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Abstract 

The relation between skill in simple addition and subtraction and more general math 

achievement in elementary school is well established but not understood. Both the intrinsic 

importance of skill in simple calculation for math and the influence of conceptual knowledge 

and cognitive factors (working memory, processing speed, oral language) on simple 

calculation and math are plausible. The authors investigated the development of basic 

calculation fluency and its relations to math achievement and other factors by tracking a 

group of 259 UK English children from 2nd to 3rd grade. In both grades the group did not 

retrieve the solutions to most problems but their math achievement was typical. Improvement 

in basic calculation proficiency was partially predicted by conceptual knowledge and 

cognitive factors. These factors only partially mediated the relation between basic calculation 

and math achievement. The relation between reading and math was wholly mediated by 

number measures and cognitive factors. 

 

 Keywords: mathematical achievement; simple addition; working memory; reading; 

young children  
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Basic Calculation Proficiency and Mathematics Achievement in Elementary School Children 

Basic calculation is the addition or subtraction of numbers with sums less than 20 

(e.g. 8 + 7, 15 – 7). Although research consistently finds that basic calculation skills covary 

with maths achievement (e.g. Durand, Hulme, Larkin, & Snowling, 2005; Geary & Brown, 

1991; Hecht, Torgesen, Wagner, & Rashotte, 2001; Jordan, Hanich, & Kaplan, 2003a, 2003b; 

Russell & Ginsburg, 1984; Siegler, 1988) the explanation for this relationship remains 

uncertain.  

The importance of basic calculation is emphasized in elementary education but 

opinions vary concerning both what constitutes proficiency in this skill and how to develop it 

(Baroody, 2003, 2006; Cowan, 2003). These views are likely to affect what children learn at 

school and home.  

Educational views of basic calculation proficiency 

The traditional view equates proficiency with having the solutions to basic 

calculations stored in long term memory so that they can be readily retrieved. Proponents of 

this view consider proficiency develops through rote memorization and practice. Developing 

proficiency is important for mental and written arithmetic involving larger numbers, the 

application of arithmetic to everyday life, and progress in mathematics.  

Many elementary mathematics educators in the US and UK still emphasize 

memorized solutions as the basis for computational fluency, but regard conceptual knowledge 

as playing an important part in their development (Askew, 1998; Reys, Suydam, Lindquist, & 

Smith, 1998). Baroody (2006) describes this view as ‘conventional wisdom’ (p.22) and 

observes that it is based on three separate phases of development. First, children solve basic 

calculation problems by counting and using their fingers. In the second phase, they use 

arithmetical principles and knowledge of other combinations, for example solving 12 – 6 by 

using both their understanding that subtraction is the inverse of addition and their knowledge 
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of the relevant addition fact, 6 + 6 = 12. Solving problems by using principles, related facts, 

or decomposing numbers into parts constitutes the family of strategies known as 

decomposition. Finally, the child will simply retrieve the solutions (Reys et al., 1998).  

The English National Curriculum (Department for Education and Employment, 1999) 

follows conventional wisdom. It prescribes that by the end of their third year of schooling, 

children should know principles such as the inverse relation between addition and subtraction 

and the commutativity of addition, and be able to decompose single digit numbers above 5, 

such as 8, into parts consisting of 5 and another number, such as 5 and 3. They should use 

this knowledge to solve addition and subtraction problems when they cannot retrieve the 

solution. By the end of their fourth year (equivalent to US 2nd Grade), English children 

should solve all the basic calculations by retrieval. To achieve fluency in calculation, pupils 

receive a daily numeracy lesson with a focus on mental and oral calculation. Since the 

introduction of the National Curriculum, England has made the greatest advance in math 

achievement by 4th grade pupils of any country sampled by the Trends in International 

Mathematics and Science Study (TIMSS, Mullis, Martin, & Foy, 2009).  

An alternative to conventional wisdom is the number sense view, advocated by 

Baroody (2006). On this view, proficiency in basic calculation means accurate solution by 

any efficient strategy not just retrieval. Proficiency is believed to result from understanding 

number operations, patterns and principles (Baroody, 1999; Canobi, Reeve, & Pattison, 

1998). Both traditional and conventional wisdom views imply that satisfactory mathematical 

progress depends on knowing the solutions to every basic calculation problem. The number 

sense view does not. We now consider these views in relation to research on basic calculation 

skill and diversity in math achievement.  

Basic calculation skill and diversity in math achievement 
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 Researchers have primarily used two paradigms to assess basic calculation 

proficiency: strategy assessment tasks (e.g. Geary, Hoard, Byrd-Craven, & DeSoto, 2004); 

and forced-retrieval tasks (e.g. Russell & Ginsburg, 1984). In strategy assessment tasks, 

children are told they can use any method to solve problems. Knowledge of basic calculation 

solutions is equated with accurate retrieval. Children are credited with retrieving the answer 

on the basis of a mixture of observation and self-report. In forced- retrieval tasks, retrieval is 

inferred from correct answers given within 3s. 

Studies from both paradigms have reported inaccurate retrieval is associated with 

poor math achievement as both traditional and conventional wisdom views would expect. 

Less compatible with either view is the infrequency of retrieval by normal children: Geary et 

al. (2004) found retrieval was used to solve fewer than 40% of single digit addition problems 

in Grade 3 and fewer than 50% in Grade 5. One explanation for the discrepancy is that 

children’s retrieval use yields underestimates of their knowledge of solutions. Siegler (1988) 

identified a group of children as perfectionists. Perfectionists used retrieval on fewer than 

50% of problems, considerably less often than good students and not-so-good students, but 

when they did retrieve they were extremely accurate, above 95% correct. Despite their low 

levels of retrieval, perfectionists matched good students in math achievement. The Siegler 

and Shrager (1984) model of strategy development could account for perfectionists as setting 

a higher confidence threshold for reliance on retrieved answers. Like Siegler’s perfectionists, 

the Grade 3 and 5 typically developing pupils in Geary et al. (2004) were extremely accurate 

when they did use retrieval, so perhaps they too had higher confidence thresholds. 

There is some doubt as to whether retrieval is the only basis for success on forced-

retrieval tasks (Jordan, Hanich, & Kaplan, 2003a). Decomposition in particular is a strategy 

associated with fast response times (Siegler, 1987a). The use of decomposition increases 
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substantially with grade (Geary et al., 2004; Siegler, 1987a). So success on forced-retrieval 

tasks may reflect a mixture of retrieval and decomposition solutions.  

Research on children’s strategies provides a further challenge for the traditional view. 

Young children often use their fingers when solving arithmetical problems, either to support 

counting strategies or to represent the numbers (Siegler, 1987b; Siegler & Shrager, 1984). 

Advocates of the traditional view would discourage finger use as it indicates reliance on 

back-up strategies rather than retrieval. But this may be misguided, since children can be 

more accurate when using their fingers (e.g. Siegler, 1987b) and accurate solutions increase 

the likelihood of subsequent retrieval (Siegler, 2003). Enhanced accuracy with finger use may 

be limited to younger children and problems with smaller numbers (Jordan, Kaplan, 

Ramineni, & Locuniak, 2008). In the present study we examine the frequency of finger use in 

2nd and 3rd grade and its relation to strategy and accuracy.  

A simple interpretation of the three-phase depiction of strategies in the conventional 

wisdom view is that children progress in strategy use from counting to decomposition to 

retrieval. However, research indicates that children use multiple strategies across problems 

and even on the same problem they do not follow a fixed sequence of development (Siegler, 

1987a, 1996; Siegler & Shipley, 1995). Decomposition is the back-up strategy with the 

highest associated accuracy (Siegler, 1987a) but models of strategy use allow for shifts to 

retrieval following accurate execution of any strategy, not just decomposition. In this study 

we examine the relation between correct strategy use in 2nd and 3rd grade to determine 

whether retrieval in 3rd grade is particularly or exclusively associated with correct 

decomposition or retrieval use in 2nd grade. 

The number sense view implies that conceptual knowledge explains the relationship 

between basic calculation proficiency and math achievement. Two aspects of conceptual 

knowledge might be relevant. One is knowledge of the natural number system (Case et al., 



Running head: BASIC CALCULATION   8 

 

1996; Cowan, Donlan, Newton, & Lloyd, 2005; Donlan, Cowan, Newton, & Lloyd, 2007; 

Griffin, 1997, 2005). The other is knowledge of calculation principles (Hanich, Jordan, 

Kaplan, & Dick, 2001; Russell & Ginsburg, 1984). Previous research suggests that 

knowledge of the natural number system is particularly important in predicting variation in 

math achievement (Gersten, Jordan, & Flojo, 2005; Donlan et al., 2007; Jordan, Kaplan, 

Locuniak, & Ramineni, 2007). In contrast, the influence exerted by knowledge of calculation 

principles is less clear cut. It discriminates typically developing children from those with 

math difficulties in 2nd grade (Hanich et al., 2001) but not in 4th grade (Russell & Ginsburg, 

1984). In this study, we explore whether either aspect of conceptual knowledge mediates the 

relation between basic calculation proficiency and math achievement.  

There are other factors that might influence both basic calculation proficiency and 

math achievement. These are more general features of cognitive functioning, such as working 

memory, processing speed, oral language, and literacy. Controlling for these factors makes 

for a stronger test of the relations between basic calculation proficiency, conceptual 

knowledge, and math achievement. In what follows, we examine the potential role played by 

these factors in explaining diversity in child performance on basic calculation problems. 

Working Memory 

In recent years, substantial research effort has been devoted to working memory as a 

possible cause of variation in a wide range of domains, including language, reading and 

mathematics (e.g., Geary, 2004; Montgomery, Magimairaj & Finney, 2010; Savage, Lavers, 

& Pillay, 2007). Much of this research is based on Baddeley and Hitch’s (1974) model of 

working memory. In this model, there are two slave systems, the phonological loop (PL) and 

the visuo- spatial sketchpad (VSSP), together with a central executive (CE). Tests of PL and 

VSSP functioning include simple span tasks such as digit recall and Corsi blocks. In contrast, 

central executive functioning is assessed by complex span tasks involving both storage and 
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processing, for example backward digit recall. Working memory functioning correlates with 

basic calculation proficiency (Andersson & Lyxell, 2007; Cowan et al., 2005; Geary, Hoard, 

Byrd-Craven, Nugent, & Numtee, 2007). By including separate assessments of the PL, VSSP, 

and CE components of working memory we seek to assess their contribution to explaining 

variation in basic calculation proficiency and math achievement. 

Processing Speed 

Slower performance of basic calculations is characteristic of children with 

mathematics difficulties (Geary & Brown, 1991; Jordan & Montani, 1997) but the extent to 

which this reflects general processing speed characteristics is uncertain. Some studies have 

found processing speed to be an independent predictor of calculation (e.g., Bull & Johnston, 

1997), while others have found that groups who differ in calculation proficiency do not differ 

on measures of speed (e.g., Andersson & Lyxell, 2007; Jordan et al., 2003a).  

Performance on complex span tasks is correlated with processing speed (Hitch, 

Towse, & Hutton, 2001). There are plausible explanations of both how working memory 

characteristics may affect performance on processing speed tasks and how speed of 

processing may affect performance on working memory tasks. We follow Geary et al. (2007) 

in including measures of processing speed as well as working memory to determine whether 

each make independent contributions to explaining variation in basic calculation and math 

achievement and whether they mediate the relation between them.  

Oral Language 

Oral language is the principal medium of instruction for children in elementary 

school. It follows that the child’s linguistic abilities will, to some extent at least, determine 

their development of mathematical skills and knowledge. And, in fact, there are some 

indications that particular aspects of linguistic skill are related to math performance. 

Following Geary (1993), a number of studies demonstrate that both phonological processing 
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skills and vocabulary level are related to basic calculation proficiency (Durand et al., 2005; 

Hecht et al., 2001; though see Jordan et al., 2003a for a contrasting view). A critical aspect of 

language which has, so far, received little attention is grammatical ability: Cowan et al. 

(2005) found it accounted for more variation in basic calculation proficiency than did 

working memory. Accordingly, we include both vocabulary level and grammatical ability in 

a composite measure of oral language used to help explain variation in basic calculation 

performance and math attainment. 

Literacy 

Although mathematical difficulties can exist independently of reading difficulties, 

math achievement correlates substantially with reading (Durand et al., 2005). Also children 

who show low achievement in both domains have greater impairments in number than those 

with just low math (Jordan et al., 2003b). The association between reading and math may be 

due to both being associated with the same cognitive factors, such as working memory 

(Swanson, 1992; Gathercole & Pickering, 2000), processing speed (Kail & Hall, 1999), and 

oral language skills (Durand et al., 2005). An alternative hypothesis is that reading skill is 

specifically connected with numerical skills and knowledge. Accordingly we assess which 

factors mediate the relation between reading proficiency and math achievement. 

Summary of Aims 

Research on the correlates of diversity in math achievement has often identified basic 

calculation skills as significant but whether this is due to the role basic calculation plays in 

math achievement or because both basic calculation and mathematical development are 

affected by the same factors is uncertain. The main aim of this study is to contribute to these 

debates by examining (a) how basic calculation proficiency develops from 2nd grade to 3rd 

grade, (b) the association of individual differences in basic calculation proficiency with 

conceptual knowledge and general cognitive factors and (c) the extent to which the relation 
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between basic calculation proficiency and math achievement is mediated by these other 

characteristics. 

Our study of basic calculation development includes an examination of the role of 

finger use in basic calculation, comparison of strategy assessment and forced- retrieval tasks, 

and exploration of the relation between correct strategy use in 2nd and 3rd grade.  

Method 

Participants 

All 2nd grade (UK English Year 3) children from nine classes in seven state schools 

in the same English administrative district were invited to participate in a longitudinal maths 

project. Parental permission and child assent were obtained for 269 (88%) of eligible 

children. The following year, 96% (134 male, 125 female) continued to participate. The only 

children who did not continue had changed schools. Participating schools served socially 

mixed catchment areas. The retained children’s ages when assessed in 2nd grade ranged from 

7 years 0 months to 9 years 5 months (mean 7 years 11 months, SD = 5 months). The large 

variation in age results from assessments taking place throughout the school year and an 

exception: only one child was older than 8 years 9 months.  

Demographic characteristics for the sample were estimated from the proportion of 

families claiming free school meals and the neighbourhood quality associated with each 

child’s postal address, obtained for 250 children. Both measures indicated that the sample 

was less deprived than England as a whole. The proportion claiming free school meals was 

5.4%, which is average for the source administrative district, but lower than the average for 

England as a whole (13.1%, Department for Children Schools and Families, 2007). 

Neighbourhood quality was assessed using the English 2007 Index of Multiple Deprivation 

(IMD, Noble et al., 2008) for Lower Level Super Output Areas (LSOA). England is divided 

into 32,482 LSOAs. IMD is an ordinal measure where 1 corresponds to the most deprived 
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neighbourhood and 32,482 to the least. Converting the English LSOA ranks into stanines 

showed that the mean stanine for the sample was 6.8 (SD = 1.7). This is considerably higher 

than the population mean of 5: t (249) = 16.14, p < .001. Inspection of the distributions 

showed that few children (6.8%) lived in the lowest 40% of English neighbourhoods.  

English schools identify children failing to make satisfactory progress as having one 

of three levels of special educational needs. The levels are in order of increasing severity 

School Action, School Action Plus, and Statement of Special Educational Needs. In the 

sample, there were 19 children (7 girls, 12 boys) on School Action, 19 on School Action Plus 

(5 girls, 14 boys) and 9 (2 girls, 7 boys) with Statements of Special Educational Needs. The 

incidence of School Action and School Action Plus pupils in the sample (38/259: 14.7%) is 

lower than the national average for state-funded elementary schools (18.2%, Department for 

Education, 2010b). The incidence of children with statements (9/259: 3.5%) is higher (1.4%, 

Department for Education, 2010a). Both of these variations from national figures are 

consistent with patterns in the administrative district (Reddick, 2010). 

Quality of education provided in English elementary schools is assessed by 

inspection. In the most recent inspections of the schools in the sample, pupil achievement was 

considered to be outstanding in two schools (32% of sample), good in four (63%), and 

average in the other (5%). For the five schools that taught pupils until they became 11 years 

old, achievement in National Curriculum tests at 11, and the comparison with schools 

matched in the pupil intake characteristics of gender, ethnicity, and neighbourhood 

deprivation, provide additional indications. Achievement was much above the national 

average in three schools, at the national average in one school, and below the national 

average in the fifth. The ordering of schools in achievement was consistent with the 

inspection data. The school whose achievement was below the national average was attended 
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by only 5% of the sample. It was also, in common with two others in the sample, judged to be 

more effective than average when intake characteristics were taken into account. 

Materials and Procedure 

Number tasks. 

 Basic calculation proficiency: Forced retrieval. Knowledge of addition and 

subtraction combinations was assessed using a forced-retrieval procedure (Jordan et al., 

2003a). For the first practice item, the experimenter displayed 4 – 2 on a laptop computer and 

asked the child to read it out loud. Adopting the child’s preference, be it ‘4 take away 2’ or ‘4 

minus 2’, the experimenter then said most people knew the answer to this problem without 

having to work it out. She explained she was going to show some more sums and that, if the 

child knew the answer, they should tell her as fast as possible. If they would need to work it 

out, then they should just say ‘work out’. The second practice item was ‘3 – 2’. Then 

followed 18 subtraction items in the same order for all children: 10 – 5, 3 – 3, 10 – 9, 6 – 4, 

15 – 10, 8 – 4, 13 – 5, 12 – 11, 7 – 7, 14 – 10, 8 – 0, 12 – 6, 13 – 9, 16 – 7, 15 – 8, 11 – 8. As 

each item was displayed, the experimenter read it out. Addition items were then introduced 

via two practice items: 2 + 2, and 3 + 2. Ten test items were then presented: 4 + 2, 10 + 8, 9 + 

3, 6 + 6, 3 + 4, 6 + 10, 9 + 4, 3 + 8, 7 + 5, 6 + 7, 9 + 9, 7 + 9. Responses were audio recorded 

and timings were derived from the audio recordings. Children were given one point for each 

problem correctly answered within 3 seconds from when the experimenter finished reading 

out the problem. The maximum possible score is 28. 

  Basic calculation proficiency: Strategies. Following the forced-retrieval task, 

children’s strategies were assessed with a set of 16 addition and subtraction problems. In two 

practice items (2 + 5, 5 – 3) the child was invited to solve some problems, both adding and 

take-away. They were told that they could use any way they knew to work out the answers 

and that the experimenter would ask afterwards how they had solved each problem. The 
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problems were presented on computer and read out by the experimenter. They were given in 

the following fixed order: 4 + 6, 17 – 9, 11 + 5, 10 – 4, 3 + 14, 7 – 6, 8 + 9, 7 – 7, 7 + 8, 12 – 

7, 4 + 9, 16 – 8, 12 – 6, 15 + 3, 6 + 9, 15 – 8. Audio recordings were made of each child’s 

performance. For each problem where the child offered a solution, the child’s use of fingers 

to support calculation and strategy were coded. Finger use was coded as present or absent. If 

the child had hidden their fingers they were asked if they had used them and their answer 

accepted.  

Strategies were coded as retrieval, decomposition, counting, or unidentified. Strategy 

coding was based primarily on children’s responses to questions informed by the 

experimenter’s observations. In general the questioning began with ‘How did you do that 

one?’ but if the child answered very quickly the experimenter might ask ‘Did you just know 

that one?’. Strategies were coded as retrieval if the answer was claimed to be already known, 

as decomposition if the answer was claimed to be derived from either conceptual knowledge 

or knowledge of a different combination or a mixture of both, and counting if the child 

reported counting out one or both the numbers in the problem. When children said they 

counted, they were asked what number they started counting from. For addition problems this 

was to distinguish min, counting on from the larger number, from sum, counting out both 

numbers from one, and max, counting on from the smaller number. For subtraction problems, 

it was to discriminate count up from count down. Where children spontaneously self-

corrected their response or changed their strategy, the strategy for their final response was 

coded.  

Strategies were coded as unidentified when children offered no response or if their 

strategy could not be identified as retrieval, decomposition or counting. These included 

reports of guessing and incomprehensible or inconsistent strategy descriptions, such as 

assertions of retrieval on trials where they had audibly counted. In Grade 2 there were 407 
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instances of unidentified strategies: 148 occasions when a child offered no solution, 142 

reports of guessing, 110 incomprehensible descriptions, and 7 trials when the child’s reported 

strategy conflicted with observation. In Grade3 there were 197 instances of unidentified 

strategies (87 when no solution was offered, 103 reported guesses, and 7 incomprehensible 

descriptions). 

 Each experimenter coded the strategies of the children they tested. Reliability of 

strategy coding was assessed on 9% of trials by a different coder working independently. 

Sampling was random within the constraints that children initially coded by each 

experimenter were sampled, and that each school and times of testing were sampled, with 

more than twice as many from the first time of testing as the second. Agreement between 

coders was high: strategy assignments were identical on 98% of trials. This suggests the 

experimenters’ codings were very reliable, an impression further reinforced by a third coder’s 

analysis of discrepant trials: on most (74%) of the small number of discrepant trials the third 

coder agreed with the initial coding by the experimenter. 

For the regression and mediation analyses the measure of strategy assessment 

performance was the sum of correct retrieval and correct decomposition trials. This is the 

memory accuracy measure used by Geary et al. (2007). The maximum possible score is 16.  

 Calculation principles: Derived facts. Based on procedures by Dowker (2005) and 

Jordan et al. (2003b), this task assessed children’s ability to apply patterns and principles of 

calculation in addition and subtraction. Children were presented with pairs of problems in 

which the answer to the first problem was given, and which could then be used to solve the 

second, i.e., the answer could be derived from the given fact. The first practice pair was ‘32 + 

19 = 51: 32 + 19 = ?’. The second practice pair was ‘20 – 5 = 15: 21 – 5 = ?’. In each case, 

the experimenter explained that the child would see a problem with the answer and another 

problem which she wanted them to solve as fast as possible. The child was also told that the 
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first problem might help them with the second. Each pair of problems was presented on 

computer and read to the child.  

Twelve test items were presented, two for each of six different types of principle and 

pattern: commutativity of addition ( 47 + 86 = 133, 86 + 47 = ?; 94 + 68 = 162, 68 + 94 = ?); 

subtrahend minus one ( 46 – 28 = 18, 46 – 27 = ?; 273 – 245 = 28, 273 – 244 = ?); subtraction 

complement principle (153 – 19 = 134, 153 – 134 = ?; 84 – 27 = 57, 84 – 57 = ?); doubles 

plus one pattern (37 + 37 = 74, 37 + 38 = ?; 64 + 64 = 128, 65 + 64 = ?); inverse relation 

between addition and subtraction ( 27 + 69 = 96, 96 – 69 = ?; 36 + 98 = 134, 134 – 36 = ? ); 

and subtrahend plus one (64 – 36 = 28, 64 – 37 = ?; 157 – 92 = 165, 157 – 93 = ?). The 

presentation order of problem pairs was fixed so that the first six and the second six featured 

an item of each type.  

Audio recordings were made of each child’s performance and timings derived from 

the audio recordings. Children were given one point for each problem answered correctly 

within 5s of the experimenter finishing reading out the second problem. The maximum 

possible score is 12. 

Calculation principles: Explaining patterns. The aim of this task was to assess 

children’s knowledge of numerical rules, patterns and principles and their beliefs in the 

generality of them. The experimenter introduced it as follows. ‘There are some patterns and 

rules for adding and subtracting. Some you might know about already and some you might be 

learning about later. I’m going to show you sets of problems that have a pattern or rule in 

common.’ The warm up item involved showing three n + 1 problems (4 + 1, 37 + 1, 125 + 1). 

The experimenter asked what they had in common. If necessary, she explained the number 

after rule, such that when one is added to a number the answer is the next number when you 

count. She asked if they knew that already. She then pointed out that it was true for all 

numbers when you add one to them.  
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The six main items followed a similar pattern. First a set of three problems was shown 

on the computer and the child was asked to articulate the connection between them 

(spontaneous naming). Subsequently the experimenter described the connection and the child 

was asked if they recognized it (recognition). Finally the experimenter asked if the 

connection held for all problems (generalization). The six patterns used were n – n, n + 10, n 

– 0, n - (n -1), n + 0, and 1 + n. 

Audio recordings were made of each child’s performance. Children were given one 

point for each spontaneous naming question answered correctly, for each connection they 

claimed to recognize, and for each generalization question they answered affirmatively. The 

maximum possible score is 18. 

Number system knowledge: Number knowledge. Items were derived from the 

Number Knowledge test in Griffin (1997). Four subtasks were presented in the same fixed 

order for all children: number sequence knowledge; relative magnitude; numerical distance; 

and finally, differences. Each subtask consisted of practice items and six test items. Numbers 

were shown on computer as well as being named by the experimenter.  

Number sequence items required children to name the number in given positions in 

the number sequence. The three practice items were ‘What number comes right after 7?’, 

‘What number comes before 5?’, and ‘What number comes two numbers after 3?’. Correct 

answers were explained if necessary. The test items were ‘two numbers after 7’, ‘right after 

9’, ‘five numbers after 49’, ‘four numbers before 60’, ‘ten numbers after 99’, and ‘nine 

numbers after 999’. 

Relative magnitude items required children to identify the bigger of two numbers. 

Practice items asked children ‘Which is bigger: 5 or 4?’ and ‘Which is bigger: 6 or 7?’. The 

pairs of numbers in the test items were: (9 & 7); (13 & 14); (69 & 71); (32 & 28); (51 & 39); 

and (199 & 203). In half of the test items, the first number in each pair was the larger of the 
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two. By presenting the first item in each pair on the left of the screen and the second on the 

right, children could not respond correctly simply by choosing the same position each time. 

Numerical distance items required children to identify which of two numbers was 

closer to a target number. Practice items were ‘Which number is closer to 3: 2 or 6?’ and 

‘Which number is closer to 4: 6 or 1?’. The triads of numbers in the test items were: ‘7: 4 or 

9?’; ‘13: 14 or 11?’; ’21: 25 or 18?’; ’49: 51 or 45?’; ‘28: 31 or 24?’; ‘102: 98 or 109?’. 

Target items were presented in the upper middle of the screen and the other numbers were 

presented in the lower left and right positions. The location of the correct answer was 

balanced across items.  

Differences items asked children to identify which of two pairs of numbers had the 

greater difference. In introducing the practice item, the experimenter ensured that the child 

understood what was meant by difference. The practice item asked ‘Which difference is 

bigger: the difference between 4 and 2 or the difference between 6 and 3?’. The test items 

featured the following contrasting pairs of numbers: (10 & 5) vs. (10 & 7); (9 & 6) vs. (8 & 

3); (6 & 2) vs. (8 & 5); (20 & 17) vs. (25 & 20); (25 & 11) vs. (99 & 92); (48 & 36) vs. (84 & 

73). Pairs of numbers were presented in opposing quadrants of the screen: upper left versus 

lower right. The position of the pair with the larger difference was balanced across items. 

Testing within a subtask was discontinued after the child had made three errors. Only 

children who had not been discontinued on previous subtasks were invited to try the 

Differences subtask as the items were derived from Level 3 of the Number Knowledge test 

which is designed for average 10-year-olds. Children were told it was for older children and 

that they need not attempt it. The maximum possible score is 24. 

 Number system knowledge: Count sequences. Knowledge of the natural number 

sequence was assessed orally and then with numerals. Both versions involved ascending and 

descending sequences. A practice item was given in which the child was asked to count up 
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from 5 to 16. Children were give support if necessary to enable them to recite the numbers by 

themselves. Following this, they attempted a set of ascending sequences (25 to 32, 194 to 

210, 2,995 to 3,004, 9,996 to10,003) and then a set of descending sequences (46 to 38, 325 to 

317, 1,006 to 997, 20,005 to 19, 998).  

Numeral sequences were presented in column grids with the first few items filled in. 

The experimenter read out the numbers up to the continuation point and the child was asked 

to continue by writing what came next in the cells below. The digits of each number appeared 

in separate cells of the grid. Support was given with the first item if required to ensure that 

the child only wrote one digit in each cell. The first item required the child to continue from 

13 to 16 and the numbers from 5 to 12 were printed above 13. Subsequent ascending 

sequences were: 28 to 31; 899 to 901; 7,999 to 8,001; and 59,999 to 60, 001. The set of 

descending sequences were: 11 to 9, 41 to 38; 601 to 599; 6,001 to 5,998; and 70,001 to 69, 

999. Testing within a set was discontinued once a child had made errors on two sequences in 

a set, or when they did not wish to attempt an item.  

Children were given one point for each sequence correctly completed. The maximum 

possible score is 18. 

Cognitive tasks. 

 Working memory. Children were assessed using subtests of the Working Memory 

Test Battery for Children (WMTB-C, Pickering & Gathercole, 2001), namely, two 

phonological loop (PL) subtests (Digit Recall, Word List Recall), two visuo-spatial sketchpad 

(VSSP) subtests (Block Recall, Mazes Memory), and two central executive (CE) subtests 

(Backwards Digit Recall, Listening Recall). Tests were administered and scored in 

accordance with the manual, with each child receiving the subtests in the same fixed order 

(Digit Recall, Word List Recall, Block Recall, Listening Recall, Mazes Memory, Backward 

Digit Recall). The number of correct trials yields the score for each subtest. Maximum 
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possible scores are 36 (Listening Recall, Backwards Digit Recall), 42 (Word List Recall, 

Mazes Memory) and 54 (Digit Recall, Block Recall).  

 Processing speed. Two measures of processing speed were used: the Symbol 

Matching subtest of WISC III UK (Wechsler, 1992); and the Pair Cancellation subtest of 

Woodcock-Johnson III (Woodcock, McGrew, & Mather, 2001). Symbol Matching presents 

the child with 45 rows of abstract geometric designs. For each row, two symbols are 

identified as targets and the child has to decide whether it is also present in the row. The child 

has two minutes to complete the task. The score is the number of correct decisions less the 

number of incorrect decisions (maximum 45). In the Pair Cancellation subtest, the child is 

shown an array consisting of pictures of dogs, balls, and cups of coffee. The child is allowed 

three minutes to circle instances where a dog is adjacent and to the right of a ball. The score 

is the number of correct identifications (maximum 69). 

 Language. The two language measures used were the electronic version of the Test 

for Reception of Grammar Version 2 (TROG-E, Bishop, 2005) and the British Picture 

Vocabulary Scale (BPVS II, Dunn, Dunn, Whetton, & Burley, 1997). TROG-E is a 

computer-presented test of grammar comprehension. The child’s task is to choose the one 

picture out of four which matches an orally presented sentence (e.g., ‘the pencil is above the 

flower’). Items are presented in blocks of four, with testing being discontinued if the child 

fails one or more items in five consecutive blocks. A child's score is the number of blocks, 

out of 20, for which every item is answered correctly. The BPVS II is a vocabulary test 

which, like TROG-E, requires the child to pick an appropriate picture corresponding to the 

name of one item from a set of four. Trials are administered in blocks of 12 and testing is 

discontinued if the child fails 10 items within a block. The maximum possible score is 168.  

The BPVS II manual provides tables for converting raw scores to standard scores for 

each three month age band from 3 years to 15 years 8 months (mean = 100, SD = 15). 
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Achievement tests. 

Reading. Reading was assessed with the Form B Sight Word Efficiency and 

Phonemic Decoding Efficiency subtests from the Test of Word Reading Efficiency (TOWRE, 

Torgesen, Wagner, & Rashotte, 1999). Both measures require the child to read as quickly as 

possible and scores comprise both the number of words and nonwords correctly read in 45 

seconds. The maximum possible scores are 104 for words and 63 for nonwords. 

 Mathematics. Mathematics was assessed with both the Numerical Operations and 

Mathematical Reasoning subtests from the Wechsler Individual Achievement Test (WIAT II 

– UK, Wechsler, 2005). The Numerical Operations subtest is a paper-and-pencil test with 

items that progress in complexity. The first 7 items assess numeral identification, counting 

and numeral writing. Simple addition and subtraction is assessed in the next 5 items. The 

following 12 items assess integer arithmetic: multidigit addition and subtraction; and single 

digit multiplication and division. Later items involve fractions, decimals, and percentages as 

well as integers.  

 The Mathematical Reasoning subtest is an orally-presented verbal problem solving 

test with pictures. The first 16 items assess counting, comparison, simple addition and 

subtraction word problems, mathematical language, and interpretation of charts. The next 16 

problems involve completion of patterns, knowledge of measures, graphs, and money. The 

next 16 items feature fractions, decimals, probability, and mental rotation.  

 Maximum scores for Numerical Operations and Mathematical Reasoning are 54 and 

67. The manual provides tables for converting raw scores to standard scores for each subtest 

and are given for each four month age band from 5 years to 17 years with a table for 

converting combined standard scores to composite standard scores (mean = 100, SD = 15). 

Procedure 
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 Each child was tested individually in a quiet room at their school during the school 

day by a female researcher. Testing in 2nd and 3rd grade involved up to five sessions, each 

no longer than 40 minutes, in the same half term: the English school year is divided into six 

half terms of up to five weeks. All except one child was tested in 3rd grade in the same half 

term as they had been tested in 2nd grade. The interval between 2nd and 3rd grade 

assessments was between 11 and 13 months, with 12 months being the most common interval 

(73%). One child had an interval of 14 months. 

In 2nd grade, the order of assessments was Count sequences, Number knowledge, 

Forced retrieval, Strategies, Derived facts, Explaining patterns, BPVS II, WMTB-C, Symbol 

Matching, Pair Cancellation, TROG-E.  

In 3rd grade, the order of task administration was Count sequences, Number 

knowledge, Forced retrieval, Strategies, Derived facts, Explaining patterns, WIAT II 

Numerical Operations and Mathematical Reasoning, TOWRE Sight Word Efficiency and 

Phonemic Decoding Efficiency. 

 The tasks given in both grades (basic calculation proficiency, calculation principles, 

and number system knowledge) were identical with respect to administration and items 

included. 

Results 

Overview  

The aims of the study are addressed in three sets of analyses. The first set concerns 

the characteristics and development of basic calculation proficiency by examining the data 

from the strategy assessment and the forced-retrieval tasks administered in 2nd and 3rd grade. 

In this set of analyses all identified strategies are considered.  

The second set of analyses concern the contribution of cognitive factors and 

conceptual knowledge to explaining variation in basic calculation proficiency and the 
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relations between 2nd and 3rd grade basic calculation, calculation principles, and number 

system knowledge after controlling for cognitive characteristics. The third set of analyses 

assess the role of mediating variables in the relationships between basic calculation 

proficiency and math achievement and between reading and math achievement. The second 

and third sets of analyses use composite measures for every factor. In these sets of analyses 

the composite of basic calculation proficiency is formed from the number of correct rapid 

solutions on the forced-retrieval task and the accuracy of retrieval and decomposition 

solutions on the strategy assessment task, as in Geary et al. (2007). 

The composite measures were formed by averaging the standardized scores of the 

constituents. Several composites deviated substantially from normality and included outliers. 

Analyses involving them could be misleading. So all composites were further transformed 

into scores from 1 to 9 using the following procedure to create normal frequency 

distributions: 1 for the lowest 4.0%, 2 for the next lowest 6.6%, 3 to the next 12.1%, 4 to the 

next 17.5%, 5 to the next 19.8%, 6 to the next 17.5%, 7 to the next 12.1%, 8 to the next 6.6%, 

and 9 to the highest 4.0%. In the case of ties, all tied scores were assigned the same 

transformed score even if this meant departure from the assignment procedure. Deviations 

from the target frequency distribution were minimized. The transformation procedure yielded 

sets of scores that were reasonably normally distributed with no outliers and no statistically 

significant skewness or kurtosis (all absolute z scores < 1.96). The transformation procedure 

ensures each predictor is on a common scale and avoids the problems of abnormal 

distributions. As the procedure reduces variability we repeat the analyses using 

untransformed composites. 

Table 1 shows the descriptives for each composite and its components with internal 

reliabilities where appropriate. The internal reliabilities as assessed by Cronbach alphas 

ranged between .78 and .96 with most above .80. Alpha values above .7 are commonly 
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asserted to be acceptable for research purposes and alpha values above .8 to be evidence of 

good reliability (de Vaus, 2002; Field, 2009; Kline, 1999). 

Basic Calculation Proficiency 

 Table 2 shows the frequencies of strategies, finger use, and associated error rates. In 

neither grade was retrieval the most commonly used strategy: counting strategies were the 

modal strategy type in 2nd grade and decomposition in 3rd grade. Finger use was uncommon 

on retrieval or decomposition trials but children used their fingers on most trials when they 

counted. Overall accuracy was lower with finger use but inspection of Table 2 indicates that 

this reflects the higher accuracies associated with retrieval and decomposition. For counting 

strategies finger use was adaptive: comparing the error rates for each problem solved by 

counting showed that these were lower when accompanied by finger use for most problems in 

both grades (Grade 2, 12/16; Grade 3, 10/16). Wilcoxon tests indicated the difference was 

statistically significant in 2nd grade: 2nd grade, T = 18, N = 16, p < .01; 3rd grade, T = 39, N 

= 16, ns. 

 The relation between accurate strategy execution in 2nd and 3rd grade is shown in 

Table 3. For most strategies there is a high degree of consistency: children used the same 

strategy in 3rd grade to solve a particular problem as they had used to solve that problem in 

2nd grade: for example 62% of problems correctly solved by decomposition in 2nd grade 

were also correctly solved by decomposition in 3rd grade. Sum and max show a different 

pattern as they were more likely to be replaced by min, the more efficient counting strategy.  

Table 3 also shows progression from counting to decomposition and from 

decomposition to retrieval, as expected by conventional wisdom and models of strategy 

development: the next phase strategy was the most common when strategies differed between 

grades. Consistent with psychological accounts of strategy development (Siegler, 1996), but 

less expected by conventional wisdom in mathematics education, is the variability shown in 
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strategies. In particular almost a third of problems correctly solved by retrieval in 2nd grade 

were not solved by retrieval in 3rd grade. Possible explanations for this will be considered in 

the discussion. 

Examination of individual children’s strategy use showed that in both grades very few 

children used the same type of strategy (counting, decomposition, or retrieval) to solve all 

problems (Grade 2, 9; Grade 3, 25). Most used all three types (Grade 2, 160; Grade 3, 142). 

The variety of strategies used by the same child is consistent with Siegler’s account of 

strategy development but contrary to phase models such as the conventional wisdom view.  

Knowledge of solutions has been estimated from accurate retrieval in strategy 

assessment tasks and correct answers within 3s to questions in forced-retrieval tasks. In this 

study the estimates from the two procedures differ markedly. The strategy assessment task 

estimates are 17% in Grade 2 and 25% in Grade 3: the estimates are derived from the ratio of 

correct retrieval solutions (Grade 2, 686; Grade 3, 1028) to the product of problems and 

children (16 * 259 = 4144). In contrast, the forced-retrieval estimates are 45% in Grade 2 and 

58% in Grade 3: the estimates are derived by dividing the means in Table 1 for the forced-

retrieval task by the number of items (28). Several factors might contribute to this 

discrepancy. 

The strategy assessment task may be a more accurate and valid way to assess 

knowledge of solutions. In the forced-retrieval task, solutions which are correct and rapid 

(within 3s) may be obtained by other strategies (Jordan et al., 2003a, 2003b; Siegler & Stern, 

1998). The data from this study can be used to assess this explanation in two ways: by 

comparing problems common to both tasks; and by examining the distribution of strategies 

associated with rapid correct responses on the strategy assessment task. 

The two problems that featured in both the strategy assessment and forced-retrieval 

tasks were 12-6 and 15-8. Correct retrieval solutions in the strategy assessment task were 
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much less common than rapid correct answers in the forced-retrieval task: Grade 2, 63 vs 

144; Grade 3, 110 vs 206. In contrast, the frequencies of rapid correct solutions to these 

problems in the strategy assessment task are almost identical to the frequencies in the forced-

retrieval task: Grade 2, 142 vs 144; Grade 3, 209 vs 206. This suggests that some of the 

discrepancy between estimates of combination knowledge from the two tasks arose because 

rapid solutions on the forced-retrieval task do not just result from retrieval. 

Analyses of the correct rapid solutions for all strategy assessment problems provided 

further support for the idea that rapid solutions on the forced-retrieval task were not just due 

to retrieval of combination knowledge. The associations of correct rapid solutions with 

strategies were very consistent in both assessments. Retrieval accounted for the largest 

proportion of rapid solutions (Grade 2, 54%; Grade 3, 52%), but many resulted from 

decomposition (Grade 2, 37%; Grade 3, 40%), and even counting yielded some rapid 

solutions (Grade 2, 8%; Grade 3, 8%). Examination of the relation between rapid solution 

and strategy also showed that retrieval solutions were usually but not always rapid: in Grade 

2, 84% of retrieval solutions were given in 3s or less, and in Grade 3 this had risen to 90%. In 

comparison the frequencies of rapid solutions for decomposition were 37% in Grade 2 and 

48% in Grade 3. 

The overall percentages of correct rapid solutions on the strategy assessment task 

(Grade 2, 26%; Grade 3, 43%) are substantially higher than the percentages of correct 

retrieval (Grade 2, 17%; Grade 3, 25%), but still less than success on the forced-retrieval task 

(Grade 2, 45%; Grade 3, 58%). This indicates that the discrepancy between the overall results 

from the two tasks is only partially due to rapid solutions by strategies other than retrieval. 

Differences in difficulty of the non-overlapping problems in the two sets may play a role. 

Such differences have long been acknowledged and rankings of basic combinations have 
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been produced. There is, however, little consistency between different rankings (Cowan, 

2003). 

In summary both the forced-retrieval task and the strategy assessment task indicated 

low frequencies of retrieval in Grade 2 and 3. Despite the aspiration of the English National 

Curriculum for children to know all the solutions to basic calculations by the end of Grade 2, 

retrieval was not the most common strategy in either Grade 2 or 3 and only one child 

answered all forced-retrieval problems correctly in 3s. Indeed, no child in either grade 

correctly retrieved the answers to more than 14 of the 16 basic calculation problems. The 

forced-retrieval task yielded higher estimates of knowledge than the strategy assessment task 

but this does not seem to be because the latter made children rely less on retrieval. Instead 

comparison of problems common to both tasks suggested that the forced-retrieval task 

overestimates knowledge, as rapid solutions were frequently obtained by the use of back up 

strategies, particularly decomposition.  

Basic calculation proficiency, calculation principles and number system knowledge 

 The number sense view emphasizes the contribution of conceptual knowledge to basic 

calculation proficiency. In this set of analyses we first assess these views by analysing how 

variation in basic calculation proficiency is explained by conceptual knowledge (calculation 

principles and number system knowledge) and general factors. Then we examine how basic 

calculation proficiency and conceptual knowledge in 2nd grade contribute to explaining 

individual differences in these variables a year later.  

 Although the interval between testing in 2nd and 3rd grade was a year, individual 

children were tested at different points in the school year with some being tested in 

September, the first month of the English school year, and others being tested in July, the last 

month. Preliminary analyses indicated that some measures were more strongly related to 

month of testing than to the child’s chronological age at time of testing (cf., Cahan & Cohen, 
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1989; Cahan, Greenbaum, Artman, Deluy & Gappel-Gilon, 2008). Both measures correlated 

substantially, r = .75, p < .001, so a composite was included in the analyses.  

Table 4 shows the zero-order correlations for all composites and the partial 

correlations between Grades 2 and 3 number composites after controlling for the general 

cognitive factors (composites of working memory, processing speed, and oral language) and 

age. All were statistically significant. The correlations between basic calculation proficiency 

and the measures of conceptual knowledge are higher than the correlations with general 

factors. 

With basic calculation proficiency as the dependent variable, three- step multiple 

regressions were conducted with forced entry of the age composite in step 1, the two 

measures of conceptual knowledge in step 2 and the cognitive factors in step 3. Table 5 

summarizes the results. The results were consistent in both grades: the two conceptual 

knowledge measures accounted for substantial amounts of variance in basic calculation 

proficiency, and processing speed accounted for additional variance. Functioning of the 

phonological loop component of working memory also made a statistically significant 

contribution in Grade 2. The substantial similarity between step 2 and step 3 coefficients for 

conceptual knowledge measures indicates that their relationship with basic calculation 

proficiency is only slightly mediated by cognitive factors. Repeating the analyses with 

untransformed composites yielded almost identical results. The only difference was that the 

contribution of the phonological component was not statistically significant in Grade 2.  

 Another way of assessing the relationship between basic calculation proficiency and 

conceptual knowledge is by assessing how Grade 2 composite measures account for Grade 3 

composites, after controlling for factors that may affect both. This approach is taken rather 

than analyses of gain scores which are problematic (Campbell & Kenny, 1999). For example, 

one problem with gain scores is that gain is constrained for individuals who score at or near 
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the maximum in 2nd grade. Inspection of the ranges of 2nd grade scores on constituent 

measures in Table 1 indicates this is a relevant concern for this sample.  

 Separate hierarchical regression analyses were conducted for the Grade 3 number 

composites with control factors (age, the three components of working memory, processing 

speed, and oral language) entered in Step 1 and Grade 2 number composites entered in Step 

2. The results are summarized in Table 6. Grade 2 number measures made unique 

contributions to explaining variance in Grade 3 number measures, even after controlling for 

general factors. There was one exception: calculation principles did not contribute to 

explaining variance in later number system knowledge.  

 Repeating the analyses with untransformed composites yielded almost identical 

results. The only differences were that Grade 2 basic calculation proficiency made a smaller 

contribution to Grade 3 calculation principles and number knowledge. 

Basic calculation proficiency, math achievement, and reading 

The sample as whole showed math achievement in Grade 3 that was slightly superior 

to age-based norms: the mean standard score for the WIAT Math Composite in Table 1 is 

more than 100. Table 1 also shows that the average standard score for the BPVS II is also 

slightly higher than age-based expectation. This suggests that overall the sample was slightly 

above average in cognitive ability. The sample was diverse, particularly in math, as the 

ranges and SDs in Table 1 show. 

 As Table 4 shows, Grade 3 math achievement was highly correlated with all 

cognitive factors and number skills. Multiple regressions of math achievement in which all 

factors are entered simultaneously show which factors uniquely account for variance. This 

tells us which factors have effects that cannot be explained by mediation through other 

factors. Table 7 summarizes two such regressions one using Grade 2 measures of basic 

calculation proficiency and conceptual knowledge, the other using Grade 3 measures. Both 
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regressions showed that basic calculation proficiency uniquely accounted for variance, but 

the amount of variance it accounted for was relatively low (6 -7%) in comparison with both 

the zero-order correlations between basic calculation proficiency and math achievement and 

the overall R
2
 values which showed 81% of the variance was accounted for by the full set of 

variables. Repeating the analyses with untransformed composites yielded almost identical 

results: the only differences were that age made a statistically significant contribution in both 

grades and WM CE’s contribution was reduced.  

To assess which factors partially mediated the relationship between basic calculation 

proficiency and math achievement we ran the Preacher and Hayes (2008) SPSS Macro for 

Multiple Mediation with the set of control, cognitive and Grade 2 number variables as 

potential mediators. This macro uses bootstrapping to estimate confidence intervals for the 

paths involving each mediating variable. Table 8 summarizes the results. Both conceptual 

knowledge variables were statistically significant mediating variables. So too were WM 

VSSP, WM CE, and oral language. A separate analysis of children with no identified special 

educational need yielded similar results: the direct path between basic calculation proficiency 

and math achievement was still significant despite mediation effects involving number 

system knowledge, oral language and WM VSSP. The analysis with untransformed 

composites also found the direct path between proficiency and math achievement remained 

significant despite mediation effects. The variables identified as mediators were both 

measures of conceptual knowledge, oral language, and WM VSSP. 

Table 7 shows that reading did not uniquely explain variance. Therefore any 

relationship between reading and math is wholly mediated by other variables included. To 

assess what variables mediated the relationship between reading and math, we ran the 

Preacher and Hayes (2008) macro with reading as the independent variable, math 

achievement as the dependent variable, and the set of control, cognitive and Grade 3 number 
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variables as potential mediators. Table 9 summarizes the results. Several significant paths 

were identified including all number variables as well as oral language and WM CE. Also, 

although age and WM VSSP were not identified as being statistically significant by normal 

theory tests, none of the three bootstrap CIs for these paths included zero. A separate analysis 

of children with no identified special educational need yielded similar results: the direct path 

between reading and math achievement was not significant, all paths involving number 

variables were significant as were the oral language and WM CE paths. Bootstrap and normal 

theory tests agreed in finding a statistically significant effect of Age but not WM VSSP. The 

mediation analysis with untransformed composites also found no significant direct path 

between reading and math achievement, and identified the number variables and oral 

language as statistically significant mediators.  

Discussion 

This study contributes to knowledge about basic calculation proficiency and 

elementary school mathematics achievement in several ways. First, it shows how basic 

calculation skill develops from 2nd to 3rd grade. In many respects, the observed changes fit 

Siegler’s (1996) overlapping waves characterisation of development. Second, we have 

established that conceptual knowledge and basic calculation skill are linked, even after 

controlling for cognitive abilities that covary with both. We have evidence, therefore, that 

skills and knowledge support each other in development. Third, our results indicate that 

variation in basic calculation skill is related to math achievement independently of mediation 

by conceptual knowledge and cognitive abilities. Fourth, we find that, math achievement is 

not compromised by imperfect knowledge of basic calculation solutions. Finally, in our 

sample the relationship between achievement in math and reading is wholly mediated by the 

set of mediating factors we used.  

The development of basic calculation proficiency 
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The current results agree with other studies (e.g. Geary et al., 2004; Siegler, 1987a) in 

finding variability in strategy use within the same grade, in the same individuals on different 

problems, and even on the same problems on different occasions. Siegler (1996) argues that 

variability is a fundamental characteristic of computational strategy development, just as it is 

for other areas of cognitive development, and that variability is what facilitates development. 

Another fundamental characteristic of children’s strategy choices is adaptiveness 

(Siegler, 1996). In the present study, children’s use of their fingers to support computation 

was adaptive: children used their fingers most often to support counting strategies, and, this 

made counting strategies more accurate. So although we, like Jordan et al. (2008), found 

overall greater accuracy when children did not use their fingers, the explanation lies in the 

superior accuracy of strategies such as retrieval and decomposition that are rarely 

accompanied by finger use. Jordan et al. (2008) concluded that children might be “better 

served by calculating in their heads than on their hands” (p.667). However, our analyses of 

the relation between strategy use and accuracy do not support a recommendation that finger 

use should be discouraged.  

From Grade 2 to Grade 3, children’s strategies changed, consistent with Siegler’s 

(1996) characterization of strategy choice. Overall strategy choices migrated in the direction 

of greater efficiency and accuracy. Execution of all strategies improved in accuracy. Contrary 

to the conventional wisdom view, we did observe regression to less advanced strategies. In 

particular, a substantial number (30%) of problems that were correctly solved by retrieval in 

Grade 2 were not solved by retrieval in Grade 3. This might simply reflect the variability of 

strategy choice or it may reflect features of the children’s experience. Such features include 

fewer opportunities to practise retrieval of addition and subtraction combinations, challenges 

resulting from learning multiplication and division combinations, or classroom environments 

where children receive greater approval from teachers for using decomposition strategies.  
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The incidence of retrieval is extremely low in relation to curriculum expectations. 

According to the English National Curriculum, children should have known all the solutions 

to basic calculation problems by the end of Grade 2 and so used retrieval to solve most 

problems. They did not. Other researchers (e.g. Siegler, 1996) have noted that frequency of 

retrieval is below educational expectations and that change in use of retrieval is surprisingly 

slow. Retrieval use was lower in the present study compared to others. For example, Geary et 

al. (2004) found that retrieval was used on 38% of problems by typically developing Grade 3 

pupils compared with 26% in our study. The order of administration of tasks in the present 

study may have affected retrieval use. The strategy assessment task followed the forced 

retrieval task where children were supposed to only use retrieval. Children’s strategy choices 

may have reflected adaptation to the difference in task instructions: decomposition use was 

more common (39%) in the present study than Geary’s (29%). Incidentally, excluding 

children with identified special educational needs made little difference to the frequencies in 

our study: retrieval in Grade 3 increased only to 27% and decomposition to 40%. 

The forced-retrieval task yielded higher estimates of combination knowledge than the 

use of retrieval in the strategy assessment task. This seems partly due to the inclusion of rapid 

decomposition solutions as evidence of combination knowledge, as suggested by other 

researchers (e.g. Jordan et al., 2003a). This applies to other measures where researchers infer 

combination knowledge from numbers of problems solved in a given time (e.g. Durand et al., 

2005; Hitch, 1978; Fuchs et al., 2006). The amount of time taken to answer each item is 

unknown, though the means indicate average response times well in excess of 3s. 

Although the strategy assessment task can discriminate solutions based on direct 

application of combination knowledge from other strategies, there are grounds for combining 

accurate solutions based on retrieval and decomposition as a measure of basic calculation 

proficiency. First, decomposition commonly involves the application of a combination so it 
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reflects both combination knowledge and conceptual knowledge. Second, measures 

combining accurate retrieval and decomposition are related to math achievement (Geary & 

Burlingham-Dubree, 1989; Geary et al., 2007). Finally, combining accurate decomposition 

and retrieval is consistent with the number sense view of proficiency.  

Basic calculation and conceptual knowledge 

 Our measure of basic calculation proficiency combined success on the forced-retrieval 

task with accurate retrieval and decomposition use on the strategy assessment task. In both 

grades, scores were highly correlated with scores on the two composite measures of 

conceptual knowledge. Consistent with the number sense view, both measures of conceptual 

knowledge in Grade 2 accounted for variation in Grade 3 basic calculation proficiency, even 

in a model that included Grade 2 basic calculation proficiency and controlled for associated 

cognitive factors. We also found that variation in basic calculation proficiency was predictive 

of later conceptual knowledge with similar controls. Our data show that the development of 

conceptual knowledge and basic calculation proficiency are linked. Future research should 

address the nature of this relationship (Rittle-Johnson & Siegler, 1998). 

Number skills, math achievement, general cognitive factors, and reading 

 The correlation between basic calculation proficiency and math achievement in our 

sample was very substantial, consistent with all three views of education considered here. But 

contrary to the traditional perspective, the math achievement of our sample was normal 

despite imperfect combination knowledge. We used multiple regression and mediation 

analyses to assess the contributions of conceptual knowledge and cognitive factors to 

explaining the relationship between basic calculation proficiency and math achievement. 

These indicated that both calculation principles and number system knowledge partially 

mediated the relationship. We also have independent evidence of mediation by working 

memory factors and oral language skills. The amount of variance in math achievement 
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uniquely accounted for by basic calculation proficiency was the largest of all the predictors.

 A separate analysis of the relationship between reading and math achievement 

indicated that it was wholly mediated by basic calculation proficiency, conceptual knowledge 

and cognitive factors, principally oral language skills and central executive functioning. 

 In considering the interpretation of these results we must caution readers that this is 

essentially a correlational study and therefore equivocal about causality. Another 

consideration is that although we have included factors which previous research has 

identified as relevant, a different pattern of results might emerge from the inclusion of 

different factors. Put another way, the dependence of our results on the particular measures 

used is unknown. Finally, while the overall variance accounted for by our set of factors in 

each analysis is substantial, no single factor uniquely accounts for much variance. This is 

because much variance is shared. 

Both measures of conceptual knowledge, number system knowledge and calculation 

principles, accounted for variance in math achievement as well as basic calculation skill. The 

importance of number system knowledge extends previous research that has found 

kindergarten number knowledge predicts attainment in first grade (Gersten et al., 2005; 

Jordan et al., 2007) and the ability to generate count sequences to be critical in accounting for 

differences between 3rd grade language–impaired children and their peers on number tasks, 

(Donlan et al., 2007). The importance of knowledge of calculation principles bears out the 

emphasis placed on these in developing meaningful arithmetic (Baroody & Ginsburg, 1986).  

Every cognitive factor assessed made unique contributions to explaining variance in 

at least one analysis. Functioning of one or more components of working memory was found 

to play a part in explaining diversity in math (Table 7). Working memory also mediated the 

relationships between math achievement and both basic calculation (Table 8) and reading 

(Table 9). In contrast, processing speed only contributed to explaining variation in basic 
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calculation (Table 5). This pattern of results suggests that associations between working 

memory and math are not just due to covariation with processing speed. The limited 

contribution of processing speed replicates the finding by Fuchs et al. (2006). They found a 

substantial link between processing speed and basic calculation in 3rd grade, but no 

significant paths which related processing speed to algorithmic arithmetic and story 

problems. The measure of math achievement we used mainly comprises algorithmic 

arithmetic and story problems.  

Amongst the working memory components we found that both visuo-spatial 

sketchpad (VSSP) and central executive (CE) measures contribute more than phonological 

loop measures to explaining variation in math. This is consistent with previous research 

(Meyer, Salimpoor, Wu, Geary, & Menon, 2010). We found both VSSP and CE accounted 

for variation in math independently of number skills and other cognitive factors (Table 5) and 

both partially mediated the relationship between basic calculation and math (Table 8). CE 

was also involved in mediating the relationship between reading and math (Table 9), a 

finding which is predictable from theoretical views of its involvement in a broad range of 

cognitive tasks (Baddeley, 1996).  

Our composite measure of oral language skills made an independent contribution to 

explaining variation in math in both analyses (Table 7) and it was a significant mediator both 

between basic calculation proficiency and math (Table 8) and between reading and math 

(Table 9). This more clearly establishes the importance of oral language skills for math than 

previous research. Durand et al. (2005) found verbal ability to be a major predictor of 

variation in math, but the only number skill they assessed was simple number comparison. As 

oral language skills correlate substantially with basic calculation and number system 

knowledge (Cowan et al., 2005), their contribution to explaining diversity in math could have 

been due to their association with these number skills. But the results of the present study 
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show that this is not the case. Controlling for these factors did not eliminate the contribution 

of oral language. 

Cowan et al. (2005) reported that language comprehension frequently accounted for 

more variation in number skills than working memory variables. However reading level was 

not included in their study, making it uncertain whether the relationships observed were due 

to covariation of both language and working memory with reading skills. The present study 

helps disentangle these variables. It shows that oral language and working memory are each 

important in their own right. 

The analysis of factors mediating the relationship between reading and math was 

successful in that the set of mediating factors completely accounted for the relationship 

between reading and math. Unexpectedly, better readers are superior at maths not just 

because of their superior language and memory skills. If this finding can be replicated, then 

future research may usefully distinguish between the following explanations. The relationship 

between reading and number skills might reflect the influence of reading or reading-related 

processes, such as phonological processing, on number skills, the effect of environmental 

variables such as parental support for educational achievement, or aspects of oral language 

and working memory functioning not captured in the measures used. 

It should be borne in mind that the relative importance of oral language skills and 

reading may change with age. As children shift from learning to read to reading to learn, 

mathematical learning may depend more on literacy.  

How math is assessed may also determine the relative importance of reading and oral 

language skills. In conventional classroom settings, reading skill is almost bound to impact 

on mathematical ability, given standard methods of assessment of math. Group-administered 

math tests, such as English National Curriculum Tests, make considerable demands on 

children with respect to independent reading skills. In contrast, we used the WIAT 
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Mathematics subtests which are individually administered. The only independent reading 

demands made on the child are reading numerals and basic mathematical symbols in the 

Numerical Operations subtest. The Mathematical Reasoning subtest we used does present the 

child with text, but the tester reads it out. 

In summary, the present study found that variation in math in 3rd grade was largely 

predictable from 2nd grade assessments of both general cognitive abilities and specifically 

math-related skills and knowledge. Although most variance was shared, language and two 

components of working memory uniquely accounted for variance. Specific number skills 

accounted for more. None of the three views of education considered here is fully supported. 

Ignorance of basic number combinations is not the barrier to achievement in math that both 

the traditional and conventional wisdom views predict. And contrary to the number sense 

view, conceptual knowledge does not completely mediate the relationship between basic 

calculation skill and math achievement.  

With this study we have tried to throw some light on the connection between 

proficiency in basic calculation and general attainment in math in elementary school children. 

Our findings indicate that this connection is strong and cannot be explained by relations with 

other factors identified as relevant to both. It is important to emphasise that our results do not 

prove that the route to higher attainment in math is through developing basic calculation 

proficiency. The opposite relation may well obtain. Improving children’s grasp of math may 

bring about improvements in their basic calculation proficiency, either directly or through 

leading them to engage in more calculations outside school, for example in playing games. 

Just as better readers read more and so enhance their basic reading skills (Stanovich, 1986), 

children who understand math better may use math more in everyday activities and so 

enhance their basic calculation competence. This may also explain the results obtained in 

studies of adults which indicate that even amongst college students, superior achievement in 
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math is associated with greater basic calculation skill (Hecht, 2006; LeFevre, Sadesky, & 

Bisanz, 1996). In attaining mathematical competence, children must draw on a wide range of 

skills and knowledge. We show here that aspects of working memory (visuo-spatial 

sketchpad and central executive functioning), linguistic competence and specific aspects of 

numeracy all make unique contributions in development. 
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Table 1 

Descriptive Statistics for Number, Cognitive, and Achievement Composites and Constituent 

Measures  

Domain, Composite, Constituents Constituent 

Ranges 

M  SD Reliability 

Number       

   Grade 2 basic calculation proficiency  5.00  1.95  

    Forced retrieval  0 - 27 12.64  6.85 .92 

    Strategies  0 - 16 6.91  5.31 - 

  Grade 3 basic calculation proficiency  5.00  1.93  

    Forced retrieval  0 – 28  16.30  6.49 .92 

    Strategies  0 - 16 9.64  5.15 - 

  Grade 2 calculation principles  5.00  1.93  

    Derived facts 0 - 12 4.32  3.00 .79 

    Explaining patterns 0 - 18 15.39  3.07 .83 

  Grade 3 calculation principles  5.06  1.94  

    Derived facts 0 - 12 6.53  2.89 .78 

    Explaining patterns 0 - 18 16.83  2.25 .84 

  Grade 2 number system knowledge   4.99  1.95  

    Number knowledge 5 – 24 17.44  4.11 .82 

    Count sequences 0 - 18 10.05  4.51 .89 

  Grade 3 number system knowledge   4.98  1.92  

    Number knowledge 4 - 24 19.75  3.43 .81 

    Count sequences 1 - 18 13.44  4.05 .88 

      

Cognitive       

   WM PL   5.00  1.95  

    Digit Recall 12 - 40 27.17  3.93 .85 

    Word List Recall 9 - 30 19.50  3.40 .82 

   WM VSSP   5.00  1.93  

    Block Recall 1 - 35 23.07  4.20 .85 

    Mazes Memory 0 - 29 12.57  6.65 .92 

   WM CE    4.99  1.94  

    Backwards Digit Recall 0 - 23 11.26  3.70 .84 

    Listening Recall 0 - 19 10.34  3.31 .82 

   Processing Speed   5.00  1.95  

    Symbol Matching 0 - 29 17.58  4.49 - 

    Pair Cancellation 14 - 68 37.79  9.82 - 

   Oral Language   5.00  1.95  

    TROG-E 0 - 19 13.42  3.48 .78 

    BPVS II  9 - 124 86.20  13.43 .93 

    BPVS II Standard Score 63 - 140 105.51  11.84  

Achievement      

  Reading  5.00  1.95  

    Sight Word Efficiency 2 - 86 62.08  13.00 .96 

    Phonemic Decoding Efficiency 0 - 55 29.17  12.21 .95 
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  Mathematics  5.00  1.96  

    WIAT Numerical Operations 7 - 35 19.12  4.83 .87 

    WIAT Mathematical Reasoning 10 - 57 38.63  7.64 .91 

    WIAT Math Composite Standard 

     Score 

42 - 154 102.07  18.15  

 

Note. N = 259 for all measures. Ranges for all composites are 1 – 9. Measure of reliability is 

Cronbach’s alpha.
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Table 2 

Percentage Frequency and Errors for Each Strategy According to Finger Use and Grade 

 

Identified strategy  Unidentified 

 

Retrieval 

 

Decomposition   

  

Counting   All    

Grade, finger use  

 

 

 Combined 

 

Min 

 

Subtraction 

Sum and 

Max 

 

 

  

 

 

 

Frequency 

2  

 

   

    

  

 

  

  Fingers used 0 

 

3  31 

 

11 

 

15 5  34   

  No fingers used 17 

 

26  12 

 

7 

 

4 1  56   

   Overall 17 

 

29  44 

 

18 

 

19 6  90  10 

 

 

 

   

    

  

 

  

3  

 

   

    

  

 

  

  Fingers used 0 

 

3  23 

 

9 

 

11 3  25   

  No fingers used 26 

 

36  9 

 

5 

 

3 1  70   

   Overall 26 

 

39  32 

 

14 

 

14 4  95  5 

 

 

 

Error 

2  

 

   

    

  

 

  

  Fingers used 17 

 

22  21 

 

11 

 

27 29  21   

  No fingers used 5 

 

8  23 

 

16 

 

32 33  10   

   Average 5 

 

9  22 

 

13 

 

28 30  14  76 

 

 

 

   

    

  

 

  

3  

 

   

    

  

 

  

  Fingers used 0 

 

17  18 

 

11 

 

22 22  18   

  No fingers used 4 

 

7  19 

 

11 

 

29 38  7   

   Average 4 

 

7  18 

 

11 

 

24 25  10  81 
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Note. Frequencies and error rates are rounded to the nearest whole number percentage. There were a very small number of trials when fingers 

were used in conjunction with retrieval (Grade 2, 12; Grade 3, 2). Frequencies sum to 100 within a grade. Combined counting frequencies are 

the sum of individual counting strategy frequencies. Subtraction combines both counting up and counting down: counting up was identified in 

less than 1% of trials in both grades. All is the aggregate of all identified strategies. Average error rates for individual strategies and aggregates 

are weighted according to frequencies of finger use and nonuse.  
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Table 3 

Overall Relations between Correct Strategy Execution in Grade 2 and Grade 3 

 

Grade 2 

 

Correct strategy use 

 

Incorrect 

Grade 3  Retrieval  Decomposition  Min   Subtraction   Sum and Max     

Correct                      

  Retrieval 68  25  13   15   9   8 

  Decomposition 24  62  30   27   15   25 

  Min 4  4  43       40   10 

  Subtraction 2  3      41       17 

  Sum and Max 0  1  5       14   3 

  Unidentified 0  0  0   1   3   2 

 

    

    

 

  Incorrect 2  5  9   16   19   35 

 

Note. Figures in columns are percentages of Grade 2 categories.  
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Table 4 

Correlations between Variables and Partial Correlations between Grade 2 and 3 Number Variables 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 

Age  .09 .12
**

 .16
**

 .26
**

 .20
**

 .24
**

 .19
**

 .25
**

 .20
**

 .19
**

 .23
**

 .15
**

 .29
**

 

1. WM PL 
 

.30
**

 .46
**

 .36
**

 .48
**

 .42
**

 .37
**

 .30
**

 .36
**

 .40
**

 .24
**

 .34
**

 .44
**

 

2. WM VSSP 
  

.42
**

 .46
**

 .32
**

 .36
**

 .40
**

 .36
**

 .39
**

 .38
**

 .38
**

 .18
**

 .47
**

 

3. WM CE 
   

.47
**

 .45
**

 .54
**

 .49
**

 .50
**

 .50
**

 .48
**

 .45
**

 .36
**

 .60
**

 

4. Processing speed 
    

.44
**

 .59
**

 .54
**

 .44
**

 .57
**

 .56
**

 .40
**

 .42
**

 .59
**

 

5. Oral language 
     

.46
**

 .46
**

 .40
**

 .45
**

 .49
**

 .43
**

 .26
**

 .57
**

 

6. Grade 2 basic calculation 
      

.73
**

 .74
**

 .88
**

 .70
**

 .67
**

 .41
**

 .84
**

 

7. Grade 2 calculation principles 
     

.52
**

 
 

.60
**

 .71
**

 .69
**

 .56
**

 .44
**

 .72
**

 

8. Grade 2 number system knowledge 
     

.60
**

 .37
**

 
 

.70
**

 .65
**

 .80
**

 .29
**

 .75
**

 

9. Grade 3 basic calculation 
     

.79
**

 .51
**

 .54
**

 
 

.71
**

 .69
**

 .41
**

 .83
**

 

10. Grade 3 calculation principles 
     

.46
**

 .47
**

 .46
**

 .49
**

 
 

.61
**

 .47
**

 .73
**

 

11. Grade 3 number system knowledge 
     

.53
**

 .34
**

 .71
**

 .55
**

 .43
**

 
 

.30
**

 .73
**

 

12. Grade 3 Reading  
            

.42
**

 

13. Grade 3 Mathematics 
             

 

Note. N = 259. All variables are composites. Age is composite of chronological age and school month at time of testing. Zero-order correlations 

are above the diagonal. Below the diagonal are the partial correlations (251 df ) which control for age and general cognitive factors (WM PL, 

WMVSSP, WM CE, processing speed, and oral language). 

* p < .05. ** p < .01. 
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Table 5 

Summary of Multiple Regressions of Basic Calculation Proficiency in Grade 2 and 3 onto 

Conceptual Knowledge and Cognitive Factors 

 Grade 

 2  3 

Predictor ΔR
2 

β  ΔR
2 

β 

Step 1 .06***   04**  

  Age  -.24**   -.20** 

Step 2 .62***   .56***  

  Age  -.03   -.02 

  Calculation principles   -.44***   -.45*** 

  Number system knowledge  -.47***   -.41*** 

Step 3 .04***   .04***  

  Age  -.01   -.01 

  Calculation principles   -.33***   -.31*** 

  Number system knowledge  -.42***   -.39*** 

  WM PL  -.09*   -.04 

  WM VSSP  -.06   -.01 

  WM CE  -.05   -.06 

  Processing speed  -.19***   -.21*** 

  Oral language  -.01   -.00 

Total R
2
 .71***   .65***  

 

Note. Predictors and dependent variables are composites. Calculation principles and number 

system knowledge predictors are from same grade as dependent. 

* p < .05. ** p < .01. *** p < .001.  

  



Running head: BASIC CALCULATION   56 

 

Table 6 

Summary of Multiple Regressions of Grade 3 Basic Calculation Proficiency and Conceptual 

Knowledge onto Grade 2 Control and Number Variables 

 Basic 

calculation 

proficiency 

 Calculation 

principles 

 Number system 

knowledge 

Predictor ΔR
2 

β  ΔR
2 

β  ΔR
2 

β 

Step 1 .42***   .43***   .32***  

  Control factors
a 

        

Step 2 .37***   .19***   .36***  

  Basic calculation 

  proficiency 

 .69***   .16*   .17* 

  Calculation principles   .12**   .29***   .04 

  Number system  

  knowledge 

 .09*   .24***   .62*** 

Total R
2
 .79***   .62***   .68***  

 

Note. Predictors and dependent variables are composites. 

a 
Control factors included age, WM PL, WM VSSP, WM CE, processing speed, and oral 

language. 

* p < .05. ** p < .01. *** p < .001.  
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Table 7 

Summary of Simultaneous Multiple Regressions of Grade 3 Mathematics Achievement onto 

Age, Cognitive Factors, Reading and Number Variables from Grade 2 and Grade 3 

 

Number variables grade 

  

2 

 

  3  

Variable B 95% C1 sr
2 

 B 95% C1 sr
2 

Age -.06 [-0.00, 0.12] 

 

 .08* [0.02, 0.13] .01 

Cognitive  

 

 

 

    

  WM PL -.00 [-0.07, 0.07] 

 

 .03 [-0.04, 0.10]  

  WM VSSP -.11** [0.04, 0.18] .01  .07* [0.01, 0.14] .00 

  WM CE -.08* [0.01, 0.15] .00  .12** [0.05, 0.19] .01 

  Processing speed  .00 [-0.08, 0.08] 

 

 .02 [-0.06, 0.09]  

  Oral language -.15*** [0.08, 0.22] .01  .12** [0.05, 0.19] .01 

Reading -.04 [-0.03, 0.10] 

 

 .01 [-0.05, 0.08]  

Number 

 

 

 

    

  Basic calculation proficiency -.45*** [0.35, 0.56] .06  .45*** [0.36, 0.54] .07 

  Calculation principles -.10* [0.02, 0.19] .00  .14** [0.05, 0.22] .01 

  Number system knowledge -.19*** [0.11, 0.28] .02  .18*** [0.10, 0.26] .01 

R
2 

.81 

 

 .81  

F 106.18*** 

 

 107.95***  

 

Note. N = 259. Predictors and dependent variables are composites. 

* p < .05. ** p < .01. *** p < .001.  
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Table 8 

Mediation of the Relation between Grade 2 Basic Calculation Proficiency and Grade 3 

Mathematics Achievement through Age, Cognitive Factors, Reading and Grade 2 Conceptual 

Knowledge 

 

Product of Coefficients 

 

95% CI 

Variable 

Point 

Estimate SE 

 

Z 

 

LL UL 

Age 0.01 0.01 

 

-1.65 

 

-0.00 0.03 

WM PL -0.00 0.01 

 

-0.09 

 

-0.03 0.03 

WM VSSP 0.04 0.01 

 

-2.86** 

 

0.02 0.07 

WM CE 0.04 0.02 

 

-2.09* 

 

0.01 0.08 

Processing speed 0.00 0.02 

 

-0.04 

 

-0.05 0.05 

Oral language 0.07 0.02 

 

-3.83*** 

 

0.04 0.11 

Reading 0.02 0.01 

 

-1.15 

 

-0.01 0.05 

        Calculation principles 0.07 0.03 

 

-2.30* 

 

0.00 0.14 

Number system knowledge 0.14 0.03 

 

-4.31*** 

 

0.08 0.22 

        Total indirect effects 0.40 0.05 

 

-7.99*** 

 

0.30 0.50 

 

Note. Predictors and dependent variables are composites. Confidence intervals are bias 

corrected and accelerated. They were generated using Preacher and Hayes’s (2008) SPSS 

Macro for Multiple Mediation with 5000 bootstrap samples. Percentile and bias corrected 

confidence intervals were also generated and were essentially identical. 

* p < .05. ** p < .01. *** p < .001. 
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Table 9 

Mediation of the Relation between Grade 3 Reading and Mathematics Achievement through 

Age, Cognitive Factors, and Grade 3 Number Measures 

 

Product of coefficients  95% CI 

Variable 

Point 

Estimate SE 

 

Z 

 

LL UL 

Age 0.01 0.01  1.72  0.00 0.03 

WM PL 0.01 0.01  0.90  -0.01 0.04 

WM VSSP 0.01 0.01  1.71  0.00 0.03 

WM CE 0.04 0.02  2.84**  0.02 0.08 

Processing speed 0.01 0.02  0.38  -0.03 0.04 

Oral language 0.03 0.01  2.64**  0.01 0.06 

   

 

 

 

  Basic calculation proficiency 0.18 0.03  5.67***  0.12 0.25 

Calculation principles 0.06 0.02  2.91**  0.02 0.11 

Number system knowledge 0.05 0.02  3.21**  0.03 0.09 

   

 

 

 

  Total indirect effects 0.41 0.05  8.01***  0.31 0.51 

 

Note. Predictors and dependent variables are composites. Confidence intervals are bias 

corrected and accelerated. They were generated using Preacher and Hayes’s (2008) SPSS 

Macro for Multiple Mediation with 5000 bootstrap samples. Percentile and bias corrected 

confidence intervals were also generated and were essentially identical. 

* p < .05. ** p < .01. *** p < .001. 


