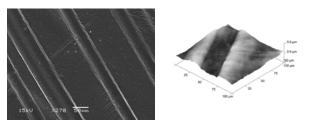
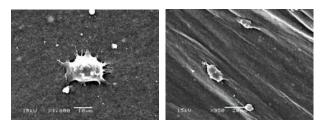
Topographic Patterning of 3D Collagen Scaffolds: From Surface to Interface Engineering

<u>E.Hadjipanayi</u>,¹ T.Alekseeva¹, L.Bozec² and R.A.Brown¹


¹ UCL, Tissue Repair and Engineering Centre, Division of Surgical and Interventional Sciences, Institute of Orthopaedics and Musculoskeletal Sciences, London, HA7 4LP, UK ²UCL Eastman Dental Institute - 256 Gray's Inn Road - London - WC1X 8LD, UK

INTRODUCTION: Topographic patterning provides a useful tool for regulating cell function, such as adhesion, proliferation, differentiation and contact-guidance. While current (e.g.lithographic) techniques allow precise control of topographic pattern (anisotropic vs isotropic) and scale (nano-vs micro-topography)¹, they are only applicable to 2D surface patterning, which compromises their relevance to 3D tissue engineering. In this study we developed a novel method for rapid fabrication of micro-textured 3D collagen scaffolds.


METHODS: The two-step fabrication process involved, firstly, plastic compression of collagen hydrogels to remove interstitial fluid and increase matrix stiffness (from 42.2 ± 22 to 1805 ± 214 KPa)², followed by embossing a customizable template of parallel-aligned phosphate-based glass-fibers (35 or 55µm fiber diameter with 100µm inter-fiber spacing) on the scaffold's surface. Groove width and depth was measured by SEM and AFM, respectively. For 2D culture, HUVECs were cultured on smooth or micro-textured collagen scaffolds for 48hrs to test cell alignment and morphology. Cell attachment was tested by washing scaffolds with PBS 4hrs post-seeding and counting the number of adherent cells with a phase-contrast microscope. For 3D culture, human dermal fibroblasts (HDFs) were seeded within micro-textured scaffolds. smooth or with keratinocytes seeded on top. Constructs were cultured submerged for 2 days, before being raised to the air-liquid interface and cultured for an additional 12 days. Constructs were H&E stained at 2weeks and epidermal thickness was quantified by image analysis.

RESULTS: SEM showed a regular pattern of parallel grooves and ridges (Fig.1). Groove width was $30.5\pm3.3\mu$ m and $49.5\pm11.6\mu$ m for 35μ m and 55μ m diameter fibers, respectively. Groove depth was $0.95\pm0.49\mu$ m and $1.55\pm0.31\mu$ m, respectively. 2D culture of HUVECs on micro-textured collagen substrates showed preferential cell adhesion on 30μ m-wide grooves compared to 50μ m-wide grooves or smooth surfaces. Groove width also affected cell alignment and morphology, with 66% of cells aligning along groove direction on 30μ m-

wide grooves (cell elongation-index= 3.1 ± 1.9), compared to 7.3% of cells on 50µm-wide grooves (cell elongation-index= 1.35 ± 0.23) (Fig.2). 3D culture of HDFs within micro-textured scaffolds, with keratinocytes seeded on top, indicated that the micro-topography of the dermo-epidermal interface influenced the rate of keratinocyte stratification, since epidermal thickness decreased from $40\pm14\mu$ m for smooth interfaces to $14\pm6\mu$ m for grooved interfaces.

Fig. 1: SEM (left) and AFM (right) images of micro-textured collagen scaffolds

Fig. 2: Endothelial cells on smooth (left) and 30µm-wide grooved (right) collagen scaffolds.

DISCUSSION & CONCLUSIONS: We report on a novel method for topographic patterning of 3D biomimetic collagen scaffolds. The versatile applicability of this technique to 2D and 3D culture makes it a promising tool for investigating cell behavior on both 2D surfaces and 3D interfaces, where cell-cell interactions could critically influence cell function.

REFERENCES: ¹J.Y.Lim and H.J.Donahue (2007) *Tissue Engineering* **13**, 1879-1891. ²R.A.Brown, M.Wiseman, C.B.Chuo, U.Cheema, S.N.Nazhat(2005)*AdvancedFunctionalMaterials***15**, 1762-1770.

