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Abstract. Resonance lines may be broadened by random strains, local electric field 
or similar perturbations. In simple cases the resonance line shifts linearly with the 
local strain or electric field; such cases have been treated in an earlier paper. In more 
complex cases there is no linear shift and the transition energy contains terms quadratic 
in the perturbation. Such cases occur frequently in spin resonance and nuclear 
magnetic resonance. These cases cannot be treated by the method used in the linear 
problem. The present paper describes an approximate method which deals with 
the quadratic terms. The  method is a development of the powerful ‘statistical 
method’ and can be extended to still higher orders. I t  is compared with various other 
approaches to the second-order problem and illustrated by an idealized model 
and applied to broadening by dislocations. I t  is shown that dislocation-broadened 
lines have a width and shift linear in the dislocation density and that the line shape 
changes as the dislocation density is varied. 

1. Introduction 
Sharp resonance lines in solids are often inhomogeneously broadened as a result of 

random fluctuations of the local strain fields, local electric fields or other perturbations. I n  
this paper we discuss the calculation of the line shape in terms of the properties of the 
defects which give rise to the perturbations-the statistical properties of their distribution, 
the perturbation fields of the individual defects and their concentration. 

One general class of cases has been discussed in the literature before (see, for example, 
Stoneham (1966, to be referred to as I), whose notation we shall follow). In  this case the 
transition energy of one of the centres under study shifts linearly with the local perturba- 
tion E :  

Here E is some linear combination of the components of the local strain tensor or of the local 
electric field, for example. The  unperturbed energy is hw,,, and hwl is a coupling coefficient. 
Many of the cases of interest practically follow (1). However, in certain circumstances hwl 
is zero (usually for reasons of symmetry) or very small, so that the transition energy only 
changes from second-order terms : 

hw = hwo + h W I E .  (1) 

xw = hw”2E’€’’. (2) 
This paper will discuss the case described by (2). Equations of this type hold for the strain 
broadening of the AiW = 2 and double-quantum electron paramagnetic resonance lines of 
MgO : Fe2+ (McMahon 1964), for various cases of broadening by unresolved hyperfine 
interaction (see Markham 1966, chap. VII, for details) and for broadening by the quadru- 
pole interaction in nuclear magnetic resonance (Kawamura et al. 1956). 

I n  both the linear case (1) and the second-order situation (2) we make two important 
physical assumptions. First we assume that the contributions of the various defects to E (or 
E’ or E”) are simply additive: 

N 

E ( Z 1 ,  * e * ,  2,) = 2 .(Z,). (3) 
t = 1  

Here 2, is an abbreviation for the position of the defect with respect to the centre studied, 
r,, and any internal variables of the defect, T ( ,  which are relevant. Equation (3) is the 
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assumption of linear elasticity in strain broadening, and should be reasonable when E is less 
than about As typical strain distributions have widths two orders of magnitude less 
this is not a very restrictive assumption. There are similar margins for other mechanisms, 
such as broadening by random electric fields. The  second assumption concerns the 
distribution of the defects. The probability of a particular configuration {Z,, ..., Z,}, in 
which all the positions and internal variables of the N defects have definite values, is 
P(Z,, ..., 2,) d~~...d~,. We assume that this can be factorized, so that the individual defect 
distributions are independent of each other : 

P(z,, ..., zAV) dz ,... dzN = p(zl) d~ , . . . p (  x,) d~, .  (4) 
This cannot be exact, for it ignores the fact that two defects cannot be placed on top of one 
another. However, (4) should be reasonable at the low concentrations usually met in prac- 
tice. The  statistical distribution function p ( z )  = p(r,  7) is the probability that if there is a 
centre contributing to the resonance line at R then there is a defect at R + r  in state 7 .  
Clearlyp(z) is closely related to the pair distribution function of the defects with respect to 
the centres studied. 

In  4 2 we outline the method of I and show how the distribution of E 2 Cc(Z i )  may be 
calculated from equations (l), (3) and (4). I t  is also shown that the distribution of 

N N 

Q = E l d ‘  2 E’(Zi) 2 €”(Zj)  
i = l  i = 1  

cannot be calculated by this method as it stands. In  4 3 an approximation, loosely resemb- 
ling a random phase approximation, is introduced which permits the calculation of the 
distribution of Q. This method is compared with other approximate methods in 4 4, and its 
application is discussed subsequently. Although the new method is an approximation it 
contains features which are not easily included in the other methods and which can prove 
valuable in practice. As the method is an extension of the well-known ‘statistical method’ 
the approach may also prove useful in other branches of spectroscopy. 

2. The linear case 
The probability that the perturbation E lies between E and E + de is I,(€) de, and may be 

calculated from (l), (3) and (4) with no further physical assumptions. We follow the nota- 
tion and method of I. 

Formally we can write 

The delta function singles out the configurations where E ( x ~ ,  ..., xN) has the specific value E ;  

J1(e) is simply the fraction of the possible configurations which have this value of E(z,, ..., zN). 
V normalizes p(z)  as 

$ d z p ( z )  = v. 
Using the spectral representation of the delta function 

1 nm 

It is at this stage that the linear and second-order cases diverge. For the linear case the 
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innermost exponential factorizes as a result of (3) : 
N 

exp{ixE(z,, . . , , zN)} = n exp(+ i x~(z , ) } .  
2 = 1  

and 

dx exp(ixe)[+/ dzp(z) exp{ + i x ~ ( z ) }  . I N  
No such factorization occurs in the second-order case. It is convenient to introduce new 
definitions here. Thus 

J l ( x )  = dzp(z)[l -exp{+ix~(z)}] (8) 
and 

p = NjV.  (9) 
p is clearly a measure of the defect concentration. By direct substitution 

or, in the limit of large N ,  

I,(€) = -- dx exp(ixc) exp{ -pJ,(x)}.  (10) 277 Im - m  

Equations (8)) (9) and (10) give the distribution of E in terms of the individual perturbation 
fields E ( x ) ,  the statistical distribution function p(z)  and p, the density of the defects. These 
results will be needed again in the following sections. 

3. Second-order theory 

The  probability that R lies between Q and Q + dQ is thus I,(Q) dQ, where 
The  distribution in magnitude of R given by (5) can be written in the same form as (6). 

1 
I,(Q) = F/ ... / d z l p ( z l )  ... dzNp(z,)6{Q-Q(zl, ... zN)) .  

The approach of $ 2  can be followed unaltered to the analogue of (7) ,  which becomes 

Iz(Q) = - 21i - ;Jm dxexp(ixQ) /dz,p(a,) ... /dzh,p(z,)exp{-ixQ(z,, ,.., zN)}.  (12) 

However, the innermost exponential does not factorize; by (3) and ( 5 )  it is 

(13) 1 N N 

exp{ - ixR(x,, . .., xu)) = exp - ix 2 E ' ( Z ~ )  2 E " ( x ~ )  
i = l  j = 1  

which cannot be split into a product of factors each involving the coordinates of only one of 
the defects. 

T o  proceed we take advantage of the fact that the first-order problem has already been 
solved. The exponential in (13) is split into a product of N symmetrical termsf,: 

N 

i = l  

h' N 

-ix C €'(xi) E " ( z ~ )  = nf.I exp(- ixE'(zi)d'(zJ} 
i = l  j=1 
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The exponent in fi varies as the defects take up different configurations 
(xl, ..., z , - ~ ,  z , + ~ ,  ..., zN} with x, fixed. We can regard the exponent off, as proportional 
to +%, a new sum of components of the internal strain: 

+t = E,€’ + p , E ”  

in which E’ and E” are the contributions to the respective strains of the N -  1 defects other 
than that at x,, and where is +”(x2) and p, is &’(x,). As N is large we can ignore the fact 
that E’ and E” are the contributions of N -  1 defects, rather than AT. The distribution of the 
values of 6, for given E, and pi is known from first-order theory to be Il(+J. The approxi- 
mation we make to factorize (13) is that we replace each factorf, by its average over con- 
figurations {xl, ..., ztP1, x , - ~ ,  ..., xN) appropriately weighted. Thus fi -+ F,  where 

- - c c  

Direct substitution of (10) gives 

By replacingf, by F ,  of equation (16) the difficult term in (13) has been factorized. I t  is 
an approximation, for we average in (15) instead of doing a single integral over zl, ..., xh7. 
T o  a limited extent the procedure resembles a random phase approximation, in that each 
factor exp( - ix+J has been averaged over the phase (bi ignoring any correlation between the 
different +i. The accuracy of the approximation will be examined later when we discuss 
the moments of the distribution. 

As a result of the factorization (12) becomes 

The  methods of the last section apply, and we may summarize our results in these equations : 

12(LR) = -- dxexp(ixR) exp(-pJ,(x)} (17) 

(18) 

2n I:= 
~ ~ ( x )  = i d z p ( x ) [ ~  - exp: - ixe/(z)E/l(x> -p-?(x, z>)] 
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These results are discussed in the following sections. We confine ourselves to two observa- 
tions, First the method applies equally well when (2) is generalized to the form 

hw = &WO + h W Z ( E I E ”  +E1’lE’” + . . .) 
albeit with an increase in complexity. Secondly the moments can be derived without 
difficulty. If 

J m  aa Q2”12(Q) 

Jrm dQ I d a )  

- 2 3  ,$f = 

4. Alternative second-order theories 
Xone of the theories described here are new, although none appear to have been dis- 

cussed critically before. All are approximate. 
The  first theory makes use of the moments of the distribution of R. A small number of 

the moments are calculated exactly and are used to determine the parameters in an assumed 
functional form for I(Q). For example the functional form might be a Gaussian distribu- 
tion whose peak is shifted from !2 = 0. Two moments are needed here, and these (denoted 
&!Il and a,) are exact in the sense that they avoid the approximation of 5 3. Then 

The moments, I@, = {E’E’ ’ )  and B2 ( E ’ E ~ E ’ ” ’ ’ ) ,  can be found from the identities 

( € ‘ E l 1 )  = $ { ( ( E 1 + d 1 ) 2 -  ( ( E 1 ) , ) -  ( ( E 1 ’ ) Z ) }  (22) 
(23) 

\E , I E I E I1 E I1 ) = & ~ { ( ( E I + E ~ ~ ) ~ ) +  ( ( E ’ - E ) ~ ) - ~ ( ( E ’ ) ~ ) - ~ ( ( E ~ ~ ) ~ ) } .  

Each of the terms on the right-hand sides of these equations can be found by the method of 
I. The  moments are expressed in terms of integrals S,t,m: 

These exact moments give: standard of comparison for second-order theories. For example 
we may compare J?l1 and M 2  with the corresponding moments obtained from the method in 
$ 3 .  Then = so the approximate method gives the exact first moment, but the 
second moment is not exactly M ,  : 
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There are two major disadvantages of the moment method we have been discussing. 
First we must assume a qualitative form for the line shape. The Gaussian (21) is an obvious 
choice, but it is a gross oversimplification. In  particular it does not allow 1(Q) to be 
asymmetric about Q = (Q); this is a real restriction, for in cases of practical interest 
skewed distributions often occur (e.g. the AM = 2 electron paramagnetic resonance line of 
MgO: Fe2+). Secondly the Sn,,, usually diverge at one or more limits of integration. The 
divergence can be prevented by a cut-off, of course, but the Sn,m then depend strongly on 
the value of the cut-off and this cannot be predicted with accuracy. The method of the last 
section does not suffer from either of these disadvantages. 

The second alternative method is to assume that in 
hw = hwo +hW2E’E” 

the perturbations E’ and E” are statistically independent. This can be generalized to cases 
where E‘ and E” are linear combinations of statistically independent perturbations, but this 
merely introduces complexity. If E‘ and E” are independent the distribution of R = E’E’’ can 
be found from the distributions I’(E’) and Y(E’~) of E’ and en respectively: 

This result can be readily applied in practice. In  terms of the moments the statistical 
independence is equivalent to assuming, for example, that ( E ’ E ” )  = ( E ’ )  ( E ” )  which is 
usually zero. The assumption has been used in another form (McMahon 1964, Feher 1964), 
when it is assumed that the distribution of E’ + E ”  is given by the appropriate convolution of I’ 
and I”. The objection to this method is that the assumption of statistical independence is 
not always good. This has already been discussed in 0 3.2 of I, so here we merely give an 
example. In  an isotropic crystal screw dislocations produce no dilatation, so e,,+ .eyy + e,, 
is zero; it is clearly incorrect to assume that e,,, euly and eaz are independent. However, 
by a judicious choice of E‘ and E ‘ ~  it may be possible to ensure E‘ and E” are nearly independent 
for some symmetry reason, at least sufficiently so for routine analysis. 

The  third alternative method is, in the present author’s view, incorrect. I t  is mentioned 
only because it has been used in the literature (equations (24)-(26) of Greenberg 1966). The  
assumption is to equate Q to 

N 

n1 = 1 E ’ ( X 2 ) ” ’ ( X J  (29) 
1=1 

N 

and thus to drop 2 ~ ’ ( 2 ~ )  2 ~”(2%). The assumption is often poor-in the next section we 

treat a simple model exactly and find it gives a completely different linewidth and depend- 
ence on concentration from (29). Moreover (29) leads to an incorrect first moment as well 
as incorrect higher moments-only the first term in (25) is given. The only use of (29) is in 
determining the asymptotic line shape. At very large values of Q the important configura- 
tions are those in which one defect is close to the centre studied. I t  may be possible to 
neglect the contributions to 

R here eo‘, eo‘‘ are the contributions to these perturbations from the nearby defect. 
I n  summary the method of 4 3, although approximate, has several advantages. I t  does 

not give awkward divergences, nor does it require an arbitrary qualitative choice of line 
shape. It gives the first moment exactly, and does not rely on the arbitrary assumption that 
certain perturbations are statistically independent. 

5. Comparison of exact and approximate results 
I(Q) can be found only in certain very simple cases. In  this section we discuss such a 

simple case and compare its predictions with the various approximate treatments. Although 
the model was chosen to make this comparison possible, it has a fairly strong similarity to 
the case of dislocation broadening. 

Z = 1  . i # Z  

of all the other defects, so that 
n N E o ’ E O ’ r  N Ql 
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The simplifying assumptions are these. The defects only influence one of the centres 
studied when the defect is within a volume V about the centre. The  defect may be in one of 
four states i in which E', E" are given below together with the probability Wi that the defect 
is in this state: 

state i probability Wi contribution to E' contribution to E" 

t 

- t  
- t .  

t (30) 

The  parameter y is a measure of the correlation between E' and E"; in fact 

where 

( F )  = CWiF(i) = f dzp(z )F(x) .  
i 

When y = 0 the two components are uncorrelated; when y = 1 the components E' and E" 

are completely correlated. I t  should be noted that ( E ' )  and ( E " )  are zero, independent of y. 
We further assume that the average number of defects within each volume Vis large; if n 

is the number of defects per unit volume then nV 9 1. Thus the contribution of any one 
defect to the half-width of the observed line is very small. 

There are two broadening mechanisms in our example. One comes from fluctuations in 
the relative numbers of defects in the different states i which interact with particular centres. 
The second comes from fluctuations in the total number of defects interacting with any one 
centre. In  the completely correlated case ( y  = 1) only the second mechanism contributes as 
Qi = s t  and always has the same sign and magnitude. 

Exact solution is possible when there is no correlation in the line shape. In  this case I(R) 
is symmetric about Q = 0 as the states with R = f s t  (i = 1, 4) and those with Q = -st 
(i = 2, 3) are equally populated. In  this case the important values of x in expressions such 
as (12) are of order l/(half-width), and as each defect makes only a small contribution to the 
half-width: 

The  importance of this lies in the fact that the central limit theorem can be used to predict a 
Gaussian shape for the exact distribution when nV 9 1 9 xst and y = 0. The  exact 
distribution can then be found from the moments, in particular by (26). In  M,  we need, for 

lxstl < 1. 

example, S2,2: 
S,,, = nV 2 Wi(~i'ei'')2 = nVs2t2; 

t 

the other terms can be obtained in the same way. The dominant term is Sz0, So, = (nVst),, 
and the full width at half-intensity is 

Aexact = 2v'2(ln 2)l ,nVsst. (33) 
This can be written in terms of the width of the distributions of E' and E" (A' and 
pectively) : 

res- 

A'h" 

z.\/z In 2' (34) Aoxact = 

As expected, this is of order A'A". 

(19) and expansion in powers of xst and l /nV we find a width 
The  approach of $ 3 also predicts a Gaussian. By straightforward application of (17)- 

AaBBrOX = 2(ln 2)l ,nVsst. (35) 
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This differs from Aexact by a factor 4 2 ,  although it predicts the correct concentration 
dependence and dependence on s and t .  This is to be contrasted with the method of 
Greenberg (1966), which gives a width proportional to (nV)lI2 and an entirely incorrect 
concentration dependence. The  method based on (28), which assumes that E‘ and E“ are 
statistically independent, should be exact when y = 0, but not otherwise. In  fact even when 
y = 0 the method is less useful than one might hope. The reason is that one normally 
wishes to use distributions of E’ and E” ( I / (€’ )  and I”(€”) respectively) which are approximate. 
In  the present model one would use approximations such as nV 9 1 to achieve this. How- 
ever, the integral in (28) has a sizable contribution from parts of I’(s) and I”(t) for which 
the approximations do not hold, and the exact, unwieldy expressions for I’ and I” must be 
used; in such cases (28) inay be intractable. The approximate forms of I’(s) and I”(t) are 
not adequate in the model of (30). The resulting line shape is 

where K,(x) is a modified Bessel function. The inadequacy of this result is strikingly shown 
by the divergence of K,(z) at small z.  The divergence is logarithmic, so it does not affect 
the moments too strongly, but it is a spurious result-there is no real divergence of I( Q) at 
small Q. 

So far we have only considered y = 0, when E’ and E” are uncorrelated. Both the moment 
method and the method of 9 3 predicted the same dependence of the width on concentra- 
tion nV and on the defect strengths (s, t ) .  The method of Greenberg gave the wrong 
concentration dependence, and the approach based on (28) (assuming E’ and E” uncorre- 
lated) gave a spurious divergence when normally acceptable approximations for I1’(e’) and 
I1”(c”) are used. In  going to finite y (finite correlation) we still consider only two of these 
approaches-the moment method and the approach of 9 3. The  other approaches should 
be even less successful than they are in the limit y = 0. 

As y increases the first moment of I(Q) becomes finite, as defects in states i = 1, 4 be- 
come more important. The moment method predicts that I(R) is a Gaussian of width 

centred on 
hGauss = 21//2( In 2)nVst( 1 + y2)lI2 

QGauss = nvst. 

(36) 

(37 )  

As the correlation increases the width increases and the peak of the distribution shifts. 
The method of 4 3 makes very similar predictions. Near the peak of the distribution the 

expansions in xst and l/nV should still hold, and the line shape should be nearly Gaussian, 
ni th  width 

peaked at 
AapprOy = 2(ln 2)1’2nVsst( 1 +y2)1’2 ( 3 8 )  

Qappr0); = 12vst. (39) 

-4gain the two methods agree in their dependence on the degree of correlation between E’ and 

The consistency of any result can be checked in the limit of complete correlation ( E ’  = E ” )  

,I 
E .  

by the analogue of the Kramers-Kronig relation. As R = ( E ’ ) ~  is never negative, 

relates the real and imaginary parts of F ( x ) ,  the Fourier transform of the exact line shape: 

1 P =  
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The artificial case discussed in this section is related to broadening by dislocations. This 
can be seen most easily from the distribution of E‘ or of E” alone 

1 r a  
Il’(e’) = 2 J dx exp(ixe’) exp( - inVs2x2) 

271 

compared with the result for dislocations, omitting a relatively small logarithmic term 

Idlsl(~’) = -- dx exp(ix6’) exp( - Lb2Ax2), 
27r Se - m  

The dislocation density L replaces the mean number of defects, nV, interacting with a 
centre. The  strength of the defect, s, is replaced by the Burgers vector b multiplied by a 
factor ( 2 A ) l ~ ~  which depends on the component E‘ considered. All the qualitative features 
carry over. Thus as E’ and E“ become more strongly correlated the width changes and the 
line shape skews. The  skewed shape is, of course, exactly that seen in paramagnetic reson- 
ance (McMahon 1964) and acoustic resonance (e.g. Lewis and Stoneham 1967). 

6. Second-order effects from dislocations 
This section treats a very practical problem-what is I( Q) for strain broadening by 

dislocations? I t  will be simplified by assuming this dislocation distribution is isotropic and 
homogeneous, as described in I .  This is only an approximation, for in real crystals subgrain 
boundaries and other complex structures are often found. We shall also be less ambitious 
than in 9 5, and shall be content with a qualitative description of the line shape and its 
dependence on parameters such as the dislocation density. Our justification lies in the 
complexity of the problem; also we recall that $9  4 and 5 suggest the theory of $ 3 is not very 
precise for absolute values of widths, but that it is reasonable qualitatively. Moreover the 
system discussed is too complicated to treat analytically throughout, and a list of computed 
values gives little insight into the problem. 

The first-order problem was solved in I. The distribution of strains E proves to be of the 
general form 

I 

I ( € )  = 2- J dx exp(ixe) exp{Lb2x2(A - B Inix;)} 
271 - m  

in which L is the dislocation density, b the Burgers vector magnitude and A and B are 
complicated angular integrals. The  exponent Lb2x2(A - B Inla!) is closely related to the 
ps(x ,  2)-in fact they are identical if we write 

€(U) = ~E’(Z)E”(ZL) +&”(X)E’(U) 

treating €’(U) and ~ ” ( z )  as coefficients. The variables 2: appear in the coefficients A and B. It 
is the logarithmic term in (40) which causes much of the analytic difficulty in the present 
problem. Such terms can be dropped, but this must be done with caution. I n  all cases 
where this approximation has been made here the error has been estimated by direct 
numerical integration, using reasonable values of the various parameters. 

After considerable manipulation and dropping some small terms we find 

[l - exp{ - (A + iA)y}] 

The angular variables, giving the orientations of dislocation Burgers vectors and axes, are 
collectively described by w .  Y is b2/R2, R being the crystal radius and b the Burgers vector, 
and y is b2/r2.  A and h are functions: 

A = Lb2x2F(x, #‘, I)”) 

where 
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and 
E‘(W,  Y) 

$’(U) = -. 
b l 2 n ~  

F ( x ,  $’, $”) does not vary rapidly with the variables on which it depends. 
The  upper limit of CO in the innermost integral of (41) means we are ignoring lattice 

structure and integrating from Y = 0 outwards. As Y = b2/R2 is small (typically \\-e 
may also assume R infinite, except in those terms which diverge logarithmically. The result 
is 

where y is Euler’s constant (In y = 0,57721 ...) and e = 2.718 ... . This is still too compli- 
cated to evaluate exactly. Instead we take two extreme limits. Both limits can be achieved 
at reasonable dislocation densities. In  the high-density limit A $ A the integrand becomes 

As In A varies relatively slowly with x we can treat it as a constant. T h e  first term is pro- 
portional to Lb2x2, so the real part of p J ,  varies as L2x2b2. Thus we expect a Gaussian line 
with width proportional to Lb2. The second term is proportional to x, so the peak of the 
Gaussian should be shifted from E’E’’ = 0 by an amount proportional to Lb2. In  the opposite 
limit A @ A, which holds at lower densities and also in the extreme wings of I (Q) ,  the 
integrand becomes 

In  this case pJ, has a real part proportional to Lb21xj and an imaginary part proportional to 
Lb2x. The line is Lorentzian, with width and shift linear in Lb2. 

In  both these extreme cases the width and the shift are proportional to the dislocation 
density L and the square of the Burgers vector. The shape varies from Lorentzian to 
Gaussian as L increases; at intermediate values of AjA the line will not be so simple and 
may be skewed. In  fact the skewness will show whenever 9 { J 2 ( x ) / x }  varies with x-only 
when this is independent of x is there a rigid shift. The weakness of the moment method 
can also be demonstrated, as both the first and second moments (related to the shift and 
width respectively) diverge unless a cut-off is included at both large and small Y. 

7. Conclusion 
This paper described methods of treating second-order inhomogeneous broadening of 

resonance lines, and a new approximate extension of the statistical method was developed 
to deal with these cases. The new method offers advantages over the previous methods: it 
does not rely on qualitative estimates of the line shape, it is valid for any second-order term 
(and not just the product of two uncorrelated first-order terms) and it predicts the correct 
qualitative dependence on defect strengths and concentrations. The various approaches 
were compared for a simple model and the case of strain broadening by dislocations. 
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