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Abstract

Many encoding schemes, such as the Scale Invariant Feature Transform (SIFT) and
Histograms of Oriented Gradients (HOG), make use of templates of histograms to enable
a loose encoding of the spatial position of basic features such as oriented gradients.
Whilst such schemes have been successfully applied, the use of a template may limit the
potential as it forces the histograms to conform to a rigid spatial arrangement. In this
work we look at developing novel schemes making use of histograms, without the need
for a template, which offer good levels of performance in visual recognition tasks.

To do this, we look at the way the basic feature type changes across scale at individual
locations. This gives rise to the notion of column features, which capture this change
across scale by concatenating feature types at a given scale separation. As well as apply-
ing this idea to oriented gradients, we make wide use of Basic Image Features (BIFs) and
oriented Basic Image Features (oBIFs) which encode local symmetry information. This
resulted in a range of encoding schemes.

We then tested these schemes on problems of current interest in three application
areas. First, the recognition of characters taken from natural images, where our system
outperformed existing methods. For the second area we selected a texture problem,
involving the discrimination of quartz grains using surface texture, where the system
achieved near perfect performance on the first task, and a level of performance compara-
ble to an expert human on the second. In the third area, writer identification, the system
achieved a perfect score and outperformed other methods when tested using the Arabic
handwriting dataset as part of the ICDAR 2011 Competition.
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kNN k Nearest Neighbour
LBP Local Binary Patterns
MKL Multiple Kernel Learning
MNIST The MNIST set of handwritten digits [131]
NN Nearest Neighbour
NUP No Upturned Plates
oBIFs Oriented Basic Image Features
OCR Optical Character Recognition
OGC Oriented Gradient Columns
PCA Principal Component Analysis
RIFT Rotation Invariant Feature Transform
SEEMORE An object recognition system proposed by Mel [150]
SEM Scanning Electron Microscope
SIFT Scale Invariant Feature Transform
SVM Support Vector Machine
UP Upturned Plates
VOC Visual Object Classes



Chapter 1

Introduction

1.1 Background

In visual recognition tasks, an unknown entity is compared to a set of previously learnt
classes. These classes, which have labels, may be individual objects, or object categories
or textures or something more abstract. At the heart of this process lies a measure of
similarity which enables us to make statements about the degree to which the unknown
entity belongs to any of the previously learnt classes.

Measuring this similarity requires a computational process which takes training data,
from which classes are learnt, and then compared to the unknown entities, or the test
data. If there were unlimited training data and an infinite computational power then
recognition could be done by comparing the test data with each example of the training
data and finding the most suitable label. In this way we could consider the training data
mapping out a region in some space for each class, and the process then is to see whether
the test example falls within any of these regions.

In a real recognition task we have a limited amount of training data and finite
computational power. Mapping out the regions of the space for each class then becomes
far more difficult as we have to estimate where the boundaries lie between classes using
a small number of training examples. We could view this simply as a learning task, in
which some form of model is supplied and a computational process is applied to find the
optimal parameters of the model.

However, visual recognition problems involve images that are taken, or simulate, the
physical world. Objects within the physical world are subject to physical laws, and thus,
for example, moving an object slightly does not change its identity. These rules carry
over into the images, so that a small shift of an object within an image does not change
its identity. Similarly, a rotation of a texture is unlikely to change its identity.

17
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Thus, we can view visual recognition tasks as forming a subset of general recognition
tasks, bound together by a common set of rules which ultimately come from the nature of
physical objects and their interaction with light. We could then attempt to tackle visual
recognition problems by finding a suitable representation of images that incorporates as
much prior knowledge of these rules as possible which allows us to learn class boundaries
efficiently using a computational process.

Finding such a representation is the wider goal of this work.

1.2 Finding a suitable representation

Finding a suitable representation can itself involve a learning process, where features
at different stages of the computation of representation are learnt using large numbers
of natural images. This can be done at the early stages [146], or for mid level features
[69, 20, 215] or can be applied to an entire hierarchy [132, 119]. In this work we take a
different approach, viewing the process of finding a suitable representation of images for
visual recognition tasks as an investigative process.

This process is guided by the traditional need for a set of features which are dis-
criminative enough to be able to distinguish between classes in visual recognition, yet
consistent enough to ensure that they occur for instances of the same class.

The requirement for consistency gives rise to the need for a representation to be
invariant to transformations that we know do not affect object identity. We can divide
these transformations into two groups. The first of these is transformations that are
common to all objects and where the effect can be predicted. For example a shift in the
position of an object gives rises to a shift in the image, which can be predicted. Thus, it
may be possible to build invariance to these transformations into a representation.

The second group of transformations are those that have an effect that cannot be
predicted from a single instance of a particular class. For example, a class of objects
may contain slightly different spatial arrangements of the same basic features, in which
case we may wish to develop invariance to small adjustments in the positions of basic
features. However, the range in which positions of basic features vary within instances of
the same class will be specific to the class. We cannot therefore build invariance to this
into a representation and the aim instead could be to develop representation that allows
such invariance to be learnt for each class.
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1.3 Levels of representation

In the search for a suitable representation for visual recognition, we can consider the
process in stages where invariance to different transformations is introduced. As we
are concerned with images, we begin with a measurement of the light intensity at each
location. This representation is sensitive to changes in light level, both in terms of local
changes due to light sources and to global changes. The first stage in a representation
could therefore be expected to provide a set of features that is largely invariant to changes
in lighting conditions.

Many such representations exist, such as edge features, oriented gradients and corner
detectors. Each of these can be detected in many different ways, but the overall aim is
to achieve a representation of consistent features. This first stage is not the focus of our
work. Instead we focus on the next stage, where we look to combine these basic features
into a representation that has sufficient power of discrimination as well as providing
invariance as described in the previous section.

In combining these basic features we are looking to encode the relationship between
them in some way. As suggested in the previous section, we might view a suitable way of
encoding the relationship as a loose spatial structure. In the most general case, we could
view a model of a visual class as an arrangement of basic features with approximate
distances between them. So, for the example illustrated in Figure 1.1, one particular
class could be an arrangement of five features, (F1, F2, .., F5) with certain distances,
(d1, d2, d3, d4), and tolerances, (δ1, δ2, δ3, δ4) between groups of features.

F1 F5F4F3F2

d1±δ1 d2±δ2

d3±δ3

d4±δ4

Figure 1.1: An example general model for a visual class.
Individual features are encoded along with the spatial relationship between them.

Our aim could then to be develop a representation that could learn arbitrary classes
along these lines, with basic features connected by approximate distances, thus creating
a structural description of a visual class. However, such structural representations pose
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considerable computational difficulties[129]. As a result, it is often desirable to impose a
predetermined structure on the representation.

In computer vision, this is often done through the use of complex features that
possess their own structure. For example, with the Scale Invariant Feature Transform
(SIFT) [143] and Histogram of Oriented Gradient (HOG) [53] features, this structure is a
template of histograms of oriented gradients. An image is then encoded as an unordered
set of such features.

In biologically motivated network models, such as the one proposed by Riesenhuber
et al. [188], the structure arises from the architecture of the network. In this model,
alternating layers of selective and pooling cells gradually introduce spatial and scale
invariance as the receptive field of cells increases up the hierarchy. This leads to a
representation that can be less spatially constrained than a template of histograms, but
the size of the receptive fields and the number of layers still imposes some structure on
the representation.

1.4 Multiscale encoding schemes

Features such as SIFT are encoded within a scale space environment, with each feature
centred upon a particular location and scale. Thus, when an image is encoded with
multiple SIFT features at different locations and scales, we can consider that, in some
way, to be a multiscale representation. In the network model of Riesenhuber et al.,
the first layer comprises cells that are sensitive to local oriented features at different
scales. Subsequent layers then serve to pool the outputs of these cells to produce a final
representation that is scale invariant.

Both of these methods make use of scale for the purposes of scale invariance, so
that they can be used to recognise objects that occur at different scales. In addition to
providing the means for scale invariance, scale space also provides for the potential
detect additional structure, referred to as deep structure [122, 15, 247, 138]. The essential
aspect of deep structure is the linking of structure found at different scales, which does
not occur in a set of SIFT features.

Representations that link structure at different scales have been used in the past. The
most common of these, pyramid representations, [37, 36, 1, 49, 50] use a smoothing ker-
nel to produce a stack of blurred images of decreasing size. Whilst such representations
do link structure across different scales, this is achieved either using a rigid geometric
structure, which limits the invariance properties of the representation.



Chapter 1. Introduction 21

Varma et al. have proposed a set of texton-based features that combine the outputs of
filters at different scales [245] in a way that offers a far greater degree of invariance to
pyramid representations. However, whilst these features have performed well for texture
recognition, the features do not encode local orientation information, which has played a
significant part in many modern object recognition methods.

1.5 The contributions of this work

In this work we propose a novel set of encoding schemes that combine structure at differ-
ent scales to produce invariant representations that are of use in a range of applications
. To do this, we first suggest a new set of multiscale features, called column features,
which encode conjunctions of primitive features across scale. We explore how these
features can be used in the context of simple histograms and demonstrate how they can
outperform existing single scale schemes, such as SIFT and HOG, in the problem of
natural image character recognition.

We also investigate multiscale extensions to the HOG encoding scheme and demon-
strate that, by combining oriented gradient features in a particular manner, the multiscale
scheme can offer an improvement in performance over the single scale version. We then
demonstrate the usefulness of column features in two additional application areas, texture
recognition and write identification. Our overall aim in this work is to demonstrate
that, by combining structure at different scales within a single feature, we can produce
encoding schemes that perform well in a range of applications.

The key novel aspects of the work are summarised below.

• The oBIF Column scheme

The oriented Basic Image Feature (oBIF) Column scheme is a novel encoding
scheme that encodes local orientation and symmetry type information at multiple
scales. The scheme is fundamentally different from previous multiscale schemes
in the way that information is combined. Whereas schemes such as pyramid
representations involve a stack of blurred images, the oBIF Column scheme uses a
histogram of conjunctions of primitive features at each location in the image. This
allows the oBIF Column scheme to be shift invariant, both at the global level and,
to a certain extent, at the local level.

The scheme differs from single scale features, such as SIFT and HOG, which use
a template of histograms. In these schemes a template is necessary, as a simple
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histogram of oriented gradients is rarely descriptive enough, as demonstrated in
chapter 4 of this work. However, as the oBIF Column features encode information
at multiple scales, they can offer good levels of performance without the use of a
template.

• A novel multiscale HOG scheme

We propose a novel multiscale version of the HOG descriptor and demonstrate
that it outperforms the single scale version on the problem of natural image
character recognition. The novel aspect of this method is in the way in which
local orientation information is combined across scales. In an investigation of
multiscale versions of HOG we demonstrate that it is necessary to combine orienta-
tion information at each location in the image rather than at the level of the template.

• A novel way of applying texture encoding to writer identification

In order to apply the oBIF Column scheme to the problem of writer identification
we have proposed a novel way to use a texture-based encoding scheme to determine
authorship of handwriting. This involves the extraction of a style vector for each
author, by looking at the deviation from the mean encoding for a certain piece of
text. This differs from other approaches to writer identification which rely on the
detection of specific features for each author.

• Discrimination of quartz grain types using surface texture

We propose the column scheme for use on the problem of quartz grain discrimina-
tion. As this problem has not previously been investigated using modern texture
recognition methods, the application itself is novel. In this work we investigate
different ways of combining multiple images from a single grain and demonstrate
that individual classification, followed by a pooling stage, achieves the best results.
The results indicate that the performance of the column scheme is comparable to
expert human performance.

• An evaluation of spatial binning schemes with multiple features

In order to be able to compare the novel multiscale encoding schemes with single
scale schemes that use templates of histograms, we have performed an evaluation
of oriented Basic Image Features. We investigate the use of oBIFs, and the
orientation version Basic Image Features (BIFs), both within the framework of
a simple histogram and a template of histograms. We demonstrate that , in the
context of a simple histogram, oBIFs outperform oriented gradients. However,
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when spatial binning is used, the performance of oBIFs is equivalent to oriented
gradients. This work demonstrates the relative usefulness of local orientation and
symmetry type information in character recognition.

1.6 The structure of this thesis

We begin by presenting a review of the relevant literature in Chapter 2. This begins
with a brief review of the history of invariant recognition within computer vision and a
summary of the current methods in popular use. This is followed by a discussion of a
range of biologically motivated models of recognition, particularly their contribution to
the computational understanding of problems in recognition. We then discuss different
form of representation, including the difference between image- and object-based repre-
sentations and view-based versus structural representations. We then discuss texture, in
terms of perception, recognition and representation. Finally, we provide a discussion of
scale space and mutiscale representations.

In the second section of Chapter 2, we describe and discuss four key methods in
recognition. Particular attention is given to the way in which invariance is introduced in
to the representation produced by each method.

In Chapter 3, we introduce the datasets which are used for assessing the performance
of the various encoding schemes. These are given together with details of basic experi-
ments performed to establish a benchmark performance.

In Chapter 4, we describe and evaluate basic histogram schemes, with and without
spatial binning. The main purpose of the work in this chapter is to enable a comparison
with the performance of the column schemes produced in the following chapter. In this
chapter, the novel aspect of the work is the evaluation of Basic Image Features (BIFs)
and oriented Basic Image Features (oBIFs).

The oBIF Column and BIF Column schemes are presented in Chapter 5. This chapter
begins with a discussion of the multiscale features referred to as column features. We
then assess the performance of the column schemes in a similar way as in Chapter 4.
Various invariant versions of the column schemes are presented.

In Chapter 6, we test the column schemes on a current problem in character recog-
nition, which involves characters taken from natural images. Here, the performance
of column schemes is compared to existing methods. We also the present the novel
multiscale HOG schemes in this chapter.
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Chapter 7 presents the work on the texture recognition problem, involving the
discrimination of quartz grains using surface texture. This chapter does not present
theory, but serves both as a test of the BIF Column scheme, presented in Chapter 5, and a
demonstration of the applicability of such systems to the previously unstudied problem
of automatic grain type recognition.

In Chapter 8, we describe the extension of the oBIF Column scheme to the problem
of writer identification. The performance of the new scheme is then assessed against
other methods within the framework of the ICDAR 2011 Arabic Writer Identification
contest.

We then examine the performance of the oBIF Column scheme in the presence
of clutter, in Chapter 9, and propose a way of extending the scheme to make it more
robust. Finally, in Chapter 10, we provide a summary of set of conclusions from the work.



Chapter 2

Literature Review

In this chapter we present a discussion of the relevant literature as well as a description
of specific methods. This begins with a discussion of the history of invariant recognition
within computer vision, describing key stages in the development of current techniques.
Next we discuss a range of biologically motivated models, the majority of which are
network models inspired by neurophysiology. We then discuss different forms of
representation, in terms of image- versus object-based representations and view-based
versus structural representations. The next section covers texture, in terms of perception,
recognition and representation. We then describe various approaches to scale space
representation, with particular emphasis on multiscale representations. In the second half
of this chapter we describe four key methods currently used in computer vision. The
methods are described in detail along with a discussion of the invariance properties of
each.

2.1 A brief history of invariant recognition in computer
vision

2.1.1 Geometric invariant approaches

Many early approaches to recognition in computer vision centred on the search for an
appropriate representation [159], the aim of which was to make object identity informa-
tion more explicit. Where the problem was classification, which involved determining a
property that all members of a group share [197], the required information was seen as
the invariant of the class. Thus, for object classification, the general approach was to seek
a representation that was invariant to any transformation that did not alter membership of
the class.

The choice of invariant in such early methods was generally a geometrical one.
Mundy suggests three reasons for this [160]. First, capturing the geometry of an object
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offered invariance to viewpoint, which was seen as necessary for three-dimensional
objects. Second, the objects’ geometry was invariant to illumination changes. Third,
there was a large body of theory available from mathematics which could be applied to
the problem of object recognition.

Whereas this approach worked for very simple classes of objects [61, 194, 35], it was
less successful when applied to more complicated classes. In particular, it was shown
that invariants did not exist for general three-dimensional shapes [34]. Additionally,
geometric invariant approaches were found to have susceptibility to noise and occlusion
[160].

2.1.2 Early appearance-based methods

Whilst problems with the geometric invariant approaches were becoming apparent,
progress was being made with appearance based methods. In the field of facial
recognition, Eigenfaces [236] achieved good levels of performance by creating a low
dimensional representation for faces. This was achieved using Principal Component
Analysis (PCA) on a set of face images, which had a common alignment and illumination.

For general object categories, appearance manifolds [161] offered a similar way of
creating a low dimensional representation by creating an eigenspace. However, it was
necessary to have a set of images from different viewpoints and different illuminations to
create the eigenspace.

Early appearance based methods also required objects to be well segmented. As
this was difficult for objects in complex images, several methods proposed a sliding
window [27, 201]. This involved applying a recognition technique to one small section
of an image at a time, and was particularly effective in applications such as pedestrian
detection [248].

Whilst sliding window methods performed well on certain tasks, the performance
came at a considerable computational cost, as a classifier had to be applied to each
window. In addition, a suitable size and shape had to be chosen for the window, which
limited the success of the approach.

2.1.3 Image patches and feature-based methods

These early appearance-based methods had demonstrated good performance on certain
tasks, particularly facial recognition and pedestrian detection. However, for the problem
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of object categorisation a different set of methods showed promise. Sometimes referred
to as feature-based methods, they combined elements of the early global invariant
methods with the sliding window approach to encode patches of an image.

In these methods, patches of an image were encoded to create a set of features that
were more complex than the traditional edge or corner features. Patches were encoded to
be invariant to changes in illumination [169] and affine transformations [200].

Other methods, inspired by biological systems, utilised local orientation encoding
to achieve invariance to illumination changes. Most notably amongst these is the SIFT
descriptor [143, 144], which is discussed in greater detail later in this chapter.

2.1.4 Bag of words methods

Many of the feature-based methods, such as SIFT, encode each image patch and then
compare it to a set of reference patches. Whilst effective, such a process involves
making many comparisons between patches as each individual SIFT feature is stored.
In an attempt to limit the number of possible comparisons necessary, a set of related
methods called bag-of-words methods have been proposed for categorisation. Whilst
these methods are very similar to feature-based methods, an additional quantisation step
is used, meaning that individual exact features are not stored.

The standard bag-of-words approach took its inspiration from document processing,
where it had been established that the content of a document could be well represented
using an orderless set of words. It was thought that the same could be true of images, in
that the contents of an image could be well represented by an orderless collection of its
parts.

In the application of bag-of-words approach to images, it was necessary to establish
the visual equivalent of a word. This enabled an image to be represented not by a set of
encoded patches, but by a histogram of visual words. Thus, images no longer had to be
compared by classifying individual patches, but rather by comparing two histograms.

Early bag-of-words methods generally used a clustering method to create a codebook
of visual words. Since then more complex methods have been used for codebook
construction such as vocabulary trees [167] and ensembles of trees [153].
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2.1.5 Parts and structure methods

Together, the bag-of-words and feature-based methods have offered high levels of
performance in tasks such as categorisation. However, despite the somewhat surprising
levels of performance that have been achieved with orderless representations, there still
seems a likely upper bound to the level of performance that can be achieved without
considering the spatial relationship between features. Here we discuss methods that have
attempted encode both the parts of object, such as features or patches, and the structure,
meaning the spatial relationship between the parts.

The basic principle is demonstrated in Figure 2.1, where a face is represented by
individual parts and the spatial relationship is encoded in the distance between parts.
Early parts and structure models tended to detect the presence and location of parts first
and then calculated distance between them [33]. However, such methods required hand
labelling of parts in training images. In addition, such methods may be highly susceptible
to errors in the initial parts detection phase.

Figure 2.1: A simple parts and structure model. (From [73])
Individual parts are encoded along with approximate spatial relations between them.

This is in contrast to the parts only models.

Later methods have taken a probabilistic approach. Generative parts models [72, 70]
have demonstrated good levels performance, but this has come at a great computational
expense meaning that the maximum number of parts that can be included in an object
model is generally low.

Other methods have attempted a computationally simpler approach by extending
the orderless appearance based methods to include distance between pairs of features
[217, 127]. However, this approach has not demonstrated significantly improved
performance with current implementations.
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An alternative approach which has shown improved levels of performance without
such computational complexity is pyramid matching [129], which constructs a spatial
pyramid of local histograms of features. However, this method involves dividing
the image using a fixed geometrical structure and is therefore not invariant to affine
transformations.

2.1.6 The current state of invariant recognition

The early geometric invariant methods have largely been superseded by the appearance-
based orderless methods, which have shown a surprising level of performance on tasks
such as object and scene categorisation. However, methods that attempt to encode the
structure of objects as well as the parts have either come at a very large computational
cost or have imposed a fixed geometrical structure on the image, at the cost of invariance.

Many recent approaches have looked to combine features from the orderless methods
with machine learning methods. However, the search for a representation that capture
both parts and structure remains active.

2.2 Biologically motivated models

Alongside the methods for invariant recognition found in computer vision there are a set
of methods that can be described as biologically motivated computational models. These
models combine experimental findings with a computational approach to recognition
and are generally assessed not only on their performance but also on their biological
plausibility. They play an important role in the wider picture of invariant recognition,
not only as an insight into potential computational methods but also, with their generic
nature, as an important contrast to the more application-based computer vision methods.

2.2.1 Network models

The majority of models presented in this section are network models of some form or
another. These models have their roots in the work of Hubel et al. [105, 106], which
laid the foundations for hierarchical models. In this early work, it was demonstrated how
visual processing could occur in layers of cells connected through simple transformations.
The effect of the hierarchy could therefore be viewed as transforming the representation
from the input, in the form of an image, through each layer.
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In hierarchical models, two key aspects of layers are selectivity and invariance. In
the experiments of Hubel et al., it was found that each of these functions were met by
different cells. These two fundamental cell types, the simple cell and the complex cell,
are found in some form in almost all network models for visual recognition.

Fukushima extended the simple and complex cell idea into a cascade of alternating
selective and invariant layers, labelled S and C cells [81]. In this model, the neocognitron,
the S cells were responsible for detecting local features whilst their outputs were spatially
pooled by the C cells. In the original scheme, the neocognitron used an unsupervised
learning regime to learn. Later versions moved to a supervised learning regime [82],
which improved performance but arguably made it less biologically plausible [142].

Convolutional neural networks [131] use a similar structure to the neocognitron.
However, constraints are placed upon the connectivity to enforce a local pattern between
layers. In addition, weight sharing, where the weights of the feature detectors are copied
across the layer, provide position invariance. This allows convolutional networks to
perform particularly well with images without significant preprocessing [162].

Other models have used preselected feature detectors for the first layer. The HMAX
model [188], which is described in detail later in this chapter, uses Gaussian or Gabor
filters at the first stage with a MAX function to produce invariance over position and
scale. The SEEMORE system proposed by Mel [150] uses filters sensitive to contour,
texture and colour cues.

A more complex model, proposed by Oram et al. [173] , uses four stages of
computation inspired by neurobiological data. In the first of these, boundaries between
regions are computed and local features are grouped, effectively segregating features by
object. The second stage involves selectivity for features of mid range complexity, such
as T junctions and concentric rings. The third stage then selects for viewpoint dependent
object attributes with the final level.

Whilst many of the network models are feedforward only, some models have been
proposed that include a feedback based attention mechanism. For example, Amit et al.
proposed a network model that has feedback across all layers, with units that can be
primed to focus on a particular location within the image or on a particular feature [4].
Deco et al. [58] have similarly proposed a network model with feedback that allows both
object- and space-based visual search.

Some authors have proposed models that contain the extra biological detail of
expressing the outputs of units in terms of firing rates. Of particular amongst this group
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of models is proposed by Thorpe et al., where information is encoded in the order in
which cells fire [231]. Using evidence from ultra rapid scene categorisation the authors
argue that there is insufficient time for responses to be encoded explicitly in the firing
rates of cells. This is of interest from a computational point of view as network models
are often concerned with the relative strength of features and thus encoding orders may
be beneficial.

2.2.2 The relationship between network models and computer vision
models

In many ways, the feedforward network models are very similar to bag-of-words methods
used in computer vision. In both cases, the final representation is an unordered set
of complex features. Whilst the two may employ different pooling functions, with
bag-of-words methods typically summing over the image and network models taking
the maximum response, the underlying structure is the same. Indeed many methods
which utilise local histograms, including SIFT and HOG, are effectively utilising a layer
of selective units followed by a set of pooling units much in the same way as network
models do.

This means that the network models suffer from the same limitations of bag-of-words
models, in that they are invariant to different spatial arrangements of the same features.
A solution to this has been proposed by Ullman et al. using a fragment based approach
[241, 240]. In a similar way to many methods in computer vision, Ullman et al.
propose encoded an image as a set of patches or fragments. In order to encode the
spatial arrangement of these fragments, the model proposes encoding the conjunction of
overlapping fragments.

The use of overlapping fragments offers an interesting solution to encoding spatial
structure without the need to explicitly encode spatial relationships between parts.
Whilst some of the feature-based methods from computer vision use some loose form of
colocation (e.g [144]), the use of conjunctions of overlapping features is not common.
This may be because, in general, we are concerned with distinctive features which may
be sufficiently sparsely distributed that overlapping occurrences are rare. Alternatively,
it could be because the explicit encoding of conjunctions between features in a standard
bag-of-words model would significantly increase the size of representation, as conjunc-
tions would have to be counted for each pair of features.

This highlights the major difference between bag-of-words models and network
models, which is the way invariance is introduced into the representation. Whereas
bag-of-words methods tend to encode each location and then discard spatial information,



Chapter 2. Literature Review 32

network models discard spatial information in stages.

The process of gradual discarding of spatial information presents the opportunity to
encode more abstract representations. However, for a given size of representation it is not
obvious whether this opportunity is used to best advantage in current network models.

2.2.3 Perceptual models

In addition to the many network models, which take their inspiration from neurophysi-
ology, there are models which take their inspiration from perceptual studies. From the
point of view of computer vision, perhaps the most influential of these has been the
recognition-by-components system presented by Biederman [17].

Recognition-by-components proposes that objects can be represented by a small
number of shape primitives called geons, which are shapes such as bricks, wedges and
cylinders. Biederman suggest that a set of less than 36 geons is required for recognition
and that for any particular object, the recognition of three geons and their relationships
would be sufficient for entry level recognition [17].

In some ways, the recognition-by-components system has much in common with
the parts and structure models described in the first section. However, whereas in other
parts and structure models the parts are generally selected on the basis of recognition
performance, the part in the recognition-by-components system also relate to the structure
of objects themselves. This has the potential advantage of providing not only information
about object identity but also about object function [189].

However, the disadvantage of using geons is that they in themselves may be difficult
to detect. As the geons are three-dimensional viewpoint invariant parts, an effective im-
plementation would require the recognition of all possible two-dimensional projections.
Given the difficulties encountered with this form of recognition in computer vision, as
opposed to modern feature-based methods, the accurate detection of geons within general
images is likely to represent a significant obstacle. This raises the possibility that the
geons that comprise an object may be more difficult to detect than the object itself, in
which case their role in the first stage of recognition is questionable.

2.3 Image-based versus object-based methods

When considering suitable representations for recognition, we can make a distinction
between image-based representations and object-based representations. In image-based
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representations, there may be no prior knowledge of the location or scale of objects
within the image. Therefore, the entire contents of the image are encoded. Object-based
representations, on the other hand, are spatially localised and may encode features
particular to the form of a specific object.

2.3.1 Characteristics of image-based and object-based representa-
tions

The majority of the recent methods used in invariant recognition in computer vision, as
discussed in the first section of the literature review, involve image-based representations.
Whether this is through a global histogram, such as in the bag-of-words methods, or in
terms of an unordered list of encoded patches there is no explicit attempt to locate or
represent individual objects within the image.

Methods from the first section that could be described as having an object-based
representation include Eigenfaces, where the representation is a facial image projected
onto to the set of principal components found from a set of face images. Object-based
representations are found in biological systems. For example, the attributes of individual
objects are found in single cell recordings in monkeys [171].

In considering the difference between image-based and object-based representations,
a key aspect is the degree of prior knowledge. Image-based representations generally
assume no prior knowledge as to the content or location of objects within the image.
Object-based representations, however, must involve prior knowledge as to location,
scale and possibly object identity.

2.3.2 Multiple problems in recognition

In the discussion so far, we have largely referred to recognition as one problem.
However, problems within recognition can vary widely depending on the nature of
the information sought and the nature of the prior information. For example, in a
categorisation problem the desired information may be the probability that an instance
of each of a set of pre-learnt object categories is present in an image. Alternatively, a
recognition problem might be to estimate the pose of a certain object, such as a pedestrian.

Given the different nature of recognition problems, it is likely that different forms
of representation will be suited to these different problems. For problems that involve
determining what is present in the image, it may be necessary to encode the entire
contents of the image. For problems that involve recognising an attribute of a particular
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object, such as the pose of an object, it may be preferable to use an object-based
representation.

In this work we are primarily concerned with the problem of determining what is
present in an image, with little or no prior information. This can be thought of as the
first phase of recognition. Sometimes referred to as immediate recognition [207, 206],
this recognition problem is generally tackled with feedforward methods. This aspect
of recognition is also found in biological systems, for example rapid classification
[230, 231].

For the problem of immediate recognition, it may be that an image-based repre-
sentation is preferable to gain information about the contents of an image or a scene.
Object-based representations could then be used for additional recognition tasks.

2.3.3 Segmentation

If a representation encodes the contents of an image, then not only the object but the
additional structure in the image will be encoded. In contrast, object-based representa-
tions will usually only encode structure related to the object. This raises the question
of whether some form of segmentation is advantageous, necessary and possible in the
context of immediate recognition.

Modern segmentation methods, such as superpixels [187] or normalised cuts[213]
have been shown to be effective at assigning class labels to pixels in an image. More
recently, image parsing [234, 99, 232] has attempted to combine elements of recognition
and segmentation to produce a form of image understanding. These methods would
clearly be of benefit in creating a representation for immediate recognition, providing
they are accurate. However, if errors are made at the segmentation stage then the
representation will be less effective.

Many feature based methods do not use segmentation(e.g. [143]) but instead rely on
the detection of features specific enough to differentitate an object from the background.
In addition, the positions and scales of individual features may be considered to link
clusters of features to objects [144]. However, these methods are only successful when an
object can be identified from an orderless features, in other words from its parts. Where
object identity can only be established from considering the structure of a set of common
parts, segmentation may be necessary.
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2.3.4 View-based and structural representations

Image-based representations by their very nature do not encode aspects of individual
objects within the scene and thus only encode the view of objects presented in the image.
This raises the question of whether image-based representations can be effective in the
recognition of alternative views of objects or whether, for a general purpose recognition
system, it is necessary to have an object-centred representation. The debate over
view-based versus object-centred, or structural, representations has ranged to different
extents in the computer vision and biological modelling literature.

In computer vision, the argument is linked to the arguments between bag-of-words
versus parts and structure models. The dominance of bag-of-word and feature-based
methods, which are by their nature view-based, and the difficulties encountered with
parts and structure models has led to a general preference for view-based representations.

For a feature-based representation to work when presented with novel views of an
object, it must be possible to identify a sufficient number of features in the novel view
to perform recognition. This can only happen if the features themselves are sufficiently
invariant to depth rotation, so that they appear sufficiently similar in the novel view.
Moreels et al. explored this characteristic of various features and demonstrated that
features such as SIFT are reasonably invariant to viewpoint changes [154].

Whilst it could be argued that the emphasis on view-based methods in the com-
puter vision community has been driven by relative performance, in the biological
modelling literature view-based approaches have been driven by evidence that bi-
ological systems, especially the human visual system, are sensitive to viewpoint
[227, 228, 62, 63, 182, 227, 238, 239, 32].

These biologically motivated models that employ view-based representations all
require some means of comparing a novel view of an object to previously seen views.
For example, in the model proposed by Poggio et al. [182], a novel view is transformed
to a canonical view by first forming a hypothesis about the viewpoint. An appearance
model is then computed which allows the novel view of the object to be transformed to
a standard view.Likewise, Edelman et al. proposed a two layer network that was capable
of developing multi-view representations in an unsupervised manner [63].

A strong argument in favour of these approaches is that they avoid the computation-
ally difficult task of developing a structural representation of objects [182, 63]. However,
whilst the majority of authors agree on the difficulty of developing such representations,
some have claimed that they are likely to be far more powerful representations for
recognition [18, 108, 107].



Chapter 2. Literature Review 36

Hummel argues that the discussion over view-based versus structural descriptions
should not just be about novel views [107] and that there are two key reasons why
structural representations are necessary in recognition. First, a structural representation
allows the evaluation of entities and their relations independently, whereas a view-based
representation is holistic and offers no means of evaluating relations between parts. Thus,
if recognition requires knowledge about these relations, a structural representation is
necessary. The second reason provided by Hummel is that the representation of objects
as combinations of parts is more efficient than the holistic view-based representations, as
different combinations can be used to represent different objects whereas each view has
to be stored separately.

This appears to be contradicted by Tarr et al. who investigated the effect of depth
rotation using objects with differing numbers of discernible parts [228]. Their results
showed that recognition performance dropped off with depth rotation for all objects.
However, they found that the impact of rotation was less for objects of one part than
for those with a greater number of parts. In addition they found that additional parts
produce strong viewpoint dependency that was equivalent to objects with no distinct
parts. However, Biederman has argued that the stimuli used in such experiments do not
afford unique structural representations [18].

More recent work has suggested the possibility of both forms of representations
being used simultaneously. For example Foster et al. used computer generated three-
dimensional objects to test the effects of depth rotation [78]. With these stimuli they
found that the results could best be explained by the action of two independent systems,
one of which was view-based and the other structural.

Given the theoretical advantages of structural representations and the computational
difficulties involved in computing them, it is tempting to suggest that they may employed
where possible, with view-based representations being used in all other circumstances.
However, it is not possible to establish whether this difficulty arises because sufficient
structural representations have not yet been discovered or because they do not exist for
all objects.

The relative absence of structural representations in computer vision could also be
explained using arguments concerning computationally difficulty. However, it may also
be due to the differing respective means of evaluation for computer vision methods and
biological models. The standard datasets used to assess recognition performance in
computer vision (e.g. [71]) may not require structural representations for high levels of
performance.



Chapter 2. Literature Review 37

2.4 Texture perception, recognition and representation

Many recent methods that have shown success in computer vision can be described as
texture-based methods. This term has generally come to refer to the nature of the rep-
resentation involved, rather than the task at hand. As a result there are texture-based
methods for scene recognition and object recognition. In this section we provide a brief
review of texture as a visual entity, its representation and perception.

2.4.1 What is texture?

A universal definition of texture has been elusive [48, 21], meaning that often texture
can just be considered as ’stuff in the image’ [2]. However, there are general aspects of
texture that find agreement.

First, texture is considered to be made up of repeatable parts. This is central to
the various forms of representation suggested for texture both in terms of modelling
perception and computer vision, which model texture as a statistical distribution.

Second, texture has a repeated structure but with local variation. This is perhaps best
expressed in terms of scale. At a certain scale, texture has obvious differences between
locations whereas at a coarser scale texture appears to have a homogenous structure.
Or alternatively, texture can be viewed as ’giving different interpretations at different
distances and at different degrees of visual attention’ [41].

This homogenous nature of texture at a certain scale leads to the idea of texture as
defining regions in an image. In this view of texture, the boundaries between regions
of different texture are important features that can indicate such properties as three-
dimensional shape [84].

2.4.2 Texture perception

Much of the early work on texture perception involved investigating the ability of
observers to discriminate pairs of textures. In these experiments investigators tended
to use artificial textures, which gave them control over the characteristics that they
considered important in texture discrimination [113, 114, 115, 9, 10].

Julesz investigated texture pair discrimination, or segregation, using textures made
from dot patterns. First concentrating on characteristics such as the brightness and
density of dot patterns, Julesz explained the texture pair discrimination results in terms
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of clusters or lines of dots [113]. Similarly, Beck hypothesised that textural segregation
could be explained by simple properties such as brightness, colour and the slopes of
contours formed by simple features [9].

In further experiments by Julesz, this work was extended to a consideration as to
whether texture discrimination was due to first, second or higher order statistics. In this
context, first order statistics involved characteristics such as the density of dots. Second
order characteristics involved pairs of dots, and so reflected traits such as the local
orientation of dot pairs. Results from observers indicated that only first and second order
statistics were utilised in texture discrimination and, in a model proposed by Julesz, it
was suggested that texture discrimination involved comparison between the outputs of
pairs of simple feature extractors [114].

Julesz then went on to suggest that texture discrimination was due to a small number
of locally conspicuous features called textons [115]. This view was supported by Beck
who argued that specific stimulus features were responsible for texture discrimination
rather than second order statistics [10].

Texton theory has been highly influential in the representation of texture, however,
whilst the term itself remains in use, its precise meaning has been more fluid, possibly
because it has lacked a precise mathematical definition [272]. In the years since texton
theory was first presented, many models have used the outputs of filter banks to represent
the elements of texture.

Voorhees et al. used banks of Laplacian of Gaussian filters to detect blobs in
images as textons [249]. Tuceryan et al. used Difference of Gaussian filters to create a
Voronoi tessellation to model texture segmentation [235]. Many other models of texture
segmentation have employed linear filters at the first stage, followed by a nonlinear stage,
such as rectification, followed by an additional linear filtering stage. (See [125] for a
comprehensive review).

2.4.3 A representation for texture

The notion of the basic element of texture is central to constructing a suitable representa-
tion for texture as a statistical distribution of parts. However, this still leaves the question
of exactly what form the parts should take. In devising a representation for texture,
the approaches can broadly divided depending on whether the goal is to model texture
perception or to perform texture discrimination.

When attemtping to model texture perception, the general approach has been to use
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human observers to group textures to produce some form of similarity matrix. This
can then be used to determine a representation, usually with a very low number of
dimensions. For example Rao et al [186] used multi-dimensional scaling on a set of 54
textures to produce a three-dimensional representation. With this approach, we might
expect the dimensions of the representation to be meaningful in some way and, in the
work of Rao et al., it was suggested that the three dimensions correlated with orientation,
complexity and repetitiveness.

Whilst this approach is advantageous in that it produces meaningful dimensions,
there are difficulties with establishing a representation using perceptual data. Perhaps
the main difficulty is the consistency of the similarity measurements, in that context may
affect the perceptual judgements [101].

A different appraoch has been taken in computer vision, where the goal has generally
been to demonstrate the discriminative power of a representation using standard datasets.
Whilst some of these have also been used in perceptual experiments [25], others are
generally confined to testing in computer vision [55, 128, 98].

In designing a representation for use on these datasets, the focus of attention
has tended to be on the invariance properties, pariticularly rotational and luminance
invariance. Many different features have been proposed. For example, local binary
patterns (LBP) [169, 170], which encode binarized local gradients. Other methods have
used filters and a quantisation step [246], in the same way as the standard bag-of-words
methods, as described previously.

Impressive performance has been achieved on the standard datasets, seemingly
indicating the success of existing representations for texture discrimination. However,
the power of a representation can only be measured in terms of the context of a particular
task. It may be that the computer vision datasets only test fine similarities between
textures, in that they are testing the ability of a method to match very similar textures but
failing to test the dissimilarity of other texture pairs.

In order to produce a texture representation that reflects the wider similarity structure
found in human perception, it is likely to require perceptual data. This issue is raised by
Petrou et al. [181], who suggest that perceptual data should be used to select from a large
number of computationally developed texture features.
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2.5 Scale space and multiscale representations

Scale space, both in terms of the heuristic application of smoothing kernels for image
processing and the mathematically formalised scale space theory, has provided the means
to develop many different forms of representation. In this section we discuss the different
ways of constructing scale space representations, their relationship to biological systems,
and their application to problems in recognition.

2.5.1 Pyramid representations

The motivation for creating scale space representations comes from the notion that
objects make sense at a particular scale. If an object is observed at too coarse a scale
then the details that signal its identity may not be visible, and at a finer scale, the detail
may relate to aspects of the object that are not related to its identity. For example, at a
coarser scale a tree may appear as a blob whereas at a finer scale the detail of the bark is
apparent. It is only at the appropriate scale that the object appears as a tree.

The same can be said for features that make an object. For example, an object may
exhibit edges at many different scales. The outline of an object may be revealed by
considering edges at a coarse scale, with other details being found at finer scales. Given
this range of edges across scale, we can ask which of these edges are meaningful for
recognition. In general, it is not possible to answer this question and thus we require
a representation that encodes edges at all scales. This led to the first major form of
multiscale representations called pyramid representations.

Burt [37] proposed an algorithm for simultaneously convolving an image with a
family of smoothing kernels of a single parameter. This parameter, the scale parameter,
designated the size of the smoothing kernel and thus the representation consisted of a
stack of convolutions of the image with different size kernels. A subsampling procedure
was then used to reduce the size of representation as the size of the smoothing kernel
increased to create a pyramid structure.

The purpose of the pyramid was to produce a compact representation that could
be used to detect image features across all scales. Burt proposed that simple feature
detectors, such as spot, edge and bar detectors, could be applied across the structure with
a computational cost not much greater than required for the original image.

In the early work on pyramid representations two different forms were proposed,
the choice of which depended on the features of image to be enhance. The low pass
pyramid used an approximate Gaussian smoothing kernel and a subsampling factor of
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2 to produce the pyramid. It was later suggested that, for many applications, it was
only necessary to store the difference between layers in the pyramid, which led to the
Laplacian or bandpass pyramid [36].

Adelson argued that the Laplacian pyramid offered a superior representation to
Fourier-based representations, such as those based on the power spectrum, as it enabled
localisation in both the frequency and spatial domains [1]. However, this localisation in
the spatial domain meant that pyramid representation were not shift invariant, meaning
that pattern matching required convolution.

Crowley used a bandpass pyramid, termed the Difference of Low Pass (DOLP)
Transform, for shape representation [49]. Rather than using the whole pyramid, Crowley
proposed extracting salient features, such as local peaks and ridges, at each scale. These
were then linked together to form a multiscale graph representation which offered a more
compact encoding than the standard bandpass pyramid. However, an effective means of
comparing such representations for recognition was not provided.

A key consideration in any pyramid representation is the choice of smoothing kernel.
For low pass pyramids, some authors argued that the kernel should be Gaussian-like
[37, 36]. Meer argued that the optimal choice of filter should be as close to the idealised
low pass filter as possible [149]. In practice, the most common choice was the binomial
kernel which served as a good approximation to the Gaussian filter [37, 36, 49, 50].

Many variations of pyramid representations have been proposed. Adelson et al.
[3] investigated using local orientation tuning within the context of pyramids. This led
to the proposal of two new form of pyramids, Quadrature Mirror Filter pyramids and
steerable pyramids. Gluckman et al. explored higher order image pyramids as a nonlinear
generalisation of the Laplacian pyramid [85].

In recent work, Lazebnik et al. [129] have presented a pyramid representation that
has much in common with modern feature-based methods used for object categorisation
in computer vision. Whereas traditional pyramid representations use a smoothing kernel
to create a stack of images, Lazebnik et al. use varying apertures to create a stack of
histograms of local features. Thus, in contrast to traditional methods where the smoothing
kernel acts on intensity values, this can be seen as a kernel operating on the outputs of
local feature detectors. The representation has been shown to be particularly effective
because it makes use of the pyramid match kernel [87], which allows the representation
to be used in a support vector machine.

However, the pyramid matching scheme proposed by Lazebnik et al. imposes a
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fixed geometrical structure on the image. This means that, as with other pyramid-based
methods, the representation is a way of encoding both the contents and structure of an
image, as opposed to bag-of-words methods which only encode the contents. This has
implications for the use of such representations in invariant recognition, where looser
spatial structures may be required.

2.5.2 Scale space theory

Pyramid representations were appealing for their simplicity and their compact nature,
which made their use popular for a period of time. However, as Lindeberg states
[136], the algorithmic nature of the pyramid formation made analysis difficult, and the
representation depended upon the particular subsampling regime employed.

In contrast to the mainly heuristic approaches to scale space used in pyramids,
Gaussian scale space theory aimed to develop an axiomatic scale space representation
which was independent from the sampling regime. At the core of this formulation was
the notion that the visual front end should be uncommitted [191], in that there is no
model involved.

First presented by Witkin [257] and developed by Koenderink [122], the requirements
of scale space were laid down as a set of axioms. First, the creation of scale space
should not involve the creation of any additional structure, which means that no new
maxima or minima should be created along the scale dimension and that maxima
and minima in the image must not be enhanced. Second, the construction should be
shift invariant, as an uncommitted system should show no preference to any particular
location. Third, the construction should be isotropic, thus showing no preference for
orientation. Fourth, no preference should be shown to any particular scale. Finally, as
the system assumes no particular model, the construction should be linear. Witkin and
Koednerink showed that these axioms lead to the unique solution of the Gaussian kernel
as the kernel for scale space construction, a result which can be reached through various
routes [257, 122, 166, 190].

Gaussian scale space theory provides a representation that is three-dimensional and
continuous in the scale dimension. In order to use this representation for recognition, it is
necessary to have a means of detecting salient structure. This can be done through some
form of keypoint detection method, such as searching for extrema of the Difference-of-
Gaussians [143]. Lindeberg has also provided a method of automatic scale detection and
demonstrated its use for the detection of features such as edges, blobs and ridges [138].

Whilst scale space is often used for its scale invariance properties, in that it can be
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used to detect single scale structures found at any scale, there is another form of structure
in scale space. Referred to as deep structure [257, 122], this is structure that occurs
across multiple scales, and thus can be considered as a three-dimensional feature in scale
space. The central idea behind deep structure is that, in certain circumstances, it is more
informative to consider coarse and fine structure at a particular location together rather
than separately, as in the case when simple scale invariance is sought.

Bergholm has described a method of using this deep structure to enhance or focus
edges by linking structure across scales [15] . Perona et al. used form an alternative form
of scale space, based upon anisotropic diffusion, to detect the exact locations of coarse
edges for image segmentation [178]. Vincken, with the hyperstack algorithm, provides a
way to create a tree like structure in scale space for use with segmentation [247].

2.5.3 Relationship to biological vision

Biological vision systems are capable of perceiving objects at different scales. For
example, humans are able to perceive different objects within a scene that occur at
different scales. Therefore, the human visual system must, in some way, be operating at
multiple scales [265, 104, 74, 190, 191]. However, this does not necessarily imply that it
uses Gaussian scale space.

Some authors have suggested, using the theoretical arguments on an uncommitted
front end system, that we could expect the early stages of the visual system to use
Gaussian scale space [136, 123]. This is supported by evidence of cells in the early
visual system which can be modelled by Gaussian functions and their derivatives. For
example, the Laplacian of Gaussian, or Mexican Hat, is often used as a model for the
centre-surround receptive field [148]. Neurophysiological studies by Young et al. have
shown that suppositions of Gaussian derivatives are a good model for cells in both the
retina and cortex [263]. However, others have proposed alternatives, such as the Gabor
filter, as more accurate models [56].

2.5.4 Scale space and current methods in invariant recognition

Many of the methods currently used in computer vision operate in scale space. For
example, in the SIFT method [143], keypoints are found in scale space by locating the
extrema of the Difference-of-Gaussians function. The SIFT features are then encoded
at the scale of the keypoint. Amongst the network models, some models use filters of
different sizes as the first layer. For example, in the model presented Riesenhuber [188],
the first layer consists of Gabor filters at various scales.
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However, in these representations, scale space is used to introduce scale invariance.
Whilst this is a desirable trait at the object level, such representations also introduce
invariance to the relative scale of individual features. Thus, there is no encoding of the
deep structure in the scale space, which requires features at different scales to be linked.

For texture recognition, Varma et al. [246] have proposed a texton based represen-
tation that combines the outputs of oriented filters across 3 scales, thus producing a
representation that links fine and coarser scales. However, orientation information at each
scale is discarded, with only the maximum response being used.

Each of these three methods utilises oriented filters at a range of scales. The
difference between them can be seen in terms of how links between the local orientations
are preserved. However, none of these representations link orientation information at
different scales.

2.6 Methods review

In the next section of this chapter we present a summary of four current methods that
have shown strong performance in applications in visual recognition. This is not intended
to be a comprehensive review of the literature available on the general problem of object
recognition, but instead serves as a summary of the methods that guided the investigation
presented in this work.

In choosing these methods we concentrated on those that are of current interest, both
in terms of the development of the theory and in their continued relevance to cutting edge
application. We also wanted to concentrate on those methods that were based upon a
relatively simple basic idea, which had been applied in multiple application areas.

For each method we provide a summary of the architecture, then a more detailed
account of the way in which the method introduces different forms of invariance. We
then briefly discuss the way in which the method has been applied.

2.7 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) has been one of the most widely used
methods in object recognition since it was first presented by Lowe in 1999 [143]. At the
heart of the method is an encoding scheme of oriented gradients. Such basic features have
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been used in computer vision before the arrival of SIFT (e.g. [79, 80]) and form part of a
family of features encoding local orientation that have been of interest to the wider vision
community since the experiments of Hubel and Wiesel [106]. However, it was the arrival
of SIFT, and the encoding of local oriented gradients within a template of histograms, that
produced an encoding scheme that led to the widespread use of such schemes.

The various steps of the SIFT descriptor are explained below.

2.7.1 Architecture

2.7.1.1 Keypoint Localisation

The SIFT method operates in scale space [122, 136, 137], where an image is convolved
with a Gaussian kernel. The scale space image is:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

where:

G(x, y, σ) = 1
2πσ2 e

−(x2+y2)/2σ2

In the SIFT method, as presented by Lowe, the whole scale space is not encoded. Instead,
keypoints are first detected, and the region around these is then encoded. To detect
keypoints the Difference of Gaussians is used:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

The keypoints are positioned at the local maxima and minima of this function. This
is done by comparing each location to its eight neighbours. In some implementations
keypoints are further localised by interpolation [26, 144]. The result of this process is a
set of keypoints with a three-dimensional position for each.

2.7.1.2 Orientation Assignment

The next step is to assign an orientation to each keypoint. This is done by computing
an orientation histogram in the region around the keypoint, to determine the dominant
orientation. Using the scale of the keypoint, L, the orientation, θ, then the magnitude, m,
of the gradient is computed using:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1 L(x,y+1)−L(x,y−1)
L(x+1,y)−L(x−1,y)
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The gradient is then weighted using a Gaussian window centred on the keypoint and
a histogram of the weighted gradients is then formed by summing for each of 36 orien-
tations. The largest bin is then selected as the orientation for that keypoint. If other bins
are within 80% of this magnitude then they are also selected and another descriptor is
calculated.

2.7.1.3 The Descriptor

To form the descriptor a grid is placed over the region surrounding the keypoint. For each
subregion within the grid, a local histogram is calculated by summing the magnitudes of
each of the orientations, as calculated in the previous step. In the standard implementation
of SIFT [144], this grid consists of 4x4 subregions computed from a 16x16 array around
the keypoint. Typically, for the computation of the descriptor, the number of orientations
is reduced to 8, giving a total descriptor size of 128 bins.

In order to try and avoid the effects of the boundaries between the subregions, entries
for each histogram are weighted by a linear function of their distance from the centre of
the subregion. Finally the whole descriptor is thresholded, to ensure no bin is greater
than 0.2, and then normalised.

2.7.1.4 Classification

In the SIFT method, an image is generally encoded into a large number of SIFT
descriptors. The exact depends on the number of keypoints that are located within the
image. Thus the encoding is a list of SIFT descriptors, with a position and scale for each.
In order to classify an image into one of a set of previously learnt classes, each descriptor
is compared to a reference set of descriptors computed from training data.

The matching of descriptors involves finding nearest neighbours in the 128 dimen-
sional SIFT space, where the number of reference descriptors may number in their tens
of thousands. In order to make this computationally efficient, approximate methods are
used such as the Best Bin First algorithm [11].

The result of the matching process is a set of labels, from positive matches, and
a position and scale within the test image for each. In order to convert this into a
classification, a voting system is used to determine clusters of positive matches with a
common position and scale.
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2.7.2 Invariance

• Translation When considering invariance to translation, we have to differentiate
between the SIFT descriptor and the SIFT method. The descriptor itself, which
consists of the template of histograms, will be invariant to the shifting or oriented
gradient features within subregions, but will not be invariant to movement of
features from one subregion to another.

The SIFT method, as with other bag-of-words approaches is invariant to shifting
of individual descriptors within the image. Thus, if the spatial arrangement of
descriptors is reorganised the method will not detect this.

Overall then, we have different degrees of invariance at different levels. A small
tolerance to shifting of basic features, then a rigid spatial structure of local his-
tograms followed by complete invariance to the spatial arrangement of descriptors.

• Rotation The SIFT descriptor develops rotational invariance by aligning itself to
the dominant orientation. Thus, a rotated version of the same image would lead to
the same computed descriptor. However, because the dominant orientation of the
keypoint is calculated by taking the maximum value of the histogram bins, there is
the potential for slightly different images to produce very different descriptors.

If, for example, we consider the SIFT encoding of an ’L’ shape where there are two
possible dominant orientations. Depending on the relative length of each of the line
segments, we may get a different dominant orientation, and thus a very different
descriptor. This is countered to a certain extent in the SIFT method by computing
multiple descriptors where there is an ambiguous dominant orientation.

Within the descriptor itself, there is no rotational invariance, as both the gradi-
ent features and the grid structure contain orientation information. However, ro-
tational invariant forms have been developed, such as RIFT[126], where the local
histograms are arranged in disk segments and orientations are calculated relative to
each subregion.

• Scale

The SIFT descriptor is calculated at a single scale, which is the scale of the keypoint.
Thus, invariance to scale can only come about by the keypoint selection step.

• Clutter
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The SIFT method attempts to handle clutter at the level of descriptor matching, so
that descriptors belonging to the target will be positively matched and descriptors
arising from clutter will not. There is the potential for descriptors from the clutter to
be incorrectly positively matched, however Lowe proposes handling this by looking
for positive matches with a common position and scale [144].

2.7.3 Application

Whilst SIFT was originally proposed with the keypoint localisation stage, it has subse-
quently been shown that superior performance can be gained from dense encoding [168].
Thus, it is the SIFT feature descriptor which forms the enduring aspect of the method,
many variations of which exist [86, 51, 218]. These includes descriptors that reduce
the dimensionality of the descriptor for more efficient matching. Such methods include
PCA-SIFT, which applies a Principal Components Analysis stage to the descriptor has
been proposed for image retrieval [120], Speeded Up Robust features (SURF) [8] and
the Gradient Location Orientation Histogram (GLOH), which introduces granularity to
histograms [151].

2.7.4 Discussion

The various different implementations of SIFT have helped to demonstrate which aspects
of the method contribute to performance. The demonstration that keypoint localisation
is unnecessary[168] and the use of SIFT descriptors within multiple classification
frameworks demonstrates that the enduring component of the SIFT method is the SIFT
descriptor itself. This is also the most interesting aspect of the method in the current
consideration for our work, where we are investigating ways of combining basic features
into a suitable representation for visual recognition.

In the case of the SIFT descriptor these basic features are oriented gradients. The
first question then that we might want to ask, is whether this first level of representation
contains sufficient information for recognition or whether, for some tasks, we may have
already lost crucial information at this stage.

This is a difficult question to answer in general, in the absence of perfectly performing
recognition systems. However, in certain recognition problems, such as with the digits
and letters used in the investigation in this work, the identity of the digit can still
clearly be recognised from the encoded image which implies that we have not discarded
crucial information at this stage. This is illustrated in Figure 2.2 where the identity of
the character encoded in oriented gradients is still clearly visible. However, in other
applications this may not be the case and we may need higher order features[264]. This
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is explored in this work to a certain extent, through the use of alternative sets of basic
features.

Figure 2.2: An image encoded in oriented gradients.
The orientation is represented by shades of grey with flat regions shown in pink. From

visual inspection, the shape of the character is still easily identifiable.

Assuming that we are dealing with an application where oriented gradients provide
a sufficient basic feature set, the next question to ask is, to what extent does the SIFT
descriptor capture useful information about class identity? To answer this we need to
look at the information that is encoded in the SIFT descriptor.

The first thing that the SIFT descriptor encodes is the distribution of orientations
across the whole region. Although this is not explicitly included in the descriptor, it could
be reasonably well estimated from the individual histograms. Secondly, SIFT encodes
the spatial relationship between these orientations, which is captured by use of the grid
of histograms.

In order for a SIFT descriptor to be matched to another both these types of infor-
mation must be similar for the two descriptors. If we consider the effect of a change
in the distribution of orientations across the whole descriptor then in the SIFT encod-
ing space we would expect the distance between the two descriptors to gradually increase.

However, this is not the case with the spatial information. As oriented gradients move
from one local histogram region to another we would expect to see a sharp jump in the
distance between the two descriptors. Thus if we imagine an object within the region
encoded by a descriptor, as this object begins to deform the descriptor moves relatively
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large distances in SIFT encoding space.

This is likely to mean that SIFT descriptors will be matched providing that the spatial
arrangement of orientations within the descriptor region is very similar. In this case SIFT
descriptors would be effective in recognition tasks where instances of the same class
contain distinctive small patches.

There are two occasions when SIFT is likely to fail. First, when instances of the
same class contain distinctive features that do not fit the rigid spatial structure of the
SIFT descriptor. This may be the case when the distinctive feature of the class is more
associated with its shape. The second occasion is when distinctive features that fit
the SIFT structure are present, but the distinctive feature of the class is in the spatial
arrangement of the descriptors themselves. In this case SIFT descriptors could be used in
conjunction with a spatialisation scheme, such as pyramid matching. [129].

A common approach in recent attempts at object recognition has been to use SIFT
descriptors in conjunction with other sets of features and a suitable method for selecting
the features that are appropriate for each class. (e.g. [219]). In this way we can see the
SIFT descriptor as forming part of suitable representation for visual recognition tasks,
but not a complete encoding scheme that can be expected to be of use in all applications.

2.8 Histograms of Oriented Gradients

The Histograms of Oriented Gradients (HOG) scheme [53] has many similarities with
SIFT. However, it is useful to consider it as a separate method because there are key
differences between the two, both in their construction and application, that may help
shed light on which aspects of each method are contributing to their performance.

As evident from the name, HOG uses oriented gradients as the underlying feature,
though generally the calculation of these is different from SIFT. These are then grouped
into a template of histograms, as with SIFT. The details are given in the next section.

2.8.1 Architecture

The architecture of the HOG method consists of three key steps. The first is gradient
computation, where the underlying local gradients features are established. The second is
the grouping of these together to form a template of histograms. The third is the normal-
isation of each histogram to form the final HOG encoding. These steps are illustrated in
Figure 2.3.
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Figure 2.3: The different stages of the HOG encoding.
The image is first encoded into oriented gradients, then divided into locally normalised

blocks.

2.8.1.1 Gradient Computation

The first stage in the HOG scheme is the calculation of oriented gradients at each point
in an image. In the method as presented by Dalal et al. [53, 54], this is done only
at the finest possible scale, and thus the HOG scheme does not encode a scale space
representation of an image.

At each location, the gradient is calculated using simple 1-D centred masks, which
gives an orientation for the maximum gradient and a corresponding magnitude for the
gradient. Typically, the masks have a scale of 0.

2.8.1.2 Spatial Binning

Once a gradient orientation and magnitude has been assigned to each location, histograms
are computed over local regions, or cells. Typically, the histograms are calculated by
summing the magnitudes for each orientation bin across the cell, though in some cases
the square root or the square of magnitude is used.

When computing the histogram, orientations can be signed or unsigned. The signed
gradient is an arrow-like feature, which indicates the direction of the gradient across
the full 360◦. The unsigned gradient indicates the direction across a 180◦ range and is
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invariant to whether the gradient is from light to dark or dark to light. In the version of
HOG presented by Dalal and Triggs, nine unsigned orientation bins are used.[53]

2.8.1.3 The Descriptor

To compute the final descriptor, the histogram for each cell is normalised so that the total
gradient magnitude is the same for every cell. This step is seen as being critical in dealing
with differences in contrast the image. The histograms are then concatenated to make the
final descriptor.

2.8.2 Classification

As with SIFT, the classification of an image is performed by first classifying each HOG
descriptor using a set of labelled reference descriptors. In the first presentation of the
method, when it was tested on pedestrian detection, this was done using a Support Vector
Machine (SVM) to determine whether a particular HOG descriptor came from a pedes-
trian scene or not.

2.8.3 Invariance

• Translation

As with SIFT, we can consider invariance to translation of features within the
descriptor invariance to shifts in the position of the descriptors. In the first case, the
descriptor is invariant to small changes in the position of oriented gradients within
cells. However, the concatenation of the cell histograms leads to a fixed structure,
meaning that movement of oriented gradients across cell boundaries will lead to a
very different descriptor.

When HOG descriptors are compared, position information is generally not used.
Therefore HOG can be seen as being completely invariant to different spatial ar-
rangements of the same HOG descriptors.

• Rotation

Unlike SIFT, there is no mechanism within the HOG descriptor to develop invari-
ance to rotation. However, variations have been developed which introduce invari-
ance, such as RIFF [226] or polar-HOG [252].
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• Scale

The HOG descriptor is calculated at a single scale, which is usually zero. However,
as the oriented gradients are calculated using filters, which can be of any size, it
would be possible to compute the HOG descriptor at a scale selected by some form
of keypoint selection process which would introduce invariance to scale in the
same way as SIFT.

• Clutter

The HOG descriptor itself will be sensitive to clutter. However, clutter within an
image can be handled by computing multiple descriptors in the same way was with
SIFT, where providing there are a sufficient number of true positive matches the
descriptors arising from clutter can be ignored.

2.8.4 Application

HOG has been most commonly used for detecting and localising people in images [53,
271, 112, 83, 254]. In addition it has been used in many object recognition schemes in
conjunction with other features. For example the top performing scheme in the VOC
2011 challenge used HOG descriptors at three scales in combination with other feature
sets, including SIFT [219].

Variants of HOG have been produced, such as the rotationally schemes mentioned
above, or schemes that compress the HOG descriptor. [39]

2.8.5 Discussion

The HOG descriptor can be thought of as a generalisation and a simpler version of the
SIFT descriptor. It does not involve many of the steps that were included in the original
SIFT method, which suggests that it is the template of histograms underlying both
methods that is providing the performance.

Like SIFT, the HOG descriptor imposes a rigid spatial structure in the form of the
template of histograms. This makes it well suited to applications where classes consist
of relatively rigid shapes such as pedestrian detection, which also involve objects at a
common orientation.

The use of HOG descriptors at multiple scales, as in [219], raises the possibility of
representing a spatial arrangement of HOG descriptors by using another descriptor at a
coarser scale, which would allow both fine detail and the overall shape of objects to be
captured. However, this would only work for classes that conform to the rigid spatial



Chapter 2. Literature Review 54

structure at both scales, which may further limit the range of classes that can be well
represented using HOG.

2.9 Shape Context

The Shape Context descriptor [12, 156, 13, 157], differs from the methods previosuly
described in that it encodes vectors between features, rather than features that occur
within a certain subregion. In the scheme, orientation information is encoded, but not at
the level of the basic feature. Instead, the orientation of vectors between unoriented edge
features is encoded. This makes it an interesting method to compare to SIFT and HOG.

2.9.1 Architecture

There are three key stages in forming the descriptor. Firstly, edge features are detected
within the image or region. Second, for a certain feature within the image, vectors to all
other edge features are calculated. Finally, a histogram of these features is calculated
using a log polar grid. Each of these steps is described in detail below.

2.9.1.1 Point selection

The first stage is to find edge features in the image. There are many edge detectors
available but typically this step is performed using a Canny edge detector[38]. This gives
rise a to a large number of locations within the image and so, for ease of calculation, a
further sampling step may be employed where a subset of the edge points is randomly
selected.

2.9.1.2 Vector calculation

The next stage is to calculate vectors from the location of a given edge feature within the
image to all other points selected in the first stage. Each vector is typically calculated
both in terms of distance in the image plane and the orientation of the vector. As the
descriptor is calculated from a given point, the possible orientations cover the full 360◦.

2.9.1.3 The Descriptor

The final stage in calculating the descriptor is to capture the distribution of vectors using
a histogram. This is a two-dimensional histogram with axes for orientation and the log
polar distance. Typically, the histogram will be divided into 12 orientations and 5 log
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Figure 2.4: Shape contexts for two different letters (adapted from [12]).
The encoding for the two corresponding points, p1 and p2, are very similar whereas at

point p3 the encoding is very different.

distance regions [156]. Finally, the distances in the histogram are normalised according
to the mean distance, to give a descriptor that is invariant to scaling of the image. The
process is illustrated in Figure 2.4.

2.9.1.4 Matching

As shape context descriptors are computed at a certain location within the image, rather
than over a region, they require a correspondence matching process which determines
the closest pair matches out of a set of descriptors for two objects. This is generally split
into two different processes. Firstly, fast pruning [156] is used to select a small subset of
descriptors as a potential match. A more detailed matching process is then performed to
calculate the distance between descriptors. This distance, sometimes referred to as the
cost, is calculated using:

Ci,j = 1
2

K∑
k=1

(g(k)− h(k))2

g(k) + h(k)
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where g(k) and h(k) are the K bin histograms at point i and j respectively.

2.9.2 Invariance

• Translation

As the descriptor is calculated at a specific location, invariance to translation can
only be achieved by using correspondence matching in the standard bag-of-words
sense. Within the descriptor itself, a small degree of translational invariance is
allowed as individual edge features can move within the bins of the histogram.

• Rotation

The descriptor as it comes is not rotationally invariant. However, invariant versions
have been proposed [13, 260].

• Scale

The scale of the descriptor depends on the scale at which the edge features are
calculated and the size of the grid which is used for the histogram.

• Clutter

The way in which the descriptor can handle clutter is through the standard
bag-of-words approach, in that recognition proceeds through positive matching.
Therefore, shape contexts that are calculated from clutter will only cause confusion
if they are erroneously positively matched with labelled shape contexts.

2.9.3 Application

When first presented Shape Context was first tested using the MNIST dataset, achieving
leading performance [12]. Along the same lines Mori have shown success in recognition
of text within CAPTCHA [158].

Shape context has also been widely used for other applications involving shape
recognition, outperforming other methods in pedestrian detection [204]. Hand shape
recognition [172] and pose estimation [5] and pose estimation in video [94] have also
successfully been tackled with Shape Context.
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2.9.4 Discussion

Shape Context differs from both SIFT and HOG in that it does not encode oriented
gradients, but the oriented vectors between unoriented edge features. The first difference
between the schemes therefore comes from the different set of basic features that are used.

The second difference is that, whilst SIFT and HOG involve a template of histograms,
Shape Context employs a histogram of vectors. This might first seem to overcome
the issues of the rigidity of the spatial relationships encoded in the SIFT and HOG
descriptors. However, in Shape Context, the histogram is not a count of the number of
occurrences of a set of features within a certain region, but a measure of the distribution of
vectors between edge features. The histogram therefore encodes the spatial relationships
between the features.

As with SIFT and HOG, the way in which these spatial relationships are encoded
makes it tolerant of small changes in the position of edge features but when the edge
features move a sufficient amount to make the vectors cross the bin boundaries in the
histogram the result is a very different encoding. Whilst the use of the log distance in the
histogram will make the descriptor more tolerant of movement of features in its periphery,
this brings the extra problem of requiring the centre of two descriptors to be well matched.

2.10 HMAX

The HMAX model [188, 208, 205, 210, 207, 209] is one of a family of models that
take their inspiration from the characteristics of cells in the primary visual cortex as
first shown by Hubel and Wiesel [106]. Beginning with the neocognitron [81], many
variations have been suggested using the same basic architecture. The concensus between
these models has given rise to the label of the ’Standard Model’ of object recognition
[205] as a benchmark biologically plausible system recognition system. These models
are of interest in our work because it combines basic features in a very different way to
SIFT, HOG and Shape Context.

2.10.1 Architecure

Within this family of models, HMAX has gained prominence in recent years as a biologi-
cally plausible model for visual recognition. Drawing inspiration on further physiological
data [140, 180, 179, 173], the HMAX hierarchy consist of five layers, as shown in Figure
1.
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Figure 2.5: The five layers of the HMAX architecture, from [205]
The model consist of alternate layers of simple cells, which are tuned to a particular

feature, and complex cells, which pool responses across banks of simple cells.

• S1 Layer The first input layer in the model is equivalent to the simple cells drawn
from Hubel and Wiesel, which are sensitive to the local orientation. Typically a
bank of Gabor filters is used, as in [188] with a typical implementation using four
orientations and eight different sizes of filters. A bank of such filters is applied at
every point in the image. This layer is the first stage of selectivity, as each cell is
tuned to a particular feature of the image. The particular parameters of the Gabor
filters are taken from physiological data relating to the ’simple’ cells found in the
primary visual cortex. In some implementations, alternative oriented filters have
also been used, such as Gaussian Derivative filters as in [147].

• C1 Layer The C1 layer is the first pooling layer, equivalent to the complex cells in
Hubel and Wiesel, achieving invariance to position and scale within a small section
of the image. Several inputs of S1 units, which are neighbours in position and scale,
act as inputs to a single C1 unit. Invariance is achieved by applying a MAX function
over these inputs.

• S2 Layer The second tuned layer takes inputs from the C1 Layer and gives a re-
sponse dependent on the similarity of the image patch to the preferred stimulus of
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the S2 unit. This preferred stimulus can vary in its complexity, according to the
particular implementation, as discussed further in the section on Learning below.
There is one S2 unit for each preferred stimulus at each point in the image.

• C2 Layer The second pooling layer consists of units that take inputs from S2 units
with the same preferred stimulus across all positions and scale. The MAX function
is then applied, as in the C1 layer, giving the maximum response of that preferred
stimulus across the whole image. The total number of C2 units is determined by
the particular implementation and is independent of the size of the original image.

• VTU Layer At the top is a level of view tuned units (VTUs), or view tuned cells,
which take their input from the C2 layer. These are tuned units where the optimal
stimulus usually corresponds to a particular view or partial view of an object.

Learning Learning can occur at different stages in the HMAX model. In all imple-
mentations the tuning of the VTUs must be learnt, so as to recognise the objects in any
particular task. This is always done through a supervised learning process, where labelled
training examples are used to determine the weight matrix on each VTU. In this case each
VTU represents one object.

In addition learning can occur at the S2 level. The original implementation sets the
optimal stimulus of each S2 unit as a simple combination of four C1 input units, and then
takes all possible combinations to form the S2 layer [188]. Alternatively, more complex
combinations of C1 units can be selected at random, as in [210], or an alphabet of S2
features can be learnt [209]. In this case, learning occurs in an unsupervised manner by
exposing the system to a large number of unlabelled images, and then performing a clus-
tering operation on combinations of C1 features. Typically, implementations employing
this will select around 1000 unique S2 features.

2.10.2 Invariance

• Translation Each unit in the C2 layer pools inputs from S2 units across all po-
sitions and should therefore detect the presence of its optimal stimulus anywhere
in the image. For an object comprised of such features, the model should also be
completely translationally invariant, providing all such features are not dissected.
This is tested in [206] and, subject to minor errors appears to be correct, agreeing
with equivalent findings from translational invariance in physiological experiments.
[109]

• Rotation There is no mechanism built into the HMAX model to achieve rotational
invariance. However, if each S1 unit partially responds to oriented features within
the image that are slightly off the preferred orientation of the unit, a rotation of the
image will not result in a sudden falloff in performance. We would therefore not
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expect the HMAX model to be rotationally invariant, but would expect it to be able
to handle small rotations of an image. This, however, has not been shown.

• Scale As with position, each C2 unit pools inputs from S2 units across all scales
and therefore each C2 response should be absolutely invariant to scale, providing
all relevant features can be detected using the scales of filters selected. This was
tested, as before, and found to be approximately correct. [206]

• Clutter Units in the C2 layer respond when their optimal stimulus is present and as
there is no competition between units in each layer, they should respond regardless
of any other features that are present. Providing that each VTU is tuned to presences
of C2 features only, and not absences, we would expect that the HMAX model
should be relatively robust to clutter. This is dependent on using a suitable learning
method to ensure that the tuning for each VTU only select relevant C2 features
and ignores all others. However, this only ensures a positive response when the
object is present. As the area of clutter increases the chance of each of the C2
units being present increases as well, increasing the chances of falsely reporting the
presence of an object. Thus we might expect recognition performance to fall in the
presence of clutter. This is indeed the case, as reported in [209] where classification
performance dropped by approximately half as the relative area of clutter to object
was doubled.

• Classification In addition to being invariant to translation and scaling at an object
level, the HMAX model is invariant to a change in the position of individual fea-
tures. Each C1 unit pools input across several positions and multiple scales, and
therefore small changes in the locations of each S1 feature will still produce the
same output of the C1 unit. Similarly, changes in the location of S2 features will
leave the output of C2 units unchanged. If some intra-class variation of objects is
down to small changes in position of individual features then HMAX should use
this to enable greater classification performance.

2.10.3 Discussion

The HMAX model performs well on the five class recognition problem, and it clearly
demonstrates a high degree of invariance to translation and rescaling at the object level.
It also possesses an appealingly simple architecture, taking its inspiration from biological
vision and repeating the simple two stage tune and pool process.

The performance on the two class problems using objects taken from the Caltech101
dataset show very good results. Performance on the full 101 class problem does not
compare favourably with other methods, for example in [129] an overall score of 64±0.7

% was achieved on the same task. However, it should be noted that the Caltech101 dataset
contains objects that occupy a large proportion of the image and generally have a common
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view, orientation and size. Such a dataset may not be a particularly good test of fully
invariant recognition, as considered in this thesis. Methods, such as in [129], are not
designed to be invariant in this manner and may capitalise on the nature of the Caltech101
images.

Despite this, there is clearly a large drop in performance in the shift from the 2 class
problem to the 101 class problem. This could be for two reasons. Firstly, the C2 features
used in the HMAX model may be consistent enough to distinguish certain classes of
objects in the 2 class problem, but not others. The five classes that are chosen, Cars,
Faces, Airplanes, Motorbikes and Leaves may be classes with relatively little intra-class
variation. If the other classes in Caltech101 contain a far higher degree of intra-class
variation then this would clearly drive down performance in the full 101 class problem.
In this case the C2 features may not be consistent enough descriptors of all objects in
Caltech101.

An alternative explanation is that the C2 features by themselves are not discriminative
enough to perform well in a problem with a high number of classes, even though they are
consistent within each object class. In this case it may be possible to improve performance
by creating more complex features which are combinations of C2 features, by introducing
a new tuned and pooling layer, S3 and C3. However, as the number of layers is increased
the learning task becomes far more difficult and it is far from certain how this could be
overcome.

As discussed above, there is no explicit mechanism with the HMAX model to achieve
rotational invariance although it may be relatively insensitive to small changes in orienta-
tion. The objects in Caltech101 tend to appear at a common orientation, and so HMAX
may be able to handle the small variations that exist, however as there is no measure ei-
ther of how orientation varies in Caltech101 nor how sensitive HMAX is to small changes
in orientation it is impossible to determine whether rotation has an impact on the perfor-
mance.

An additional consideration is whether the HMAX model suffers by being invariant to
different spatial combinations of the same C2 features. As it is only the presence of these
features that is considered, any rearrangement of the same features will produce the same
encoding. Thus if two object classes were, broadly speaking, different arrangements of
the same underlying features the HMAX model might not be able to distinguish between
them. This may be solved by adding an additional layer of tuned and pooling units, but,
as discussed previously, this presents problems for the learning system.

Alternatively, if enough C2 features are used they may sufficiently overlap each other
to ’lock in’ one spatial configuration, as in [241]. However, there is no evidence that
performance can be improved by simply increasing the number of C2 features.

Overall the HMAX model provides some encouraging results, but there appear to be
clear limits on its performance. its unclear whether these can be overcome within the
framework of the model or, as suggested in [206], this represents the limit in performance
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possible with a purely feedforward architecture.
We also have to question exactly which aspects of the HMAX model contribute to the

results when they are strong. For example, how important is the use of the MAX function?
How critical is the choice of the S1 features? We could use other oriented features at this
layer, or expand into basic second order features. Without a clear understanding of these
issues, it is difficult to establish how far the HMAX framework can be taken.

[241]

2.11 Basic Image Features and oriented Basic Image Fea-
tures

2.11.1 Basic Image Features

Basic Image Features (BIFs) [92, 93, 88, 90, 91, 89] are different from the other schemes
presented so far in this chapter, as they are a feature alphabet and thus offer a level
of representation that is comparable to just the first stage of the schemes previously
discussed.

Whereas schemes like SIFT and HOG make use of oriented gradients, the BIF system
does not encode local orientation information, but instead classifies locations according
to local symmetry type.

In the BIF system, each pixel in an image is classified into one of seven types based
upon the type of the approximate local symmetry. These approximate types are flat,
dark and light rotational, dark and light line, slope and saddle-like. The classification
is determined from the output of a bank of six derivative-of-Gaussian filters, one 0th
order, two 1st order and three 2nd order. The algorithm has two tunable parameters. A
filter scale parameter, σ, and a threshold, ε, which is influential in deciding whether a
locality should be classified as flat, or as one of the other six articulated symmetry types.
Larger values of ε result in a greater proportion of an image being classified as flat. The
BIF calculation is given in Algorithm 2.1. In the BIF calculation, it is first necessary to
adjust the filter responses to ensure the final output is dimensionless. As the calculation
involves ratios of filter responses, it is sufficient to ensure that the filter outputs are all of
the same dimension. This is done by multiplying the output of the derivative filters by
the scale raised to the power of the order of the filter.

The information encoded by BIFs is very different from oriented gradients for two
reasons. First, symmetry type is orientation invariant and second, BIFs do not encode
a magnitude or strength of feature type. This results in a very different encoding to
oriented gradients, as can be seen from Figure 2.6, where we show an image encoded
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Algorithm 2.1 The BIF calculation
1. Measure filter responses cij to an (i, j)-order derivative-of-Gaussian filter, and from

these calculate the scale normalised filter responses sij = σi+jcij

2. Compute λ = s20 + s02, γ =
√

(s20 − s02)2 + 4s2
11

3. Classify according to the largest of: {εs00, 2
√
s2
10 + s2

01,±λ, (γ ± λ)/
√

2, γ}

into oriented gradients with a magnitude, thresholded oriented gradients and BIFs.

2.11.2 Oriented Basic Image Features

As well as the BIF system, which encoded only local symmetry type information,
we consider oriented Basic Image Features (oBIFs). In the oBIF system, both local
symmetry type and local orientation are encoded into single features. This can be
considered as a natural second order extension to oriented gradients, which would be the
slope BIF type combined with an orientation.

Assigning an orientation only makes sense for certain BIF types. As the dark rota-

tional, light rotational and flat classes are rotationally invariant, no orientation is assigned
to them. The dark line, light line and saddle types can be assigned an orientation, but
as these types have reflective symmetry the orientation is unsigned. The slope class is
equivalent to an oriented gradient and thus can possess a signed orientation. This means
that the slope class has twice the number of possible orientations as the dark line, light

line and saddle classes. The oBIF calculation is given in Algorithm 2.2.
When BIF and oBIF encoded images are shown, we use a colour coding for the BIF

type and an arrow for the orientation where it is assigned. This is illustrated in Figure 2.7.

2.11.3 Application

As BIFs and oBIFs are relatively new feature alphabets, they are comparatively untested
in terms of performance on common recognition problems. However, when used in SIFT
like features, Lillholm et al have shown that oBIFs offer better performance than oriented
gradients[134] when tested on the VOC2007 object class challenge[66].

2.11.4 Discussion

As our main aim in this work involves developing ways of combining basic features, it is
very useful to consider more than one set of such features. This is so that we can try and
gauge whether the method of combining features is contributing to performance, rather
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Figure 2.6: Oriented gradients and BIFs
The original image convolved with three different Gaussain kernels (top), along with the

oriented gradients, thresholded oriented gradients and BIFs at the same scales. In the
oriented gradient encoding, both orientation and gradient are encoded. In the thresholded
oriented gradients, only orientation is encoded and in BIFs only local symmetry type is

encoded.
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Algorithm 2.2 The oBIF calculation
1. Measure filter responses cij to an (i, j)-order derivative-of-Gaussian filter, and from

these calculate the scale normalised filter responses sij = σi+jcij

2. Compute λ = s20 + s02, γ =
√

(s20 − s02)2 + 4s2
11

3. Assign BIF type according to which Expression is largest, then calculate orientation
where appropriate:
Expression BIF type Quantisable orientation
εs00 flat No orientation

2
√
s2
10 + s2

01 slope
arctan ( s01

s10
) s10 > 0

arctan ( s01
s10

) + π s01 ≥ 0, s10 < 0

arctan ( s01
s10

)− π s01 < 0, s10 < 0

λ dark rotational No orientation
−λ light rotational No orientation
(γ + λ)/

√
2 dark line arctan 2s11

(s02−s20+γ)

(γ − λ)/
√

2 light line arctan 2s11
(s02−s20+γ)

γ saddle-like arctan 2s11
(s02−s20+γ)

Label
Stereo-
type

BIFs oBIFs

Figure 2.7: The colour coding used for BIFs and oBIFs
Different colours are used to represent each BIF type. For oBIF features, the orientation
is indicated using a single line segment, for the line and slope BIF types, and a pair of

lines for the saddle BIF type.
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than it being a property of the features themselves.

The use of BIFs also provides an interesting contrast to oriented gradients, as the two
feature alphabets encode very different information. By using oBIFs we can also try and
assess whether these two types of information complement one another in recognition
tasks.

2.12 Summary and conclusions

In this chapter we have discussed various sections of the literature that are relevant to the
work presented in this thesis. This began with a brief history of invariant recognition in
computer vision, where we described how bag-of-words and related methods have come
to dominate recent approaches to recognition. We then discussed biologically motivated
models, with particular emphasis on network models and how they provide important
insight into the computational aspects of recognition.

In the discussion on different forms of representation we proposed that an image-
based representation was suitable for the first stage of recognition. Despite the advantages
of structural representations, we described how there are significant computational diffi-
culties with these, which has contributed to the wise use of view-based representations.

We then briefly described texture perception and different forms of texture represen-
tation. This was followed by a discussion of scale space and multiscale representations.
In this section, we described methods such as pyramid representations which use a
smoothing kernel to produce a stack of blurred images. However, we concluded that
the use of such representations for invariant recognition is limited due to the rigid
geometrical structure.

In the methods section, we described the SIFT, HOG, HMAX and Shape Context
methods in detail, highlighting how each introduces invariance into the final representa-
tion. We then described Basic Image Features and oriented Basic Image Features as a
means of encoding local symmetry type.

In the following chapters we shall use elements of these methods to produce a novel
multiscale encoding scheme that is an image-based bag-of-words representation. In
chapter 6, we provide a comparison of the performance of SIFT, HOG and Shape Context
against the novel encoding schemes.



Chapter 3

Datasets

3.1 Introduction

This chapter introduces the datasets that were used for our investigation into encoding
schemes. The construction of each set of images is explained along with a description of
our evaluation methodology and the computation of a benchmark level of performance.

3.2 MNIST

In order to explore potential invariant encoding schemes, we needed datasets where dif-
ferent aspects of variation can be controlled so that performance can be assessed against
the degree of variation. We also required a certain degree of intra-class variation to ensure
that the ability of each encoding scheme to categorise was tested at each stage.

To meet these requirements we started with the MNIST dataset [131], which consists
of handwritten digits. The small size of the images, at 28 x 28 pixels, and the relatively
low number of classes made them ideal for exploring different schemes due to the
relatively short computation time of evaluation.

Each image in the MNIST set contains exactly one digit, which is centred, scaled and
aligned to a common orientation. The background in each image is blank and there is no
noise or clutter present in any of the images.

In order to create an initial benchmark for the performance of an encoding scheme,
we first established a classifier to be used in the testing regime. As the emphasis of
the investigation was on representation, we were keen to ensure that the classifier used
was as simple as possible whilst still offering reasonable performance. For this reason,
we decided to use a Nearest Neighbour (NN) classifier. Whilst it was understood that
other classifiers, such as Support Vector Machines, may have offered superior levels of
absolute performance it was considered unnecessary to use them for this study of relative
performance.
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The basic evaluation procedure is described in Experiment 3.1 on page 70.

3.3 Shifted MNIST

The first aspect of variation to be considered was translation of the object. In order to
create a dataset which could test the robustness of an encoding scheme against translation
we took the same MNIST dataset set as before and randomly shifted each digit within a
certain range. This was referred to as the Shifted MNIST dataset. In order to create a
benchmark performance, images were classified using the normalised intensity encoding
and an NN classifier as before. Details are given in Experiment 3.2 on page 71.

3.4 Rotated MNIST

Next, we constructed a set of rotated digits in order to explore rotational invariance. As
real objects may often be presented close to a typical orientation, we were interested in
exploring how sensitive encoding schemes were to different levels of variation in ori-
entation. Therefore, as with the shifted MNIST images, we constructed a dataset that
possessed different ranges of rotation, referred to as the Rotated MNIST set of images.
Examples are shown in Figure 3.1.

Figure 3.1: Examples from the rotated MNIST dataset.
The set contains figures from MNIST that have been rotated across the full range.

Performance with the normalised intensity encoding and NN classifier was assessed,
as with the shifted MNIST dataset. Details are given in Experiment 3.3 on page 72.

3.5 Scaled MNIST

As with the shifted and rotated sets, a set of scaled MNIST digits were created. The
details are given in Experiment 3.4 on page 73. Example images are shown in Figure 3.2.

3.6 Cluttered MNIST

The final aspect of variation to be investigated was clutter. In order to create a realistic
model of clutter we used blocks of MNIST digits which had not been used in previous
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Figure 3.2: Examples from the scaled MNIST dataset.
The set contains figures from MNIST that have been padded with a white background

and then resized.

experiments, each of was large enough to be similar to parts of digits but small enough to
ensure no block contained a whole digit. The blocks were then placed at random positions
around whole digits to create the set referred to as cluttered MNIST. Examples are shown
in Figure 3.3.

Figure 3.3: Examples from the cluttered MNIST dataset.
The border is made up of small blocks randomly selected from other digits to create

clutter that contains similar local features to the digits.

3.7 Summary and conclusions

In this chapter we have presented several datasets, created from the MNIST set of hand-
written digits, that each display a different aspect of variation. For each dataset a bench-
mark performance has been established using a Nearest Neighbour classifier and the in-
tensity vales of the images. The shifted, rotated and scaled sets shall be used in chapters
4 and 5 to assess the invariance properties of the encoding schemes presented in these
chapters. The cluttered set shall be used in chapter 10, where we investigate the effect of
clutter on the encoding schemes.
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Experiment 3.1 MNIST with Nearest Neighbour

Methods
First, a subset of the MNIST dataset was created by randomly drawing 150 images per
class. This was to be used for selecting multiple training and testing sets for evaluation
purposes and is referred to as the main set. We then drew another 150 images per class
from the remaining MNIST set to use for parameter tuning. This second set was referred
to as the tuning set.

Each image was then normalised so that the total intensity across the image was 1. A
group of images from each class was then randomly selected from the main set of images
as a training set, and the rest were set aside as a test set. Training images were then used
to build a Nearest Neighbour classifier using the Euclidean distance. Subsequent training
and test sets were randomly drawn from the main set with a total of 50 runs. The mean
and standard deviation over all 50 runs was then reported as the performance.

Results
The results are plotted in graph (a), where the bars indicate the standard deviation of the
performance scores for that particular size of training set.
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(a) The performance of intensity matching using a Nearest Neighbour classifier
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Experiment 3.2 Shifted MNIST with Nearest Neighbour

Methods
The same subset of 150 images per class from Experiment 3.1 was used from which to
draw training and test sets. First each image was normalised as before. Then each image
was randomly shifted, within a set range, in both the horizontal and vertical directions. A
training set was then randomly selected as before, and the results were calculated over 50
runs.

Results
The performance for different sizes of training set are given in Figure (a), with curves for
different ranges of shifting up to 5 pixels. The curve with 0 pixel shift is equivalent to the
curve shown in Experiment 3.1. In addition, two curves are given in Figure (b) that show
how performance falls as the maximum pixel shift increases. These curves are for 10 and
25 training images per class.
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(a) The performance of intensity matching using a Nearest Neighbour classifier for different
sizes of training set and different ranges of shifting
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(b) The performance of intensity matching using a Nearest Neighbour classifier for differ-
ent ranges of shifting
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Experiment 3.3 Rotated MNIST with Nearest Neighbour

Methods
Using the same 150 images per class set as before, all images were rotated by a random
angle within a given range. This was done using the built in image rotation function
in Mathematica, which used a Gaussian function when resampling the rotated image.
Images were then cropped to ensure that they were 28 x 28 pixels, and then normalised
as before. The same process was used as in Experiment 3.2 to measure the performance
for different sizes of training sets and different ranges of variation.

Results
The performance for different size of training sets is given in Figure (a), with each curve
showing a different range of rotation angle. The performance against rotation angle range
is shown in Figure (b) for training set sizes of 10 and 25 images per class.
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(a) The performance of intensity matching using a Nearest Neighbour classifier for different
sizes of training set and different ranges of rotation
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(b) The performance of intensity matching using a Nearest Neighbour classifier for differ-
ent ranges of rotation
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Experiment 3.4 Scaled MNIST with Nearest Neighbour

Methods
The same subset of images was used as in previous experiments. Each image was first
padded with a blank border of a width randomly chosen within a certain range. Images
were then resized to 28 x 28 pixels and normalised as before.
The same testing regime was then used to produce graphs for the performance of a simple
NN classifier for different sizes of training sets and different ranges of variation.

Results
The performance for different sizes of training set is shown in Figure (a). Each curve
indicates the performance for a particular range of border added, with the maximum value
being 56 pixels. Performance against maximum border size is shown for training set sizes
of 10 and 25 images per class in Figure (b).
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(a) The performance of intensity matching using a Nearest Neighbour classifier for different
sizes of training set and different ranges of resizing
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(b) The performance of intensity matching using a Nearest Neighbour classifier for differ-
ent ranges of resizing
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Experiment 3.5 Cluttered MNIST with Nearest Neighbour

Methods
The same subset of 150 images per class were used as before, referred to as the evaluation
set for the purposes of this experiment. All images in the evaluation set were first
normalised. A further subset of MNIST images was then randomly selected, with equal
numbers of images per class, and divided into blocks of 7x7 pixels. For each image in the
evaluation set randomly selected blocks were added at random positions around the digit
to construct the clutter border. A region of 22 x 22 pixels at the centre of each image in
the evaluation set was left untouched to ensure the digit was still present. Images were
then cropped so that the clutter border fell within a certain range.

The performance of the NN classifier with the images was then investigated for different
sizes of training set and clutter border.

Results
The performance of the NN classifier for different sizes of training set is shown in Figure
(a). Each curve represents a different size of clutter border up to a maximum of 14 pixels,
which approximates to a clutter area to object area ratio of 3:1.

Graphs are also given for the performance against clutter border size for training sets of
10 and 25 images per class, as shown in (b).
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(a) The performance of intensity matching using a Nearest Neighbour classifier for different
sizes of training set and different ranges of clutter

25 Tr Images

10 Tr Images

5 10 15
Clutter border HpixelsL

20

40

60

80

100
Score %

(b) The performance of intensity matching using a Nearest Neighbour classifier for differ-
ent ranges of clutter



Chapter 4

Histograms of Features

At the heart of several of the schemes discussed in Chapter 2 are histograms of basic
features. In descriptors such as SIFT and HOG these histograms are calculated within
subregions and then combined within a template to form the descriptor. To begin our
investigation we wanted to see how histograms of basic features performed, both when
using the whole image and when calculating local histograms of subregions. Whilst this
has been previously well investigated for oriented gradients, we wanted to understand
how simple histogram schemes performed when using BIFs and oBIFs.

This chapter begins with a brief description of the use of histogram schemes. We
then investigate how simple histograms schemes perform when using each of three basic
feature types, oriented gradients, BIFs and oBIFs. Finally, we look at the effect of spatial
binning for each of the three feature types, where local histograms are calculated in a
similar way to SIFT and HOG.

4.1 Introduction

Histogram representations involve the loss of spatial information. In its simplest form an
image can be converted into a histogram by taking the intensity values across the entire
image and discarding all spatial information. In order to allow simple comparison, the
intensity values are then placed into bins by counting the number of occurrences within
certain ranges. Thus, we can view a histogram as an approximation of a distribution of a
set of features as the contents of an image.

In general, histogram representations are defined by two characteristics. First, the
degree to which spatial information is discarded. This can lead to a global histogram,
where all spatial information is discarded, or local histograms (or the scale space equiva-
lent locally orderless image [124, 244]), where coarse spatial information is preserved.
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The second defining characteristic is the set of features to be counted. The choice of
features can depend on the application but common sets include colour [225, 96, 40, 95],
orientation [79, 143, 269, 151, 271] and local binary patterns (LBP)[170].

As histogram representations involve the loss of spatial information,
they have been widely used in texture applications in the form of global
histograms[242, 170, 139, 245, 196, 195]. In other applications, such as object
recognition, local histograms tend to be used [258, 198, 199, 13, 211, 212].

4.2 Oriented gradient histograms

We began the investigation by looking at histograms of oriented gradients. These form
the basis of many schemes that have been used for object recognition, such as HOG and
SIFT, and therefore we wanted to use such a scheme to form a base level of performance.
The simplest of oriented gradient schemes is a single histogram at a single scale and this
was tried first. The details are described in Experiment 4.1 on page 81.

The results show that the performance is significantly lower than when using the
intensity levels for the MNIST dataset, meaning that, in this simple form, a histogram of
oriented gradients is unlikely to be of much use in applications such as this. However,
despite the low performance, the results do also indicate that the encoding is highly
invariant to shifting, as would be expected of a global histogram representation. In ad-
dition, the performance appears stable in relation to small changes in the parameter values.

4.3 Histograms of Basic Image Features

Next, we looked at Basic Image Features (BIFs). As each BIF contained information
about the local symmetry type but discarded orientation information we were interested
to see how the performance compared to oriented gradients. The experiment details are
given in Experiment 4.2 on page 82.

The results show that the performance of BIFs is considerably worse than with
oriented gradients. If we look at the encoded images, as shown in Figure 4.1, we see
the most prominent aspect is the encoding of the line segments (shown by the blue and
grey BIFs.) Counting the occurrence of these types is likely to be similar to estimating
the length of line segment within the image, which in itself is unlikely to be a useful
descriptor for digit recognition.
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Figure 4.1: Optimal parameter values for BIFs
The BIFs at the optimal parameter values (top) and at the initial parameter values. At the
optimal parameter values the yellow BIF type tends to appear in between line segments,
thus capturing the interaction between segments. At other parameter values, the yellow

BIF type merely traces the outline of the digit meaning that it is unlikely to contain
information not captured by the blue BIF type.

The optimal value for the threshold was far higher than with oriented gradients,
meaning that only locations with strong symmetry are not encoded as flat. If we look
at the images encoded at the optimal parameter values we can see that the yellow BIF
type tends to appear in between line segments. It may be the case that, at these param-
eter values, the BIF encoding is best able to capture the interaction between line segments.

4.4 Histograms of Oriented Basic Image Features

Whilst the performance of BIFs was poor compared to oriented gradients, the informa-
tion encoded by the two schemes was very different. We were interested to see how
combining the two sources of information, in the form of oriented Basic Image Features
(oBIFs) would perform. To do this, we repeated the previous experiment using oBIFs, as
explained in Experiment 4.3 on page 83.

By combining orientation and symmetry type, in the form of oBIFs, we see an
improved performance over the oriented gradient histogram. However, the performance
was still lower than that which could be achieved using the intensity values.
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4.5 Spatial Binning

In order to improve the performance of the histogram schemes we decided to first look
at the effect of spatial binning, where basic features are counted in spatial regions of the
image. This is used both in HOG and in SIFT and, as discussed in Chapter 2, but it had
not been tested with BIFs and oBIFs before.

We began by looking at spatial binning using oriented gradients. This was very
similar to the HOG scheme, except that we used orientations that had been thresholded
(so that each location was either classed as having an orientation or being flat) whereas
the HOG scheme uses the weights of gradient. In addition, the standard HOG scheme
uses unsigned gradients, whereas our scheme used signed gradients. However, with a
dataset such as MNIST, where all the digits are dark lines on light backgrounds, the effect
of this is likely to be minimal. The experimental details are given in 4.4.

The performance with spatial binning is considerably better than with a simple
histogram of oriented gradients. This result is not unexpected, as the success of both
HOG and SIFT have demonstrated its usefulness in other applications. We might also
expect the digits in the MNIST dataset, which have been centred, scaled and oriented, to
fit well to a spatial template.

We then applied the same process to BIFs, dividing the encoded image into local
histograms of a certain size. The details are given in Experiment 4.5 on page 85.

As with oriented gradients, we observed a big increase in performance with the
introduction of spatial binning. The tuning graph shows that the performance dropped
off more rapidly than with oriented gradients as the box size increased.

It is interesting to note that the tuned threshold parameter was 0, meaning that no
location in the image is classed as flat. As can be seen in the lower half of Figure 4.1,
BIFs with a lower threshold value tend to encode images with a BIF type that correlates
with distance from the line segment, with the blue BIF type falling on the line, then the
grey BIF and then the yellow BIF. This may mean that, with spatial binning, BIFs are
acting simply as a blurred template matching system which would mean we would expect
slightly better performance than when using the intensity values with MNIST.

Finally, we looked at applying spatial binning to oBIFs, in a similar way as the
previous two sections. The details are provided in Experiment 4.6.

Whereas with the simple histogram scheme, the use of local symmetry information
in addition to local orientation information improved performance, when spatial binning
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is used the same effect is not observed. This is a somewhat surprising result, given the
relatively large increases in performance observed when spatial binning is used with both
oriented gradients and BIFs.

However, as much as the MNIST digits are centred, scaled and aligned, the use of a
template (in the form of the grid of blocks) will place an upper limit on the performance.
This upper limit comes from the degree to which the digits comply with the template.
It is possible that this upper limit is reached when using spatially binned oriented
gradients and that the addition of local symmetry information can therefore not increase
performance. In this case we might also expect the use of an additional source of
information to reduce performance as a tighter constraint is being used, in that both local
orientation and local symmetry have to match the template.

4.6 Comparison of Results

The results of the different schemes tested in this chapter, as summarized in Table 4.1
with computational performance given in Table 4.2, have shown the relative performance
of the three sets of features. When a simple histogram scheme is used, the use of local
orientation and local symmetry produce the best results. However, the performance of
this scheme is still relatively poor and in order to gain an increase in performance we
have to introduce spatial binning. When this is done, performance using all three feature
sets improves but the highest level of performance is achieved when using oriented
gradients without local symmetry information.

Table 4.1: Comparison of performance (in % correct) for the histogram schemes

Scheme
Training images per class

2 10 100
Oriented gradients (OGs) 37.2±3.6% 56.0 ±2.2% 71.0 ±1.4%
BIFs 27.2±3.0% 33.8 ±1.5% 39.9 ±1.1%
oBIFs 41.5±2.9% 62.3 ±2.2% 82.1 ±1.5%
OGs with spatial binning 62.3±4.9% 83.4 ±1.5% 93.4 ±0.9%
BIFs with spatial binning 50.7±4.2% 71.2 ±1.9% 86.3 ±1.3%
oBIFs with spatial binning 60.0±4.3% 80.9 ±1.6% 92.5 ±1.0%

In order to further test the performance of the histograms, we also tested each on an
additional dataset. This set, chars74k, consists of letters and digits and is discussed in
greater detail in Chapter 6. The performance for each of the schemes is given in Table
4.3. As the number of images per class in this dataset is less than 100, the performance
figures are only given for 2 and 10 training images per class.
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Table 4.2: The computational performance for each of the histogram schemes

The encoding time is given for each image, along with the classification time for a Nearest
Neighbour classifier using 10 images per class. The computation times given are based
upon an implementation of the system in Mathematica 7.

Scheme Size
Computation time (ms)
Encoding Classifier

Oriented gradients (OGs) 24 12 0.60
BIFs 7 10 0.52
oBIFs 43 13 1.3
OGs with spatial binning 4056 130 7.7
BIFs with spatial binning 1183 450 2.3
oBIFs with spatial binning 1548 170 2.2

Table 4.3: Comparison of performance (in % correct) for the histogram schemes on the
additional chars74k dataset.

Scheme
Training images per class

2 10
Oriented gradients (OGs) 20.0±2.2% 31.1±1.3%
BIFs 12.7±1.7% 19.1±1.5%
oBIFs 25.6±2.5% 41.2±1.5%
OGs with spatial binning 37.2±3.7% 52.7±1.5%
BIFs with spatial binning 31.5±2.9% 45.2±1.2%
oBIFs with spatial binning 37.7±3.2% 52.3±1.4%

4.7 Summary and conclusions

In this chapter we have described the histogram schemes for three different feature
sets, oriented gradients (OGs), Basic Image Features (BIFs) and oriented Basic Image
Features (oBIFs). For each, we have established the recognition performance using the
datasets from Chapter 3, and confirmed that each scheme is invariant to translation. Out
of three different feature sets, oBIFs have achieved the highest recognition rate.

We have then looked at the effect of spatial binning for each of the three feature sets.
The results have shown that, for each of the three different feature sets, performance has
improved considerably with spatial binning. However, in these experiments oriented
gradients marginally outperformed oBIFs.

In the next chapter we look to demonstrate similar levels of performance using his-
tograms of features, without spatial binning, by using multsicale features referred to as
column features.
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Experiment 4.1 Oriented gradient histograms with the MNIST datasets

Methods
We used the same subsets of the MNIST dataset described in Experiment 3.1, which
provided 150 images of each class for the purposes of parameter tuning and a further
150 images per class from which to draw multiple training and test sets for evaluation
purposes. Each image was encoded in oriented gradients using a set of 1st order
Derivative of Gaussian (DtG) filters. These were used in order to ensure a fair com-
parison against other features considered in this work, namely BIFs and oBIFS, which
both used DtG filters as a first step. For consistency we also used a threshold rather
than a continuous weight variable, so that if, at a certain location, the weight of the
oriented gradient was above the threshold is was assigned that orientation and if it was
below, the location was assigned as being flat as in the BIF scheme explained in Chapter 2.

There were three parameters to be tuned. These were the orientation quantisation, which
determined the number of bins in the orientated gradient histogram, the scale parameter,
which determined the scale at which gradients were calculated, and the threshold
parameter described above. These parameters were tuned using the tuning set of images,
with a single sweep for each parameter. Tuning was done for the orientation quantisation
first, then the scale parameter and then finally the threshold parameter.

Using the tuned parameters, images were then encoded into oriented gradient histograms
by counting the number of occurrences of each orientation in the image. For a given
training set size, a set of images was randomly selected. These were then used to train
a Nearest Neighbour (NN) classifier using the Bhattacharyya distance [117]. This was
then repeated for 50 different randomly sampled training sets, with the mean score being
given as the performance. The experiment was then repeated for the shifted MNIST set.

Results
The performance on the MNIST set is shown in graph (a), where the performance was
37.2±3.6%, 56.0 ±2.2% and 71.0 ±1.4% for 2, 10 and 100 training images per class
respectively. The results for the shifted MNIST set are given in graph (b). For each graph
the benchmark performance obtained from Chapter 3 is shown as a dotted line. In addition
the tuning curves for the three parameters are given where the two curves are for 10 and
25 tuning images per class.
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Experiment 4.2 Histograms of BIFs with the MNIST datasets

Methods
The same subsets of the MNIST set were used as in Experiment 3.1. Images were en-
coded into BIFs which, as described in Chapter 2, use a bank of DtG filters to assign
each location within an image into one of seven types based upon local symmetry. The
algorithm takes two parameters, the scale, which determines the size of filters, and the
threshold, which determines the likelihood of any location being classified as flat.
In order to tune the parameters we followed the same procedure as in the previous
experiment, where performance was examined for a sweep through each parameter in
turn. For this experiment the scale was tuned first.

Histograms of BIFs were then calculated by counting the number of occurrences of each
BIF type, then normalising so that the final encoding sums to one. Classification was
performed using a Nearest Neighbour classifier with the Bhattacharyya distance.

Results
The results are shown below with the graph on the left giving the performance for dif-
ferent training set sizes, where the performance was 27.2±3.0%, 33.8 ±1.5% and 39.9
±1.1% for 2, 10 and 100 training images per class respectively, and the graph on the right
demonstrating the shift invariance of the encoding. The parameter tuning gave an optimal
scale of 1.75 and and an optimal threshold of 0.2. The tuning curves are shown below.
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Experiment 4.3 Histograms of oBIFs with the MNIST datasets

Methods
Using the same sets as before, images were encoded into oriented Basic Image Features,
which assigns both a local symmetry type and a local orientation to each location. This
takes an additional parameter to the BIF system, the orientation quantisation, which
determines the number of possible orientations for the four symmetry types that allow
orientation. (Locations classed as dark rotational, light rotational and flat are not
assigned an orientation.) Parameters were tuned using a single sweep for each, in the
order orientation quantisation followed by scale then the threshold.

Histograms were calculated as before, by counting the occurrences of each oBIF type and
then normalising. Classification was done using a Nearest Neighbour classifier and the
Bhattachrarryya distance.

Results
The performance for different sizes of training set is shown in graph (a), where the perfor-
mance was 41.5±2.9%, 62.3 ±2.2% and 82.1 ±1.5% for 2, 10 and 100 training images
per class respectively. The performance using the shifted MNIST set is shown in graph
(b). The tuned orientation quantisation was 8 for oBIFs, which meant there was a set of
43 oBIF features. The tuned scale was 2 and the threshold value was 0.01. The tuning
graphs are shown below.
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Experiment 4.4 Oriented gradient histograms with spatial binning

Methods
Using the MNIST and shifted MNIST subsets, images were encoded into oriented
gradients as described in Experiment 4.1. Each encoded image was then divided into
blocks of a given size. For each block, a histogram was calculated by counting the
occurrences of each possible orientation and then normalising.

As the blocks were overlapping there were two additional parameters to tune, the block
size and the overlap between blocks. However, for simplicity we set the overlap at
half the block size and used this as single parameter to tune. This, and the orientation
quantisation, scale and threshold parameters, were tuned with a single parameter sweep
beginning with the block size.

Encoded images were classified using a Nearest Neighbour classifier and the Bhat-
tacharyya distance.

Results
The performance for different sizes of training set is shown in the graph on the left, where
the performance was 62.3±4.9%, 83.4±1.5% and 93.4±0.9% for 2, 10 and 100 training
images per class respectively, with the performance with the shifted MNIST set being
shown on the right. The tuning graph for the block size is also given below.
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Experiment 4.5 BIF histograms with spatial binning

Methods
Using the same MNIST subsets, images were encoded into BIFs. Each encoded image
was then divided up into blocks of a given size. As in Experiment 4.4, we set the overlap
between blocks equal to half the block size, meaning that there was a single parameter
associated with the blocks.

Parameters were tuned using a single sweep for each, beginning with the block size.
Images were then classified using a Nearest Neighbour classifier and the Bhattacharyya
distance.

Results
The performance for different sizes of training set is given in graph (a), where the scores
were 50.7±4.2%, 71.2 ±1.9% and 86.3 ±1.3% for 2, 10 and 100 training images per
class respectively. The performance with the shifted MNIST set is given in graph (b).
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Experiment 4.6 oBIF histograms with spatial binning

Methods
Using the same MNIST subsets, images were encoded into oBIFs. Encoded images were
then divided into blocks. As in Experiment 4.4, we set the overlap between blocks equal
to half the block size, meaning that there was a single parameter associated with the
blocks.

Parameters were tuned using a single sweep for each, beginning with the block size.
Images were then classified using a Nearest Neighbour classifier and the Bhattacharyya
distance.

Results
The performance for different training is shown in graph (a), where the scores were
60.0±4.3%, 80.9 ±1.6% and 92.5 ±1.0% for 2, 10 and 100 training images per class
respectively, with the performance against the shifted MNIST dataset in graph (b). The
tuning graph for the block size is shown in graph (c).
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Chapter 5

Column Features

The work in the previous chapter demonstrated that histograms of features can perform
well when used with spatial binning to create a template of histograms. This works well
with datasets, such as MNIST, where the objects within each image are well aligned,
scaled and positioned. In addition the spatial arrangement of local features has to be
consistent in order to correctly match individual histograms within the template.

However, a key aim of the investigation is to move away from the grid structure that
is involved with templates of histograms. We therefore turned our attention away from
schemes that involved spatial binning and concentrated on schemes that used a single
histogram.

5.1 Introduction

In order to achieve good performance, whilst using a single histogram, we needed to
develop a different set of features to be used with the histogram. Our approach to this was
based upon a simple observation, first described in [164], that the oriented gradient, BIF
and oBIF type at certain locations can change over scale, as shown in Figure 5.1.

We wondered whether, by considering the occurrence of these different features along
the dimension of scale, this would capture useful information about the structure of the
image. Our hope was that patches of a certain feature type at the coarser scale would
take the place of the regions of a grid, thus removing the need to place a predetermined
structure upon the descriptor as in other schemes.

Using features at different scales is not a new idea. Mutliscale versions of both
SIFT and HOG have been proposed [19]. In the HMAX model, features are calculated
at multiple scales and then a MAX function is applied to select the greatest re-
sponse over scale. Other schemes have used gradients at multiple scales [135], multiscale
Gabor features [103] and texture schemes have used features at multiple scales [270, 245].

87
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Figure 5.1: Multiscale images along with BIFs, oriented gradients and oBIFs.
At certain locations within the image, the BIF, oBIF or oriented gradient feature type

changes over scale.

Our approach differed from previous schemes in that we were interested in the
combination of features at individual locations within the image. We thought this was
best captured by considering concatenations of features across scale, which we referred
to as column features.

The simplest form of column feature consisted of a pair of basic features, either
oriented gradients, BIFs or oBIFs, separated by a scale ratio, r. Such features could be
used within the histogram framework, as by using pairs of features the scheme would not
reach the point of combinatorial explosion. However, we would end up with a histogram
that contained the square of the number of bins as in the basic feature set. For example,
when using oBIF columns, the original set of 23 features would turn into a set of 232

oBIF column features, as would the corresponding histogram. This idea is illustrated for
oBIFs in Figure 5.2.

In order to evaluate this idea we applied the column idea to each of the three feature
types that were used in Chapter 4.

5.2 Oriented Gradient Columns

For oriented gradient columns, the first step was the same as in the previous chapter,
where oriented gradients are calculated using the output of Derivative of Gaussian filters.
For the purposes of comparison with BIFs and oBIFs we kept the threshold, beneath
which locations would be classed as flat and above which locations would be classed as
having an orientation with unity weight.
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Figure 5.2: The oBIF Column encoding scheme.
An image is first encoded into oBIFs at two scales. The oBIF column features are then
calculated by concatenating features at each location. Finally, oBIF column types are

counted and normalised to give the final histogram.

As the scheme involved calculating oriented gradient columns we had one more
tunable parameter than with the oriented gradient histograms. We characterised this by
using a base scale, which was the finer of the two scales at which oriented gradients were
calculated, and the scale ratio, which was the ratio between the base scale and the coarser
scale. The oriented gradient column process is given in Algorithm 5.1.

We tested the scheme with the datasets as used in the previous chapter. The details
are given in Experiment 5.1 on page 100.

The results show that the oriented gradient columns perform much better than ori-
ented gradients at a single scale. Even when using only 4 orientations (giving a column
histogram of 16 bins), the performance of the column scheme greatly exceeds that with
16 oriented gradients at a single scale. Importantly, the tuning curve for the scale ratio,
which is the new parameter in the column scheme, appears to the stable around the
optimal value. When the scheme is extended to three scales, there is a very marginal
improvement. However as this increases the size of the histogram to (n+ 1)3, where n is
the orientation quantisation, we considered the two scale scheme to be preferable.
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Algorithm 5.1 The Oriented Gradient Column scheme
1. For a given σBASE and scale ratio, r, measure filter responses sij = σi+jcij of 1st

order derivative-of-Gaussian filters at scales σBASE and rσBASE , and from these
calculate the scale normalised filter responses sij = σi+jcij

2. For each location at each scale if 2
√
s2
10 + s2

01 > ε calculate orientation as:

Round(
arctan (

s01
s10

)

2π
) s10 > 0

Round(
arctan (

s01
s10

)+π

2π
) s01 ≥ 0, s10 < 0

Round(
arctan (

s01
s10

)−π
2π

) s01 < 0, s10 < 0

where n is the orientation quantisation, otherwise classify as flat

3. Count pairs of feature combinations across all locations to give histogram of size
(n+ 1)2, where n is the orientation quantisation

4. Normalise histogram by dividing by total number of locations

Whilst the results from Experiment 5.1 were promising, we wanted to ensure that the
column features were contributing to this, rather than just the use of features at two scales
across the image. To test this we used a simple multiscale scheme, where a histogram of
oriented gradients was computed at two scales and then the histograms concatenated to
form the encoding. Thus, in this scheme, there was no link between features at different
scales at each location. The details are given in Experiment 5.2 on page 101.

From the results of this experiment, it was clear that just combining histograms at
different scales did not have the same effect as the using the column features.

5.3 BIF Columns

We then applied the same process for BIFs, combining them into features referred to as
BIF columns. The experimental details are given in Experiment 5.3 on page 102.

Whilst BIF columns showed an improvement over the simple BIF histograms, the
performance was still well below that of other schemes, including the intensity values.
However, it was interesting to note that BIF columns performed best whilst using 3
scales. Thus we have the BIF column algorithm, as given in Algorithm 5.2.
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Algorithm 5.2 The BIF Column scheme
1. For a given σBASE and scale ratio, r, calculate BIFs as described in Algorithm 2.1

at scales σBASE , rσBASE and r2σBASE .

2. Count pairs of BIF combinations across all locations to give a histogram of 343 bins

3. Normalise histogram by dividing by total number of locations

5.4 oBIF Columns

Finally we tried the column scheme with oBIFs. The details are given in Experiment 5.4
on page 103.

Overall the performance of oBIF columns was very similar to oriented gradient
columns, with a large increase in performance over a single scale oBIF histogram. The
encoding is still strongly invariant to shifting, as shown in graph (b). The scale ratio
parameter also appears to be stable around the optimal value. As with the oriented
gradient columns, the difference in performance between the two and three scale schemes
was very small so, given the comparative size of the encodings, we concluded that the
two scheme was preferable.

Whilst it was tempting to conclude that, given the similar performance between
oriented gradients and oBIFS, that local symmetry information does not contribute to
performance, there was an interesting difference. As can be seen from the tuning curves
for the orientation quantisation, the performance for oBIF columns with a low orientation
quantisation is substantially higher than for oriented gradient columns. This implies that,
under certain circumstances, the local symmetry type information does aid performance.
When compared to the performance for BIF columns, where no orientation is used, there
appeared to be a large jump in performance when orientation is first introduced. This is
demonstrated by the change in performance from BIF columns to oBIF columns with an
orientation quantisation of just 2, which changes from 55% to almost 75% when using
10 training images per class.

Algorithm 5.3 The oBIF Column scheme
1. For a given σBASE and scale ratio, r, calculate oBIFs as described in Algorithm 2.2

using orientation quantisation n at each scale.

2. Count pairs of oBIF combinations across all locations to give a histogram of (5n+
3)2 bins, where n is the orientation quantisation

3. Normalise histogram by dividing by total number of locations
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5.5 Weighted schemes

Next we wanted to investigate whether it was better to use the thresholded system, where
each location in the image is assigned to a class only, or a weighted system, where each
location is assigned a class and a weight. The motivation for this was that many other
schemes, including HOG and SIFT use weights for the strength of gradient.

One advantage of moving to a system of weighted features is that we lose the need
for the threshold parameter as locations which would have previously been classed as
flat would have a low or zero weight. However, perhaps the main advantage would be
that the system effectively selects locations that contain high contrast features. If such
features are more relevant for establishing object identity, this is likely to be of benefit
in a recognition task. The same effect would occur to a certain extent when using a
threshold, but in a weighted system this effect is continuous.

A key consideration when using column features is in how to determine the weight
of the column, given the weights of its constituent features. In single scale schemes,
the use of a weight gives prominence to features with a higher contrast compared to
a thresholded system. When using two scales the choice was whether to combine the
individual weights through addition or through multiplication. If addition was used,
emphasis would be given to columns that have a higher contrast feature at either scale
whereas multiplication would give emphasis to columns with higher contrast features at
both scales. Given that the main argument for using weights over a threshold was that
it automatically selected stronger features, it seemed natural to see stronger columns
as being those with high contrast features at both scales. Therefore we combined the
weights through multiplication. This gave us the weighted oriented gradient column
scheme, as detailed in Algorithm 5.4.

A similar argument was used to develop the weighted oBIF column scheme. The
main difference here was that we had to use the strengths for each of the different BIF
types, rather than simply the gradient strength. The algorithm for weighted oBIF columns
is given in Algorithm5.5.

We tested both weighted schemes in the same way as the standard column schemes,
the details of which are given in Experiment 5.5 on page 104.

For both oriented gradients and oBIFs there is a slight performance improvement in
using the weighted schemes over a threshold. Combined with the removal of the need
for the threshold parameter, this would appear to make these schemes preferable over the
thresholded versions.
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Algorithm 5.4 The Weighted Oriented Gradient Column scheme
1. For a given σBASE and scale ratio, r, measure filter responses c1,0 and c0,1 of 1st

order derivative-of-Gaussian filters at scales σBASE and rσBASE , and from these
calculate the scale normalised filter responses sij = σi+jcij

2. Calculate quantised orientations, θ1 and θ2, at both scales according to:

Round(
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2π
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)+π

2π
) s01 ≥ 0, s10 < 0

Round(
arctan (

s01
s10

)−π
2π

) s01 < 0, s10 < 0

3. Compute weight, w1 and w2, according to
√
s2
10 + s2

01 at both scales

4. Combine across scales to form a column feature with orientation (θ1, θ2) and weight
w1w2

5. Sum weights across each possible orientation combination to create a histogram of
size n2, where n is the orientation quantisation

6. Normalise by dividing by sum of all column weights

Algorithm 5.5 The Weighted oBIF Column scheme
1. For a given σBASE and scale ratio, r, measure filter responses c1,0 and c0,1 of 1st

order derivative-of-Gaussian filters at scales σBASE and rσBASE , and from these
calculate the scale normalised filter responses sij = σi+jcij

2. Compute λ = s20 + s02, γ =
√

(s20 − s02)2 + 4s2
11 at each location and scale

3. Assign BIF type and weight, w, according to which Expression is largest, then
calculate orientation where appropriate:
Expression BIF type Quantisable orientation Orientations

2
√
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10 + s2

01 slope
arctan ( s01

s10
) s10 > 0

arctan ( s01
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) + π s01 ≥ 0, s10 < 0

arctan ( s01
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)− π s01 < 0, s10 < 0
2n

λ dark rotational No orientation 0
−λ light rotational No orientation 0
(γ + λ)/

√
2 dark line arctan (2s1,1/(s0,2 − s2,0 + γ) n

(γ − λ)/
√

2 light line arctan (2s1,1/(s0,2 − s2,0 + γ) n
γ saddle-like arctan (2s1,1/(s0,2 − s2,0 + γ) n

4. Combine across scales to form a column feature with class (oBIF1, oBIF2) and
weight w1w2

5. Sum weights across each possible oBIF combination to create a histogram of size
(5n+ 2)2, where n is the orientation quantisation

6. Normalise by dividing by sum of all column weights
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However, a key downside of using weights is that we may lose invariance to contrast
changes across an image. This is unlikely to pose a problem when using datasets such as
MNIST but may be issue when dealing with other sets. In schemes such as HOG, this is
overcome by normalising individual histograms within the grid, which showed a strong
improvement in performance in pedestrian detection [53]. Whilst normalisation is not
as straightforward within the column schemes, because we do not use local histograms,
it would still be possible to introduce local normalisation of weights without having to
introduce a grid into the final encoding.

5.6 Rotational Invariance

The next issue we considered was how to make the histograms invariant to rotations of
the image. As both BIFs and the column process were invariant to rotations, BIF columns
themselves should be automatically rotationally invariant. In order to test this we used
the rotated MNIST set. The details are given in Experiment 5.6 on page 105.

As oriented gradients and oBIFs contain local orientation information, they are not
naturally rotationally invariant. In order to produce a rotationally invariant version of
these schemes there were two main options. Either we could create rotationally invariant
features (as in schemes such as [200]), by encoding the relative orientation between
features at the two scales, or we could create a rotationally invariant histogram, by
rearranging the bins so that they are aligned to a dominant orientation, an approach more
similar to SIFT [144]. As our aim was to produce a rotationally invariant encoding of the
image, we concentrated on the rotationally invariant histogram schemes.

In order to rearrange the histogram we needed to determine a dominant orientation
for the image, as is done in schemes such as SIFT. For oriented gradients, we decided
to do this by considering only the orientations that occurred at the coarser scale and
selecting the most commonly occurring orientation as the dominant one.

Once the dominant orientation had been established we rearranged the bins of the
histogram according to the deviation of the dominant orientation from the vertical. This
ensure that the resulted encoding was equivalent to that which would be obtained for an
identical image aligned to the vertical. This process was referred to as histogram rotation.

The oriented gradient column scheme with histogram rotation was tested using the
MNIST and rotated MNIST sets, as described in Experiment 5.7 on page 106.

We used a similar process to create rotationally invariant oBIF Column histograms,
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which was tested in Experiment 5.8 on page 107.

Both rotationally invariant schemes showed a significant drop in performance
compared to the standard schemes. This was to be expected, as with objects such as
digits, the orientation of the object is useful in establishing object identity. For example,
certain ’1’s and ’7’s can be very similar in shape but the orientation of the digit indicates
which label it should have.

5.7 Scale Averaging

All the features considered so far had used two scale parameters, the base scale and the
scale ratio. Whilst the scale ratio had shown a consistent optimal value of 2 or 2.25
with stable performance around this value, the optimal base scale seemed to show more
variation. We were interested to see whether we could mitigate the effect of the choice of
base scale.

To do this we looked at calculating the column histograms at a range of scales and
then combining them by taking the mean histogram. We tested this scheme with oriented
gradient columns, as described in Experiment 5.9 on page 108, and oBIF columns in
Experiment 5.10 on page 109.

Finally we applied the scale averaging to weighted oriented gradient columns and
oriented gradient columns, described in Experiment 5.11 on page 109.

5.8 Discussion

5.8.1 Comparison of Results

The performance of the difference column schemes is summarised in Table 5.1 with
the computational performance being given in Table 5.2. Here we see that the oriented
gradient and oBIF column schemes both outperform BIF columns. With both of these
schemes, performance is marginally better when using weighted features, rather than
a threshold. A more significant increase in performance is achieved through scale
averaging.
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Table 5.1: Comparison of performance (in % correct) for the column schemes

Scheme
Training images per class

2 10 100
Oriented gradients columns(OGCs) 65.9±3.9% 85.0 ±1.5% 94.1 ±0.9%
Simple multiscale OG 44.2±3.8% 65.7 ±1.8% 82.6 ±1.4%
BIF columns (3 scale) 39.4±3.2% 55.3 ±2.6% 69.9 ±1.4%
oBIF columns 61.8±4.1% 83.1 ±1.5% 93.9 ±1.0%
Weighted OGCs 66.4±3.6% 86.0 ±1.3% 94.9 ±0.9%
Weighted oBIF columns 65.0±4.6% 86.2 ±1.5% 95.4 ±0.8%
OGCs with histogram rotation 38.6±3.2% 59.9 ±2.1% 81.4 ±1.6%
oBIF columns with histogram rotation 29.2±5.1% 52.1 ±1.9% 78.2 ±1.4%
OGCs with scale averaging 69.5±4.4% 87.5 ±1.4% 95.6 ±0.7%
oBIF columns with scale averaging 69.6±4.4% 88.0 ±1.2% 95.2 ±0.8%
Weighted OG columns with scale averaging 72.1±3.8% 89.9 ±1.0% 96.3 ±0.8%
Weighted oBIF columns with scale averaging 71.1±4.9% 90.4 ±1.0% 96.8 ±0.5%

Table 5.2: The computational performance for each of the column schemes

The encoding time is given for each image, along with the classification time for a Nearest
Neighbour classifier using 10 images per class. The times are based upon an implemen-
tation in Mathematica 7.

Scheme Size
Computation time (ms)
Encoding Classifier

Oriented gradients columns(OGCs) 64 0.068 1.6
Simple multiscale OG 16 0.025 0.49
BIF columns (3 scale) 49 0.011 1.1
oBIF columns 529 0.089 1.6
Weighted OGCs 64 0.59 1.1
Weighted oBIF columns 529 0.68 1.6
OGCs with histogram rotation 64 0.068 1.1
oBIF columns with histogram rotation 529 0.12 1.6
OGCs with scale averaging 64 0.52 1.1
oBIF columns with scale averaging 529 0.65 1.6
Weighted OG columns with scale averaging 64 4.5 1.1
Weighted oBIF columns with scale averaging 529 5.0 1.6
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5.8.2 Feature changes across scale

For each of the feature types there appears to be a large improvement in performance
when using columns rather than single scale features. The key difference must come
from the fact that the feature types changes over scale, otherwise the column histograms
would contain exactly the same information as the single scale histograms. However,
if the key information is in the changes of feature type across scale, it is unclear as the
best way to capture this information. As our feature types are quantised, the location of
the changes themselves will move in scale space according to where the boundaries are
placed. For example, if we look at Figure 5.3, we see that the majority of changes in the
example figure are of a single class change in orientation.

Figure 5.3: The changes in orientation across locations in scale space.
The majority of changes reflect a small change in local orientation. However, at certain
locations, along the outline of the digit, the local orientation change across scale is far
greater. This suggests that particular column features capture different elements of the
scale space structure of the digit.

Thus, if the exact location is dependent on the position of the quantisation boundaries,
perhaps the best way is to see whether a change occurs within a certain region. This is
exactly what happens with the column features, where the scale ratio specifies the range
in the scale dimension over which we will capture a change. This may explain why the
scale averaging has a positive effect, since it enable us to capture feature changes over a
wider portion of scale space, whilst still looking for changes of a certain size.

A further question that we have to consider is how much feature change occurs in
scale space. In Figure 5.4, we show the number of feature changes for each location in
the image for oriented gradients and oBIFs.
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Figure 5.4: The number of feature changes across scale for each location in the image.
Certain elements of the structure of the digit, such as junctions, appear to produce a greater
number of feature changes across scale than others.

Here we see that many locations have a single change. A single scale histogram
would not contain any information about these changes. A two scale column system
may capture a large amount of the information about locations with a single change.
However, the difference between a two and a three column system may largely depend
upon capturing locations with more than one feature change. As we can see in the
example images, whilst these are present, they are in a minority. This may mean that
the difference between a 2 scale and a 3 scale histogram is very small for the MNIST
dataset. If this were true it would explain the similar levels of performance for 2 and 3
scale systems for both oriented gradients and oBIFs.

Given the nature of the feature changes across scale it is interesting to try and relate
these to the underlying physical structure of the digit. With oriented gradients, we would
expect the orientation to point away from the dominant dark patch at the given scale. At
a very coarse scale, every digit will effectively appear as a dark blob, meaning that the
orientations should all point towards the border of the image. As we move to a finer scale,
patches of light appear in certain regions of the digit, such as in the middle of the round
sections of the ’8’. As these areas appear we would expect the local orientation to change
so that it points away from the light area. Thus we might expect the greatest number of
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orientation changes to occur in the middle of the areas of light at different scales.This
appears to be the case foe both the ’2’ and the ’8’ in Figure 5.4, with the greatest number
of local orientation changes found in between different regions of light.

With oBIFs, the situation appears to be similar as with oriented gradients although
the overall number of feature changes across scale is lower. In particular, the number
of feature changes appears to be far lower along line sections of the digit. This may be
because, along such sections of the digit, the assignment of orientation is unstable as it
changes rapidly across the middle of the line segment. This is not so much of an issue
with oBIFs, where line segments are assigned an orientation along the line as opposed
to in the direction of the gradient. Thus, along line segments, the oBIF classification
is typically stable across scale and we observe very few feature changes at these locations.

5.9 Summary and conclusions

In this chapter we have introduced the idea of column features, which concatenate lower
level features across scale. We have presented these using three different feature sets,
oriented gradient columns (OG Columns), Basic Image Feature Columns (BIF Columns)
and oriented Basic Image Feature Columns (oBIF Columns).

When tested using the datasets presented in Chapter 3, the oriented gradient column
and oBIF Column schemes have outperformed the histograms and spatial binning
schemes from Chapter 4. We have proposed that these schemes have an advantage
over the spatial binning schemes in that they require a single parameter, the scale ratio,
whereas the spatial binning schemes involve a grid structure.

We have also investigated the performance of the schemes under various aspects of
variation and proposed rotationally invariant and scale averaged versions of the column
schemes. In addition we have shown that a version of the scheme which uses weighted
gradient strengths outperforms the standard column schemes.

In the next three chapters we will describe the evaluation of the schemes presented
in this chapter, using problems in three different application areas. The first of these,
presented in Chapter 6, involves the recognition of characters taken from natural images.
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Experiment 5.1 Oriented gradient columns with the MNIST datasets

Methods
The same MNIST sets as in previous experiments were used. Images were encoded into
oriented gradients columns, as described in Algorithm 5.1. The algorithm takes four
parameters, which are the orientation quantisation, the base scale, the scale ratio and the
threshold. The parameter values were tuned using a single sweep through each parameter
using the tuning set of images, as described in previous experiments. Parameters were
tuned in the order stated above.

Using the tuned parameter values, the main set of images was encoded into oriented gra-
dient columns. For a given training set size, images were randomly selected from each
class for training purposes, with the rest being used as a test set. This process was repeated
fifty times, with the mean and standard deviation of scores being reported. Classification
was done using a Nearest neighbour classifier with the Bhattacharyya distance.The pro-
cess was then repeated for the shifted MNIST dataset. Finally the performance was tested
using column features with 3 scales per column.

Results
The performance for different sizes of training set is given in graph (a), where the score
was 65.9 ± 3.9%, 85.0 ± 1.5% and 94.1 ± 0.9% for 2, 10 and 100 training images
per class respectively. The performance on the shifted MNIST dataset being given in
graph (b). The tuning curves for each of the four parameters are given in graphs (c) to
(f). The performance for the 3 scale scheme, using 100 training images per class, is given
in graph (g), along with the score from Experiment 4.1. Dashed lines give benchmark
performance (from Chapter 3) and in the tuning graphs, curves are given for 10 images
per class (red) and 25 (blue).
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Experiment 5.2 Simple multiscale oriented gradient scheme

Methods
Using the same datasets as in Experiment 5.1 images were encoded into oriented
gradients at two scales. Histograms were then created at each scale by counting the
number of occurrences each orientation at each scale, and then normalised by dividing by
the total number of locations in the image. The two histograms were then concatenated
to create the final encoding for each image.

There were four parameters to tune, which were the orientation quantisation, the base
scale, the scale ratio and the threshold. Parameters were tuned with a single sweep for
each in the order listed. Classification was performed using a Nearest Neighbour classifier
with the Bhattacharyya distance. Training and test set selection was done as in Experiment
5.1.

Results
The performance for different sizes of training set is shown in graph (a), with the per-
formance for 2, 10 and 100 training images per class respectively being 44.2 ± 3.8%,
65.7 ± 1.8% and 82.6 ± 1.4%. Dashed lines give benchmark performance (from
Chapter 3).
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Experiment 5.3 BIF Columns with the MNIST datasets

Methods
Using the same datasets as in Experiment 5.1, images were encoded as BIF columns. For
the three parameters, the base scale, scale ratio and threshold, values were selected using
a single parameter sweep for each in the order listed. The tuned values were then used
to encode the main set of images. Multiple training and test sets were then drawn with
the mean and standard deviation being reported. This process was then repeated for the
shifted MNIST dataset. Finally, we repeated the process for 3 and 4 scale columns.

Results
The performance for different sizes of training set with the MNIST dataset is shown in
graph (a). The performance on the shifted MNIST set is given in graph (b) with the
three tuning graphs given in (c) - (e). The performance for the 3 and 4 scale schemes
are shown in graph (f), where the 3 column scheme was the best performing where the
scores for 2, 10 and 100 training images per class were 39.4 ± 3.2%, 55.3 ± 2.6% and
69.9 ± 1.4% respectively. Dashed lines give benchmark performance (from Chapter 3)
and in the tuning graphs, curves are given for 10 images per class (red) and 25 (blue).
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Experiment 5.4 oBIF Columns with the MNIST datasets

Methods
The same datasets were used as in Experiment 5.1. As in that experiment, there were four
parameters to tune which were the orientation quantisation, the base scale, the scale ratio
and the threshold. These parameters were tuned, using the tuning set of images, with a
single parameter sweep for each in the order listed. Images from the test set were then
encoded in oBIF columns, as detailed in Algorithm 5.3. Multiple training and test sets
were then randomly selected, as in Experiment 5.1, and the mean and standard devia-
tion are reported. Classification was done using a Nearest Neighbour classifier with the
Bhattacharyya distance. This process was then repeated for a 3 scale scheme.

Results
The results for different sizes of training set are given in graph (a), where the perfor-
mance for 2, 10 and 100 training images per class was 61.8 ± 4.1%, 83.1 ± 1.5% and
93.9 ± 1.0% respectively. The results for training sets of 10 and 25 images per class us-
ing the shifted MNIST are given in graph (b). The four parameter graphs are given in (c)
- (f). The comparison of performance, using 100 training images per class, for different
number of scales is given in graph (g). Dashed lines give benchmark performance (from
Chapter 3) and in the tuning graphs, curves are given for 10 images per class (red) and 25
(blue).
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Experiment 5.5 Weighted feature column histograms

Methods
Images were encoded into weighted oriented gradient histograms, as detailed in Algo-
rithm 5.4. There were three parameters to tune, which were the orientation quantisation,
the base scale and the scale ratio. These were tuned with a single parameter sweep in the
order given. We used the same experimental scheme as in Experiment 5.1 for classifica-
tion and sampling of multiple training and test sets. This process was then repeated for
Weighted oBIF columns, using Algorithm 5.5.

Results
The performance for different sizes of training set for weighted orient gradient columns
is given in graph (a), where the score for 2, 10 and 100 training images per class was
66.4 ± 3.6%, 86.0 ± 1.3% and 94.9 ± 0.9% respectively. The performance for
weighted oBIF columns is given in graph (b), where the scheme scored 86.2 ± 1.5%
and 95.4 ± 0.8% for training sizes of 10 and 100 training images per class. Dashed
lines give benchmark performance (from Chapter 3).
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Experiment 5.6 BIF Colums and the Rotated MNIST set

Methods
Using the rotated MNIST set, images were encoded into 3 scale BIF columns using the
tuned parameter values from Experiment 5.3. Classification, as before, was performed
using a Nearest Neighbour classifier with the Bhattacharyya distance. Training and test
selection was performed as in Experiment 5.1.

Results
The performance for training set sizes of 10 and 25 images per class is shown in graph
(a). Dashed lines give benchmark performance (from Chapter 3) and in the tuning graphs.
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Experiment 5.7 Rotationally invariant oriented gradient columns

Methods
Images were encoded into oriented gradient columns using the parameter values from
Experiment 5.1. Normalised histograms were then calculated and, for each image, the
dominant orientation was established by finding the orientation with the greatest number
of occurrences at the coarser scale. The bins of the histogram were then reordered, as
described previously.

Classification and sampling multiple training and test sets followed the same procedure
as previous experiments.

Results
The performance for different sizes of training set on the MNIST set is given in graph
(a), where the score for 2, 10 and 100 training images per class was 38.6 ± 3.2%,
59.9 ± 2.1% and 81.4 ± 1.6%. The performance on the rotated MNIST set is shown
in graph (b). Dashed lines give benchmark performance (from Chapter 3).
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Experiment 5.8 Rotationally invariant oBIF columns

Methods
Images were encoded into oBIF columns using the parameter values from Experiment
5.4. Normalised histograms were then calculated and the dominant orientation, for each
image, was established by finding the orientation of the grey oBIF with the greatest
number of occurrences at the coarser scale. Histograms were then reordered, as described
in the histogram rotation process previously.

Classification and training and test set selection was then done as in Experiment 5.1.

Results
The performance for different sizes of training set is given in graph (a), where the
score for 2, 10 and 100 training images per class was 29.2 ± 5.1%, 52.1 ± 1.9% and
78.2 ± 1.4% respectively. The performance on the rotated MNIST set, with 10 and 25
training images per class is shown in graph (b). Dashed lines give benchmark performance
(from Chapter 3).
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Chapter 5. Column Features 108

Experiment 5.9 Scale averaged oriented gradient columns

Methods
We used the MNIST set and the scaled MNIST set. Images were encoded into oriented
gradient columns for a range of base scales. Histograms were then calculated for each
base scale. Then, for each image, the scale averaged histogram was taken by calculating
the mean of the histograms, as described previously. This process involved the four
parameters from Experiment 5.1 and, in addition, the range of base scales to be used. For
the first four parameters, the same values as in Experiment 5.1 were used. In order to
determine the range of base scales, we first fixed the mid point of the range as the tuned
base scale from Experiment 5.1. We then tuned for both the range of scales, and the
number of scales within that range using the tuning set of images.

Classification and training and test set selection was performed as in previous experi-
ments.

Results
The performance for different sizes of training set on the MNIST set is given in graph (a)
where the performance for 2, 10 and 100 training images per class was 69.6 ± 4.4%,
87.5 ± 1.4% and 95.6 ± 0.7% respectively. The performance on the scaled MNIST
set is given in graph (b). Dashed lines give benchmark performance (from Chapter 3).
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Experiment 5.10 Scale averaged oBIF columns

Methods
The MNIST and scaled MNIST sets were used. Images were encoded into oBIF columns
at a range of base scales. Scale averaged histograms were then calculated, as given in 5.9.
The values for the orientation quantisation, scale ratio and threshold were taken from the
tuning process in 5.4. To determine the range of base scales, we first set the mid point of
the range as the tuned base scale from Experiment 5.4. We then tuned for the range of
scales, and then the number of scales calculated with that range, using a single paramter
sweep for each.

Classification and training and test set selection then proceeded as in Experiment 5.1.

Results
The performance for different sizes of training set is shown in graph (a), where the per-
formance for 2, 10 and 100 training images per class was 69.6 ± 4.4%, 88.0 ± 1.2%
and 95.2 ± 0.8% respectively. The performance on the scaled MNIST is given in graph
(b). Dashed lines give benchmark performance (from Chapter 3).
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Experiment 5.11 Scale averaged weighted columns

Methods
Using the parameters for the weighted schemes from Experiment 5.5 and the scale aver-
aged schemes from Experiments 5.9 and 5.10, images were encoded into weighted scale
averaged weighted orient gradient columns and oBIF columns. Classification and training
and test set selection then proceeded as in previous experiments.

Results
For scale averaged weighted oriented gradient columns the performance for 2, 10 and 100
training images per class was 72.1 ± 3.8%, 89.9 ± 1.0% and 96.3 ± 0.8% respec-
tively. For scale averaged weighted oBIF columns the performance for 2, 10 and 100
training images per class was 71.1 ± 4.9%, 90.4 ± 1.0% and 96.8 ± 0.5% respec-
tively. Dashed lines give benchmark performance (from Chapter 3).



Chapter 6

Natural Image Character Recognition

6.1 Introduction

The exploration of encoding schemes, presented in the previous two chapters, was
intended to be of use to a range of applications. As the methods were tested using
handwritten digits, it seemed natural to first test the resulting methods on current
problems involving character recognition.

For this purpose we selected the problem of character recognition in the context of
images and graphics, where current state of the art methods indicate there is still room for
improvement[57, 250]. Whilst the problem is of current interest, it is mature enough that
there were existing datasetes which had been tested on a variety of methods, enabling
comparison with our methods.

This chapter begins with a brief introduction to the problem of natural image
character recognition, and its relationship with the form of character recognition used in
our investigation. We then test the column features, along with single scale histograms,
on the two most commonly used datasets. Finally we use the column features to propose
extensions to the HOG scheme, which had previously shown leading performance on this
problem.

6.2 From MNIST to chars74k

The MNIST dataset, which we used in our investigation, contained images that each
contained a single handwritten digit. The images had been sufficiently preprocessed to
ensure that each digit was centred, scaled and oriented which made recognition feasible
with a very simple scheme such as matching intensity values with a Nearest Neighbour
classifier, as shown in Experiment 3.1 on page 70. When used with more advanced
learning techniques, very high levels of performance can be achieved, with scores over

110
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99% when using the full MNIST set of 60000 training images and 10000 test images
[185, 184].

Such high levels of performance would seem to indicate that, with these problems, we
do not need to convert the images into a different representation to perform recognition.
In a similar way, we might expect recognition of individual printed characters to be
possible using purely learning techniques.

However, with these problems we are dealing with characters that have been produced
with the intent to convey information in a specific format. In other cases we may have to
recognise text and characters that are presented in a less convenient format. In particular,
the rise in the number of devices with cameras has led to a great number of images in
which the text may provide rich sources of information for understanding the contents of
the scene. For example, cameras in motor vehicles may capture road signs or cameras
on mobile telephones may capture shop names or place identifiers. In these cases of
camera-based recognition we are facing a different set of challenges. [152, 133].

The first issue is detecting whether an image contains text and, if so, locating the
region of text so that it can be interpreted. Many methods exist for this step both in single
images [44, 224, 251, 43, 42, 176, 261] and in video [253]. Once text has been detected
it can be either recognised using context [255, 68] or individual characters can be put
through a recognition process. As we were using this problem to evaluate our system,
this individual character recognition was the aspect of the problem which we focused on.

Individual characters, once extracted from the images, still possess many differences
from images used in standard OCR problems.

• Range of fonts Printed text may contain a limited number of fonts. OCR methods
may attempt to learn models of each font so that characters can be recognised,
though font free OCR systems do exist [116]. When dealing with characters taken
from natural images, the range of fonts is almost unlimited with text created in a vast
number of different ways. Thus, it may not be possible to form any model of fonts
before recognition, and instead any recognition system must be able to generalise
from printed and handwritten styles in the training set to previously unseen styles.

• Perspective Text from documents is typically presented front on, meaning that the
relative dimensions of characters should demonstrate some consistency. However,
in images the viewpoint may not have been selected for convenient reading of the
text and thus characters may appear at a whole range of different perspectives.
Whilst there are methods to tackle this [45, 237, 175], we view this aspect of the
problem as a useful test of the column system in its ability to generalise.
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• Clutter As text found in images may not simply be there to convey information,
but also for aesthetic appeal, characters may well appear on background textures or
with additional elements intersecting them. Thus, we may have to deal with clutter
within the image, even if the detection and segmentation stages are accurate.

6.3 Work related to the specific problem

Whilst many previous problems in character recognition have been tackled by well
established OCR methods, problems in natural image character recognition have also
been attempted with techniques more associated with object recognition [57], which is of
great use in our work where we are interested in generic schemes.

Whilst SIFT has been used successfully in the recognition of Chinese characters[268],
there is evidence that it performs poorly when dealing with perspective distortions of
characters[121]. Given this, perhaps it is unsurprising that SIFT has not performed well
when tested against other methods [57] on natural image character recognition.

In contrast, Shape Context [13] and Geometric Blur [14], have performed better
than SIFT and other methods when used in conjunction with a Nearest Neighbour (NN)
classifier [57]. However, in the same study it was shown that the best performing method
was to combine all these features within a Multiple Kernel Learning framework.

Most recently Wang et al. [250] have shown that Histograms of Oriented Gradients
(HOG) could be used in conjunction with a Nearest Neighbour classifier to produce
better performance than all previous methods.

6.4 Datasets

In order to evaluate the column schemes we used the chars74k [57] and ICDAR03-CH
[145] datasets. The first of these has 62 classes of images, made up of digits with
upper and lower case letters. Images generally contained a single character from a
natural image. However, high levels of clutter meant that some images contained small
subsidiary characters, in which case only the main character is labelled. Examples from
the chars74k are shown in Figure 6.1.

The ICDAR03-CH dataset comes from the robust OCR challenge section of the
ICDAR03 challenges and contains 75 classes, made up of digits, upper and lower
case letters and symbols. When referring to specific results we use the convention of
suffixing the dataset name with the number of training images per class, so, for example,
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chars74k-05 refers to the chars74k dataset when tested with 5 training images per class.
Examples from the ICDAR03-CH dataset are shown in Figure 6.2.

Figure 6.1: Examples from the chars74k dataset.
The dataset consists of 62 classes, made up of upper and lower case letters and digits,

with a wide variation of font types, backgrounds and orientations.

6.4.1 Preprocessing

As a first step, all images were resized and padded where necessary to ensure they were
all the same size. The datasets contain both light letters on dark background and dark
letters on a light background. In order to be invariant to this difference we performed a
simple test on each image by looking at the relative strength of oBIF type at a coarse
level, which essentially considered whether the image tended to a dark patch on light
or a light patch on dark. If this oBIF type was a light rotational images were inverted,
whereas if it was a dark rotational images were left as they were.

If this step were not performed, then the effective training set size would be halved
as dark letters would only serve as training examples for other dark letters and not light
letters. This could be overcome by introducing invariance to polarity into the oBIF
column scheme, by summing each pair of bins representing opposing polarity column
features. However, as we considered polarity invariance to be required only for specific
tasks, we decided to use the simple step described above.
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Figure 6.2: Examples from the ICDAR03-CH dataset.
The dataset differs slightly from the chars74k set in that it also contains punctuation

marks. In addition, the orientation of characters appears to be more consistent than in the
chars74k set.

6.4.2 Dataset splits

In order to make a comparison to previous work we focused on using training sets of 5 or
15 images per class. With such low numbers of images per class available for training
the results can vary substantially from run to run. Therefore, we wanted to ensure the
performance measures were based upon a significant number of trials. To do this we
first selected 30 images from each class in the chars74k dataset from which to draw
subsequent training and test sets. These images, referred to as the main set, contained the
majority of available images for most classes.

We used the remaining images from chars74k to tune the parameter values for the
four schemes. For this process none of the images from the main set were used with the
consequence that the number of images available per class varied considerably in the
tuning process. The same parameter values were used for both datasets.
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6.5 Column Features

We tested the oriented gradient column scheme and the oBIF column scheme on the
two datasets. For the purposes of comparison we also tested single scale histograms of
oriented gradients and oBIFs. The details are given in Experiment 6.1 on page 123. As
the performance of BIFs and BIF columns had been very poor compared to the other
schemes when tested on the MNIST dataset, we did not believe that they would offer top
performance on this application and so we chose not to test them explicitly. However, the
performance of BIF columns is provided as part of our parameter investigation where we
looked at the performance as the orientation quantisation reached zero.

6.5.1 Comparison of Performance

The results for the four schemes are shown in Table 6.1 alongside previously published
results including SIFT, HOG, Shape Context and the OCR software ABBYY. Results are
also given for an implementation of Multiple Kernel Learning[57], which uses multiple
sets of features and a more advanced learning framework than Nearest Neighbour. The
three columns indicate the dataset and the number of training images per class. The
performance measure given is the mean score over all runs, which was 50 for the chars74k
dataset and 20 on the ICDAR03 dataset, along with the standard deviation of these scores.

From this table it can be seen that, on the chars74k dataset, both oBIF columns and ori-
ented gradient columns outperformed previous methods when using either 5 or 15 training
images per class. However, on the ICDAR03 dataset only the oBIF column scheme out-
performs previous methods.

Table 6.1: Comparison of performance (in % correct) on the chars74k and ICDAR03
datasets.

Scheme Chars74k-5 Chars74k-15 ICDAR03-CH-5
SIFT [57] - 20.8 -
ABBYY [250] 18.7 18.7 21.2
Multiple Kernel Learning [57] - 55.3 -
Shape Context [57] 26.1±1.7 34.4 18.3
Geometric Blur [57] 36.9±1.0 47.1 27.8
MKL [57] 55.3
HOG Features [250] 45.3±1.0 57.5 51.5

Oriented gradients 27.0±1.2 36.7±0.8 28.4±1.1
oBIFs 35.3±1.2 46.4±1.0 30.8±1.2
Oriented Gradient columns 50.8±1.1 60.2±1.1 46.1±1.3
oBIF columns 53.4±1.4 64.3±1.3 52.7±1.2
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6.5.2 Confusion Matrix

As part of the evaluation process we looked at the pairs of classes that were often
confused. For the oBIF column scheme and the chars74k dataset this is shown in the
confusion matrix in Figure 6.3. The classes are given in the same order as in Figure 6.1,
that is digits followed by upper case letters then lower case letters.

0

100

Figure 6.3: The confusion matrix for oBIF columns on the chars74k-15 task.
The array is ordered in the same way as in Figure 6.1, with upper case letters first,

followed by lower case letters and then digits. A notable feature of the confusion matrix
is the pair of lines running parallel to the main diagonal, which indicate confusion

between upper and lower case examples of the same letter.

A notable feature of the confusion matrix is the pair of lines running parallel to the
main diagonal. These indicate a relatively high level of confusion in between upper
and lower case examples of the same letter. If we allow confusion between upper and
lower cases examples, thus reducing the problem to 36 classes the overall score becomes
73.0±1.3% on chars74k-15.

A similar pattern was seen in the confusion matrices for the other schemes, as well as
for the ICDAR03 dataset.

6.5.3 Parameter Investigation

As with the MNIST set in our investigation, we wanted to see how performance varied
with each of the parameter values to ensure that the scheme was stable around optimal
values. To do this we used chars74k-15 and varied each of the parameters in turn. The
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details are given in Experiment 6.2 on page 124.

6.6 Discussion

6.6.1 Is it possible to achieve 100% performance?

The oBIF columns method tested within this work has shown an improvement over
previous methods using the chars74k and ICDAR03 datasets. However, the performance
is still far from perfect and, even with 29 training images per class we see performance
flattening out at approximately 70% (as shown in graph (a) of Experiment 6.1).

In order to put this improvement into context it would be helpful to have some idea of
the upper bound on performance. Ideally this would come from human level performance,
but such an estimate is very difficult to make as it would require subjects who had no prior
experience of the characters used in these datasets. We can, however, detect apparent
ambiguities between classes that occur because of the nature of the testing regime where
each character is presented out of context. Certain pairs of classes, for example an upper
and lower case ’x’ or a ’one’ and a lower case ’l’, may have visually identical instances
meaning that the true class can only be identified by the context. Upper case letters may
be larger than surrounding letters and found at the start of words, whereas digits may be
found next to other digits. Examples of ambiguous pairs of classes are shown in Figure
6.4.

Figure 6.4: Examples of ambiguous images in the chars74k dataset.
All images in the top row are from a different class than the corresponding image in the

bottom row.

The absence of these context cues will likely place an upper bound on performance.
It is difficult to determine exactly what this upper bound might be, but if, for example,
there were 10 pairs of visually ambiguous classes, as implied by the confusion matrices,
we would have an upper bound of just under 84%.

6.6.2 How do oBIF columns compare to other methods?

The methods tested in this work are perhaps most comparable to the Shape Context,
Geometric Blur and HOG features. All these methods involve the extraction of local
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features, followed by some form of pooling step followed by a nearest neighbour classi-
fier. There are however important differences between the methods. Both Shape Context
and Geometric Blur combine local features in a way that will produce an encoding that
is largely invariant to position and at least partially invariant to the size of the object.
Therefore, when testing these methods on a set of upright characters, we are essentially
evaluating their ability to categorise images.

However, when using HOG features, as local histograms are essentially concatenated
to make the overall image encoding, we would not expect this to be particularly invariant
to changes in position and size. When testing this method then, performance may vary
according to how much size and position variation there is in the dataset, as well as with
intraclass variation. Thus, given two datasets with different levels of variation in size and
position, we might expect the relative performance between the datasets to differ between
HOG and Geomtric Blur or Shape Context.

In the previously published results it is interesting to note the relative performance
between Geomtric Blur, with 36.9% on chars74k-05 and 27.8% on the ICADR03-CH-5
test, and HOG features, which scored 45.3% on chars74k-05 and 51.5% on ICDAR03-
CH-5. Whilst HOG features outperform Geometric Blur on both sets, it performs far
better on ICDAR03 as opposed to chars74k whereas the opposite is true with Geomteric
Blur. This may be down to differing levels of variation in position and size between the
datasets. If the ICDAR03 set contained characters of relatively uniform position and
size, but with a greater degree of intraclass variation, then this might explain the relative
differences in performances between the methods.

As all the schemes tried in these experiments have used global histograms, and should
therefore be highly position invariant and at least partially invariant to size changes,
we might expect a relative performance more similar to Geometric Blur than to HOG
features. This is roughly what is seen in the results, where oBIF columns outperform
HOG features by a margin of 8.1% on chars74k-5 but only 1.2% on ICDAR03-CH-5.

6.7 Multiscale HOG

As an additional investigation, we wanted to establish whether column features could
work in conjunction with the standard HOG scheme. The purpose of this was both to see
whether performance could be improved and to see whether the column features were
encoding the same information as schemes with spatial binning.

Using the HOG scheme, as described in Chapter 2, we considered two schemes that
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extend the descriptor. The first scheme simply extends the histograms across scale space,
in a way related to previous multiscale methods. The second scheme incorporates column
features, where pairs of oriented gradients across scale are combined.

For the first scheme, oriented gradients are calculated using Derivative-of-Gaussian
(DtG) filters. For each location in the image, at a given scale, a single orientation is
assigned along with a weight, which is calculated from the response of the DtG filters.
Next, for a given block size, we calculate the total strength for each orientation across the
block and across all scales. This is repeated across multiple overlapping blocks within the
image. Each histogram is then normalised so that the total weight across all orientations
sums to one. All histograms are then concatenated to make a single descriptor for the
image. The algorithm is given in Algorithm 6.1.

Algorithm 6.1 The simple multiscale HOG encoding
1. For a given scale, σ, measure filter responses c10 and c01 of 1st order derivative-

of-Gaussian filters, and from these calculate the scale normalised filter responses
sij = σi+jcij

2. Assign orientation by quantising:
arctan ( s01

s10
) s10 > 0

arctan ( s01
s10

) + π s01 ≥ 0, s10 < 0

arctan ( s01
s10

)− π s01 < 0, s10 < 0

3. Calculate weight according to
√
s2
10 + s2

01

4. Repeat for range of σ

5. For each block in the image sum weights across all positions and all σ for each
orientation and normalise

6. Concatenate all blocks in the image to make overall encoding

In the second scheme, oriented gradients are calculated at two scales, the base scale
σBASE and a coarser scale, rσBASE , where r is the scale ratio. Then, for each location
in the image, an orientation vector is assigned comprising the orientations at each scale,
and a weight equal to the product of the weight at each scale. These features are referred
to as oriented gradient columns. Histograms of these oriented gradient columns are then
calculated across multiple blocks and base scales, and then normalised as before. The
scheme is therefore equivalent to our weighted oriented gradient column system with
spatial binning and scale averging. The algorithm is described in Algorithm 6.2.

We tested these schemes on both datasets, as described in Experiment 6.3 on page 125.
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Algorithm 6.2 The HOG Column encoding
1. For a given σBASE and scale ratio, r, measure filter responses c10 and c01 of 1st

order derivative-of-Gaussian filters at scales σBASE and rσBASE , and from these
calculate the scale normalised filter responses sij = σi+jcij

2. Calculate quantised orientations, θ1 and θ2, at both scales according to:

Round(
arctan (

s01
s10

)

2π
) s10 > 0

Round(
arctan (

s01
s10

)+π

2π
) s01 ≥ 0, s10 < 0

Round(
arctan (

s01
s10

)−π
2π

) s01 < 0, s10 < 0

3. Compute weight, w1 and w2, according to 2
√
s2
10 + s2

01 at both scales

4. Combine across scales to form a feature with orientation (θ1, θ2) and weight w1w2

5. Repeat for range of σBASE

6. For each block sum weights across all positions and σBASE for each orientation
vector and normalise

7. Concatenate all blocks in the image to make overall encoding

6.7.1 Parameter Sensitivity

As with the standard column methods, we wanted to see how performance varied with
the parameter values. The details are given in Experiment 6.4 on page 126.

6.7.2 Comparison of Performance

The performance of the two schemes for each testing regime is given in Table 6.2,
with the computational performance for the novel schemes in Table 6.3. This is given
alongside the previously published results and the results from the standard column
features schemes. Each score is the mean performance over 50 runs for the chars74k
dataset and 10 runs for the ICDAR03-CH-5.

From the table it can be seen that the first scheme offers a small improvement over
the single scale HOG on the chars74k dataset, but a decrease in performance on the
ICDAR03-CH dataset. The second scheme, using oriented gradient columns, shows an
improvement in performance on both datasets.

The HOG columns scheme also shows an improvement over the standard column
schemes, which implies that the spatial binning step is capturing information useful to
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Table 6.2: Comparison of performance for the multiscale HOG schemes

Scheme Chars74k-5 Chars74k-15 ICDAR03-CH-5
Shape Context [57] 26.1±1.7 34.4 18.3
Geometric Blur [57] 36.9±1.0 47.1 27.8
Multiple Kernel Learning [57] - 55.3 -
ABBYY [250] 18.7 18.7 21.2
SIFT [57] - 20.8 -
HOG Features [250] 45.3±1.0 57.5 51.5

Oriented Gradient columns 50.8±1.1 60.2±1.1 46.1±1.3
oBIF columns 53.4±1.4 64.3±1.3 52.7±1.2

HOG multiscale 49.1±1.3 58.8±1.2 48.3±1.2
HOG columns 57.7±1.1 66.5±1.2 57.1±0.9

Table 6.3: The computational performance for each of the schemes

The encoding time is given for each image, along with the classification time for a Nearest
Neighbour classifier using 10 images per class. The times are based upon an implemen-
tation in Mathematica 7.

Scheme Size
Computation time (ms)
Encoding Classifier

Oriented Gradient columns 144 72 1.1
oBIF columns 1849 81 1.1
HOG multiscale 1944 510 1.4
HOG columns 7056 530 6.7

the recognitions task. it is interesting to note the shape of graph of performance against
box size for the HOG column scheme. Whereas for the standard HOG scheme there is a
peak around the optimal box size, with the HOG column scheme we see the peak but we
also see a rise in performance again as the box size becomes the same size as the image.

This suggests that there are two effects present. First the gain in performance that
comes from capturing as much of the spatial structure of the characters as possible,
through the spatial binning step. This should lead to a performance graph with a peak
around the optimal box size with decreasing performance either side. The second effect
is the gain in performance due to the invariance of using a global histogram. If this was
the case, then both effects combined would lead to a trough in performance where the
box size is too large to capture useful spatial information but yet still sufficient to remove
the invariance aspect. This is what we see in graph (a) of Experiment 6.4 on page 126.
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6.8 Summary and Conclusions

In this chapter we have presented an evaluation of the oBIF Column and oriented gradient
column schemes using a character recognition problem of current interest, which is the
recognition of characters taken from natural images. The results have been presented
alongside previously published results of leading schemes, including HOG, SIFT and
Shape Context. The results indicate that, on this problem, the oBIF Column scheme
outperforms both the oriented gradient column scheme and previously published methods.

We have also presented a novel multiscale HOG scheme, using the column features
presented in Chapter 5. This has been evaluated using the same problem, with the results
showing that the novel multiscale HOG scheme outperforms all other methods including
oBIF Columns. However, the increase in performance comes at the cost of an increase in
the size of the encoding.

Despite the leading performance of the two novel schemes, oBIF Columns and HOG
Columns, the levels of performance are significantly below perfect recognition. We have
suggested that this is partly down to the context-free nature of the problem, meaning that
certain pairs of classes are indistinguishable without context. However, we still believe
there is significant room for improvement.

In the next chapter we will apply the column system to a texture problem, which
involves the discrimination of grain types using their surface texture as revealed through
electron microscopy.
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Experiment 6.1 Chars74k using Column Features
Methods
The parameter values were tuned using the images set aside for tuning, as described
previously. Images from the main set were encoded into oriented gradient columns, as
outlined in the previous chapter, using the tuned parameter values. A set of training
images was randomly selected, which was used to build a Nearest Neighbour classifier
using the Bhattacharyya distance. Subsequent training and test sets were drawn, with a
total of 50 runs. The mean and standard deviation of the scores are reported.

This was then repeated for the ICDAR2003-CH dataset. We then performed the same
procedure for single scale oriented gradients, oBIFs and oBIF columns.

Results
The results for the four schemes are given in graph (a). The performance for oriented
gradient columns was 50.8±1.1 and 60.2±1.1 for the chars74k with 5 and 15 training
images per class, and 46.1±1.3 for the ICDAR03 set with 5 training images per class. For
oBIF columns the corresponding scores were 53.4±1.4, 64.3±1.3 and52.7±1.2.
For the oBIF column scheme, the tuning process gave ε as 0.03 and an orientation quan-
tisation of 8, giving 43 oBIF features. The optimal ratio between the scales in the oBIF
features was 3. For the single scale oBIF scheme, the tuning process gave an optimal
value of ε of 0.05 and an optimal orientation quantisation set of 12, giving an oBIF set of
63 features.
For the oriented gradient column and the single scale oriented gradient schemes, a set of
24 orientations was optimal for both. The ε values were 0.02 for the single scale oriented
gradient scheme and 0.05 for oriented gradient columns and the optimal scale ratio was
2.5.
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(a) The performance for each of the four schemes
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Experiment 6.2 Parameter Investigation of oBIF Columns
First, we looked at the sensitivity of the value of ε. From the graph (a), it can be seen that
the performance is robust with respect to small changes in ε with at least 95% optimum
performance being achieved in the range 0 to 0.075, which is 2.5 times the optimal value
of ε.

We then looked at the influence of the ratio between the two scales. For this we looked
at how the level of performance changed as the ratio between the two scales varied
between 1 and 10, with results shown in graph (b). As seen from this graph, when the
ratio between the scales is 1, the system is equivalent to using single scale oBIFs and we
therefore get the same level of performance. There is a sharp increase in performance as
the ratio increases to a value of 2, with marginal increases in performance thereafter. The
true optimal value of ratio is 3.5, as opposed to the value of 3 obtained from the tuning
process. However, performance within 95% of the optimum is achieved with a ratio in
the range 1.75 to 7.
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Next, we looked the importance of the level of orientation quantisation in the oBIF
set, shown in graph (c). Here, the point on the far left represents the BIF column
system without orientation. We see a rapid increase in performance as orientation is
introduced, with a significant increase up to a quantisation level of 8 with a slow decline
in performance thereafter.

Finally we wanted to see whether any further increase in performance could be achieved
by increasing the complexity of the oBIF column features to triplets of oBIFs across 3
scales. The oBIF features were calculated as before and performance for both oBIFs and
first order features are plotted against the single scale and 2 scale schemes in graph (d).
This shows a marginal, though not significant, improvement in both schemes. It should
also be noted that the 3 scale oBIF columns produce a total encoding size of (5n+3)3 as
opposed to the 2 scale oBIF column encoding size of (5n+3), where n is the orientation
quantisation.
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Experiment 6.3 Evaluating Multiscale HOG with chars74k and ICDAR03-CH
Methods
For both schemes, we tuned the parameters using the tuning set of images described
previously in this chapter. Images in the main set were then encoded using the multiscale
HOG schemes described in Algorithms 6.1and 6.2. As the multiscale HOG schemes
involved scale averaging we needed to select a suitable range of scales to use. To do
this, we made a visual inspection of the encoded images and observed that at a scale of
7 pixels, images had no recognisable structure. Therefore we selected an arithmetically
spaced range of scales between 1 and 7.

Multiple training and test sets were then selected as in Experiment 6.1, with the mean and
standard deviation over 50 runs being reported. Classification, as before, was done using
a Nearest Neighbour classifier with the Bhattacharyya distance.
Results
The results for both schemes are given in graph (a), where the scores for the simple
multiscale HOG were 49.1±1.3%, 58.8±1.2% and 48.3±1.2 % for the chars74k-05,
chars74k-15 and ICDARCH-03-5 respectively. For the HOG Columns scheme the
corresponding scores were 57.7±1.1%, 66.5±1.2% and 57.1±0.9%.

For both schemes, 16 orientations were used and the block size was set to 20 pixels, which
was approximately half the object size, with an overlap of 15 pixels between neighbouring
blocks. For the second scheme, the tuning process gave an optimal scale ratio of 3.
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Experiment 6.4 Parameter Investigation for Multiscale HOG
We wanted to see how the performance of both size varied with the block size. To do
this, we fixed the overlap between blocks at half the width of the box so we had a single
parameter to vary. The performance for both schemes for different block sizes is shown
in graph (a).
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As our better performing scheme, using oriented gradient columns, used the scale ratio
parameter that is not found in other implementations of HOG we were keen to see how
it affected performance. To do this we used the chars74k-15 test and looked at how
performance changed as we varied the scale ratio from 1, which is equivalent to the first
of our schemes, up to 7. The results are shown in graph (b). As the graph shows, there is
a sharp increase in performance as the ratio increases above 1, with a peak at a scale ratio
of 3, followed by a slow drop off.
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Chapter 7

A Texture Problem: Differentiation of
Quartz Grains

After the work on character recognition we wanted to test the column schemes on a
recognition problem in a different application area. Given the histogram nature of the
schemes, a natural choice for this was texture recognition.

During the course of this work, the BIF Column scheme was evaluated by Crosier et
al. [47] and shown to outperform other leading methods with state of the art performance
on two of the most commonly used texture datasets, UIUCTex[128], KTH-TIPS[98]
and near state-of-the-art on the CUReT dataset[52]. Following on from these results,
supported by [46], we wanted to test the BIF Column scheme on a real world problem to
test the ability of the system to categorise texture.

For this purpose we selected the discrimination of quartz grains using surface texture
as our recognition problem.

7.1 Introduction

Quartz sand grains have potential importance as a trace evidence for forensic investi-
gations. This potential is based on two key features. First, the grains are ubiquitous in
the environment and thus their occurrence in sources of evidence is common. Second,
they have variable yet distinctive surface characteristics determined by their mode of
formation and subsequent erosion, weathering and transportation[31]. The ability to
reach exclusionary conclusions based on the provenance of quartz grains in forensic
samples with the quartz grains identified in known samples is of value for forensic
investigations [155, 31].

The surface characteristics of grains are visible using a Scanning Electron Microscope

127
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(SEM), as shown in the images in Figures 7.2 and 7.3. With expert knowledge it is
possible to use features from such images to place a grain within a classification tree [30],
that can be used to designate grain types. However, such expert knowledge is rare and the
manual identification of grains in this manner is time-intensive. Automatic identification
of grains would therefore provide significant advantages in terms of making classification
more widely available, as well as time efficiency and offering a standardisation of
performance.

The earliest attempt[65] at a mathematical characterization of the physical character-
istics of grains used Fourier methods to describe their shape. Since then other authors
have proposed further methods based on shape[229, 130, 22], distribution of shape
and size[183], and surface texture[256]. However, despite recent advances in texture
recognition systems[245, 246, 24, 267, 47] there appear to be very few examples of these
being applied to problems in the earth sciences. As far as we are aware, this is the first
attempt to bring any of these techniques to grain analysis for applications in forensic
analysis.

7.2 Applying column features to texture recognition

Using the results from Crosier et al., we concentrated on evaluating the BIF column
scheme. The work using the three artificial datasets had shown that the use of four scales
within each column was optimal for texture recognition and that the optimal value for ε
was 0.[47] We used these same values in this work, which meant that in the texture BIF
column scheme the histograms had 64(=1296) bins. This is illustrated for a texture image
in Figure 7.1.

To compare histograms we used the Bhattacharyya distance[117] as a metric, as
in previous work. However, for classification we used a slightly different method. To
classify an unseen image, we computed its histogram and use the metric to find the k

Nearest Neighbouring (kNN) histograms from all histograms in a training set. If the
number of the k having some label is above a threshold, we infer that the unseen image
should have the label. Where possible the two parameters, k and the threshold, of our
classifiers are determined using a validation set. However, in cases where the number of
images per class is very small, these values were set in advance.
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Figure 7.1: The BIF Column scheme applied to quartz grain discrimination.
The scheme is similar to the oBIF columns used in the previous chapter. However, two
keys differences are the lack of orientation and the use of four scales rather than two.

7.3 Datasets

We chose two problems that are representative of the classification structure in forensic
analysis, and assembled a dataset suitable for testing performance on them. The first of
these was a two class problem, which involved detecting the presence of a geological
feature called Upturned Plates [165].

Individual quartz grains were impacted against each other under aeolian conditions
of known velocities under controlled laboratory conditions. Forty seven grains were
subsequently imaged using scanning electron microscopy (SEM) and 266 images were
taken of distinct areas of each grain which exhibited the Upturned Plates feature. This
set of images was created using expert geological knowledge to ensure that the Upturned

Plates features were present in each image and is referred to as the UP set. In order to
create counterexamples to the UP set, 41 grains were selected by a geological expert
from a library of quartz grains which displayed a range of alternative textures. From this
set, 237 images were acquired using an SEM, none of which contained Upturned Plates.
This set is referred to as the NUP set. Examples from UP and NUP are shown in Figure
7.2.

For the second problem the images in the UP set were further divided, by controlling
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UP

NUP

Figure 7.2: Example images from UP and NUP.
In the UP set each image contains examples of the Upturned Plates feature whereas

these are absent from each image in the NUP set.

the conditions of their formation, into six classes according to the Energy Level of

Formation (ELF). The 266 images were labelled as 4mps, 8mps, 11mps, 14mps, 17mps
or 20mps, which relates to the wind speed to which the grains have been exposed. There
was a minimum of 21 images from 6 grains per class. Examples from the different
classes are shown in Figure 7.3.

4mps 8mps 11mps 14mps 17mps 20mps

Figure 7.3: Example images from the set used in the Energy Level of Formation task.
The different classes correspond to the speed at which the grains have been impacted

with each other. Grains impacted at the lower speeds tend to exhibit a smoother surface
structure than those at the higher speeds.

Across the dataset, in addition to the textural differences that we sought to charac-
terise, there were grosser types of difference that were due to imaging effects. Examples
of global differences included variation in the overall lightness of the image, difference in
the apparent focus of the image as well as difference in the image dimensions and overall
area. Within images themselves there were variations in the lightness of individual
regions, giving the appearance of shadows, although as the images came from the SEM
these were not actual optical shadow effects. Each aspect of variation appeared within
each class and there was no apparent correlation between each non-textural aspect of
variation and the class labels. We expected that the invariance properties of BIFs would
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mean that these types of variation would be ignored by our encoding as so not to lessen
classification performance.

7.4 Experiments

We first tested the BIF Column scheme on the Uptruned Plates problem. The details are
given in Experiment 7.1 on page 133.

7.5 Energy Level of Formation

In order to determine the general discrimination power of the method in the ELF task,
we first looked at the performance in discriminating each possible pair of classes. The
same three schemes for grain classification were used as for Upturned Plates: based on
a single image; based on pooling the classifications of individual images; and based on
classifying the global histogram. The details are given in Experiment 7.2 on page 134.

From these results it was apparent that the system was performing poorly in dis-
criminating between the 14mps, 17mps and 20mps classes, with results across all three
scheme being consistent with chance level performance, as indicated in the grey boxes
of Table (a). We therefore decided to combine all images from these classes into one
new class, labelled 14mps+. We then looked at classification using the revised set of four
classes, with details being given in Experiment 7.3 on page 135.

As the number of images available for each class in the ELF task was relatively low,
we also wanted to investigate whether we might expect performance to improve if more
images were made available. To do this we looked at how performance changed when
using a subset of grains from the 47 made available for the ELF task, using the pooling
method as, out of the three, this had produced the best results. The details are given in
Experiment 7.4 on page 136.

7.6 Summary and Conclusions

In this chapter we have tested the BIF Column scheme on the problem of quartz grain
discrimination using surface texture. We have tested three variations of the scheme, each
of whcih combines histograms from multiple images in different ways. In the Upturned

Plates task, where expert human level performance is expected to be perfect, the best
performing scheme within the BIF system achieves 98.8%, which equates to classifying
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all but one grain correctly.

There is a clear improvement in the performance of the system when multiple images
from a single grain are combined in some way. However, in this task there is no apparent
advantage of one method of combining images over the other.

The Energy Level of Formation task represents a greater challenge. Expert human
level performance, although not yet quantified, is expected to be significantly less than
perfect, especially in discriminating the grains with higher ELFs. This is reflected in the
results, where the BIF Column system is incapable of separating the 14mps, 17mps and
20mps classes from each other.

When these three classes are combined into one, discrimination performance between
the four new classes is encouraging with the top performing scheme achieving a rate
81% exact classification and 96% within an error of one class . As before, there is a clear
advantage in combining the images from a single grain. In this task our results indicate
a slight superiority of pooling image classifications over using the global histogram, but
our dataset is not large enough to claim this is significant.

Our results indicate that improved performance could be expected with a larger
training dataset, in particular for exact-class classification of grains in the three lower
speed ELF classes. For the faster speed classes, and for within-one-class classification a
dataset of 47 grains seems sufficient.

From the results as a whole it is evident that the BIF Column system can be used to
provide an effective solution to the problem of grain discrimination using surface texture.
We note that since the BIF column approach for encoding texture was applied without
alteration or tuning from its previously presented formulation, its prospects for successful
application to similar problems in forensic analysis are good.
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Experiment 7.1 Upturned Plates discrimination using BIF Columns
Methods
The images were encoded as 1296 bin histograms representing the frequency with which
each BIF scale column occurred, as described previously. In order to make best use of
the relatively small dataset without over-estimating performance by overlapping train
and test sets, we used a nested leave-one-out method for both the test set and a validation
set. To do this we first selected one grain as a test grain, with all images from this grain
being extracted from the set. We then selected a single image from those left to act as a
validation set, with images from the same grain being removed and the remainder used
to build a kNN classifier. The validation image was then classified for different values of
k and threshold. We then repeated this process for all images, except for those from the
test grain, and found the optimal value of k and threshold. Using these optimal parameter
values we then classified the images from the test grain. This was then repeated with
each image in the dataset in turn acting as the test grain.

As the problem being tackled was correct classification of a grain, and we had multiple
images from each grain, we needed a scheme for making use of the multiple images.
We evaluated three schemes for this to gain an understanding of the problem. First, we
simply looked at how well the system performed with single images. Second, we used a
simple pooling scheme where each image from a grain was classified individually and
then a single choice was made for the grain by taking the more common classification
across all images for that grain. Finally, we made an estimate of the global histogram
encoding for the grain by taking the mean of the individual histograms for the different
images from a grain.

Results
Results are shown in Table (a) for all three schemes, where they are quantified as
the average of the classification rate for UP grains and for NUP grains. Associated
computational performance is given in Table (b). For the three schemes the optimal
values for the classifier parameters were determined individually for each different
validation set and thus there were no single values that applied to the whole dataset.
However, the median value of k for the classifier in the first two schemes was 15 and for
the global histogram scheme it was 5.

Scheme Discrimination Performance Score
Without pooling 95.0%
With pooling 98.8%
Global Histogram 98.8%

(a) Performance for the Upturned Plates discrimination task

Scheme Size
Computation time (ms)
Encoding Classifier

Without pooling 1296 1100 1.5
With pooling 1296 1100 1.5
Global Histogram 1296 1100 1.5

(b) Computational performance for the Upturned Plates discrimi-
nation task
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Experiment 7.2 ELF pair discrimination using BIF Columns
Methods
Images were encoded as described previously. As the Energy Level of Formation task
used only those images from the UP set, which were then divided into six classes, the
number of images in each class were far fewer than in the Upturned Plates task. As a
result, there were not enough images to provide a stable validation process to determine
the optimal classifer parameters, so the value of k was set at 3 in advance and the threshold
set at the midway point.
Results
The performance for each pair is given in Table (a).
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(a) Performance of the BIF system in the fifteen pairwise problems
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Experiment 7.3 ELF discrimination using BIF Columns
Methods
Using the same three schemes again, and a kNN classifier with k set at 3, results
are reported as the mean performance per class. We report results in terms of exact
classification (i.e. the correct one of the four classes is identified), classification to within
one class, and classification to within two classes.

Results
The results are shown in Table (a), with the computational performance in Table (b) and
the associated confusion matrices given in Table (c).

Scheme Exact Within
1 Class

Within
2

Classes
Without pooling 69 % 90 % 100 %
With pooling 81 % 96 % 100 %
Global Histogram 78 % 92 % 96 %

(a) Performance for the Energy Level of Formation task

Scheme Size
Computation time (ms)
Encoding Classifier

Without pooling 1296 1100 1.5
With pooling 1296 1100 1.5
Global Histogram 1296 1100 1.5

(b) Computational performance for the Energy Level of Formation
task
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(c) The confusion matrices for the ELF task
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Experiment 7.4 ELF performance for different training set sizes
Two grains were first randomly selected from each class to ensure the minimum size
necessary to get results for the classification performance for each class. Then for each
increment between this minimum of 8 grains and the full set of 47 grains, further grains
were randomly selected and the classification performance determined for both exact and
within one class classification. This process was repeated 400 times for each possible
number of grains and the mean performance for each class over all trials is plotted in
graph (a). The mean performance over all classes is plotted as the black line, showing
the overall performance as 81% when all grains are used, as previously shown in Table
(a) of Experiment 7.2 on page 134. This line has a steady gradient of 0.5% increase in
performance for each grain added.
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(a) Performance with varying dataset sizes for each test class
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Writer identification

The third application we tested the column system on was writer identification, where
the aim is to establish authorship of a piece of handwritten script given suitable examples
from which to train. This is a problem of current interest [97, 141, 75] and one that was
particularly interesting in the context of our work as it contained aspects similar to the
work on character recognition but also our approach essentially viewed handwriting as a
texture, and therefore there were similarities to the work presented in the previous chapter.

The chapter begins with a brief description of the current work on writer identification
as well as related problems. We then describe how we attempted to apply the oBIF column
method to the problem. Then we present the results from an experiment to test the method
against a publicly available dataset, which was used in the 2011 ICDAR Arabic Writer
Identification Contest. Finally we give a discussion of how our results compare to other
methods and how this could guide future work.

8.1 Related work

Writer identification is not a new problem, with schemes such as run length features
[6] being proposed a long time ago. The basis of any solution is that handwriting is
individual enough to distinguish authorship [222, 223, 266, 233] and that a suitable
quantity of handwriting is available [23] to extract some measure of the style of the
handwriting.

As well as the Roman script, such distinctiveness appears in Chinese characters
[100, 59], Arabic script [28, 221], Farsi [163], Kannada [118] and even handwritten music
scores [77, 76, 75]. This distinctiveness contained within a whole range of handwritten
entities has many applications, providing the style can be accurately recognised. Perhaps
one of the main applications is in signature verification, where much work has been done
(see [174] for a review). Other common applications include the analysis of historical
documents [177, 64, 7, 203] and profiling [262, 67].

137
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Writer identification using contemporary handwriting is generally split into offline,
which consists of images of handwriting only, and online, where additional stroke path
information is available. Our emphasis here is on offline recognition. Offline schemes
have generally involved extracting features from samples of handwriting. Many different
feature sets have been tried such as Hermite features [110], Lexeme features [16], Chain
code features [214], adjacent segments [111], edge based directional features [29] and
connected components [202]. Amongst these are multiscale techniques such as [64], who
used multiscale Hermite and Gabor features. Alternatively certain schemes have taken a
texture-based appraoch is [102].

8.2 Methods

In the work on character recognition, presented in Chapter 6, we showed that the oBIF
Column encoding scheme performed relatively well when combined with a Nearest
Neighbour classifier. This suggested that in oBIF Column space, examples of the same
character are relatively well grouped into clusters. However, it was not possible to tell
simply from the results whether different examples of the same character form a single
cluster, or multiple smaller clusters.

Providing the distribution of each character can at least be approximated by a single
cluster, then we can consider the mean encoding of each character as an approximation of
the centre of the cluster. We can then consider what is represented by the vector between
the mean of the cluster and the particular instance of the character. If this vector were to
encode the style of the character, then we thought this would be useful for determining
authorship.

However, if this approach was to be used letter by letter then, when attempting
to determine authorship of a block text, we would have to segment each letter, then
perform a process of character recognition and finally determine the deviation of each
character from the character mean. Given the likely errors in segmentation and recogni-
tion steps, the cumulative effect of such a process would likely result in poor performance.

Given the nature of the oBIF Column encoding scheme, we thought it should be
possible to avoid the need for segmentation and character recognition. As the encoding is
a normalised histogram, the encoding for a block of text is equal to the mean histogram
for each of the individual characters, weighted for relative size. If we were to be able to
determine the mean histogram for the block of text, then we could use the deviation from
that as our style vector.
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For example, if we have a section of text A, written by three different authors to
give blocks (A1, A2, A3), then we map our samples of text from oBIF column space to
the difference space, referred to as ∆ space, as shown in Figure 8.1, using the mean
encoding for that block of text. When we do the same with another block of text, B,
we hope that the corresponding style vectors, (∆B1,∆B2,∆B3), are well grouped in ∆

space. If this is the case then we can use a Nearest Neighbour, as in our previous schemes.

oBIF Column Space ∆ Space

∆B1
∆A1

∆A2

∆B3

∆B2

∆A3

A2

A3

A1

A

B3

B2

B1

B

∆A1

∆A2

∆B2

∆B3

∆A3

∆B1

Figure 8.1: oBIF Column space and ∆ space.
The oBIF column encoding of an image will be affected by both the text and the

handwriting style of the author. In order to be able to compare the style, and become
invariant to the underlying text, we need to consider the deviation from the mean

encoding for a certain block of text.

Whilst we might expect this style vector to vary for different blocks of text, according
to the different occurrences of each character within the block, the variation may be
sufficiently small to allow style vectors to be compared across different blocks of text.

In previous schemes we have used the Bhattacharyya distance with the Nearest
Neighbour classifier as this is a suitable way for encoding distributions. However, when
dealing with vectors in ∆ space we are not dealing with distributions and we have to use
a distance such as the Euclidean instead. A potential danger with this is that distances
become dominated by the most commonly occurring oBIF column types. In an attempt
to counter this we used the square root of all oBIF Column histograms.

8.3 Experiments

In order to test the modified oBIF Column method worked for author identification we
used the dataset provided for the 2011 ICDAR Arabic Write Identification Competition
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[97]. This consisted of handwritten Arabic script from 54 different authors, each of
whom had written the same three passages. Examples are shown in Figure 8.2, with a
section showing the oBIF encoding in Figure 8.3.

Figure 8.2: Example images from the Arabic handwritten dataset.
The training portion of the dataset consists of the same two paragraphs written by 54

different authors. The testing section consists of a single paragraph written by 54
authors, not all of which featured in the training section.

Figure 8.3: Arabic handwriting encoded using oBIFs.
The encoding at the optimal parameter values appears to be free from interaction

between words, meaning that arrangement of words within a text should not affect the
overall encoding.

As the dataset was provided for the purposes of the competition, the images had been
split into training and test sets with only the training labels provided. This meant that the
first two passages for each author were labelled, and formed part of the training set. The
third passage for each author was unlabelled and these formed the test set. In order to
test the ability of systems to detect unknown authors a number of authors had also been
removed from the training set, though this number was not provided by the competition
organisers.
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Scheme Identification Rate
oBIF Columns 100%
Team Shasta 89.19%
Wride 81.08%
Eu Jin Lok 78.38%
Intelligentia 78.38%
Wifahd 75.68%
Robin 5.45%

Table 8.1: The performance of oBIF Columns against other teams in the ICDAR 2011
Arabic Writer Identification Competition.

In order to be able to deal with unknown authors we devised an adapted nearest
neighbour classifier, the details of which are explained in Experiment 8.1 on page 144.

8.4 Discussion

8.4.1 Comparison of Results

Over 30 teams submitted entries for Kaggle[259], though only 7 of these went on to
provide a methods description for the ICDAR competition. The performance for each
team is given in Table 8.1.

Four of the other teams, (Intelligentsia, Team Shasta, Robin and Eu Jin Lok)
used features provided by the organiser of the competition. These features included
’connected components, number of holes, moments, projections, distributions, position
of barycenter, number of branches in the skeleton, Fourier descriptors, tortuosities,
directions, curvatures and chain codes’ [97]. The difference in the teams’ approaches
came from different methods of feature selection and classification.

The other two teams used a different set of features, with Wifahd using run length
codes [60] and Wride using edge hinge features and graphemes [243]. Both sets of
features have been designed for the purposes of author identification.

8.4.2 Validity of the evaluation procedure

Whilst the evaluation presented shows very encouraging results for the oBIF Column
method, as applied to author identification, there are several issues with the competition
framework which may have influenced the outcome.

First, the size of the dataset is relatively small. Whilst it is difficult to estimate the
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diversity of handwriting styles, it seems at least possible that 54 authors is not enough
to adequately capture the full range. This is partly demonstrated by the achievement
of a perfect identification rate, which gives us no upper bound on the error of the oBIF
Column method. Perhaps more significantly, the number of passages per author is also
too low and we are left with little indication as to how style may vary within the writing
of a single author.

Second, the entries to the competition are only published in a summary format
meaning that it is difficult to establish whether each method has been optimised. This
makes it difficult to confirm the superiority of one method over another.

Third, the structure of the dataset, where the same underlying three blocks of text
have been used for each author, suited the adapted oBIF Column method well as the
mean encoding for each block of test could easily be calculated. In terms of the general
problem of writer identification, it may not usually be possible to have examples of the
same blocks of text from each author, and the performance of the previous evaluation
may only hold for a small subset of the general problem.

8.4.3 Extensions to other work

The method, as presented in this chapter, can be applied to any application of writer
identification where the mean encoding can be estimated. For example, it may be
expected that the method could be applied to signature verification, where suitable
numbers of labelled training data would be available.

However, in general, it may not be possible to estimate the mean encoding for a
given block of text in a cost effective manner. In this case it may be necessary to identify
sections within the text for which the mean encoding can be estimated. This could consist
of common words or even pairs of letters, which have been shown to be effective in writer
identification [220]. The difficulty is that this involves the additional steps of recognising
the appropriate section of next and then being able to extract it from the rest of the text
through a segmentation process. Errors in both these stages may bring down the overall
performance. However, such a method would likely produce multiple sections of text for
classification, whereas the method presented in this chapter has effectively used just one.
If a suitable pooling method is used, using multiple sections may significantly reduce the
errors.
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8.5 Summary and Conclusions

In this chapter we have tested the oBIF Column scheme on the problem of writer
identification. As the oBIF Column scheme has previously been shown, in Chapter
6, to perform effectively at recognising the underlying content of handwriting, we
have adapted the scheme for the problem of writer identification. To do this we have
introduced the novel step of creating a style vector, which is invariant to the underlying
text but varies with the style of the author.

We have tested this scheme on the problem of identifying authorship of handwritten
Arabic script, which has been provided as part of the 2011 ICDAR Arabic Writer Identi-
fication Competition. In the evaluation, the adapted oBIF Column scheme outperformed
all other methods, achieving a recognition rate of 100%.

Whilst these results are very encouraging, we have outlined several limiting factors
to the evaluation process and thus present the adapted oBIF Column scheme as a starting
point for future work.

In the next chapter we will suggest another extension to the oBIF Column scheme,
which arises from the effect of clutter on the scheme.
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Experiment 8.1 Arabic handwriting author identification using oBIF columns
Methods
We used the images provided for the 2011 ICDAR Arabic Writer Identification Com-
petition, and supplied through the competition website Kaggle [259]. This consisted of
108 training images and 53 test images. In the training set, it was known that there were
exactly two blocks of handwritten Arabic text for each author. The test set was known to
contain examples from both the authors featured in the training set as well as an unknown
number of other authors.

In order to tune values for the scale, pink threshold, orientation quantisation and scale
ratio we divided the training set into two, with one passage from each author in each
half. Each image was then encoded into 2 scale oBIF columns with each parameter
being varied in turn, using the order scale, pink threshold, scale ration and finally the
orientation quantisation. Using the square root of the oBIF Column histograms, the mean
was then calculated for each block of text. The style vectors for each author were then
calculated by calculating at the deviations from these means. At each stage classification
was performed using a Nearest Neighbour classifier, using the Euclidean distance, and
the best performing parameter value was selected.

Using these values we then encoded all the images into 2 scale oBIF columns. In order to
account for the unknown authors in the test set, we used an adapted Nearest Neighbour
classifier. As a first step, the two training images for each author were combined by
taking the mean of the two histograms. This effectively considered the two blocks of text
as a single block for each author. Then, distances were calculated between each encoded
image in the test set and each merged pair of encoded images in the training set.

We then checked to see if there were multiple examples by the same author in the test
set. As each image in the test set contained the same block of text, we expected that
if any author appeared more than once, the distance between the two occurrences in
oBIF Column space would be very short. Therefore, we looked at the distances between
the encoded test set to see whether any pair was closer than 3 standard deviations from
the mean distance. The results indicated that no pair was so close, and therefore we
concluded that no training author appeared in the test set more than once.

Using this knowledge we then assigned each test image to its closest training author.
Where training authors were assigned to more than one test author, the pair with the
shortest distance were assigned as correct and the others, of which there were three,
were classed as unknown. Of the remaining unassigned training authors and test authors,
we looked at the next ten nearest neighbours to see if a pair could be matched. Any
remaining test authors were then assigned as unknown.

Results
The tuning process gave a base scale of 1, a pink threshold value of 0.05, a scale ratio of
2 and an orientation quantisation of 4 (23 oBIF features), which are very similar to the
values used in the other applications involving oBIF columns. This gives an encoding
size of 529, an encoding time of 0.51s per image and a comparison time of 0.016ms per
pair of encoded images.

The adapted classifier labelled 51 of the 53 test images as having come from an author
in the training set and the remaining 2 images were labelled as unknown authors. When
compared to the correct labels provided through the Kaggle website, which had been
unavailable until submission of the final method, the identification rate was 100% correct.
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Extending the Column Scheme

The results from the three application areas demonstrate that the column schemes
can perform well compared to other methods. However, the performance on the
character recognition tasks presented in Chapter 6, shows that there is still considerable
room for improvement. In order to increase the performance of the column features
schemes we used the cluttered MNIST set to investigate a means of extending the scheme.

9.1 The Effect of Clutter

Various measure of clutter exist. Feature Congestion [192] uses the notion that salient
features tend to be unusual features in the local context. If these features are easier to
detect as unusual then the task is simpler, and thus the level of clutter is deemed to be
lower. As the local variability of features increases, it becomes more difficult to detect
salient features and thus the level of clutter is deemed to be higher.

Subband Entropy [193] offers a measure of clutter in terms of the number of bits
required to encode regions of an image whilst preserving perceptual image quality. As, in
the general case, it is difficult to establish exactly how efficiently complex structure can
be encoded, the measure relies on a simplified image coding using steerable pyramids
[216]. Typically, both luminance and chrominance are encoded and thus regions with
greater colour variation will result in a higher measure of clutter.

An alternative measure, Edge Density, calculates the level of clutter as a proportion
of edge pixels within a region of an image. This is different from Feature Congestion and
Subband Entropy in that regular structure could still result in a relatively high measure of
clutter. For example, grid-like structure may result in a high proportion of edge pixels,
yet these edge pixels have a regular pattern and thus can be encoded efficiently.

The chars74k set appeared, from visual inspection, to contain a relatively high level
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of clutter. In order to assess the performance of the oBIF column system in the presence
of clutter it may be possible to measure the clutter in each of the chars74k images and
then calculate how well it is correlated with performance. However, as the chars74k set
contains relatively few images per class, and the levels of clutter vary between classes,
we did not think it would provide a good guide to the relationship between perfor-
mance and clutter. Instead we decided to use the MNIST set to create a set of images
with a controllable amount of clutter. The details are given in Experiment 9.1 on page 150.

As can be seen from the results, the oBIF Column system appears to be sensitive
to even small levels of clutter. It should be noted that, in our experiments, clutter may
not be used in the normal way. Schemes such as SIFT and HOG would generally look
to handle clutter at the level of matching descriptors whereas we are looking to include
clutter within the descriptor itself without any attempt at segmentation.

9.2 A Spatialisation Scheme

In order to overcome this problem, whilst staying within the histogram framework, we
needed to find features in the digits that are rare enough to make it very unlikely that
they appear in the clutter. One possible approach is to extend the scale column features,
increasing the number of individual oBIFs in each column, increasing the number of
histogram bins from 232 to 233 or 234. However, as was shown in Chapter 5, such
features did not significantly improve performance in the standard MNIST recognition
task, possibly because they capture very little information not already included in the two
scale system.

An alternative to extending the features through scale is to look at the spatial
relations of features within one scale. For example, if we could measure the approximate
distance between pairs of oBIF scale columns, this could provide a feature that is both
translationally and rotationally invariant.

Calculating these distances explicitly is computationally intensive and so instead we
can employ a system that encodes spatial information is a less intensive manner. For
this purpose we begin by considering local histograms of a certain box size. Each local
histogram within the image captures the features that occur within the same box and
if we could capture all these co-occurrences across then this would include the spatial
information desired. Simply summing the local histograms across the image gives us
the global histogram, which gives us the same method as applied in Experiment 5.4 on
page 103. However, if we take the outer product of each local histogram, giving us a
new encoding of dimensionality 234, and sum this across the image the individual spatial
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relations are preserved.

The new method consists of the following steps:

1. Calculate oBIF 2 scale columns for the image, as in the previous method

2. Select box size, d

3. For each dxd window within the image calculate the local histogram of 2 scale
columns

4. For each local histogram take the outer product of the histogram with itself

5. Sum all outer products across the image, giving an encoding scheme of 234 dimen-
sions

In the case when the box size is 1, the encoding is exactly the same as the global
histogram, and therefore performance should be equivalent to that in Experiment 5.4 on
page 103. In the case that the box size is the size of the image, the encoding again simply
catches the information of the global histogram and the performance should be the same
as before. In between these two extremes, the encoding captures not only the information
in the global histogram but also information relating to the local spatial relations.

9.3 Performance with MNIST

In order to see whether the extra information in the new encoding scheme was beneficial
or not we wanted to see how recognition performance changed as the size of the box
varied between the two extremes.

As our goal was to test the ability of the system to recognise a previously learnt object
in the presence of clutter, we adopted a slightly different experimental procedure. Rather
than using one set of images from which to draw subsequent training and test sets, we
used the standard MNIST images as a training set and the cluttered MNIST set as a test set.

We also wanted to explore the effect of clutter separately from the problem of
categorisation so we performed two experiments. In the first, the same underlying digits
were used for the training and test sets, which would guarantee a perfect score in the
absence of clutter. In the second experiment we used different underlying digits in the
training and test sets. The details are given in Experiment 9.2 on page 151.

We can see from the results that, when the same digits are used in the train and test
sets, the new system shows a high level of tolerance to clutter within the descriptor. When
the clutter border size is 5 pixels, corresponding to a clutter area to object area ratio of
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approximately 1:1, the system achieves a near perfect recognition rate with a box size of
15 pixels. This shows that when there is a very good model of the object, we can detect
its present robustly in the presence of clutter.

When we use novel digits in the test images, so that the system has to generalise as
well, performance with a clutter border of 5 pixels reaches the same level as the standard
system working on clean digits, when using a box size of 15 pixels.

9.4 A General System of Features

The results from Experiment 9.2 on page 151 show that recognition performance is
improved by using the new spatial relations, and thus there is useful information in this
encoding. However, the outer product method means that we have to calculate all 234

values of the encoding. Instead, we can consider another implementation of the same
method that allows to calculate only certain bin values.

Starting with the image, the first stage, as before, is to calculate oBIFs at two different
scales. For each of the 23 oBIFs and for each scale this produces a map, of the same size
as the original image, giving the positions where that particular oBIF type is found. Each
map is binary valued and there are 56 maps in total.

Then for each possible pair of maps, where one is taken from each scale, the product
of these produces a scale column map, giving the locations at which a particular 2 scale
oBIF column is found. There are 232 of these new maps, and the sum of each across the
image would give the global histogram as used in Experiment 9.2 on page 151.

However, rather than summing up each map we first convolve them with a box
function, the size of which is equivalent to the size of the box used for the local histogram
in the outer product method. Then the inner product of any pair of these 232 blurred maps
gives one value of the encoding in the outer product method, of which there are 234.

This is shown for a single feature in Figure 9.1.

9.5 Conclusions

In this chapter we have considered the effect of clutter on the oBIF Column scheme.
Using our simple model of clutter, consisting of small sections of digits taken from the
MNIST set, we have demonstrated that performance of the oBIF Column scheme can be
substantially reduced.

We have suggested that this is caused by the occurrence of individual oBIF Column
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Figure 9.1: An example feature for spatialised oBIF columns.
In this scheme, an image is first encoded into maps of each oBIF type, giving the locations
at which oBIF appears. Pairs of maps at two different scales are then multiplied together
element-wise to give the map for a particular oBIF column map. Finally, the inner product
of blurred oBIF column maps is calculated, to give a measure of the proximity of oBIF
column features to each other within the image.

features in both the target digit and in the clutter. In order to overcome this problem we
have proposed extending the oBIF Column scheme to include new features which consist
of pairs of oBIF Columns occurring within a certain range. When this scheme is tested us-
ing the same levels of clutter, we have demonstrated that performance is far more resilient.

The improved performance of the proposed scheme, however, comes at a cost of an
increased encoding size. We therefore suggest the new scheme as a starting point for
future work, which would aim to find a more compact version of the new scheme.
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Experiment 9.1 oBIF Columns with clutter
Methods
We limited out investigation to oBIF Columns, as this was the best performing scheme
when using the chars74k dataset. Using the parameter values from Experiment 5.4 on
page 103, images from the cluttered MNIST set were encoded into oBIF Columns.
Multiple training and test sets were then selected, as in Experiment 5.4, to produce the
mean and standard deviation of scores over 50 runs. Classification was, as before, done
using a Nearest Neighbour classifier with the Bhattacharyya distance.

Results
The results for different sizes of clutter border are shown in graph (a). The two lines are
for 10 (red) and 25 (blue) training images per class. The dashed lines give the benchmark
performance from Chapter 3.
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Experiment 9.2 Spatialised oBIF Columns 1
Methods
We used the MNIST and cluttered MNIST sets of images. To form the training set, we
randomly selected 10 images per class from the MNIST set. We then created two sets of
test images. For the first of these, we selected the images from the cluttered MNIST set
that contained the same digits as those in the training set. For the second test set we used
the remaining images from the cluttered MNIST set.

In order to limit the overall encoding size, we set the orientation quantisation to give an
underlying set of 23 oBIF features. The scale was set at 1, the scale ratio at 2 and the
threshold at 0.05.

For both training and test sets we then selected a particular box size, which corresponds
to the size of the window used to calculate the local histogram, and determined all
possible local histograms across the image. Each local histogram had 232 bins. We then
took the outer product of each of these local histograms with themselves and summed the
results across the image giving a global histogram with 234 bins.

Classification was then performed with a Nearest Neighbour classifier using the Bhat-
tacharyya distance.

Results
The results for the first test set, using the same underlying digits as the training set, are
given i graph (a). The results for the second test, using novel digits, are given in graph
(b). For both schemes the encoding size was 279 841, with an encoding time of 21s per
image and a classification time of 8ms per pair of encoded images.
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(a) Performance of the Outer Product Histogram method on the cluttered digits dataset using
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Chapter 10

Conclusions

In the final chapter of this work we summarise the work that has been presented and assess
how far it has gone to meeting its aims. We then provide a critical account of the process
that has been employed both in the investigation and the evaluation of the schemes.

10.1 Summary of the work

In this work we have attempted to develop new encoding schemes which are of use in
visual recognition tasks. To do this, we have performed an investigation, guided by the
ideas contained in several methods which have shown a generic usefulness over a period
of time. One observation that was gathered from these methods was that they employed
a grid, or template, at some stage and our investigation was guided by the search for an
encoding scheme that could achieve good performance without this template aspect.

Our investigation, which used the MNIST dataset to estimate performance, resulted
in looking to the scale dimension to create a new set of features which could fit within
a histogram framework. Following from the observation that simple features, such as
oriented gradients and BIFs, can change over scale at locations within the image, we
developed a set of new features called column features. These features came in three
forms depending on the basic feature used, oriented gradient columns, BIF columns and
oBIF columns.

In our investigation we considered various different forms of these schemes, including
weighted schemes, scale averaged schemes and rotationally invariant schemes, each of
which may be suitable for different applications where the need for invariance arises.

Using the column feature schemes, we then evaluated our system on three different
application areas. First, we looked at recognition of characters taken from natural
images. In this we tested both oriented gradient columns and oBIF columns, with oBIF
Columns showing superior performance to other methods, including SIFT, HOG and
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Shape Context. We have also presented an extension of the HOG scheme using column
features, which performs favourably.

Next we tested the scheme on a texture problem. This was the discrimination of
quartz grains using surface texture, a problem which is thought to be challenging even
for a human expert. In this problem, the BIF column system performed well, achieving
near perfect performance in one task and a level of performance comparable to expert
human in the other.

Finally we tested the system on writer identification, using oBIF columns to tackle the
identification of authorship of Arabic handwriting as part of the ICDAR 2011 competi-
tions. On this problem, the system achieved perfect performance, beating all other entries.

In addition to the basic column feature schemes, we have suggested a way in which
performance may be improved in the presence of clutter within the descriptor, by
including information on the spatial arrangement of column features. This has been
suggested as a direction for future research.

10.2 The contributions of this work

The major contributions of this work have been:

• The oBIF Column scheme

The oBIF Column scheme is a novel encoding scheme that combines local
orientation and symmetry type information across different scales. The fea-
tures are fundamentally different from other schemes that use local orientation,
such as SIFT and HOG. Whereas in these other schemes, local orientation
information is encoded in the form of a template of histograms, oBIF column
features encode conjunctions of features at each location across scale. This means
that the features can be used with a simple histogram, without the need for template.

The oBIF Column scheme differs from previous multiscale representations. The
most common of these, pyramid representations, uses a fixed structure to encode
an image. In contrast to the histogram encoding used with column features, this
fixed structure limits the invariance properties of the pyramid representations. In
comparison to more recent schemes, such as the texture representation of Varma
et al. [245], the oBIF Column scheme has two key differences. First, it encodes
local orientation information, which is the basis of many recent object recognition
schemes. Second, the column scheme does not require any feature quantisation
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stage. It is proposed that these two factors make the scheme more applicable
to a wider range of recognition tasks. In this work we have demonstrated its
applicability to three application areas.

• A novel multiscale HOG scheme

We have proposed a novel version of the HOG encoding scheme. Whereas
the traditional HOG scheme encodes oriented gradients at a single scheme, the
proposed version combines oriented gradients at different scales within a single
descriptor. However, as we shave shown in chapter 6, the oriented gradient features
have to be combined at each location in the image, rather than simply combining
two templates of histograms. Thus, the essential aspect of the novel scheme is the
way in which oriented gradient features are combined, as we have demonstrated
that a simple multiscale extension offers no performance gain on the application
tested.

• A novel way of applying texture encoding to writer identification

In applying the oBIF Column scheme to the problem of writer identification we
have proposed a novel way of using texture to determine the authorship of hand-
written text. Whereas in the problem of character recognition, the oBIF Column
scheme has been used as a simple histogram of features, for writer identification
we have used it to produce a style vector which encodes the deviation of the text
from the mean encoding.

• Discrimination of quartz grain types using surface texture

We have applied the column scheme to the problem of quartz grain discrimina-
tion. This problem has not previously been investigated using modern texture
recognition methods and thus the application represents new work. In our
approach we have considered the problem of how to combine multiple images
that arise from a single grain. For this we have considered three different
approaches and concluded that the best performance can be obtained when im-
ages are first classified individually and then classifications are pooled for the grain.

• An evaluation of spatial binning schemes with multiple features

We have assessed the performance of single scale oBIFs both in the context of
simple histograms and templates of histograms. For this we have used two datasets,
and demonstrated that, in the context of simple histograms, oBIFs outperform
oriented gradients. This has demonstrated that local symmetry information is of
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use, in addition to local orientation information. However, when used with a tem-
plate of histograms, we have found that oBIFs do not outperform oriented gradients.

10.3 Comments on the research process

This work has concentrated on producing novel encoding schemes that combine structure
at different scales. The driving factor behind this was the view that, by devising such
features, we could remove the need for a template, as found in features such as SIFT
and HOG. Whilst we have demonstrated improved performance in the application
area of character recognition, we feel it may have been advantageous to have selected
slightly different application areas, where the use of a template could be shown to reduce
performance in a more obvious manner.

It would also have been advantageous to select applications where a direct com-
parison could be made between the methods presented in Chapter 2 and the novel
encoding schemes produced throughout this work. Many of these methods are not
applicable to the range of application areas we have used. For example, SIFT and HOG
are not generally proposed as useful for texture recognition. However, our aim was to
demonstrate the usefulness of the novel schemes across a broad range of application areas.

In terms of the evaluation of BIFs and oBIFs, a more productive approach may have
been to develop versions of existing schemes, such as SIFT and HOG, using BIFs and
oBIFs, rather than attempting to combine the evaluation with the development of a novel
scheme. This would have enabled a direct comparison to be made with a large body of
published results.

However, despite the flaws in the evaluative process we do think that the column
feature encoding schemes make a contribution to understanding the computational
process of visual recognition and, with adequate further research, we think they will
demonstrate wider usefulness.
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