to their best matching clusters in this tree using BLAST (Sasson, Vaaknin et al. 

2003). CluSTr excludes any clusters from the output set that contain more 

than 90% of  the sequences in their direct parent cluster.  

Interestingly, CluSTr is no longer being maintained (as of  2011), a sign of  the 

immense computational overhead involved. A promising basis for related 

large-scale clustering projects in the future is the Similarity Matrix of  Proteins 

(SIMAP) resource (Rattei, Tischler et al. 2008). This provides a regularly 

updated all-by-all similarity matrix of  all known protein sequences, using a 

FASTA-based comparison algorithm in a distributed volunteer computing 

framework (Anderson 2003). SIMAP itself  further implements a basic 

clustering scheme, using MCL. 

Many studies and resources that apply sequence clustering in a more specific 

manner, for example, to derive families, use graph-based algorithms such as 

MCL, APC or spectral clustering. The respective tools can usually be obtained 

from the authors, in the form of  standalone executables or packages for the R 

programming language. MCL was first used to cluster protein sequences in 

2002, as part of  the TRIBE-MCL (Enright, Van Dongen et al. 2002) 

workflow; one of  the co-authors was the MCL inventor S. van Dongen. 

TRIBE-MCL formed the basis for the later abandoned TRIBES protein 
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family resource (Enright, Kunin et al. 2003) and has become part of  the 

Ensembl pipeline (Flicek, Amode et al. 2011). In addition, several more recent, 

lineage- and organism-specific resources use MCL to establish sequence 

clusters, for example, PlantTribes (Wall, Leebens-Mack et al. 2008) and 

YeastWeb (Chu, Yuan et al. 2010). Li and colleagues developed the 

OrthoMCL protocol (Li, Stoeckert et al. 2003) and created the corresponding 

OrthoMCL-DB resource (Chen, Mackey et al. 2006), which aims to establish 

orthologue clusters through the combined use of  pair-wise sequence 

comparisons and MCL. Other graph-based clustering methods have been 

used in a similar way, for example, APC in Frey and Dueck (2007) and spectral 

clustering in Paccanaro, Casbon et al. (2006). 

2.2 Implementation 

The following sections describe the implementation of  the GeMMA 

clustering protocol. The protocol as a whole is first outlined. Subsequently, its 

modularity, high-throughput heuristics and HPC implementation are discussed 

in detail.  

2.2.1 The GeMMA clustering protocol 

The GeMMA clustering protocol is based on the common agglomerative 

hierarchical clustering paradigm. It takes as input a set of  starting clusters, 

each containing one or more sequences, and then iteratively performs pair-

wise cluster comparison and cluster merging operations. This process 

proceeds until a stopping criterion is met or only a single cluster is left. The 

stopping criterion is based on a global cluster similarity threshold: the 

clustering is stopped when no pair of  clusters compared in a given iteration is 

more similar than the specified threshold value. This overall workflow is 

outlined in Figure 2.2. In addition to the final partitioning, GeMMA produces 

a full trace of  the clustering process (in particular, the cluster merging order). 
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Further, all clusters and cluster alignments produced in the course of  

clustering can be stored. 

GeMMA deviates from other hierarchical clustering methods that are used to 

cluster sequences in three key points. First, cluster dissimilarity is measured 

using a ‘profile linkage’ approach. This is similar in principle to the widely 

used average linkage paradigm. However, instead of  carrying out all-by-all 

sequence comparisons between pairs of  clusters, GeMMA builds and 

compares cluster profiles. Second, a ‘comparison sampling’ heuristic is used to 

speed up the clustering of  large datasets. In brief, not the full set of  all 

possible pair-wise cluster comparisons is carried out at any one point in 

clustering but rather a randomly drawn subset. Third, a ‘greedy merging’ 

heuristic is used as a further speed-up strategy. Based on this, not only the 

most similar pair of  clusters is merged in each iteration but all pairs that meet 

the global similarity threshold value.  

 

Figure 2.2. The GeMMA workflow. GeMMA is a protocol to cluster protein sequences based on the 

agglomerative hierarchical clustering paradigm. It iteratively aligns sequence clusters, generates cluster profiles, 

compares clusters based on their profiles and merges pairs of clusters based on the comparison results. The 

protocol makes use of third-party tools in all steps apart from the merging step. 

2.2.2 Modular use of  existing tools  

Third-party tools are used at three points in the GeMMA workflow (see 

Figure 2.2). Specifically, these are MAFFT (Katoh, Kuma et al. 2005) for 

multiple sequence alignment and COMPASS (Sadreyev and Grishin 2003) for 

alignment profile generation and profile comparison. This modular design is 
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thought to make the protocol highly transparent and flexible, unlike the ‘black 

box’ approaches seen in tightly integrated methods. It further ensures that 

GeMMA can profit from ongoing external development efforts. Not only can 

all tools be used in their latest versions at any given point but they can also be 

replaced by other tools with equivalent functions. The implementation of  

GeMMA as a distributed HPC protocol (see below) means that this 

modularity does not create substantial additional overhead. This is because the 

HPC implementation itself  requires the splitting of  the protocol into 

independent modules, to be executed by individual HPC jobs. 

MAFFT is a suite of  methods that implement different algorithms for 

progressive multiple sequence alignment (see Section 1.4.1.2). As of  2011, it is 

one of  the fastest and best-performing extant alignment tools (Thompson, 

Linard et al. 2011). Depending on the size and other features of  the sequence 

set to be aligned, different algorithmic refinements can be switched on and off. 

This allows for a flexible balancing between speed and performance. MAFFT 

is further regularly updated. For these reasons, it was selected for use in the 

GeMMA protocol.  

COMPASS is a suite of  tools for alignment profile generation and comparison 

(see Section 1.4.2). It takes two MSAs as input, from those generates two 

MSA profiles in the form of  PSSMs, and computes their similarity. For 

performance reasons, the profile generation and comparison steps are 

separated in the GeMMA workflow (see Figure 2.2). This makes sure that a 

profile is generated for each individual cluster only once, even if  the cluster is 

subsequently compared with many other clusters. The E-value scores reported 

by COMPASS are used to monitor the progress of  GeMMA. Accordingly, the 

global cluster similarity threshold used in the protocol is an E-value threshold5. 

                                            
5
 While the E-value denotes the significance of a given similarity score rather then the score 

itself, this difference will be ignored at times in the following, for ease of reading. 
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2.2.3 The GeMMA heuristics 

The GeMMA protocol implements two heuristics to speed up the clustering 

of  large sequence datasets: greedy merging and comparison sampling. The 

speed gain is achieved by increasing the number of  merges and decreasing the 

number of  comparisons per iteration, respectively. Both heuristics are based 

on a series of  observations made for the type of  dataset at GeMMA is 

primarily targeted. In brief, these are sequence superfamilies, each containing 

one or more families (see Section 1.2.2.1). First, superfamilies follow a scale-

free size distribution. Second, the few large superfamilies usually contain many 

different families. Third, these families show relatively high degrees of  internal 

sequence conservation whilst their average degree of  similarity to each other 

(average level of  sequence similarity) is often very low. This means that the 

families in large superfamilies are usually relatively well-separated. Similar 

properties can be found in other large yet structured datasets, in- and outside 

the biological realm. 

The GeMMA heuristics are explained in detail in the following two sections. 

Figure 2.3 provides an overview of  where and how they affect the clustering 

process. Figure 2.4 illustrates by example the effects they can have on the 

cluster merging order, and therefore on the resultant clustering as a whole. 
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Figure 2.3. The GeMMA heuristics. This shows where and how the introduction of the two heuristics 

modifies the basic agglomerative hierarchical clustering approach on which GeMMA is based. Note that the 

overall workflow remains unchanged. 
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Figure 2.4. Potential effects of the GeMMA heuristics. (a) In traditional agglomerative hierarchical 

clustering, an all-by-all cluster comparison is made and only the best matching pair merged in each iteration. 

In the example shown this produces the correct order of merges. (b) Using the greedy merging heuristic, all 

cluster pairs that meet the current cluster similarity threshold value are merged in each iteration. While cluster 

C is still created in the first iteration, it is never compared with its ideal match D in the following iteration, 

since D has already been merged with E. (c) Using the comparison sampling heuristic, no more than a 

randomly drawn subset of Citer comparisons is carried out in each iteration. Here, A and B are not compared 

in the first iteration because the pair is not drawn. A is instead merged with D; hence it is no longer available 

for comparison to B in the following iteration. 
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2.2.3.1 Greedy merging 

A cluster merging heuristic was implemented in GeMMA to reduce its time 

complexity. ‘Greedy’ merging means that not only the best-matching cluster 

pair is merged in each iteration but all pairs that match better than the global 

cluster similarity threshold value; cluster merging is done in order of  

decreasing similarity. This is to lower the number of  existing clusters and 

therefore the number of  necessary pair-wise comparisons in subsequent 

iterations. Based on common structural characteristics of  the processed 

datasets (as described above), the heuristic relies on the assumption that the 

exact order of  cluster merges – especially in early stages of  clustering – should 

not have a great effect on the composition of  the eventually derived 

partitioning of  the input dataset. Put differently, the initially small, abundant 

and highly similar sequence clusters are expected to later be subsumed by the 

same set (or very similar sets) of  larger clusters, regardless of  the exact order 

of  merges.  

In the worst case example in Figure 2.4b, an existing cluster D that shows high 

similarity (higher than the similarity threshold value set) to a newly created 

cluster C is merged with another, less similar cluster E, because D and C are 

never compared. The latter is a direct consequence of  merging multiple 

cluster pairs per iteration: A and B are merged to form C in the same iteration 

the merger of  D and E is created. Hence, D does not exist anymore when it 

could be compared with C in the next iteration. However, based on the 

assumption above, this does not necessarily have to affect the clustering result: 

the sequences in the example clusters (A, B, D, and E) often end up in one 

and the same larger cluster.  

Generally speaking, the larger and more diverse the clusters get in the course 

of  clustering, the greater is the potential negative performance impact of  the 

greedy merging heuristic. The individual impact depends on how much the 
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cluster merging order deviates from the ideal order, that is, the order of  

merges observed when only the best pair of  clusters would be merged in each 

iteration. The detailed effects of  such deviations are difficult to illustrate and 

discuss in theory. However, a significant performance decrease when 

individual partitionings of  gold standard datasets (obtained with and without 

the heuristic) are benchmarked would clearly hint at such effects. This has so 

far not been observed (see Chapter 4). 

2.2.3.2 Comparison sampling 

The greatest speed bottleneck when clustering (sequence) data is the initial 

computation of  the similarity matrix. Usually, all data points have to be 

compared with all others. The profile linkage strategy to compare pairs of  

sequence clusters, as employed in GeMMA, is even more computationally 

demanding. Traditional hierarchical clustering approaches can rely on the 

initially calculated similarity matrix over the whole course of  clustering. 

Whenever two clusters are compared, the comparison results for the 

underlying data points (sequences) are reused. This is not possible when 

following a profile linkage approach. In this case a profile has to be generated 

from scratch for each newly created cluster, and the cluster profiles are 

compared. 

Based on the above considerations, a second heuristic was added to GeMMA 

further to reduce its time complexity when clustering large sequence datasets. 

This is that only a fraction Cfrac (a number Citer) of  all yet uncompared cluster 

pairs (Cleft) are compared in each iteration, while the remaining comparisons 

are ‘postponed’ (to be considered in following iterations). In addition, Citer is 

kept within the lower and upper boundary values Cmin and Cmax. The default 

settings for Cfrac, Cmin and Cmax are 1%, 2,000,000 and 10,000,000, respectively.  
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Table 2.1 illustrates how the boundary rule stated above affects the number of  

comparisons made, by the example of  the very first iteration of  GeMMA for 

a given sequence dataset (or a set of  starting clusters). In this case, the total 

number of  non-redundant pairwise comparisons to be made Cleft, depending 

on the total number of  starting clusters N, is given by: 

2

)1( −⋅
=

NN
Cleft  

Note, however, that the stated rule does not apply in all further stages of  

GeMMA clustering, from the second iteration onwards. This is because the 

merging heuristic (see Section 2.2.3.1) allows for multiple cluster merges per 

iteration, and the comparison sampling heuristic described here continuously 

postpones (often the great majority of) comparisons. The combination of  

both heuristics make the speed of  convergence increase in a manner that is 

dataset-dependent, and thus no simple rule to estimate Cleft for a given 

iteration exists. 

When using the default settings of  GeMMA, the boundary values Cmin and 

Cmax only become relevant when the number of  clusters to be compared all-

by-all exceeds ~20,000 (see Table 2.1). Below this value, a fixed number of  

Cmin (two million) pairs are compared per iteration. Further, the number of  

comparisons made per iteration Citer can only drop below a fraction Cfrac (1%) 

of  all remaining comparisons (Cleft) if  it exceeds Cmax (ten million); it is then 

set to Cmax. This is the case when more than ~43,000 clusters have to be 

compared. When the number of  clusters lies between the two boundary 

values, a fraction Cfrac of  all remaining comparisons is made in each iteration. 
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Table 2.1. The number of comparisons made in the first iteration of GeMMA clustering depending 

on the size of the input dataset. For each input dataset size, the total number of non-redundant pairwise 

(all-by-all) comparisons is given by the formula stated in the main text. As also described there, the number of 

comparisons made per iteration is bounded by Cmin and Cmax, as set to 2,000,000 and 10,000,000 by default, 

respectively. 

Initial number of clusters 

(individual sequences) 

Total number of non-redundant 

comparisons 

Comparisons made in the first 

iteration 

1,000 499,500 499,500 

2,000 1,999,000 1,999,000 

5,000 12,497,500 2,000,000 

10,000 49,995,000 2,000,000 

20,000 199,990,000 2,000,000 

30,000 449,985,000 4,499,850 

40,000 799,980,000 7,999,800 

45,000 1,012,477,500 10,000,000 

70,000 2,449,965,000 10,000,000 

100,000 4,999,950,000 10,000,000 

 

The distinct structural characteristics of  large sequence superfamilies (as 

described above) led to the two primary rules underlying the comparison 

sampling heuristic. First, all pair-wise comparisons should ideally be made 

before merging clusters when small to medium-sized superfamilies are 

processed. Such superfamilies are equally likely to be diverse or conserved in 

sequence and therefore should be treated ‘neutrally’. This is possible, since all-

by-all profile comparisons are, in these cases, computationally feasible. Second, 

the heuristic should be used when large superfamilies are clustered, in early 

stages of  clustering. In these cases, a large fraction of  all comparisons will 

yield low similarity values. These results do not have to be readily available 

initially, and only a few of  them become relevant later on, depending on 

whether or not the corresponding clusters still exist.  
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In general, whenever there exist pairs of  clusters that are more similar than 

the cluster similarity threshold value set at any point in clustering, a 

sufficiently large, random sample of  all remaining cluster comparisons is 

expected to reveal at least one such pair. This is sufficient to keep the iterative 

merging and (asynchronous all-by-all) comparison process going. In summary, 

the rationale behind the comparison sampling heuristic is that most pair-wise 

cluster comparisons can safely be postponed in early stages of  clustering. 

Despite the considerations above, the comparison sampling heuristic adds a 

further scenario potentially detrimental to the performance of  GeMMA. 

Apart from merging suboptimal pairs of  clusters owing to the greedy merging 

heuristic (see Figure 2.4b), the former can now also happen when the 

comparison of  a given cluster with all others is split over several iterations. In 

Figure 2.4c, the best-matching cluster pair (A and B) is not compared in the 

first iteration; instead, A is compared with and subsequently merged with D, 

and thus never compared with B. Theoretically, there could be cases where the 

difference in the similarity values for the A:D and A:B pairs is large. To 

prevent a severe impact of  such cases on the overall clustering outcome, 

GeMMA is used to cluster datasets in multiple, consecutive ‘rounds’.  

Each round consists of  one or more iterations and is defined by a specific 

setting of  the cluster similarity threshold (the stopping criterion), which is 

decreased in a step-wise manner between rounds. Any comparison results 

produced that do not meet the current threshold value are stored (see 

Appendix A.3), to be considered in following rounds. In this manner, the 

initial fraction of  cluster pairs with available results, out of  all possible pairs 

of  existing clusters, increases between rounds. This is true even if  the 

comparison sampling heuristic is active (i.e., not all possible pairs are 

compared in each round).  
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The round system is thought to remediate the potentially considerable 

negative effects of  the greedy merging heuristic in late stages of  clustering, as 

outlined above. ‘Difficult’ merging decisions, at medium and low levels of  

average cluster similarity, are made on the basis of  more comprehensive 

information than ‘easier’ decisions, made when most clusters are still small 

and highly similar to many other clusters. The number of  GeMMA rounds 

and the associated range of  decreasing similarity threshold settings are both 

decisive factors in balancing the speed gains achieved through the two 

GeMMA heuristics with their negative performance impacts. These settings 

have to be made depending on the specific purpose of  clustering. For example, 

in the use of  GeMMA for protein domain family identification, as discussed 

in Chapter 3, a relatively evenly distributed range of  threshold settings is 

sampled over 10 rounds (see Section 3.3.3.2).  

For the comparison sampling heuristic to work, it is of  crucial importance 

that the fraction Cfrac of  all remaining comparisons Cleft is a randomly drawn 

(and thus representative) subset. Appendix A.2 explains how this was 

implemented algorithmically. The heuristic could otherwise lead to situations 

where many comparison results were produced for some clusters in a given 

iteration and no results at all for others. This in turn would lead to biased 

merging of  only clusters with available results, leading to an erroneous 

clustering result. There further exists a potential problem associated with 

setting Cfrac too low, relative to Cleft. If  there still exist pairs of  clusters in any 

given GeMMA iteration that match better than the cluster similarity threshold 

value set, but none of  these pairs is compared, the respective GeMMA round 

is terminated prematurely. Then, the protocol continues with the next round, 

using a lower threshold value. The higher Cfrac is set, the less likely this 

situation becomes, and the lower should be the negative performance impact 

of  the comparison sampling heuristic in general.  
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2.3 Discussion 

The problematic issue of  assessing the performance of  clustering methods in 

general, and GeMMA in particular, is addressed in the following section. 

Several possible improvements to the protocol are discussed subsequently. 

2.3.1 Notes on performance and its measurement 

The performance of  clustering methods can, apart from an assessment of  

their resource usage, only be assessed in the light of  a specific clustering goal. 

For example, the accuracy with which GeMMA clusters protein (domain) 

sequences is assessed indirectly in the two family identification modules of  the 

DFX pipeline (see Chapter 4 and Chapter 5). In general, it can be expected 

that the use of  sequence profiles in GeMMA provides advantages over 

traditional similarity measures that are based on pairwise similarities (e.g., 

average linkage) when clustering sequences with a focus on function; this is 

the case whenever the premise is used that sequence similarity (usually) 

reflects functional similarity, as done in DFX.  

The above-mentioned advantages may show in two scenarios in particular. 

First, in early stages of  clustering, two distinct functional groups of  sequences 

may differ in only a few key residues. A profile-based method can be expected 

to pick up on the residue signal and therefore be able to distinguish between 

the two groups correctly. This may not be the case for one of  the traditional 

‘sequence linkage’ methods: the overall high pairwise similarities between 

sequences from both groups may disguise the residue signal. A second 

situation in which the high sensitivity of  sequence profiles could be 

advantageous is in late stages of  clustering, where clusters represent coarser 

functional and/or structural groups. The pairwise relationships of  such 

coarser groups in a sequence dataset (e.g., a superfamily) may again be 

resolved more clearly by profile-based methods, so that the order of  cluster 
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merges may still correctly reflect the true (wider) functional and evolutionary 

relationships between individual groups.  

One way of  testing whether these assumed advantages do exist in practice 

would be to cluster a range of  sequence datasets with both GeMMA and the 

three traditional sequence linkage approaches. Using corresponding 

annotation data (supervised clustering evaluation) it could then be assessed for 

each method at which point in clustering the highest family partitioning 

performance is achieved. Finally, the maximum performance values for each 

method could be compared to assess whether one of  them (GeMMA) 

provides a statistically significant (or even consistent) advantage. 

2.3.2 Future work 

It should be possible to improve or enhance GeMMA in different aspects. 

Specifically, these are the use of  specific third-party tools, the removal of  

redundancy on the technical level, changes to GeMMA heuristics, changes to 

the overall protocol and the potential application of  GeMMA to other data 

types. These possibilities are discussed in the following sections. 

2.3.2.1 Changes in the use of  third-party tools 

While the MAFFT alignment method is still one of  the best and fastest in its 

field, it may be beneficial to replace the profile-profile comparison method 

COMPASS with either the HMM-HMM comparison method HHSearch 

(Soding 2005), which has been shown to have increased sensitivity (Soding 

and Remmert 2011), or with its direct successor, PROCAINE (Wang, 

Sadreyev et al. 2009). The latter makes use of  (horizontal) residue patterns 

and predicted secondary structure elements in the sequences that constitute 

the input alignment to create profiles. It was reported that PROCAINE 

outperforms HHSearch with respect to remote homology detection in that 
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manner (Wang, Sadreyev et al. 2009). There further exist plans to add an 

HMM-HMM comparison tool to the widely used HMMER suite of  tools. All 

these alternative tools would integrate seamlessly with GeMMA, as they take 

the same input data as COMPASS (alignments) and, just as the latter, make it 

possible to separate the profile (HMM) generation and comparison steps. The 

decision between HHSearch and PROCAINE could be based on speed. Note 

that, as the E-value calculation in these algorithms may differ from that in 

COMPASS, any workflow that uses GeMMA with a specific clustering 

granularity setting (E-value threshold) would have to be reassessed, that is, a 

novel generic setting be derived. For example, this would be the case for the 

unsupervised family identification method discussed in Chapter 4.  

2.3.2.2 Further technical integration 

More generally, it must be noted that there is a certain redundancy in using 

progressive alignment methods such as MAFFT in conjunction with profile 

comparison methods such as those mentioned above. In brief, this is because 

(i) these alignment methods construct initial ‘guide trees’ based on clustering 

the input sequences and (ii) an essential step in the subsequent progressive 

alignment process is the pairwise comparison of  (sub-)alignments via 

intermediately constructed profiles. For speed reasons, the guide trees are 

constructed using traditional sequence linkage clustering approaches (see 

above), commonly UPGMA (see Section 2.1.2.1), and the profiles are built 

and compared in a heuristic manner, for example, by Fast Fourier 

Transformation (FFT) in MAFFT. On the other hand, profile comparison 

methods have to align the profiles in order to compare them. 

The above considerations show that the strategies and algorithms behind 

progressive alignment methods, which aim to construct an accurate multiple 

sequence alignment, are very similar to those used in clustering methods like 

GeMMA, which aim to construct an accurate dendrogram (tree) reflecting the 



CHAPTER 2. GEMMA: PROFILE-BASED CLUSTERING OF PROTEIN SEQUENCES IN DISTRIBUTED COMPUTING 

ENVIRONMENTS 
 

 80 

similarity relationships in a sequence dataset. For these reasons, primarily to 

speed up the clustering process as a whole, it would be tempting to integrate 

the alignment, profiling, profile comparison and tree construction steps 

(aspects) of  GeMMA more tightly. One such attempt was made in the hybrid 

multiple alignment and tree building method SATCHMO (Edgar and 

Sjolander 2003), which itself  tries to overcome the speed bottleneck of  HMM 

comparison by using MAFFT alignments initially, for easy-to-align sequences 

(Hagopian, Davidson et al. 2010). However, a fundamentally modular 

approach like that followed in GeMMA can be regarded as being more future-

proof, for example, in the sense of  the above-considered (straightforward) 

changes in the third-party tools used.  

Other (‘softer’) integration strategies that uphold the modular structure of  

GeMMA (and do not require the development or integration of  additional 

algorithms), while yielding a speed increase, could therefore be considered. 

For example, the partial GeMMA dendrogram that exists for each cluster 

(subtree) at any point in the course of  clustering could be fed as a (more 

accurate) guide tree into MAFFT when aligning the clusters. Further, instead 

of  aligning the sequences in each cluster created during clustering from 

scratch (as done so far), the recently added group-to-group (alignment-to-

alignment) alignment option of  MAFFT (Katoh and Toh 2008) could be used. 

This takes two alignments as input, converts one of  them to a profile and 

then aligns the profile to the other alignment. To make use of  this option, the 

implications of  assuming monophyly and paraphyly for the sequences in both 

clusters, respectively (see MAFFT website6), would have to be studied. If  

these are found to be in agreement with the design of  the GeMMA clustering 

process (which is probably the case), the only remaining decision would be 

which of  two clusters is treated as (the existing) alignment and which as (the 

                                            
6
 http://mafft.cbrc.jp/alignment/software/ 
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added alignment) profile, respectively. An intuitive solution would be treating 

the larger of  two clusters as the existing alignment in all cases. 

2.3.2.3 Changes to the GeMMA heuristics 

The GeMMA heuristics could be made more (and explicitly) flexible with 

regards to the stage of  clustering, which may lead to increased performance in 

some cases. This could be achieved, for example, by setting the respective 

parameters (more) dynamically, depending on the average similarity values 

observed. A similar thing is already done implicitly, based on the number of  

comparisons yet to be made at any one point; this is in conjunction with the 

comparison sampling heuristic (see Section 2.2.3.2). A brief  worked example 

illustrates that the impact of  this heuristic becomes smaller (and accuracy can 

be expected to be higher) in late stages of  clustering, where more difficult 

merging decisions have to be made. This is achieved by using a bounded (and 

thus non-linear) function for the number of  comparisons made per iteration. 

Whenever the total number of  remaining cluster comparisons to be made 

exceeds a certain threshold (lower boundary; 2,000,000), at any point in 

clustering, only a fraction of  all comparisons is made. This fraction is initially 

large (100%) and slowly decreases with the number total comparisons 

increasing. This is because the number of  comparisons made is set to a 

constant number: the stated lower boundary value. However, if  the number 

of  total comparisons exceeds 200,000,000 (100 times the lower boundary), the 

number of  comparisons made is set dynamically, to 1% of  all comparisons. 

Finally, if  a level of  one billion comparisons is exceeded, the number of  

comparisons made is capped, at a fixed level (upper boundary; 10,000,000). 

Additional heuristics may also be added to GeMMA. Especially interesting is 

the idea of  using so-called ‘pivot points’ when hierarchically clustering 

inherently structured datasets (Kull and Vilo 2008), such as sequence 

superfamilies. This strategy shares with GeMMA the general heuristic of  not 
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generating a complete all-by-all similarity matrix prior to clustering. In contrast 

to GeMMA, however, the initial matrix is also not extended in the course of  

clustering: the whole dataset is clustered based on an initially generated partial 

similarity matrix. The distance between any two clusters is then measured 

based on only the known distances between the data points they contain. As 

no such individual distances are calculated when using a profile linkage 

approach, the strategy followed by Kull and Villo could not be applied in the 

case of  GeMMA. However, the selection procedure that is used to identify an 

appropriate subset of  pairwise comparisons (to populate the partial similarity 

matrix), via so-called pivot points, could inspire a similar strategy in GeMMA, 

where a subset of  all comparisons is currently sampled randomly in each 

round.  

In brief, the pair selection strategy in Kull and Vilo (2008) works as follows. A 

limited range of  pivot data points (e.g., sequences) N is initially chosen 

randomly from the dataset, and these are compared with all remaining data 

points. This corresponds to an ‘N-by-all’ approach. The distance between any 

two non-pivot data points can then be estimated from the similarity of  their 

N-dimensional pivot distance vectors, their ‘pseudo-distance’. If  two data 

points show a similar pattern of  pivot point distances and their pseudo-

distance is thus small, their true distance can also be expected to be small. For 

each pair of  data points with a pseudo-distance smaller than a certain 

threshold level, the true distance is therefore measured. In addition, the 

distances for a certain number of  randomly selected pairs are measured as 

well. The calculated distances are used to populate the (partial) similarity 

matrix. The reasoning behind biasing the matrix towards shorter distances 

(similar data points) is that these are important in the early stages of  the 

following hierarchical clustering step and impact the whole clustering 

dendrogram, while only a few long-distance relationships have to be known to 

make correct merging decisions in later stages (Kull and Vilo 2008). 
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In the case of  GeMMA, the above-described pivot point paradigm could 

potentially be used in a similar way, but iteratively. The basic strategy, which 

can most easily be understood when picturing the dataset as a similarity 

network (with the nodes being the clusters and the edges their pairwise 

distances), would be the following. For a given iteration of  the protocol, a set 

of  N pivot clusters is first selected. In the first iteration, this is done randomly. 

The pivot clusters are compared with all remaining clusters, respectively. A 

certain number of  cluster pairs are then selected for comparison, based on 

their calculated pseudo-distances (see above). As these pairs can be expected 

to be among the most similar pairs in the dataset, they are likely to meet the 

cluster similarity threshold set and, therefore, to be merged in the same 

iteration. All steps from this point onwards would be novel with respect to the 

method described above. After merging some cluster pairs, all newly created 

clusters are compared with the pivot clusters. In the following iteration, a new 

set of  pivot clusters is selected. This is done in a manner that aims 

successively and evenly to explore the structure of  the dataset, as follows. Let 

PDmin be the distance a cluster exhibits to its closest pivot cluster. All clusters 

that still exist and were not pivot clusters in the last iteration (including newly 

created ones) can then be sorted by their PDmin values, from highest to lowest. 

The first data point in the list, for example, is then the point with the 

strongest ‘outlier character’ relative to the original set of  pivot points. 

Therefore, the first N data points in the list are chosen as the new pivot points, 

which are subsequently compared with all other data points, and so forth.  

Regardless of  whether or not the outlined strategy could be implemented in 

full, and whether or not it would work well, the general shift from selecting 

subsets of  comparisons randomly to selecting them in a more directed 

manner (biased for even coverage) warrants further investigation. 
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2.3.2.4 Changes to the protocol as a whole 

The GeMMA protocol could also be changed in a more fundamental way, by 

implementing a medium-sensitivity, non-profile approach (for example, one 

of  the traditional sequence linkage methods) to be used in early stages of  

clustering, that is, when many clusters are still highly similar. The high-

sensitivity, profile-based method could then be used later on. This would 

require the initial generation of  a pairwise sequence similarity, for example, 

using BLAST. Specifically, each sequence in the dataset would have to be 

compared with all other sequences that do not share the same starting cluster. 

Particularly when the starting clusters are small (they may contain single 

sequences) and the processed dataset is large, calculating such a full matrix can 

take up considerable (HPC) resources (and thus be slow; as seen in common 

hierarchical clustering methods). However, the subsequent speed advantage 

over using the profile-based method could make this a good investment. 

Up to a certain point, the implemented sequence linkage method could cluster 

the dataset without creating any new entities (such as profiles) or performing 

any further comparisons. This is the great speed advantage of  sequence 

linkage methods over the profile-based method. For this advantage, the 

GeMMA heuristics could potentially be completely deactivated at this stage, 

which may effectively compensate for the loss in profile-based sensitivity. 

Both the feasibility of  generating very large initial matrices (in the case of  

large input datasets) and the factual loss in performance by not using the 

profile-based approach initially would have to be studied in detail before 

making such changes to the protocol, to avoid circularity: the use of  profiles 

and the use of  heuristics are parts of  GeMMA due to the (assumed) lower 

sensitivity of  pairwise comparisons and the resource challenge posed by 

calculating (very) large similarity matrices. 
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2.3.2.5 Potential use with other types of  data 

A further interesting point about the above-cited work by Kull and Villo (see 

Section 2.3.2.3) is that it underlines how flexibly a clustering algorithm, once 

established, can be used. Just like their method, GeMMA could relatively 

simply be adapted for clustering other biological and non-biological data types, 

for example, expression profiles or (online) documents. In such scenarios, it is 

primarily the similarity measure that changes, while the implemented heuristics 

are still valid and the technical implementation remains unchanged. 
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Chapter 3. The DFX pipeline: identification 
of  functional families within protein domain 
superfamilies 

It has been established in Chapter 1 that the protein domain superfamily is the 

most appropriate framework to study protein sequence evolution on a large 

scale. Often, the emphasis in such endeavours lies on the evolution of  overall 

protein structure, both on the levels of  domain architecture and tertiary 

structure (fold). While concepts do exist to classify and study protein 

sequence space in a more fine-grained way, with a focus on function, these 

have not yet been consistently applied on the domain level. This claim is based 

on three observations. First, there exist both (structure-based) domain 

superfamily and (function-based) domain family resources. However, the 

consistent integration of  both levels into a single resource is rarely seen. 

Second, in the few cases where this has been done, the respective resources 

are either meta-resources, integrating foreign data, or make heavy use of  

manual curation in the family identification process; the latter means that 

different families will inevitably be ‘treated’ differently. Third, despite the fact 

that the notion of  (conserved) domain function is an observed and well-

known biological phenomenon, which is also implicitly presupposed by these 

resources, whole-protein function frequently governs the domain family 

identification process to a (too) large extent.  

Adding to the above, there still exists a tendency (in the literature and in 

protein research as a whole) to focus on protein domains when structure is 

analysed and on the sequences as a whole when function is the main interest. 

This may not be surprising, given that important evolutionary concepts that 

are frequently used in studying protein function on the whole-sequence level, 

such as orthology and paralogy, cannot be readily applied on the domain level. 

While the opposite has repeatedly been argued (Fitch 2000; Song, Sedgewick 
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et al. 2007; Song, Joseph et al. 2008; Nagy and Patthy 2011), namely that these 

concepts are, in fact, more appropriate to use on the domain level, doing this 

may cause considerable confusion and follow-up problems. Moreover, it is not 

necessary.  

A distinct set of  terms that describe domain evolution by means of  

duplication and shuffling is at hand and widely agreed on (see Section 1.1.2). 

Further, it has long been noted that many types of  protein domains are 

conserved functional units and have ‘promiscuous’ character, in the sense that 

these sequences appear in proteins with variable domain architecture and 

overall protein function (see Section 1.1.2). Within the latter, they fulfil a 

certain partial function. The overall function of  multi-domain proteins can 

therefore often be discerned in a logically straightforward manner from the 

combination of  domains it contains (Bashton and Chothia 2007; Forslund 

and Sonnhammer 2008). However, this may not always be the most interesting 

question: the evolution of  domain function, in the context of  different types 

of  parent proteins, is hitherto studied much less.  

To study the function of  proteins and protein domains on the domain level, 

the Domain Family eXploration (DFX) pipeline was developed. This 

integrates large-scale sequence clustering with GeMMA, as discussed in the 

above chapter, with both unsupervised and supervised post-processing 

protocols to identify families of  protein domains. This chapter describes the 

family concept followed by DFX, the overall architecture of  the pipeline, and 

the implementation of  all common steps in the workflow. The two core 

family identification protocols developed for DFX represent alternative routes, 

depending on the availability of  function annotation data. Therefore, they are 

first introduced and contrasted in the present chapter, and subsequently 

described in detail in the two below chapters, respectively. Similarly, a 

discussion of  those components of  DFX that are common to both protocols, 
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and their observed performance, is found at the end of  this chapter, while the 

results that can be achieved with either strategy are described in a qualitative 

way in the two following chapters. Chapter 6 contains a quantitative, large-

scale comparison of  the two DFX family identification protocols. Chapter 7 

contains a concluding discussion of  the DFX pipeline as a whole, in the 

context of  protein domain research.  

3.1 Background 

Many studies make use of  existing, manually curated family resources to 

define ‘functional families’ of  proteins or protein domains. That is, they 

(explicitly or implicitly) treat the families defined by these resources as families 

with conserved function. Alternatively, there exist different automatic 

methods and protocols that directly split arbitrary sequence datasets into 

families. In this case, the respective sequences are usually known to belong to 

the same superfamily. Studies using such family information have varying aims. 

For example, to annotate proteins, to measure functional enrichment in 

proteins from specific (meta)genomes, or to study the evolution of  protein 

(domain) function in the context of  specific superfamilies. An overview of  

existing resources and methods for identifying protein and protein domain 

families is provided in the following. 

3.1.1 Existing family resources 

All commonly used protein and protein domain family resources are based on 

the model library concept (see Section 1.5.2). In addition, they all use manual 

curation, if  in different steps and to varying extents. There are usually two 

distinct layers of  models defined, following the superfamily and family 

concepts (see Section 1.2.2). However, the naming of  the respective layers is 

highly variable among the resources; for example, a ‘subfamily’ layer in one 

resource may correspond to a ‘family’ layer in another. Depending on the 
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resource, the layers also capture different degrees of  conservation in protein 

sequence, structure and function, respectively; for example, the ‘family’ layer 

in one resource may capture a different level of  functional similarity 

compared with a layer with the same name in another.  

Examples of  entirely sequence-based two-layer model libraries are the 

PANTHER subfamilies and families (Thomas, Campbell et al. 2003), the 

TIGRFAMs subfamilies and superfamilies (Haft, Loftus et al. 2001) and the 

PhyloFacts subfamilies (or ‘books’) and families (Krishnamurthy, Brown et al. 

2006). Pfam has also recently introduced a second layer above the family level, 

dubbed Pfam ‘clans’ (Finn, Mistry et al. 2006). This superfamily-like layer is 

not itself  represented by a library of  models, however, and is established 

based on the existing family models and the underlying sequences. In 

particular, remote homology relationships between two or more Pfam families 

are established by different types of  evidence and manual curation. The 

primary sources of  evidence are the pairwise comparison of  family models, 

the detection of  structural similarities between proteins in different families, 

and the analysis of  cases in which individual sequences match the models of  

different families similarly well. The clan concept as a whole is similar to an 

earlier effort to combine Pfam families into superfamilies in the SUPFAM 

resource (Pandit, Gosar et al. 2002). 

SCOP defines protein domain superfamilies, like CATH, but has also 

established a family level. SCOP families are defined as clusters of  

(structurally known) sequences within SCOP superfamilies that fulfil stricter 

criteria for sequence and function conservation (at least 30% sequence 

identity or significant functional and/or structural conservation) than those 

applied on the superfamily level (Murzin, Brenner et al. 1995). While the 

SUPERFAMILY resource assigns sequences without known structure to both 
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SCOP superfamilies and families, it only contains a single layer of  models: 

those for the superfamily level.  

The assignment of  sequences to SCOP families in SUPERFAMILY is based 

on a hybrid approach (Gough 2006). In this, the model(s) for the SCOP 

superfamily to which the query sequence belongs serve(s) as a ‘bridge’. For all 

seed sequences that underlie a specific SCOP superfamily model there exist 

pre-calculated scores and alignments with that model, respectively. Such can 

also be produced for the query sequence and each of  the superfamily models. 

By combining this information, a query sequence can effectively be aligned 

and compared with all SCOP seed sequences of  its superfamily. Since each of  

the seed sequences is assigned to a manually curated family in SCOP (see 

above), the query sequence can then inherit the family assignment of  the seed 

sequence it matches best. 

Like Pfam and SCOP, both PANTHER and TIGRFAMs rely on manual 

curation, specifically when splitting superfamilies into families (Haft, Selengut 

et al. 2003; Thomas, Campbell et al. 2003). Further, Pfam and TIGRFAMs 

manually refine the sequence composition of  their seed alignments and the 

alignments themselves before building models, and curate the model-specific 

detection thresholds (Haft, Selengut et al. 2003; Finn, Tate et al. 2008). The 

PhyloFacts resource splits its protein and protein domain superfamilies into 

families using the unsupervised SCI-PHY algorithm (Krishnamurthy, Brown 

et al. 2006); the latter is discussed in detail in Section 4.1.2.1. It then builds 

subfamily models according to the protocol described in Brown, 

Krishnamurthy et al. (2005). A limited amount of  manual curation is involved 

in assessing the global homology of  multi-domain proteins. 

While the Pfam and SUPERFAMILY resources can in principal reach the 

same taxonomic and proteomic coverage as the underlying primary sequence 

and structure databases, the other resources mentioned can not. This is 
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because they build models based on limited sequence datasets, in an interest-

driven way; for example, to cover the human proteome, eukaryotic proteomes 

or families of  high medical interest.  

Both InterPro (Hunter, Apweiler et al. 2009), provided by the European 

Bioinformatics Institute, and the NCBI Conserved Domain Database (CDD) 

(Marchler-Bauer, Lu et al. 2011) are meta-resources that try to approach the 

family assignment (granularity) problem by integrating the information from 

other databases into multi-layer model libraries. InterPro contains both 

protein and domain families, while the CDD concentrates on the domain level 

only. In both resources, the number of  defined layers varies with every protein 

and/or domain family identified. From a technological point of  view, InterPro 

mainly integrates resource-specific HMMs and uses HMMER (Eddy 2009) for 

library scans, while the CDD converts all models it integrates into PSSMs and 

uses RPS-BLAST (Altschul, Madden et al. 1997). 

Among the currently eleven InterPro member databases are the most 

important resources for protein and domain (super)family classification (see 

above and Section 1.5.2.2). These databases define family models at varying 

levels of  granularity (see above) and contribute them to InterPro. The 

sequence coverage of  all models is then matched by searches against 

UniProtKB, based on which they are manually integrated into two types of  

meta-families (InterPro entries), using the following naming conventions: 

‘family’ (protein level) and ‘domain’ (domain level). All models subsumed in a 

family entry are required to cover all domains in the underlying sequences and 

span at least 80% of  their length. Entries of  the type domain are required to 

have adjacent (or surrounding) other entries (see below), for example, a family 

entry. The grouping of  different domain models into a single entry is an 

entirely manual process, with no further formal constraints.  
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InterPro also defines two types of  relationships between individual entries. 

These are ‘parent/child’ and ‘contains/found in’ relationships. The former 

implicitly define hierarchical layers of  increasing granularity for both (the top-

most) family and domain entries. Specifically, 75% of  the sequences covered 

by a child entry must also be covered by the parent entry, and each sequence 

covered by a parent entry must be covered by only one of  its children. In 

contrast to these ‘vertical’ relationships between InterPro entries, 

‘contains/found in’ relationships constitute a ‘horizontal’ hierarchy of  

sequence elements. For example, domain entries can (and should always) be 

‘found in’ family entries, that is, designate specific parts of  proteins.  

The CDD integrates domain family models mainly coming from five 

resources: Pfam, SMART, COGs/KOGs (Tatusov, Fedorova et al. 2003), 

TIGRFAMs, and NCBI ProtClusDB (Klimke, Agarwala et al. 2009). In 

addition, the NCBI manually curates specific, structurally defined domain 

families (CDs or Conserved Domains), which are added to the CDD data 

pool. Similarly to InterPro, the CDD combines different domain models into 

individual entries, which are dubbed ‘superfamilies’. Note that this is slightly 

misleading, as these entries primarily represent collections of  models with 

overlapping scope (just as the InterPro entries), not a specific layer of  

(sequence conservation) granularity. The CDD model grouping procedure 

also largely matches that of  InterPro. In brief, the NCBI Entrez Protein 

database (instead of  UniProtKB) is scanned with all models and the overlap in 

the hit sequences is assessed.  

Apart from creating combined, non-redundant entries for domain family 

models from different source databases, the CDD curators also create a 

‘domain family hierarchy’ for each of  the NCBI-curated domain models 

(CDs), respectively. This means that the sequences in the respective domain 

families (which can be superfamilies in terms of  evolutionary scope) are 
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manually subdivided, in each case using a tree-like hierarchy with a variable, 

family-specific number of  granularity levels. The nodes at each level of  the 

tree correspond to mutually exclusive sequence groups (‘subfamilies’), for 

which models are created (‘child models’ of  the CD ‘parent’ model). The 

rationale followed in creating these hierarchies is the following. Underlying 

each CD is as a set of  domain sequences that share a common ancestor 

domain (in an ancestral parent protein), a core set of  shared residues, and a 

shared overall function. The different subfamily layers are created primarily 

based on putative domain (or parent protein) duplication events identified in 

phylogenetic trees, which are created based on curated multiple (domain) 

sequence alignments. Therefore, the corresponding domain subfamily models 

are expected to represent evolutionary subgroups, with distinct phylogenetic 

distribution, functional specificity and (additional) conserved residues. Notably, 

to constrain the granularity range of  the different domain family hierarchies 

created to some extent, the CDD curators aim only to create layers based on 

domain duplication events that occurred ~0.5 billion years in the past or 

earlier (Marchler-Bauer, Anderson et al. 2005).  

3.1.2 Automatic methods and protocols 

When a set of  manually curated seed groups is not available to establish 

families in a ‘bottom-up’ manner, as, for example, in Pfam, automatic 

protocols to split sequence datasets into families (‘top-down’) can be used 

instead. Such protocols generally involve a clustering step, for which different 

clustering algorithms are used. More importantly, they follow different 

unsupervised and supervised clustering evaluation strategies to estimate at 

which level of  clustering granularity the obtained clusters best correspond to 
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functional families7. Both clustering algorithms and evaluation strategies are 

discussed in detail in Chapter 2. 

In principle, any type of  sequence clustering method can be combined with 

any clustering evaluation strategy to constitute a protocol for automatic family 

identification. If  an unsupervised evaluation strategy is used, the protocol as a 

whole has ab-initio character. If  a supervised strategy is used, the protocol uses 

external (annotation) data either directly, in the family identification process, 

or indirectly, in a training step. Family identification approaches can further be 

classified into integrated methods (individual pieces of  software that 

seamlessly integrate the clustering and clustering evaluation steps) and multi-

step protocols or workflows, which keep the two steps separated. Note that a 

sequence clustering method alone, without a corresponding evaluation 

strategy, cannot be regarded a protocol for family identification. 

Different existing unsupervised methods and protocols for automatic family 

identification are discussed along with the DFX unsupervised family 

identification protocol in Chapter 4. Accordingly, Chapter 5 reviews existing 

supervised protocols.  

3.2 Concepts 

In the following two sections, the relationship between individual protein 

domains and whole-protein function is discussed first. Based on this, the 

domain family concept followed by the DFX pipeline is subsequently defined. 

                                            
7
 Note that none of the automatic family identification methods discussed here clearly defines 

the sequence family concept it follows (an example for such a definition can be seen in Section 
0). 
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3.2.1 The domain to function relationship 

The traditional concepts of  orthology and paralogy (see Section 1.2.1.2) that 

often form the basis of  grouping whole-protein sequences with a focus on 

function cannot be readily applied on the domain level (see Section 1.2.3). The 

overall function of  a protein is the result of  its domain architecture and the 

mutual structural arrangement of  the respective domains. Evolution 

principally acts on the whole protein (gene), not the domain level. Therefore, 

the domains found in multi-domain proteins cannot always be expected to 

represent entirely autonomous functional units. Rather, different domains can 

contribute to a protein’s overall function in an orchestrated way. Conserved 

functions can still be derived for many types of  domains, both manually 

(Vogel, Teichmann et al. 2005; Bashton and Chothia 2007) and through the 

use of  specific algorithms (see Section 5.1.2). The conservation of  (basic) 

domain function is especially obvious in the case of  promiscuous domains 

(see Section 1.1.2) that often stem from large, evolutionarily old domain 

superfamilies. 

It follows from the above considerations that changes in overall protein 

function will usually be reflected in all parts of  a protein’s sequence and 

structure. However, the extent of  this signal can be highly variable over the 

length of  the sequence, owing to the presence of  structurally and functionally 

conserved domains. In conjunction with the different degrees of  functional 

autonomy that are observed for different types of  protein domains, any 

system to establish functional domain families must come with a clear 

definition of  what ‘functional’ means in the context of  the families it 

produces. Specifically, such a system must focus on either the conservation of  

whole-protein function or the conservation of  domain function. An operative 

domain family concept 
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There exist three established concepts to partition protein (domain) sequence 

space, as discussed in detail in Section 1.2.2. In brief, classified by the expected 

level of  function conservation within the resulting partitions, these are (i) the 

‘broad’ superfamily concept, (ii) the ‘narrow’ orthologue cluster concept and 

(iii) the ‘intermediate’ family concept. The family concept is the only logical 

choice when studying protein function on the domain level. This is due to the 

great functional diversity that is expected and observed within protein 

superfamilies on the one hand and the incompatibility of  the orthology 

concept with a protein-domain centric view on the other (see Section 1.2.3).  

In its aim to identify functionally conserved domain families, the DFX 

pipeline focuses on domain function, not whole-protein function (see Section 

3.2.1). With respect to conservation, it principally follows the protein family 

concept introduced in Section 1.2.2.3. According to this, families allow for a 

limited degree of  functional variability in their member sequences. For 

example, this can refer to substrate specificity. Based on these considerations, 

an individual domain family would ideally only include sequences that are 

functionally identical or highly similar, that is, responsible for identical or 

highly similar partial functions in the respective parent proteins. Importantly, 

according to this definition, domains can be grouped into the same family 

even if  the respective parent proteins are not homologous (over their entire 

range) and only share a certain partial function, whilst differing in overall 

function. 

Following from the DFX family concept, as introduced above, the following 

general rules should apply in domain family identification. First, subtle 

variation among closely related proteins in overall protein sequence and 

function, owing to whole-protein evolutionary events (speciation and gene 

duplication), should not lead to a separation of  corresponding domains in 

these proteins into different families (within their superfamilies). This is in 
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agreement with the protein family concept, as outlined above. Second, if  the 

overall function of  closely related proteins is altered by events of  domain 

evolution (e.g., domain gain or loss) but the domain under analysis D remains 

shared (‘stable’), the respective D domain sequences should still share the 

same family. Third, if  the overall function of  related proteins changes owing 

to changes in the sequence and structure of  a specific domain D, and if  this 

change is not just subtle (see above), the different domain D sequences should 

be grouped into different families. The assumption that ties these rules to 

those that apply for protein families is that, normally, gradual functional 

change is a result of  whole-protein evolution, whereas radical functional 

change or added functionality is a result of  changes in protein domain 

architecture.  

3.3 Implementation 

The following sections describe the implementation of  the DFX domain 

family identification pipeline. The architecture of  the pipeline as a whole is 

first outlined. This is followed by a brief  outline of  its implementation on the 

technical and conceptual levels. The rest of  this section discusses the 

consecutive modules of  DFX in detail. 

3.3.1 The DFX pipeline 

DFX is a pipeline for the identification of  functional families within protein 

domain superfamilies. Its design follows the generic model library concept as 

outlined in Section 1.5.2. In brief, the functional families in a given 

superfamily are identified using one of  two developed protocols, based on 

which a family model library for the superfamily is established. This library 

can then be used to discern the family membership of  arbitrary sequences in 

the superfamily. The core steps of  the pipeline are shown in the workflow 

diagram in Figure 3.1. 
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Figure 3.1. The workflow of the DFX pipeline. DFX is a pipeline to identify families within protein 

domain superfamilies based on the model library concept. It starts with collecting and preparing the sequence 

data and further, optional data. The sequence data is pre-clustered to obtain a set of starting clusters. This set 

is then hierarchically clustered using GeMMA. Depending on the availability of annotation data, families are 

then identified in an either supervised or unsupervised manner. This is followed by family naming and 

taxonomic characterisation. Finally, the model library is generated, along with model-specific thresholds. 

DFX uses different types of  input data. While only the domain sequence data 

itself  is essential to process a superfamily, much better results can be obtained 

when additional, associated data is provided with the sequences. In particular, 

this refers to high-quality function annotation data, naming and taxonomic 

data. All three are only available for the whole protein level8. As part of  the 

data preparation process (see Figure 3.1), all sequences in the processed 

superfamily are initially clustered at a high level of  similarity, in a fast but low-

sensitivity manner. This results in a set of  ‘starting clusters’. If  function 

annotation data are available for the processed superfamily, the pipeline 

commences in supervised mode. In this case, all unannotated starting clusters 

(those that do not contain at least one annotated member sequence) are 

excluded from further processing at this point. If  annotation data are not 

available, DFX runs in unsupervised mode.  

In the clustering step of  DFX, the high-sensitivity sequence clustering 

method GeMMA (see Chapter 2) is used further to cluster the set of  starting 

clusters, until only a single cluster remains. Based on the produced clustering 

dendrogram, a set of  functional domain families is then identified using one 

                                            
8
 For ease of reading, these terms will be used as if they would apply to protein domain 

sequences in the following, unless otherwise stated. 
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of  two protocols, depending on whether DFX is running in supervised or 

unsupervised mode (see above); this is the key step in the pipeline.  

In the subsequent step, the identified families are characterised. This includes 

family naming and taxonomic characterisation, given the respective types of  

input data that are available. Finally, multiple sequence alignments, models and 

corresponding detection thresholds are derived for all identified families. In 

addition, a family dendrogram that depicts the relationships between the 

families is generated. This can be enriched with further, family-associated data, 

if  this is required in the context of  specific studies. 

Two alternative protocols to identify protein domain families (see Figure 3.1) 

form the core of  the DFX pipeline. These are covered in Chapter 4 and 

Chapter 5, respectively. For either protocol, the GeMMA clustering results 

form the main input. In the supervised protocol (DFXsuper), families are 

identified in the clustering dendrogram based on the initially compiled 

annotation data. The unsupervised protocol (DFXunsuper) uses a generic 

clustering granularity setting that is derived by training on a gold standard 

dataset, to identify families using the dendrogram alone9.  

The use of  DFX for a given domain superfamily can be summarised as 

follows. The main input is the domain sequence data. To process the 

superfamily in supervised mode, associated protein annotation data are 

required as well. Additionally, protein naming and taxonomy data are 

necessary to characterise the produced families. The main output of  DFX 

comprises a library of  domain families, each with a name, a full alignment and 

a model that should recognise its known and unknown member sequences. 

The following sections describe the common steps of  the DFX workflow, 

                                            
9
 Both family identification protocols therefore include a supervised component: post-processing 

and training, respectively. They will still be referred to as supervised and unsupervised protocols 
below, for ease of reading. 
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while the two alternative protocols used for family identification are discussed 

in detail in Chapter 4 and Chapter 5, respectively.  

3.3.1.1 Technical implementation 

On the technical level, DFX is currently implemented as a complex but 

flexible pipeline, consisting of  more than 20 interrelated and hierarchically 

interacting Perl scripts, modules and third-party tools. The DFX clustering 

module GeMMA requires an HPC system. In both the local and HPC stages 

batches of  superfamilies are processed in a parallel manner, using a 

hierarchical system of  UNIX jobs, job identifiers and job control. The 

clustering module is highly configurable and has already been used in different 

HPC environments, controlled with Sun (now Oracle) Grid Engine and the 

Portable Batch System (PBS) (Wang, Korambath et al.), respectively; among 

those was the UCL Legion facility (Lee, Rentzsch et al. 2010). Attempts have 

also been made to cluster in the Amazon EC2 compute cloud10 (Ostermann, 

Iosup et al. 2010). To this end, the StarCluster11 package was used to build 

virtual SGE clusters of  up to 100 work nodes in EC2. However, primarily 

owing to a persistent bottleneck in inter-node communication and relatively 

frequent node instabilities, the cloud could so far not be efficiently used on a 

large scale. 

In addition to the third-party tools used by GeMMA, MAFFT and COMPASS 

(see Section 2.2.2), DFX itself  uses further existing software. In particular, 

these are the heuristic sequence clustering tool CD-HIT (see Section 2.1.4) 

and the HMMER suite of  tools (Eddy 2009) for building and handling 

sequence profile HMMs (see Section 1.4.2). CD-HIT is used as a fast means 

to pre-cluster the sequences found in a given superfamily, at a similarity level 

where high sensitivity is not required (see Section 3.3.3.1). HMMER is used to 

                                            
10

 http://aws.amazon.com 
11

 http://web.mit.edu/stardev/cluster/ 
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generate the family models and model-specific thresholds, and to perform 

scans against the model library (see Section 3.3.6). 

On the conceptual level, DFX uses the project paradigm. This is implemented 

using hierarchical directory structures in conjunction with both default and 

project-specific configuration files. The data generated in each project are kept 

separately, leveraged by project-specific data and working directories. DFX 

further differentiates between ‘projects’ and ‘mappings’: the former are used 

when the whole pipeline is run and the family model libraries are created, the 

latter are used when (novel) domain sequences are scanned and assigned to 

the existing families. This makes it straightforward to organise and maintain 

the data generated for different versions and/or types of  domain 

(super)family databases, such as Gene3D or Pfam, and in assigning different 

collections of  target sequences to families (for example, domains detected in 

newly sequenced genomes and metagenomes). 

3.3.2 Input data preparation 

The most important types of  input data for the DFX pipeline are protein 

domain sequence data and protein function annotation data. Large-scale 

domain sequence data are provided by resources such as Gene3D, 

SUPERFAMILY and Pfam (see Section 1.5.2). The most comprehensive 

resource that stores and curates high-quality protein annotation data is 

UniProtKB; specifically, the UniProtKB Gene Ontology Annotation 

(UniProtKB-GOA) database. DFX is currently used to identify functional 

families within Gene3D domain superfamilies, with the help of  GO 

annotation data from UniProtKB-GOA. Further, DFX uses protein naming 

and taxonomic information from UniProt to characterise the produced 

domain families. 
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The GO protein annotation data used in the DFX pipeline are retrieved and 

pre-filtered for high-quality annotations. This is done once for each large-scale 

family identification task (for example, different releases of  Gene3D), before 

running the pipeline. The unfiltered UniProtKB-GOA gene association file, 

which contains all available GO annotations for proteins in the SwissProt and 

TrEMBL parts of  UniProtKB, is retrieved from the GO FTP website12. A 

filtered version of  this file is then produced that retains (i) all non-IEA 

(manually derived or curated) GO annotations to proteins in SwissProt and 

TrEMBL as well as (ii) all IEA annotations to proteins in SwissProt that were 

made using either the SwissProt Keyword2GO (Camon, Barrell et al. 2005) or 

the EC2GO (Hill, Davis et al. 2001) mapping methods. Both the latter IEA 

annotation transfer methods were shown to exhibit between 70% and 100% 

accuracy in benchmarking (Camon, Barrell et al. 2005) and, owing to the 

restriction to SwissProt proteins, primarily represent a ‘translation’ of  

manually curated SwissProt keyword and EC annotations to GO annotations, 

respectively. 

For a given superfamily, all domain sequences are retrieved from the Gene3D 

database and stored in a single FASTA file. The FASTA sequence headers in 

this file contain the protein sequence identifier and the domain coordinates 

for each domain sequence, respectively. An annotation file is then written that 

maps all proteins which have one or more domains in the superfamily and are 

associated with at least one high-quality GO annotation in the filtered 

UniProtKB-GOA gene association file (see above) to their annotations. This 

requires a mapping from the whole-protein sequence identifiers of  Gene3D 

(sequence MD5s) to UniProtKB accession numbers, which is done using the 

Gene3D database. In addition, the species taxon identifiers (taxon IDs; from 

UniProt Taxonomy) and the names of  all UniProt proteins with domains in 

the superfamily are written to protein species and name files, respectively.  

                                            
12

 ftp://ftp.geneontology.org/pub/go/ 
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3.3.3 Sequence clustering 

DFX makes use of  sequence clustering at two points. First, it uses a fast but 

low-sensitivity clustering method to pre-cluster the input sequence dataset in 

the data preparation step. Subsequently, the produced starting clusters are 

further clustered using a high-sensitivity method. Both stages are described in 

the following. 

3.3.3.1 Pre-clustering 

As the most important step of  data preparation, all sequences in the 

processed superfamily are pre-clustered at a maximum pair-wise sequence 

identity level of  60% using CD-HIT (Li and Godzik 2006). This reduces the 

number of  initial data points (starting clusters) for the high-sensitivity 

sequence clustering step, which would otherwise comprise the individual 

sequences. The consequence is a reduced running time of  the pipeline as a 

whole. At the same time, previous work (Addou, Rentzsch et al. 2009) has 

shown that a threshold of  60% sequence identity on the domain level is 

sufficiently conservative to ensure the functional purity of  the great majority 

of  starting clusters. Since domains with different function (or partial function, 

in the context of  their parent proteins) are not usually mixed at such high 

levels of  sequence similarity, using a fast but low-sensitivity clustering tool like 

CD-HIT for pre-clustering seems justified. 

When DFX runs in supervised mode (annotation data for the processed 

superfamily is available), the starting clusters produced by pre-clustering are 

processed further. First, the set of  starting clusters is filtered for unannotated 

clusters, that is, clusters without at least one annotated member sequence. 

Note that this filtering usually reduces the number of  starting clusters in the 

sequence clustering step by at least 75% in the case of  large superfamilies; the 

reduction rate generally depends on the degree of  sequence diversity within 
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the processed superfamily and the annotation status of  the proteins 

harbouring a domain in that superfamily. The therefore greatly reduced 

number of  necessary pair-wise cluster comparisons is the reason for the 

considerable speed increase achieved when large superfamilies are processed 

in supervised (as opposed to unsupervised) mode.  

The rationale behind the above-outlined filtering process is that unannotated 

(starting) clusters cannot be assessed in the supervised family identification 

procedure (see Chapter 5). It is much more efficient to attempt to assign the 

unannotated sequences in these clusters to the identified functional families 

later on, through scanning with the family model library; this matches the 

procedure followed to assign novel superfamily member sequences to families. 

Any sequence that cannot be assigned to a family in this manner would then 

either belong to a yet unknown family (with no single functionally 

characterised member) or represent a yet uncharacterised outlier member of  a 

known family in the superfamily. 

3.3.3.2 Hierarchical clustering 

The high-sensitivity HPC sequence clustering method GeMMA (see Chapter 

2) is used further to cluster the starting clusters generated in the pre-clustering 

step, until only a single cluster remains. In particular, the clustering process is 

split into ten consecutive rounds (executions of  GeMMA), corresponding to 

ten decreasing settings of  the clustering granularity threshold. The latter 

controls the maximum similarity of  any two clusters in the produced 

partitioning, and is expressed as an E-value. The ten threshold settings used in 

DFX are 10-80, 10-70, 10-60, 10-50, 10-40, 10-30, 10-20, 10-10, 10-05 and 100. The 

output set of  clusters produced in each round forms the input set of  the 

subsequent round, respectively. This multi-round strategy is necessary for the 

GeMMA heuristics to work (see Section 2.2.3).  
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The primary output of  this process is a full clustering dendrogram, where the 

starting clusters are the leaf  nodes and the root cluster subsumes all other 

clusters. Based on the information in this dendrogram, in conjunction with 

the initial set of  starting cluster sequence files, all further cluster-specific files 

can be regenerated in consecutive steps of  the DFX pipeline. While the 

FASTA sequence files, the MAFFT multiple alignments and the COMPASS 

alignment profiles that are generated by GeMMA for each cluster could also 

be stored and used directly, there are good reasons not to do this. First, it is 

not known at the end of  the clustering step which clusters will become family 

clusters. The necessary storage and transfer (from the HPC to the local system) 

of  the above-mentioned files for all clusters created during clustering would 

result in considerable additional overhead. Second, the realignment of  all 

family clusters for model generation (see Section 3.3.6) should be performed 

with high-quality parameters set at all times, in contrast to the use of  either 

high- or low-quality settings depending on the number of  sequences to align, 

the current strategy in GeMMA. Third, the COMPASS method, as currently 

used by GeMMA to create and compare cluster profiles, is considerably 

slower than the HMMER suite of  tools that is used to create and scan against 

the DFX family model libraries.  

3.3.4 The two family identification protocols 

The DFX supervised family identification protocol (see Chapter 5) uses a 

supervised clustering evaluation strategy (see Section 2.1.3.2). In particular, it 

makes use of  protein function annotation data in deriving the family 

partitioning. The unsupervised protocol (see Chapter 4) also uses this strategy 

in the training step, to derive a generic clustering granularity setting. However, 

the relationship between sequence and function conservation in the training 

superfamilies may differ substantially from that in an arbitrary superfamily. 

Therefore, the use of  annotation data, where it is available, can generally be 
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expected to produce partitionings of  higher quality than those produced by 

the unsupervised protocol.  

The supervised protocol considers all sequence clusters in the produced 

clustering dendrogram that existed at any point in the clustering process in 

family identification. In contrast, the use of  a generic granularity setting in the 

unsupervised protocol only allows for family partitionings that correspond to 

‘straight vertical cuts’ of  the clustering dendrogram. The second major 

difference between the two family identification protocols lies in the preceding 

sequence clustering step. When DFX runs in unsupervised mode (and the 

unsupervised protocol is used), all sequences in the superfamily take part in 

clustering. In contrast, when DFX runs in supervised mode (and the 

supervised protocol is used), only those sequences with high-quality function 

annotations take part in clustering (see Section 3.3.3.1). These fundamental 

differences between the two protocols, and the (theoretical) benefits of  using 

the supervised protocol, are illustrated in Figure 3.2. 
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Figure 3.2. Comparison of the unsupervised and supervised family identification protocols by 

example. (a) DFXunsuper clustering dendrogram of an example sequence superfamily. The colours correspond 

to the different protein functions associated with the clusters; grey indicates a lack of function annotation. 

Clusters without annotation are coloured grey. (b) The corresponding part of the DFXsuper clustering 

dendrogram. Note that unannotated starting clusters (grey) are here filtered out prior to clustering. The 

numbers at the bottom of both subfigures indicate the respective GeMMA round (threshold setting); the 

numbers at the top state how many clusters exist at a given point in clustering, respectively. Black arrows 

indicate which clusters exist after the 10-40 round of GeMMA clustering, respectively.  

a 

b 
 

 
 

 

 

 

 

1e-60 1e-50 1e-40 1e-30 

 
 

 

5 3 2 

 

 
 

 

 

 

 

 
1e-60 1e-50 1e-40 1e-30 

 

 

 
 

 

8 5 3 



CHAPTER 3. THE DFX PIPELINE: IDENTIFICATION OF FUNCTIONAL FAMILIES WITHIN PROTEIN DOMAIN 

SUPERFAMILIES 

 

 108 

Figure 3.2 depicts the partial clustering dendrogram of  a given domain 

superfamily, processed with DFX running in either unsupervised mode 

(Figure 3.2a) or supervised mode (Figure 3.2b). The clusters are coloured by 

the functions (annotations) that are associated with some or all of  the 

sequences they contain, respectively; grey indicates a lack of  annotations. The 

COMPASS E-values at the bottom of  the subfigures indicate how far the 

clustering process has progressed. They correspond to four out of  ten 

threshold levels that are consecutively used for clustering in DFX (see Section 

3.3.3.2). The number of  existing clusters at each E-value level is stated at the 

top. 

An immediately obvious difference between the two subfigures of  Figure 3.2 

is that the grey clusters are not part of  the dendrogram in Figure 3.2b. This is 

because these clusters are either leaf  clusters or parents of  leaf  clusters that 

do not contain any high-quality annotated sequences. As such, the respective 

starting clusters are removed prior to clustering when DFX runs in supervised 

mode. The grey clusters in Figure 3.2b therefore indicate non-existing clusters. 

Later on, after family identification, the sequences from these clusters are 

assigned to families using the generated model libraries (see Section 3.3.6). 

The DFX unsupervised family identification protocol currently uses a generic 

granularity threshold setting of  10-40. In the example in Figure 3.2a this would 

produce three families for the shown part of  the superfamily dendrogram, 

namely the three clusters that still exist after the 10-40 round of  GeMMA 

(arrows). In contrast, the supervised protocol would identify three other 

clusters as putative families (arrows in Figure 3.2b), based on tracing the 

dendrogram as a whole and identifying the individual points at which clusters 

(sequences) with different associated functions get merged (mixed). 

The families produced by the two protocols in the example in Figure 3.2 show 

different characteristics in terms of  functional purity and size, respectively. 
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While the three families identified by the supervised protocol (see Figure 3.2b) 

are relatively small but functionally fully conserved, and there only exists a 

single family per function, the picture is different for the unsupervised 

protocol (see Figure 3.2a). Here, a large but impure family is derived 

(green/brown cluster), along with two other, smaller families (yellow and grey 

clusters). If  it is assumed that the sequences in the grey cluster, which all lack 

high-quality annotations, in fact have the ‘yellow’ function, this means that the 

unsupervised protocol not only mixes different functions in this example 

(decreased specificity or purity) but also produces two families for the same 

function (decreased sensitivity or increased overdivision). The supervised 

protocol, however, would yield 100% purity and 0% overdivision.  

In addition to the above considerations, the supervised protocol would not 

suffer from a coverage decrease in the (idealised) example discussed above 

(Figure 3.2). Despite the smaller size of  the produced families on the whole 

(number of  seed sequences), and the therefore comparatively small multiple 

alignments used in family model generation (for example, in the case of  the 

‘brown’ function in Figure 3.2b), it can be expected that all unannotated 

sequences (from the grey clusters) are assigned to the right families in the 

assignment step of  DFX, provided that appropriate model thresholds are 

used (see Section 3.3.6). In summary, in the outlined example the supervised 

protocol would yield considerable better family identification performance 

than the unsupervised protocol, whilst maintaining the same coverage rate.  

3.3.5 Family naming and taxonomic characterisation 

To label each domain family identified in a superfamily uniquely, DFX 

implements a naming protocol that is based on the UniProtKB names of  the 

respective parent proteins. The generated family names are augmented by 

domain order information (numbers) if  it is indicated that domains from two 

or more families in the superfamily (consistently) co-occur in proteins. Further, 
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the species information that is initially compiled along with the names for all 

proteins (see Section 3.3.2) is used to identify the last common ancestor taxon 

(or the domains of  life covered) for each family. In the case of  otherwise 

identical family names, domain order and/or taxonomic information can be 

used to distinguish the families in a biologically ‘meaningful’ manner (not only 

by their family ID, which is a unique number by definition). The additional 

information can hint at, for example, domain duplication or horizontal gene 

transfer events. The naming protocol is described in detail in the following. 

For a given family, the DFX naming protocol performs four steps. First, all 

words that appear in any of  the parent protein names are compiled, splitting 

the latter where whitespace characters occur. Second, a score for each 

occurring word is derived. Currently, this is given (simply) by the word’s 

frequency (occurrence count) in the set of  protein names, respectively, where 

each individual instance counts, including several instances in the same protein 

name. Third, a score for each protein name is derived. This is given by the 

sum of  the scores of  all words it contains divided by the number of  words 

(normalisation), respectively. The normalisation procedure is to prevent 

protein names from achieving high scores merely on the basis of  length. 

Rather, the commonness of  the words in a given name in the overall set of  

names is the decisive factor. Fourth, a sorted list of  all protein names is 

compiled. Specifically, the names are sorted twice, first by decreasing length 

and then by decreasing score. As a result, the longest of  all protein names that 

share the highest score is found at the top of  the list. 

After sorting all protein names in the above-described way, two final tests are 

made to identify the most appropriate family name. First, the list is traversed 

from top to bottom to identify the first name that does not include any of  the 

following (currently defined) ‘blacklisted’ terms: ‘bifunctional’, ‘chromosome’, 

‘clone’, ‘confirmed’, ‘containing’, ‘domain’, ‘expressed’, ‘fragment’, ‘genomic’, 
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‘homolog’, ‘isoform’, ‘-like’, ‘partial’, ‘possible’, ‘probable’, ‘protein’, ‘putative’, 

‘similar’, ‘trifunctional’, ‘uncharacterised’, ‘unknown’, and the double minus 

(dash) pattern ’--‘. If  all protein names in the list contain blacklisted terms, the 

top-most name is selected. In the second step, the identified name is tested for 

being longer than a maximum length of  Cmax characters. If  this is the case, 

and the name contains more than one word, it is ‘reconstructed’ in the 

following way to meet the length constraint: the individual words are added (in 

the order they occur and separated by spaces) to an initially empty string up to 

the point at which the resulting string would be longer than Cmax. Effectively 

that means truncating the selected protein name in a ‘soft’ manner, not 

splitting words at the end (but rather omitting them). The resulting string is 

the family name, optionally with the added suffix ‘-like domain’.  

An example of  the naming process is given in Figure 3.3a, for a family of  

domains with (phospho)adenosine phosphosulfate reductase activity that is 

identified by DFXsuper in the HUP superfamily (see Section 5.4.1.2). The 

family name, ‘Phosphoadenosine phosphosulfate reductase -like domain’, is a 

direct result of  the naming process described below. As explained above, the 

name with the second-highest score in Figure 3.3a would not be chosen as the 

family name in the first place, because of  the occurrence of  ‘probable’. 

Notably, however, even if  it contained another non-informative word instead 

of  the latter, it would not attain the same score as the top-scoring naming; this 

is due to the normalisation of  all protein name scores by word count (see 

above). Figure 3.3b illustrates that the ‘uncharacterised’ protein names 

associated with the family do not reflect current knowledge (and should be 

changed). 
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Figure 3.3. The DFX family naming protocol. (a) This example shows a non-redundant list of the protein 

names that are associated with the domain family (cluster) 48077, as identified by DFXsuper in the HUP 

superfamily (see Section 5.4.1.2). As described in the main text, each protein name is associated with a score 

that is based on the frequency of the words it contains in the overall set of names. Words occurring in the 

top-scoring name are highlighted in red in the remaining names. The cluster as a whole contains 254 

sequences. (b) The results of UniProtKB BLAST searches demonstrate that the poor quality of some protein 

names associated with the cluster in (a) does not reflect the available similarity information. One of the 

proteins in (a), stemming from SwissProt (golden star), was used as the query (dashed arrow). 

In the course of  compiling all candidate (parent protein) names for the 

domain family naming procedure, as outlined above, a list for each protein is 

compiled that contains the identifiers of  all families in the superfamily in 

which it has at least on domain. For a minority of  proteins, this list contains 

more than a single family ID, and only those are further analysed. In particular, 

for each family that appears in any of  the protein family lists, the protein that 

has domains in the highest number of  further families in the superfamily is 

identified, respectively, and denoted as the ‘representative parent’ sequence. 

Finally, it is checked for each representative parent protein whether all the 

families in which it has domains received the same family name in the naming 

Name of domain sequence cluster parent protein  
 
Phosphoadenosine phosphosulfate reductase  
Probable phosphoadenosine phosphosulfate reductase 
Likely phosphoadenylylsulfate reductase 
5'-adenylylsulfate reductase 3, chloroplastic 
5'-adenylylsulfate reductase 1, chloroplastic  
5'-adenylylsulfate reductase 2, chloroplastic 
Uncharacterized protein MJ0973 
Uncharacterized protein MJ0066 

Score 
 

112.33 
84.75 
39.00 
30.50 
30.50 
30.50 

1.66 
1.66 

a 

b 
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procedure described above. If  that is the case, each of  the family names is 

made unique by extending it with a suffix that indicates the relative position 

(domain number) in the representative parent protein. The domain numbers 

are derived by sorting the starting coordinates of  the domains in the parent 

protein from lowest to highest value. 

Having named all families and added domain order information, the last step 

in the protocol is to characterise the families taxonomically. To this end, the 

last (most specific) common ancestor taxon of  all parent protein taxa (source 

genomes) is determined for each family using the data from the UniProt 

Taxonomy, respectively. This information is stored and optionally added to the 

family name.  

3.3.6 Model library generation and family assignment 

Once the families in a given superfamily have been identified, the DFX 

workflow commences with the generation of  a library of  models, one for 

each family, together with model-specific thresholds. First, a profile-HMM 

(see Section 1.4.2) is built for each family sequence cluster and the cluster it is 

most closely related to, respectively. The latter is the ‘sibling’ cluster of  the 

family cluster, that is, the one it was merged with during sequence clustering. 

Second, two different model-specific detection thresholds (as described below) 

are determined for each family model. These are derived from the results of  

scanning (i) the sequences in the family cluster and (ii) the sequences in the 

family’s sibling cluster with the respective model. Third, any sequences known 

to belong to the processed superfamily (but potentially not functionally 

characterised) can be scanned with the model library to assign them to one of  

the identified families, respectively. 

The DFX pipeline currently uses the HMMER suite of  tools for handling 

profile HMMs. In particular, the following three commands are used. First, to 
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build a model for a given sequence cluster, the hmm_build command is used 

with default parameters; the cluster is aligned beforehand, using MAFFT with 

high-quality settings (‘--amino --localpair --maxiterate 1000’). Second, the 

hmm_search command is used to scan sets of  sequences with individual models. 

Third, the hmm_scan command is used to scan sets of  sequences with all 

models in a model library. The latter two HMMER commands return bit 

scores, to indicate how well a given sequence matches a certain model. 

Stringent model-specific detection thresholds can be derived by scanning all 

the sequences from which a model was built against the model itself, and then 

use the lowest score attained as the threshold (Podell and Gaasterland 2007; 

Fong and Marchler-Bauer 2008). This is the score any query sequence will 

have to meet or exceed to be classified as belonging to the sequence family 

represented by a given model. Apart from this ‘inclusion’ threshold, 

representing the upper boundary of  the range of  possible threshold values for 

a given model, the DFX pipeline also generates a more liberal ‘exclusion’ 

threshold for each model. This time it is not the sequences in the family 

cluster underlying the respective model itself  that are scanned against the 

model, but those found in its sibling cluster (see above). Accordingly, it is the 

highest score observed that serves as the model-specific exclusion threshold. 

This is the score any query sequence will have to meet or exceed to be 

classified as being (most) closely related to the sequence family represented by 

a given model. Such relatedness can either indicate that the query sequence 

represents a new member of  the family in question, or a member of  an 

uncharacterised family occupying a part of  superfamily sequence space that 

lies ‘between’ the family hit and the closest neighbouring family. The process 

of  generating the model library along with the corresponding thresholds is 

summarised in Figure 3.4. It is indicated that the model-based family 

assignment step also forms the basis of  (protein) function assignments, as 

described in the below section. 
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3.3.7 Function assignment to whole-protein sequences 

An important application of  protein family libraries is the (probabilistic) 

assignment of  functions to uncharacterised sequences (protein function 

prediction). DFX generates such libraries on the level of  individual protein 

domains, and these can be used to annotate proteins accordingly. To exploit 

the potential of  this approach fully, it was implemented in a manner that 

allows it to combine the similarity signals between individual domains of  a 

query (multi-domain) sequence and different domain families (that were 

identified in different superfamilies). The function assignment protocol is 

described in detail in the following. 

Each domain family identified by DFX can be associated with Gene Ontology 

protein annotations in a probabilistic manner. Specifically, for a given family, 

this is (currently) done for all most-specific GO terms from the total set of  

terms that are associated with the domain sequences underlying the family 

model (seed sequences); that is, the annotations of  the respective parent 

proteins. Note that this simple approach implicitly takes into account the 

likelihood of  other domains (with other, specific functions) to co-occur with 

domains from the processed family in known proteins. The probability of  

each most-specific GO term being associated with the family (model) is 

calculated as its annotation frequency among the seed sequences, respectively. 

Further, the generated probability values are propagated up the GO DAG, 

where the probability of  each parent term is given as the average probability 

of  its direct child terms.  
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Figure 3.4. Generation and use of the family model library. (a) A hypothetical sequence superfamily is 

processed with DFX, using either DFXsuper or DFXunsuper. (b) Subsequently, a model is generated for each 

identified family (cluster). (c) Two types of model-specific thresholds are then generated, an inclusion 

threshold (determined by the worst self-hit of a model seed sequence to its model) and an exclusion threshold 

(determined by the best hit to a model from a seed sequence of its sibling model in the tree). (d) Domain 

sequences that have been assigned to the superfamily in question can be scanned against the model library 

and assigned to the family whose model they hit best (optionally using one of the two thresholds).  

Note that, while high-quality GO annotations are only available for those 

superfamilies (and their families) that are processed by DFX in supervised 

mode, some (low-quality or recently added high-quality) annotations for the 

remaining superfamilies (and their families) are often found too, and can 

optionally be used. Further, the protocol outlined below is meant to exemplify 

the more general framework of  domain-based protein function prediction, 

which could exploit any kind of  whole-protein annotation data. Finally, the 

 

 

 

 

 

 

a) Clustering and family 
identification 

 

b) Family (model) 
tree 

 

 

 

 

c) Threshold generation 
(two types) 

   

  

  

  

 

d) Family assignment / function 
annotation 

 

 

 

? 



CHAPTER 3. THE DFX PIPELINE: IDENTIFICATION OF FUNCTIONAL FAMILIES WITHIN PROTEIN DOMAIN 

SUPERFAMILIES 

 

 117 

protocol relies heavily on the generated model libraries and the associated 

thresholds. For these reasons, it is described here rather than in Chapter 5.  

Figure 3.5 summarises the process of  probabilistic function assignment for an 

individual domain in a protein query sequence (as identified and assigned to a 

superfamily by Gene3D beforehand). First, the domain sequence is scanned 

against the DFX family model library of  its superfamily (Figure 3.5a). The 

numbers stated next to the models represent the model-specific thresholds 

used. The dashed lines indicate hits to individual models, with the respective 

hit scores given as well. For both hits shown the scores exceed the respective 

target family’s threshold.  

Which type of  model-specific thresholds are used when scanning the model 

library, inclusion or exclusion (see Section 3.3.6), depends on the specific 

prediction task; it is a user choice. The same is true for the decision of  

whether all hits to models are considered (as assumed in the further 

description of  the protocol below) or only the top hit. In fact, for the CAFA 

2011 function prediction challenge (see Section 7.2.2), the best function 

prediction performance was attained using the top hits only, and without using 

any model-specific thresholds. 

After scanning the query domain sequence against the family model library of  

its superfamily (Figure 3.5a), all models that have been hit with a score that 

meets the respective model-specific threshold (target models) are considered 

in probabilistic function assignment (Figure 3.5b). This is done in a weighted 

manner, where the weight of  each target model (mweight) is given by its relative 

hit score. The relative hit score of  a given model is its hit score expressed as a 

fraction of  the sum of  all target model hit scores. For each GO term t that is 

associated with at least one target model m, a ‘raw’ total probability score is 

calculated using the equation stated in Figure 3.5b. 
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The calculation of  the raw probability scores for each GO term as shown in 

Figure 3.5b is based on the relative weights of  the target models associated 

with t and its annotation frequency among the seed sequences of  these 

models, respectively. The frequency values used in this calculation are stored 

with each model, including the frequencies of  all parent terms in the GO 

DAG (see above). The up-propagation procedure shown at the bottom of  

Figure 3.5c is therefore implicit in the outlined calculations (all parent terms 

are considered). At the end of  the workflow as shown in Figure 3.5 stands a 

list of  GO terms that are predicted to be associated with the query domain 

sequence, each with a certain probability.  

When multi-domain protein sequences are to be characterised functionally 

using the above protocol, the protocol is run for each individual domain and a 

simple integration procedure is devised subsequently. In brief, the whole-

protein probability score of  each GO term is set to the maximum domain 

probability score obtained for the term, respectively. This accounts for cases 

in which a specific term is assigned based on more than one domain in (more 

than one run of  the protocol for) the same protein. Possible enhancements of  

this basic integration procedure are discussed in Section 7.2.2. 
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Figure 3.5. Probabilistic GO term assignment based on a single query domain. This example shows 

the three-step workflow that is followed for each domain detected in a given protein. (a) The domain 

sequence is scanned against the full family model library of its superfamily and produces two hits (dashed 

lines). The model-specific thresholds and attained scores are shown. In this case, both models are hit above 

their thresholds. Each is assigned a relative weight. (b) A raw score is derived for each term t, by integrating 

the different model weights and associated term frequencies (number of model seed sequences with that 
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term). (c) Coarse annotations are corroborated by more specific annotations through up-propagation of term 

scores in the GO DAG. This yields the final list of probabilistic function assignments.  

3.4 Discussion and future work 

The concepts, overall architecture and individual modules of  the DFX 

pipeline for protein domain family identification have been discussed above. 

DFX embeds the GeMMA clustering method, as discussed in Chapter 2, and 

two different family identification protocols, as described in Chapter 4 and 

Chapter 5. The two protocols are further compared in a quantitative manner 

in Chapter 6, based on the results of  the first large-scale run of  DFX. Finally, 

Chapter 7 summarises the overall work conducted for DFX, that is, the work 

presented in this thesis, and gives an overview of  its current and future usage, 

as well as the plans for its further development. The specific characteristics 

and challenges of  the algorithms used in each of  the DFX modules are 

discussed in the respective chapters, as well as the results obtained and the 

assessment strategies used. Accordingly, in the following the focus is on 

potential improvements to the common modules of  DFX, that is, those that 

are used in both supervised and unsupervised mode. 

3.4.1 The use of  sequence data 

Concerning the DFX input data, it has become clear in the process of  

analysing the results of  the DFX supervised family identification protocol 

(DFXsuper) that a scheme for filtering out fragmentary sequences, and possibly 

also low-complexity sequences, should be implemented. Gene3D, as a hitherto 

purely superfamily-based resource, assigns domains to protein sequences of  

all sizes. This means that fragmentary proteins from UniProtKB currently also 

contribute domains to the DFX input sequence data. It has been noted that 

truncated domain sequences can misguide the sequence clustering process and 

in this way give rise to artefactual (often single-sequence) families, as shown by 

different examples in Chapter 5.  
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Erroneously assigned domains can cause the same problems as domains from 

fragmentary protein sequences, as described above. Such sequences are often 

substantially shorter or longer than their relatives. Filtering them out, however, 

is a much more challenging task than the removal of  fragmentary sequences. 

It is conceivable that available information about protein domain architecture 

could be used to identify putative domain assignment errors in multi-domain 

proteins, either within DFX or earlier, in the domain assignment process 

(Yeats, Redfern et al. 2010). Further, superfamily-specific minimum sequence 

length thresholds could be used. However, it must be kept in mind that such 

approaches bear the risk of  filtering out valid domains that merely represent 

outlier cases, possibly of  high (evolutionary) interest. 

3.4.2 The two family identification protocols 

For both family identification protocols used in DFX it is conceivable to 

exploit taxonomy information (apart from further annotation data in DFXsuper; 

see Section 5.5.3). For example, there could be constraints as to which higher 

level (sequence source) taxa can be merged in individual families. An example 

would be a rule that prevents the merging of  sequences from different 

domains of  life (DoLs) to establish DoL-specific families in large and diverse 

domain superfamilies; such families could aid the study of  domain evolution. 

A similar but merely ‘monitoring’ rule (test) could also be used to detect 

putative instances of  horizontal gene transfer in the currently established 

families. 

Another example of  using taxonomic information would be a rule that 

prevents similar (in sequence and/or annotation) sequences that stem from 

the same source genome from being merged, or a test that keeps track of  

such events. A similar strategy is used in phylogenomic protein function 

prediction approaches (Eisen 1998; Engelhardt, Jordan et al. 2005; Engelhardt, 

Jordan et al. 2009; Thomas 2010), to differentiate between orthologous and 
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paralogous sequences. While the latter two concepts can only be partially 

transferred to the domain level (see Section 1.2.3), particularly cases where the 

sequences in two merged clusters have the same or a very similar taxonomic 

distribution could hint at gene duplication events and, therefore, functional 

divergence (on the whole-protein level). Especially in conjunction with 

annotation information, as in DFXsuper, this could be a promising approach. 

Further, and particularly interesting in the context of  domain evolution, 

ancestral domain duplication events may be detected in a similar manner. The 

above rule would then analyse the pattern of  parent proteins, not parent taxa, 

of  the sequences in two merged clusters. This, of  course, would have to take 

into account the less likely divergence in function in the case of  duplicated 

domains (within in the same gene) as compared with whole-protein 

paralogues. 

3.4.3 The family naming protocol 

Domain architecture information could be used to improve the naming of  

domain families in DFX, in addition to its potential uses in the identification 

of  putatively erroneous domain assignments (see above) and in disentangling 

the function annotations arising from different domains in the same protein 

(see Section 5.5.3). In particular, information on whether or not sequences 

from a given domain family appear with other domains at all, and, if  so, at 

which relative position in proteins, could be added to the family name. 

Currently, this is only done in cases where a protein has domains from 

different identified families in the same superfamily (see Section 3.3.5).  

More generally, the current family naming protocol could be enhanced using 

advanced semantic methods. Particularly inspiring in this context could be two 

existing tools: the Protein Naming Utility (Goll, Montgomery et al. 2010) and 
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Gene Pidgin13. More specifically, instead of  scoring all terms that appear in 

the protein names associated with a domain family and subsequently basing 

the family name on the protein name with the highest total score (as currently 

done; see Section 3.3.5), a more sophisticated protocol could take into 

account the frequency of  word combinations and the order and type of  words 

in the protein names. Potentially, in some cases, domain family names could 

then be constructed that arise from a combination of  highly informative 

terms that is not seen in any of  the associated protein names, and omit less 

informative terms from these names. For superfamilies with associated GO 

annotations, these could be of  additional value in the naming process; for 

example, if  a family’s last common ancestor GO term (as readily identified by 

DFX) is specific enough to convey some information about the (proteins 

associated with the) domains in the family. 

3.4.4 The overall architecture of  DFX 

On the technical level, it is conceivable that all processing steps in the DFX 

pipeline (not from data preparation and storage) could be implemented to run 

in HPC environments. While this would result in large amounts of  data 

having to be transferred to a local storage system after running the pipeline, it 

would make the protocol more integrated, from a user’s point of  view. Since 

DFX uses parallel batch processing in all local parts of  the pipeline already 

(see Section 3.3.1.1) this moving to HPC entirely would be relatively 

straightforward. So far, however, the need for an HPC system in the clustering 

stage was considered a ‘necessary evil’ (based on the amounts of  sequence 

data to process compared with the processing power of  a single machine) 

rather than an asset of  DFX. With distributed (and cloud) computing 

becoming more and more common, however, this may change. A more 

integrated, purely HPC-oriented protocol could then be favoured by users. 

                                            
13

 http://genepidgin.sourceforge.net/ 
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Chapter 4. Unsupervised protein domain 
family identification in DFX  

The DFX unsupervised family identification protocol (DFXunsuper) uses the 

results of  the DFX sequence clustering step in conjunction with a generic 

granularity setting to identify families in protein domain superfamilies. The 

respective setting is derived in a training step, which is based on a gold 

standard family dataset. Therefore, DFXunsuper is not, in the strict sense of  the 

word, an unsupervised protocol. Just as the supervised protocol (DFXsuper; see 

Chapter 5) it uses ‘annotation’ data, in the form of  family assignments in the 

training step. However, the extent of  these data is much smaller, and it is 

external data, with respect to the large majority of  potential target domain 

superfamilies (all apart from those used in training). The name of  the 

DFXunsuper protocol is primarily to distinguish the two DFX family 

identification protocols.  

The main motivation behind developing DFXunsuper was that established 

methods for unsupervised sequence family identification are not able to cope 

with large input datasets, that is, large protein domain superfamilies. This 

refers to both resource usage (processing power and/or memory) and 

technical difficulties, such as the requirement for an initial (large) multiple 

sequence alignment. Resource constraints, as the main problem, can be 

overcome by the implementation of  algorithms to run in HPC environments. 

In the case of  family identification methods, the bottleneck is the sequence 

clustering step. Therefore, the DFXunsuper protocol uses the GeMMA 

clustering method (see Chapter 2).  

The background section first reviews existing methods and protocols for 

unsupervised sequence family identification. The datasets, measures and 

procedures used to train and benchmark the DFXunsuper protocol are then 

described in the implementation section. The corresponding results are
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presented and discussed thereafter. The qualitative assessment of  DFXunsuper in 

benchmarking is augmented by a larger, quantitative assessment together with 

DFXsuper in Chapter 6. The current chapter closes with a brief  outline of  

recent use cases of  the protocol and suggested next steps in its development. 

Additional points that may affect both DFX family identification protocols 

are discussed in Chapter 7. 

4.1 Background 

Subsequent to some general marks on the origin of  the protocol discussed in 

this chapter, this section reviews existing methods for unsupervised family 

identification. 

4.1.1 Preliminary remarks 

Notably, DFXunsuper was initially published in Lee, Rentzsch et al. (2010) under 

the name GeMMA, which was at that point referring to a combined workflow 

that included sequence clustering and family identification. As DFX as a 

pipeline did not yet exist, it had not been necessary or beneficial conceptually 

to disentangle the two steps. GeMMA, as an independent and entirely HPC-

based sequence clustering method, is now used in the clustering step of  DFX, 

regardless of  which of  the two DFX family identification protocols is used 

subsequently.  

A second important point is that, apart from the choice of  appropriate 

training data, a functionally ‘blind’ protocol such as DFXunsuper can only aim to 

produce families that adhere to the DFX domain family concept introduced in 

Chapter 3. Unlike DFXsuper, it cannot ‘force’ a certain level of  functional 

granularity with the help of  annotation data. 
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4.1.2 Existing unsupervised family identification methods 

In the following, two standalone, ab-initio methods for family identification are 

discussed in detail. These integrate hierarchical sequence clustering and 

unsupervised clustering evaluation (see Section 2.1.3.1). Thereafter, several 

non-integrated protocols that combine different clustering algorithms with 

different unsupervised evaluation strategies are outlined briefly. 

4.1.2.1 Integrated methods 

Both the SCI-PHY (Brown, Krishnamurthy et al. 2007) and CLUSS (Kelil, 

Wang et al. 2007) methods combine agglomerative hierarchical clustering with 

an unsupervised clustering evaluation strategy, respectively, to identify protein 

families in an ab-initio manner. The clustering step is to sample from the space 

of  all possible partitionings of  the input dataset. The evaluation step is to 

select the best partitioning from those sampled, according to some global 

measure of  cluster cohesion and separation (see Section 2.1.3.1). SCI-PHY 

requires as input a multiple alignment of  the sequences in the dataset to be 

processed, whereas CLUSS is an entirely alignment-free method. 

SCI-PHY (Brown, Krishnamurthy et al. 2007) (formerly called BETE for 

‘Bayesian Evolutionary Tree Estimation’ (Sjolander 1998)) first clusters the 

sequences (rows) in the input alignment using a profile linkage approach to 

hierarchical clustering. Such an approach is also used by GeMMA (see Chapter 

2), which, however, creates alignments in a ‘bottom-up’ manner during 

clustering. In a second step, SCI-PHY then identifies the best partitioning 

according to an encoding cost function that incorporates both the number of  

clusters as well as profile-based measures for cluster cohesion and separation 

(see Section 2.1.3.1). This partitioning is reported as the family decomposition 

of  the input alignment. 
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During the hierarchical clustering process, SCI-PHY generates residue 

distribution profiles to represent the clusters (initially consisting of  single 

sequences) and uses the relative entropy between these profiles as the cluster 

dissimilarity measure. The profiles are derived from the observed residue 

counts in each column of  the respective cluster alignment (the ‘posterior’) and 

an assumed generic background distribution of  the different residue types 

(the ‘prior’). The combination of  prior and posterior allows for the calculation 

of  estimated residue frequency values for each alignment position and residue 

type, even for residues that are not observed in a given alignment column.  

The SCI-PHY method uses a residue distribution prior at two points: in the 

construction of  cluster profiles and when measuring the entropy of  individual 

alignment columns in the encoding cost function. In mathematical terms, the 

prior is a residue probability density function in the form of  a Dirichlet 

mixture density (Sjolander, Karplus et al. 1996). The SCI-PHY standard prior 

is derived from the residue distributions observed in sets of  high-quality 

alignments in the BLOCKS database (Henikoff  and Henikoff  1992). The use 

of  priors has been shown to help create more specific and selective profiles 

than those based on common substitution matrices (Brown, Hughey et al. 

1993). It corresponds to the use of  ‘pseudo-counts’ in PSSMs (see Section 

1.4.2.1) and is thought to increase profile sensitivity in the case of  sparse 

and/or unevenly sampled sequence data (Sjolander, Karplus et al. 1996).  

The CLUSS method first constructs an all-by-all similarity matrix of  the 

sequences in the input dataset. In this, it uses an alignment-free sequence 

similarity measure, based on short exact subsequence (‘word’) matches. This 

Substitution Matching Similarity (SMS) measure weighs each word match 

according to its length and the ‘inertia’ of  the residues it comprises, based on 

their self-substitution scores in a standard amino acid substitution matrix. The 

individual word weights are then summed up and the total score is normalised 

to produce a total similarity score for a pair of  sequences. The second step in 
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CLUSS is the construction of  a clustering dendrogram based on the 

calculated similarity matrix, following the standard average linkage hierarchical 

clustering approach (see Section 2.1.2.1). Finally, the best partitioning is 

identified in three sub-steps. First, a ‘co-similarity’ value for each node (cluster) 

in the dendrogram is calculated. This takes into account both cluster cohesion 

and separation. Second, each cluster is assigned to one of  two groups, high 

co-similarity or low co-similarity. This division is made using a maximum 

interclass inertia method. Finally, the disjoint set of  all largest high co-

similarity clusters is reported as the family partitioning of  the dataset. 

4.1.2.2 Combined protocols 

Donald and Shakhnovich (2005) first used single linkage hierarchical 

clustering in conjunction with a giant component (see Section 2.1.3.1) 

approach to identify protein domain families ab-initio, at an ‘…intermediate 

level of  functional detail…’ above the orthologue cluster level. This basic 

definition in principle corresponds to the more detailed definition of  the 

family concept found in Section 0. The protocol was benchmarked on three 

datasets of  eukaryotic transcription factor DNA binding domains, trying to 

divide each dataset into families of  domains with matching binding specificity 

automatically. Its performance is shown to be superior to both the use of  a 

fixed global sequence identity threshold to stop the clustering process and the 

use of  the graph-based method TRIBE-MCL (see Section 2.1.4) with a range 

of  different settings for its granularity parameter (‘inflation’ value). 

It must be stressed that graph-based clustering methods, like any other, are 

not suitable to establish sequence families when used in isolation, that is, 

without a strategy to optimise the respective granularity settings. In contrast to 

what is sometimes suggested (Enright, Van Dongen et al. 2002), the structure 

of  the graph alone cannot usually be expected to reveal biologically 

‘meaningful’ partitionings such as families. For example, the granularity setting 
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and the size and type of  the input dataset have significant effects on the 

family partitionings obtained from the graph-based clustering method MCL 

(Donald and Shakhnovich 2005; Wall, Leebens-Mack et al. 2008) (see Section 

2.1.2.3). As for any other clustering method, this becomes especially obvious 

when such methods are used to infer sequence families across different 

genomes (Frech and Chen 2010). The observed, highly variable performance 

when clustering methods alone are used to identify families can be expected 

from the ‘intermediate’ character of  the family concept (see Section 1.2.2.3). 

In brief, sequence families (and the boundaries between them) are particularly 

difficult to establish, as they lie between the superfamily level and the level of  

tight (orthologue) clusters. 

For the above reasons, different unsupervised evaluation strategies have been 

proposed for use with graph-based clustering methods to identify sequence 

families. One general strategy is to sample a (wide) range of  settings for the 

respective clustering granularity parameter and subsequently select the 

(relatively) best partitioning, based on some unsupervised evaluation measure 

(see Section 2.1.3.1). Yang and colleagues sampled 100 evenly distributed 

settings of  the APC ‘preference’ parameter for a given sequence dataset and 

then used a ‘stable number’ criterion to identify the best family partitioning 

(Yang, Zhu et al. 2010). In brief, this assesses at which point in the sampled 

range of  settings the longest range of  corresponding partitionings with the 

same (stable) number of  clusters is found. The mean value of  the parameter 

settings in this range is then used to derive the final partitioning. The authors 

benchmark the ability of  this approach to correctly separate sequences from 

different protein superfamilies and families, and claim that their method yields 

much better performance than BLASTClust, TRIBE-MCL, CLUSS and 

spectral clustering (all used with a range of  settings, but without the stable 

number optimisation procedure). Strikingly, a single linkage hierarchical 

sequence clustering method is reported to perform second-best, BLASTClust 

(see Section 2.1.4). 
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Apeltsin and co-workers recently proposed a simple heuristic to derive 

appropriate granularity settings for protein family identification with a wide 

range of  graph-based clustering algorithms (Apeltsin, Morris et al. 2011), 

including MCL and APC. In brief, this is based on pre-filtering the edges in a 

given sequence similarity network (SSN) based on their weights (e.g., BLAST 

E-values) prior to clustering the network. First, the authors sample 100 E-

values with an exponent range of  0 to -100 to threshold the network of  a 

given protein superfamily. Each of  the 100 networks is then fed into the 

respective clustering algorithm, using the default setting for the respective 

granularity parameter. From the results of  this, the distribution of  average 

network node degree depending on the initial threshold setting is generated 

(node degree distribution). From manually inspecting the edge weight 

distributions of  the SSNs of  four different superfamilies, the authors infer the 

following heuristic: a relatively good family partitioning of  the input dataset is 

achieved with any of  the clustering algorithms when using the pre-filtering 

threshold setting that corresponds to the point at which the slope (first 

derivative) of  the node degree distribution reaches its first local maximum (the 

maximum corresponding to the lowest E-value exponent). The overall 

methodology is shown to increase the family partitioning performance of  all 

clustering algorithms tested, as compared with using them on unthresholded 

superfamily SSNs. Strikingly, MCL outperformed all other tested algorithms 

when using thresholded networks, whilst also being the fastest. Both APC and 

spectral clustering could not produce meaningful family partitionings for the 

used datasets at all. 

4.2 Implementation 

DFXunsuper uses a generic setting for the level of  GeMMA clustering 

granularity to identify putative families in protein domain superfamilies. This 

E-value threshold (see Section 3.3.3.2) is derived in a one-off  training step, 

using a set of  gold standard superfamilies and corresponding family 
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assignments. By default, DFX clusters all input superfamilies in full, that is, 

until only a single, large cluster remains. Apart from training, the DFXunsuper 

protocol therefore entails only a single step for each processed superfamily: 

tracing the individual merges that constitute the full GeMMA clustering 

dendrogram from the first merge (of  two leaf  clusters) up to the point at 

which the first pair of  sibling clusters is less similar than the generic threshold 

(setting) used.  

The performance of  DFXunsuper was assessed using both a small, high quality 

superfamily dataset (cross-validation on the gold standard superfamilies) and a 

large, medium quality dataset consisting of  functionally diverse Pfam families. 

In both cases, the performance of  the protocol was compared with that of  

the SCI-PHY method, the putatively best-performing method in the field at 

the time this work was conducted (Brown, Krishnamurthy et al. 2007). The 

following sections describe the gold standard dataset, the training and 

benchmarking procedures and the performance measures used in both 

training and benchmarking. 

4.2.1 The gold standard and derived datasets 

A manually curated gold standard dataset of  enzyme superfamilies partitioned 

into families and two derived datasets were used in training (see Section 4.2.3) 

and, partially, in benchmarking (see Section 4.2.4) the DFXunsuper protocol. 

These datasets are described in the following.  

4.2.1.1 The gold standard dataset 

The Structure-Function Linkage Database (SFLD) (Pegg, Brown et al. 2005) 

provides manually curated partitionings of  several mechanistically diverse 

enzyme superfamilies into families, with a focus on function. Where individual 

domains from multi-domain proteins can catalyze a given reaction by 

themselves, only the respective ‘core’ domain sequences form the superfamily. 
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All sequences in a given SFLD superfamily are required to share the same fold 

and the same principle reaction mechanism (for example, a certain type of  

catalytic triad). The SFLD curators further divide each superfamily using two 

hierarchical levels, a coarse (subjective, superfamily-specific) ‘subgroup’ level 

and a fine (functional) ‘family’ level. In the latter case, all sequences are 

required to fulfil exactly the same function.  

The use of  the SFLD as a challenging benchmark for family identification 

methods has been described in several studies (Brown, Krishnamurthy et al. 

2007; Brown 2008; Albayrak, Otu et al. 2010; Moll, Bryant et al. 2010). As of  

2009, the SFLD contained six superfamilies, divided into a total of  140 

functional families. The full (parent) protein sequences for each superfamily 

and the respective (domain-based) family annotations were retrieved from the 

SFLD website14 on 08/01/2009, as listed in Table 4.1. 

                                            
14

 http://sfld.rbvi.ucsf.edu/ 
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Table 4.1. The SFLD protein dataset and its mapping to Gene3D. The superfamily sizes for each of the 

three datasets described in the main text are given in the second (SFLD and SFLD-Gene3D) and last 

(Gene3D) columns, respectively. The shown figures are for the SFLD database as of January 2009 and 

Gene3D 7.0. The Terpene cyclases could not be mapped to CATH (see main text). 

SFLD 

superfamily 

Total 

sequences 

Annotated 

sequences  

(~ % total) 

SFLD 

families 

CATH 

superfamily 

Gene3D 

sequences 

Amidohydrolase 

 

1,693 802   (47) 35 

 

3.20.20.140 15,932 

Crotonase 

 

1,330 931   (70) 14 3.90.226.10 19,323 

Enolase 

 

1,556 1,152   (74) 17 3.20.20.120 4,114 

Haloacid 

dehalogenase 

1,285 936   (73) 17 3.40.50.1000 20,614 

Terpene 

cyclase 

228 228 (100) 40 n/a n/a 

Vicinal oxygen 

chelate 

683 291   (43) 17 3.10.180.10 11,592 

 

4.2.1.2 Two derived datasets 

Two Gene3D domain datasets were derived from the SFLD protein dataset: 

the SFLD-Gene3D and Gene3D datasets. First, the specific core domains that 

give rise to the different SFLD superfamilies were (re-)identified in the SFLD 

whole-protein sequences, through Gene3D domain assignment. The resulting 

SFLD-Gene3D dataset contains the Gene3D domain sequences that 

correspond to the (original) SFLD domain sequences for each SFLD 

superfamily, respectively. The Gene3D dataset extends the SFLD-Gene3D 

dataset by adding to each superfamily the full set of  member domain 

sequences from Gene3D 7.0. This corresponds to an expansion of  the SFLD-

Gene3D dataset to related proteins that are either not yet classified in the 

SFLD or not functionally characterised at all. Consequently, the Gene3D 
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dataset is considerably larger than the SFLD-Gene3D dataset (see Table 4.1), 

and subsumes the latter. 

The CATH superfamilies that were found to correspond to each of  the SFLD 

superfamilies are listed in Table 4.1. For example, a CATH 3.20.20.140 

domain is found in all SFLD protein sequences from the Amidohydrolase 

superfamily. The Vicinal oxygen chelate proteins are composed of  a single 

CATH domain, while the proteins with domains in the other five 

superfamilies are multi-domain proteins. In these cases, a variety of  different 

domains accompany the respective SFLD core domain. The Terpene cyclase 

superfamily was not found fully classified in CATH and therefore had to be 

excluded from all domain-based analyses. 

4.2.2 Performance measures 

In Brown, Krishnamurthy et al. (2007) the authors demonstrate the superior 

performance of  the SCI-PHY method compared with a number of  other 

approaches for ab-initio family identification. In particular, they use three 

distinct measures to evaluate a given family partitioning in a supervised 

manner, that is, based on a gold standard set of  protein family (function) 

assignments: purity, edit distance and VI (Variation of  Information) distance 

(see Section 4.2.2). Purity is a measure of  family functional coherence 

(homogeny), while edit and VI distance are alterative measures of  how well 

the different functional classes are separated across different families. The 

same three measures were used in the present work. In detail, they are defined 

as follows. 

i) Purity 

Purity is measured as the percentage of  families within which all annotated 

member sequences are annotated with the same function. 100% purity can be 

attained trivially by having each sequence in a separate family. 
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ii) Edit distance 

Edit distance measures the number of  family split or merge operations that 

are required to transform the proposed family partitioning into the true family 

partitioning of  the dataset. The edit distance between a reference partitioning 

and a proposed partitioning with clusters k and k’, respectively, is calculated as 
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where rk,k’ equals 1 if  clusters k and k’ have items in common, and 0 otherwise, 

and K and K’ are the number of  clusters in each partitioning. 

iii) VI distance 

VI distance measures the amount of  information that is not shared between 

two family partitionings of  the same dataset. It is calculated as 
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Here, nk is the number of  items in cluster k of  partitioning S, nk,k’ is the 

number of  overlapping items between cluster k in partitioning S and cluster k’ 

in partitioning S’, K and K’ are the total number of  clusters in the partitionings 
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S and S’, respectively, and N is the total number of  items in the set. Identical 

partitionings will have both an edit and VI distance of  zero. 

Both edit distance and VI distance penalize overdivision as well as mixing of  

subtypes. These two measures are analogous to sensitivity (recall) while purity 

is analogous to specificity (precision). The edit distance measure penalizes 

overdivision of  subtypes (different families) proportionately more than 

joining a few subtypes into large clusters. The VI distance measure takes 

cluster size into account, and errors in large clusters (affecting many 

sequences) contribute more to the distance than errors in small clusters. 

iv) Performance 

It is further useful to have a single performance measure that captures the 

commonly desired balance between high sensitivity and high specificity. Edit 

and VI distances are expressed as a percentage of  their initial values for the 

given dataset by multiplying by the scaling factors ce and cv, respectively, 

where 

0100 ece = and 0100 vcv =  

Here, e is edit distance, v is VI distance, and e0 and e0 are the initial values of  

edit and VI distance, respectively. The former are calculated by putting each 

sequence in the dataset into a separate cluster. Then, 

( ) ( )
4

.100.1002 vcecp
eperformanc ve −+−+

=  

where p is the purity value expressed as a percentage. Since both edit and VI 

distance are measures of  sensitivity but only purity is a measure of  specificity, 

purity is here multiplied by a factor of  2. 
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4.2.3 Derivation of  generic clustering granularity settings 

In a preliminary analysis, the SFLD gold standard superfamilies (see Section 

4.2.1) were used to assess (i) to what extent the partitionings produced by 

GeMMA at different levels of  clustering granularity reflect known functional 

families and (ii) the variability in the sequence-to-function relationship among 

these superfamilies. Assessing the latter was necessary to confirm that the 

SFLD superfamilies would form a sufficiently diverse training dataset to 

derive generic granularity thresholds for family identification.  

The sequences in each of  the SFLD protein superfamilies were clustered in 20 

consecutive rounds of  GeMMA, respectively. Starting from individual 

sequences, the clustering granularity setting was decreased in a regular manner 

with each round. Subsequently, the partitionings obtained for each superfamily, 

at each level of  granularity, were assessed using the four evaluation measures 

described in Section 4.2.1.1. Based on the results of  this analysis, generic 

clustering granularity settings for protein family identification with GeMMA 

(and therefore DFXunsuper) were derived. These settings correspond to those 

granularity levels at which the best family partitioning performance was 

observed, as averaged over all SFLD superfamilies (the training set), 

respectively.  

In a second step, the analyses described above were extended to the SFLD-

Gene3D dataset (see Section 4.2.1.2). This dataset contains superfamilies of  

protein domains, not whole proteins. It was therefore assessed whether the 

generic granularity setting derived for the whole-protein level would also apply 

for the domain level. Finally, the same protocol was used to process the 

Gene3D dataset, to measure how and if  greater superfamily size leads to 

partitionings of  lower quality. This was expected, as the GeMMA clustering 

method implements different heuristics (see Section 2.2.3) to speed up the 

clustering of  large sequence datasets. The negative impact of  these heuristics 
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on the accuracy of  clustering is expected to increase with the size and 

diversity of  the processed datasets. 

4.2.4 Benchmarking 

The DFXunsuper protocol was benchmarked internally and against SCI-PHY 

using two distinct test sets of  superfamilies. One was the small but high-

quality SFLD gold standard dataset described in Section 4.2.1.1, 

corresponding to a high quality benchmark. The other was a larger set of  

functionally diverse Pfam families, corresponding to a benchmark showing the 

broad applicability of  the method(s). This dual strategy was followed since, as 

of  2011, there exists no family dataset that is larger than the SFLD one and, at 

the same time, comparable in scope and equally well curated. Both 

benchmarking setups are described in the following. 

4.2.4.1 High quality benchmark 

DFXunsuper was first benchmarked and compared against SCI-PHY based on 

the SFLD gold standard dataset and two derived datasets (see Section 4.2.1). 

As the protocol involves a one-off  training step to derive a generic clustering 

granularity setting (see Section 4.2.3), variation in the training dataset had to 

be taken into account in benchmarking. Further, a mixing of  the training and 

benchmarking datasets had to be avoided. For these reasons, the performance 

of  DFXunsuper was measured for each test superfamily (from the gold standard 

dataset) with the respective superfamily excluded in the training stage. In each 

case, the training set then comprised the remaining superfamilies, respectively. 

The overall performance of  the protocol is measured as the average 

performance over all test superfamilies. This benchmarking strategy 

corresponds to a five-fold cross validation (‘leave-one-out’) approach. 

DFXunsuper was benchmarked against the SCI-PHY method only, as this was 

shown to be superior to several other unsupervised methods (Brown, 

Krishnamurthy et al. 2007). 
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To determine how much the family partitioning performance is increased 

when using a basic, entirely supervised approach instead of  the above-

described training procedure, a superfamily-specific clustering granularity 

setting for each SFLD superfamily was derived as well. This was based on 

comparing the different family partitionings derived with GeMMA clustering 

for each SFLD superfamily with the respective gold standard partitioning. 

4.2.4.2 Large-scale benchmark 

DFXunsuper was further benchmarked on a larger (but lower-quality) dataset of  

protein domain families from Pfam, to test its broad applicability. Again, the 

performance of  DFXunsuper was compared with that of  SCI-PHY. The protein 

domain families in the Pfam database are known to contain different 

functional (sub)families (see below). They were therefore treated as 

superfamilies in the context of  this benchmark (but will not be referred to as 

such below). EC numbers were used to identify known functional families, as 

these are similar in type and specificity (if  not quality) to the family 

assignments in the SFLD benchmark.  

1,741 families from Pfam 23.0 that contained at least two enzyme types 

annotated with EC numbers in UniProtKB were obtained from the Pfam 

website. These families comprised between 5 and 71,535 sequences each. The 

largest variety of  EC numbers was found in PF00106, the short chain 

dehydrogenase family. This contains 87 different four-level EC numbers. The 

largest Pfam family for which SCI-PHY successfully produced a result 

contained 29,970 members; 15 larger families were therefore removed from 

the benchmark dataset. This appears to be a problem with memory allocation 

for SCI-PHY. Furthermore, due to the computational expense of  this analysis, 

a representative set of  571 families was selected to constitute the final 

benchmark dataset. This representative set had approximately the same 

distribution of  family size and diversity as had been found in the original 
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1,741 families. The mean number of  different four-level EC numbers per 

family in this dataset was 3.6. 

An average of  20.1% of  the sequences in the 571 Pfam (super)families had an 

annotation, compared with an average of  64.1% of  the sequences in the 

SFLD superfamilies that were used in the high-quality benchmark described 

above. Note further that the EC functional annotations for Pfam sequences 

are not expected to be as accurate as the SFLD annotations. Performance in 

the large-scale Pfam benchmark was assessed using the same measures (see 

Section 4.2.2) as in the high-quality benchmark. Further, the use of  Pfam 

families meant that the input alignments for SCI-PHY were available. 

4.3 Results and Discussion 

The following sections present the results obtained in each of  the analyses 

described in Sections 4.2.3 and 4.2.4. At the beginning stands the derivation 

of  generic clustering granularity thresholds for both the whole-protein and 

domain levels using the SFLD gold standard dataset. The domain level 

thresholds are then confirmed by an extension of  the analysis to whole 

Gene3D domain superfamilies. In the last part of  this section, the results of  

two different benchmarks are presented: one small-scale but high-quality (in 

terms of  the dataset used) and one large-scale but medium-quality benchmark. 

4.3.1 Derivation of  generic clustering granularity settings 

In a preliminary analysis, the sequences of  each of  the gold standard sequence 

superfamilies found in the Structure-Function Linkage Database (SFLD) were 

clustered in 20 consecutive rounds of  GeMMA, respectively. The whole 

process was repeated for the domain superfamilies in the SFLD-Gene3D 

dataset, each containing the Gene3D domains of  the protein sequences in the 

corresponding SFLD superfamily. Figure 4.1 shows the results for each 

superfamily and each level of  clustering granularity, respectively. These 
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confirm that the SFLD superfamilies form a sufficiently diverse training 

dataset. This is illustrated by (i) the observed range of  different peak 

performance levels and (ii) the highly variable behaviour of  all values between 

individual superfamilies, depending on the level of  clustering granularity, 

respectively. This translates to a high variability in the levels of  sequence and 

function conservation between these superfamilies. 

As a general trend, the purity of  the produced clusters (specificity) decreases 

as the GeMMA E-value threshold is increased above a certain level, that is, as 

the level of  clustering granularity decreases. At the same time, edit distance 

decreases (sensitivity increases) and VI distance decreases to a minimum and 

then increases again (sensitivity increases to a maximum and then decreases 

again). Purity is sometimes seen to decrease and then increase again, for 

example for the Terpene cyclase superfamily in Figure 4.1a. This can arise in 

two different ways. First, two impure clusters can be merged together so that 

the total proportion of  impure clusters decreases. Second, a new pure cluster 

can be created that contains two annotated sequences that were previously 

found in separate clusters, each without further annotated member sequences 

(and therefore without an influence on the purity value); this leads to the 

overall proportion of  pure clusters increasing.  

As can be expected, the highest performance scores were obtained at different 

levels of  clustering granularity for different superfamilies. For example, the 

peak for the Amidohydrolase SFLD superfamily in Figure 4.1a is at 10-60, 

while for the Haloacid dehalogenase family it is at 10-40. Average performance 

scores were thus calculated for the six SFLD protein superfamilies in Figure 

4.1a and the five SFLD-Gene3D protein domain superfamilies in Figure 4.1b. 

The average peak performance is in both cases observed at an E-value of  10-40. 

The latter therefore serves as the generic clustering granularity setting for 

DFXunsuper.  



CHAPTER 4. UNSUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX  

 142 

In Figure 4.1, the peak in the performance score for each superfamily is 

generally quite ‘blunt’. These observations support the use of  a generic 

granularity setting to approximate functional domain families when high-

quality annotations are lacking.  
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Figure 4.1. Agreement of the partitionings produced by GeMMA clustering with known functional 

families in the SFLD and SFLD-Gene3D superfamilies. This shows purity, edit distance, VI distance and 

overall performance for partitionings obtained at different levels of clustering granularity, when clustering (a) 

the protein superfamilies in the SFLD dataset and (b) the corresponding domain superfamilies in the SFLD-

Gene3D dataset. Clustering granularity is indicated by the different E-value thresholds that define the 

individual GeMMA rounds (see Section 2.2.3.2). 
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4.3.2 Analysis of  entire Gene3D domain superfamilies 

The GeMMA clustering method implements different heuristics to speed up 

the clustering of  large sequence datasets (see Section 2.2.3). The negative 

impact of  these heuristics on the overall hierarchical clustering result is 

expected to increase with the size and the diversity of  the processed datasets. 

Therefore, the analyses described above were extended to the Gene3D dataset. 

Note that the whole Gene3D superfamilies in this set are considerably larger 

than the superfamilies in the two SFLD-only datasets (see Table 4.1). 

Reassuringly, however, the results obtained are comparable for all three 

datasets, as summarised in Table 4.2. Neither do the absolute peak 

performance values (which are found at different levels of  clustering 

granularity for each superfamily) deteriorate significantly nor does the average 

clustering granularity level at which peak performance is obtained change 

between the small and the large domain datasets. Note that only the original 

SFLD annotations were used in all cases. 

Figure 4.2 shows the behaviour of  the three evaluation measures used when 

progressing from the SFLD protein to the SFLD-Gene3D and Gene3D 

domain datasets. These measures underlie the combined performance values 

in Table 4.2. Again, the results are very similar for all three measures, with no 

overall trend upwards or downwards exhibited. Overall, there is a small 

decrease observed in the peak performance scores when DFXunsuper is applied 

to the much larger Gene3D superfamilies, with purity generally being a little 

lower and edit and VI distances being a little higher (see Figure 4.2).  



CHAPTER 4. UNSUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX  

 146 

Table 4.2. Peak family partitioning performance when clustering the superfamilies in the three 

SFLD-derived datasets with GeMMA. This shows, for the superfamilies in each dataset, the highest 

performance values observed when clustering the sequences in the respective superfamily with GeMMA. 

Each superfamily was clustered at 20 levels of clustering granularity, and the obtained partitionings were 

assessed for how well they match the known functional families in the superfamily. A perfect match 

corresponds to a performance score of 100. 

Family Dataset Performance score Granularity  

setting (log(E)) 

SFLD 92.75 -60 

SFLD-Gene3D 92.25 -60 

Amidohydrolase 

Gene3D 91.75 -70 

SFLD 89.25 -40 

SFLD-Gene3D 89.75 -40 

Crotonase 

Gene3D 87.50 -40 

SFLD 90.75 -60 

SFLD-Gene3D 91.00 -60 

Enolase 

Gene3D 90.25 -60 

SFLD 97.25 -20 

SFLD-Gene3D 94.00 -20 

Haloacid dehalogenase 

Gene3D 91.25 -30 

SFLD 84.25 -40 

SFLD-Gene3D 82.75 -40 

Vicinal oxygen chelate 

Gene3D 81.25 -40 
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Figure 4.2. Agreement of the best partitionings produced by GeMMA clustering with known 

functional families in the three SFLD-derived datasets. The shown values for the SFLD protein (cyan), 

SFLD-Gene3D (magenta) and Gene3D (yellow) datasets correspond to the level of clustering granularity at 

which peak performance is reached (see Table 4.2). A good partitioning has high purity (maximum = 100%) 

and low edit and VI distances (maxima = the initial values). 

The observed performance decrease when clustering whole Gene3D 

superfamilies is not large, with performance scores falling by no more than 

6% in the worst case (see Table 4.3). This is true especially given that other 

methods such as SCI-PHY are not applicable to such large and diverse 

datasets. A possible explanation for the small decrease, apart from the effects 

of  the GeMMA clustering heuristics (see above), is that the SFLD 
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superfamilies only contain carefully manually filtered sequences, while the 

Gene3D superfamilies include a certain amount of  protein fragments and less 

rigorously validated sequences. Altogether, it can be concluded that there is 

sufficient sequence information in the functional core domains alone to 

reproduce the results that are obtained when analysing the whole-protein 

SFLD sequences. 

4.3.3 Benchmarking 

The DFXunsuper protocol was benchmarked internally and against SCI-PHY 

using two distinct test sets of  superfamilies. One was the small but high-

quality SFLD gold standard dataset described in Section 4.2.1.1, 

corresponding to a high quality benchmark. The other was a subset of  

functionally diverse Pfam families, corresponding to a benchmark showing the 

broad applicability of  the method(s). The results of  both benchmarks are 

described in the following. 

4.3.3.1 High-quality benchmark 

The performance scores achieved in the SFLD benchmark by SCI-PHY and 

DFXunsuper are listed in Table 4.3. These results indicate that DFXunsuper usually 

achieves a good balance between sensitivity and specificity, outperforming 

SCI-PHY in that respect. Only in a single case, the Enolase superfamily, the 

two methods are on a par. The main reason for this seems to be that SCI-

PHY is optimised for high specificity (high purity) at the expense of  rather 

low sensitivity (high edit and VI distances) compared with DFXunsuper, as can 

be seen in Figure 4.3. The accordingly lower number of  identified families for 

DFXunsuper as compared with SCI-PHY in this benchmark is shown in Table 

4.4. 
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Table 4.3. Performance of DFXunsuper and SCI-PHY in cross-validation benchmarking on the SFLD 

dataset. The GeMMA clustering granularity setting used for each superfamily was derived from training on 

the remaining superfamilies, respectively (see Section 4.2.3). 

Family Method Performance score Granularity setting 

(log(E)) 

SCI-PHY 77.99  Amidohydrolase 

DFXunsuper 85.50 -40 

SCI-PHY 81.29  Crotonase 

DFXunsuper 89.00 -40 

SCI-PHY 91.70  Enolase 

DFXunsuper 90.00 -40 

SCI-PHY 77.18  Haloacid dehalogenase 

DFXunsuper 94.75 -50 

SCI-PHY 54.99  Terpene cyclase 

DFXunsuper 61.25 -40 

SCI-PHY 69.02  Vicinal oxygen chelate 

DFXunsuper 84.25 -40 

SCI-PHY 75.36  Average 

DFXunsuper 84.13 -41.66 

 



CHAPTER 4. UNSUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX  

 150 

Table 4.4. Size of the family partitionings produced by DFXunsuper and SCI-PHY in cross-validation 

benchmarking on the SFLD dataset. The values shown for each superfamily and method correspond to 

the partitionings assessed in Table 4.3. Singletons are clusters with only a single member. 

Family Method Clusters Singletons 

SCI-PHY 638 364 Amidohydrolase 

DFXunsuper 100 47 

SCI-PHY 320 149 Crotonase 

DFXunsuper 141 75 

SCI-PHY 201 75 Enolase 

DFXunsuper 56 31 

SCI-PHY 332 181 Haloacid dehalogenase 

DFXunsuper 161 110 

SCI-PHY 22 1 Terpene cyclase 

DFXunsuper 6 0 

SCI-PHY 302 163 Vicinal oxygen chelate 

DFXunsuper 138 82 
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Figure 4.3. Agreement of the family partitionings produced by DFXunsuper and SCI-PHY with known 

functional families in cross-validation benchmarking on the SFLD dataset. The shown values for 

DFXunsuper (cyan) and SCI-PHY (magenta) correspond to the generic clustering granularity setting used (see 

Table 4.3). A good partitioning has high purity (maximum = 100%) and low edit and VI distances (maxima = 

the initial values). 

4.3.3.2 Large-scale benchmark 

For both DFXunsuper and SCI-PHY the observed performance is similar to that 

seen in the SFLD benchmark when benchmarking on this much larger and 

more diverse set of  domain (super)families. The majority of  performance 

scores in the Pfam benchmark are found in the top three bins in Figure 4.4a. 
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Since the total sums of  the performance scores for each method are very 

similar to each other, neither method is clearly superior to the other (the total 

for DFXunsuper is 2.8% higher than that for SCI-PHY). Further, the difference 

in the performance score of  DFXunsuper and SCI-PHY was plotted against 

Pfam family size (see Figure 4.4b) and diversity (Figure 4.4c), to test whether 

either has a differential effect on the relative performance of  the methods. It 

can be seen that this is not the case. 

The Pfam families in this benchmark often contain sequences with different 

annotated functions, in the form of  different EC numbers. Both DFXunsuper 

and SCI-PHY are effective in subdividing these families into functionally pure 

(sub)families (see Figure 4.5), with SCI-PHY achieving a slightly higher 

proportion of  approximately 3% overall. Further, the transfer of  functional 

annotations within the produced functional families can significantly increase 

the annotation coverage of  the parental Pfam families (see Figure 4.6). In 

terms of  sensitivity, both methods show the advantage of  using a profile 

linkage approach (see Section 2.2.1) when clustering the sequences, as 

opposed to complete linkage clustering based on pair-wise sequence 

comparisons (at a ‘safe’ pair-wise sequence identity threshold of  60%). The 

latter is a common target selection strategy in structural genomics. Further, 

the greater sensitivity of  DFXunsuper compared with SCI-PHY results in greater 

post-transfer annotation coverage, albeit risking a small decrease in specificity 

(see above). That is, a minor fraction of  the families in which annotations 

have been transferred may comprise more than one function.  
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Figure 4.4. Performance of DFXunsuper and SCI-PHY in the Pfam benchmark. (a) Distribution of 

performance scores for DFXunsuper (cyan) and SCI-PHY (magenta). Also shown is the average difference in 

the performance score between DFXunsuper and SCI-PHY (DFXunsuper score minus SCI-PHY score) 

depending on (b) family size and (c) family diversity (estimated as the number of Gene3D 7.0 S30 clusters in 

the family). 
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Figure 4.5. Functional conservation in the Pfam benchmark families and the produced SCI-PHY 

and DFXunsuper families. Shown is the respective proportion of families that contain the indicated number 

of different EC annotations (plotted up to a number of eight different ECs) for the initial Pfam (cyan) and 

the produced SCI-PHY (magenta) and DFXunsuper (yellow) families.  
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Figure 4.6. Transfer of functional annotations within the Pfam benchmark families. This illustrates the 

initial and post-transfer annotation coverage of the Pfam benchmark families when using Gene3D S60 

clusters and SCI-PHY or DFXunsuper functional families. 

4.4  Conclusions and future work 

The future of  the unsupervised protocol in DFX is discussed in conjunction 

with other aspects that concern both DFX family identification protocols in 

Sections 3.4 and 7.3. Two recent use cases of  DFXunsuper and two obvious next 

steps in its development are discussed in the following. 
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4.4.1 Recent use cases 

Families identified by DFXunsuper were used in a recent study (Dessailly, 

Redfern et al. 2010) on the evolution of  structure and function in the large 

and diverse HUP domain superfamily (see Section 5.1.4). Nine Functional 

Sub-Groups (FSGs) for the superfamily were defined manually in this work, 

based on extensive literature and database review, and the 85 non-redundant 

CATH structural domains available for the HUP superfamily were each 

assigned to one of  the those FSGs. Three of  the nine FSGs comprised non-

enzymatic domains. Notably, the definition of  the manually defined FSGs was 

based on a domain family concept similar to the DFX one (see Section 0). 

This primarily refers to the amount of  functional ‘leeway’ in these groups, 

which, for example, allows for different enzyme substrate specificities within a 

group as long as the overall reaction mechanism is conserved.  

The above study reports that most of  the 85 HUP superfamily domains under 

analysis were separated into families of  perfectly conserved (parent protein) 

function by DFXunsuper. Only in four cases were sequences with matching 

function found in different families; in a single case, the opposite was 

observed. However, even for these special cases, potential functional reasons 

are put forward (Dessailly, Redfern et al. 2010). On the somewhat coarser 

FSG level, a tremendous overdivision of  individual FSGs by DFXunsuper is 

reported. This can be expected, based on the training of  the method on 

functionally perfectly conserved families from the SFLD (see Section 4.2.3) 

and, generally, the use of  a generic clustering granularity setting. The study 

further finds that the alignments of  the DFXunsuper families exhibit strongly 

conserved residue patterns that either correspond to catalytic or ligand-

binding residues. In particular, in 2 out of  11 families for which reliable 

residue information was available, catalytic residues were found more 

conserved than ligand-binding residues, with the latter in turn less conserved 

than all further (non-characterised) residues. The study concludes with 
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suggesting that DFXunsuper families could - together with additional structural 

or functional information - serve to generate a family classification that would 

match the manually defined FSGs perfectly. This is essentially the strategy 

followed in the later developed DFXsuper protocol (see Chapter 5), apart from 

the use of  structural information (so far). 

The DFXunsuper protocol has also recently been applied to Structural Genomics 

target selection for the Midwest Center for Structural Genomics (MCSG), in 

order to improve the coverage of  structurally underrepresented superfamilies 

in the second phase of  the Protein Structure Initiative (PSI-2) (Dessailly, Nair 

et al. 2009). It was demonstrated in Lee, Rentzsch et al. (2010), by the example 

of  eleven domain superfamilies, that large structurally unrepresented clusters 

of  sequences, as identified with DFXunsuper, can be exploited for this aim. In 

this context, it was also shown that such clusters identify many more targets 

for homology modelling that produce acceptable models than are found by 

using a traditional approach (sequence comparison and selection of  targets 

that share at least 30% sequence identity with the available template 

structures). 

4.4.2 Future work 

As an obvious next step, DFXunsuper will be used to identify putative functional 

families in all Gene3D superfamilies that cannot be processed in supervised 

mode in the next run of  the DFX pipeline. These ~25% of  all superfamilies 

that are not associated with high-quality protein annotations at all are mostly 

small, and were not included in the first run of  DFX. However, in the 

quantitative assessment in Chapter 6, a ‘light’ version of  the DFXunsuper 

protocol (not based on exhaustive clustering) is compared with DFXsuper in 

terms of  the method’s theoretic ability to identify families in more than 400 

Gene3D enzyme superfamilies. Together with the analyses presented above, 
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the results of  this assessment provide an estimate of  the performance that 

can be expected, on average, for DFXunsuper. 

The DFXunsuper method should be benchmarked against further (recently 

published) unsupervised methods for family identification. Importantly, this 

must take into account both performance and applicability to large datasets, in 

conjunction with runtime. In a first step, the alignment-free CLUSS method in 

its second incarnation (Kelil, Wang et al. 2008) should be tested on the SFLD 

superfamilies. Preliminary tests suggest that it may be on a par with, or 

outperform, SCI-PHY and/or DFXunsuper in some cases. However, less 

encouragingly, a recent study reports poor performance for CLUSS and 

runtimes of  up to 55 hours (Frech and Chen 2010). Other candidates against 

which to benchmark are more recently published protocols that are based on 

graph-based clustering, such as those reviewed in Section 2.1.4. A generic 

clustering granularity threshold that is optimised for family identification may 

be derived for these methods, as it is currently done for DFXunsuper (see 

Section 4.2.3). 
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Chapter 5. Supervised protein domain family 
identification in DFX  

After the unsupervised family identification protocol for the DFX pipeline 

had been developed, a second, more sophisticated protocol was implemented. 

This takes into account available knowledge on whole-protein function and 

uses this information to guide the domain family identification process. It is 

therefore a supervised protocol. In this manner, it produces functional 

domain families that adhere to the domain family concept introduced in 

Section 0 with increased precision and control compared with the 

unsupervised protocol. Equally importantly, the supervised protocol makes 

possible the processing of  the largest and most diverse domain superfamilies 

with 100,000s of  sequences. As these superfamilies contain the most 

promiscuous domains that appear in a large number of  different domain 

architectures and functional contexts, the supervised family identification 

protocol (DFXsuper) is the most important part of  the DFX pipeline.  

The background section first reviews existing methods for supervised protein 

family identification and approaches to derive domain-specific annotation data. 

After a detailed discussion of  Gene Ontology annotations in the context of  

protein domains, it concludes with the introduction of  two ancient protein 

families. The superfamilies that contain the catalytic domains of  these 

proteins serve as examples in the discussion section, respectively. The 

concepts section introduces several concepts that are used by DFXsuper to 

capture the functional annotation of  domain sequences and sequence clusters, 

when identifying domain families. The identification process itself  is then 

described in the implementation section. Finally, a detailed qualitative analysis 

of  the families produced by DFXsuper is performed based on the two example 

domain superfamilies introduced earlier. A quantitative assessment, in 

conjunction with the unsupervised protocol, follows in Chapter 6. The 

present chapter closes with a summary of  the benefits and potential caveats 
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of  the developed protocol and a discussion of  suggested further work. 

Additional points that may affect both DFX family identification protocols 

are discussed in Chapter 7.  

5.1 Background 

In the following, existing supervised (protein) family identification methods 

are reviewed first, complementary to the review of  unsupervised methods in 

the previous chapter. The same is then done for existing approaches to derive 

domain-specific function annotation data. Since DFXsuper uses the Gene 

Ontology protein annotation system (see Section 1.3.1), this system is 

specifically discussed in the context of  protein domain function thereafter. 

Finally, two multi-domain protein families whose members contain domains 

from two evolutionarily ancient, functionally diverse superfamilies are 

introduced. These serve as examples when characterising the families 

produced by DFXsuper in Section 5.4.1.  

5.1.1 Existing supervised family identification methods 

Supervised family identification protocols combine sequence clustering with 

supervised clustering evaluation techniques (see Section 2.1.3.2). Currently 

existing methods come in two flavours: those based on hierarchical and those 

based on graph-based clustering approaches. The known assignments of  all or 

part of  the sequences to functional classes that are used to select appropriate 

settings for the respective clustering granularity parameters (i.e., to stop the 

clustering) are in all cases simple annotation types, such as EC numbers or 

manually assigned family numbers. Complex annotations, such as sets of  GO 

terms assigned to individual sequences, cannot be used. As the very task of  

translating from such complex assignments into simple class (family) 

assignments is the core functionality of  DFXsuper, and as it works on protein 

domains instead of  whole-protein sequences, the existing methods are only 

reviewed briefly in the following.  
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In principle, (semi-)supervised family identification methods share the goal of  

profile-based function prediction methods: to group sequences with known 

function in a homogenous manner, to be able to assign uncharacterised 

sequences to the respective groups (and functions) thereafter. Existing profile-

based methods for the prediction of  enzyme function follow a two-step 

approach. They first generate highly specific enzyme family profiles to which 

unknown sequences are subsequently assigned. While the CatFam method (Yu, 

Zavaljevski et al. 2009) was shown to outperform its predecessors EFICAz 

(Arakaki, Huang et al. 2009) and PRIAM (Claudel-Renard, Chevalet et al. 2003) 

in terms of  assignment accuracy, it lacks a publicly available server. The latter 

is also the case for the recently published ModEnzA method (Desai, Nandi et 

al. 2011), which was claimed to perform better than all the above methods. 

Another recent member of  this strain of  methods is BrEPS (Bannert, Welfle 

et al. 2010), which was only benchmarked against PRIAM and shown to be, 

on average, on a par with it. All these methods use hierarchical clustering 

approaches to group protein sequences by EC number (i.e., family) and, based 

on this, create one or several profile HMMs to represent each family. The 

breadth of  these profiles (determined by the size and number of  the 

underlying sequence groups) is in each case optimised by testing how well a 

given model can differentiate between class members and non-members in a 

test set of  (more or less high-quality annotated) enzyme sequences. 

5.1.2 Existing methods to derive domain-specific annotations 

There currently exists only a single regularly updated mapping of  function 

annotation terms to protein domain families, the InterPro2GO mapping 

(Camon, Barrell et al. 2005), which is also the only mapping that is integrated 

with a family resource, InterPro. As a meta-resource, InterPro integrates both 

whole-protein and protein domain classification (see Section 5.1.2), and does 

not itself  aim to generate domain families at any particular level of  granularity. 

Rather, for classification on the domain level it relies on six of  its currently 
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eleven member databases: Pfam, ProDom, SMART, TIGRFAMs, 

SUPERFAMILY and Gene3D (see Section 1.5.2.2).  

For creating the InterPro2GO mappings on the domain level, curators review 

the annotations of  the SwissProt protein sequences that are assigned to a 

given InterPro domain entry. They then associate the most specific functions 

that are deemed to be shared by all sequences with the entry (family) as a 

whole15. The same process is followed for InterPro protein family entries. 

Since the GO annotation system is used, identifying the functions shared by 

all sequences in a family is (theoretically) trivial: the ‘last common ancestor’ 

parent terms can be readily identified in each of  the three GO branches. 

Resource-specific subsets of  InterPro2GO are available too; for example, 

Pfam2GO. All mappings are currently updated on a monthly basis.  

The most important responsibility of  the InterPro2GO curators is not the 

identification of  common ancestor GO terms (which can be largely 

automated), but rather the decision as to which of  those functions are related 

to the domain (family) in question and which are mediated by other domains 

in the proteins harbouring this domain. The inherent uncertainty in making 

this decision (see Section 3.2.1) and the often coarse level of  functional 

granularity in Pfam families (which nucleate many InterPro domain entries) 

together lead to relatively sparse, coarse and sometimes inconsistent 

InterPro2GO annotations. For example, as of  September 2011, only a 

fraction of  all InterPro protein and domain family entries that are associated 

with the HAD superfamily of  hydrolase domains (see Section 5.1.4) are 

assigned the ‘hydrolase’ term (GO:0016787). Most importantly, the ‘Haloacid 

dehalogenase -like hydrolase’ domain family entry (InterPro IPR005834) that 

specifically represents the catalytic hydrolase domain does not have this 

annotation. Annotations can further be entirely missing for entries where no 

common ancestor term below the respective GO DAG root term can be 

                                            
15

 http://www.ebi.ac.uk/GOA/InterPro2GO.html 
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identified, owing to inconsistent, incomplete or erroneous annotation of  the 

SwissProt sequences assessed.  

Several other attempts at deriving domain-specific annotations have been 

made that have not yet been integrated with a domain family resource. A 

common characteristic of  these methods is that they essentially evaluate 

(explicitly or implicitly) a matrix that captures co-occurrences of  GO terms 

and protein domains. For example, if  a given term is found with all proteins 

that contain a certain pair of  domains but never with proteins that contain 

only one of  those domains, it would be assumed that the combination of  the 

two domains is both necessary and sufficient to give rise to the respective 

functionality.  

Schug and colleagues used a rule-based approach to predict domain-specific 

GO annotations for individual domain families (Schug, Diskin et al. 2002) 

defined in the ProDom and CDD resources (see Sections 1.5.2.2and 3.1.1, 

respectively). Their protocol works as follows. Initially, all sequences in a 

training dataset of  GO-annotated sequences are scanned against all ProDom 

and CDD domain families, using BLAST and RPS-BLAST, respectively. To 

derive domain-specific annotations for a given domain entry, its BLAST hit 

list is first sorted by the associated P-values, from low to high. Different types 

of  ‘rules’ are then created and associated with certain P-value thresholds. For 

example, a ‘single function’ rule is generated when the N first hits in the list 

have only a single, shared most specific GO annotation. The rule is associated 

with a P-value threshold that corresponds to the P value observed for the hit 

at position N. Since the sequences hit are usually associated with several 

different GO terms, at different levels of  specificity (depending on domain 

architecture and level of  experimental characterisation), the other rule types 

are more sophisticated and try to take into account the possibility of  missing 

annotations and varying annotation granularity (‘consensus’ rules). For 

example, a ‘consensus ancestor’ rule associates a given domain family with the 
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GO DAG ancestor term that is shared by the first N sequences in the BLAST 

hit list, as long as this is reasonably specific. Rules were created in this manner 

for all ProDom and CDD domain families that had a non-empty BLAST hit 

list, using a training set of  GO-annotated yeast, fly and mouse proteins. It was 

subsequently assessed how many domain families can be associated with GO 

terms in this manner, and this coverage was compared with that of  the 

InterPro2GO mappings for ProDom and Pfam domain families. Interestingly, 

the results were found to be complementary in both cases. The absolute 

coverage of  the developed method was slightly lower than that of  

InterPro2GO in the case of  ProDom and slightly higher for Pfam families. 

One limitation of  the above-discussed approach is that the (joint) functions 

of  consistently co-occurring domains cannot be resolved. A more 

sophisticated framework was therefore employed in the GOTrees method 

(Hayete and Bienkowska 2005). This first models the domain content of  all 

proteins in the training set in the form of  a binary presence/absence vector, 

where the number of  dimensions is the total number of  defined Pfam 

domains. Protein annotation is thus translated into a classification problem, 

where individual domain vectors are mapped to GO term labels. For this 

classification, a decision tree is generated for each individual GO term that 

best separates those proteins (i.e., single domains or domain combinations) 

that are assigned the term from those that are not. Using the decision trees 

derived from a training set of  annotated human, mouse and yeast proteins, the 

authors annotated all proteins in a test set of  fly and worm proteins (both sets 

were subsets of  SwissProt). In this benchmark, the method achieved a 

considerable increase in coverage over InterPro2GO, with a slight decrease in 

specificity. GOTrees was not compared with the simpler method described 

above. 

Two alternative protocols that mimic and extend the InterPro2GO approach 

(but without any manual curation), respectively, were later presented by 
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Forslund and Sonnhammer (Forslund and Sonnhammer 2008). The simpler 

of  the two, MultiPfam2GO, is a straightforward generalisation of  the 

principle behind InterPro2GO to multi-domain sets: the sparsest possible set 

(Pfam-A domain combination) that consistently occurs in UniProt UniRef50 

proteins associated with a given GO term (set) is associated with that term 

(set). Notably, while putatively beneficial for protein function prediction, this 

association does not necessarily imply that the respective domain set gives rise 

to the function(s) in question; single-domain proteins (and their GO 

annotations) are generally required to construct such unequivocal, ‘strong’ 

domain to function relationships. To account better for sparse and missing 

protein annotations, as well as missing domain assignments, the authors 

introduce a second, probabilistic method. This implements a naïve Bayesian 

network classifier (Friedman, Geiger et al. 1997) to associate domain sets with 

GO terms (or term sets), assuming that all possible domain combinations 

appear independently of  each other; the latter is not the case but serves to 

simplify the algorithm, as the authors state. In that manner, a mapping was 

created between more than 400 distinct Pfam-A domain combinations and 

186 different GO terms, with associated P-values. In ten-fold cross-validation 

on the protein dataset used, the method showed an overall (if  small) 

performance gain when compared with BLAST, given that only remote 

homologues with at least one Pfam-A domain were considered. While the 

authors state that a direct benchmark of  the above-discussed GOTrees 

method against theirs is difficult to construct, the ‘raw’ sensitivity and 

specificity values obtained in the individual benchmarks (in both studies) 

indicate superior performance of  the Pfam2GO-derived method, which is 

also less demanding in terms of  computational resources (more scalable). 

The SCOP2GO method (Lopez and Pazos 2009) focuses on the (SCOP) 

domain fold level, and tries to associate individual structural domains (folds) 

occurring in whole-protein PDB structures with specific GO terms. To this 

end, the fold composition of  each PDB chain with a given GO term is first 
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collected in a matrix. The following iterative protocol is then applied. First, 

the fold F with the highest occurrence count in the matrix is associated with 

(deemed to be responsible for) the respective function (term). Second, all 

domains of  this fold type in all chains are labelled as associated with that 

function. If  another fold co-occurs with F in almost all (a heuristic fraction of  

97%) chains that contain F, the respective domains are labelled accordingly. 

All other domains in these chains are labelled as non-associated with the term. 

For the second iteration, F is determined as the second-most frequently 

occurring fold in all chains associated with the GO term in question. The 

protocol iterates until no domain in any of  the chains is left unlabelled, that is, 

until all occurring folds have been assessed. For each of  the folds the method 

then calculates a P-value (based on a hypergeometric distribution) that states 

the likelihood of  the fold being responsible for the function (GO term) in 

question. In that manner, multiple terms can be probabilistically associated 

with the same fold, and vice versa. The authors annotated almost 40,000 

SCOP domains with one or several GO MF terms, from a set of  948 distinct 

terms that are found at least two steps below the root node in the GO MF 

DAG. The method was compared with the InterPro2GO mapping for SCOP 

domain families. Importantly, this comparison showed that the InterPro2GO 

annotations often did not refer to individual domains but to whole proteins; 

this is somewhat surprising given the manual curation effort behind these 

annotations.  

5.1.3 Protein domain function and the Gene Ontology 

At the core of  the DFX supervised family identification protocol stands the 

assessment of  protein domain sequence clusters for functional coherency, 

based on whole-protein GO annotations. The GO annotation system is 

described in detail in Section 1.3.1. Generally, it is more complex than older 

systems, particularly the EC system, but it can also capture much richer 

information on protein function, including non-enzymatic activities. The 
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different rules implemented in DFXsuper are based on a set of  observations on 

how GO molecular function terms are used in protein function annotation. 

Within the GO annotation system, only the MF term type is used to describe 

the specific activity or reaction chemistry of  proteins (see Section 1.3.1). 

Importantly, MF terms can be used in isolation to describe fully this most 

important aspect of  protein function; no additional terms from the BP or CC 

branches of  GO are required. To translate between whole-protein and 

(putative) domain annotation in a heuristic manner (see Section 5.1.3), the 

supervised protocol distinguishes ‘essential’ MF terms from ‘non-essential’ 

MF terms, and ‘related’ pairs of  MF terms from ‘unrelated’ pairs. The 

following paragraphs explain these dichotomies, with a particular focus on the 

function(s) and corresponding MF annotations of  multi-domain proteins and 

their individual domains. 

As outlined above, GO MF terms are very similar to EC annotations with 

respect to the type of  protein functions they describe, namely specific 

biochemical activities. Unlike EC numbers, however, they can be used to 

describe non-enzymatic functions too. Further, GO terms are defined and 

used in a more ‘atomistic’ manner than EC numbers. For example, the overall 

molecular function of  an enzyme as described by an EC number can often be 

split into its substrate binding, cofactor binding and chemical reaction aspects 

using three different GO MF terms.  

Many proteins are currently annotated with GO MF terms according to a 

mixture of  the ‘holistic’ (EC) and the atomistic (GO) paradigms. Particularly 

enzyme sequences are often assigned a single essential GO MF term 

describing their overall function, in conjunction with one or more additional, 

non-essential MF terms that focus on specific aspects of  this function. Non-

essential MF terms can be defined as neither necessary nor sufficient to 

describe the function of  a protein as a whole. An example is given in Figure 
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5.1. As almost all other deaminases (enzymes that catalyse the removal of  an 

amine group from a molecule), Glucosamine-6-phosphate (GlcN6P) 

deaminase uses water as a co-substrate, that is, it catalyses a hydrolytic 

deamination reaction. This means that the ‘hydrolase activity’ term 

(GO:0016787) that is associated with many of  these proteins describes a 

certain mechanistic aspect of  the overall reaction, whereas the ‘deaminase 

activity’ term (GO:0019239) and its more specific child term ‘glucosamine-6-

phosphate deaminase activity’ (GO:0004323) describe the (net result of  the) 

overall reaction. In that sense, the former term is non-essential whilst the 

latter terms are essential. Unsurprisingly, a part of  the GlcN6P deaminase 

proteins is, as of  October 2011, lacking the GO:0016787 annotation; this 

includes three manually reviewed SwissProt entries (e.g., UniProt Q8AB53).  

 

Figure 5.1. The hydrolytic deamination reaction catalysed by Glucosamine-6-phosphate deaminase. 

The corresponding enzyme annotation is EC 3.5.99.6; the corresponding GO MF annotations are 

GO:0004323 and GO:0016787 (see main text). The reaction diagram was taken from KEGG. 

Based on the current GO MF term definitions and the use of  these terms in 

protein annotation, as outlined above, a single MF term is usually sufficient to 

describe the overall function of  a single-domain protein, and therefore to 

judge whether two such proteins, annotated with MF terms, are functionally 

identical or similar. An example is a single-domain enzyme that combines a 

substrate binding site and an active site in one and the same domain. If  the 

protein has two GO MF terms annotated, one can be expected to describe the 

overall function of  the protein (the enzymatic activity) and the other an 

individual aspect of  this function (the binding of  the substrate). The two 
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terms are therefore related, but one is essential and the other non-essential 

(see above). Whenever a specific domain or protein can carry out more than a 

single function, the number of  expected essential GO MF terms would then 

equal the number of  observed functions. Such a functional ‘moonlighting’ of  

proteins has been observed in several cases (Jeffery 1999; Huberts and van der 

Klei 2010). 

The relationship between protein function (annotation) and protein sequence 

is often more complex in multi-domain proteins. Here, each domain can 

encode a distinct partial protein function, as discussed in detail in Section 

1.1.2. On average, it can be expected that each individual domain in a given 

multi-domain protein gives rise to at least one GO MF term annotated for the 

protein. The domain functions, and therefore the terms, can either be related 

or unrelated. An example for two domains with related functions is the 

combination of  a transporter domain with an active site domain that harvests 

(transforms) the energy required for the transport (e.g., by hydrolysing ATP), 

in an active transmembrane transport protein. This corresponds to the 

distribution of  a single overall function (active transport requiring ATP) 

across two domains. An example for two domains with unrelated functions is 

the combination of  an active site domain with another active site domain with 

different function. This is the case, for example, in multi-functional enzymatic 

fusion proteins such as the human ‘Bifunctional ATP-dependent 

dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)’ protein (UniProt 

Q4KLZ6). The latter exhibits both ‘glycerone kinase activity’ (GO:0004371) 

and ‘FAD-AMP lyase (cyclizing) activity’ (GO:0034012), with each function 

encoded by a distinct domain and the functions differing in the first digit of  

the corresponding EC numbers. Fusion proteins with three or four different 

functions are rare but do exist, most prominently in evolutionarily old 

pathways in eukaryotes. There, they are sometimes found to encode a range 

of  consecutive steps that require a set of  individual proteins earlier in 
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evolution. An example is the human ‘CAD protein’ (UniProt P27708), which 

encodes four enzymatic activities in the pyrimidine pathway. 

The different GO MF terms associated with multi-domain proteins can be 

related or unrelated to each other based on the function(s) of  the individual 

domains, as illustrated by the transporter and bifunctional fusion protein 

examples above, respectively. Given that two terms are annotated in either 

case, the following assumptions about the character of  these annotations 

should hold. In the first case, one MF term describes the overall function of  

the protein, the active transport of  a specific substrate using ATP, while the 

other refers to a single aspect of  this function, the binding (and consumption) 

of  ATP. The two annotations (and functions) are therefore related, in the 

same way as essential and non-essential annotations are related in single-

domain proteins. In contrast, in the second example above, the two annotated 

GO MF terms describe two entirely different enzymatic functions, carried out 

independently (with no shared, overall ‘aim’) by two different domains. The 

two annotations are therefore unrelated.  

As a challenge for any classification algorithm, more complicated cases that 

mix the two scenarios outlined above exist in the databases. For example, one 

domain of  a two-domain protein can give rise to both an essential and a non-

essential term while the other is described by a single, essential term only. In 

addition, subsets of  domains in multi-domain proteins may be collectively 

responsible for a given function (for example, mediated by an interface region) 

whilst other domains in the same proteins function autonomously. 

It is important to note that, even if  a heuristic algorithm could be devised that 

correctly differentiates between all the above-described scenarios for the 

relationship of  protein domains and whole-protein function (annotation), any 

such algorithm has to work on the background of  many preceding steps. The 

most important ones are gene prediction, protein domain decomposition and 
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the annotation process itself. If  errors are made in any of  these steps, this can 

deteriorate the performance of  the algorithm. For example, fragments of  real 

genes and pseudo-genes can lead to wrong or missing results in domain 

identification, wrongly identified domain boundaries can lead to (apparent) 

outlier sequences when clustering domain superfamilies, and wrong or missing 

protein function annotations can directly ‘misguide’ annotation-based 

algorithms such as those discussed in the present chapter. 

5.1.4 Protein families with functionally conserved domains 

To illustrate the difference between protein domain and whole-protein 

function, two families of  multi-domain proteins can serve as examples. These 

are the P-type ATPase (P-ATPase) family of  ion transmembrane transporters 

and the class I aminoacyl-tRNA synthetase (aaRS) family. The catalytic 

domains of  the proteins in these families come from two evolutionarily 

ancient domain superfamilies: the HAD (Haloacid dehalogenase) and HUP 

(‘HIGH-signature proteins, UspA, and PP-ATPase’) superfamilies, as 

characterised in Koonin and Tatusov (1994) and Aravind, Anantharaman et al. 

(2002), respectively. Both the HAD superfamily (CATH 3.40.50.1000) and the 

HUP superfamily (CATH 3.40.50.620) belong to the Rossmanoid fold class 

(CATH 3.40.50). Further, for both superfamilies, the respective parent 

proteins are assumed to have diverged into distinct functional families prior to 

the emergence of  (an assumed) Last Universal Common Ancestor (LUCA) 

organism (Aravind, Anantharaman et al. 2002; Burroughs, Allen et al. 2006). 

Consequently, these superfamilies have member domain sequences in all three 

domains of  life, and most of  the proteins containing these sequences are 

essential for cell survival.  

5.1.4.1 The P-loop type ATPase family 

The P-loop type ATPases (P-ATPases) are an evolutionarily ancient and 

ubiquitous family of  transmembrane transport proteins (Axelsen and 
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Palmgren 1998). These proteins actively transport different metal ion species 

across the cellular membrane and those of  certain organelles; some are also 

known as ‘flippases’ that can transport phospholipids between the two 

membrane layers. The most prominent members of  this family are the 

Na+,K+-ATPase found in the plasma membrane of  animal cells, which was 

the first P-ATPase identified (Skou 1957), and the Ca2+-ATPase found in the 

sarcoplasmatic reticulum membrane of  muscle cells, which was the first P-

ATPase protein with a solved structure (Toyoshima, Nakasako et al. 2000). 

Ion transport through P-ATPases is mediated by conformational changes, 

induced by ATP hydrolysis and following reversible autophosphorylation of  

the protein.  

Due to their early evolutionary divergence, the P-ATPase proteins usually 

exhibit low overall pairwise sequence identity, down to ~20% (Geisler, Richter 

et al. 1993). Yet, they show relatively high structural conservation in their non-

membrane parts (Palmgren and Nissen 2011). Both phylogeny and ion 

specificity are in some cases still unclear (Axelsen and Palmgren 1998; Thever 

and Saier 2009). According to the widely-used classification of  Axelsen and 

Palmgren (Axelsen and Palmgren 1998), the P-ATPases fall into five classes 

and several subclasses, of  which class Ib includes the transition and heavy 

metal ion transporters relevant to the examples below. This corresponds to 

the 3.A.3.5 and 3.A.3.6 families of  the TC classification (Thever and Saier 

2009). 

All P-ATPase proteins share a common (core) domain architecture, as shown 

in Figure 5.2. A transmembrane (M) domain binds and transports specific ions, 

while a three-domain subunit that protrudes from the inside of  the membrane 

drives this transport, through binding and hydrolysis of  ATP and following 

conformational change. This subunit comprises the actuator (A), 

phosphorylation (P) and nucleotide-binding (N) domains. All four domains 

are clearly discernable as compact units in protein tertiary structure (see 
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Figure 5.2a), but only the A and N domains are also continuous in sequence. 

In detail, A is inserted N-terminally into M, while P is also inserted into M, 

close to its centre, and itself  contains N as an insert. The P domain is found 

in the HAD domain superfamily. It was speculated that the common ancestor 

of  all extant P-ATPases was the product of  sequence fusion between a 

membrane transport protein (M domain) and a soluble ATPase enzyme (P 

domain) (Ogawa, Haga et al. 2000; Bramkamp, Gassel et al. 2003); the A and 

N domains would then have been acquired later on. 
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Figure 5.2. The four structural domains of P-type ATPase transport proteins. These proteins transform 

chemical energy stored in the form of ATP into mechanical energy for the active transmembrane transport of 

different metal ion species. The cytoplasmic actuator (A) and phosphorylation (P) domains are both inserts of 

the transmembrane domain (M). The cytoplasmic subunit is completed by the nucleotide-binding (N) domain, 

which is inserted into the P domain. A coupled ATP hydrolysis and protein autophosphorylation reaction 

takes place at the interface of the P and N domains. Following major conformational changes in the A 

domain lead to corresponding movements in several of the transmembrane helices of the M domain. This 

reaction cycle drives ion transport. The image was taken from Creative Commons and altered; it shows a 

cartoon representation of the structure of Arabidopsis thaliana proton ATPase AHA2 (PDB 3b8c). 
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The overall function of  P-ATPases is the transport of  ions across a cellular 

membrane, catalysed by the hydrolysis of  ATP. While the three cytoplasmic 

domains are jointly responsible for hydrolysis, the transmembrane domain 

transports ions by going through a cycle of  conformational changes 

(Palmgren and Nissen 2011). This corresponds to a transformation of  

chemical energy into mechanical energy. In brief, the N domain binds and 

positions an ATP molecule so that its γ-phosphate moiety points towards a 

conserved, reactive aspartate residue in the P domain. In a nucleophilic attack 

reaction, the phosphate is then transferred to the aspartate side chain to create 

an unstable aspartyl-phosphoanhydride intermediate. This corresponds to an 

autophosphorylation of  the P-ATPase protein in the P domain. ADP is 

released and the N-domain reverts to its initial state. The A domain now 

undergoes conformational change and fills the ‘gap’ left by the N-domain. 

Mediated by a set of  conserved residues in the A domain that bind and 

activate a water molecule for nucleophilic attack, by abstraction of  a proton, 

the P domain is subsequently dephosphorylated. The release of  Pi is 

stimulated by a newly bound ATP molecule (N domain), the A domain reverts 

to its initial state, and the cycle completes. The substantial conformational 

changes in the A domain during this catalytic cycle are translated, via linker 

regions, into movements of  several transmembrane helices in the M domain. 

In turn, these movements facilitate the transmembrane transport of  ions. It is 

important to note that the reactive aspartate residue in the P domain is 

conserved throughout the HAD superfamily.  

The four domains found in P-ATPase proteins show different degrees of  

conservation in sequence, structure and function. Substrate specificity, that is, 

which ion species can be transported, is largely determined by structural 

variation in the transmembrane domain (M) (Palmgren and Nissen 2011). This 

refers to relatively subtle differences in structure, based on sometimes 

extensive changes in sequence, to accommodate for the binding of  specific 

ion species (Palmgren and Nissen 2011). Among the remaining domains (P, A 
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and N), only the P domain shows considerable conservation in sequence and 

structure throughout the P-ATPase protein family. Importantly, it is also the 

only of  the three domains that belongs to a domain superfamily (HAD) 

whose members appear in different functional contexts, that is, in proteins 

other than P-ATPases.  

5.1.4.2 The class I aaRS family 

Aminoacyl-tRNA synthetase (aaRS) proteins are responsible for charging the 

different transfer-RNAs (tRNAs) with their respective amino acids (Woese, 

Olsen et al. 2000) and thus fulfil a crucial role in one of  the oldest cellular 

pathways: protein biosynthesis. They fall into two distinct classes, class I and 

class II (Eriani, Delarue et al. 1990). The HUP domain superfamily contains 

domains that are found in class I aaRSs, while the structurally unrelated class 

II aaRSs contain domains from other superfamilies and folds.  

Class I aaRS proteins comprise two distinct domains, with the N-terminal 

HUP superfamily domain being the catalytic one (see Figure 5.3). This domain 

is responsible for a chain of  reactions. In brief, these are the recognition and 

binding of  both ATP and the respective amino acid, the splitting of  the ATP 

molecule into AMP and inorganic pyrophosphate (PPi), with the latter being 

released from the complex, the subsequent formation of  an activated 

aminoacyl-AMP (aminoacyl-adenylate) intermediate, and the final transfer 

(esterification) of  the respective amino acid to its tRNA counterpart. The 

second, C-terminal domain of  class I aaRSs is mainly responsible for 

recognising and binding the correct tRNA(s), through its highly specific 

anticodon region. Additional binding or editing domains are sometimes found 

but are not relevant in the context of  this work (for example, the yellow zinc-

binding domain in the E. coli MetRS structure in Figure 5.3). 
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Figure 5.3. The two structural domains of class I aaRS proteins. These proteins use chemical energy 

stored in the form of ATP to charge tRNAs with their cognate amino acids, for eleven of the 20 residue types. 

All steps that are necessary to complete the esterification of tRNA and amino acid are performed by the 

catalytic N-terminal domain (N). The C-terminal domain (C) is primarily responsible for anticodon 

recognition and, therefore, specific tRNA- binding. The image was created with Jmol and shows a ribbon 

diagram of the structure of E. coli Methionyl-tRNA synthetase (PDB 1pfy). 

The class I aaRSs comprise those specific for arginine (ArgRS), cysteine 

(CysRS), glutamic acid (GluRS), glutamine (GlnRS), isoleucine (IleRS), leucine 

(LeuRS), methionine (MetRS), tyrosine (TyrRS), tryptophan (TrpRS) and 

valine (ValRS); it also contains lysine aaRS type 1 (LysRS), which has an 

unrelated counterpart in class II. Class I aaRSs can further be classified into 
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three different subclasses, as shown in Table 5.1. These were defined mainly 

based on protein structure comparisons (Cusack 1995).  

The aaRS enzymes in each of  the three class I subclasses tend to recognise 

chemically similar amino acid types. Members of  class Ia recognise 

hydrophobic amino acids, such as the branched aliphatic (Ile, Leu and Val) and 

sulphur-containing (Met and Cys) types. Class Ib proteins recognise charged 

amino acids (Glu and Lys) and the uncharged polar Gln, a derivative of  Glu. 

Class Ic enzymes recognise the aromatic amino acids Tyr and Trp (Ribas de 

Pouplana and Schimmel 2001). Note that especially the ValRS, LeuRS and 

IleRS proteins are known to be functionally closely related (and even 

overlapping) (Nureki, Vassylyev et al. 1998), which is also expressed by their 

shared proofreading mechanism (Nordin and Schimmel 2003). MetRS is also 

associated with this subgroup of  class Ia aaRSs: ValRS, LeuRS, IleRS, and 

MetRS recognize A35 of  tRNA with their tRNA-binding domains, whereas 

ArgRS and CysRS recognize C35 (Fukai, Nureki et al. 2003). 

Table 5.1. The three subclasses of class I aaRS proteins. This classification was first provided in Cusack 

(1995) and is based on protein structure comparisons. Note that two subgroups can be distinguished in class 

Ia (vertical line; see main text). 

Aminoacyl-tRNA synthetase class Class member proteins 

Ia MetRS, ValRS, LeuRS, IleRS | CysRS, ArgRS 

Ib GluRS, GlnRS, LysRS 

Ic TyrRS, TrpRS 

 

5.2 Concepts 

The following sections introduce three important concepts that form the 

theoretical basis of  the algorithms explained in the implementation section. 

While the concept of  annotation term sets is a general one, used throughout 
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the DFXsuper workflow, the core set and chaining concepts are specific and 

characteristic of  the idea behind the protocol. 

5.2.1 Sequence and cluster annotation using sets 

To capture the GO function annotations associated with individual sequences 

and sequence clusters, the ‘term set’ concept is consistently used in all stages 

of  DFXsuper. Each of  the sequences in a given domain sequence cluster is 

linked to a set of  GO terms, the annotation of  the respective parent protein. 

These sequence term sets contain only the most specific terms annotated for a 

protein, from all three GO branches. Further, for each unique sequence term 

set (sequence annotation) observed in the cluster, a single sequence is 

arbitrarily chosen as the representative sequence. This is to use all necessary, 

but no redundant, information in assessing the functional coherence of  

clusters (see Section 5.3.4). The cluster term set (cluster annotation) of  a 

cluster is defined as the union of  all terms that are found in any of  its 

representative (this qualifier will henceforth be omitted) sequence term sets, 

with GO DAG parent terms removed. Consequently, the cluster term set 

contains only the most specific terms associated with sequences in the cluster. 

All sequence term sets and the cluster term set can be split into MF, BP and 

CC term sets, respectively.  

DFXsuper further distinguishes between informative and problematic GO MF 

terms. The informative MF term set is the set of  all terms defined in the GO 

MF DAG except terms in the problematic set. The problematic MF term set 

contains terms that are generally thought to convey less information about the 

overall molecular function of  a protein than informative MF terms. Currently, 

it includes the ‘binding’ (GO:0005488) term and all its child terms. The 

binding term is currently annotated for proteins in a highly redundant way, in 

the sense that the assigned informative MF terms already imply the binding 

activity by definition; for example, the substrate binding of  enzymes. Similarly 
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applies to many of  its child terms, such as, for example, ‘protein-binding’ 

(GO:0005515) and ‘ATP-binding’ (GO:0005524). It could be argued that either 

the respective annotation guidelines (or habits) should change or, more 

profoundly, the binding term should be made the root of  a separate, fourth 

branch of  the Gene Ontology. 

5.2.2 The core annotation of  domain sequence clusters 

The supervised family identification protocol derives a domain family 

partitioning from, first, the sequence clustering dendrogram of  a given 

domain superfamily and, second, the (whole-protein) GO annotations that are 

associated with the clustered domain sequences via their parent proteins. GO 

molecular function (MF) annotations are the most relevant in this process, as 

established in Section 5.1.3.  

Domain-specific annotation data would ideally be required to assess the 

functional coherency of  protein domain sequence clusters. However, so far 

such data are not readily available (see also Section 5.1.2). Therefore, the 

supervised protocol includes a heuristic algorithm first to identify those MF 

terms that are most specific to the function(s) of  the domain sequences in a 

cluster, out of  all MF terms that are associated with the respective parent 

proteins. This is the cluster core MF term set (core set). The intended ideal 

composition of  the core set is outlined below; the algorithm that has been 

implemented to compile it is described in Section 5.3.2. 

Based on the domain family concept introduced in Section 0, and the 

definition of  essential and non-essential annotations in Section 5.1.3, the core 

set of  a given domain sequence cluster would ideally comprise all (and only 

those) MF terms that are essential to measure the degree of  functional 

diversity among its member sequences. For domains from single-domain 

proteins, any non-essential terms that merely describe individual aspects of  

the overall protein function should be excluded from the core set. For 



CHAPTER 5. SUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX 

 180 

domains from multi-domain proteins, any terms that describe ‘foreign’ 

domain functions (those that are mediated by other domains in the respective 

protein) should additionally be excluded. This is true regardless of  whether 

the function of  a foreign domain is related or unrelated (see Section 5.1.3) to 

that of  the domain under analysis, that is, whether the domains serve different 

partial functions (of  a common overall function) or entirely independent 

functions. 

The exclusion of  non-essential MF terms from the core set is based on the 

observation that such terms are more frequently missing from protein 

annotations than essential MF terms. This can happen when (partial) 

functions are deemed not important or are simply ‘forgotten’ in the manual 

annotation process. The latter becomes even more likely when automatically 

assigned annotations are merely curated (manually checked), since the missing 

annotations may not be proposed by the automatic protocol used in the first 

place. In other words, the less important a term is to describe the overall 

function of  a given protein, the more likely it is that the term is missing from 

the protein’s annotation. If  non-essential MF terms were taken into account in 

measuring the functional coherence of  protein (domain) clusters, some 

clusters could be erroneously judged functionally incoherent only due to such 

annotation incoherencies. 

The exclusion of  foreign domain MF terms from the core set directly follows 

from the domain family concept on which the DFX pipeline is based (Section 

0). Further, annotations that refer to domains other than that under inspection 

can compromise the assessment of  cluster functional coherence in a manner 

similar to inconsistently annotated non-essential MF terms (see above). An 

example would be a catalytic domain A that, in one exceptional case, is found 

together with a second catalytic domain B in a fusion protein. Clearly, the MF 

term describing the catalytic function of  B should not be considered when 
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judging the functional coherence of  a sequence cluster populated by domains 

of  type A. 

5.2.3 Chaining in the clustering of  annotated sequences 

The concept of  cluster chaining can help to establish domain families with a 

focus on domain (not whole-protein) function, an aim that is discussed in 

detail in Section 3.2 above. It relies on both the clustering dendrogram, as 

obtained in the sequence clustering step of  DFX (see Section 3.3.3.2), and the 

protein annotations associated with the domain clusters in this dendrogram. 

In brief, the concept is used to detect cases of  incongruence between domain 

sequence conservation and protein function conservation. Such incongruence 

can, in turn, be a signal of  domain function conservation, and can therefore 

be used to establish domain families of  the above-mentioned type. 

A cluster chain is a sequence of  clusters in the dendrogram that are connected 

by child-parent relationships (edges; Figure 5.4). A cluster-function chain is a 

cluster chain in which each pair of  sibling clusters shares at least one 

associated protein function (annotation). An end-of-chain cluster is the last 

parent cluster in a cluster-function chain, that is, the chain node that is closest 

to the root of  the clustering dendrogram. A more exact definition of  the 

concept of  ‘chaining’ than given above is that of  an observed deviation in the 

pattern of  domain sequence clustering from the pattern of  deviating function 

in the respective parent proteins; this definition will be used henceforth.  

Cluster-function chains are expected and usually observed for cluster merges 

close to the leaf  nodes of  the sequence clustering dendrogram, that is, in the 

initial stages of  agglomerative clustering. At this point, many functionally pure 

clusters exist and are expected to be merged with their closest relatives, that is, 

with clusters that are also functionally pure and represent the same function. 

However, in later stages of  clustering (closer towards the dendrogram root 

node), sibling clusters are not generally expected to share any identical 
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functions. This is because most of  the leaf  clusters that represent the same 

single function should already have been merged, respectively, assuming that 

there exists a positive correlation between protein domain sequence and 

overall protein function similarity in the superfamily (which is expected for 

single-domain proteins). What is normally expected in later stages is the 

progressive merging of  the ‘fully grown’ functionally pure clusters into larger, 

impure clusters, until only a single, maximally impure cluster (the root node) 

remains. In summary, the usual expectation is that all sequences with matching 

functions are first joined in a cluster before they join sequences with different 

functions. 

 

Figure 5.4. The concept of cluster chaining. The top part shows the domain architecture of the sequences 

in a hypothetical two-domain protein family F. The N-terminal domain (N) fulfils the same partial protein 

function throughout the family, whereas the function of the C-terminal domain (C) varies. For both domains, 

a part of the GeMMA clustering dendrogram of the respective domain superfamily is shown. The colouring 

(numbering) of the clusters indicates the different annotations (functions) of the parent proteins. While the C 

superfamily clusters exactly according to the annotation pattern, the N superfamily does not. This becomes 

apparent in merges where at least one of the two sibling clusters is functionally impure and the cluster 

annotations overlap (here indicated by an M in the respective parent clusters). In a chain of such merges, the 

cluster closest to the dendrogram root node is the end-of-chain cluster (e). 

Cluster-function chains become relevant for domain family identification 

whenever the above-outlined idealised merging order is violated in the 

clustering dendrogram of  a given superfamily. In these cases, at least once in 

the chain an already functionally impure cluster is merged with another (either 

pure or impure) cluster that matches the former in at least one annotation. As 
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a result, the respective end-of-chain cluster is also functionally impure, and 

would hence not normally be judged functionally coherent (see Section 5.3.4). 

Importantly, when using end-of-chain clusters to derive domain families, this 

may result in different family partitionings for the individual superfamilies 

containing different domains from the same set of  parent proteins. This is 

illustrated in the following example. 

Figure 5.4 shows, at the top, a protein from a hypothetical two-domain protein 

family F. The N-terminal domain fulfils the same partial protein function 

throughout the family (e.g., ATP hydrolysis), whereas the function of  the C-

terminal domain varies (e.g., phosphorylation of  various different substrates). 

The two domains come from different domain superfamilies, whose sequence 

clustering dendrograms are shown in part. The sequence clusters (nodes) in 

both dendrograms are coloured and numbered according to the union of  the 

annotations of  the respective parent proteins. For simplicity, it is assumed that 

only proteins from the F family have domains in these clusters. As can be seen, 

the domain sequences in the two superfamilies exhibit different clustering 

patterns, putatively due to the different functional constraints on (local) 

sequence conservation. While the clustering dendrogram of  the C domain 

superfamily is in perfect agreement with the functional pattern (and the 

expected sequence clustering pattern) of  the parent proteins, the N domain 

superfamily deviates from this pattern, that is, it exhibits chaining. The 

individual points of  deviation are those merges where at least one of  the two 

sibling clusters is functionally impure and the cluster function (annotation) 

sets overlap. As in any cluster-function chain (see above), the parent cluster 

closest to the dendrogram root node is the end-of-chain cluster (‘e’ in Figure 

5.4). 

The higher conservation of  individual domains in sequence and function 

relative to their parent proteins is the only ‘valid’ (i.e., biological) reason for 

chaining. Otherwise, especially when using a highly sensitive profile-profile 
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sequence clustering method like GeMMA (see Chapter 2), it is highly unlikely 

that a domain that directly mediates the functional (e.g., substrate) specificity 

of  its parent protein (i.e., that changes in function with its parent protein) 

would not cluster with its relative domains according to this specificity. This is 

because even changes in only a few functional key residues, within an 

otherwise highly conserved domain, should normally be sufficient to guide the 

(profile) clustering process. The same would be true, in fact, when clustering 

the parent proteins as a whole. 

There also exist methodological, or artefactual, reasons for chaining. In the 

simplest case, one or more domain sequences in a cluster are erroneously 

annotated (via their parent proteins), that is, their annotation does not 

correspond to their true function (that of  the parent proteins). This can lead 

to the (false) impression that sequences with different functions are joined in a 

cluster before joining other sequences with identical function, respectively. 

Such annotation errors are often a consequence of  the biological reason for 

chaining mentioned above, the existence of  highly conserved domains among 

the members of  a protein family. Depending on the size of  these domains, 

the respective proteins can exhibit substantial overall similarity in sequence 

and structure, especially when this is measured automatically (and not by eye). 

This makes a correct assignment of  protein function difficult, both when 

using purely automatic function assignment pipelines (function prediction 

methods) as well as (if  to a lesser extent) manual curation. In fact, in analogy 

to the chaining concept explained for domain sequence clustering above, this 

very uncertainty in protein function annotation often indicates the joint 

membership of  proteins in a protein family. This is especially true if  the 

family concept followed allows for a certain degree of  function variation 

within families, as it is the case for the DFX domain family concept (see 

Section 0). 
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5.3 Implementation 

If  high-quality function annotation data are available for a superfamily, it is 

compiled in the data preparation step of  the DFX pipeline (see Section 3.3.2). 

The pipeline then runs in supervised mode. This means, first, that all 

unannotated starting clusters are filtered out after pre-clustering (see Section 

3.3.3.1), and second, that a supervised protocol is used to identify functional 

families after the main sequence clustering step. This protocol combines the 

clustering results with supervised clustering evaluation based on the 

annotation data, in the same way in which ab-initio methods like SCI-PHY (see 

Section 4.1.2.1) combine sequence clustering with unsupervised clustering 

evaluation (see Section 2.1.3.1). 

For a given superfamily, the DFX supervised family identification protocol 

performs the following three steps. First, the initially compiled function 

annotation data are used to assess the functional coherence of  all clusters 

(nodes) in the generated clustering dendrogram. Second, all nodes that are not 

sufficiently coherent are removed from the dendrogram. This splits the 

dendrogram into sub-trees, since the level of  cluster functional coherence 

generally decreases between the leaf  nodes and the root node. Third, only the 

root clusters of  all derived sub-trees are retained, to form the set of  identified 

functional families in the superfamily. The key step in the protocol (and the 

only non-trivial one) is the first, which also involves an extensive annotation 

editing procedure prior to the assessment of  each cluster. The editing and 

assessment procedures are discussed in detail in the following. 

5.3.1 Overview of  the protocol 

Protein function annotations play a crucial role in the DFX supervised family 

identification protocol. Therefore, the functional coherence of  each domain 

sequence cluster is assessed only after the annotations associated with the 

sequences in the cluster have been pooled, analysed and (potentially) edited. 
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This section provides an overview of  the protocol as a whole; the remaining 

sections then focus on each individual step. 

The diagram in Figure 5.5 provides an overview of  the workflow followed for 

each individual domain sequence cluster. Initially, after identifying the set of  

cluster representative sequences and compiling the respective sequence term 

sets (sequence annotations; see Section 5.2.1), the latter are analysed to 

determine whether the cluster under analysis contains MF terms at all (see 

Figure 5.5, top). If  this is the case, a second condition is tested: does the 

cluster contain at least one informative MF term? If  so, any problematic MF 

terms are removed from both the (full) sequence term sets and the MF term 

sets. The distinction between informative and problematic MF terms is 

explained in Section 5.2.1. In brief, the reasoning here is to avoid the use of  

problematic MF terms if  possible, since they can be detrimental (and are 

usually irrelevant) to correct cluster assessment. 

In the next step, the cluster core term set (core set; see Section 5.2.2) is 

compiled (see Figure 5.5, middle). The core set is used to edit the full GO 

term set of  the cluster (cluster annotation), prior to assessing its functional 

coherence based on the latter and the individual sequence term sets. This 

annotation editing can be important for a correct assessment, which 

concludes the process (see, Figure 5.5, bottom). 
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Figure 5.5. Annotation editing in the supervised family identification protocol. This shows the 

workflow followed for an individual domain sequence cluster. The right-most column shows the most 

relevant datasets that are generated in each step of the workflow, and how they relate. After pooling the non-

redundant annotations of all sequences in the cluster, and compiling the core term set (top), the latter is used 

in an iterative process (middle) to compile the filter term set. This contains MF terms that are to be removed 

from the cluster annotation as a whole (cluster term set), before the latter is used, in conjunction with the 

individual sequence term sets, to assess the functional coherence of the cluster (bottom). 
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For the majority of  protein domain clusters this (complete) workflow is 

followed, that is, the majority of  clusters do contain sequences with MF terms. 

If  this is not the case, however, several steps in the workflow are skipped (see 

Figure 5.5, left), the cluster term set is compiled and not edited, and either BP 

or CC terms (in this order of  preference) are used to assess the functional 

coherence of  the cluster. The characteristics of  GO MF annotations that 

make pre-processing necessary, especially when dealing with domain 

sequences (see Section 5.1.3), do not apply to BP and CC annotations. In brief, 

this is because the cellular process(es) in which a protein takes part, and its 

corresponding location(s) in the cell, are the same for the protein as a whole 

and for each of  its constituent domains. 

5.3.2 Identification of  the cluster core annotation 

Section 5.2.2 outlines how the function(s) of  the sequences in a given domain 

sequence cluster can theoretically be captured as a subset of  the GO MF 

annotations associated with the corresponding parent proteins (the cluster MF 

term set), in a heuristic manner. In brief, this core set ideally only includes 

those MF terms that are relevant (essential; see Section 5.1.3) to describe the 

functions of  the domain sequences in the cluster. However, it is not obvious 

per se from the MF annotations of  the parent proteins which of  them are 

essential and which are non-essential annotations. More importantly, it is not 

obvious in the first place which protein annotations should be considered in 

the context of  the domain under analysis (the one in the cluster) and which 

refer to other (foreign) domains in these proteins. For these reasons, the 

supervised family identification protocol uses the following workflow to 

approximate the ideal core set composition. 

The initial core set is compiled as the union of  all terms found in those of  the 

sequence MF term sets that have the minimum (but greater than zero) size 

observed. This strategy is an attempt to exclude both foreign domain and 
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non-essential annotations from the core set, an aim explained in the above 

section. In brief, it is based on the assumption that essential terms are less 

likely to be missing from the MF annotations of  individual sequences than 

non-essential ones. Consequently, smaller sequence MF term sets tend to 

contain all (or a high proportion) of  terms that are essential to describe the 

function(s) of  the respective sequences, while larger MF term sets tend to 

contain additional, non-essential annotations.  

Figure 5.6a shows a simple example annotation scenario, where a cluster 

contains four domain sequences with conserved reductase activity; these are 

the centred domains in the parent protein chains shown on the left, 

respectively. This domain is multi-functional in the sense that it can perform 

the same reaction on a range of  highly similar (co-)substrates (Figure 5.6, 

bottom). For simplicity, the other domains in these proteins are assumed to 

have scaffold function only. The (partially incomplete) annotations of  the 

parent proteins are shown on the right. In this example the initial core set is 

(C1, P1), based on the two sequences associated with a single MF term.  

After compiling the initial core set as described above, this is processed 

further, in two steps. First, for any term occurring in those sequence MF term 

sets that have a size greater than the minimum size observed (those that were 

not considered when compiling the initial core set; see above), the presence of  

GO DAG parent terms in the initial core set is assessed. All terms for which 

parent core terms are found, and which are not already part of  the initial core 

set, are added to this set. In the example in Figure 5.6a, these are C2 and C3, 

both children of  P1. Second, any parent terms in the (now extended) initial 

core set are removed (P1). Taken together, these two steps ensure that the 

resulting core set contains the most specific out of  all putatively essential 

annotations (functions) that occur in a cluster, and only those. 



CHAPTER 5. SUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX 

 190 

 

Figure 5.6. Two example domain sequence clusters and the associated protein function annotations. 

All domains are coloured and labelled according to their true functions; the high-quality GO annotations of 

the parent proteins are shown on the right, respectively. The terms are coloured according to the specific 

functions they describe, and their hierarchical relationships in the GO DAG are shown at the bottom, 

respectively (dashed lines represent omitted intermediate terms). Both clusters (dashed boxes) represent 
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conserved functional domain families according to the DFX family concept (see Section 0). The three 

reductase functions in (a) are closely related, as indicated by the three-functional cluster member sequences. 

In (b), the hydrolase function is perfectly conserved among all member domain sequences. Note that both the 

true domain functions and the different annotation types (core, extra and foreign; see main text) are ‘invisible’ 

to the core set identification protocol. 

In addition to the simple example scenario in Figure 5.6a, which has been 

discussed above, Figure 5.6b shows a more complex situation. Here, a range 

of  essential (core), non-essential (extra) and foreign domain annotations is 

associated with the domain sequences in the inspected cluster (domain I in the 

parent protein chains on the left, respectively), via their parent proteins. The 

core set is established according to the above-described steps. Therefore, the 

initial core set is (P1, P2), and the final core set, derived from the former, is 

(C1, C2).  

The term P3 in Figure 5.6b exemplifies how specific GO terms can refer to 

the combined function of  different domains. Note that it is impossible in this 

case to establish a core set that reflects the actual function of  domain I (ATP 

hydrolysis), for two reasons. First, P2, despite its name ‘hydrolase activity’, 

which is a function of  domain I only, is also a parent of  P3. The child terms 

of  P3, C1 and C2, therefore enter the core set. Second, even if  that were not 

the case, these terms would still enter the core set via P1. This could only be 

avoided if  the first protein was associated with more terms than just P1; for 

example, the missing ‘hydrolase activity’ for domain I. In this case, P1 would 

not be found in a sequence term set of  minimum size (see above), unlike P2, 

and would therefore not play a role in identifying the core set. 

5.3.3 Detection and removal of  non-core annotations 

Non-essential and foreign domain annotations should not be considered when 

assessing the functional coherence of  domain sequence clusters, as established 

in Section 5.2.2. To this end, the cluster term set (cluster annotation), which 

plays a decisive role in the assessment procedure (Section 5.3.4), is edited prior 
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to assessment. This is only relevant for clusters that (i) contain sequences with 

MF terms and (ii) contain at least one sequence with an MF term set greater 

than the minimum sequence MF term set size observed, that is, one that was 

not used in establishing the initial core set (see Section 5.3.2). Such greater MF 

term sets tend to be greater because, apart from core terms, they also contain 

non-essential and/or foreign domain annotations (see Section 5.1.3). These 

are the types of  annotations that the editing procedure (see Figure 5.5, middle) 

is supposed to remove from the cluster annotation. The detailed workflow is 

as follows. 

Initially, the core parent set is generated. This contains the union of  all GO 

DAG parent terms of  the terms in the core set. The core and core parent sets 

together form the initial set of  ‘core-related’ terms. A further, empty set is 

created at this point: the filter set. This is to hold all (putatively) non-essential 

and foreign domain MF terms that are detected in the iterative procedure 

described in the following; all terms compiled in the filter set are later 

removed from the cluster annotation, prior to cluster assessment. The process 

works as described in the following (for the first iteration). 

All sequence MF term sets with greater than minimum size (see above) are 

analysed in the following way. First of  all, all terms in the set are checked for 

whether or not they are core-related; a term is core-related if  it is found in the 

core-related term set. If  at least one core-related term is found, all terms in 

the set that are not yet registered as core-related then get added to a set of  

novel core-related terms. After assessing all sequence MF term sets, it is 

checked whether any novel core-related terms have been identified. If  this is 

the case, these terms are added to the core-related term set, together with the 

union of  all their GO DAG child and parent terms. Importantly, all these 

terms are also added to the filter set. Subsequently, all sequence MF term sets 

are assessed afresh. The iterative term set assessment procedure continues 

until no further core-related terms are identified. As a result, the filter set 
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contains all core-related terms that could be identified (including transitive 

identification), except the core terms themselves. 

The core-related terms that are added to the filter set in the iterative process 

described above are expected to represent either non-essential or foreign 

domain annotations, with respect to the function(s) of  the domain sequences 

in the processed cluster. If  a sequence MF term set does not contain any core-

related terms at all in the described process, none of  its terms are added to the 

filter set. This situation can arise, for example, when a cluster mixes domain 

sequences from proteins with a single annotated MF term and such from 

proteins with multiple MF terms, and the (overall) functions of  the single- and 

multiple-term proteins are not related. 

The example scenario in Figure 5.6b, which has already been introduced in 

Section 5.3.2, illustrates how the filter set is progressively populated with non-

essential and foreign domain terms. The core set is (C1, C2). In the first 

iteration of  assessing the sequence MF term sets, E1, a non-essential (extra) 

term, is identified as core-related, based on its co-annotation with C1, a core 

term. At the same time, F2, a foreign domain term, is identified as core-

related too, based on its co-annotation with the core parent term P3. F1, 

however, is only identified as core-related in the second iteration, based on its 

co-annotation with E1, a core-related term. In the simpler scenario in Figure 

5.6a, no extra or foreign domain terms are annotated. Therefore, no core-

related terms are identified in the single iteration that is carried out. 

5.3.4 Assessment of  cluster functional coherence 

The DFX supervised family identification protocol assesses the functional 

coherence of  sequence clusters based on the GO annotations associated with 

their individual member sequences. In particular, it uses the following central 

rule. A cluster is deemed functionally coherent if  it contains at least one 

sequence that, based on the associated annotations, covers all the functions 
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ascribed to any of  the sequences in the cluster. As opposed to an assumed 

simpler protocol, requiring exactly matching annotations for all cluster 

sequences, this strategy is much more tolerant towards missing annotations. In 

particular, in combination with the annotation pre-processing step described 

in the previous section, it prevents domain sequences with matching functions 

but inconsistent annotations from being separated into different families. The 

assessment procedure is discussed in detail in the following. 

The functional coherence of  individual sequence clusters is assessed 

considering only a single type of  GO term at a time. The order of  term type 

preference is: informative MF, problematic MF, BP and CC. This corresponds 

to the importance of  each term type when trying to identify functionally 

coherent sequence families based on GO annotations (see Section 5.1.3). Only 

if  the term set of  a given cluster does not contain terms of  a specific type at 

all, the next type in the above list is used. Informative MF annotations are 

preferred over problematic MF annotations, and are solely used for 

assessment if  at least a single informative MF term is found in the cluster 

term set. In turn, if  only problematic MF annotations are available, these are 

still preferred over BP and CC annotations. This is because only MF 

annotations directly describe the function(s) (in a narrow sense) of  individual 

proteins and domains (see Section 5.1.3). Note also that the MF annotations 

in the individual sequence term sets and in the cluster term set have at this 

point already been pre-processed in the manner described in Section 5.3.1. 

After determining which GO term type is used to assess the functional 

coherence of  the cluster, the assessment term type Ta, the protocol proceeds 

with compiling the necessary data. First, all Ta-type terms are collected from 

the cluster term set, forming the cluster type term set. Second, all sequences 

with at least one Ta-type term are compiled, and the corresponding sequence 

type term sets determined. The following step marks the core of  the 

assessment protocol. All non-redundant sequence type term sets are 
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compared with the cluster type term set. In particular, it is tested how many 

(if  any) terms of  the given term type are part of  the cluster annotation whilst 

not being part of  the sequence annotation.  

There are two possible outcomes of  the comparison between the sequence 

annotations and the cluster annotation as described above. First, if  at least one 

of  the sequences covers all the annotations (functions) in the cluster 

annotation, the cluster is judged functionally coherent. Second, if  that is not 

the case, one final test is performed, given that the cluster is assessed based on 

the MF term type. The test rule states that any end-of-chain cluster (see 

Section 5.2.3) is judged functionally coherent. This rule is based on the 

inherently increased probability for such clusters to represent functionally 

coherent sequence families, even in cases where this is not indicated by their 

(potentially diverse) annotation. The detection of  cluster chaining (see Section 

5.3.5) can be optionally disabled. Therefore, while it takes place prior to the 

assessment of  all clusters in the DFXsuper workflow, it is discussed last, in the 

below section.  

5.3.5 Detection of  cluster chaining  

To identify cases of  cluster chaining (see Section 5.2.3), chains of  annotation-

similar (‘sticky’) sibling clusters in the clustering dendrogram (cluster-function 

chains; see Figure 5.4) are established first. Stickiness is defined as a partial or 

full match of  the GO term sets of  two clusters. Whenever two sticky clusters 

are merged in the clustering dendrogram, this leads to either the start of  a 

new chain or to the elongation of  an already existing (growing) chain. Specific 

rules apply for different ‘degrees of  stickiness’, as described in detail below. In 

each chain elongation step, the new (parent) node is connected to the child 

cluster that subsumes the other child cluster’s term set. If  the term sets of  

both child clusters match perfectly, the cluster that is itself  the head of  the 

longer chain (a chain length of  zero means there is no chain) is connected to 
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the parent. A growing chain is terminated once a merge of  two non-sticky 

clusters occurs. 

Different cluster annotation properties have to be distinguished when 

establishing cluster chains. In particular, this refers to both the availability and 

the specificity of  GO MF annotations for the clusters that are merged in each 

chain elongation step, respectively. The exact rules followed by the chain 

extension algorithm, for each merge in a growing chain, are shown in the 

workflow diagram in Figure 5.7. The first condition tested is whether at least 

one of  the term sets of  the two sibling clusters (sets T1 and T2) includes MF 

terms. Depending on whether or not this is the case, the left or right main 

branch of  the workflow is followed. Importantly, if  the term set sizes differ, it 

is made sure that T2 is the larger of  the two term sets compared before 

branching. 

In the right main branch (MF branch) of  the chain extension workflow shown 

in Figure 5.7, T1 and T2 are first replaced by their MF term subsets, 

respectively. Again, it is made sure that T2 is of  greater or equal size when 

compared with T1. It is then tested whether or not both sets (still) contain 

terms. If  this is not the case, that is, if  one of  the sibling clusters is not 

annotated with MF terms at all, several tests can be skipped; the point where 

the workflow continues in this case is pointed out in the text below. If  both 

T1 and T2 contain MF terms, however, the workflow progresses with the next 

test.  

At this point, the (possibly larger) T2 MF term set is extended by the union of  

all GO DAG parent terms of  its member terms, given that the current step is 

a chain extension and not a chain nucleation step. This exception allows, as 

will become clear below, for chain extension in cases where the sequences in 

one of  two sibling clusters are assigned only to coarser (parent) terms than (of) 

those in the other cluster. It was added as a heuristic to account for lacking 
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annotation specificity (depth). This heuristic is, of  course, problematic in 

cases where the latter reflects a lack of  knowledge of  the respective 

sequence’s function. When being cautious and excluding chain nucleation 

events from this exception, the rule appears to be beneficial to the family 

identification process.  

First, if  T1 is a perfect subset of  T2, the chain is extended (or started). In this 

case, one of  the sibling clusters covers all the functions of  the other cluster 

(with more specific annotations, at least partly, if  the above-described 

exception was made). If  T1 is not a perfect subset of  T2, starting a chain is 

ruled out at this point. The same is true for cases where one of  the sibling 

clusters is not associated with MF terms at all, in which case several of  the 

just described steps were skipped (see above) and the workflow continues at 

this point. In both cases the reasoning behind not starting (but possibly 

extending) the chain is that chain nucleation should require higher confidence 

in the functional equivalence (or high similarity; see Section 0) of  the domain 

sequences in the merged clusters than chain elongation. This is particularly 

important when a low minimum chain length setting is used in end-of-chain 

cluster detection (see below), as it currently is the case. 

The non-MF branch of  the chain extension workflow in Figure 5.7 (left) is 

followed when both sibling clusters under analysis are not associated with any 

GO MF terms. In this case, the assessment of  cluster functional similarity 

(stickiness; see above) is only possible in a crude, heuristic manner, based on 

GO BP and/or CC terms. Therefore, a chain is only extended or started 

without further tests if  the term sets T1 and T2 match perfectly. If  they do 

not match, and if  T1 is not (at least) a perfect subset of  T2 (which never 

contains fewer terms than T1 at this point; see above), the chain is not 

extended (or started), and the workflow terminates. If  T1 is a perfect subset 

of  T2, however, a chain can still be started. The workflow therefore continues 

and joins the right main branch (see  
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Figure 5.7. The rules followed by the chain elongation algorithm. In each chain elongation step the right 

or left main branch of this workflow is followed, depending on whether or not at least one of the sibling 

clusters being merged is associated with GO MF terms. All steps of the workflow are discussed in detail in 

the main text. 
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If  not, the chain is terminated (or not started) at this point. Otherwise, the 

tests continue as follows.  

By detecting all nodes in the clustering dendrogram that qualify as chain 

elements, following the rules outlined above, chains of  varying length can be 

established. Only the top nodes of  each chain become end-of-chain clusters, 

hence the name. Since all end-of-chain clusters are judged functionally 

coherent in the assessment stage of  the supervised protocol (see Section 

5.3.4), any child clusters they subsume (in the chain) need themselves not be 

marked as such. Further, a minimum chain length is set using the parameter 

Lmin. This is the minimum number of  consecutive merges of  sticky clusters 

(merges that pass the above-described tests) that is required to constitute a 

chain.  

As further discussed in Section 5.5.4, the setting of  Lmin has a considerable 

influence on the family partitioning eventually derived, and can be used to 

adjust the degree of  functional coherence of  the produced families; it is 

currently set to a value of  two. This setting is based on the assumption that a 

single merge of  two sticky clusters may often represent an insignificant 

‘outlier case’. Such can arise, for example, through errors in protein 

annotation or domain assignment (see Section 3.4.1). A single merge is 

therefore not seen as a strong enough indicator to assume a close functional 

relationship between the sequences in the merged clusters, whereas 

consecutive merges are. This is partly based on the manual inspection of  

family partitionings derived with different minimum chain length (Lmin) 

settings. 

As a by-product of  tracing the clustering dendrogram for end-of-chain nodes, 

all sibling clusters with perfectly matching GO term sets are marked to be 

ignored in the family identification process. This is because they would always 

yield the same result in the assessment of  functional coherence as their parent 
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cluster. In the case of  a positive result, the parent would always supersede 

them in the final step of  family identification (removing all child nodes of  

family clusters in the dendrogram). In the case of  a negative result, neither the 

parent nor any of  the two sibling clusters would be made a family. Such 

considerations, based on the hierarchical structure of  the clustering 

dendrogram, are important to speed up the protocol. 

5.4 Results and Discussion 

The characteristics of  the domain families produced by DFXsuper are discussed 

by example in the following. In particular, the families that were identified for 

two types of  catalytic domains, one with conserved and one with variable 

domain function, are analysed in detail. In this, specific examples serve to 

underline the importance of  the key concepts used in DFXsuper. Subsequently, 

the sequence footprint that domain function conservation can leave is 

discussed in a detailed example. The last section illustrates the challenges 

posed to the family identification protocol by frequently complex and 

sometimes inconsistent patterns of  GO function annotations. Importantly, a 

quantitative assessment of  the families produced in the first large-scale run of  

the DFX pipeline is found in Chapter 6, in conjunction with a comparison of  

the two DFX family identification protocols. 

5.4.1 Domain function captured in selected domain families 

The families that were identified by DFXsuper in two evolutionarily ancient 

domain superfamilies are discussed in the following two sections. The focus 

lies on the catalytic domains of  the two multi-domain protein families 

introduced in Section 5.1.4. More specifically, the use of  the chaining concept 

(see Section 5.2.3) to identify ‘true’ domain families is demonstrated, that is, 

such that adhere to the domain family concept introduced in Section 0. The 

latter is based on the observation that some types of  domains can act as 

(relatively) independent functional modules, responsible for the functions in 



CHAPTER 5. SUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX 

 201 

different whole-protein contexts, that is, in different domain architectures. 

The goal of  the chaining concept is to group such sequences into families that 

represent their shared domain function, independent of  whole-protein 

function similarity and overall homology relationships. 

5.4.1.1 P-ATPase catalytic domains in the HAD superfamily 

The ‘P-type ATPase -like domain’ family is not only the largest family 

identified in the HAD superfamily using the supervised family identification 

protocol but also the only family that represents the catalytic P domain of  P-

ATPase proteins. As explained in Section 5.1.4.1, this domain fulfils the exact 

same partial protein function in all P-ATPases. Putting all these domains into 

a single domain family seems therefore justified, despite the different 

annotations (functions) of  their parent proteins (GO terms, EC numbers and 

protein names). Notably, this family is also a prime example of  the DFX 

family naming protocol (see Section 3.3.5) working well. Out of  all protein 

names associated with the respective parent proteins, it identifies the most 

suitable one for naming the family; the P-ATPase function is shared by all 

these proteins, while their ion specificity and corresponding naming varies. 

The identification of  the P-ATPase P domain family in the HAD superfamily, 

as described above, is only possible when the underlying end-of-chain cluster 

(cluster 26800) is recognised as such. Figure 5.8 shows the relevant part of  the 

HAD superfamily clustering dendrogram. The cluster has a cluster-function 

chain (see Section 5.2.3) of  length seven, as indicated by the numbers next to 

the internal nodes. The GO MF terms that are responsible for chain 

elongation, respectively, are highlighted in blue. All other blue-marked GO 

terms indicate the first appearance of  a given function (annotation) in the 

clustering process; the red-marked term is discussed below. Note that some of  

the larger leaf  clusters subsume a range of  prior, ‘unproblematic’ cluster 
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merges, that is, merges of  clusters with matching annotation; these are not 

shown. 

Only six of  the seven leaf  clusters in the cluster-function chain of  cluster 

26800 (see Figure 5.8) show one or more blue-marked (chain elongation) GO 

terms. In the case of  cluster 15012, the only high-quality GO annotation 

available (for one of  the two parent protein sequences) is the cellular 

component term ‘mitochondrion’ (GO:0005739), as highlighted in red. 

However, since the respective cluster merge is a chain-elongating merge, not a 

chain-nucleating one, the lack of  MF terms in the merged-in node does not 

lead to chain termination (see Section 5.3.5). In other words, while the 

substrate specificity of  the ATP10D parent proteins of  the domains in this 

cluster (e.g., UniProt Q6PEW3) is yet unknown and they lack any high-

confidence MF annotations, the DFXsuper protocol rightly ‘assumes’ that these 

domains still belong to the same family. This is achieved through the detection 

of  the chaining context and the corresponding end-of-chain cluster, that is, by 

taking into account the surrounding sequence and annotation space. 
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Figure 5.8. The clustering dendrogram of the P-ATPase P domain family. This family of domains with conserved function was identified by DFXsuper in the HAD superfamily. The 

figure shows the cluster merging events that underlie the identified end-of-chain cluster 26800, which gives rise to the family (box). The names, sizes and core term sets of all clusters are 

shown; the ‘-like domain’ suffix is omitted in the cluster names. End-of-chain clusters are indicated by black square nodes; the nodes of the corresponding cluster-function chains are 

numbered. The GO terms responsible for chain elongation are highlighted in blue, respectively; blue-marked terms outside chains indicate the first appearance of an annotation; non-MF 

terms are highlighted in red. Two other clusters that are mentioned in the main text are indicated by black circle nodes. Note that some leaf clusters subsume a range of prior merges that 

are not shown. The dendrogram was generated using iTOL; relative branch lengths were derived from -log(E) values that indicate the similarity of two clusters, as reported by COMPASS. 
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When deactivating the detection of  cluster chaining for only cluster 26800, that 

is, masking its end-of-chain status, it first breaks apart into eleven smaller 

clusters. The three largest of  those are, from top to bottom in Figure 5.8, 

clusters 26665, 26692 (small black squares) and 26685. Note that the latter 

cluster (‘Phospholipid-transporting ATPase 3’16), the largest of  the three, is 

itself  an end-of-chain cluster; this is indicated by a black square. Its cluster-

function chain originates two merges prior to its creation, hence the cluster 

has a chain length of  two (the current minimum chain length, see Section 

5.3.5). 

When deactivating the detection of  cluster chaining entirely, the large end-of-

chain cluster 26800 in Figure 5.8 (the family representing the P-ATPase P 

domain; see above) breaks up into a total of  34 clusters, that is, into all the 

clusters in the shown dendrogram. In brief, this is because none of  the 

internal nodes qualifies as coherent when applying the normal protocol for 

assessing cluster functional coherence (see Section 5.3.4). This can be 

understood from looking at the functions (core term sets; see Section 5.3.2) 

that are associated with each of  the leaf  clusters in Figure 5.8. Some of  these 

clusters contain sequences from multi-functional P-ATPase, for example, 

cluster 4072 (‘Probable cadmium/zinc-transporting ATPase HMA1, 

chloroplastic’) and cluster 26540 (‘Cadmium, zinc and cobalt-transporting 

ATPase’). However, at no point in the sequence of  cluster merges depicted in 

this dendrogram is an individual domain associated with all the functions of  

cluster 26800. Therefore, this cluster is only identified as a domain family 

when using the end-of-chain cluster exception. 

Interestingly, the last leaf  cluster that is added to the growing P-ATPase P 

domain family cluster in the dendrogram of  the HAD superfamily (see Figure 

5.8) contains domains from two archaeal proteins that each have only a single 

domain, the HAD domain. It has been noted before that these soluble, single-

                                            
16

 The ‘-like domain suffix is henceforth omitted when stating family names. 
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domain phosphatases are probably the closest extant relatives of  the precursor 

of  all P-ATPases (Ogawa, Haga et al. 2000; Burroughs, Allen et al. 2006). 

Importantly, while the proteins’ domain architecture has changed dramatically 

here (from a single domain to at least four different domains; see Section 

5.1.4.1), the function of  the domain itself  has either not changed at all or only 

subtly, from a phosphatase activity of  yet unknown specificity (involving 

ATP-binding) to an ATPase activity (involving a phosphointermediate) 

(Bramkamp, Gassel et al. 2003). The domains in cluster 18683 in Figure 5.8 

are therefore correctly identified by DFXsuper as (remote) members of  the P-

ATPase P domain family. As the dendrogram further indicates, the P domain 

family seems to be most closely related to the phosphatase domain of  

Trehalose-phosphatases. 

5.4.1.2 Class I aaRS catalytic domains in the HUP superfamily 

The HUP domain superfamily shows a complicated, ‘patchy’ GeMMA 

clustering pattern, and, following from this, a complex family dendrogram (see 

Figure 5.9). The families representing the catalytic domains of  the different 

class I aaRS types are focussed on in the following. Eight of  the eleven aaRSs 

are represented by more than one domain family. In two cases, these families 

represent more than a single aaRS type. The black circle nodes in Figure 5.9 

highlight the largest identified (main) domain families for each aaRS type, 

respectively. The family sizes and core term sets of  all families are shown. In 

addition, all families are taxonomically characterised by the last common 

ancestor taxon (or the domains of  life) of  the species harbouring their 

member sequences, respectively.  

Outlier domain sequences with unusual composition, from certain taxa, may 

explain the complicated clustering pattern of  the different aaRS types (see 

Figure 5.9). In particular, the well-known patterns of  horizontal gene transfer 

among these ancient proteins and the occurrence of  distinct organellar 
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isoforms in eukaryotes (Wolf, Aravind et al. 1999; Woese, Olsen et al. 2000) 

may contribute to the observed complexity. However, all this is not the focus 

of  the following sections. Rather, the known and predicted relationships 

between the different aaRS (domain) types that can be discerned from the 

family dendrogram are discussed, and the impact of  cluster chaining 

(detection) on the derived family partitioning is illustrated by examples. 

In general, the pair- and group-wise proximities of  the different types of  aaRS 

domains in the family dendrogram in Figure 5.9 corresponds to the known 

relationships between the three subclasses of  class I aaRS proteins (see 

Section 5.1.4.2). Families that represent domains with closely related aaRS 

functions are here shown in the same colour. These will be addressed together 

in the text below. In agreement with class Ia proteins being the most abundant 

group in the known class I sequence space (Ribas de Pouplana and Schimmel 

2001), the largest aaRS domain family identified in the HUP superfamily is the 

‘Leucyl-tRNA synthetase’ family (cluster 48323). Despite the name assigned 

by the current family naming protocol (which splits the protein names by 

whitespace only, and not, e.g., hyphens; see Section 3.3.5), this family includes 

domains from four types of  class Ia aaRSs: LeuRS, IleRS, ValRS and MetRS 

(indicated by green colouring in Figure 5.9). The underlying cluster contains 

high-quality annotated sequences with these functionalities in relatively 

balanced proportions (between 300 and 600 of  each type). Three other 

families in the dendrogram contain sequences with the above-mentioned 

functions (apart from MetRS). These can be regarded as outlier cases, with 

only ~10 sequences per family on average. The co-occurrence of  the four 

mentioned aaRS types in the large main cluster indicates the close 

relationships in this class Ia subgroup (see Section 5.1.4.2). 
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Figure 5.9. Families of aaRS catalytic domains in the family dendrogram of the HUP superfamily. This shows the families identified by DFXsuper and their proximity in superfamily 

sequence space. The coloured families designate different aaRS types, as mentioned in the main text. Black circle nodes highlight the largest family identified for each type, respectively; 

black square nodes indicate families that were identified on the basis of end-of-chain clusters and are therefore particularly addressed in the main text. The identifiers, names, sizes, core 

term sets and last common ancestor taxa of all families are shown; the ‘-like domain’ suffix is omitted in the family names. The dendrogram was generated using iTOL; relative branch 

lengths were derived from -log(E) values that indicate pairwise cluster similarity, as reported by COMPASS. The dashed branches correspond to artificially introduced merges with an 

arbitrarily chosen (large) branch length. They indicate points at which at least one of two merged domain sequence clusters could not be aligned with MAFFT and the superfamily 

clustering process was therefore terminated prematurely.  
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The second-largest class Ia family is the ‘Cysteinyl-tRNA synthetase domain 

1/2’ family, closely neighbouring the above-described LeuRS family in the 

dendrogram in Figure 5.9, and shown in red. Compared with the latter, this 

family contains about half  the number of  sequences. Between this and 

another, smaller CysRS family (~200 sequences) lies a family that exclusively 

represents the first of  two homologous LysRS domains (orange), whereas the 

family representing the second domain is found to cluster closely with one of  

the small ValRS outlier families. The occurrence of  additional, fragmentary 

copies of  the catalytic domain (or the artefactual assignment of  such by 

Gene3D) is also observed in several of  the other aaRS subclasses. 

Interestingly, this clustering pattern suggests a membership of  LysRS in class 

Ia, instead of  class Ib as predicted earlier (Ribas de Pouplana and Schimmel 

2001). However, these earlier predictions may be more reliable as they were 

made on the basis of  structural comparisons. The observed confinement of  

the aaRS class I LysRS domains to the archaeal and bacterial lineages confirms 

established knowledge (Ambrogelly, Korencic et al. 2002). Similar to the 

LeuRS-and-relatives family discussed above, relatively small outlier families 

with considerable distance from the main family in the dendrogram also exist 

for the CysRS family (red). The single family of  Arginyl-tRNA synthetase 

domains (purple) that is found between the larger families discussed above 

completes the picture of  the class Ia aaRSs. 

All Glutamyl-tRNA synthetase domains are found in a single, large family 

(cluster 48365) in Figure 5.9 (blue), apart from a single GluRS domain 

sequence from the archaeon Pyrobaculum islandicum that was wrongly assigned 

(truncated) by Gene3D, in cluster 41930. The ‘Glutamyl-tRNA synthetase 

domain 1/2’ family also contains the closely related GlnRS domains (see 

Section 5.1.4.2). In summary, and if  LysRS is assigned to class Ia as suggested 

above, the discussed Glu/GlnRS domain family exclusively represents the 

class Ib aaRS catalytic domain in the partitioning of  the HUP superfamily 

produced by DFXsuper.  
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Finally, the two class Ic aaRSs, TyrRS and TrpRS, are both represented by a 

single identified domain family, respectively, as indicated in olive in Figure 5.9. 

The two families arise from two sibling clusters, clusters 48264 and 48297, 

which underlines their close relatedness. Overall, the DFXsuper family 

dendrogram confirms the view of  class Ic aaRSs being more closely related to 

the class Ia proteins than to those in class Ib (Nureki, Fukai et al. 2001). In 

summary, apart from several small outlier families, the domain sequences of  

the three class I aaRS subclasses are grouped into families in a biologically 

reasonable manner by DFXsuper. Importantly, this partitioning into different 

families directly reflects variation in domain function, that is, the function of  

the aaRS catalytic, N-terminal domain. It stands in contrast with the grouping 

of  all P-ATPase P domains into the same family within the HAD superfamily 

(see Section 5.1.4.1) based on their conserved domain function.  

The single domain sequence in cluster 39532, which lies between the aaRS 

class Ia and Ic families in Figure 5.9, has a size of  ~100 aa and represents a 

group of  functionally uncharacterised proteins of  about 200 aa. These 

proteins are found in the chloroplast stroma (GO:0009570) of  Arabidopsis 

(UniProt Q9FKX3) and other plants, as identified by BLAST searches on the 

UniProt website. No molecular function for these sequences can be predicted 

using InterProScan, and an attempt to model the domain’s 3D structure using 

SWISS-MODEL (Schwede, Kopp et al. 2003) yielded no models of  good 

quality. Based on the position of  the family in the dendrogram (see Figure 5.9), 

it could represent a yet-to-be studied outlier group of  either the class Ia or 

class Ic aaRSs. To further corroborate this, it would have to be verified that 

these uncharacterised sequences are not a result of  systematic (e.g., gene 

prediction) errors or represent pseudo-genes. The dendrogram further 

suggests that the remote BLAST similarity to the Universal Stress Proteins 

that is exhibited by the discussed group of  proteins (for example, E-value 

0.0008 and sequence identity 30% for Q9FKX3 vs. A5GW74) merely signals 

the (known) membership in the same superfamily, not functional similarity. 
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Closing this analysis of  the DFXsuper family partitioning of  the HUP 

superfamily, two aaRS domain families that could only be identified using the 

concept of  cluster chaining (see Figure 5.9; black square nodes) are 

particularly addressed in the following; a similar case in the HAD superfamily 

is described in detail in Section 5.4.1.1. Figure 5.10 shows the child cluster 

dendrograms and cluster core term sets of  the two example end-of-chain 

clusters; the colour code used is the same as in Figure 5.8. In brief, cluster-

function chain nodes are numbered, GO terms responsible for chain 

elongation are highlighted in blue, blue-marked terms outside chains indicate 

the first appearance of  an annotation, and non-MF terms are highlighted in 

red. Again, some leaf  clusters subsume a range of  prior merges that are not 

shown.  

Figure 5.10a dissects cluster 48365, which gives rise to the Glu/GlnRS (class 

Ib aaRS) family described above. This cluster has a chain length of  10 (see 

Section 5.2.3). First, that illustrates the high sequence diversity among the 

Glu/GlnRS catalytic domains (all leaf  clusters are, or are parents of, individual 

DFX pre-clusters; see Section 3.3.3.1). Second, it lends high confidence to the 

end-of-chain exception made, that is, to postulating a family-like character for 

the cluster. The high sequence and structure similarity of  the GluRS and 

GlnRS catalytic domains (Woese, Olsen et al. 2000) leads to a clustering 

pattern that deviates from the pattern of  whole-protein function (for a 

theoretical discussion of  this phenomenon see Section 5.4.2). For example, 

the GO:0004819 annotation is found in all parts of  the dendrogram, 

interspersed with occurrences of  GO:0004818. This is the signal that is picked 

up by the chaining detection algorithm (see Section 5.3.5). As none of  the 

sequences in cluster 48365 is associated with both GluRS and GlnRS activity, 

the corresponding family could not have been identified based on the normal 

cluster assessment procedure (see Section 5.3.4). 
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Interestingly, the DFXsuper protocol correctly identifies and removes a ProRS 

annotation that is associated with a sequence in cluster 48365. No class I aaRS 

(domain) exhibits this activity (see Section 5.1.4.2). It stems from an aaRS 

fusion protein found in eukaryotic species (e.g., UniProt P07814), with an N-

terminal class I (GluRS) and a C-terminal class II (ProRS) domain 

(Berthonneau and Mirande 2000). Therefore, the ‘proline-tRNA ligase activity’ 

term (GO:0004827) occurs together with a core set term (GO:0004818), and is 

filtered from the annotations based on its putative ‘foreign’ domain status (see 

Section 5.2.2). 

Figure 5.10b shows a more complicated example of  family identification via 

an end-of-chain cluster (cluster 48323). Here, the catalytic domains of  four 

closely related species of  class Ia aaRSs (see Section 5.1.4.2) together form a 

domain family. The end-of-chain cluster has a chain length of  two, the current 

minimum chain length (see Section 5.3.5). The confidence put in making the 

end-of-chain exception is therefore considerably lower than in the above, first 

example. However, making it picks up on a biologically valid chaining signal in 

this case. While the domains from the three closely related ValRS, LeuRS and 

IleRS proteins (see Section 5.1.4.2) could already be grouped into families 

based on end-of-chain clusters that appear earlier in the merging process (for 

example, cluster 5114 for ValRS and IleRS, or cluster 47054 for all three), the 

MetRS function is only merged in with cluster 47958.  
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Figure 5.10. The clustering dendrograms of two aaRS catalytic domain families. These families of 

aaRS domains with closely related functions (boxes) were identified by chaining detection in the HUP 

superfamily. Shown are the underlying end-of-chain clusters (black squares) and the underlying cluster 

merging events; the nodes of the corresponding cluster-function chains are numbered. The names, sizes and 

core term sets of all clusters are shown; the ‘-like domain’ suffix is omitted in the cluster names. GO terms 

that are responsible for chain elongation are highlighted in blue, respectively; blue-marked terms outside 

chains indicate the first appearance of an annotation; non-MF terms are highlighted in red. Note that some 

leaf clusters subsume a range of prior merges that are not shown. The dendrograms were generated using 

iTOL; relative branch lengths were derived from -log(E) values that indicate pairwise cluster similarity, as 

reported by COMPASS. 
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The MetRS sequences can only join the established domain family by 

detection of  the chaining incident marked by cluster 48323, that is, the fact 

that LeuRS (and IleRS) join the growing family cluster again at this point. 

Further, the putative IleRS sequence from Plasmodium falciparum (UniProt 

Q8I5G6_PLAF7) in cluster 2966, which carries only a single high-quality 

annotation of  the cellular component type (‘apicoplast’; red in Figure 5.10b), 

is successfully ‘bridged’ by the chain detection algorithm (see Section 5.3.5). 

This case is analogous to that of  the GO CC term in Figure 5.8. In summary, 

based on the individual MF annotations that are associated with the sequences 

in cluster 48323, the corresponding domain family of  four class Ia aaRSs 

could not have been detected with chaining detection disabled.  

5.4.2 The sequence footprint of  domain function conservation 

The Gene3D 10.2 domain architectures of  nine P-ATPase transporter 

proteins (orthologues and paralogues) are shown in Figure 5.11, with the 

primary substrate ion species listed next to each MDA. The discontinuous P 

domain sequences in these proteins (shown in black) are all members of  the 

same domain family in the HAD superfamily, as identified by DFXsuper and 

discussed in Section 5.1.4.1. Apart from some variability in the number of  

detected heavy metal binding domains (or motifs; cyan), which are not part of  

the four-domain core architecture of  P-ATPases (see Section 5.1.4.1), all the 

shown proteins share this core architecture. The transmembrane domain, into 

which all other domains are inserted, is not yet recognised by Gene3D. The A 

domain is shown in magenta. The N domain, which is inserted into the P 

domain, is shown in grey. 

The nine P domains from the proteins in Figure 5.11 can serve as an example 

of  how domain sequences with conserved domain function that occur in 

evolutionarily related multi-domain proteins with (overall) differing function 

can show a pattern of  pairwise similarities that deviates from that of  their 
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parent proteins. This is demonstrated in Figure 5.12, and discussed below. In 

particular, it illustrates how high local (domain) sequence conservation can 

‘disguise’ an overall functional divergence of  the respective parent proteins, 

one of  the central assumptions behind the domain family concept introduced 

in Section 0.  

Figure 5.12a shows a full alignment of  the nine P domain sequences, with the 

domain positions shown as part of  the protein identifiers on the left. Residue 

conservation is indicated in the alignment by different shades of  blue. The 

two orange residue ranges indicate the conserved phosphorylation and ATP-

binding motifs (Rensing, Fan et al. 2000), as found in the P and N domains, 

respectively. Interestingly, Gene3D seems to extend the second half  of  the P 

domain into the N domain, which (by definition) harbours the ATP-binding 

motif. The two sequences marked by the grey box are the zinc transporters 

ZOSA from B. subtilis and ATZN from E. coli. The remaining sequences all 

transport copper. Figure 5.12b shows the phylogenetic tree that was derived 

from this alignment. Again, the above two proteins are marked by a grey box. 

The tree was rooted using a COPA orthologue from the archaeon Archaeoglobus 

fulgidus. 

A first important observation made in Figure 5.12b is that the two copper 

transporter P domains from ATU2_SCHPO (fission yeast) and COPA_HELPY 

(Helicobacter pylori) are found closer in the tree to the zinc transporter P 

domains from ZOSA_BACSU and ATZN_ECOLI than to all other P domains. 

This would not normally be expected, since the remaining P domains all stem 

from copper-transporting P-ATPases too. However, it could be explained by 

the fact that the substrate (ion) specificity of  P-ATPases is not determined (or 

even influenced) by the structure of  the P domain but, most likely, by that of  

the transmembrane domain, domain M (see Section 5.1.4.1).  
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The above observations suggest that the sequence evolution of  the P domain 

may primarily be constrained by its domain function (ATPase activity 

mediated by autophosphorylation), and only very little by the ion specificity 

of  the respective P-ATPase parent proteins. From a taxonomic point of  view, 

it is further interesting that the fission yeast domain does not cluster with the 

domain from its homologous (and potentially co-orthologous) counterpart in 

man, ATP7A_HUMAN; mutations in the latter are the cause for Menkes disease 

(Tumer, Moller et al. 1999). 

Based on the above-described, unexpected ‘disorder’ in the domain-based 

phylogenetic tree shown in Figure 5.12b, the pairwise sequence similarity 

relationships underlying this tree were investigated further. Figure 5.12c shows 

the E-values reported by NCBI Blast2 (pairwise protein BLAST) with default 

settings when scanning the P domain of  E. coli COPA and the whole-protein 

sequence against the P domains and whole-protein sequences of  four of  the 

other homologues, respectively. The four targets comprised the two zinc 

transporters ZOSA_BACSU and ATZN_ECOLI on the one hand and the two 

copper transporters ATU2_SCHPO and COPA_HELPY on the other hand (the 

corresponding source species are stated above). 
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Figure 5.11. The Gene3D domain architectures of nine homologous P-ATPase proteins. Domains 

from four different Gene3D superfamilies are identified in these proteins. Among those are the three 

cytoplasmic P-ATPase domains (see Figure 5.2), the actuator (A, magenta), phosphorylation (P, black) and 

nucleotide-binding (N, silver) domains. Note that most P-ATPases are associated with one or several copies 

of a Heavy-Metal-Associated (HMA) motif (cyan) that plays a role in binding the respective ion species for 

subsequent transport. The different ion species transported are show next to each protein, with copper in 

brown and zinc in grey; the primary substrates are shown in the case of multi-functional transporters. The 

CATH domain codes are, in N- to C-terminal order, 3.30.70.100 (HMA), 2.70.150.10 (A), 3.40.50.1000 (P) 

and 3.40.1110.10 (N). Note that the discontinuous P domain sequences of the shown proteins are aligned, in 

the same order, in Figure 5.12a. 
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Figure 5.12. High sequence conservation in functionally equivalent domains from functionally 

divergent multi-domain proteins. (a) shows an MSA of the nine P-ATPase P domains from the proteins in 

Figure 5.11. The phosphorylation and ATP-binding motifs are highlighted in orange; residue conservation is 

otherwise indicated in shades of blue (darker = stronger). (b) the corresponding phylogenetic tree. (c) BLAST 

E-values for comparisons on the domain and protein levels. Zinc-transporting sequences are marked with 

grey boxes. The alignment was generated with MAFFT and visualised with JalView; the tree was produced 

with the ‘average distance using BLOSUM62’ option of JalView. 
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The difference in the similarity signals (BLAST E-values) obtained on the 

whole-protein and domain levels for the same proteins, as stated in Figure 

5.12c, is striking. On the protein level, the results are as would be expected for 

a protein family that has diverged very early in evolution: those target proteins 

that share the substrate specificity of  the query protein (copper) are clearly 

more similar to the query than those that have a different specificity (zinc). 

This corresponds to the different expected evolutionary relationships between 

these proteins and the query, respectively: orthology and paralogy. In fact, the 

sequence conservation signal for the homologues with shared function is 

strong enough to ‘bridge’ about two billion years of  evolution in the case of  

E. coli and fission yeast (Gu, Zhang et al. 2005). On the domain level, however, 

the picture is entirely different (see Figure 5.12c). Here, the different target 

proteins and their substrate specificities are not readily distinguishable by E-

value. In fact, the similarity signal is even inverted. That is, the P domain of  

the query sequence, COPA_ECOLI, shows higher similarity to the two P 

domains from zinc-transporting proteins than to those that stem from the 

other, copper-transporting ATPases. The difference in the whole-protein and 

domain signals is especially prominent when comparing the similarity 

relationships between the query and ZOSA_BACSU and between the query 

and COPA_HELPY (the four outer arrows in Figure 5.12c).  

On the protein level, COPA_ECOLI exhibits the highest similarity with 

COPA_HELPY; this is expected, since the two proteins are close orthologues 

with matching substrate specificity. On the domain level, however, it shows 

the highest similarity with the zinc-transporting ZOSA_BACSU protein, while 

its similarity to COPA_HELPY is the second-lowest. Further, the large 

evolutionary distance between the two copper-transporting target proteins 

from fission yeast and H. pylori and their almost equal amount of  similarity to 

the query protein in the P domain underline how little the domain has 

changed over this distance. In fact, it may even have evolved ‘back and forth’ 

on the sequence level, while retaining a stable structure and function. This is 
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indicated by the fact that the Helicobacter domain is less similar to the E. coli 

query domain than that from B. subtilis, whilst being evolutionarily closer. 

However, such specific hypotheses would have to be corroborated by further 

phylogenetic and structural studies (see also Section 5.5.5). 

Notably, all the proteins used in the above-described studies are reviewed 

SwissProt entries. This means their sequences and functions have been 

manually curated. Further, while COPA_ECOLI, for example, can transport 

different ion species, there is no indication that it can also transport zinc, or 

that the substrate specificities of  the copper and zinc transporters that were 

compared overlap otherwise. The two Gene3D superfamilies that contain the 

A and N domains of  P-ATPase proteins are not split by DFXsuper (unlike the 

HAD superfamily, containing the P domain family) but rather form a single, 

large family each. This is in agreement with the fact that both types of  

domains are exclusively found in P-ATPase proteins, that is, fulfil only a single 

domain function. Finally, the similar lengths of  the P domain sequences used 

(see Figure 5.12a) and the apparent completeness of  protein domain 

decomposition in all cases (see Figure 5.11) make it highly unlikely that errors 

in Gene3D domain assignment play a role in the observations made. Taken 

together, the above-described studies on the P domain and the apparently 

similarly ‘unspecific’ clustering behaviour of  the A and N domains (which has 

yet to be studied in more detail) support the current view of  P-ATPase 

substrate (ion) specificity and sequence divergence being largely mediated by 

the transmembrane domain M (see Section 5.1.4.1).  

5.4.3 Examples of  annotation complexity and inconsistency 

The patterns of  Gene Ontology function annotations that are associated with 

groups of  related proteins are frequently complex, and sometimes incomplete 

or inconsistent. Similar attributes hold for the GO molecular function DAG. 
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A selected set of  example cases that were observed during the development 

of  DFXsuper is discussed in the following.  

A striking example of  how annotation diversity in sets of  closely related 

proteins can pose a serious challenge to supervised family identification is the 

P-ATPase P domain family that DFXsuper identifies within the HAD 

superfamily (see Section 5.1.4.1and Figure 5.8). For the underlying cluster, 

Figure 5.13 shows all GO MF terms that are assigned, as most-specific terms, 

to at least one of  the sequences it contains (red and yellow boxes). Note that 

the resulting, relevant part of  the GO DAG is large, and therefore had to be 

broken up into two parts for visualisation. These are separated by the curved, 

dashed line in the middle, and connected by the numbered connection points.  

The yellow boxes in Figure 5.13 highlight the terms that belong to the core 

annotation of  the P domain cluster, as derived by DFXsuper. This comprises all 

terms deemed to describe most specifically and uniquely the functions of  the 

domain sequences in the cluster (see Section 5.3.2). The 273 (out of  1,962 

total) domain sequences in the cluster that are associated with high-quality 

GO MF protein annotations exhibit considerable variability in the specificity 

of  these annotations, as shown by the ‘patchy’ distribution of  most-specific 

GO MF annotations. This reflects the varying amount of  current empirical 

knowledge concerning their functions. 

The annotation ‘breadth’ of  the sequences in the P domain cluster varies as 

well. This is captured by the distribution of  the number of  annotated, most-

specific MF terms assigned per sequence: 251 sequences have one term, 16 

have two, two have three, and one sequence has five terms assigned; three 

sequences only have problematic MF terms assigned (which are ignored; see 

Section 5.3.1). Further, when all most-specific sequence annotations are 

propagated up the GO MF DAG, 266 sequences share the coarse ‘hydrolase’ 

term (GO:0016787), whereas only 150 share the much more specific term 
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‘ATPase activity, coupled to transmembrane movement of  ions, 

phosphorylative mechanism’ (GO:0015662). 

Apart from the high variability in the ‘richness’ of  the annotations available 

for individual sequences, as discussed above, a second challenge for the 

supervised family identification protocol are inconsistencies in the used 

annotation system, the Gene Ontology, itself. In particular, these are logical 

inconsistencies in both patterns of  existing (or non-existing) terms and in the 

interconnectivity of  terms in the GO molecular function DAG. Figure 5.13 

provides several examples of  such cases. First, given the existing parent-child 

relationships between the ‘cation-transporting ATPase activity’ and both the 

‘manganese-transporting ATPase activity’ and the ‘calcium-transporting 

ATPase activity’ terms, all further terms shown that refer to the ATP-driven 

transport of  a specific cation species (the bottom row of  terms in Figure 5.13) 

should be linked to the parent term accordingly. Second, all the terms in the 

bottom row (and a few others) should be consistently linked with the ‘ATPase 

activity, coupled to transmembrane movement of  ions, phosphorylative 

mechanism’ term in the row above. Third, there is no apparent reason for 

having both a ‘-transporting’ and an ‘-exporting’ term defined in the ontology 

for some ion species (e.g., copper) but only the less specific ‘-transporting’ 

term for others (e.g., manganese). Even if  there were biologically grounded 

reasons for these differences in the term definitions, the ‘-exporting’ terms 

should always be children (and not siblings) of  the ‘-transporting’ terms, to 

preserve the logic of  the GO DAG; currently this is only the case for the 

copper terms. 
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Figure 5.13. Annotation complexity in the P-ATPase P domain family as identified by DFXsuper. This GO DAG shows all MF terms that are associated, as most-specific terms, with 

at least one of the sequences in the end-of-chain cluster discussed in Section 5.4.1.1(red and yellow boxes). Core set terms are highlighted in yellow. Note that the relevant part of the GO 

MF DAG had to be broken up into two parts for visualisation (dotted curve); these are connected by numbered connection points. Dashed edges correspond to omitted intermediate terms. 

The initial DAG was generated with AmiGO.  
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Another example of  functional complexity, accompanied by annotation 

incompleteness, is the case of  a SwissProt-reviewed but so far (apparently) 

not specifically studied trifunctional protein from Mycoplasma gallisepticum. This 

‘Trifunctional protein ribF/mnmA’ (UniProt Q7NBZ0) exerts its three 

functions via three distinct domains. Interestingly, all three activities are 

relatively closely related transferase functions (see Figure 5.14), therefore 

sharing the first EC digit: ‘FMN adenylyltransferase activity’, ‘riboflavin kinase 

activity’ and a tRNA-specific methyltransferase activity. While the 

combination of  the former two functions (domains) is observed in many 

bacteria, the additional tRNA methyltransferase (Rmt) domain is only found 

in the Mycoplasma protein. Otherwise, this domain occurs either alone or with 

further domains in bifunctional proteins. 

The Rmt domain belongs to the HUP superfamily (see Section 5.1.4), and 

gives rise to the ‘tRNA-specific 2-thiouridylase mnmA -like’ domain family 

identified by DFXsuper (see Figure 5.9, close to the vertical centre). The 

sequences in this family stem from a mixture of  single- and multi-domain 

proteins, as mentioned above, and can only be identified when the underlying 

end-of-chain cluster (cluster 48353) is identified as such.  

The normal assessment protocol (see Section 5.3.4) does not judge this cluster 

functionally coherent. This is because the trifunctional Mycoplasma (parent) 

protein is associated with only two most-specific GO MF terms (describing 

two of  the three domain functions), which form the cluster’s core term set 

(see Section 5.3.2), but lacks the annotation for the function of  the Rmt 

domain, unlike the other parent proteins. In consequence, the core set 

comprises all three GO MF terms, whilst none of  the sequences in the cluster 

is associated with all of  them. 
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Figure 5.14. The three transferase functions corresponding to the three domains of Trifunctional 

protein ribF/mnmA. A trifunctional protein from Mycoplasma gallisepticum (UniProt Q7NBZ0) can carry 

out the three functions shown (leaf GO terms). The GO DAG was generated with AmiGO. 

5.5 Conclusions and future work 

Several conclusions are first drawn in the following two sections, concerning 

both the benefits and potential caveats of  the developed DFXsuper protocol for 

domain family identification. Thereafter, potential changes in data usage and 

in the use of  the chaining concept are discussed. The chapter then closes with 

several suggestions for specific follow-up analyses of  the presented results.  
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5.5.1 Uniqueness and aim of  the developed protocol  

The development of  the supervised protocol discussed in this chapter was 

necessary to be able (i) to make use of  the wealth of  available curated protein 

annotation data in domain family identification and (ii) to process the largest 

existing superfamilies at all. Both can not be achieved using the unsupervised, 

exhaustive-clustering based protocol that was developed earlier and is 

presented in the above chapter. Supervised protocols for automated protein 

family identification are relatively sparse (see Section 5.1.1). Established 

resources that are based on such protocols are even rarer. Instead, manual 

curation and/or the use of  unsupervised protocols are the norm. On the 

domain family level, fully-automatic supervised methods are practically non-

existent at this point. These observations are somewhat surprising, as it could 

be expected that supervised methods are generally easier to implement than 

unsupervised ones, owing to their ‘information advantage’. 

The current lack of  supervised protocols for protein domain family 

identification can be attributed to four factors. First, the scarcity of  high-

quality protein function annotations in the past. Such data is now increasingly 

available, in an increasingly organised form. International consortia such as 

the Gene Ontology are the major driving force behind this. Second, the non-

trivial problem of  mapping from whole-protein annotations to the domain 

function level. This is probably the most complicated step in any such 

protocol, and the most difficult to automate (see Section 5.1.2). Third, the 

‘success’ of  the protein family concept in the past. Most studies on protein 

families are essentially studies on protein function. For this reason, they focus 

specifically on orthology and related concepts of  close homology (see Section 

1.2.1.2). These are concepts whose meaning in the context of  protein 

domains (and multi-domain proteins) is not yet clearly defined (see Section 

1.2.3). Further, when individual studies discuss the functional subgroups of  

specific protein superfamilies, it is not always made explicit that such 
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superfamilies are usually defined on the basis of  a certain core domain or a set 

of  such (see Section 1.2.2.1). The fourth and last factor is the concentration 

on the manual or semi-manual generation of  family libraries in the past. 

Established family resources such as Pfam were created at a time when it was 

still possible (for any resource) to concentrate the efforts of  manual curators 

on individual families, even on manually ‘stitching together’ the corresponding 

alignments. This was primarily due to the much lower amount of  available 

sequence data, which also meant that only a fraction of  the protein and 

domain families known today were characterised (Sonnhammer, Eddy et al. 

1997). While such manually curated databases are of  enormous importance 

for the bioinformatics community, only very few will continuously be able to 

afford the resources to manually curate the equally enormous (and growing) 

amount of  available sequence data.  

The supervised domain family identification protocol presented in this 

chapter is the most important building block of  the DFX pipeline, a means to 

establish a sustainable and curation-free family level below the domain 

superfamily level. This specific importance, compared with the unsupervised 

protocol, results from two factors. First, the established family level will be 

most accurate and most useful for those superfamilies that are associated with 

at least some high-quality annotations, that is, those processed with DFXsuper. 

Second, by abandoning the exhaustive clustering strategy followed in the 

unsupervised protocol, DFXsuper makes it possible to process even the largest 

superfamilies in Gene3D, with currently up to 1,000,000 member sequences.  

5.5.2 The limits of  rule-based heuristics  

An early decision in the development of  the supervised protocol (DFXsuper) 

was that rule-based approach should be followed, instead of  an approach 

based on scores and thresholds. Specifically, this refers to the way the protocol 

deals with the GO function annotations of  (sets of) proteins. The decision in 
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favour of  a rule-based algorithm was based on two assumptions. First, 

researchers that use the established families as the basis of  their studies (e.g., a 

metagenomic function enrichment analysis) or publications (e.g., a review of  a 

specific domain superfamily) would need to know exactly how these families 

were derived. A ‘black box’ approach, as, for example, using GO semantic 

similarity (GOSS) (Pesquita, Faria et al. 2009) thresholds to identify functional 

families, would complicate the explanation of  how the protocol works in 

biological (function) terms. When assessing the specific relationships between 

individual annotations and sequences (see Sections 5.3.2 and 5.3.4), however, 

this is easily possible. It mimics the way a human curator would decide 

whether or not to group sequences into the same family. This consideration is 

analogous to the decision between using relatively basic concepts, such as 

sequence clustering, sets of  annotations and so forth, and using highly specific 

machine learning concepts such as SVMs or Neural Networks. The second 

reason for following a rule-based approach in DFXsuper was that the 

development process itself  (which is still ongoing) is made easier and more 

transparent by defining rules first and implementing them thereafter, instead 

of  using a threshold-based ‘trial-and-error’ approach. All this does not mean, 

however, that a (purely) rule-based protocol is necessarily the best way to 

tackle the supervised family identification problem. To give an example, a 

single, empirically derived threshold (e.g., a minimum average pairwise GOSS 

score) that is used to support or reject a family relationship may be preferable 

over a set of  ten different rules when both yield comparable overall 

performance. 

Certain limitations of  the rule-based approach have emerged during the 

development of  DFXsuper. In general, there is an obvious clash between 

striving to detect and account for all observed (and imaginable) exceptions, to 

produce biologically sound families, and the aim of  simplicity or, at least, 

transparency. More complex rule sets than those described here were 

considered during the development of  the protocol. While some of  those 
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yielded results similar in quality to the results presented here, it was not clear 

why and in which circumstances they would (or would not) work. DFXsuper 

deals with both sequence and function (annotation) similarity, and with 

thousands of  superfamilies of  highly variable size and diversity. 

For the above considerations, it was one of  the goals in developing DFXsuper 

to implement a set of  rules that would be intuitively understood. Further, 

these rules were to be as ‘future-proof ’ as possible. For example, the currently 

limited quality of  GO annotations may lead to rules which are over-fitted and 

break in the future. A rule that may work in many cases at this point, for 

example, because it exploits a certain annotation ‘habit’, or a certain level of  

annotation specificity, must not necessarily work well when these conditions 

change. For example, GO annotations can show genome- and annotator-

specific characteristics, such as the average number of  terms assigned per 

protein (Buza, McCarthy et al. 2008). Further, individual proteins are 

frequently annotated with different experimental and/or electronic methods 

(evidence codes), at different levels of  specificity (Park, Kim et al. 2011). As 

soon as these things improve, however, any rule that takes into account these 

‘teething troubles’ of  GO could become detrimental to the performance of  

the protocol implementing it.  

The problem of  grouping proteins or protein domains by function, based on 

(often sparse) GO annotation data, has so far not been widely addressed 

(apart from the developed measures for GOSS). This stands in contrast to, for 

example, the field of  sequence-based protein function annotation. Further, 

the problem is still a ‘transient’ one, in the sense that certain heuristics (rules) 

that work, as of  now, cannot automatically be assumed still to work in the 

future. The reason for this is the expected further evolution of  the GO 

annotation system; for example, logical changes to the individual DAGs, 

interconnections between them, and so forth. It is even conceivable that a 

more radical development could alter the challenges posed fundamentally. For 
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example, the Protein Ontology (Natale, Arighi et al. 2007; Natale, Arighi et al. 

2011) could at one point become integrated with GO, in an effort to provide 

function annotations to protein sequence segments below the whole-chain 

level, such as domains or residue motifs. 

5.5.3 Potential improvements to data usage 

The DFXsuper protocol depends on a variety of  preceding steps and decisions 

made in the data preparation stage. These include the use and filtering of  

annotation data. In addition, the Gene3D domain assignments for different 

proteins (inherently) provide information on domain architecture; this data is 

so far not being used in DFXsuper. Potential improvements to the protocol in 

these aspects are discussed in the following. 

So far, the GO annotation data for DFXsuper that is retrieved from UniProt 

GOA is filtered in a relatively strict manner (see Section 3.3.2), to ensure that 

the annotations used in the protocol are of  high quality. However, this can 

complicate the family identification process. In a minority of  cases sequences 

can ‘lose’ essential annotations in the filtering process. This can happen, for 

example, when a non-curated sequence in UniProtKB-TrEMBL has a high-

quality GO annotation for one of  its partial functions, mediated by domain A, 

but only a low-quality (electronically transferred) annotation for another 

partial function, mediated by domain B. When low-quality annotations are 

filtered out, the B domain sequence (like the whole protein) then remains 

associated with only the annotation for domain A, which may be an entirely 

different type of  function. When processing the B domain’s superfamily, the 

regular cluster assessment protocol (see Section 5.3.4) therefore cannot 

correctly group the domain into a functional family with its sequence relatives 

(assuming these are all single-domain proteins with only domain B and the 

corresponding B function annotation). In contrast, if  the low-quality B 

function annotation of  the TrEMBL protein is not filtered out (and its B 
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domain sequence remains annotated with both the A and B functions), the 

core set concept would make DFXsuper (correctly) disregard the A function 

entirely in family identification (see Section 0).  

Similar problems with ‘uneven’ GO annotation coverage owing to annotation 

filtering were reported before, in the context of  protein function prediction 

(Forslund and Sonnhammer 2008; Wass and Sternberg 2008). In conjunction 

with this, it has been observed in some cases that including non-curated data 

in the GO annotation datasets used was not detrimental (or even beneficial) to 

the overall performance of  annotation-based methods. For example, in Schug, 

Diskin et al. (2002) the authors state that ‘…including IEA annotation yields 

significantly greater coverage (67%) with essentially the same reliability.’ In 

summary, while the current annotation filtering scheme of  DFX is thought to 

be well-balanced and does not exclude electronic annotations entirely, the 

optimal filtering strategy may have yet to be found. It can further be expected 

to change over time, as the reliability of  different GO evidence types is 

periodically reassessed (Camon, Barrell et al. 2005; Jones, Brown et al. 2007; 

Buza, McCarthy et al. 2008; van den Berg, McCarthy et al. 2010). 

It is generally conceivable to use additional types of  protein annotation data in 

DFXsuper in the future, on top of  the Gene Ontology data. Obvious choices 

would be enzyme molecular function annotations from the KEGG Orthology 

(Kanehisa, Goto et al. 2004) and EC systems; the latter is already used in the 

analysis of  the produced families (see Chapter 6). In conjunction with the 

current protocol for family naming (see Section 3.3.5), it has further become 

clear that protein names (from UniProtKB) could potentially be exploited 

when any other annotation data are missing. It has been shown repeatedly that 

that the annotation data provided by different resources is complementary 

(Koski, Gray et al. 2005; Schmid and Blaxter 2008; Sun, Kim et al. 2009). 

More importantly, corresponding (but independently generated) data from 

more than a single annotation system could convey increased (or decreased) 
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confidence in certain family partitioning decisions. An example scenario is 

outlined below. 

In the case of  erroneous GO annotations, chaining detection (see Section 

5.3.5) can currently lead to an overly ‘liberal’ mixing of  domain sequences 

with different functions. This could be partially avoided by using a threshold 

heuristic that takes into account the sizes of  the merged clusters, where 

increased caution is suggested when both sibling clusters are large and the 

annotation signal is weak. Additional annotation evidence for or against 

specific merges (for example, two different 3rd level EC numbers) would be a 

more straightforward means of  avoiding it.  

Despite the potential benefits of  using further types of  annotation data, as 

outlined above, this could also introduce new problems. To name the most 

important ones, the protocol would be further complicated, the annotation 

‘habits’ and sources of  each annotation system with regards to protein 

domains would have to be analysed separately first (see Section 5.1.3), the 

mentioned systems do not use evidence codes like GO does (the reason why 

high-confidence EC annotations had to be derived by mapping from the 

respective GO annotations for the analyses presented in Chapter 6), and all 

systems work with different levels of  functional granularity.  

Another type of  data that could potentially be used to enhance the 

performance of  DFXsuper for individual superfamilies is domain architecture 

information. This is inherently available in Gene3D, which assigns domains to 

proteins. Currently, the supervised protocol does not use information on the 

MDA context(s) in which the members of  a given domain sequence cluster 

appear. In the simplest case, this information could be used in a binary way, to 

answer the question ‘are there other domains in the parent proteins for this 

cluster?’. The core set concept was primarily designed to identify (and thus be 

able to ignore) protein annotations that arise from domains other than that 
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under analysis (foreign annotations). Knowing whether or not a given protein 

has more than one domain would certainly simplify this process to some 

extent. However, MDA information cannot solve the more general problem 

of  automatically mapping between the function annotations of  proteins and 

their individual domains (see Section 5.1.2). Whenever a protein has more 

than one domain, which accounts for the majority of  proteins, it can only be 

estimated but not verified with certainty which domains give rise to which 

functions (annotations). The most comprehensive and therefore probably 

most powerful approach of  incorporating MDA information in the family 

identification process would share characteristics with the approach currently 

used by DFX in domain-based protein function annotation (see Section 3.3.7); 

this is because the two processes both have to perform the above-mentioned 

mapping task, in opposite ‘directions’. It can be outlined as follows.  

A protocol that takes into account MDA information in the family 

identification process can be outlined as follows. First, for a given domain 

superfamily F, a list of  all co-occurring superfamilies (COFs) is generated. 

Second, the annotation data for F and all COFs are compiled. Third, F is 

processed in the context of  these additional data to derive families. In 

particular, whenever annotations from multi-domain proteins are associated 

with a domain sequence cluster whose core annotation set is to be compiled 

(see Section 5.2.2), it is assessed for each annotation whether it also appears 

with at least one protein that contains a COF domain (and possibly further 

domains) but not an F domain. If  that is the case, it increases the probability 

of  the respective term (function) not being associated with the F domain 

cluster under analysis. If  this basic protocol is translated into a probabilistic 

one, based on term-superfamily association frequencies (as done in the 

protocols described in Section 3.3.7), it could boost the accuracy of  family 

identification, primarily in promiscuous domain superfamilies. 
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5.5.4 The future of  the chaining concept 

The concept of  chaining was introduced relatively late in the development of  

DFXsuper. First analyses such as those presented in the present chapter show 

that it has a tremendous impact on the level at which common domain 

function can be captured, and that the derived families of  domain sequences 

‘make sense’ biologically. The phenomenon that domains with identical or 

highly similar functions are conserved to a (much) higher extent than the 

respective parent proteins, in both sequence and function, therefore seems to 

be relatively frequent. That domains with a specific, conserved function 

should exhibit this behaviour may not be surprising, given that it has long 

been established for conserved residue patterns that are functionally or 

structurally important (overall) in protein families that contain sequences with 

(otherwise) different functional specificities (Pazos and Sternberg 2004; 

Sankararaman and Sjolander 2008; Kalinina, Gelfand et al. 2009).  

It is important to note that the use of  the chaining concept only makes sense 

when the sequence unit clustered is (i) assumed to be a distinct functional unit 

and (ii) short enough, so that it is unlikely that functionally neutral mutations 

(over time) lead to clearly discernable patterns (clusters) among functionally 

equivalent sequences. For these reasons, chaining is a phenomenon that is 

observed when clustering domain sequences, not whole-protein sequences. In 

other words, it is highly unlikely that two full-length proteins with different 

but similar functions would show higher overall sequence similarity to each 

other than to other proteins with the exact same function, respectively. On the 

domain level, however, this seems to be possible (see Section 5.4.2). 

Until the chaining phenomenon has been verified to be a biological 

phenomenon in the above-described sense, the concept must be used with 

caution. It is clear that, in a certain number of  cases, detected instances of  

chaining will have entirely artefactual causes (see Section 5.2.3). For example, a 
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single erroneous protein annotation (or two, when a minimum chain length 

setting of  two is used) can mislead the detection algorithm into ‘assuming’ 

that a case of  chaining based on domain sequence and function conservation 

is observed. The manual inspection of  different chaining events (see, for 

example, Section 5.4.1.2) can reveal annotation errors, especially when these 

events are based on the annotations of  individual (or a few) sequences 

amongst many very similar ones. Another potential source of  chaining are 

errors made in the course of  (heuristic) sequence clustering. To identify such 

errors, a non-heuristic clustering method could be used with a set of  test 

superfamilies, and the family identification process repeated based on the 

produced, alternative dendrogram, respectively. No matter what the main 

causes for chaining are, it is a phenomenon that has so far been observed with 

considerable frequency and often leads to ‘biologically meaningful’ domain 

families based on the concept of  domain function. It should therefore be 

investigated further.  

There exists a specific rule in the chaining detection protocol that should be 

addressed first in its further development. This is the minimum chain length 

criterion, as described in Section 5.3.5. It is expressed in the parameter Lmin, 

which dictates how many consecutive cluster merges in the clustering 

dendrogram have to exhibit chaining characteristics to consider the respective 

end-of-chain cluster in family identification. The setting of  Lmin, currently a 

value of  two, greatly influences the family partitioning derived in large and 

diverse superfamilies. It is primarily a means to account for artefactual signs 

of  chaining, for example, owing to erroneous function annotations. One route 

of  investigation would be to assess whether chains that start with leaf  clusters 

of  the overall clustering dendrogram should be considered more relevant than 

such that only start later. The reasoning behind this would be that ‘late chains’ 

are more likely to arise from sequence clustering errors and, at the same time, 

often have a greater impact on the resulting family partitioning. In other 

words, in a worst-case scenario, a few wrong sequence annotations and/or 
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truncations can currently collapse the superfamily into a single family with 

high functional variability. 

5.5.5 Proposed further analyses 

Based on the presented qualitative analyses of  results, the use of  several 

established bioinformatics tools and concepts for comparative analyses is 

strongly suggested. First of  all, the full sequences of  the proteins that contain 

the domains from the two analysed superfamilies should be clustered using 

the same algorithm as that used to cluster the domains (GeMMA; see Chapter 

2), respectively, and then processed using a simplified DFXsuper protocol. A 

comparison of  both the raw clustering results and the final family 

partitionings derived on the protein level with those obtained on the domain 

level could then be made (see, for example, Figure 5.12). The points at which 

the whole-chain sequences cluster differently from the domain-only sequences, 

and/or lead to different family partitionings, could help further to corroborate 

(or reject) different assumptions made in the development and analysis of  the 

DFXsuper protocol (see above). This refers primarily to the chaining concept 

(see Section 5.2.3), but also to different potential sources of  error, such as 

Gene3D domain assignment.  

A comparison of  the similarity relationships between whole proteins and 

between their individual domains, at the level of  clustering and derived family 

dendrograms, would essentially repeat on the large scale what was done using 

an example set of  homologous P-type ATPase proteins in Section 5.4.2. The 

increasingly used framework of  the sequence similarity network (Song, Joseph 

et al. 2008; Atkinson, Morris et al. 2009) could help to visualise the results of  

such an endeavour. In addition, the GeMMA clustering results for different 

superfamilies could be compared – where it is technically possible – with 

those obtained from traditional clustering approaches (e.g., single linkage; see 



CHAPTER 5. SUPERVISED PROTEIN DOMAIN FAMILY IDENTIFICATION IN DFX 

 239 

Section 2.1.2.1) and those that can be inferred from phylogenetic trees, at 

both the whole-protein and domain levels.  

As has been demonstrated in Section 5.4.1, especially the investigation of  

‘outlier’ families in the DFXsuper family dendrograms can be fruitful to unravel 

the intricacies of  evolution within domain superfamilies. For example, in the 

context of  phylogenetic trees and by in-depth (e.g., taxonomic, functional, 

structural) characterisation of  the members of  small and/or apparently 

misplaced families, lineage-specific sequence specifics and phenomena such as 

horizontal gene transfer, rapid evolution and long-branch attraction (Boc and 

Makarenkov 2011) could be identified. Further, when working with domain 

instead of  whole-protein sequences, it is particularly tempting to try tracing 

the most important factors of  sequence evolution at this level: domain 

duplication and domain shuffling (see Section 1.1.2).  

To close this section, a few examples of  (biologically) very specific 

observations and suggested further analyses are given, as a direct result of  the 

detailed analyses conducted for this chapter. First, several annotation errors 

have been identified and reported to the GO curators. For example, the fly 

Cryptochrome 1 protein (UniProt O77059) was wrongly associated with 

GPCR activity, as (allegedly) inferred from a mutant phenotype (IMP evidence 

code). The underlying publication in Cell (Stanewsky, Kaneko et al. 1998) does 

not mention this activity at all, and the respective annotation has already been 

removed. Second, inconsistencies in the GO DAG itself  have been reported. 

For example, the logical inconsistency that ‘NAD+ synthase (glutamine 

hydrolyzing) activity’ (GO:0008795) is not a child term of  ‘NAD+ synthase 

activity’ (GO:0003952), as shown in Figure 5.15.  

While the two GO leaf  terms in Figure 5.15 were derived from two different 

EC numbers (6.3.5.1 and 6.3.1.5), the described reactions merely differ in 

substrate (L-glutamine and NH3), and the corresponding proteins have 
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overlapping substrate specificities. It would therefore be advisable to revise 

the GO DAG (and potentially the EC hierarchy) in the relevant parts. At the 

end of  this process, a novel ‘NAD+ synthase’ term could be the parent of  

two novel terms ‘NAD+ synthase, with NH3 as amido-N-donor’ and ‘NAD+ 

synthase, with glutamine as amido-N-donor’. Further GO DAG 

inconsistencies are discussed in Section 5.4.3.  

An example of  where the DFXsuper results could contribute to yet unsolved 

biological questions is the case of  an intriguing fusion protein that is found in 

several protist species, including the Malaria parasite Plasmodium (Linder, Engel 

et al. 1999). While the N-terminal domain of  this protein (e.g., UniProt 

Q8IHY1) closely resembles the P domain of  P-ATPase transporters – 

specifically, Ca2+ and phospholipid-transporting ones (Baker 2004) – its C-

terminal domain has guanylyl cyclase activity. More than a decade after this 

was reported, and following partial structural characterisation of  the protein, 

it is still uncertain (as of  October 2011) whether or not the N-terminal 

domain is also active and, if  so, what this activity is (Moon, Taylor et al. 2009; 

Baker 2011).  

One possibility is that these proteins couple cellular Ca2+ influx with cyclic 

GMP messaging. Their N-terminal domain gets assigned to the P-ATPase P 

domain family that is identified by DFXsuper in the HAD superfamily (see 

Section 5.4.1.1). This is hinted at by the ‘guanylate cyclase activity’ term 

(GO:0004383) close to the middle of  Figure 5.13. In fact, this is the only high-

quality annotation associated with the proteins of  this type, as a P-ATPase 

activity could not yet be demonstrated. The exact position of  the domain 

sequences from these protozoan fusion proteins in the P domain family, and 

in the corresponding clustering dendrogram, may provide valuable hints for 

further bioinformatics analyses (e.g., homology modelling). It may even be 

possible to devise a hypothesis as to where in early protozoan evolution the 

corresponding domain fusion took place. In general, the DFXsuper results 
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support (at least) an ATP binding activity for the HAD domain of  these 

proteins and suggest further biochemical experiments in that direction. 

 

Figure 5.15. Inconsistently linked NAD+ synthase activities in the GO MF DAG. Based on their 

names and, potentially, the underlying biology, the two leaf GO terms would normally be expected to have a 

parent-child relationship. The GO DAG was generated with AmiGO. 
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Chapter 6. Quantitative analysis of  the DFX 
results and comparison of  the two family 
identification protocols  

A comparative analysis of  the results attained when using the two different 

family identification protocols of  the DFX pipeline, the unsupervised 

(DFXunsuper) and supervised (DFXsuper) protocols, is presented in the following 

sections. This extends on the qualitative assessments made in Chapter 4 and 

Chapter 5. The present analysis is based on family data that were produced in 

the first large-scale run of  the DFX pipeline. This included all Gene3D 

domain superfamilies that were found to be associated with high-quality GO 

annotation data. First, the generated results are presented and interpreted. A 

discussion of  the comparisons made follows, which is augmented by the 

discussion of  the DFX pipeline as a whole in Chapter 7. 

6.1 Results 

In the first run of  the DFX pipeline in December 2010, 1,793 (~75%) of  the 

2,382 protein domain superfamilies in Gene3D 9.2 could be processed using 

the DFX supervised family identification protocol. No high-quality GO 

protein function annotation data were available for the remaining 25%, which 

makes these (mostly small) superfamilies targets for the unsupervised protocol. 

Since the size of  many of  the superfamilies that were processed using 

DFXsuper makes them intractable for DFXunsuper, only the supervised family 

identification protocol was used.  

To make a comparison of  the two protocols based on function annotation 

data possible, despite the above, results for DFXunsuper were approximated by 

feeding it with the (non-exhaustive) sequence clustering results that were also 

fed to DFXsuper. For each superfamily, this corresponds to a clustering of  all 
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sequences with high-quality function annotation and close relatives (see 

Section 3.3.3.1), instead of  all sequences. The DFXunsuper families produced in 

this way, using a generic GeMMA granularity threshold of  10-40, are in the 

following sections referred to as GeMMA40 (G40) clusters. The number of  

G40 clusters can also serve as a proxy for sequence diversity within 

superfamilies. 

6.1.1 Statistics on the produced families 

Figure 6.1 shows the size (magenta) and the number of  families (dark blue) 

identified for all processed superfamilies, respectively. In addition, the number 

of  G40 clusters obtained (light blue) is shown for each superfamily, as a proxy 

for sequence diversity. It can be seen that the size distribution of  the 

functionally characterised Gene3D superfamilies under analysis shows scale-

free behaviour. It approximately follows an exponential law over a wide, 

central range, with extreme ‘tails’ on either end. To illustrate this further: the 

100 largest superfamilies together contain about 60% of  the domain 

sequences in Gene3D. 

Scale-free size distributions are a well-known phenomenon in databases that 

classify proteins and domains by fold, superfamily or family (Qian, Luscombe 

et al. 2001; Dokholyan, Shakhnovich et al. 2002; Koonin, Wolf  et al. 2002; 

Goldstein 2008; Koonin 2011). In most cases, power-law distributions are 

reported. These observations are thought to indicate the tremendous 

evolvability and following evolutionary ‘success’ of  a small fraction of  all 

(super)folds, and the homologous sequence superfamilies and families that 

exhibit these folds. While a certain amount of  bias in the sequence databases 

and an incomplete picture of  sequence space will also play a role, the general 

‘signal’ is too strong to be entirely artefactual. 
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The correlation between superfamily size and the number of  identified 

DFXsuper families, respectively, as shown in Figure 6.1, is weaker than the 

(known) correlation between superfamily size and sequence diversity (R = 

0.77 vs. 0.85). This can be expected, as the supervised family identification 

protocol uses function annotation data to identify families, on top of  

sequence similarity information (the clustering results). As will become clear 

in the following and is supported by this plot, many large families within the 

processed superfamilies are functionally conserved whilst being highly diverse 

in sequence. A protocol based on sequence similarity alone, like DFXunsuper, 

will (over)divide such families into several smaller families. 

Table 6.1 shows statistics on the ten largest superfamilies that were processed 

using the supervised protocol, which are also the ten largest superfamilies in 

Gene3D. These superfamilies are highly diverse in sequence (as seen by the 

G40 and CATH S35 cluster counts). Sometimes, the variation in the domain 

sequences detected for a superfamily by scanning the genomes (Gene3D) is 

considerably higher than the variation in the CATH sequences with known 

structure that gave rise to the respective superfamily model(s); for example, in 

the cases of  3.30.160.60 (classic Zinc Finger containing) and 1.20.1250.20 

(Major Facilitator transporter like).  
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Figure 6.1. The DFX families identified in 1,793 Gene3D domain superfamilies of  varying size and 

sequence diversity. Superfamily size (magenta) and sequence diversity (light blue) is plotted using the 

logarithmic scale Y-axis (left). The number of  identified DFXsuper families in each superfamily is plotted using 

the linear scale Y-axis (right). The superfamily size data points were fitted with an exponential distribution 

(black line); the shown R2 value approximates the goodness of  fit. Note that the three largest superfamilies 

have more than 300 families (603, 613, and 891, respectively). Sequence diversity is measured as the number 

of  G40 clusters. 
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Table 6.1. The ten largest Gene3D superfamilies and their diversity in sequence, structure and 

function. 1Sequence clusters obtained at a GeMMA clustering granularity of 10-40, as described in main text; 

2non-redundant sequence clusters at 35% sequence identity; 3close structural subgroups with a maximum 

normalised RMSD of 5Å; 4EC annotations with corresponding high-quality GO annotations only; note that 

this can include functions mediated by other domains in the parent proteins; *manually named for this study. 

CATH code CATH name Gene3D 

sequences 

GeMMA 

40s
1
 

CATH 

S35s
2
 

CATH 

SSG5s
3
 

Gene3D 

EC3s
4
 

3.40.50.300 P-loop NTP 

hydrolase 

676,037 3,405 208 54 33 

3.30.160.60 Classic Zinc Finger 

containing 

369,184 6,860 23 2 1 

2.60.40.10 Immunoglobulin 266,818 5,960 

 

278 44 11 

3.40.50.720 NAD(P)-binding 

Rossman 

242,209 1,419 203 38 52 

1.10.10.10 Winged Helix DNA-

binding 

233,908 1,553 

 

174 52 9 

3.30.70.270 Reverse Transcrip-

tase related
*
 

223,046 210 

 

19 6 4 

1.20.1250.20 Major Facilitator 

transporter like
*
 

165,937 1,017 2 1 1 

3.40.190.10 Periplasmatic small 

ligand binding
*
 

160,541 768 

 

103 25 11 

3.40.50.2300 Natriuretic peptide 

receptor
*
 

126,816 553 

 

103 15 12 

1.25.40.10 Tetratricopeptide 

repeat
*
 

122,066 1,177 24 5 11 
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6.1.2 The scale-free size distribution of  families and superfamilies 

The scale-free size distribution that is observed for protein domain 

superfamilies is also commonly observed at the family level. This is supported 

both by manual inspection of  the obtained family distributions in the large 

superfamilies discussed above and the power law fits shown in Figure 6.2. In 

Figure 6.2c, the average distribution of  relative family sizes within three sets 

of  superfamilies is shown in a double-logarithmic plot. The same is done for 

the size of  the corresponding superfamilies in Figure 6.2a, and the number of  

G40 clusters within these superfamilies in Figure 6.2b. The three superfamily 

sets analysed are subsets of  the total set of  Gene3D 9.2 superfamilies that 

were processed with DFXsuper. Out of  this total set, they comprise all 

superfamilies with at least 10,000 sequences (171 superfamilies; green), 20,000 

sequences (94 superfamilies; pink) and 100,000 sequences (14 superfamilies; 

blue), respectively. For the family size distributions in Figure 6.2c, only 

superfamilies with at least ten identified families were included in the three 

sets, respectively.  

The power law fits and corresponding R2 values shown in Figure 6.2 can only 

give a rough indication of  how well the superfamilies’ G40 cluster and family 

size distributions are described by a power law function. However, these data 

confirm the general trend that can be observed when individual superfamilies 

and families are manually inspected. This scale-free behaviour, with few very 

large and many small (super)families, and a wide range of  (super)family sizes 

in general, is a recurring observation (see above). Note that Figure 6.2a is 

merely a ‘reformulation’ and extension of  Figure 6.1. 
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Figure 6.2. The scale-free size distribution of domain superfamilies and their DFX families. (a) The 

total set of superfamilies processed; (b) G40 clusters in these superfamilies; (c) DFXsuper families in these 

superfamilies. Each double-logarithmic plot is based on a histogram with ten bins of range ten percent on the 
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X-axis (the upper boundary values are shown as tick marks). For the plot in (a), these bins collect all 

superfamilies that fall into the respective size range, relative to the size of the largest superfamily. The Y-axis 

states what fraction of all superfamilies fall into each bin (size range). This procedure is applied to all 

superfamilies with at least 10,000 (green triangles), 20,000 (pink squares) and 100,000 (blue diamonds) 

sequences, respectively. For the plots in (b) and (c), the overall procedure is the same, but the plots are 

generated by averaging over the cluster and family histograms of all the superfamilies in (a), respectively. Each 

set of data points was fitted with a power-law distribution (lines). The respective R2 values on the upper right 

corner of each plot approximate the goodness of fit (for each line, top to bottom), respectively. 
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Figure 6.3. The family size distribution of the ‘Winged Helix DNA-binding’ domain superfamily. 

DFXsuper identifies 178 families in this superfamily. The family size data points were fitted with an exponential 

distribution (black line); the shown R2 value approximates the goodness of fit.  

The scale-free size distribution that is found for the DFX functional families 

identified in the Gene3D domain superfamilies, on average, is further 

illustrated by the example of  the ‘Winged Helix DNA-binding’ (CATH 

1.10.10.10) domain superfamily in Figure 6.3. As this semi-logarithmic plot 

shows, the family size distribution in this superfamily is relatively accurately 

modelled using an exponential fit. The largest family in this superfamily is 

characterised in Table 6.2, in the following section. 



CHAPTER 6. QUANTITATIVE ANALYSIS OF THE DFX RESULTS AND COMPARISON OF THE TWO FAMILY 

IDENTIFICATION PROTOCOLS 
 

 250 

6.1.3 The largest families in the largest superfamilies 

Table 6.2 provides information on the DFXsuper families identified in the ten 

largest Gene3D superfamilies (see Table 6.1), specifically focusing on the 

largest family in each case. The shown family names were generated using the 

DFX naming protocol (see Section 3.3.5) and are thus based on the names of  

all parent proteins, respectively. In cases where at least one parent protein 

contains more than one domain in a given family (and, potentially, further 

domains from other families) in a superfamily, this is indicated by the domain 

numbers (in order of  N- to C-terminal appearance) in the family names. 

It can be seen in Table 6.2 that the largest identified family seems to be 

exclusive to the eukaryotic domain (based on the seed sequences underlying 

the family model) in six of  the ten largest superfamilies in Gene3D, 

respectively. Further, only in a single case is the largest family found to be 

phylogenetically ubiquitous, also including viral sequences. This family 

represents a highly promiscuous type of  NAD(P)-binding domain that 

appears in different protein domain architectures and functional contexts; 

therefore, the family name is misleading. This is true for most of  the domain 

families in this table, particularly for the largest CATH 3.40.50.2300 family, 

which functions in two-component systems and is associated with 12 different 

third-level EC numbers. This highly abundant domain family occurs together 

with the largest CATH 3.40.190.10 family, which is also found in Table 6.2, in 

glutamate receptor proteins.  
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Table 6.2. The families identified in the ten largest Gene3D superfamilies. The family with the most 

sequences is shown, respectively, along with the LCA taxa (or domains of life) of these sequences; 1EC 

annotations with corresponding high-quality GO annotations only; note that this can include functions 

mediated by other domains in the parent proteins; *includes viruses 

CATH code Families Largest family Sequences LCA 

taxon/taxa 

EC3s
1
 

3.40.50.300 891 ATP-dependent RNA 

helicase domain 2 -like  

16,964 Eukaryota 4 

3.30.160.60 263 Zinc finger protein 

domain 1, 2 -like 

36,903 Eukaryota 0 

2.60.40.10 613 Titin domain 1, 2 -like 18,597 Bilateria 4 

3.40.50.720 603 Siroheme synthase 

domain 1, 2 -like 

2,039 ubiquitous
*
 4 

1.10.10.10 178 Forkhead box protein G1 

domain -like 

2,588 Bilateria 1 

3.30.70.270 3 Gag-Pol polyprotein 

domain 1 -like 

46,101 Caulimoviri-

dae 

4 

1.20.1250.20 274 Solute carrier family 2, 

facilitated glucose -like d. 

1,809 Bacteria/ 

Eukaryota 

0 

3.40.190.10 130 Glutamate receptor 

domain 2 -like 

1,450 Bilateria 0 

3.40.50.2300 81 Transcriptional regulatory 

protein phoP dom. -like 

1,528 Bacteria/ 

Eukaryota 

12 

1.25.40.10 213 Kinesin light chain 

domain 1, 2 -like 

487 Eukaryota 11 

 

An interesting ‘outlier’ case observed in Table 6.1 and Table 6.2 is the Gag-Pol 

polyprotein domain family and its superfamily (‘Reverse Transcriptase related’). 

Gag and Pol are two of  the three major proteins encoded by retroviral 

genomes and have been studied primarily in the context of  HIV (Frankel and 

Young 1998). Gag (Group Antigens) is a polypeptide that is post-

translationally cleaved into a range (at least three but up to ten) individual 

proteins with varying structural and functional roles. One of  these cleavage 

products is a multi-functional enzyme with both reverse transcriptase (RT; 
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RNA-dependent DNA polymerase) and ribonuclease H activity (the core of  

the retroviral reproduction machinery). The domains in this family (and 

superfamily) are therefore associated with up to three distinct EC numbers via 

their parent proteins. Whilst being among the largest ten superfamilies in 

Gene3D, CATH 3.30.70.270 exhibits comparatively low sequence and 

structural diversity (see Table 6.1). Accordingly, the great majority of  its 

member sequences are found in the single, large family shown. The non-viral 

sequences in the superfamily (mostly from DNA polymerase IV proteins) 

contain motifs similar to those found in the RT domains. DNA polymerase 

IV is an error-prone, weakly processive polymerase that is involved in 

untargeted mutation in bacteria; the latter is deemed to convey increased drug 

resistance (Goodman 2002). 

6.1.4 Comparison with the unsupervised protocol 

The main motivation behind developing the supervised family identification 

protocol was the observation that the degree of  correlation between sequence 

and function conservation differs considerably amongst the known protein 

domain superfamilies (Addou, Rentzsch et al. 2009). Based on this, it was 

assumed that taking function annotation data into consideration, in addition 

to the results of  sequence clustering, would lead to significantly better family 

partitionings for most superfamilies. This section examines to what extent this 

expectation was met in the first run of  the DFX pipeline, by comparing the 

results of  supervised family identification with those that could have been 

achieved for the same superfamilies using the unsupervised protocol. Note 

that, owing to the non-exhaustive clustering performed (see Section 6.1), the 

DFXunsuper results can only be approximated. 

Since the most comprehensive source of  function annotation data to date, the 

Gene Ontology, is already used in the supervised family identification 

protocol itself, and since it is inherently difficult to assess the coherence and 
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separation of  different protein (domain) functions using GO annotations 

(illustrated by the complexity of  cluster assessment as described in Section 

5.3.4), the EC system for enzyme annotation was used to compare the results 

of  supervised and unsupervised family identification. For this comparison, the 

performance measures that were also used to benchmark the unsupervised 

protocol (see Section 4.2.2) were devised. High-quality EC annotations were 

compiled based on the evidence codes of  the corresponding GO annotations 

(see Section 3.3.2). 

A total of  488 superfamilies containing sequences with at least two distinct, 

high-quality EC4 annotations were identified in the set of  all processed 

superfamilies. Figure 6.4 shows the percentage of  these superfamilies for 

which the use of  the supervised family identification protocol or the 

unsupervised protocol (in conjunction with ten different settings of  the 

clustering granularity threshold) produces the best observed family 

partitioning (the highest observed performance score), respectively. Note that 

this score may be shared by more than one method/setting per superfamily.  
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Figure 6.4. The relative performance of DFXsuper and DFXunsuper as measured by enzyme function 

conservation. 488 Gene3D superfamilies with at least two different high-quality EC4 annotations were 

processed with both protocols, using ten different clustering granularity settings for DFXunsuper. The Y-axis 

shows the fraction of superfamilies for which each method produces the best observed performance score, 

respectively. The performance scores were derived using the EC4 annotations for each superfamily in 

conjunction with the combined performance measure introduced in Section 4.2.2. This measures both 

specificity (purity) and sensitivity (overdivision, or the lack of it). 

Figure 6.5 contrasts the performance scores attained for all 488 superfamilies 

when using either the supervised protocol or the unsupervised protocol with a 

generic threshold setting of  10-40, as derived based on the SFLD gold standard 

dataset introduced in Chapter 4. A very similar picture can be expected when 

using a threshold of  10-30, the best setting identified for this particular dataset 

(see Figure 6.4). 
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Figure 6.5. The relative performance of DFXsuper and DFXunsuper with a generic granularity setting of 

10-40. This shows the individual performance scores attained by both methods for the dataset described in 

conjunction with Figure 6.4. The generic granularity setting was determined earlier, as the putatively optimal 

setting (see Section 4.3.1). The performance scores were derived using the EC4 annotations for each 

superfamily in conjunction with the combined performance measure introduced in Section 4.2.2). This 

measures both specificity (purity) and sensitivity (overdivision, or the lack of it). 

While the supervised family identification protocol generally outperforms the 

unsupervised protocol (see Figure 6.4), independent of  the generic clustering 

granularity setting that is used (see Figure 6.5), the average performance and 

corresponding standard deviation values as listed in Table 6.3 indicate that the 

margin between the best-performing and all lower-ranking methods or 

settings is usually narrow. For the different granularity settings explored in 

conjunction with the unsupervised protocol this is true within the E-value 

range 10-80 to 10-20. 

For the unsupervised family identification protocol, Table 6.3 further supports 

the use of  a generic granularity setting in the same range as suggested from 

training on the SFLD dataset (see Section 4.3.1). The on average best setting 

is 10-30, closely followed by the currently used, SFLD-derived setting of  10-40.  
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Table 6.3. The average performance of DFXsuper and DFXunsuper. 488 Gene3D superfamilies with at least 

two different high-quality EC4 annotations were processed with both protocols, using ten different clustering 

granularity settings for DFXunsuper. The performance scores were derived using the EC4 annotations for each 

superfamily in conjunction with the combined performance measure introduced in Section 4.2.2. This 

measures both specificity (purity) and sensitivity (overdivision, or the lack of it); *standard deviation. 

Protocol 

/ setting 

DFX 

super 

10-
80

 10-
70

 10-
60

 10-
50

 10-
40

 10-
30

 10-
20

 10-
10

 10-
05

 100 

Perfor-

mance 

(avg.) 

88.44 80.61 81.34 82.24 83.14 84.15 84.67 82.35 73.76 61.89 37.72 

Perfor-

mance 

(SD
*
) 

12.38 12.39 12.34 12.21 12.15 12.50 13.75 16.86 21.73 24.63 11.86 

 

The results shown in Table 6.4 suggest that the unsupervised protocol is 

practically on a par with the supervised protocol in the case of  the five 

Gene3D 9.2 superfamilies that correspond to the five SFLD enzyme 

superfamilies introduced in Section 4.2.1.1. However, it is important to put 

these values into context with the total number of  families identified, 

respectively. The superfamilies under analysis here all exclusively contain 

domains from enzymatically active proteins. Even if  a certain amount of  non-

enzymatic parent proteins (only annotated with GO annotations) were 

assumed, or a number of  enzyme functions (EC numbers) that are not 

assigned to any sequence in the respective superfamily with high confidence 

(have no corresponding high-quality GO annotation), the family numbers 

produced by the unsupervised protocol clearly indicate an overdivision of  the 

superfamily in all cases but the Enolase one. In other words, these families 

cannot represent functional families. 
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Table 6.4. The DFXsuper and DFXunsuper partitionings of five functionally diverse enzyme domain 

superfamilies. The five Gene3D superfamilies processed correspond to the respective SFLD superfamilies 

introduced in Section 4.2.1.1. The number of produced families for both protocols and the number of 

different EC3/4 annotations associated with each superfamily are shown for comparative purposes; only EC 

annotations with corresponding high-quality GO annotations are counted.  

CATH code SFLD name DFXsuper 

performance 

DFXunsuper 

performance 

DFXsuper 

families 

DFXunsuper 

families 

EC4(3)s 

3.20.20.140 

 

Amidohydrolase 

 

94 94 44 114 29 (14) 

3.90.226.10 Crotonase 

 

93 92 65 115 18 (11) 

3.20.20.120 Enolase 

 

94 96 20 29 09 (05) 

3.40.50.1000 Haloacid 

dehalogenase 

90 88 85 326 46 (15) 

3.10.180.10 Vicinal oxygen 

chelate 

85 81 23 83 08 (06) 

 

Based on the considerations in the preceding paragraph, two important 

questions arise. First, why are the domain family numbers in Table 6.4 so high 

compared with the numbers of  different EC numbers associated with each 

superfamily? This general question refers to both protocols (in fact, to all 

automatic family identification methods discussed in this thesis), if  to 

different extents. Second, why are the performance values produced by the 

unsupervised protocol so high, despite the fact that the integrated 

performance measure used (see Section 4.2.2) penalises the division of  

functional classes (here: EC4s) across more than one family, respectively (in 

the same way that it penalises the mixing of  classes). This second question is 

addressed in the following. 
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6.1.5 Fairness of  the comparison 

In order to understand why the unsupervised protocol achieves high 

performance scores despite its apparent overdivision of  functional classes 

(lack of  sensitivity) one has to investigate the individual performance 

measures used. These have been introduced in Section 4.2.2: purity, edit 

distance and VI distance. While purity is a specificity measure, the other two 

measure sensitivity. Purity is a simple concept, has a fixed value range, and is 

not involved in penalising overdivision. Therefore, the two sensitivity 

measures have to be analysed further. Both edit and VI distance have a 

minimum (optimal) value of  zero but, unlike purity, no fixed upper bound. 

Instead, the maximum (worst) value depends on the size of  the clustered 

dataset (number of  sequences) and the number of  different functional classes 

(e.g., EC4s) that are defined, respectively. In principle, this lack of  

normalisation is not a problem when comparing the edit and VI distance 

values for different clustering protocols (here: family identification protocols) 

on the same dataset (here: a given superfamily).  

The (combined) performance values as stated in Chapter 4 and in the present 

chapter are derived by averaging over the three base measures (the purity value 

is doubled in this, to keep the balance of  specificity and sensitivity), 

respectively. However, before this averaging can take place, both the edit and 

VI distance values have to be normalised to the same range as the purity value 

(0-100%). This normalisation is done based on the initial value, respectively, 

that is, the value that is observed when all sequences are put in a single cluster 

(see Section 4.2.2). Since both these initial values are dataset-dependent (see 

above), it follows that, through normalisation, the relative differences in the 

observed values for edit and VI distance between different algorithms (here: 

DFXsuper and DFXunsuper) become less prominent (influential on the combined 

performance score) with increasing superfamily complexity (size and number 

of  functional classes). In other words, purity (specificity) gains a higher weight 
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in the combined performance score than edit and VI distance (sensitivity). 

Therefore, the overdivision of  functional classes is not penalised as much as 

mixing them anymore.  

The example calculations for the Amidohydrolase domain superfamily (CATH 

3.20.20.140) in Table 6.5 illustrate the above-described effect. As can be seen 

when comparing the top and bottom parts of  the table, a change in the initial 

edit distance value by one order of  magnitude (corresponding to, for example, 

the difference between a large, diverse and a small, less diverse superfamily) 

has a considerable impact on the overall performance score attained. The 

difference in performance between the two algorithms not only changes in 

sign but is also made 20 times more prominent, based on comparing the 

percentage difference in the performance scores in both cases (see Table 6.5, 

top vs. bottom). The example would work equally well for an analogous 

change in the initial VI distance value. 
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Table 6.5. The impact of edit distance normalisation on the calculation of overall family 

identification performance. This uses the performance scores attained for the Amidohydrolase domain 

superfamily to illustrate the impact of a change in the absolute value of initial edit (or VI) distance, which is 

dataset-dependent, on these scores. All measures (column headers) are described in Section 4.2.2. 

Partitioning Purity Edit 

distance 

E. d. % 

initial 

VI 

distance 

VI d. %  

initial 

Perfor-

mance 

initial 

 

100 1,324 100 5.05 100 50 

DFXsuper 91 18 

 

1.36 0.29 5.74 93.72 

DFXunsuper 97 57 4.31 0.68 13.47 94.06 

initial 

 

100 132.40 100 5.05 100 50 

DFXsuper 91 18 

 

13.60 0.29 5.74 90.67 

DFXunsuper 97 57 43.05 0.68 13.47 84.37 

 

In order to assess the overall impact of  the above-outlined bias in the 

performance measures that were used to compare different family 

partitionings, modified measures can be devised. In particular, the 

normalisation procedure for the edit and VI distance values (to derive 

percentages) can be changed to follow a ‘best-value’ oriented strategy, instead 

of  the original ‘worst-value’ oriented one. In other words, instead of  using the 

initial value as the 100% mark and deriving all other values as percentages 

accordingly (see Table 6.5), the best (i.e., lowest) value that was attained by any 

of  the compared algorithms can be used as the 0% mark and all other values 

derived accordingly. The advantage of  such modified, relative edit and VI 

distance measures would be their independence from the initial values, that is, 

superfamily size and functional diversity. 
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Table 6.6 shows how using a modified normalisation procedure as described 

above for both edit and VI distance would impact the performance calculation 

and comparison in the example introduced in Table 6.5. Arguably, the 

performance values attained when using the modified procedure (see Table 

6.6, bottom) reflect much more the good balance between specificity and 

sensitivity generally achieved by DFXsuper (and the frequent overdivision by 

DFXunsuper) that is further demonstrated in Table 6.7.  

In Table 6.7, two simple alternative measures for specificity and sensitivity 

were used to reassess the partitionings derived for the same five SFLD-related 

Gene3D superfamilies as listed in Table 6.4: the average number of  different 

EC4s per identified family (specificity) and the average number of  identified 

families per EC4 (sensitivity). As was already indicated by the number of  

families produced for each superfamily in Table 6.4, respectively, it can be 

seen that the DFXunsuper families exhibit considerably higher overdivision of  

the functional classes than those produced by DFXsuper. While this lower 

sensitivity is attended by a slightly higher specificity, as can be expected, the 

altered performance scores attained by using the modified normalisation 

procedure reflect well the overall better balance in the results of  the 

supervised method.  
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Table 6.6. The effect of a modified normalisation procedure on the calculation of overall family 

identification performance. This comparison extends on that in Table 6.5. It illustrates how the difference 

in the two methods’ performance scores for the Amidohydrolase domain superfamily changes sign and 

becomes much more prominent when the respective edit (and VI) distance values are normalised by the best 

observed values instead of the worst (initial) ones, respectively. All measures (column headers) are described 

in Section 4.2.2. 

Partitioning Purity Edit 

distance 

E. d. % 

initial 

VI 

distance 

VI d. %  

initial 

Perfor-

mance 

initial  100 1,324 100 5.05 100 50 

DFXsuper 91 18 

 

1.36 0.29 5.74 93.72 

DFXunsuper 97 57 4.31 0.68 13.47 94.06 

Partitioning Purity Edit 

distance 

E. d. % 

best 

VI 

distance 

VI d. %  

best 

Perfor-

mance 

initial 
100 1,324 1.36 5.05 5.74 51.78 

DFXsuper 91 18 

 

100 0.29 100 95.50 

DFXunsuper 97 57 31.58 0.68 42.65 67.06 
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Table 6.7. Correspondence of alternative performance measures with the performance scores 

attained when using the modified normalisation procedure. The five enzyme domain superfamilies 

analysed in Table 6.4 were reassessed using two simple measures for specificity and sensitivity (see main text). 

The relative performance scores attained when using the original measure in conjunction with the modified 

normalisation procedure are shown for comparative purposes. 

CATH code DFXsuper 

EC4s/fam

. 

DFXsuper 

fam’s/EC4 

DFXunsuper 

EC4s/fam. 

DFXunsuper 

fam’s/EC4 

DFXsuper 

rel. perf. 

DFXunsuper 

rel. perf. 

3.20.20.140 

 

1.15 1.52 1.05 3.12 94 67 

3.90.226.10 1.15 2.07 

 

1.14 2.73 74 67 

3.20.20.120 1.11 1.11 1.08 1.44 95 64 

3.40.50.1000 1.18 1.41 1.01 3.85 95 68 

3.10.180.10 1.15 1.88 1.00 5.25 87 66 

 

Figure 6.6 underlines that there is no strong correlation of  either method’s 

performance with superfamily size (a), sequence diversity (b), or functional 

diversity (c); the values for DFXunsuper and DFXsuper are shown in pink and blue, 

respectively. Note that the reason for the pattern apparent in the performance 

scores in Figure 6.6c is that the superfamilies were ranked by DFXsuper 

performance score prior to ranking them by functional diversity. Since several 

superfamilies are associated with the same number of  distinct EC3s 

(functional diversity measure), the performance scores for each of  these 

‘plateaus’ in the functional diversity curve in Figure 6.6c are sorted. The 

measures in Figure 6.6a and Figure 6.6c have wider ranges (right Y-axis, 

respectively) and therefore do not show plateaus; no similar pattern in the 

performance scores is thus observed. 
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Figure 6.6. The impact of superfamily size, sequence diversity and functional diversity on the 

performance of the DFX family identification protocols. The values for DFXunsuper and DFXsuper are 

shown in pink and blue, respectively. 
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For the two measures assessed in Figure 6.6a and Figure 6.6b, superfamily size 

and sequence diversity, DFXsuper yields the highest (close to 100%) 

performance scores (blue diamonds) at low and medium levels, that is, for 

those superfamilies ranking among the lower ~75%. This can be expected 

given the exceptional character of  the upper ~25% of  large and ~5% of  very 

large superfamilies. As discussed above, these exhibit considerable variability 

in sequence, function and annotation quality, and therefore represent (more) 

challenging targets for family identification. 

When assessing the dependence of  family identification performance on 

superfamily functional diversity (see Figure 6.6c), a clearer trend becomes 

apparent. As can be expected for the above-stated reasons, it becomes much 

more difficult to attain high performance scores above a level of  about five 

different EC3s that are associated with a superfamily (left from the left-most 

100% plateau in the performance scores of  both methods). Further, neither 

method yields a perfect performance score (100%) for a superfamily with 

more than ten different EC3s. Note that especially the analysis of  Figure 6.6c 

must be performed with the non-ideal measure (EC annotations) in mind (see 

also Section 6.2.1). 

6.2 Discussion 

The overall methodology behind the comparisons presented above is first 

discussed in the following, before the significance of  the observed 

superfamily and family size distributions is addressed in particular. 

6.2.1 Notes on performance assessment 

Notably, the comparisons made above are not benchmarks between the two 

family identification protocols; they cannot be, since one uses annotation data 

(an inherent advantage) and the other does not. Rather, they serve to 
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demonstrate the benefit of  using available high-quality function annotation 

data when identifying functional protein (domain) families, instead of  ignoring 

it. Specifically, how well the supervised protocol can ‘translate’ between the 

GO annotations of  individual proteins (protein domains) and their actual level 

of  functional similarity was measured. This necessary translation, in the case 

of  GO, is the downside of  using the annotation data, and makes supervised 

family identification a non-trivial task. 

Note that the comparison strategy followed in this chapter, namely the use of  

four-level EC annotations, is not ideal. The DFX pipeline follows a domain 

family concept that focuses on domain function, not whole-protein function 

(see Section 0). This allows for putting domain sequences with conserved 

function into the same family even in cases where the respective function (EC 

annotation) of  the parent proteins differs substantially. In particular, DFXsuper 

addresses this aim using several heuristics. This is not taken into account when 

using the whole-protein EC annotations for assessing the family partitioning 

performance of  the two protocols. In brief, multi-domain proteins with 

multiple enzyme functions can impact the functional purity measurements, 

and a mixing of  different whole-protein functions (at the highly specific EC4 

level) is penalised. However, these issues are not thought to render the 

presented results less relevant overall, since the results of  both DFXsuper and 

DFXunsuper are assessed in exactly the same manner. The relative performance 

signal is therefore not disturbed, only the absolute one. Yet, it has to be kept 

in mind that there is a fundamental difference between domain-based 

function annotations (e.g., from the SFLD) and protein-based EC annotations. 

This difference is highly relevant to both, family identification and 

benchmarking. 

In contrast to the DFX unsupervised family identification protocol (see 

Chapter 4), a true benchmarking of  the supervised protocol, against 

competing methods, does not seem feasible at this point. This is because no 
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existing method the author knows of  is similar enough in scope and aim, that 

is, tries to perform the above-outlined ‘translation’ task. Should more 

comprehensive domain family gold standard datasets become available in the 

future, such as the SFLD dataset that was used to benchmark the 

unsupervised protocol (see Section 4.2.1.1), and should these follow a domain 

family concept that is similar to the DFX one, as well as include non-enzyme 

sequences, further comparisons between the DFX protocols (and against any 

novel, competing methods) will become possible. It is further conceivable that 

a coarse benchmark of  the core term set strategy (the derivation of  domain-

specific GO annotations) of  DFXsuper, as described in Section 5.3.2, could be 

devised based on the InterPro2GO mapping (see Section 5.1.2), as this has 

been done before. 

6.2.2 The significance of  family size distributions 

With some caution, especially keeping in mind sequencing bias, the observed 

scale-free size distributions for families and superfamilies can be regarded as 

evolutionary fact. As a general rule, the most evolvable, most ancient and 

biologically most important folds, superfamilies and (based on the present 

results) families can be expected at the upper end of  a scale-free size 

distribution in each category. While structural stability and evolvability can be 

expected to be the most important factors for abundance (evolutionary 

success) on the fold level (Mirny and Shakhnovich 1999; Bloom, Labthavikul 

et al. 2006; Allen and Dunaway-Mariano 2009; Rorick and Wagner 2011), 

functional importance most likely becomes a decisive factor when ‘zooming 

in’ to the superfamily and family levels. Examples are the many evolutionary 

ancient, primary cellular processes that involve the binding of  nucleic acids: 

five of  the ten largest superfamilies in Gene3D (see Table 6.1) comprise 

domain sequences that are involved in such processes. In the future, it will be 

possible to study this relationship between functional importance and 
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abundance of  individual domain types in much more detail, on the family 

level (see, for example, Table 6.2). 
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Chapter 7. The DFX pipeline: summary and 
future work 

DFX is a pipeline for the identification, storage and assignment of  families 

within protein domain superfamilies. Its overall design, concept and 

implementation are discussed in Chapter 3. DFX embeds the large-scale 

sequence clustering method GeMMA, which is presented in Chapter 2, and 

two alternative protocols for family identification based on the clustering 

results, as discussed in Chapter 4 and Chapter 5, respectively. There, the 

performance of  either protocol is analysed primarily qualitatively. A 

corresponding quantitative analysis is presented in Chapter 6, where both 

protocols are compared based on the results of  the first large-scale run of  

DFX. 

7.1 Summary of  work 

The foundation for the DFX pipeline was laid with the development of  the 

GeMMA sequence clustering method; this had initially been used in isolation 

to derive protein domain families (Lee, Rentzsch et al. 2010). GeMMA is a 

highly modular and thus flexible implementation of  agglomerative hierarchical 

sequence clustering that uses profile-profile comparisons for high sensitivity 

and several heuristics for speed-up. For the latter goal, it was specifically 

designed to run in HPC environments. These characteristics are crucial for 

making DFX cope with the growing amount of  protein sequence data, which 

is an even more pressing problem when classifying protein domains: the large 

number of  multi-domain proteins implies that there will always be more 

domain than protein sequences. 

DFX uses a hybrid approach to establish families. Where high confidence 

information in the form of  protein function annotation data is available, this 

information is not available, the pipeline falls back to an unsupervised method. 
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It can be argued that this decision reflects the way in which a human curator 

would approach each individual superfamily much more than, for example, 

the universal use of  a ‘functionally blind’, unsupervised protocol. As more and 

more reliable biological information on individual proteins accumulates over 

time, it will be possible to identify families in a way that takes into account this 

knowledge in more and more superfamilies. 

The unsupervised family identification protocol (DFXunsuper) serves to identify 

families based on the GeMMA clustering results alone, in cases where a 

domain superfamily is not associated with high-quality protein annotation data. 

It is simpler and scales better than related established protocols, whilst 

reaching comparable or better performance. Unlike some of  the former, 

however, it so far depends on a one-off  training step (and is therefore not an 

ab-inito protocol in the strict sense). The implementation of  DFXunsuper, the 

training procedure and the application of  the protocol on both a small scale (a 

gold standard set of  superfamilies) and a large scale (a subset of  Pfam) are 

discussed in detail in Chapter 4. 

The supervised family identification protocol (DFXsuper) was developed to be 

able to exploit the growing body of  high-quality protein annotation data in 

domain family identification. About 75% of  all domain superfamilies in 

Gene3D are associated with such data and can therefore be processed using 

DFXsuper. The protocol uses Gene Ontology protein annotations to analyse 

the domain sequence clusters produced by GeMMA and subsequently selects 

a subset of  clusters with putative family character. DFXsuper therefore 

essentially groups domain sequences based on similarity in both sequence and 

function. As an important part of  this, the protocol derives domain-specific 

annotations in a heuristic manner. While a few methods exist that group 

whole-protein enzyme sequences by using the results of  sequence clustering 

and annotation data (see Section 5.1.1), the fact that these do not work on the 

domain level and use the EC annotation system makes them very different in 
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scope. DFXsuper therefore addresses a very specific, somewhat novel problem. 

The latter is discussed in detail in Chapter 5, which includes an in-depth 

qualitative analysis on the basis of  established biological knowledge. 

Using the DFX pipeline, a detailed picture of  the known and uncharacterised 

parts of  sequence and function space within all Gene3D domain 

superfamilies (currently more than 2,500) can be generated, in a fully-

automatic and consistent manner. The generated libraries of  domain family 

models (together more than 25,000) can then be used to assign the majority 

of  sequences in these superfamilies to one of  the identified families (see 

Section 6.1). Further, the DFX model libraries allow for whole-protein 

function prediction, using a newly introduced prediction framework that 

integrates the family information for all domains in the respective target 

proteins (see Section 3.3.7). 

7.2 Current usage and data availability 

The DFX pipeline was first run in a large-scale, fully-automatic manner in 

2010. This has produced more than 25,000 domain families for ~1,900 

superfamilies in Gene3D that were amenable to processing with DFXsuper 

(associated with functional information). The results of  this are analysed in a 

quantitative manner in Chapter 6.  

As of  October 2011, several in-house projects have used and are using the 

generated family data. These projects aim (i) to study the evolution of  domain 

function through the identification of  function-determining residues, (ii) to 

select putatively promising target proteins for structural genomics, (iii) to 

analyse the distribution of  protein functions in metagenomes and (iv) to study 

the structural and functional evolution of  ancient protein domain 

superfamilies (Dessailly, Redfern et al. 2010). 
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7.2.1 The Gene3D family level  

Based on the data generated in the first DFX run, a functional family level in 

Gene3D has recently been introduced and made available to the research 

community via the Gene3D website17. Web-services for on-demand domain 

family assignment and (potentially) domain-based protein function prediction 

will be added soon. For future maintenance, the pipeline was implemented in 

a highly flexible, configurable and user-oriented manner. Full reruns are 

planned on an annual basis, to take advantage of  newly added protein 

sequence and function data. Intermittent, incremental updates of  the families 

with each release of  Gene3D are planned additionally. This hybrid updating 

strategy is made possible by the implementation of  DFX as a model-based 

system, mimicking the strategy of  established family resources such as Pfam, 

SUPERFAMILY and Gene3D itself. 

7.2.2 DFX in protein function prediction 

A preliminary module for domain-based protein function prediction (see 

Section 3.3.7) was recently added to the DFX pipeline. Each DFX domain 

family is associated with a set of  GO function annotations. When all domains 

in a given (multi-domain) protein are assigned to their Gene3D superfamilies 

and, subsequently, to their DFX family, this module combines the functional 

information associated with each family and returns a range of  probabilistic 

GO term assignments. It is anticipated that this generic framework, that is, to 

elucidate the composite function(s) of  whole proteins by combining 

functional information on each of  their domains, could become a powerful 

tool. To this end, the DFX function prediction module should be further 

improved. 

                                            
17

 http://gene3d.biochem.ucl.ac.uk/Gene3D/ 
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One important point of  possible improvement of  the function prediction 

module is the integration of  the information coming from individual domains. 

For example, additional information on domain order and size (the fraction 

of  a protein that is covered by a given domain) could be used in up- or down- 

weighting the impact of  each domain in the function prediction procedure. 

Moreover, the occurrence count of  individual domain types within the same 

protein should be considered.  

In the long-term, it is conceivable that the occurrence (or non-occurrence) of  

highly conserved residue patterns is used to characterise the DFX domain 

families as either (primarily) catalytic or (primarily) binding domains. The 

same applies for the occurrence of  repetitive and low-complexity regions in 

transmembrane domains. This information could then also be used in protein 

function prediction, where catalytic domains may play a more important role 

than binding and transmembrane domains (this corresponds to the 

relationship between the GO ‘catalytic activity’ and ‘binding’ branches, for 

example, as described in Section 5.2.1).  

As a first large-scale assessment of  the potential that may lie in a domain-

based approach to protein function prediction, predictions were made and 

submitted for the about 50,000 target protein sequences of  the CAFA 

(Critical Assessment of  Function Annotations) 2011 function prediction 

challenge. While the detailed results of  this challenge have not yet been 

published in a manner that compares between the competing methods, a 

preliminary analysis of  the DFX results shows that there is much room for 

improvement. In particular, DFX appears to be in the medium performance 

range, among other methods that did not beat the performance of  the best 

baseline method used in CAFA, GOtcha (Martin, Berriman et al. 2004). It 

must be stressed in this context that the primary aim in developing DFX was 

not function prediction but establishing functional groups. Particularly the use 
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of  GO annotations makes these two distinctly different problems (see also 

Section 5.1.2). 

It will further be interesting to see the exact rates of  family assignment 

coverage (how many domain sequences can be safely assigned to one of  the 

established families) before and after scanning the whole Gene3D 

superfamilies with their respective DFX model libraries. Preliminary studies 

on the HUP superfamily, prior to the switch from using EC numbers to GO 

annotations in the development of  DFX, have shown promising results. An 

approximately three-fold increase in enzyme (domain) annotation coverage 

was reached, going from an initial annotation level of  ~20% to ~75% of  all 

sequences in the superfamily. Figure 7.1 illustrates this increase based on 

three-digit EC number functional families, using a domain sequence similarity 

network. The network nodes represent HUP domain sequence clusters with 

40% maximum inter-cluster sequence identity. The edges are based on a 

pairwise sequence similarity matrix of  the cluster representative sequences 

(one sequence per cluster) that includes all BLAST E-values of  10-5 or lower. 

Based on this, the network was laid automatically using the Organic layout 

option in Cytoscape. 
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Figure 7.1. The coverage of the HUP domain superfamily with EC functional family assignments before and after scanning with family-specific models. Each node in the 

domain sequence similarity networks shown corresponds to a CD-HIT 40% sequence identity cluster representative sequence. All nodes are coloured according to the functional (EC3) 

family assignment of the respective representative sequence. After establishing families with a DFXsuper-like protocol, only the sequences in the seed family clusters are annotated (left), 

reflecting the available high-quality EC annotations. After scanning all sequences with the model library, the annotation coverage increases (right). Edges represent pairwise BLAST E-

values of 10-5 or lower; Cytoscape with Organic layout was used. 
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The sequence similarity networks for the novel, GO-based DFXsuper domain 

families, which specifically focus on domain function, can be expected to differ 

remarkably from those obtained for families based on EC numbers and 

whole-protein function. In many cases, two domains whose parent proteins 

have different EC numbers (functions) will be assigned to the same domain 

family by DFXsuper, based on a putatively conserved domain function. This 

will translate into sequence similarity networks with fewer families (colours) 

but higher information content with regards to domain function instead of  

whole-protein function. Further, for superfamilies that contain domains from 

proteins with non-enzymatic functions, an increased coverage can be expected 

when using GO-based functional families. Figure 7.1 exemplifies the great 

potential of  the sequence similarity network paradigm when trying to shed 

light on the unexplored sequence space (families) within large domain 

superfamilies.  

7.2.3 DFX in the detailed study of  superfamilies 

While quantitative assessments such as those made in Chapter 6 can reveal 

interesting general trends about domain superfamilies and families, using the 

family data in detailed studies on specific superfamilies can lead to more 

immediate, intuitive and thorough insights into the evolution of  proteins. 

Prime examples of  such endeavours are the studies presented in Koonin and 

Tatusov (1994); Babbitt, Hasson et al. (1996); Aravind, Leipe et al. (1998); 

Aravind, Anantharaman et al. (2002); Vogel, Teichmann et al. (2003); 

Burroughs, Allen et al. (2006); Garza-Garcia, Harris et al. (2009); Dessailly, 

Redfern et al. (2010). A non-exhaustive list of  protein and domain superfamily 

studies from the last two decades is found in Appendix B. Importantly, in the 

context of  the present work, such studies can use the comprehensive 

information on known functional families provided by the developed pipeline 

as a starting and orientation point.  
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From the already conducted studies mentioned above, a generic framework to 

assess, organise and analyse the existing knowledge (gaps) concerning the 

sequence, structure and function plasticity of  individual domain superfamilies 

can be drafted. Importantly, this is not restricted to the pre-defined 

superfamilies in Gene3D. Such a protocol could work as follows. 

i) For a given superfamily, retrieve the latest sequence data from 

Gene3D and CATH. Alternatively, use a manually curated or 

automatically generated sequence signature(s) of  the superfamily for 

exhaustive searches against extant protein sequence databases, and 

subsequently assign the respective domains using the Gene3D web 

services (Yeats, Lees et al. 2011). Corresponding signature resources 

and tools are, for example, PROSITE, PRINTS (Attwood, Bradley 

et al. 2003) and MEME (Bailey, Boden et al. 2009). 

ii) Retrieve the latest protein function annotation data from UniProt-

GOA (and, potentially, further sources). Filter and map the 

sequence data to the annotation data. This can be done by feeding 

the two types of  data into the DFX pipeline’s data preparation 

module. 

iii) Run the DFX pipeline to retrieve a set of  functional families for the 

superfamily, based on current knowledge. Potentially novel families 

can be automatically identified by scanning all sequences in the 

superfamily against the DFX family model library and pooling those 

that hit a certain model best but not with a score that meets its 

exclusion threshold (see Section 3.3.6). Shared patterns of  this to 

specific models can be an even stronger indicator of  ‘betweenness’, 

that is, a novel family found between two known families in 

sequence space. 
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iv) Analyse any putatively novel, functionally uncharacterised families 

by their alignments (e.g., identify conserved residues) and any solved 

or modelled associated protein structures. Modules that help to 

identify the most ‘promising’ candidates for novel families quickly 

may be implemented for DFX in the future.  

v) Generate a sequence, or family, similarity network of  the 

superfamily, based on a matrix of  pairwise sequence or profile 

similarities generated with tools such as PSI-BLAST or HHSearch. 

In both cases, this matrix can be filtered for very close relationships 

beforehand, to make the network less ‘cluttered’ and more tractable 

with tools such as Cytoscape (Cline, Smoot et al. 2007) or VisAnt 

(Hu, Hung et al. 2009). In conjunction with the network, the family 

tree generated by GeMMA and optionally constructed phylogenetic 

trees can be analysed using tools such as iTOL (Letunic and Bork 

2011) or Archaeopteryx (Han and Zmasek 2009). 

vi) Put all the compiled information into context with information 

from the literature and public databases, using data mining tools 

such as iHOP (Hoffmann and Valencia 2004) or BioGraph (Liekens, 

De Knijf  et al. 2011).  

7.3 Recent improvements and future work 

The recently introduced chaining concept and its future use in DFX, as well as 

potential major and minor changes to the pipeline are discussed in the 

following sections. 

7.3.1 The chaining concept and a potential two-layer system  

The most recent addition to DFX is the chaining concept and detection 

algorithm as implemented in DFXsuper (see Sections 5.2.3 and 5.3.5). With this 
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having been implemented, the DFX pipeline will soon be rerun in full and an 

improvement in performance is expected. Specifically, this refers to the 

compliance of  the identified families with the domain family concept 

introduced in Section 0, putting the focus on domain function instead of  

protein function. This rerun will also include the processing of  all 

superfamilies that are not associated with functional information using the 

DFXunsuper protocol. In the long-term, it is anticipated that the DFXsuper 

chaining concept will be used to produce two layers of  domain families, 

corresponding to two different levels of  sequence and function conservation. 

This can already be achieved, by simply turning chaining detection on and off, 

but would require further modifications to the pipeline as a whole; for 

example, the introduction of  a second layer in DFXunsuper, for consistency 

reasons.  

A multi-layer approach can be beneficial and is followed by related resources 

such as the Conserved Domain Database (see Section 3.1.1). This is owing to 

the widely varying patterns of  sequence and function conservation in domain 

superfamilies, and the different usage scenarios for domain families. For 

example, while a very fine-grained family layer would be preferred in domain-

based protein function prediction, a coarser layer is more suitable when the 

functional and structural plasticity of  domain families and superfamilies is 

studied.  

In the context of  protein function prediction, a certain amount of  family 

overdivision (having several families that represent the same or very closely 

related functions; decreased sensitivity) is not problematic and can even be 

beneficial. Using several different, smaller models for the same function may 

lead to increased annotation coverage over using a single, large model; a 

similar strategy is followed in superfamily assignment by Gene3D and 

SUPERFAMILY.  
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When studying the evolution of  domain function in the context of  families 

and superfamilies, the focus in producing the families lies on sensitivity 

(coverage). Here, a certain degree of  functional impurity (decreased specificity) 

is not problematic and can even be beneficial. For example, shifts in 

functional specificity based on individual, specificity-determining residues can 

only be identified (with sufficient confidence) in family sequence alignments 

when these are large enough.  

7.3.2 Potential replacement of  GeMMA 

A more radical change to the DFX pipeline would be the total replacement of  

the GeMMA method by a better-performing clustering approach. In principle, 

such a replacement is straightforward, given the shared two-component 

architecture of  all family identification methods (see Section 2.1.3). In brief, 

this refers to the combination of  any type of  clustering method with either a 

supervised or an unsupervised clustering evaluation strategy. GeMMA was 

especially designed for large-scale clustering tasks in HPC environments. To 

speed up the clustering process, it also implements different heuristics. A 

method suitable to replace GeMMA would have to be able to cluster the same 

amounts of  data with the same or higher speed, but with higher accuracy. 

Such a method could so far not be identified. However, there exist promising 

candidates among the graph-based clustering methods (see Section 2.1.2.3). A 

general advantage of  graph-based methods when compared with GeMMA 

could be the combination of  speed and sensitivity. With regards to speed, they 

are similar to traditional hierarchical clustering methods (see Section 2.1.2.1) in 

the sense that an all-by-all similarity matrix of  data points must only be 

calculated once, initially. In terms of  sensitivity, however, graph-based 

methods can be expected to be superior to these traditional methods. As they 

work on a network of  pairwise relationships, they inherently take groupwise 

relationships between the data points (sequences) into account. Further, 

advances have been made in the implementation of  graph-based and other 
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clustering algorithms for use in HPC environments (Olman, Mao et al. 2009; 

Changjun 2010; Bustamam, Burrage et al. 2011; Miele, Penel et al. 2011; Yang, 

Zola et al. 2011). As the performance of  individual clustering methods can 

only be assessed in the context of  a specific aim, that is, a specific usage of  

the obtained partitionings, other methods would have to be compared with 

GeMMA based on the respective family partitionings produced by DFX 

before they could be considered to replace it. 

7.3.3 Potential replacement of  the unsupervised protocol 

A second DFX module that may be replaced entirely in the long-term is the 

unsupervised family identification protocol, DFXunsuper (see Chapter 5). This 

protocol is the embedded successor, or reformulation, of  an earlier approach 

based on the use of  generic thresholds with GeMMA in isolation (Lee, 

Rentzsch et al. 2010). For use in DFX, the sequence clustering and family 

identification steps have been entirely disentangled. This reflects the 

composite nature of  family identification protocols in general, as outlined 

above. Based on this, it would be possible to implement any type of  truly 

unsupervised, training-free clustering evaluation strategy to replace DFXunsuper 

in the long term.  

Different unsupervised clustering evaluation strategies have been successfully 

implemented in existing ab-initio protocols for family identification (Kelil, 

Wang et al. 2007; Brown 2008; Yang, Zhu et al. 2010). However, these 

methods are restricted to datasets of  small to medium size, owing to the 

‘conservative’, poorly-scaling hierarchical clustering strategies they employ. For 

example, none of  these methods runs in HPC environments. Strikingly, if  the 

clustering and clustering evaluation steps in these protocols at this point were 

uncoupled, as is the case in DFX, they could already be used in DFX, by 

feeding the GeMMA clustering results into the respective evaluation method. 

Even without any changes, ab-initio methods like CLUSS or SCI-PHY could 
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readily be used in DFX instead of  DFXunsuper, for superfamilies of  small to 

medium size. For large superfamilies, however, this is hindered by speed and 

memory constraints (see also Section 4.2.4.2). 

7.3.4 Further potential improvements 

Further modifications to the individual modules used by the DFX pipeline 

may be considered in the future. Possible changes with regards to the usage of  

domain architecture information in family identification are discussed in 

Section 5.5.3. The same information may be used to improve the naming of  

domain families (see Section 3.4.3). In addition, potential modifications in the 

handling and filtering of  both domain sequence and protein function 

annotation data, the two main types of  input data for DFX, are considered in 

Sections 3.4.1 and 5.5.3, respectively.  

7.4 DFX in the context of  other novel methods 

Following and now accompanying the sequence data ‘explosion’ (Cochrane, 

Karsch-Mizrachi et al. 2011; Magrane and Consortium 2011), a substantial 

and continuous increase in available protein structure data has been observed 

over the last decade (Berman, Westbrook et al. 2000; Rose, Beran et al. 2011). 

Driven to a large extent by structural genomics initiatives (Dessailly, Nair et al. 

2009), this has remarkably increased the sequence coverage of  the two major 

structure-based domain superfamily resources, SCOP/SUPERFAMILY and 

CATH/Gene3D (see Section 1.5.2.1). At the same time, sequence-based 

protein family resources have become more and more enriched with data on 

protein function, and thus more valuable to researchers (Jaroszewski, Li et al. 

2009; Bateman, Coggill et al. 2010; Roberts, Chang et al. 2011). This was made 

possible by worldwide biochemical research into protein function, and the 

improved formalisation, curation and distribution of  its results, primarily by 

the Gene Ontology project. 
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Based on the above observations, it is no coincidence that the domain 

superfamily resources, SUPERFAMILY and Gene3D, increasingly aim to 

incorporate functional data, following their protein family relatives. Especially 

in the case of  promiscuous domains that appear in proteins with many 

different functions, this cannot be done in a specific manner on the 

superfamily level. A sub-classification of  superfamilies into families is 

therefore necessary. It further poses the challenge of  mapping between 

whole-protein function assignments and the (putative) functions of  individual 

domains. Both the family identification and functional characterisation 

(mapping) tasks were therefore first approached manually.  

SCOP included a family level below the domain superfamily from the 

beginning (Murzin, Brenner et al. 1995), combining a clustering approach with 

manual curation (see Section 1.5.2.1). SUPERFAMILY adopted this second 

layer a decade later (Gough 2006; Wilson, Madera et al. 2007) and, at the same 

time, started to make function assignments at the superfamily level, using a 

specifically designed ontology (Vogel, Teichmann et al. 2005). Only very 

recently, and therefore not discussed in the present work, SUPERFAMILY 

then started to assign GO terms to both its domain superfamilies and families. 

This is done in a probabilistic manner, using a newly developed protocol (de 

Lima Morais, Fang et al. 2011). In conjunction with this, the resource has 

introduced a trimmed-down version of  GO for domain function assignment, 

dubbed the ‘Structural Domain Functional Ontology’. 

CATH and Gene3D have long been incorporating external protein function 

annotation data (Lee, Grant et al. 2005; Pearl, Todd et al. 2005); however, until 

very recently both had neither a family level nor a means of  associating their 

domain superfamilies with functional information. The development of  the 

DFX pipeline has now made it possible to solve both problems at once. The 

conceptual and methodological differences and similarities between the novel 

SUPERFAMILY and Gene3D approaches to domain function will yet have to 
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be studied, and the results of  such study may well be mutually inspiring. One 

important difference is, however, immediately obvious. In the case of  

SCOP/SUPERFAMILY, the identification of  domain families has so far been 

a largely manual effort. In the case of  Gene3D, families have been established 

in a fully-automatic manner, using DFX. 

7.5 Final remarks 

Based on the very recent addition of  functional domain families to the 

SUPERFAMILY and Gene3D databases, as outlined in the above section, it is 

clear that the concepts of  the protein domain family and protein domain 

function will be a necessary and active area of  research for the foreseeable 

future. Related, highly curated resources that are under active development 

and will help to sharpen these concepts are the Structure-Function Linkage 

Database (SFLD; see Section 4.2.1.1), the Conserved Domain Database 

(CDD) and, of  course, Pfam. First and foremost, however, the notion that 

there is such a thing as ‘conserved domain function’ (see Section 5.1.3) seems 

to be more and more acknowledged by resources and researchers alike.  

The further development of  the Gene Ontology annotation system may also 

impact protein domain research. There is still much room for improvement of  

the GO (see, for example, Section 5.2.1), and it is conceivable in the long-term 

that it will incorporate a concept of  local (e.g., domain) functionality within 

proteins; a starting point for this could be the Protein Ontology project 

(Natale, Arighi et al. 2011). The experimental community is also increasingly 

striving for large-scale, coordinated and collaborative efforts such as the 

Enzyme Function Initiative (Gerlt, Allen et al. 2011) and the COMBREX 

project (Roberts, Chang et al. 2011). This means that the elucidation of  

protein function, as the last and – from a biologist’s point of  view – most 

important part of  the sequence-structure-function triad, may soon enter an 

era of  ‘high throughput’. 
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On a more specific note, it can be expected that the focus of  bioinformatics 

research in the area of  protein function will shift slightly, from single-protein 

function prediction (which has already reached a high level of  sophistication) 

towards the accurate prediction of  groupwise functional relationships between 

proteins. This refers to both similarities in molecular function and process 

function, and is particularly relevant to family identification and functional 

enrichment analyses in the -omics fields (Chagoyen, Carazo et al. 2008; 

Chagoyen and Pazos 2011; Chitale, Palakodety et al. 2011). The network 

paradigm will play a more and more important role in capturing and 

visualising such group-wise relationships (Frickey and Lupas 2004; Cline, 

Smoot et al. 2007; Hu, Hung et al. 2009); examples for this are sequence 

similarity networks (Song, Joseph et al. 2008; Atkinson, Morris et al. 2009) and 

functional linkage networks (Marcotte, Pellegrini et al. 1999; Hu, Hung et al. 

2009; Rentzsch and Orengo 2009; Szklarczyk, Franceschini et al. 2011).  

The task of  translation between the available knowledge on the functions of  

individual proteins (or domains) and the functional families they form has 

become a challenge of  its own. This is because this knowledge is frequently 

incomplete (or incompletely captured) and sometimes erroneous (or 

erroneously captured) (Jones, Brown et al. 2007; Schnoes, Brown et al. 2009). 

In this context, the success of  the Gene Ontology represents both ‘a blessing 

and a curse’, where the former refers to annotation coverage and the latter to 

annotation diversity, that is, the highly varying quality of  individual 

annotations and their inconsistent usage by different groups and annotators 

(Costanzo, Park et al. 2011). 

It has repeatedly been argued that the protein domain is the key unit of  

protein function evolution (Tatusov, Altschul et al. 1994; Storm and 

Sonnhammer 2003; Koonin 2005; Marchler-Bauer, Anderson et al. 2005; 

Bashton and Chothia 2007; Song, Sedgewick et al. 2007; Song, Joseph et al. 

2008). Therefore, they should be increasingly focussed on studying this 



CHAPTER 7. THE DFX PIPELINE: SUMMARY AND FUTURE WORK  

 286 

evolution, instead of  whole genes or proteins. In the long term, the 

accumulating knowledge about domains and a more thorough understanding 

of  their specific means of  evolution (see Section 1.1.2) may lead to substantial 

redefinitions and changes in the use of  concepts like orthology and paralogy 

(Song, Joseph et al. 2008).  

Already at this point, some researchers differentiate between whole-protein 

orthology and ‘domain orthology’ (Storm and Sonnhammer 2003; Dessimoz, 

Cannarozzi et al. 2005). In principal, such neologisms only express what has 

long been observed in (multi-domain) proteins. The importance of  conserved 

domain functions in catalysis and binding is more and more acknowledged in 

both bioinformatics analyses (Ibrahim, Eldeeb et al. 2011; Itzhaki 2011; Luo, 

Pagel et al. 2011; Xie, Jin et al. 2011) and experimental studies (Carducci, 

Perfetto et al. 2011; Spitzweck, Brankatschk et al. 2011; Tricker, Arvand et al. 

2011). Importantly, different drugs frequently target different domains of  one 

and the same protein, for example, in the case of  the Epidermal Growth 

Factor Receptor (EGFR), a key player in different types of  cancer 

(Overington, Al-Lazikani et al. 2006). 

The study of  the functional plasticity of  protein domain superfamilies, to 

which this work can hopefully contribute, is an endeavour that benefits 

directly from the concerted efforts mentioned above. Only because more and 

more protein functions are experimentally validated and carefully annotated 

can domain-specific functions be identified and the respective sequences 

grouped, to study their evolution. Only because more and more protein 

structures are solved can the respective structural domains be classified in 

resources such as SCOP and CATH and subsequently detected in proteins on 

a large scale. And, finally, only when methods are developed that allow for a 

biologically sound grouping of  proteins and domains by their (annotated) 

functions can the evolution of  function in protein and protein domain 

superfamilies be studied efficiently. Apart from providing intriguing insights, 
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as exemplified by many of  the works listed in Appendix B, there is good 

reason to hope that such studies may also have an impact on medical research 

and drug discovery in the long term. This is because they can put findings 

about individual domains into context with the ‘wider’ picture that is provided 

by their superfamilies. 
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Appendix A – HPC implementation of  GeMMA 
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Even with the heuristics described in Section 2.2.3, the first execution of  

GeMMA on a large sequence dataset can still involve hundreds of  millions of  

cluster comparisons. On a single standard desktop PC, the clustering process 

takes hours to days for datasets up to ~10,000 sequences and weeks or 

months for larger sets. Therefore, in addition to implementing the heuristics 

described above, GeMMA was designed as a distributed HPC protocol. More 

specifically, the sequence alignment, profile generation and profile comparison 

steps (as the major speed bottlenecks) were made distributed tasks. In each 

step, the overall workload is distributed evenly among a number of  work 

nodes (see Figure A.1). 

A.1 Challenges 

The HPC implementation of  GeMMA posed different challenges on the 

technical level, mainly due to the iterative nature of  the protocol. In particular, 

all cluster comparisons carried out in a given iteration have to finish before 

any merging can take place, and vice versa. The GeMMA master script 

therefore has to run on the head node (the node the user can login to and 

submit jobs) for the time of  (at least) an individual GeMMA round; this can 

mean minutes up to weeks. This is a problem since HPC systems in the 

scientific field are usually shared resources. On such systems, the execution of  

user tasks on the head node is normally deprecated. The head node has to run 

a multitude of  persistent tasks related to job scheduling and user account 

control. Consequently, both CPU and memory usage by user tasks have to be 

kept to a minimum. For purely serial HPC workflows, this is normally not a 

hindrance: the head node is used for job submission and collection of  results 

only, often on a one-off  basis. Examples would be comparing a large set of  

sequences or carrying out a large number of  independent mathematical 

calculations.  
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Based on the constraints of  shared HPC systems outlined above, the CPU 

and/or memory requirements of  the GeMMA master script had to be kept to 

a minimum. In contrast, the respective systems usually impose very liberal (or 

no) limits on the usage of  disk space. Further, the prices for storage media 

continue to fall (Walter 2005), much more rapidly than RAM prices. Whenever 

a program requests more than the available amount of  physical memory, 

modern operating systems automatically cache data structures in files, that is, 

they provide ‘virtual’ memory. However, this swapping process can severely 

slow down memory-intensive tasks. For this reason, it was important to follow 

an approach that avoids the holding or sorting of  large data structures in 

memory from the outset. 

The two largest persistent data structures in the case of  GeMMA are the pairs 

matrix (capturing which pairs of  clusters have and which have not yet been 

compared) and the results matrix (storing all so-far produced cluster similarity 

values). While the pairs matrix shrinks as the clustering process proceeds, the 

results matrix grows. Whenever clusters are merged, any entries in these 

matrices that relate to one or both of  the merged (no longer existent) partners 

are removed. GeMMA implements memory-efficient storage and updating 

strategies for both data structures. This is explained in detail in the following 

two sections. 



 

 311 

compare SC cluster pairs in each of 

N = Citer ÷ SC compare jobs

merge cluster pairs 

and create Clnew

new clusters

randomly select 

Citer cluster pairs 

from pairs matrix

start with 

all possible 

pairs

stop if no 

pair is 

similar 

enough

head node

work node

align SA new clusters in each of 

N = Clnew ÷ SA align jobs

profile SP new clusters in each of 

N = Clnew ÷ SP profile jobs

update pairs matrix

compare SC cluster pairs in each of 

N = Citer ÷ SC compare jobs

merge cluster pairs 

and create Clnew

new clusters

randomly select 

Citer cluster pairs 

from pairs matrix

start with 

all possible 

pairs

stop if no 

pair is 

similar 

enough

head node

work node

align SA new clusters in each of 

N = Clnew ÷ SA align jobs

profile SP new clusters in each of 

N = Clnew ÷ SP profile jobs

update pairs matrix

 

Figure A.1. The HPC implementation of GeMMA. A GeMMA round starts with the first iteration, at the 

point indicated by the green star. The number of cluster pairs to compare Citer (see Section 2.2.3.2) and the job 

sizes SC, SA and SP are dynamically calculated in each iteration, respectively. The number of newly created 

clusters Clnew depends on the number of merges made. Note that after round termination (red star), 

GeMMA can be executed on the set of remaining clusters, using a lower similarity threshold value. Lowering 

the threshold gradually over several rounds of GeMMA is important for the comparison sampling heuristic 

described in Section 2.2.3.2to work. The graphics are taken from Creative Commons.  
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A.2 The pairs matrix 

When GeMMA is first executed on a given set of  starting clusters it assigns a 

unique cluster number to each cluster, starting from one. The program then 

generates a sparse (symmetrical) matrix of  all possible cluster pairs. It holds 

only a single bit of  information for each cluster pair, indicating whether the 

pair has already been compared or not. It can therefore be kept in relatively 

little memory. For each cluster (matrix row) a bit vector is generated that holds 

the information about all possible comparisons of  this cluster with any other 

cluster (matrix columns). The ‘raw’ memory requirement of  this data structure 

in bytes B, depending on the number of  initial clusters N, and disregarding 

any additional overhead produced by the interpreter, is therefore given by:  

82
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Initially, all matrix fields are set to ‘false’. At the start of  each GeMMA 

iteration, following the workflow in Figure A.1, Citer cluster pairs are randomly 

selected from all pairs that have not been compared yet (Cleft). This translates 

to randomly indexing the pairs matrix until Citer pairs with a ‘false’ value have 

been found. The lower of  the two cluster numbers indexes the list of  bit 

strings (matrix rows). The higher number indexes the bit number (matrix 

column) in the respective string. If  Cleft does not exceed Citer, randomisation is 

not necessary and all ‘false’ entries of  the pairs matrix are selected. 

According to the calculated settings for the compare job size SC and the 

number of  jobs N (see Section A.4), the subset of  Citer comparisons is then 

split into equally sized parts, to be processed in a distributed manner. 

Subsequently, a number of  cluster pairs are merged based on their calculated 

similarities. The pairs matrix is then updated as follows. First, for all pairs that 

have been compared, the respective matrix fields are set to ‘true’. Second, 

whenever two clusters are merged their matrix rows are deleted (the two bit 
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strings are set to be empty) and their columns (the two respective positions in 

all other bit strings) are set to ‘true’. Third, each new cluster that is produced 

by merging two old clusters is assigned a unique cluster number (the highest 

existing cluster number incremented by one). For each new cluster, a new row 

(bit string) and a new column (position in all other bit strings) are added to the 

matrix, with all fields set to ‘false’, respectively.  

Further to reduce the memory footprint of  the bit matrix used, an internal 

offset is subtracted from all cluster numbers when indexing the matrix. This is 

the number of  the cluster with the lowest cluster number that exists at any 

point in the clustering process, respectively. This offsetting is made possible 

by the fact that cluster numbers are never reused, that is, the numbers of  

newly created clusters are always higher than those of  clusters created earlier 

in the process. 

A.3 The results matrix 

In traditional hierarchical clustering approaches, for example using average 

linkage, the pair-wise similarities between all data points are calculated prior to 

clustering and kept in memory throughout the whole process. Clusters are 

compared based on the pre-calculated similarities between the data points they 

contain. In contrast, the GeMMA protocol continuously produces new cluster 

profiles to be compared, while old ones become obsolete. Further, sequence 

datasets are clustered with GeMMA in several consecutive rounds, decreasing 

the cluster similarity threshold value after each round (see Section 2.2.3.2).  

The strategy used to store cluster comparison results in GeMMA is based on 

two rules. First, any comparison results that do not meet the threshold value 

set in a given round should be stored to avoid re-calculation in following 

rounds, where a lower threshold value is set. Second, it would be inefficient 

and should therefore be avoided to keep comparison results for clusters that 

have already undergone merging (and thus no longer exist).  
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Figure A.2 The life-cycle of the results file(s). This flowchart illustrates how HT-GeMMA stores and 

updates the cluster similarity matrix. Once all cluster comparisons for a given iteration (top, left) have been 

completed, the results are collected from the individual results files, to be stored and sorted in results.current in 

order of decreasing similarity. If any stored results from prior HT-GeMMA rounds (with a higher cluster 

similarity threshold value) are found, those which meet the current threshold value are merged into 

results.current. This list is then traversed top-down and all similar enough cluster pairs are merged into new 

clusters. Any results not meeting the current threshold value (as indicated by the dashed line) are 

intermediately stored in results.tokeep, which is then merged with results.kept. The latter is initially empty and 

grows with each iteration; obsolete results are constantly removed while the order of decreasing similarity is 

upheld. At program termination results.kept is merged with results.stored (bottom, left). 

For memory efficiency, the GeMMA results matrix was implemented in a file-

based manner (see Figure A.2). Accordingly, the strategies for updating the 

matrix had to be optimised for speed, that is, for minimising disk I/O. Most 

importantly, whenever clusters are merged (insertion of  new, and deletion of  

obsolete, results), the top-down sorted order of  results is maintained in the 

respective files. In this manner, the merging process can be implemented as a 

simple traversal through the list of  current results: any pair more similar than 

the cluster similarity threshold value set is merged, until either an insufficiently 

similar pair or the end of  the list is reached. Note that constantly maintaining 

the sorted order of  results is more time-efficient than repeatedly sorting the 
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respective (large) files from scratch. Figure A.2 illustrates in detail how 

GeMMA stores results within individual iterations (results.current), within 

individual rounds (results.kept) and between subsequent rounds (results.stored). 

A.4 Resource utilisation 

Apart from making the GeMMA HPC implementation memory-efficient, 

another aim was to optimise HPC resource utilisation. In a typical large-scale, 

shared HPC system the job queuing systems often have to handle tens of  

thousands of  jobs simultaneously, assigned to hundreds of  different users. For 

this scheduling to work efficiently, users have to provide a maximum wall time 

setting for each job, that is, the maximum time a job is estimated to take until 

completion. Correctly setting this parameter is important for two reasons. 

First, shorter wall time settings often make jobs start earlier. Second, and 

more importantly, the scheduler terminates any job that exceeds its wall time 

limit. In general, submitting very small (quickly finishing) or very large (time-

intensive) jobs is not considered ‘good practice’ on HPC systems. Small jobs 

can create considerable overhead, because the scheduling process can take 

more time than the job itself  takes to finish. Large jobs tend to block the 

shared HPC resources for too long and are thus ‘penalised’ by the scheduler. 

This means that it commonly takes a long time before such jobs are submitted.  

For GeMMA jobs, a relatively stable and predictable wall time is desired both 

for performance and monitoring reasons. In the interests of  maximising 

utilisation and avoiding job loss, the job size S for all job types is dynamically 

calculated in each GeMMA iteration, while the wall time setting is kept 

constant. The formula determining S is: 

L

S
S

max
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Smax is the maximum job size and L is the number of  sequences found in the 

largest existing cluster. With increasing L, S decreases. S is further kept within 

fixed upper and lower boundaries, currently set to 10,000 (Smax) and 10, 

respectively. These values are chosen according to the processing power 

(speed) of  the individual work nodes and the desired range of  job runtimes. 

To ensure a good utilisation and fair sharing in the case of  shared HPC 

resources, GeMMA is set up by default to generate jobs that do not take less 

than five or more than 120 minutes. The dynamic calculation of  S is to ensure 

that all jobs fall in this range. 

To balance the workload evenly among all jobs within a given GeMMA 

iteration it is not sufficient for each job to have the same size. The latter refers 

to the number of  individual instances of  the same task type in a single job, for 

example, the number of  pair-wise cluster comparisons. Rather, the size of  the 

input data for each instance has to be taken into account as well. When 

processing sequence superfamilies with GeMMA (see Chapter 3), the clusters 

are empirically found to show a scale-free size distribution in late stages of  

clustering. Larger clusters take longer to align, and larger alignments lead to 

increased profile generation times. Further, longer profiles take longer to 

compare than shorter ones. It is therefore not only to provide a representative 

sampling of  comparisons when the pairs matrix is assessed randomly (see 

Section 2.2.3.2) but also to distribute the workload evenly among individual 

HPC jobs. 

A.5 Job monitoring and rescue 

There are two main sources of  potential errors or inconsistencies during a 

GeMMA execution. First, the somewhat ‘fragile’ character of  HPC systems in 

general, primarily on the hardware end. In most situations, problems emerging 

from this can be detected and rectified through constant job monitoring. 

Second, the complexity that is generated when concurrent instances of  
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GeMMA that cluster different sequence datasets are run concurrently on the 

same HPC system. This parallel strategy is generally advisable, since it 

maximises HPC utilisation and therefore leads to an overall speed gain. The 

problems it could create are avoided by a rigorous job naming scheme. 

The most frequent causes of  job loss (premature termination) and failure (the 

production of  erroneous output) on HPC systems are hardware related. In 

particular, this refers to (i) work nodes being shut down or rebooted and (ii) 

problems with the shared or local storage systems. The iterative workflow of  

GeMMA could potentially come to an indefinite halt in the case of  such 

events. The GeMMA master script that runs on the head node therefore 

periodically checks the numbers and identifiers of  any already finished jobs. 

At the same time, it checks how many and which jobs are still running. 

Whenever jobs that have not finished are also not running, this indicates job 

loss. In this case, the ‘missing’ jobs get resubmitted.  

The introduction of  unique instance and job identifiers for all jobs, in the 

form of  a composite job name, was necessary to be able to run multiple 

GeMMA instances in parallel on the same HPC system. In this way, each 

instance can unambiguously identify its daughter jobs and monitor their 

progress. The number of  sequence datasets that can efficiently be processed 

in parallel depends on their size and the overall utilisation of  the HPC system 

in use. However, the parallel strategy is generally advisable. This is due to the 

hybrid (partly serial and partly parallel) nature of  the GeMMA workflow: 

while one GeMMA instance is busy with sorting comparison results and 

merging clusters on the head node, another instance can run jobs on any 

available work nodes. 
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Appendix B – Superfamily studies 1990-2010 
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