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Finite Rossby radius effects on vortex motion near a gap
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This work investigates the effect of the Rossby radius of deformation on the motion
of a vortex near a gap in an infinitely long barrier. A key parameter determining the
behaviour of the vortex is a, the ratio of the Rossby radius of deformation to the
width of the gap. Assuming quasi-geostrophic dynamics for a single-layer, reduced-
gravity fluid, an integral equation is derived whose solution gives the velocity at any
point in the fluid. The integral equation is solved numerically and the velocity field
is integrated to give the trajectories of point vortices. Combined with the method of
contour dynamics, the method can be used to compute the evolution of finite area
patches of constant vorticity. The trajectories of point vortices and vortex patches are
compared. The patches are initially circular and the centroids of those vortex patches
that remain close to circular follow the trajectory and speed of their equivalent
point vortices when appropriately normalised. The critical point vortex trajectory
(the separatrix) which divides vortices that leap across the gap and those that pass
through, is computed for various a. Decreasing the Rossby radius of deformation
increases the tendency of vortices to pass through the gap. The effect of various
background flows on both point vortex and vortex patch motion is also described.
[http://dx.doi.org/10.1063/1.4721432]

I. INTRODUCTION

Long-lived eddies play a significant role in the transport and mixing of ocean properties such as
momentum, heat, and salt. For example, meddies1 have been tracked for up to several years and carry
anomalously salty water from the Mediterranean to the North Atlantic. Such long-lived vortices will
inevitably encounter topography in the form of mid-ocean ridges, coastlines, and seamounts. It is
of interest to determine how the interaction of vortices with such topographic features affects their
transport characteristics.

Vortex interactions with gap-like geometries have been studied in relation to the equatorial
currents and eddies in the western Atlantic2 showing how fluid can be transported through a gap
by eddies. High resolution numerical experiments have recently been carried out3 examining the
structure, propagation pathways, and interactions of the North Brazilian current rings with the
narrow pathways between islands of the Lesser Antilles. The influence of the Kuroshio current on
westward propagating eddies near the Luzon Strait has been modelled using the Princeton Ocean
Model.4 Laboratory experiments have also been conducted on a single self-propagating vortex near
two islands5 showing that the interaction depends on the size of the vortex and the distance between
the islands.

The abyssal ocean contains many disjointed ridges, punctuated by gaps. A variety of oceano-
graphic processes have been considered in such regions. For example, the flow of the stratified
abyssal ocean in the presence of a partially blocked meridional barrier6 and the exchange flow
between large-scale ocean basins through narrow gaps.7 These gap regions have also been modelled
as a “porous” barrier.8

Idealised models which assume two-dimensional flow of an inviscid fluid have been used to
construct the Hamiltonian, or Kirchhoff-Routh path function,9 for a single point vortex near a gap,
in an infinitely long and infinitesimally thin straight barrier in the rigid lid case (i.e., infinite Rossby
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radius).10 The main result is that vortices that start far upstream of the gap at greater than half the
gap width from the barrier leap across the gap. Vortices far upstream starting closer to the barrier
pass through the gap. Subsequently, vortex motion near barriers with two gaps was studied11 and
then later for barriers having an arbitrary number of gaps.12 More recently13 analytical trajectories
have been found for a barotropic line vortex near a gap in a wall within a channel with a uniform
current. Furthermore, numerical trajectories of finite-area patches were computed and compared to
the results found through laboratory experiments conducted within a homogeneous rotating fluid,
showing good agreement for vortices that pass through the gap completely, i.e., without splitting.
These “ideal” models are mathematically equivalent to single-layer quasi-geostrophic dynamics in
the limit of infinite Rossby radius of deformation (i.e., the rigid lid limit). While these exact solutions
are interesting and useful, in an oceanographic context it is natural to consider the more realistic
case of having a finite Rossby radius of deformation.

The present work aims to generalise the work of Ref. 10 by calculating trajectories of point
vortices near gaps at finite Rossby radii. The key non-dimensional parameter is a, the ratio of the
Rossby radius of deformation and the half-width of the gap. Quasi-geostrophic dynamics in a single
layer with reduced gravity is used to derive an integral equation whose solution gives the velocity
field at the vortex, enabling its trajectory to be computed. For finite a the integral equation must be
solved numerically, unlike the rigid lid case (a → ∞),10 where complex variable methods give exact
point vortex trajectories.

Point vortex trajectories are found for a range of finite Rossby radii using the integral equation
formulation. For finite area patches of constant vorticity, the integral equation is combined with
contour dynamics.14 The trajectories of both point vortex and vortex patch models are analysed and
compared.

The effect of background flows on the vortex motion is incorporated by appropriately modifying
the integral equations and solving using the same techniques.

II. FORMULATION

A. Statement of the problem

A single layer of reduced gravity fluid in a flat bottomed ocean of depth H is considered. In the
quasi-geostrophic limit, the potential vorticity q is conserved where

q = ∇2ψ − 1

L2
R

ψ. (1)

Here, ψ is the geostrophic streamfunction from which the velocity field can be recovered according
to dx/dt = k × ∇ψ . The length scale, L R = √

g′ H/ f , is the Rossby radius of deformation. Here,
f is the constant Coriolis parameter and g′ is the reduced gravity. The rigid lid limit is LR → ∞, for
which the Eulerian dynamics are recovered.

The vortex is located near a gap in an infinitesimally thin, infinitely long wall. This is equivalent
to two semi-infinite barriers on either side of a gap of width 2W . The task is to compute the trajectory
of the vortex with circulation κ and determine conditions when the vortex passes through this gap.
A schematic of the system is shown in Fig. 1.

With ψ scaled by |κ|, the potential vorticity q scales like |κ|W −2. For the horizontal scale
W (i.e., half the gap width) is chosen. The non-dimensional potential vorticity q′ can thus be

W−

κ

W
?

FIG. 1. Possible trajectories of a single vortex of circulation κ near a gap in a wall.
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written as

q ′ = ∇2ψ ′ − 1

a2
ψ ′, (2)

where a = √
gH/ f W measures the ratio of the deformation radius LR to the half gap width W .

Henceforth, the dashes for non-dimensional quantities are omitted.
In an unbounded domain a quasi-geostrophic point vortex of strength � (where � = ±1 in this

non-dimensional system), located at (xv, yv), has streamfunction �PV satisfying

∇2�PV − 1

a2
�PV = �δ(x − xv)δ(y − yv), (3)

with solution

�PV (x, y, xv, yv) = − �

2π
K0

(√
(x − xv)2 + (y − yv)2/a

)
, (4)

where K0 is the modified Bessel function of the second kind of order zero. Note that the modified
Bessel function structure of the point vortex implies a far-field gradient of the streamfunction (i.e.,
the velocity induced by the vortex) which decays algebraically for infinite a (i.e., the rigid lid case)
but decays exponentially for finite a.

In addition to the vortex induced velocity field, there is a vorticity free velocity field, with
streamfunction ψ , satisfying

∇2ψ − 1

a2
ψ = 0, (5)

such that the total normal flow at the barrier vanishes. That is, the two half-lines of the barrier are
streamlines so that on each barrier

� ′ = ψ + �PV = const. (6)

The difference in the values of these two constants gives the fixed volume flux through the gap. For
simplicity, the analysis is presented first for no flux through the gap so both constants can be taken
to be zero and examples with background flux are given later in Sec. III C.

For a barrier running along the x axis with no gap, the method of images gives

ψ ≡ −�PV (xv,−yv) (7)

and the vortex propagates parallel to the barrier. Clearly this solution is not applicable with a gap
present (since it implies the existence of an additional vortex in the flow domain at (xv, yv)) and
another method must be used to find ψ . In the limit a → ∞, advantage can be taken of the known
behaviour of the Hamiltonian under conformal mapping.9 By mapping the single gap geometry to
a half-space, Johnson and McDonald10 were able to obtain an explicit expression for the vortex
Hamiltonian in the single-gap geometry. This in turn gives the vortex trajectories explicitly. For a
finite a, there is no such rule for the behaviour of the Hamiltonian under conformal mapping.

B. Integral equation: Vortex sheet over the barriers

To find ψ(x, y), it is required to solve the following boundary value problem:

∇2ψ − 1

a2
ψ = 0, (8)

ψ(x, 0) = −g(x), |x | > 1, (9)

ψ(r ) → 0 as r → ∞, where r =
√

x2 + y2, (10)

where g(x) = �PV (x, 0) is known.
Let

G(x, y, x0, y0) = − 1

2π
K0

(√
(x − x0)2 + (y − y0)2/a

)
(11)
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be the infinite space Green’s function for the Helmholtz equation (8). Then,

∇2G − 1

a2
G = δ(x − x0)δ(y − y0). (12)

Now, integrating over all space and using Green’s Theorem and (10) gives∫ ∫
D

(
ψ∇2G − G∇2ψ

)
dx dy =

∫
b

(
ψ

∂G

∂y
− G

∂ψ

∂y

)
dx, (13)

where the right hand side is the line integral around the semi-infinite barriers, i.e., extending from
(− ∞, −1] and [1, ∞) above the barriers (y = 0+) and (∞, 1] and [1, ∞) below the barriers
(y = 0−).

Since ψ(x) is continuous across y = 0,∫
b
ψ(x)

∂G

∂y
(x, 0, x0, y0) dx = 0. (14)

Hence, using (8), (12), and (14), (13) can be simplified to give

ψ(x0, y0) = −
∫

b
λ(x)G(x, 0, x0, y0) dx, (15)

where λ(x) = ∂ψ /∂y on |x| > 1, y = 0.
Differentiation of (15) with respect to y0 and x0 gives the velocity at (x0, y0)

u(x0, y0) =
∫

b
λ(x)

∂G

∂y0
(x, 0, x0, y0) dx, (16)

v(x0, y0) = −
∫

b
λ(x)

∂G

∂x0
(x, 0, x0, y0) dx . (17)

It remains to find λ(x). On the barrier (15) gives

g(x0) =
∫

b
λ(x)G(x, 0, x0, 0) dx

= 2
∫ ∞

1
λ(x)G(x, 0, x0, 0) dx + 2

∫ −1

−∞
λ(x)G(x, 0, x0, 0) dx, (18)

which, since g(x0) is known, is an integral equation for the unknown λ(x). Once λ(x) is determined,
(16) and (17) then give the velocity field at any arbitrary point (x0, y0).

III. SOLUTION OF THE INTEGRAL EQUATION

A. Simplification of the integral equation

The integral equation (18) can be solved by discretising the integrals and solving the subsequent
system of linear equations by matrix inversion. Anticipating later consideration of the vortex patch
case where the streamfunction along the barriers is not readily computed, but the normal velocity
on the barriers, n(x), is using contour dynamics, (18) is differentiated with respect to x0, to give

∂g

∂x0
(x0) = n(x0)

= 2
∫ ∞

1
λ(x)

∂G

∂x0
(x, 0, x0, 0) dx + 2

∫ −1

−∞
λ(x)

∂G

∂x0
(x, 0, x0, 0) dx, (19)

where n(x0) is the normal velocity along the barrier owing to the vortex alone.
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Now, the normal velocity along the barriers can be split up into even and odd parts,

n(x0) = n(x0) + n(−x0)

2
+ n(x0) − n(−x0)

2

= ne(x0) + no(x0). (20)

For the even case, let unknown function being sought be λ1(x) and for convenience, write

∂G

∂x0
(x, 0, x0, 0) = Ka(x − x0), (21)

and note from (11) Ka(x − x0) = −Ka(x0 − x).
Hence, from (19),

ne(x0) =
∫ −1

−∞
λ1(x)Ka(x − x0) dx +

∫ ∞

1
λ1(x)Ka(x − x0) dx

+
∫ −1

−∞
λ1(x)Ka(x + x0) dx +

∫ ∞

1
λ1(x)Ka(x + x0) dx, (22)

from which it follows that λ1(x) is odd and the integral equation (19) can be re-written so that the
integration is along one barrier, i.e.,

ne(x0) = 2
∫ ∞

1
λ1(x)Ka(x + x0) dx + 2

∫ ∞

1
λ1(x)Ka(x − x0) dx,

= 2
∫ ∞

1
λ1(x) (Ka(x − x0) + Ka(x + x0)) dx . (23)

Similarly, for the odd case where letting the unknown function being sought be λ2(x), it follows:

no(x0) = 2
∫ ∞

1
λ2(x) (Ka(x − x0) − Ka(x + x0)) dx . (24)

B. Numerical solution of the integral equation

Integral equations (23) and (24) are singular since for x0 > 0,

Ka(x − x0) = A

x − x0
+ O(1), as x → x0, (25)

where A is a constant. Thus, the integrals in (23) and (24) need to be interpreted in a Cauchy principal
value sense. The solutions λ1(x) and λ2(x) are also expected to have inverse square root singularities
at the barrier tip. That is,

λ1,2(x) ∼ B√
x − 1

as x → 1, (26)

where B is a constant. This is because for small distances from the barrier tip the solution of the
Helmholtz equation should give a velocity field which tends to that governed by Laplace’s equation.
It is well known that such a velocity field has an inverse square root singularity.

Let

E(x, x0) = Ka(x − x0) + Ka(x + x0), (27)

and approximate (23) as

ne(x0) = 2
∫ 1+ε

1
λ1(x)E(x, x0) dx + 2

∫ L

1+ε

λ1(x)E(x, x0) dx, (28)

where L 	 1 is the truncation length of the barrier and 0 < ε 
 1. The first integral in (28)
encompasses the inverse square root singularity of λ1(x) and, provided x0 is not close to x = 1 (i.e.,
the vortex is not near the barrier tip), is integrable and behaves like

√
ε as ε → 0. Thus, to a good
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approximation, we take ε = 0 and (28) becomes

ne(x0) � 2
∫ L

1
λ1(x)E(x, x0) dx . (29)

The integral in (29) is discretised into N points,

xi = 1 + (i − 1)h, i = 1, . . . , N , (30)

where h = (L − 1)/(N − 1). Let

x j
0 = x j + h

2
, j = 1, . . . , N , (31)

be the mid-points of the [xi, xi + 1] intervals values along the barrier. Note that the final mid-point j
= N lies outside [1, L]. This is fine, since the choice of truncation length is arbitrary; and data for
ne(x N

0 ) are available there. It can be shown15 that, using the trapezoidal rule,∫ L

1
E(x, x0)λ1(x) dx �

N∑
i=1

λ1(xi )E(xi , x j
0 )wi , (32)

where wi are the usual trapezoidal weights

wi =
{

h
2 i = 1, N ,

h otherwise.
(33)

That is, by considering x j
0 as the mid-points, the presence of the (x − x j

0 ) singularity is accounted
for.

Hence, the integral equation (23) can be approximated by the N×N linear system,

N∑
i=1

E(xi , x j
0 )λ1(xi )wi � ne(x j

0 ), j = 1, . . . , N , (34)

where the unknowns λ1(xi) are found by numerically inverting the coefficient matrix. Similarly, the
solution λ2(x) to (24) can be found.

Once the λ1, 2(xi), i = 1, . . . , N, are determined, the velocity field at any point (x0, y0) is found
by truncating and numerically evaluating the integrals in (16) and (17), again using the trapezoidal
rule.

C. Background flows

The advection of vortices by ambient currents and background flows will influence their trajec-
tories. Two background flows are considered here.

For flow symmetric in x through the gap with streamfunction ψ s, we can derive an integral
equation identical to (15) with the streamfunction along the boundary given by

ψs(x, 0) = F
2π

sgn(x), |x | > 1, (35)

where F is the flux through the gap. Exploiting the fact that ψ(x, 0) is odd yields the following
integral equation:

F
2π

= 2
∫ ∞

1
λs(x)(G(x, 0, x0, 0) − G(x, 0,−x0, 0)) dx, (36)

which can be solved as before for the unknown λs(x). Once λs(x) is known then the streamfunction
at any point (x0, y0) is found from

ψs(x0, y0) = −
∫

b
λs(x)G(x, 0, x0, y0) dx . (37)

Another non-trivial flow can be found by letting ψa(x, 0) = F/2π, |x | > 1, and insisting
ψa → 0 as r → ∞. This corresponds to a non-trivial flow with zero net flux through the gap,

Downloaded 12 Jun 2012 to 128.40.56.72. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



066601-7 Nilawar, Johnson, and McDonald Phys. Fluids 24, 066601 (2012)

(a) (b)

FIG. 2. (a) Streamlines for the symmetric flow through the gap with F = 1 and contour values of ψ s(x, y) = n/10 for n = 1,
. . . , 9. (b) Streamlines for the anti-symmetric flow through the gap with F = 1 and contour values of ψa(x, y) = n/10 for n
= 1, . . . , 9. a = 1 in both (a) and (b). The arrow-heads on the streamlines indicate the direction of flow.

such that the through gap velocity is anti-symmetric. Such a flow field occurs near a gap when one
of the basins connected by the gap is closed. By mass conservation there is zero net flux across the
gap as in Fig. 2(b). Further, owing to the linearity of the governing equation, any linear combination
of the flow fields shown in Figs. 2(a) and 2(b) generates all possible background flow fields that have
bounded speed at infinity. This results in the following integral equation, for λa(x) = ∂ψa/∂y on
|x| > 1, y = 0,

F
2π

= 2
∫ ∞

1
λa(x)(G(x, 0, x0, 0) + G(x, 0,−x0, 0)) dx . (38)

Integral equations (36) and (38) are solved using the procedure described in Sec. III B and the
resulting streamlines with F = 1, for symmetric flow, ψ s and anti-symmetric flow, ψa are shown
in Fig. 2. Note that the anti-symmetric case shown in Fig. 2(b) has no analogy in the rigid-lid
case: as a → ∞, ψa → F/2π everywhere and the flow becomes stagnant. In principle, any linear
combination of ψa and ψ s can be used to generate a non-trivial background flow.

IV. RESULTS

A. Point vortex motion

The method described in Sec. III C to find the velocity field owing to the presence of the barrier
enables the motion of point vortices and finite area patches to be computed. A large number of
points, N = 211, was used to discretise the barrier on the interval 1 ≤ x ≤ L, where L = 13a. The
truncation length 13a being sufficiently large so that the typical magnitude of the normal velocity
induced by the vortices with |xv| ≤ 4 on the barrier was of order 10−6 at x = L.

Once λ(x) is computed, the velocity at the vortex is found using (16) and (17) and is advected
using the fourth order Runge-Kutta routine with a time-step of at most �t = 0.1.

An alternative numerical method using the rigid lid solution as the basis of an iterative solution
of the integral equation which is valid for a > 1 was used to verify the results of the matrix method
for a range of a > 1. The details of this method can be found in the Appendix.

When in the far field, the point vortex follows the rigid lid trajectory regardless of a as the
presence of the gap is not felt, namely, the vortex behaves as it were near an infinitely long wall and
propagates parallel to it. Although the trajectories are the same, the vortex propagation velocities
are different with a decrease in the velocity as a is decreased.

When sufficiently close to the barrier, for a = 10, the presence of the gap is eventually felt and
the vortex starts dipping towards the gap and eventually passes through the gap, with a trajectory
resembling the motion of a vortex near a semi-infinite barrier, as the effect of the second barrier
cannot be felt. When starting further from the barrier the downstream barrier influences the motion
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FIG. 3. A comparison between the analytical vortex (� = 1) trajectories for the rigid lid case, a → ∞ (dashed lines) and
the numerically calculated trajectories for a = 10 (dotted lines) with zero background flow. The numerical trajectories are
for individual vortices starting at (xv, yv) = (±4,∓0.2n), n = 1, . . . , 8. The arrow-heads on the trajectories indicate the
direction of vortex motion.

before the vortex can pass through the gap and the vortex leaps across the gap. A separatrix divides
the two behaviours such that critical distance from the barrier far upstream of the gap is close to
unity. Trajectories are shown in Fig. 3. As expected, for this large value of a the behaviour of the
point vortex is essentially that of the rigid lid case studied by Johnson and McDonald10 (see also
Fig. 3), who showed that the critical trajectory on the separatrix is such that |y| = 1 as x → ∞.

Figure 4 compares vortex trajectories for a = 1 and the a → ∞ (exact) case. An immediate
feature is that when a = 1 there is an enhanced capability for vortices to pass through the gap. For
example, the a = 1 trajectory starting at (− 4, 1) passes through the gap whereas it lies just outside
the separatrix for a = ∞. This is because it takes longer for the vortex to feel the effect of the gap
owing to the more rapid (exponential) decay of the velocity field of the a = 1 vortex compared to
the slower algebraic decay as a → ∞. Once it is above the gap, the effect of the downstream barrier

FIG. 4. Same as in Fig. 3 but with a = 1 (dotted lines).
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FIG. 5. Value of ysep against 1/a. The tendency for vortices to pass through the gap is increased with decreasing a.

is felt less strongly than for the rigid lid case and therefore, it does not leap across, but it passes
through.

The numerical method can be used to quantify the effect the Rossby radii has on the separatrix.
A point vortex located at (10−6, 10−6) can be advected until the vortex passes the line, |x| = 5, where
the motion becomes effectively that of a point vortex near a wall. Let this distance y be denoted as
ysep(1/a). For the rigid lid case, ysep(0) = 1. This function has been computed for various values of
a and plotted as a function of 1/a in Fig. 5 which clearly shows that ysep is further from the x axis as
a decreases, i.e., a−1 increases. The effect is relatively minor, there being less than 10% change in
ysep over the range of a tested.

Figure 6 shows point vortex trajectories with symmetric flow through the gap of unit strength
F = 1, with a = 1. For x > 0, y < 0, the velocity induced on the vortex owing to the background
flow and its self-advection along the wall are in the same direction. Hence, vortices starting further
from the wall will pass through the gap. For x < 0, y > 0, the background and vortex self-advection
velocities are in opposite directions, hence, vortices are pushed back and need to be very close to
the wall in order to generate sufficient speed from self-advection to overcome the background flow.

FIG. 6. The effect of the symmetric flow (as in Fig. 2(a)) of unit strength, F = 1, on the trajectories of single point vortices
(� = 1) starting from (− 4, .1n), n = 1, . . . , 7 and (4, .2n), n = 1, . . . , 7 with a = 1.
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FIG. 7. Vortex trajectories (� = 1) over a range of anti-symmetric flows with a = 1. The strength of the flows in each figure
is −F = 0.6, 1, 1.6 in (a), (b), and (c), respectively. The direction of the background flow is the same as in the streamlines
in Fig. 2(b).

In the presence of anti-symmetric background flow, there exist a variety of vortex behaviours
depending on the flow strength F . For example, there exist closed trajectories where vortices remain
locally trapped (see Fig. 7). For F = −0.6 (Fig. 7(a)), there are four primary regions within the flow
including the hour glass shape which contains a region of trapped vortex paths. There are also three
stagnation points on the y axis including one which is unstable at the origin. For large |x|, some
vortices approach the gap but are turned back, travelling back towards their initial position owing to
the background flow. Note that vortices sufficiently far from the barrier also propagate against the
direction of self-advection owing to the background flow.

Increasing the strength of the background flow squashes the hour glass so that its height
(y-direction) decreases and its width (x-direction) increases as the two stable (elliptic) stagnation
points on the y axis coalesce. In Fig. 7(b) (F = −1), the hour glass contains closed paths (with their
semi-major axes lying on the y axis). Interestingly, the centre of the gap has gone from an unstable
hyperbolic point Fig. 7(a) to an elliptic point Fig. 7(b). In Fig. 7(c), the strongest background flow
(F = −1.6), the hour glass is further squashed and the stagnation points are pushed further out
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FIG. 8. Value of ysep as a function of the strength F of anti-symmetric flow for a = 1.

towards the tips of the barriers. This behaviour suggests the possibility of trapped eddies near bay
exits.

Figure 8 shows that for vortices starting x → −∞, y > 0, ysep increases with an increase in
anti-symmetric flow strength.

V. VORTEX PATCH MOTION

Contour dynamics14 enables the motion of a finite area patch of vorticity to be calculated
efficiently by advecting the boundary of the vortex patch. The contour dynamics algorithm, in
conjunction with contour surgery14 which allows for the breaking and joining of contours, is modified
to include the gap geometry.

The normal velocity along the barriers owing to a piece-wise constant distribution of vorticity
is calculated using the contour dynamics algorithm. As in the case for the point vortices, the normal
velocity is split into even and odd parts. The barrier discretised over the interval 1 ≤ x ≤ 13a. The
resulting even and odd velocity fields along the barrier are used to compute, by solving the resultant
integral equations, the respective streamfunction derivatives (λ1, 2(x)) using the same method outlined
for the point vortex case. Once obtained, the velocity owing to the barriers is calculated at each node
along the contour. This velocity, along with the self-induced patch velocity (computed in a “standard”
way by contour dynamics), is then used to advect the nodes on the vortex patch boundary using the
fourth order Runge-Kutta routine with �t = 0.1.

A. Vortex patch normalisation

This section derives a new way of normalising finite area vortex patches so that the motion at
different Rossby radii, patches with the same vorticity but with different sizes and areas (including
point vortices) can be compared.

The general solution of the Helmholtz equation (8) with arbitrary boundary conditions around
the circle, r = R (which later is taken to be the patch radius) can be written for r < R as

ψ =
∞∑

n=0

(αn cos nθ + βn sin nθ )In(r/a). (39)

The area-average value of ψ inside a circular vortex patch is, using (39), proportional to α0, the
value of ψ at the centre of the patch,

〈ψ〉 = 1

π R2

∫ R

0

∫ 2π

0
ψr dr dθ = 2

α0

R2

∫ R

0
I0(r/a)r dr = α0S, (40)
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where

S = 2a

R
I1(R/a), (41)

with S increasing monotonically from unity in the rigid lid limit (a → ∞) with increasing R/a.
The x coordinate of the potential vorticity centroid of a finite area patch can be written for a non-

constant potential vorticity q(x, y) as xc = ∫∫
xq/Q where Q = ∫∫

q is the total potential vorticity
inside the vortex patch, and all integrals are evaluated over the area of the patch. Conservation of
potential vorticity q shows that Q is a constant of the motion and hence,

Qẋc =
∫ ∫

xq̇ = −
∫ ∫

x · ∇(uq) =
∫ ∫

qu · ∇x − ∇ · (xuq) . (42)

The divergence term is reduced to a line integral around the boundary of the patch, which for a
finite patch, vanishes. The first term remains which is just the area integral of the x component of
the velocity, u, multiplied by q. This is written as u = uv + ue where uv is the irrotational velocity
induced on the patch in isolation from the infinite domain Green’s function and ue is the rotational
velocity induced from external sources such as images in boundaries or superposed irrotational
background flows. The usual manipulations of the conservation of impulse show9 that uv makes no
contribution to the integral and therefore,

ẋc =
∫ ∫

ueq/Q, (43)

which, for a patch of constant potential vorticity q0, becomes

ẋc = 〈ue〉, (44)

that is, the simple patch-area average velocity of ue. As ue is the derivative of ψ and so satisfies
Helmholtz’s equation over the patch, by (40) we have

ẋc = Sue(xc, yc). (45)

The analogous results hold for the y coordinate of the centroid and thus the velocity of the patch
centroid is S(ue, ve) = Sue(xc, yc), i.e., the same velocity field as felt by a point vortex at (xc, yc)
but multiplied by to the factor S.

The velocity ue is still required. For a uniform potential vorticity, q0, inside the vortex patch the
jump in vorticity is

∇2ψ − 1

a2
ψ =

{
q0 r < R,

0 r > R.
(46)

Equation (46) has solution, with ψ constant and having continuous derivative along the patch
boundary,

ψ/q0 =
{−a2 − a RK ′

0(R/a)I0(r/a) r < R,

−a RI ′
0(R/a)K0(r/a) r > R.

(47)

The field outside the patch (r > R) can be written as

ψ = S(Q/2π )K0(r/a). (48)

Recall, (45), that the external field plus any imposed external field then induces a velocity field
on a patch that scales with S so that the patch moves with velocity Sue(xc, yc). Hence, a point vortex
can be made to move at the same speed near, say, a boundary as a circular patch of arbitrary radius R
provided the circulation of the point vortex �n = S2Q. As the rigid lid approximation is approached,
a → ∞, �n → Q, hence, scaling directly with the circulation of the vortex. It is important to note
that this “usual” scaling with the vortex circulation only holds in the a → ∞ limit, and that, more
generally, the patch circulation must be scaled by S2Q.

Figure 9 shows results for the motion of individual patches with different areas moving near
a gap in the absence of a background flow field with a = 10. As can be seen in Fig. 9(a), with
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(a) (b)

FIG. 9. The effect of various vortex patch normalisations. (a) Snapshot at t = 28.8 for the motion of a point vortex (♦) and
circular vortex patches of radius, R = 0.25, 0.5, 0.75, 1 with centroids denoted by (+, *, �, �), respectively. Here, a = 10,
q = 1 and patch centroids are initially located at (−2, 1.2). Circulation of the point vortex is � = 1. The solid line indicates
the trajectory of a point vortex. (b) same as in (a) but zoomed in to focus on the centroids and with q scaled by the patch size
so that � = qπR2 = 1 for all patches.

non-normalised flows with q = 1, the larger patches travel faster than smaller patches. Note that
patches of area πR2 < 1 with R = 0.25 and R = 0.5 travel slower than a point vortex of strength �

= 1 whereas patches with area πR2 > 1 with R = 0.75 and R = 1 travel faster. The largest patch
deforms significantly due to the presence of the downstream barrier and begins to shed vorticity
causing its centroid to deviate from the equivalent point vortex trajectory. For a = 10, the patches
velocity can be normalised with the circulation of the patches, as seen in Fig. 9(b). The largest patch
does slow down considerably due to its interaction with the barrier causing it to become non-circular.

For a = 1, using the “usual” circulation based scaling, shows that the deviation of the patch
speed from the point vortex speed is significant (see Fig. 10(a)). In particular, the deviation is not
systematic with R = 0.75, having the greatest translation speed. Instead, Fig 10(b) has its vorticity q
scaled such that S2Q = 1 for all patches. This new scaling shows that there is a systematic deviation
from the point vortex speed, i.e., the smaller the radius of the patch, the closer the speed to the point
vortex. For patches which remain close to circular throughout their evolution, there is very good
agreement in both their trajectories and speed.

Similarly, the effect of background flows can be scaled so that vortex patches of varying size
follow the point vortex trajectories with the same speed. In Fig. 11, the symmetric flux through the

(a) (b)

FIG. 10. (a) Same as in Fig. 9(b) but with a = 1 and snapshot taken at t = 350. Note the non-systematic spacing of the patch
centroids. (b) Same as in (a) but with vorticity, q, scaled so that S2Q = 1. Here, vortices which remain close to circular travel
at the same speed as a point vortex with strength � = 1.
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FIG. 11. Motion of patches of varying size with normalised symmetric flow through the gap (as in Fig. 2(a)) with F = 1/S.
Initially, the centroid location of the normalised patches and the point vortex is (−2, 1), with the centroids denoted in the
same way as in Fig. 9. Snapshots taken at t = 0, 61.6, 140 and a = 1. Centroids are indicated by (+, *, �, �) symbols.

gap advects the vortex patches in the positive y direction. Here, a = 1 and the background flow has
been scaled appropriately by the factor S−1.

For a positive vorticity patch with the flux reversed, the background flow forces the patch closer
to the gap, see Fig. 12. Owing to the significant deformation of the larger patches there is some
observable, but small, change in patch speed in comparison to that of a point vortex.

Unlike for a point vortex, the anti-symmetric flux through the gap can result in large deformation
of the patch. For example, Fig. 13 shows a vortex patch approaching the centre of the gap where the
background flow is strongly sheared causing the vortex to split.

FIG. 12. Same as Fig. 11 but with F = −1/S and a = 1. Snapshots taken at t = 0, 40.8, 80.
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FIG. 13. Motion of a patch (initially circular with radius R = 0.75) in an anti-symmetric background flow through the gap
(as in Fig. 2(b)) of strength, F = 2/S for a = 1. The strong shear forces the patch to split when close to the centre of the
gap. Note the dotted line shows the point vortex trajectory starting at the same location as the patch. Snapshots taken at
t = 0, 70, 108.5.

VI. CONCLUSIONS

Variation of the Rossby radius of deformation, a, affects trajectories of both point vortices and
vortex patches near a gap in a barrier. In the absence of background flows, the most notable feature
is that decrease in a increases the tendency of a vortex to pass through a gap. Essentially this is due
to the more rapid decay of the velocity field exterior to a vortex as a decreases.

In a viscous fluid, separation and vorticity generation are expected near a sharp edge. For
oceanographic applications, the gap edges are likely to be smoother and such separation may not
be significant. In the absence of background flows, the most notable feature is that decrease in a
increases the tendency of a vortex to pass through a gap. Essentially this is due to the more rapid
decay of the velocity field exterior to a vortex as a decreases.

Using contour dynamics, vortex patches are compared to equivalent point vortices. The dynamics
can also be normalised so as to give similar speeds and trajectories for vortex patches of varying size
and point vortices in both the presence and absence of background flows at arbitrary values of a. In
the limit that the patches remain circular, this normalisation is such that the speeds and trajectories
are identical.
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APPENDIX: ALTERNATIVE FORM OF THE INTEGRAL EQUATION AND ITS SOLUTION
BY ITERATION

In this Appendix, an alternative numerical method is described to solve (8)–(10). It is an iterative
method based on perturbing about the exact solution for the infinite Rossby radius case.10

1. Integral equation: Vortex sheet over the gap

If the barrier is continuous, using the method of images, the velocity at the vortex can be found
by placing an image vortex on the other side of the wall. The boundary conditions at the barriers are
satisfied but not those at the gap. The influence of the gap can be retained by placing a vortex sheet
over the gap with strength equal to the tangential velocity jump, f (x), induced by the vortex and its
image along the gap (see Ref. 10). Let ψ(x, y) be the streamfunction induced by the vortex sheet
across the gap and let ψ(x, 0) = �(x) be its behaviour along the gap, |x| < 1, y = 0.

It is required to solve the boundary value problem for ψ(x, y)

∇2ψ − 1

a2
ψ = 0, y > 0, (A1)

∂ψ

∂y
(x, 0) = f (x), |x | < 1, (A2)

ψ(x, 0) = 0, |x | > 1, (A3)

ψ(r ) → 0 as r → ∞, where r =
√

x2 + y2. (A4)

Here, f (x) is the known function

f (x) = ∂

∂y
(�PV (x − xv, y − yv) − �PV (x − xv, y + yv)) |y=0 (A5)

=
−yv K1

(√
(x − xv)2 + y2

v/a
)

πa
√

(x − xv)2 + y2
v

, (A6)

where xv and yv are functions of time giving the vortex location. Let

Gg(x, y, x0, y0) = − 1

2π
K0

(√
(x − x0)2 + (y − y0)2/a

)
(A7)

+ 1

2π
K0

(√
(x − x0)2 + (y + y0)2/a

)
be the Green function the upper half plane Dirichlet problem, i.e.,

∇2Gg − 1

a2
Gg = δ(x − x0)δ(y − y0), (A8)

Gg = 0 on y = 0. (A9)

Now, using Green’s theorem and (A4)∫ ∫
S

(
ψ∇2Gg − Gg∇2ψ

)
dx dy =

∫ ∞

−∞

(
ψ

∂Gg

∂y
− Gg

∂ψ

∂y

)
dx, (A10)

where S is the upper half plane.
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Using (A1), (A8), and (A9), and ψ(x, 0) = �(x) along the gap, the left hand side of (A10) may
be simplified to give the following:

ψ(x0, y0) =
∫ 1

−1
�(x)

∂Gg

∂y
(x, 0, x0, y0) dx . (A11)

The velocity field at (x0, y0) can be found by differentiating (A11) with respect to x0 and y0 to give
the vertical and horizontal velocities, respectively,

u(x0, y0) = −
∫ 1

−1
�(x)

∂2Gg

∂y∂y0
(x, 0, x0, y0) dx, (A12)

v(x0, y0) =
∫ 1

−1
�(x)

∂2Gg

∂y∂x0
(x, 0, x0, y0) dx . (A13)

Hence, given �(x), |x| ≤ 1, the velocity field induced due to the vortex sheet can be computed
everywhere using (A12) and (A13). In particular, by calculating the velocity at the vortex, located at
(xv, yv), the vortex can be advected and its trajectory can be found. It remains to find �(x).

Differentiating (A11) with respect to y0 and setting y0 = 0 gives

f (x0) =
∫ 1

−1
�(x)

∂2Gg

∂y∂y0
(x, 0, x0, 0) dx . (A14)

Since f (x0) is known, (A14) is an integral equation for the unknown �(x). The numerical solution
to the integral equation by iteration is discussed in Sec. 2 of this Appendix.

2. Iterative solution

For the vortex sheet over the gap, we can define the kernel function such that

La(x − x0) = ∂2Gg

∂y∂y0
(x, 0, x0, 0). (A15)

Hence, the integral equation (A14) can be written as

f (x0) =
∫ 1

−1
�(x)La(x − x0) dx . (A16)

Equation (A16) is a hypersingular integral equation since

La(x − x0) ∼ − 1

π (x − x0)2
+ O(x − x0)−1, as x → x0. (A17)

Consider G∞, the rigid lid Green’s function for Laplace’s equation in the upper half plane,

G∞ = 1

4π
log

(x − x0)2 + (y − y0)2

(x − x0)2 + (y + y0)2
. (A18)

Using the previous notation for the kernel function for the rigid lid case can be written as

L∞ = − 1

π (x − x0)2
. (A19)

This term can be introduced into the integral equation (A16), by adding and subtracting such
that ∫ 1

−1
�(x)L∞(x − x0) dx = f (x0) +

∫ 1

−1
�(x)(L∞(x − x0) − La(x − x0)) dx . (A20)
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Since the left hand side is an integral operator involving the rigid lid kernel function, it can be solved
exactly if the right hand side is known. The iterative solution can be written as the following:∫ 1

−1
�(n+1)(x)L∞(x − x0) = f (x0) +

∫ 1

−1
�(n)(x)(L∞(x − x0) − La(x − x0)) dx

= f (n)(x0), (A21)

where terms with superscripts (n) are known and used to calculate the terms with superscripts
(n + 1). All the integrations on the right hand side can be calculated numerically as the hypersingu-
larities are subtracted from each other.

It remains to solve ∫ 1

−1
�(x)L∞(x − x0) = f (n)(x0), (A22)

which is equivalent to the rigid lid case, where f (n)(x0) is half the vortex sheet strength and λ(n + 1)(x)
is the streamfunction along the gap. There is a direct method of computing this solution using Fourier
transforms (see Ref. 10). In the present case, the solution is

�(n+1)(x) = �
∞∑

k=1

bk

2k
ζ k, (A23)

where ζ = x + i(1 − x2) and bk are the sine coefficients of the Fourier series of f (n)(x0). �(x) can be
substituted into (A11) to give us the streamfunction and hence, the velocity field everywhere.

The method converges provided a > 1 and vortices were farther than O(1) distance from the gap,
otherwise numerical inaccuracies are encountered. In this case, it is preferable to consider vortex
sheets placed over the semi-infinite barriers. When the iterative method converges, it produces
identical trajectories to those computed by the method described in Sec. III.
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