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ABSTRACT 

This thesis is concerned with the development of the 

strip method of-reinforced concrete slab design to extend and 

improve its practical use. The existing elastic and plastic 

methods for reinforced concrete slab design are first reviewed. 

The fundamentals and conditions for uniqueness of the predicted 

collapse load of slabs designed by the strip method are examined. 

A new generalised strip method of reinforced concrete slzib design 

is suggested which overcomes the limitations of the Hillerborg 

method. An experimental programme of tests on model slabs designed 

by the new method is described and results axe compared with the 

theory. The relevance of this work in the design of concrete slabs 

is discussed and recommendations are made for future work. 
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NOTATIONS 

XI Yz cartesian reference system 

D flexural rigidity of the slab 

E modulus of elasticity 

I moment of inertia 

L, t dimensions of slab 

Mx9My normal bending moments acting on finit lengths of the 

slab in the x and y directions respectively 

M 
xyt 

M 
yx 

twisting moments acting on unit lengths of the slab in 

the y and x directions respectively 

Mit M2 principal moments acting on unit lengths of the slab 

Mx, my positive yield moments per unit lengths of the slab in the 

x and y directions respectively 

-M If , -M A negative yield moments per unit length of the slab in xy 
the x and y directions respectively 

kt ýY, ky plastic curvature rates associated with Mx* My and 

M 
XY respectively 

q intensity of distributed load 

qC upper bound on tne, collapse load intensity 

qx, qy intensities of load distributed in the x and y 

directions respectively 

w concentrated load 

we upper bound on the collapse load 

wD design load 

WM maximum load applied during the tests 

wT theoretical failure load 
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OC load distribution factor 

A)ij vertical deflection of grid (ij) 

stiffness ratio beam / slab 

clockwise angle from x axis to the normal 

to a yield line 

(kx)ijt(k 
y 

)ij flexibility matric es for strips Xi and Y 

respectively 

QXP QY Shear forces per unit length in the y and x 

directions respectively 
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OC load distribution factor 

vertical deflection of grid (ij) 

stiffness ratio beam / slab 

clockwise angle from x axis to the normal 

to a yield line 

(k 
x 

)ij, (k 
y 

),. 
j flexibility matric es for strips Xi and Yj 

respectively 

QXP Qy Shear forces per unit length in the y and x 

directions respectively 
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CHAPTER ONE 

INTRODUCTION 

In reinforced concrete structures, slab systems are of 

great importance. As in all other structures their design is 

governed by the general desire to have a safe and satisfactory 

structure at minimum cost. The designer in consultation with the 

client will arrive at the required standards of strength, durability, 

safety and aesthetics. If a value or a cost can becaigned to each 

of these factors then there exists a total minimum cost of the slab 

system. 

No matter how much money is spent on a structure, its 

absolute safety cannot be guaranteed. Limit state design philosophy I 

requires an estimate of the probabilities of overloading and the 

variability of strengths. C= ently safeguards are taken against 

the variations of material strength and applied loads by the use of 

"Partial safety factors" applied to the "Characteristic" loads and 

"Characteristic" material strengths. The structure is designed for 

various combitinations of dead, imposed and wind loads and variable 

partial safety factors on these loads are used to allow for the 

probability of joint occurence, the inaccuracies of the theories 

employed and defects In construction. Currently statistical methods 

can only be used directly for wind loading (or wave loading) where 

extensive data is available. 

With the help of statistics limit state. design aims at 

a more economical and more reliable design. The usual approach will 

be to design on the basis of the most critical limit state and then 

to check that the remaining limit states will not be reached. For 

most structures the critical state is the state Of collapse or the 

ultimate limit state. If the limit capacity of a slab can be determi- 

ned by considering Its actual behaviour at collaýje then the aesigner 
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is in a position to estimate the true reserve strength available. 

The state at which the slab system ceases to be serviceable is 

again important. The size of flexural crack and the deflection of 

the slab are the main parameters which control the serviceability 

limit states. Fire resistance or vibrations may determine the 

usefulness in other cases. 

The main purpose of this study is to present a new strip 

method that can be applied to any reinforced concrete slab design for 

the limit state of collapse but in which the serviceability limit 

states are also considered. Firstly the development of elastic 

plate theory and the popular elastic methods used in reinforced con- 

crete slab design axe described in chapter two and their limitations 

discussed. 

Chapter three critically examines the existing plastic 

methods associated with slab design. The yield criteriont yield 
I 

line theory, minimum weight design, plastic theorems are briefly 

discussed and the use of the lower bound theorem in Hillerborg's 

strip method of slab design described. 

Chapter four investigates the uniqueness of the predicted 

' uniformly loaded and continuously supported concrete collapse load o. 

slabs designed by the strip method. The conditions under which they 

give a unique value of the collapse load are discussed. It is shown 

that the strip method does not always produce a unique solution on the 

collapse load. 

Chapter-five proceeds to formulate a new method known 

as "The Strip Deflectian Method" to cover all types of loading, slab 

geometry and boundary conditions including partial composite action 

'with supporting beams in the design bf reinforced concrete slabs. 

This method aims at retaining all the advantages and overcoming the 
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restrictions in the Hillerborg approach. It will further ensure that 

the designer will not depart too far from the working load moment 

field and thereby ensuring satisfactory serviceability conditions. 

Using this method the design loads of the slabs will be the unique 

collapse loads as predicted by yield line theory. Although the effects 

of membrane action are important, it'has been excluded from this study 

of slabs. In most cases membrane action will enhance the load carrying 

capacity, therefore the slabs will in practice carry loads above the 

collapse load predicted by yield line theory. 

Point loads on slabs and column supports axe two areas 

where the Hillerborg strip method failed to produce a simple design 

procedure but can be readily accommodated by the new Proposed method. 

Uniqueness of the Predi cted collapse load is then affected by the 

particular choice of the strip layout and the. actual position of the 

loads and columns. Methods of restoring'uniqueness for such slabs are 

given in chapter six. 

To establish the validity of the analytical methods in 

the preyiouý chapters a series of tests were performed on model 

concrete slabs and are described in chapter seven. 

Chapter eight summarises the theoretical and experimental 

results of thA study from which certain conclusions are drawn and rec- 

commendations made for the use of the strip method for the design of 

reinforced concrete slabs. Suggestions are also made for further 

research. 

Appendix 1 contains the method used. to calculate end 

reactions, fixed end momentsand deflections of slab strips with stand- 

ard boundary conditions. Appendix 11 summarises miscellaneous calcula - 

tions. Reference to existing literature are numbered after the author 

in consecutive order in the text and a complete list is given at the 

end of the thesis. 
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CHAPTER TWO 

ELASTIC MTHODS OF SLAB DESIGN 

2.1 INTRODUCTION 

Flat slabs or plates are important structural elements. 

Before the introduction of reinforced concrete the use of plates was 

confined to flat plates, plating for ships and floating decks, hopper 

bottoms for coal bunkers etc. Today reinforced concrete slabs are 

almost invariably used for the floor slabs of public and commercial 

buildings, multistorey housing, bridge decks, tanks and containers. 

2.2. DEVELOPMENT OF THE EIASTIC THIN PIATE THEORY 

2.2.1 Equation for the deflected surface 

A good account of the historical development of the elastic 

theory of plates, is given by Timoshenko and Woinowsky-Krieger (1). A 

historical summary is also found in the publication by Westergaard and 

Slater-(3). The invention of the high speed electronic computer gave 

the real impetus to the development of numerical methcds in solving 

complex plate problems. The recent advancements in the design and 

analysis of plates is given by Szilard 

Euler, Bernoulli and Chladni were among the contributors to 

this subject in the eigtheenth century. Early incentives to the studies 

of slabs appear to have been an interest in their vibrations, particu- 

larly those producing sound. Madame Sophie Germain was the first to 

obtain a. differential equation for the elastic deflected surface. This 

work which she submitted to the French Academy of Science in 1811 was 

however found to be in--error- lagrange was one of the judges that 

examined Madame Germain' s work- and in the same year stated the classical 
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fourth order partial differential equation that governs the elastic 

flexure; of plates. This equation named, after him and with the nota- 

tions and sign convention given in Ref (1) arA Fig (2.1) is 

44 
2ý w+ 3w 

224 ýx ýy ýy 

Equation (2-1) can be written in the symbolic form 

D AA w-q 

where Zý2 + (2.2) 

2 
xy 

The plate equation (2ý1) is based on the following assump- 

tions. '(a) The material of 
ýhe 

plate is linear elastic, homcgeneous 

and isotropic. (b) The thickness of the plate is small compared to 

other dimensions. (c) The deflections are small compared to the 

plate thickness. (d) Loads are carried normal to the plate surface 

and the transverse compressive stresses produced by the loýds are 

negligible. (e) Shear deflections are small. 

To obtain the solution for any elastic plate problem it is 

necessary to satisfy simultaneously the partial differential equation 

(2.1) and the boundary conditions. Since it is a fourth order differ- 

ential equation, four conditions, two at each boundary are required. 

The boundary conditions will be determined by either force conditions 

such as bending momentv shear force# twisting moment or displacement 

conditions - deflection, slope of the deflected surface at each edge. 

Poisson showed that along a free edge there are no bending or twisting 

moments and also no shearing forces. It was later argued by Kirchoff 

(18.150) that three conaitions are too many and only two ocnditions can 
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I 

be satisfied. Poisson's requirement dealing with the shearing force 

and the twisting moment were replaced by one condition namely total 

transverse shear force. The requirement along a free edge (say x-a 

is then 
vx =( Q-x - ?m )x 

a 2.3 
By 

2.2.2 Solutions to Tangrange's Equation 

(a) Navier's Solution 

In 1820 Navier in a paper Presented before the French 

Academy of Science solved the langrange equation for the case of a 

rectangular slab. His solution is applicable only to slabs with 

simply supported edge conditions at the four boundaries. The method 

which transforms the equations ( 2.1 ) into an algebraic equation was 

based on the use of trigonometric series introduced by Fourier in the 

same decade. The loading q at any point is represented by 

qf(xy2.4 

Where f(x, y is expressed in the form of a double 

trigonometric series. 
cc cc 

f (x, Y) -E 2: amn. Sin m7rx . Sin nýry 2-5 

m=1 n-1 ab 

The coefficient a mn of the double trigonometric series 

depends on the type of loading namely uniform, patch or point. The 

deflection of a plate carrying a uniform load qo Per unit area and 

with the notations given in Ref (1) is 

ij6q 7 
OC Sin m7rx . Sin n ry 

w0ab - 
a- 

2(2.6 ýEE 
Ir DIm+ )2 

m-1 n-1 
mn 

( 

a2 bý 

m, n 19 3y 5 ..... 
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provided the slab is rectangular and simply supported. 

Solutions can be obtained for other types of loading, 

(b) T-evy's Solution 

series. 

Levy's solution is in the form of a single trigonometric 

oc 

Y. Sin m7r x ( 2.7 ) 

1ý This method is applicable to rectangular slabs with two 

edges simply supported. Equation (2.1) is a linear differential 

equation and therefore Levy made a further simplification and expressed 

the deflected surface as 

wl + W2 ( 2.8 ) 

Where 'q is a particular solution of equation (2.1), and W2 is the 

solution of the homogeneous plate equation 

AAW= ( 2.9 ) 

For a uniformly loaded rectangular plate it can be shown 

that ( see Ref (1) 

oc 

W-1 =E wm ýin mrx (2 10 

Mal a 

and 
Oc 

Wý w 
]ý (Am 

Cosh mry + Bm mv )r. Sinh m r)r Sin m7rx 

Mul aaaa 

The method in the form presented by Levy can be applied to 

rectangular plates when (a) two opposite edges of the plate are simply 

supported (b) The'shape of the loading diagram is the same for all 

sections perpendicular to these simply Supported edges. 

These 1=1iltations have now been overcome ana Ievy's methocl 
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can be applied to all possible combinations of boundary conditions 

round the periphery of a rectangular slab. Hence Levy's method is 

more general than Navier's Solution. 

(c) Navier's and Levy's Solutions - General comment 

The solutions by Navier and Levy offer definite mathemati- 

cal advantages in that the solution of the fourth order partial 

differential equation is presented in a series form. Further these 

methods provided the standard solutions to which the results of many 

approximate and_numerical method subsequently developed can be compared. 

Explicit solutions for elastic plates can however only be found 

for a Limited number of cases. For the rajority of plate problems such 

a seiies solution cannot be found or are tedious to obtain due to excess- 

ive computations. For some problems these seýies may yield mathemati- 

cally "Exact" solutions with a reasonable number of terms. For many 

more their rates of convergence do however present difficulties. The 

double Fourier series in the Navier's solution converges very slowly 

near the boundaries. Slow convergence is also pronounced. for discon- 

tinuous, loading or concentrated forces. Ievy's method based on a 

single Fourier Series converges more rapidly. 

The shear forces and bending moments etc are derived by 

differentiation from the deflection surface. The rates of convergence 

of these functions is slower than for deflections and is very poor near 

the corner of the plate and in the vicinity of concentrated applied 

loads. 

2.3 DMLOPMENTS OF ELASTIC METHODS 

2.3.1 Tn-troduc-tion 

The solution of plate problems via a classical series method 

is limited to simple shapes, loads and boundary conditions. For more 
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general cases with complex shapes, boundaries or loading the analysis 

by this method becomes tedious or may even be impossible. In such 

cases numerical and approximate methods are the only approaches 

that can be employed. 

In structural mechanics, numerical methods have been used when 

rigourous mathametical solutions are unobtainable. The introduction 

of the digital computer has played a major part in the development 

and application of numerical method--. Standard programmes f or solving 

large matrix equations are now readily available. Computer oriented 

numerical methods now in common use are the finite difference and 

the finite element techniques, a development of the earlier energy 

method. A popular approximate method that is suitable for computer 

application and employed for plate problems is the grid analogy 

approach, where the plate or the slab is approximated to a gridwork 

of beams. 

2.3.2 Finite difference method 

Finite difference methods Of-solving differential equations 

were known even in the eighteenth century. Here the governing 

differential equation is replaced by a set of difference quantities 

at certain selected points. This method was originally applied to 

beams by considering it as a loaded cable. Iater N. J. Nielson and 

Dr. Marcus developed and applied the finite difference method to slab 

design. 

The aim of the method is to transform the governing lagrange 

equation (2.1) into a set of simultaneous linear equations 

involving the unknown deflections at the mesh Points. Difference 

representations of boundary condition normally require the introduction 

of fictitious points outside the slab. If the loading on the slab is 

uniform its value can be directly used but if the load vAriation is large 
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then a method of averaging is necessary together with a finer mesh. 

The finite difference technique is a general numerical 

method which is easy to understand. In many standard problems the 

set of simultaneous equationscan be solved using a programmable 

desk top calculator. The accuracy of the method depends on the size 

of the grid and the manner in which the loads and boundary conditions 

are represented. Its accuracy can infact be #Proved by using refined 

finite difference expressions. The shear forces and bending moments 

which are needed in the design depend on the seccnd and third derivat- 

ives of the deflection function. The accuracy of the derivatives 

deteriorates with their order and hence the moments and shears will 

be less accurate than deflections. 

2.3.3 Energy Methods 

In the preceding section the elastic plate problem has been 

represented by the partial differential equation, which-with the boundary 

conditions have been solved by a series or a difference method. An alter- 

native approach is based on methods using either the principle of virtual 

work or the principle of minimum potential energy. Energy methods u6ing 

the principle of minimum potential energy were first applied to plates 

by Ritz in 1909. The deflected middle surface of the plate was repres- 

ented in a series form 

W (XPY) ' Cl fl (X, Y) + Cz f2 (X, Y) Cnfn (X, Y) (2.12) 

where each f (x9y) must satisfy the boundary conditions. The total 

strain energy of the plate in bending (Ref (? ) ) is given by 

uf( Mx Kx + My Ky 2 Mxy Kxy ) dA (2 
. 13) 

Area 
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The change in the potential energy of the external forces is 

Vf (pz w) dA 

Area 

and the total potential energy of the plate Is 

u+v 

( 2.14 ) 

( 2-15 ) 

The unknowns rmin Cl 9 CZ 9 ... Cn are then dete ed from the principle 

ofminimum. potential energy, which states that of all possible deflec- 

ted forms satisfying the boundary conditions that for which the total 
0 

potential energy is a minimum satisfies equilibrium. 

Thus ýp () p ap o 2.16 
acl ()C2 ýCn 

This yields n simultaneous equations. from, which the unknown coeffic- 

ients Cj can be calculated. Clearly the solution of a plate problem 

is reduced to selecting. functions f( x, y ) and the accuracy of Ritz's 

method depends on how well these functions are capable of describing 

the actual deflected surface including the conditionS, at the boundaries. 

2.3.4 Finite Element Methods 

Energy methods are widely used for solving structural 

problems. However the application of Ritz method to complex plate 

problems was retarded due to the difficulties in selecting proper 

functions f(x, y The finite element technique is a dirdot 

development of the Ritz method where these functions ( shape functions) 

are chosen for a smaller region rather than for the entire area of the 

slab. Hence the finite element method is sometimes called the 

" Localised Rayleigh - Ritz Method ". 

The structure, in this case the plate or the slab is divided 
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into a set of elements which are "joined" at the nodal points. The 

deflection within each element is defined in terms of-generalised coor- 

dinates at the nodal points. These generalised coordinates can be the 

deflection, slopes of the deflected curvet curvatures etc. To satisfy 

minimum conditions for convergencep continuity should be achieved for 

all derivatives up to and including one order lower than those contained 

in the strain energy expression. The expresslon for the flexural 

strain energy for plates contain second order derivatives, therefore 

continuity of deflection and slope of deflected curve are required to 

define conforming displacement functions. 

Using these functions and the derived stiffness matrices 

for standaxd shapes of elements an approximate total potential energy 

of the element is computed. By summing up for all the elements the 

potential energy of the plate is determined. Similar to the Ritz's 

method the basic Lagrange equation is not used but the principle of 

minimum potential, energy is invoked to produce a set of simultaneous 

equilibrium equations from which the generalised coordinates can be 

found. I 

Standard finite element programmes are available to solve 

almost any plate problem. This method is perhaps more computer 

orientated than the finite difference technique. The accuracy of 

this method depends on the number of elements, the accuracy of the 

displacement function, techniques of representing loads and boundary 

conditions. The preparation of data can be time consuming and is a 

potential source of human error. At times the method requires the 

services of computer specialists. Generally the physical understanding 

of the problem is lost and it is difficult to check the accuracy of 

the results. 



22 

2.3.5 The Grid Analogy 

The grid analogy is again a very old concept dating back to 

the times of Eulýr and Bernoulli. They attempted to explain the 

vibration of plates by considering their division into beam strips 

Danusso extended this idea to the elastic bending of plates in which 26 

continuum form of the plate is approximated by a grid system of beams. 

The loads are applied at the joints where the*beams are connected. 

The analogy is achieved by using an appropriate geometry 

for the grid and selecting equivalent section Properties for the indi- 

vidual beam'elements inorder to represent a grid of equivalent stractural 

performance to the true plate or slab. 

(a) Torsion Grids 

In a torsion grid both ends of the beam elements are subjected 

to shear, torsion and beriding moments. At each joint the corresponding 

displacement consists of rotations about two axes together with a 

vertical deflection. For any beam element the forceý Vector [F] and the 

displacement vector[&]are related, bý 

[FJ []A] (2 
. 17) 

Where[h] is the (6x6)stiffness matrix of the beam element. 

(b) Torsionless Grids 

If the torsion of the beam elements and the corresponding 

twists at the joints axe ignored a torsionless grid is produced. The 

(6 x 6) element stifness matrix is then reduced to a (4 x 4) matrix. 

Examples of torsionless grids are therefore easier to solve due to 

the reduction in the number of unknowns. The torsionless g-zid is not 

a commonly used method now in slab design, probably because designers 
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believe that a more realistic solution is Obtained by the inclusion 

of torsion. It will however be shown later using plastic theory 

that a torsionless grid can be used to produce an exact solution 

for the collapse load of a reinforced concrete slab, whereas the 

torsion grid leads only to a lower bound solution. 

2.4 DEsIGN CF Two WAY REINFORCED CONCRETE SLABS - AN ENGINEERING 

APPROACH TO EIASTIC DESIGN 

2.4.1 Introduction 

The floor system of buildings often consists of a regular 

array of rectangular concrete slabs and therefore the design of such 

continuous panels is of considerable practical importance. The 

internal panels are in general supported on the four sides by beams or 

walls except in the case of flat slabs where only column supports are 

provided. Free edges may occur at the boundaries of external panels. 

The dead loads on the floors are of course uniformly distributed but 

it is not yet possible to determine the true nature of the imposed 

loads. In normal buildings the imposed loads too are also approximated 

by a distributed load. 

The analysis of such systems by the classical elasticity 

methods previously described is normally too costly and time consuming 

for the design office. Therefore the use of reasonably accurate simple 

design methods are required, but their application is usually limited 

to specific problems. These solutions are presented in the form of 

empirical formulae, graphs or tabulated coefficients. Some methods 

that are commonly used and recommended in codes of practice are 

discussed here. 
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2.4.2 Rankine and GrashoA Method 

This method which has been popular in codes of practice 

recommendations assumes a load distribution In two orthogonal 

directions which are uniform over the entire slab. The loads 

are carried only by flexure and the twisting moments are ignored. 

The uniform loads px and py carried in the respective x and y 

direction are such that 

Px + py =p ( 2.18 ) 

Where p is the total uniform applied load. The actual 

distributions p. and py are determined by the compatibility of 

deflections of the centre strips,, 

3 px, m5 Py LY 4 

384 Ex IX 384 Ey Iy 

and assuming that the flexural rigidity of the strips are equal 

PX Lý 4-p2.19 

-LX 
4+ LY4 

- 

The bending moment of the x and y strips are parabolic with 

maximum values. 

MX p1I, ý, 
4 Lxl- PLXI- 

8+ 

p2 , ý2 MY jtý2 ýy PLX2 2.20 
8+ 1ýý 

- 
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FIG. 2.2 RANKINE AND GRASHOFIS MMOD - SIMPLY SUPPORTED 

RECTANGULAR SIAB CARRYING A UNIFORMLY DISTRIBUTED LOAD. 
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Coeff icients of P; and Oy axe given in table 16 CP 114 

(1969) (4) and table 12 CP 110 (1972) (5). The load transmitted by 

the slab to the surrounding beams is uniform and is in the ratio 

1ý 4 
see fig. 2.2 ). This method Is normally applicable 

Lý 4 

to rectangular slabs simply supported on four sides and carrying a 

uniformly distributed load. Rankine and Grashof's method is normally 

assumed to be an approximate elastic method but it will be shown 

later to be more closely related to the plastic strip method of slab 

design and a generalised form of it based on the plastic theory will 

be developed in Chapter Five. 

2.4.3 Dr. Marcus's Method 

This method extends the approximate elastic solution proposed 

by Rankine and Grashof. In a more general form, equation ( 2.19 ) can 

be written as 

PX CX LX 
4p (2.21) 

C L4 +C 14 
YYxx 

Where Cx and Cy depend on the boundary conditions of 

the x and y strips and these values are based on the elastic beam 

theory. Dr. Marcus has introduced simple corrections to allow for 

the assistance given by torsion and the bending moments obtained in 

this manner agree favourably with those obtained from rigourous 

analysis based on the elastic plate theory. 

2.4.4 Westergaard's Method 

A familiar method for the design of rectangular slabs 

supported on all four sides and loaded uniformly is the use of 
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coefficients given in table 17 of CP 114 (4). These long standing 

coefficients were based on the analytical work done by Westergaard 

and the useful tests performed by Slater (3). Westergaard utilized 

and extended the results of Nadal, Neilsen, Hencky, Lietz, Mesnager 

which were based on the Navier, Levy or Ritz methods of solving the 

elastic plate problem. 

For rectangular panels with sides a and b (b less than a) 

subjected to a uniform load w- per unit area, the central and the 

edge bending moments were expressed as coefficients (of the form 

M/ wbZ). Westergaard plotted these coefficients against the ratio 

b/a for various combinations of the slab boundary conditions and the 

shapes of these curves were approximated by simple expressions. 

Westergaard (6) realised that these coefficients needed 

further modification in the light of test results which demonstrated 

the phenomenon of redistribution of stresses. He stated that with 

increasing load the stiffness of the material becomes small at the 

Centre and greater near the edges and stresses are redistributed 

from the Centre to the edges. Consideration was also given to the 

probability of simultaneous loading in the neighbouring panels. 

Further he divided the slab into a middle strip of half the span and 

two equal side strips of one fourth the span and proposed design 

coefficients for all strips. In addition Westergaard suggested 

coefficients for the bending moments in the supporting beams but 

these do not take into account the true distribution of loading 

In the Current recommendations in CP 114 (4 

the slab is divided into a middle strip of three quarters the span 

and two equal edge. strips and bending moment-coefficients are, given 

only for the middle strips. AdditionaItorsion reinforcements is 

required-at-tha. corners with simply supported or discontinous edges. 
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This method has-proved to be a useful practical way of designing 

commonly occuring reinforced concrete slabs but its application is 

restricted to rectazzigular slabs carrying a uniformly distributed load. 

2.4.5 Concentrated LoaAs on Slabs 

The method. of slab design discussed so far in this section 

are confined to uniformly distributed loading. In structures sue. 1 as 

bridges the effects of point loads are important and two methods 

commonly used in design are due -to Pigeaud and Westergaard. A good 

account of these is given by Rowe 

(a) Pigeaud's Method 

This method is suitable for central concentrated loads and - 

the results-are derivel from the lagrange equation. Pigeaud's curves 

give. values Of moment per unit length M, and M. as functions of, 

u/a and Y/b for various ratios of sides a/b . The dimensions of the 

concentrated loads uzLnd v along the respective sides a and b 

are determined from the pressure area of the'load and assumed to be 

spread through the thickness at -450 The maximum moments per unit 

length DIa and Mb across the sides a and b respectively are 

given for a Poisson's ratio of 0-15 as 

Ma, m( mi + 0.15 m2) F 

Mb ( M2 +0 . 15 Mj) P (2.22 ) 

Where P is the value of the concentrated load. Pigeaud's 

method is useful for slabs in which b<1.8 a. The limitations 

are that only central loads can be dealt with and the effects of a 

group of separated concentrated. loads cannot be accurately determined. 

Also, in pract-1ce the values of u/a or y/b can be veri small, and 
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M1 
, 
and M. cawnot be accurately determined. 

(b) Ifestergaa rd 's Method 

Westerga, axd considered the effects of wheel loads on slabs. 

His analysis was also based on the classical elastic theory for the fle- 

xure of slabs. The bending and twisting moments Mx 'M y and M 
XY at a 

point (x, y) on the slab is given in terms of hyperbolic and trigonom- 

etric functions. Expressions for moments are also given for a group of 

four equal loads placed at the corners of a rectangle. The induced mo- 

ments immediately under the concentrated loads are very high and these 

take into account the finite area of contact of the load and the 

thickness of the slab. 

Westergaards expressions have proved useful in the practical 

design of bridges and enable- the elastic moments to be derive& due 

to a group of separated wheel loads. 

2.4.6 Com-posite Action - Design of Supporting Beams 

In most structures, especially those in reinforced concrete, 

the slabs and supporting beams are constructed to be monolithic. 

Therefore they act as a single structural system which provides 

resistance to the applied loads. This behaviour is usually referred 

to as composite action. 

When the beam centroid is at a different level from the 

slab neutral axis, full composite action takes place, in which both 

vertical and horizontal shear forces are transmitted between them. 

significant composite action can still take place however when the slab 

and beam centroids coincide. Now only vertical shear forces are 

transmitted between them and this interaction has been termed partial 

composite action. 
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The theory of partial composite action in. elastic slab - 

beam systems has been well presented by Wood 8 Iater Khan 

and Kemp (9) extended the approach to cover full composite 

action. Wood has shown how the distribution of reaction between 

a supporting beam and a slab can undergo remarkable changes for the 

same applied load depending on the ratio Y, which is the ratio 

of the flexural rigidity of each beam to the flexural rigidity of 

half the slab width. In their study on full composite action Khan 

and Kemp too have concluded that I is still the dominant parameter 

governing the load distribution to the beams. Next in importance is 

the eccentricity of the slab and beam neutral surfaces. However for 

values encountered in practice the eccentricity factor is not very 

significant. 

Both codes of practice CP 114 (4) and CP 110 (5 

recommend a 450 triangular load distribution to be taken by the beam 

supporting either a square slab or the shorter side of a rectangular 

slab. The maximum bending moment on the supporting beam corresponding 

to a uniform load of q per unit area is therefore (q L3 / 24). 
00 

For any other type of loading on the slab there are no guide lines to 

determine: the load distribution on the supporting beams. 

Khan and Kemp have analysed numerically a single square 

panel slab beam fully composite system. They have proposed some 

simple design rules to predict the maximum slab and beam moments 

ard deflection and the loading on the supporting beams. 

Unfortunately in practical design codes the effects of comp- 

osite action are still largely ignored, mainly due to the complexity 

of the effects. There is however clearly a need for a simple method 

of slab design, which will readily incorporate the important effects 

of interaction between slabs. and supporting beams if the design methods 

are to represent correctly the real physical behaviour. 
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2.4.7 Flat Slabs 

Flat slabs are peculiar to reinforced concrete construction 

and consist of slabs supported solely on columns. They offer 

advantages over the conventional floors supported. on beams in 

providing better head room, economy in shuttering arxi a clear and 

unbroken appearence of the underside. To reduce the adverse shear 

effects from concentrated supports, the construction can have flared 

column heads and drops in the flat slab. Recommendations for these 

are'to be found in most codes of practice. 

The analysis of flat slabs based on solving the lagrange 

equation by Levy's method is given in Ref (1) and (2). The flat 

slab is idealised as a continuous elastic plate supportea by a row of 

columns. Coefficients for the positive moment at mid span, negative 

moment over the column and the deflection at the centre of the 

Panel are avail-able. This method does not take into account the bending 

moments induced in the columns, but this can be done approximately by 

analysing the flat slab and columns as a continuous frame. 

An empirical method of flat slab design is given in CP 114 (4) 

and CP 110 5 ). This method imposes further restrictionson the ratio 

of length to breadth in a panel, variations of length and breadth, number 

of panels in eachdirection and the size of drops. Taylor ( 10 ) showed 

that the formula given in equation 31, clause 332, CP 114 of 1959 (4 

for the bending moment failed to satisfy the overall equilibrium of 

the panel and was on the unsafe side. The CP 110 of 1972 (5) acknow- 

ledges this error and has increased this coefficient from 1 to l 
10 "9 

to give a moment value3 

mo n L. ( L, -2 he 
a3 
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In effect flat slabs have in the past been designed to a lower load 

factor by the use of CP 114 which may have been partly responsible for 

their economy and popularity. 

2.5 CRITICAL ASSESMENT OF THE VALUE OF ETASTIC METHODS 

OFF STIAB DESIGN. 

The analysis of slabs based on the elastic theory gives informa- 

tion on internal forces and deflections but only under working load 

conditions. The estimate of the load factor by the elastic method 

is generally conservative since it merely restricts the maximum stress 

at a point to'a permissible value. The elastic methods do not 

provide real information on the collapse load limit state. With the 

introduction of the new code CP 110 - 1972 and the limit state design 

philosophy, various critical states including collapse and service- 

ability must be considered. 

At faiture or sometimes even the working load range the 

fundamental assumptions of the lagrange equation are not valid. 

Materials are behaving plastically instead of being linearly elastic. 

The material of the slab is considered to be isotropic and homogeneous, 

yet even at the working loads there will be cracking which affects the 

stiffness of different regions and therefore the true distribution of 

internal forces within the slab. At higher loads more of the basic 

assumptions of classical elastic theory become invalid. The deflections 

may be large compared to the thickness of the slab and the geometry of 

the slab will be changed significantly. It has been observed that 

concrete slabs with their low percentage of steel are capable of 

substantial redistribution of stresses. These effects are not consid- 

ered in the elastic analysis apart from the redistribution-of moments 

from the Centre to the support regions allowed in practical design codes. 



33 

Therefore it can be concluded that the classical elastic theory is 

both complex for the design office Purpose and yet not physically real. 

Useful approximate elastic methods of slab design are avail- 

able for a limited number of slab problems such as the regular floors 

of multistorey buildings. However, the information provided in codes 

of practice on distribution of loads to the supporting beams is very 

limited and physically incorrect and these are not applicable to irreg- 

ular shaped slabs or complex loading ýatterns. 

Numerical methods based on the finite element or finite 

difference techniques can be employed to determine an elastic solution 

of any slab problem. These methods give the bending moments MM 
x, y 

and the torsional moment M 
XY t 

but no rational elastic method has yet 

been developed to determine the reinforcement in the x and y direct- 

ions which include the torsional moment M 
XY 

Recourse--then has to be 

made to plastic theory as proposed by Wood 11 ) and this will be 

discussed in the next chapter. 

Generally therefore it may be concluded that although elastic 

methods have proved useful in the past, their contributions within the 

limit state design philisophy leaves much to be desired. 
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CHAPrER THREE 

PLASTIC METHODS OF SIAB DESIGN 

1. INTRODUCTION 

It .. is accepted that, mOst engineering materials are elastic 

only at small loads and they undergo inelastic or plastic deformations 

at higher loads. These deformations, in general are time and temperature 

dePendent, but these effects are not considered here. In analysis 

an imp ortant assumption made about the mechanical properties of the 

material iS that the material is considered to be perfectly plastic, 

which means it is capable of indefinite strains once the condition 

of yield have been reached. In the simple, plastic theorythe effects 

of elastic deformation and strain hardening are ignored. This simple 

rigid - perfectly plastic method for the design of structures has the 

advantage of savings in material, simplicity of calculations and a 

more realistic prediction of behaviour near collapse. 

The machanical, properties of mild steel makeit an ideal mater- 

ial to be analysed by the simple plastic method. Plastic methods can 

also be extended to reinforced concrete sections particularly slabs 

and beams where the percentage of steel reinforcements are small. This 

quantity of steel must be small enough to ensure that the failure of 

the members are dominated by the yielding of steel reinforcement rather 

,, han the crushing of the concrete. 

1.2. HISTORICAL BACKGROUIM 

The foundations of the theory Of Plasticity were laid in 

about 1870 by Saint Venant, and Levy (12). Saint Venant derived the 

equation of plane stress and Levy extended this method to cover the 

three -dimensional solid. In 1911 - 1914 Bach and Graf (2) ca=ied 
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out a series of tests on plates and conlcuded that the average 

bending moment per unit length across the diagonal of a simply 

supported square plate of side L was (WL z /24) where W is the 

load per unit area. 

The origin of the plastic method of concrete slab design 

must be accredited to Inglerstev, (13) who in 1923 presented a 

method for calculating the ultimate strength of rectangular 

reinforced concrete slabs. He observed that the cracks start near 

the centre and propagates to the corners, indicating that "Stresses 

have been equalised after the steel has passed the elastic limit 

when deformation of the slab takes place without corresponding incre- 

ase in stress ". Ingerslev made the following assumptions; (a) the 

bending moment is distributed uniformly across the rupture lines, 

(b) there is no shear at sections where the bending moment is a 

maximum, (c) each segment of the slab is in equilibrium due to the 

action of the total working load, upward reaction and bending moment 

along the rupture (yield) line. 

Essentially Ingerslev has stated the principles of the yield 

line theory using the so called but misleading "equilibrium method". 

He obtained the correct collapse load for a rectangular slab with 

simple supports carrying a uniform load. This method can infact be 

extended to the general case of a rectangular slab with restrained 

edges and unequal ( orthotropic)reinforcements - 

The yield line theory in its present form is the result of 

the work done by Johansen (14) in the 1940 s. His thesis on the yield 

line theory is an amplification and an extention of the work done by 

Ingerslev. He proposed two ways of calculating the collapse loads; 

these are the work method and the equilibrium method. 

The yield line theory had a very controversial introduction 
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to the English - speaking countries largely due to the theoretical 

justification of the "equilibrium method". Extensive research 

continued following the English translation of Johansen's thesis 

(14) and publications by Wood (15) and Jones (16). Theoretical 

work by Kemp, Morley and others in a special publication (17) which 

appeared in 1965 has resolved the controversy and it is now known 

that the two methods are valid alternative approaches and give the 

same prediction of upper bounds to the collapse load. 

A powerful alternative to the yield_ line theory is the 

strip method suggested by Hillerborg (18). It is eSS. entially a design 

technique and provides complete information on the distribution of 

reinforcement required, Hillerborg originally intended this method 

to produce safe or lower bound results for the collapse load. The 

predicted collapse load of slabs designed by the strip method will 

be discussed in detail in chapters 4 and 6 

3.3. PLASTIC THEOREMS 

For many structures no exact solution can be found for the 

forces required to cause continuing plastic deformation. However 

there are methods that are developed to establish two values for this 

force, one of which is an overestimate, whilst the other is an under- 

estimate. This subject and the theorems of limit analysis were develo- 

ped in the 1950's by Prager and Hodge (12) and others. The theorems 

when applied to plate problems can be presented as follows. 

(a) Upper bound theorem 

Any solution which provides 

(1) A kinematically acceptable mechanism and 

(11) Satisfies the work equation: - external work done by the 

loads equal to dissipation of plastic energy# will give an upper boundi 

on the collapse load of the plate. The corresponding collapse load 
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is therefore either correct or too high and from a design point of 

view it is an unsafe solution. 

(b) Lower bound theorem 

Any solution which 

(1) Satisfies equilibrium at all internal points and 

at the boundary of the plate. The equilibrium equation of a plate 

can be written as (see fig (2.1. )) 

2 mx +62my-2 ý2M 
xy 3-1 

bxz 6 3r2 ýxý 3r! 

and (1-1) The yield criterion (see section 3.4) is not violated at 

any point, will lead to a lower bound on the collapse load. The 

calculated collapse load is therefore correct or too low and from a 

design viewpoint is a safe solution. 

(c) Uniqueness theorem 

Any solution which simultaneously satisfies the upper 

and lower bound theorems will give the unique value of the collapse 

load. The requirements of the plastic theorems can be summexised as 

Mechanism 
Upper bound 

Work equation 
Unique solutioJW 

Equilibrium 

Yield criterion 
Lower bound 

3.4. YIELD CRITERION FCR REINFORCED CONCFETE SIABS 

To apply the plastic theorems to rigid plastic plates it 

is necessary to define a yield criterion. The yield criterion for 

orthotrapically reinforced concrete slabs is due to Kemp (19) and 

Morley-t and was derived by requiring that in all directions the 
I 
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applied normal moment IIn be equal to or less than the yield normal 

moment -a n Provided by the reinforcements in the slab. Yield occurs 

when the applied normal moment curve just touches the yield normal 

moment curve as in Fig (3-1) which can be mathematically defined as 

n 
Mn 

( 3.2 ) 

nb Mn 
b-& 

- 
be 

For reinforced concrete slabs it is assumed essentially 

that the reinforcing bars are yielding in uniaxial tension and the 

plastic bending moment per unit length is given by (see fig 3.3. 

mn mx Cos 2. G +my Siný-G ( 3.3 ) 

where m- and m are the yield moments per unit length in the y Xy 

and x directions and -e is the inclination of the yield line to 

the y axis. Using the particular bending moment equation ( 3.3 

the second expre ssion of equation (3.2) becomes identical to stating 

the equality of the yield and appiled twisting moments 

Mnt 'Int ( 3.4 ) 

By eliminating -& from the equation the yield criterion 

for an orthotyppically reinforced. slab is defined by 

MY), > positive yield - (m - I&) (m M2 
xY XY 

M2 negative yield - (M' +M (M /+M> 
xxyy xy 3.6 

These equations each define an elliptical cone and the complete yield 

surface is shown geometrically by fig ( 3-2 
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Kemp (19) has also given the yield criterion for concrete 
^ is 

slabs in terms of the principal moments. The yield locus composed of 

two sets of hyperbolas. For isotropic reinforcement the yield locus 

becomes the familiar square or rectangular yield criterion presented 

by Johansen (14). The corresponding principal moment surfaces are 

defined by 

positive yield (M 
x-m 1) 

ýmy 
-m 2) 

>01 0 3-7 

negative yield J# mm "' +m 2) 
>03.8 (lax + 1) 

(Y 

3.5 PIASTIC DEFORMATIONS 

The yield surface of a reinforced concrete slab is defined 

by equations ( 3-5 ) axd ( 3.6 ) which can be written as 

F (Mxt MY Im xy ,mx, my)-0 ( 3.9 ) 

The slab is considered rigid for any stress state within the 

surface. Unlimited plastic deformation is possible for stress states on 

the surface F and it is not possible to have any stress state outside 

F. The slab is rigid until the generalised stresses satisfy equation 
0 3.9 ) when plastic curvature rates K, K and K occurs xy xy 

According to the plastic potential theory the tensor of 

curvature rates 
ix, iY 

and 
ky 

corresponding to the generalised stresses 

MxIMy and M 
XY are 

F iy 
F .. d Ky F 

mx my m 
xy 

where :N is an arbitrary positive scalar. 

( 3.10 ) 

Partial differentiation of equation ( 3-5 ) gives 
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x (M y-v i (M x- ýX) y 
XY )ýxy 

The dirsipxtion of energy, per unit area of the slab is 

given by 

DMx+My 'k 
y+ 

2M 
XY 

k 
XY 

3.12) 

In the principal stress space there are only two generalised 
I stresses M, and M2 and associated with these are the principal 

curvature rates lZi and kt the direction of which are given by 

Taxi-' / 2K 2m 
xy ) xy 3.13 

xy- my) - (Mýc -, my) 

) 

Kemp (19) has shown that the curvature rates defined by equations 

(3-11) and (3-13) are exactly in accordance with a yield line in the 

direction shown in fig (3-1). Thus the plastic flows predicted 

by the plastic potential theory and those derived by the concepts 

of yield line theory are icIe-nttc4-: %I. 
__The _ýrinciýal 

r-urVcjturC 

the clirectfon oj ---fke yie-Ij line i*s therefore zero and the dissi- 

pation of energy is given by, 

D Mn Kn3.14 

It is of particular interest to note the discontinuities in the general 

yield surface ( Fig- 3.2) at the apices of the cones and at the inters- 

ection plane of the two cones. The apex Points A and B represents 

the conditions where the yield moments are principal moments and both 

positive or both negative respectively. At all points on the disconti- 

nuity at the intersection plam of the two cones simultaneous negative 

and positive yield takes place, but the applied principal moments are 
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only yield principal moments at points 0 and D. In accordance with the 

plastic potent3al theory at points A and B, positive and negative 

yield respectively may occur in any direction. Whereas at points 

on the intersection plane of the two cones, the directions of 

positive and negative yield are specifically defined. At points 

C and D the yield will be in the directions of the principal 

moments. 

The representation of the yield. criterion in terms of 

the normal moments (fig 3.1 ) has considerable advantages when 

considering deformations. Points A and B would correspond to the 

two curves- Mn and mn being entirely coincident. Positive or 

negative yield is possible in any direction as in fig (3-Z). For 

any point on the intersection plane of the two cones, M will touch 
n 

both the m and mf curves as in fig (3.1) and both positive nn 

and negative yield occurs and the directions of yield are defined 

by the angles ý& where the two curves touch. 

3.6 YiELD =m THEoRy 

3.6.1 IETRODUCTION 

The Pko"neer work in the plastic design of reinforced 

concrete slabs must be accredited. to K. W. Johansen. The English 

translation of this thesis (14) is a valuable reference for engineers 

and designers. Johansen developed the yield line theory before the 

plastic theorems had been published in their present ýorm. The 

essential assumptions in the yield line theory are.. - 

(1) The slab Is divided into rigid segments by yield lines 

(so that the elastic deformations are neglected) and is deforming 

plastically at those yield lines. 
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(3-1) All reinforcing steel is "plastic" along the yield lines 

(111) The moments along the yield lines co=espond to the yield 

normal moment (equation 3-3) 

2z Cos -& +my Sin 4 

It should be noted that although Johansen defined the 

twisting moment on the yield lines as M (m m)S in 2-& 
nt xy 

only the plastic normal moment is used in the analysis. The actual 

twisting moment on the yield line is strictly undefined. This is 

effectively equivalent to using tangent planes to the true yield 

surface defined by equation (3.3) 

Johansen goes on to determine the solution for the collapse 

load using the concept of nodal forces and in a later section devel- 

opes the alternative virtual work method. Kemp, Morley and others 

(17) have shown that these two methods are identical if properly used. 

The Johansen's "equilibrium" meth od is therefore a misnom-er in 

that It leads to an upper bound and not as itsname might imply, a 

lower bound solution. It Is necessary in both approaches to consider 

the most critical yield line pattern in order to determine the lowest 

upper bound collapse load. 

3.6.2 Applications of the Yield line theor-Y 

Strictly yield line theory is not a design method, but a 

method of analysis. However it has become a popular method with 

designers and is an approved method in many national design codes. 

Yield line theory has also been used to derive the coeffic- 

ients in table 13 of CP110 (5). These coefficients were first derived 

assuming a uniform distribution of reinforcement. However to maintain 

the format*of the CP114 (4) recommendationst the steel is then concen- 

trated in the middle strips which are'three quarters the width of the 
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slab. 

In deriving these coefficients, it was thought desirable, 

from serviceability viewpoint to maintain the same ratio of positive 

moment within the span to negative moment at the support as in 

Table 17 of CP114. Also for the same reason, the relative proporttoyl 

of short span to long span resisting moment was maintained. Comparing 

these tables 
, 
"it is clear that in many cases the yield line 

method requires less material for the same slab problem. 

3.6.3 - Advantages and limitations of the yield line theory 

Experimental 'evidence has shown that yield line theory is 

reliable for determining the mode of failure and the ultimate stren- 

gth of-concrete slabs. Although theoretically the. method leads to 

anupper bound solution to the collapse load, In practice, strain 

hardening and membrane action provide reserves of strength not consi- 

dered in the theory. The ýaethod when compared with elastic solutions 

is associated with economy of steel. 

Yield line theory does not however give much information 

on how the loads on the slab are transmitted to the supporting beams. 

For rectangular slabs CP110 has copied the CP114 recommended 45 0 

load distribution to the short side. It has also been suggested 

(13) that -beams carry the imposed load on the segments corresponding 

to the collapse mechanism. Application of this method is not straight 

forward with corner fans or point loads. 

The critical load has to be obtained by trial and error and 
I 

in practice a reduction is made (as with corner fans) to cover more 

critical but more complex mechanisms. Prediction of the mechanism 

with a combination of loads can be very difficult and the law of 

superposition is not strictly valid though upper bounds can be obtained. 

This method does not give any information on deflections, 
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but in practice these are controlled by specifying ratio of span 

ýo deptý and choice of the load factors. Another serious disadvan- 

tage is that this method does not provide information on the required 

distribution of reinforcements within the rigid portions of the slab 

between the yield linesO If due to economy variable or banded 

reinforcements are provided, the number of possible mechanisms will 

increase and it becomes difficult to be sure. that the most critical 

mechanism has been found. 

3.7. PROVISION OF STEEL IN ACCORDANCE WITH A PREDETERMINM 

FIELD OF MOMENTS 

3.7.1 Introduction 

If a moment field, can be derived for-a slab which is, in 

equilbrium. with the loadsq and, then reinforcement'provided to -satisfy 

the yield criterion at all points then a lower bound solution for the 

collapse load will be obtained. An elastic moment field is one such 

equilbrium, field which can be determined systematically and which will 

not depart too far from the moments under working loads. If therefore 

the correct yield moment field can be provided, a general method of 

producing lower bound solutions for the slabs is aVallable. 

The yield criterion for reinforced concrete slabs has been 

described in section 3.4. This can be expressed either in principal 

moment space or in terms of the generalised stress resultants Mx 

M and M. The problem of reinforcing a slab when this moment y xy 
triad is known is of great practical importance and it has been emph- 

asized previously that this problem has not been solved satisfactorily 

using elastic theory. 

A procedure for placing orthogonal reinforcement in a con- 

crete slab subjected to a single moment triý&-- 
y XY 

was suggested by Hillerborg (Zl). Wood re-examined Hillerborg Is 
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work and presented the rules in a slightly different form. Wood's 

restatements are based on the yield criterion proposed by Kemp (19). 

In practice many slabs and particularly bridge decks are 

subjected to multiple loadings and therefore reinforcements must 

satisfy the multiple moment triads. An extension of the method was 

suggested by Kemp (22) which then becomes a problem in non linear 

programming. 

3. Z. 2 Provision of steel 

If the reinforcement is arranged to follow the paths of 

the principal moments, the total amount of steel will depend on the 

sum of the principal moments, IM 
11 +IM 21 . 

Although the minimum 

steel is required when the reinforcement follows the principal 

moment trajectories, in practice it is more economical to arrange 

the reinforcements in two directions usually at right angles, decided 

by the geometry of the slab. 

The problem can be stated as given a single moment triad 

Mx, My, M 
XY 

) at a point, find the optimum yield moments mx and my 

such that the yie2d criterion is not exceeded at that point, expressed 

in a mathematical form. 

( mx -N)( my - my ) >,, ýy ( 3.15 ) 

and (mx+my) to be a minimum 

With the equality sign introduced, equation (3-15) repres- 

ents a rectangular hyperbola with asymptotes at mx=Mx and 

My-My as shown in fig ( 3.4 ). The reinforcement Provided (mx My 

must be sele. cted, to lie in the safe region such that the function 

(m 
X+my) 

is a minimum. The function (m 
X+my)= constant defines 

a family of straight lines at 45 0 to the axes as shown in fig (3.4). 
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It can be seen from the figure that for positive yield the statio- 

nary minimum safe value of (m. +my) occurs at the point A, 

where 
m+M 

x xy 

my=my+ MXY ( 3.16 ) 

In general it can be shown that the optimum moments are given by 

mx=mx+I I&Y ( 3.17 ) 

y Nam y+ INY1 

Where it occurs as in fig ( 3.4 ), point B does not lie on the real 

part of the yield curve, there is no stationary minimum value for 

the required negative moments ie the point B does not lie in 

the third quadrant. A least 'Value 

will however be provided by the po 

cuts the m axis. Substituting 
y 

3.15 ), the required moments are 

goo 

of (m 
x+my) 

for negative yield 

int, 0, where the yield curve 

mx=0 into the yield criterion 

given by 
k 

mm (negative) 3.18 
yy 

Algebraic expressions for the required yield moment in various situ- 

ation, which arise have been derived by Wood ( 11 ). Depending on 

the sign and magnitude of ýx ,My and M 
xy there are eight different 

cases and it is necessary to check all eight cases for a single 

loading. 

The graphical presentation of the problem given by Kemp 

22 ) and shown in fig ( 3.4 ) is helpful in visualizing the problem 

and is particularly useful when the problem Of multiple triads are 
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considered. Expressed in a mathematical form the problem is to 

select (mx, my) such that 

(m x- 
býj) (my - my, ) :; ý: - mxyi 

i-I to n(3.19 ) 

(m +m) Is a minimum 

This is a problem in non-linear programming, with a linear 

optimisation function and non-linear constraints which are the yield 

criteria. In general the optimum yield moments cannot be found with 

ease and in such circumstances Kemp has suggested ways to compute 

upper bounds to the yield moments that are close to the optimum. 

3.7.3 Conclusions. 

This method of slab design has proved popular with designers 

largely because it is safe and systematic. The optimum yield moments 

mx and my are chosen such that the yield criteria are not violated 

and therefore by the plastic theorems will lead to a lower bound on 

the collapse load. This method is computer orientated and in practice, 

particularly with multiple loading, may lead to a very poor lower 

bound. The reinforcement pattern is not banded and often leads to 

a concentration Of steel in regions of high twist. Further the method 

is not economical with high twist, since 114XI +I MYI 'm I M11 +1 M 21 
and the factor 21 is a direct measure of the excess 

IM 
xI+ IM yI of steel provided. 

3.8 MINIMUM WEIGHT SOLUTIONS 

3.8.1. lntroduction 

It is common in slab designs to provide steel In specified 
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directions over certain regions of the slab. This is perhaps the 

simplest form of reinforcement and is a suitable starting point for 

the study of multiple mechanisms which will be associated with redu- 

cing reinforcement. The amount of steel that can be saved depends 

on the work put in by the designer, ýut may be profýtable where 

designs are repetitive. There is however, a theoretical lower 

limit to the amount of reinforcement which can be determined for 

particular slabs by minimum weight concepts. 

3.8.2 Minimum reinforcements in concrete slabs 

Mor. iey (23) established sufficient conditions for the 

minimum reinforcement in concrete slabs. The concrete slab was 

considered to be of uniform thickness-and the effects of membrane 

forces, shear forces and tensile strength of concrete were neglected. 

It is envisaged that the mild steel bars were of small diameter 

compared to the thickness of the slab and were closely spaced. In 

effect, each steel layer can be replaced by a thin sheet of the same 

local mean cross sectional area in any desired direction and acting 

only in uniaxial tension. The variation of the lever arm over the 

slab is thus neglected. 

The total volume of steel V. required over an area A 

of the slab is given by 

Va+a) &A 3-20 
s1z 

where a, Mll and a2 -(3.21 I'M21 

Tya 

M, and M2 
are the principal moments per unit length, V' 

y and d 

the yield stress and lever arm respectively. a., and a. are the 

thicknesses of the equivalent steel layers in the directions of 
, 

M, 
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and M2. 

Intergrating over the whole area 

Vs-1j 
Imil 

-t 
I 

M21- dA 3.22 
Cr d 

yA 

Hence the problem of finding the minimum reinforcement reduces to 

that of finding the minimum value of V the moment volume where 

V IM11 + 
IM 

21 dA 3.23 

1.8.1 Sufficient conditions for minimum weight solutions 

and a-p-plications to slab design 

A moment distribution is said to 11 correspond 11 if the 

principal moments M1 and M2 and the principal curvatures K, and 

"2 have the same sign and direction. Morl&y proved that,: - 

mmI dA <+ IM21 dA 3.24 11 + 21 

co=esporiding field -non'corresponding field 

The sufficient conditions can be summarised as : - 

If for a slab a particular moment distribution '0" "corresponds" 

to the displacement field which has 

(a) The curvatures lIC11 IX21 K throughout 

except in regions where 

(b) I K11 -KI Y-21 < K and M0 or 2 
K21 -K I K11 < X and M, 0 

then that field has a minimum moment volume. The problem of finding 

such a distribution field is purely geometrical. 

In a neutral area where jKjj ý IK 
2K it is 

possible that M, 2h 0 and M2 : At 0 M, and M2 can be in any 
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direction and the loads too can be distributed in any direction. 

For a simply supported rectangular slab shown in Fig (3-5), the 

regions JEH and FKG are such neutral areas. 

If K, -- K2 -+K the deformaticn surface is anti- 

clastic and there is less freedom since for correspondence the loads 

must be distributed in the directions of the principal curvatures. 

ie for regions such as AEJ loads must be distributed parallel or 

perpendiculax to side EJ as shown though the ratio of such distri- 

butions can be axbitary. 

In regions' where .1 
K11 K and IK 

2<K the moments 

M2 must be zero. The region EFGH is such an example and the loads 

must be carried only in the direction of K, ( ie EH or FG ) and 

the signs of M, and K, must be the same. 

Fig- 3-. 5 shows the solution for the slab ABCD and illus- 

trates the three types of displacement fields which are sufficient for 

a minimum weight solution. The moment volume due to a uniform load q 

is V0-(0 
. 0834 t- 0 . 0313 L PL3 ( 3-25 ) 

wnich reduces to 0.521 pL 
4 

or 5p L for a simply supported 
96 

square slab. 

Morl, ey 's methods are associated with no constraints on the 

reinforcement directions. It is likely that such methods are less 

applicable to practical problems and a minimum weight solution for 

reinforcement that is straight and orttiogonal over the entire slab 

may be mom important. 

Such a method is-due to Rozvany and Charratt (24)., They 

derived optimal solutions for straight reinforcing bars in specific 

directions assuming that the twisting moment Mxy -0 and satisfying 

sufficient conditions. For rectangular slabs Simply supported on 

four sides or simply supported on three sides and free along the 

fourth their results indicated that the difference between the 
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torsionless optimum solution and the more general absolute minimum 

solution is very small. If straight curtailed reinforcement is 

provided on the basis of the elastic moment field and a suitable 

yield criterion (section 3.7) then V/VO taxes a value of 1.596 

3.8.4 Comment on minimum weight solutions. 

It is Important to designers to know the absolute minimum 

moment volume for a given slab problem. This acts as a standard 

against which practical designs can be judged. To achieve the minimum 

it would be necessary to provide very complex layout of reinforcements 

and the designer must balance the cost of complicated detailing and 

steel fixing against the saving of material. 

The minimum weight solut3-ons do not give any indication of 

the deflection of the slab or cracking so the serviceability of the 

slabs may not be satisfactory. Tests on these slabs have shown that 

they exhibited membrane action to a smaller extent than normal slabs. 

3-9. LOWER BOUND SOLUTIONS - CLASSTCAL PIASTIOTTY. 

3.9.1. Introduction. 

Another method of obtaining lower bound solutions has been 

given by Wood (15) following tnose developed by It-ager for the steel 

plates. However this semi-Intuitive method has been more successfully 

applied to concrete slabs primarily due to the f OrM of yield criterion. 

3.9.2. Applications to -rectanpmlar slabs. 

Consider a rectangular slab, sImPly supported and ca=ying 

a uniform load Fig. (3.6). The origin of the axes X and Y are at 

the centre. Intuitively derived normal bending moments Mx and 

my which satisfy the boundary conditions are 
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M=M 4xZ 

L2 

and MY =my 
tz 

3.26 

The distribution of the twisting moments Is then chosen 

so that the equill-brium equation (3-1) is satisfied; cleaxly 

mxy -p- 4mX - 4m 
v- 

6xby 2T 

or M 
XY 

4mX - 4m 
v xy + Bx + Cy +A 

along the centre lines x-o and y o, M 
xy -0 and A too 

can be chosen so that 

m[p- 4m - 4my xy 3.27 
xy x F 

Jý 

Equations (3.26) and (3-27) do not indicate how much load can 

be safely carried by the slab and in-order to find this the yield 

criterion is invoked 

ie ( mx - I& )(my- my ) >, ý? X, 

and the saf e solution f or the ýN: distributed load p becomes 

p> 8m +m + mx L2 3.28 
xx 

L2 myLmy 

Substituting mx-M and my- aM and 

p :ý 8/UM ++ 1] 3.29 

For the same slab it can be proved by yield line theory that the upper 

bound to the collapse load is 
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p< 24/um- x ( 3.30 ) 

IF WFI 
Kemp (2.5) has calculated the values of p from equations (3.29) 

and (3-30) for the range values of 'A and /1-11 normally encountered. 

He observed that the lower and upper bounds agree with a maximum 

discrepancy of about 1.5%. The lower bound moment field is given 

by 
I& =M( 1-4x 2M 

ý4M ( 1-4y2-) and M 4/. tM.. (xy) 
y XY 

L2 Iz LI 

( 3.31 ) 

Although the lower bound solution derived is here close to the unique 

solution, the classical plasticity approach is not likely to be of 

great value in practice since such solutions have been found only 

f or a Umited number of slab problems with simple geometry and loading. 

3.10. HILIERBORGIS STRO MM OD. 

3.10 1. Introduction. 

In 1956 Arne Hillerborg presented an equilibrium theory for 

the design of reinforced concrete slabs. His intention was to present 

a method that is easy to apply aýd at the same time gives conservative 

values for the collapse load. This equilibrium method is referred to 

as the strip method and Hillerborg presented a simple theory (25) and 

an advanced method (26). A good descripition and a critical assess- 

ment of this work has been given by Wood and Armer (27). 

- The equilibrium equation for the slabs is given by equation 

as 222 mx+m2M 
q. 

-Y : ý-Y_ 
x2 42 xy 

Hillerborg stated that "If for a certain load qa moment 

distribution can be found which satisftes-the equilibrium equation (3-1) 
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and the boundary conditions and if the limit capacity of the slab 

is not exceeded at all points, then the value of q is a lower 

limiting value of the collapse load". This is clearly a restate- 

ment of the lower bound theorem. later it will be shown, rather 

surprisingly that in most cases the solutions are infact unique. 

3.10 .2 The simple strip method. 

This method is applicable io slabs of any shape which 

are loaded uniformly and supported continuously. The theory assumes 

that at failure no load is carried by the twisting moments and there- 

fore these are equated to zero at all points of the slab 

ie NY 0 (3-32) 

and of course all derivatives of M 
XY are also zero at all points. 

The equilibrium equation (3.1) now becomes 

ý2mx + 2M 
Vq 

ýx2ý YZ 

if 2mx C(q qx 

X2 

then 2m (1- C( 
2 

y 

= -9y 

and +9 3r = OC9. - + (1- Ok )9 - 

(3-33) 

(3-33. 

(3-33. b) 

(3-33. c) 

The division of ct can be seen as a distribution of loads 

in the x and y directions, which leads to the name "STRIP METHOD" 

and OC and (1 - Cx) define the proportion of the loads carried in 

the x and y directions respectively. Generally (Y- is so chosen 

that the load is ca=ied to the nearest support. Normally cK is 

assumed to be such that 0 <C< < 1, or more often cK is chosen 

to be 0 or 1 in which case load is transmitted totally in the 
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y or x direction. This has been a serious limitation of the simple 

strip method though it is possible to allocate any value to o( without 

violating the equilibrium equation (3-1) 

Lines of load discontinuity are introduced as shown in fig 

(3-7). The ie show the sudden changes in the direction of load disper- 

sion and also gives the load distribution on the supporting beams as 

shown In fig (3-8) 

3.10.3 Application of the simple strip method. 

Fig (3-7) and (3.8) shows the application of this method 

to rectangular slabs subjected to uniform loads. Fig. (3-9)to (3-11) 

shows three possible methods of designing a simply supported and uni- 

formly loaded square slab. 

The example shown in fig (3,9) is a slab having only one 

strip each way. Here "1- Oý ý 0-5 for the entire slab. This 

corresponds exactly to the Rankine and Grashof's method discussed in 

Chapter Z and the moment volume corresponding to this distribution is 

qaý ( 0.0833 a4 
12 

The distribution in accordance with fig (3-10) will require 

much less reinforcement. The moment volume for this arrangement is 

qa 
4 

o. o6Z5 qa 
4) 

which is 2C% above the absolute minimum. 
16 

The division of strips in fig (3.11) is identical to the 

CP 114 and CP 110 recommendations, the middle strips having a width 

of three quarters of the span and the edge strips one eighth of the 

span. This example indicates the provision of banded reinforcement 

which avoids the varying strips associated with trapezoidal and triang- 

ular shapes formed by the load distribution lines. The corresponding 

moment volume is - 0.0697cLa4. - 

In each case the supporting beams must be designed to carry 

the theoretical distribution of load. 
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3.10.4 Comments on the simple strip method. 

The simplicity of -the method and its advantages are apprar- 

ent. This is a method of practical design rather than -analysis cf-aslab 

with given reinforcement. Design of the supporting beams and the 

curtailment of the steel presents no problems since full information 

on loads and moment distributions is available. Discontinuity lines 

can be chosen to fit bands of reinforcements as in fig ( 3.11 

The simple method is readily applicable to certain slab 

problems but the method breaks down with point loads or point supports. 

At the moment there appears to be no rational way of determining ix 

for the regions which will ensure satisfactory service conditions. 

3.10.5. The advanced strip Method. 

In 1959 Hillerborg (26) developed a method to overcome the 

limitations of the simple theory especially the transfer of shears 

from the st rips to a column support. Hillerborg recognised three 

types of elements generally in slab problems which are shown in fig 

( 3.12 ). 

Type (1) Element - Rectangular in shape with load Carried In 

one direction. 

Type (11) Element - Triangular in shape with load carried in 

one direction. 

Type(lll) Element - Rectangular in shape, supported at one 

corner and load carried in two directions. 

Type (1) and type (11) elements are similar to those encountered 

in the simple strip method. These elements can carry both positive 

and negative reinforcements. deperiding on the nature of the problem. 
The analysis of the type III element is more complex and 

rather difficult to develop rationally. Hillerborg uses a radial 
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stress field together with primary and secondary load actions to 

transfer the loads from the element to the column. Finally he 

achieves his solution by proposing a set of rules for reinforcing 

the element. 

Hillerborg has devoted considerable efforts to overcome - 

the problem of point supports by the use Of type III elements. 

Nevertheless the simplicity of the strip method is lost and this 

approach is not satisfactory as a practical design procedure. The 

proof given by Hillerborg is for the case of a uniform distribution 

of load witýin the element and it will be increasingly difficult to 

find a suitable stress field for any other type of loading. 

The reinforcement pattern has been intuitively derived to 

satisfy the overall equilibrium of the element only, and it will not 

be possible to argue that the advanced method will always give lower 

b. ourA solutions for the collapse load. 
I 

3.10.6 Wood and Armer's Alternative Treatment of Type III 

ElementS*. 

Wood and Armer (2-7) critically examined Hillerborg Is strip 

method and suggested an alternative approach. They used the classical 

plasticity method to derive a more systematic and comprehensible type 

moment field. For the type (III) elements shown In fig (3-13). 

Wood and Armer observed that the moment field 

mx pa? - 4x2 
8 a2 

2 m Ph- 4v? - y 
8 102 

and Mxy --p xy (3-34) 
I 
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satisfy the equilibrium equation and boundary conditions. 1& 9 

M and M are known therefore at all points and reinforcement can 
y xy 

be provided in accordance with section (3.7) 

If however the type (III) element is internal, then a 

moment field with negative moments along the two boundaries contain- 

ing the column and positive moment along the other two boundaries is 

required. This can be achieved by adding unif. orm negative moments 

m xi and m yl over the whole area. The corresponding moment field 

is then 

mx pa 

2 my pb 

8 

, ýcy xy 
«i 

( 1- 4x 2)-m 

a 

4y? - m 
b2 

( 3.35 ) 

and m., and m will not alter the equilibrium equation. This 
. yl 

method introduces the twisting moment and therefore is strictly not 

a strip method. Further it will not be possible to find a suitable 

stress distribution for all types of loading. 

Wood and Armer have also suggested the use of strong bands 

to carry point loads instead of the type (III) element. They have 

remarked that this method is successful in tests, but there are no 

reliable rules for determining a width of band which will ensure 

satisfactory service conditions nor is there any information on the 

reinforcement required outside the bands. 

1 
3.11 ICEMPS MODIFICATIONS TO HILLERBORGIS STRIP MMOD. 

In 1971 Kemp (28) published an extension of the Hillerborg's 

strip method to deal with, concentrated loads and supports which main- 

tained the concepts of the simple strip method of assuming the twist- 

ing moment M 
XY 

0 everywhere. For an q -per 
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unit area the equilibrium of the vertical forces is 

Q-x + y= -q 3.36 
x6y 

where Qx and Qy are the vertical shears per unit length along 

the y and x directions respectively as shown in Fig (2.1). 

Kemp used this shear equilibrium equation rather than the moment 

equilibrium equation (3.1) and derived local distributions of 

loading. His method can be illustrated by referring to a finite 

orthogonal element of slab shown in Fig (3,14). The equation of 

vertical equilibrium for the element is 

3.37 

if W is zero ie if the slab element is unloaded then the equil- 

ibrium requirement is 

(SI S (S S 3.37 b) 
xxyy 

which means for such an unloaded element the interaction of forces 

between orthogonal strips must be equal and opposite, one strip being 

loaded and the other supported by the same pressure. Further Kemp 

emphasised the quantities (s'-S) or ( S1 -S) need not be 
xxyy 

zero, as it is normally assumed in the simple strip method. 

As in the simple strip method W is divided into two comp- 

onents WX and Wy transmitted in the x and y directions respec- 

tively. W, WX and Wy are considered to be distributed uniformly 

over the slab element so that 

(st sw 

xxx 
(S' sw yyy 

then (Wx +wy 3-38 
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Wx and Wy determines the local load distribution factor OC 

and clearly no restrictions are imposed on the individual values. 

Therefore this is a method where the designer chooses a 

load distributio n pattern for the vertical shears rather than the 

individual loads. Kemp illustrated generally how this method can be 

extended to cover any shape of slab. )boundary condition or loading. 

With complexity of shape and loading this method becomes tedious and 

is then quite difficult to assign. realistic values for shears. - This 

method pays no attention to service'conditions and like Hillerborg's 

strip method could lead to unsatisfactory solutions in the hands of 

inexperienced designers. The concept of local-load distribution is 

however a key to generalising the Hillerborg strip method. 
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CHAPTER FOUR.. 

UNIQUENESS OF THE COLIAPSE LOADS OF SLABS DESIGNED BY 

THE STRIP METHOD. 

M RODUCTION 

The essence of the strip method of slab design is that the 

applied load is distributed In two orthogonal directions x and y 

and the twisting moment M 
xy 

is set equal to zero at all points. The 

load Is. carried by pure bending on the strips in the x and y direct- 

Ions so that 2N. 
-Mq and 62M 

y (1- OC)q, where 

x by Z 
OC is the chosen load distribution factor. The slab problem is thereby 

reduced to analysing beam strips. 

The strip method can be considered to be derived from the 

"Lower bound solutions via classical plasticity" described in section 

(3-9, whereby any solution to the equilibrium equation (3-1. ) which 

satis: Ciesthe boundary condition and the yield criterion may be used for 

the safe design of reinforced concrete slabs. Infact when Hillerborg 

(18) first proposed this method his intention was to produce lower 

bound solutions for the collapse loads. He specifically stated that- 

"If for a certain load q, a moment distribution can be found which 

satisfites the equilibrium equation and the edge conditions and if the 

slab can take up this moments at all points, then the value of q is 

lower limiting value of the collapse load". 

More recently Wood and Armer (27) have critically examined 

the strip method and concluded that, when reinforcements are provided 

in accordance with the slab strip moments, Hillerborg's method provides 

an exact solution with"ih, unlimited number of simultaneous modes. 
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4.2. WOOD AND ARMER'S PROCF ON UNI=NESS. 

Curiosity about the question of uniqueness arose when Wood 

and Armer analysed a layout of yield lines Corresponding to the load 

distribution lines shown in fig (3-7) for a rectangular slab carr- 

ying a uniform load. later they investigated the square slab shown 

in fig (3-10) with reinforcements placed exactly in accordance with 

the applied moment field. By yield line analysis of the slab it was 

concluded that all possible modes gave identical collapse loads equal 

to the design load. Their observations were valid for the problems 

considered but it will be shown to be true only for the particular 

types of moment field encountered. 

In their mathematical proof Wood and Armer established that 

for a Hillerborg stress field in equilibrium with the applied loads 

the dissipation of internal energy is equal to the work done by the 

loads. Their proof is based on the assumption that the. applied and 

the yield normal moments are identical at all points and in all direc- 

tions. The Hillerborg method therefore satisfies both the upper and 

lower bound theorems and Wood and Armer have concluded that the colla- 

pse load for all possible mechanisms is unique. 

With the twisting moment ? ýy set to zero at all points, 

the stress states on the yield surface lie on the locus defined by 

the intersection of the two cones and the vertical plane through axis 

MX and My as shown in fig (3-2). If reinforcement is provided 

exactly in accordance with the theoretical applied moment field, 

then the stress state is at one of the four points A, B, C and D. 

Points A and B are at the apex of the two cones and points C 

and D, lie -on the line of intersection of the two bases., The proof 

given by Wood and Armer which is based on the assumption of Identical 

applied and yield-normal moments is triie only when the stress fields 
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are at points A and B. 

It will be shown that when the stress field is at points 

C or D the applied and yield normal-Moments coincide only in two 

orthogonal directions. Therefore, regions with such stress fields 

can only have positive or negative yield lines in these specified 

directions. Under such restricted conditions unique-solutions can be 

found only if kinematically admissible mechanisms can be formed from 

permissible yield lines. The number of such possible mechanisms is 

obviously limited and it is not true in general to state that there 

will be an unlimited number of simultaneous modes. 

If such mechanisms do not exist then the strip method will 

lead to a lower bound on the collapse load as anticipated by Hillerborg. 

4.3. MOMENT FIEIDS IN THE SIMPLE STRIP METHOD. 
I 

. 
4.3.1. Iritroduction. 

Since the twisting moment M 
XY 

has been set equal to zero 

at all points, the principal moments (D& and M) are in the direction 
y 

of the x and y reinforcements. If reinforcements are provided exac- 

tly in accordance with the calculated moment field, the applied prin- 

cipal moments will be equal to the yield principal moments (mx and my 

at all points. Clearly the yield criterion will be satisfied every- 

where, but the manner in which the yield criterion is satisfied will 

depend on the particular moment field. There are three categories of 

principal moment field to be considered. 

(a) With both principal moments positive. 

(b) With both principal moments negative. 

(c) With one principal moment positive, one negative. 

4-3.2. Both prlncipýl moments Positive. (Positive yield lines). 

In this case reinforcements will be provided in two 
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orthogonal directions (x and y) in the bottom face only. If rein- 

forcement is provided exactly in accordance with the strip solution 

then mX- I& Pmy-My and -mx = -my = 0. 

The variation of the applied and yield normal moments with 

orientation at a typical point in this moment field is shown in fig 

(4.1). Because the applied and yield principal moments are of the 

same sign, magnitude and direction, the applied normal moment Mn is 

equal to the yield normal moment mn in all directions. Thus positive 

yield can occur at all points of the slab in any direction. An alter- 

native approach is to examine the double cone yield surface given in 

fig (3-2). The moment field is at the singular point A, the apex 

of the positive yield cone. By using plastic potential theory outlined 

in section (3-5) the curvature rate vector can, act, in any direction 

at A, so that yield lines can occur in any direction. 

Thus positive yield lines may occur in any direction at all 

points in a positive -ý- positive moment field and be consistent with 

the strip solution moment field. If this moment field covers the 

entire slab, all kinematically admissible mechanisms composed of posi- 

tive yield lines only will have a collapse load equal to the strip 

method design ultimate load. In general there will. be an infinity 

of such mechanisms. The moment field in the slab examples analysed 

by Wood'and Amer (27) were precisely of this type and in these 

restricted circumstances their conclusions are valid. 

4.3. -'3. Both principal moments negative. (negative Yield lines). 

If precisely the calculated reinforcement is provided in 

accordance with the strip solution then mm0 M*' -M xyxx 
and -my=My. The yield. conditions will be-identical with those 

for positive - positive moment field but for the change of sign and 

the two normal moment curves Mn and mn are again coincident. 
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The position on the yield surface fig (3.2) is now at the apex of 

the negative cone B and negative yield can occur in any direction 

at all points. 

A32 kinematically adnissible mechanisms composed of negative 

yield lines only will produce a unique solution. If this negative - 

negative moment field covers the entire slab then there will be an 

infinite number of simultaneous collapse mechanisms. The collapse 

load calculated from any such mechanism will be identical to the strip 

method design load. I 

4-3.4. Negative Vield lines in a 'oositive - positive moment 

--tive 
moment field. field or positive vield lines in a negative- nega 

It Is also necessary to consider the restrictions on negative 

yield lines in a positive - positive moment field. From the normal 

moment curve fig. (4.1) it can be seen that for a unique solution 

negative yield lines are not permissible except in special cases fig. 

(4.2). This is only possible when one-of the principal moments is 

zero and the negative yield line direction must be the reinforcement 

direction along which the principal moment is zero. Similarly positive 

yield lines in a negative - negative moment field will only be consis- 

tent with a unique solution along a line of zero principal moment 

which must be a reinforcement direction. These are severe restrictionS 

on the permissible yield lines forunique solutions. 

4.3.5. One principal moment positive, one negative. 

If reinforcement is provided exactly in accordance with the 

calculated moment field, there will be bottom reinforcement in one 

direction and top reinforcement in the orthogonal direction. The 

strIP solution moment field can be either. 
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(a) mxmx 

(b) mx0 

my o; M, x 
m =M ; -M 

/ 
yyx 

I 0 and -m =m yy 
D& and m=0 

(Fig. 4-3) Or 

The applied and yield normal moment curves are tangential 

at only two positions, so the conditions for plastic flow are res- 

trictive as illustrated in fig. (4-3) positive yield can occur only 

at orientation -& =0 and negative yield only at -& - A/2 

Thus in a positive - negative moment field the only yield 

lines consistent with the unique solution are positive yield lines 

normal to the positive reinforcement and negative yield lines normal 

to the negative reinforcement. If straight strips and straight rein- 

forcements are used then it follows that the yield lines must be 

straight in regions of positive-negative moment field. 

The same conclusions can be drawn by examining the yield. 

surface. The moment state is at one of the two points 0 and D 

on the yield surface(fig. (3.2))where the vertical plane through the 

Mx and My axes and the intersection plane of -the two cones interesct. 

The curvature rate vecto3z must be in a vertical plane to satisfy the 

normality rules and depending on the sign of Mx and My the permissible 

06 rates are +kx and -k y or -Eý and +K YO 

The effects of these restrictions on yield lines upon the 

uniqueness of the strip solutions containing positive and negative 

moment fields do not seem to have been considered previously. 

4.3.6. Rules for yield lines cons! Aent with a unique solution. 

For a slab reinforced exactly in accordance with the cal- 

culated moment f ield, the striP solution will give the unicfue value 

of collapse load, if a kinematically admissible collapse mechanism 

is possible in which the yield lines satisfy the following rules. 
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1. Positive - Positive moment field. 

Positive yield lines may act in any position and in any 

direction. Negative yield lines are only allowed in a reinforcement 

direction along which the principal moment is zero. 

2. Negative - Negative moment field.. 

Negative yield lines may act in any position and in any 

direction. Positive yield lines are only allowed in a reinforcement 

direction along which the principal moment is zero. 

3. Positive - Negative moment field. 

The only yield lines allowed are positive yield lines normal to the 

positive reinforcement and negative yield lines normal to the negative 

reinforcement. 

If the entire slab is covered by ii positive - positive or 

negative - negative moment field, then there can be an infinity of 

simultaneous collapse mechanisms* The calculated collapse load from 

any such mechanism will be identical to the strip solution design load. 

In general a slab designed by the strip method will contain 

combinations of these three types of moment field and it does not 

seem possible to argue generally that a yield line pattern consistent 

with a unique solution caa be found. It will however be shown in the 

examples presented that it is extremely difficult to find a problem, 

(atleast, with distributed loading)p where one mechnaism consitent with 

the unique solution cannot be found. 

4.4. EXAMPLES . 

EXAMPLE 4.4.1. POsitive - Neaative Moment field 

Consider the square slab in Fig. (4.4. a). It is simply 
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supported on two opposite sides, fixed on the third and free on the 

fourth. 

Lower bound solution.. 

The slab is designed to carry an ultimate load q per 

unit area, which is distributed in the two directions such that 

qx CC q and qy 1- M) q. Further cc is chosen such 

that < CX <1 and the strip solution leads to a positive, 

negative-moment field over the whole slab. 

Mx OC qx negative 
2 

M (1- (X) qy (L-y) - positive y 

Up"Per bound solution. 

Consider the family of collapse mechanisms shown in Fig 

(4.4. b) defined by parameter (ý ( VC, 0-5)-- If the centre-of the. 

free edge moves through a unit vertical distance, the upper bound 

to the collapse load q0 can be calculated by-considering the external 

work and plastic energy dissipated. 

External Work qc + qc ZQ0.1 - qc LZ (3-20 
5 

By making use of the vector method the internal work done 

oCqL 
!. L. 1 Z. 

ý My 1 dx 
z @L 

since dy - ft 
dx L 

OL 
My 2:... dx dy = (1- cr- )q Y(L-y) dy fo L 

PL 2f 
0 eL 20 L0 

2( 3-2 
12 

- 

. *. oc q j! 
2 + (1- M)qLý( 3-2 g* ) 

2 
3-2ý +Z OCK 
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Equating external and internal work gives 

qc 
. 
1t 2ecC )-qK 

If oC 3K varies with 0 but is greater than unity for all 

values of (6-> 0. 

There is not a stationary minimum value of K but the least 

value of K i's obtained when 0, and then X-1. The solution is 

ihen apparently unique. If 0 the positive and negative yield 

lines are consistent with the rules postulated for a positive - negative 

moment field, but the mechanism is not strictly kinematically admissible. 

The mechanism-becomes valid with an infinitely small Sothat in 

this example, the strip method does not strictly give a unique solution 

for the collapse load and certainly not an Infinite number of collapse 

mechanisms. It can however be stated that. the unique solution is app- 

roached as 0. 

EXAMPLE 4.4.2. Positive - Negative moment field: "special case". 

Consider the slab shown in fig. (4-5. a) in the shape of a 

isoscelese right angled triangle. The base AB lAngth 2L is free 

and the other two sides fixed. The X strips are considered to be 

simply supported and the Y strips are cantilevers. The moment field 

shown in Fig (4-5. bý, ) calculated by the strip method is designed 

for a collapse load q per unit area with distribution factor M 

Mx the moment in the x direction is positive whereas 

My is negative. However a closer examination will reveal that Mx 

along edges AC arA CB is zero and therefore what appears to be 

a positive-negative moment field is infact composed of three moment 

fields negative-zero along AC and CB and negative-positive at 

all other points. According to the rules postulated it is possible 

to have negative yield lines in any direction in a negative - zero 
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moment field such as along AC and CB. The mechanism shown in Fig 

(4.5. b, ) is therefore consistent with a unique solution which is 

confirmed by analysis. If the centre of AB moves through unit 

distance and qc is the upper bound collapse load 

External work Ec iz 
3 

L2Lz 
Internal work done D =2 (1- CC) qM 24dx. + OCq Y2 dy 

I fn 

02L --7- L 

(1- OC )q jt2 + O(q: Lq L2 

3133 
Equating internal and external work gives q. q. The solution is 

therefore unique but there is only one consistent mechanism. 

MMPIE 4.4.3. N4gative - Negative mom7ent field. 

Fig (4.6. a) shows a square slab fixed on all edges and 

designed to carry a uniformly distributed load q which is divided 

equally-in the x and y directions and M 
ICY 

is set to zero. 

Further, the negative moments for the strips are chosen as shown in 

Fig. (4.6. d) so that the moment along the centre lines is zero. The 

mcment field is negative - negative except along the centre lines 

where It is negative - zero and given by 

Mx-qI (L-x) -q L2 
4 -1,9 

M-qy (L-y) -q L2 
y4S 

Consider first the collapse mechanism shown in fig (4.6. b). The 

negative yield lines are consistent with the a 'unique solution 

but the positive yield lines do not coincide with the direction of 

zero principal moment. The mechanism therefore can be predicted 

to lead to an upper bound on the collapse load. Equa+, ý the internal 

and external work the upper, bound on the collapse load q0 is 
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qn q 

so that q> qo >q 
2 

In the alternative mechanism shown in Fig (4.6. c) the positive 

and negative yield lines are consistent with the prescribed rules 

and therefore the mechanism can be predicted to lead to the unique 

value of the collapse load. For unit central deflection 

E= ci L2 
C6 

1/9 L/2 
41 1%Cdy Z+. 4fMy dx 2 

Now a=1 on the negative yield lines so 
dx 

D42qz (L-X) 2. dx +2 c-- 1- 1; - qy- (1, y dy 
0 116ý 4]L1 

9" 
4L 

or D-q L2 
T 

Equating internal and external work gives q. = q. The strip 

method does therefore, give a unique solution for the collapse 

load, but there appears to be only one possible mechanism associated 

with a unique solution. 

It is also of interest to consider what happens if the 

negative support moment is chosen to be greater, (numercally) than 

qL2 as shown in fig (4.6. d). The moment field would then be 

negative - negative everywhere with no zero principal moments. 

There would then appear to be no valid mechanism that will produce 

yield lines which would lead to a unique solution. All kinematically 

admissible mechanIsms would lead to an upper bound on the collapse 

load. In this case therefore the strip solution must be accepted 

as a lower bound solution only.. , 
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The reason for this becomes obvious on examination of 

Fig (4.6. d). It is evident that more negative reinforcement is 

provided than required, the excess being equal to the cross hatched 

area. A unique solution is still possible by the strip method provided 

this excess moment is zero. 

A similar example of excess moment is a square slab on 

simple supports in which the uniformly distributed load q is distri- 

buted as +2q in one direction and -q in the other. A unique 

solution can be found for any distribution oC q, (1- OC )q for 

which 1 
-'> 

CK >0 but with OC- 2 the solution obtained is 

only a lower bound on the collapse load again due to excess moments. 

EXAMPIE 4.4.5. 

The example shown in Fig (4.7) illustrates the application 

of the uniqueness rules to determine a consistent mechanism. The slab is 

designed by the strip method and leads to regions of positive - positive, 

positive - negative and negative - negative moment fields. In the posi- 

tive-positive region PQRS there is an infinity of permissible 

layouts of positive yield lines. However at the corners and in the 

positive - negative regions neax the fixed boundaries the yield lines 

indicated appeax to *. be the only ones consistent with the unique solution. 

4.5. YIEID LINES AND MODES OF FAILURE IN MINIMUM WEIGHT DESIGNS . 

4.5.1. Introduction. 

The strip method normally restricts the whole area of the 

slab to have at lost two reinforcement directions. Steel can be placed 

in these orthogonal directions in either one or both faces of the 

slab. In minimum weight designs this constraint is relaxed and there 

are a number of reinforcement directions depending on the geometry of 
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the slab and the nature of boundaries. Nevertheless there are similar- 

ities in the moment field obtained in the two methods and the same rules 

must be applied to determine consistent mechanisms. 

The neutral zones with a spherical deformation surface discussed 

in section 3.8 are identical to positive - positive ( or negative - negative) 

moment fields. For the simply supported rectangular slab in Fig. (3-5) 

regions such as AEJ at the corner resemble the positive - negative moment 

field with principal positive and negative moments parallel and perendicu- 

lar to EJ respectively. The central portion EFGH is similar to a positive 

-zero moment field with the principal positive moment in the direction 

of EH. In slabs with built in edges, regions of negative - zero moment 

field can be found near the fixed boundaries and the corresponding negative 

moment will be in a direction normal to the fixed edge. " 

It appears that researchers on minimum weight solutions have 

overlooked the collapse behaviour of the slabs. The optimum slab is 

considered to be yielding simultaneously at-all regions and it is generally 

assumed that there &re an unlimited number of simultaneous modes all provi- 

ding an exact solution. The mules developed in section 4-3-6. shows this 

to be untrue. 

4.5.2 Applications to minimum wei#ht solutions. 

Figs. (4.8) to (4.12-) show five fuMidc minimum weignt solutions. 
These examples are due to Morley (23)t Rosvany and Adidam (29)ý Lowe and 

Melchers (30), (31). The notations on the figures is given in Ref. (29)p 

(30) and (31). 

For the simply supported rectangular slab shown in Fig (4.8. a) 

the reinforcement directions for the corner triangles are parallel and 

norml to the bisector of the right angles. POsitive-yield lines must 
therefore form along the bisector of the corners and this ndes out the 

possibility of corner fans. Although positive yield lines can occur in 
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any direction within the neutral zone and in the central area with a 

positive - zero moment field, taken the slab as a whble, the mechanism 

shown in Fig (4.8. a) appears to be the one with positive yield lines 

only and consistent with the rules set out in section (4-3). If for the 

saw example the possibilities of corner fans with negative yield lines 

are considered then the mechanism shown in Fig (4.8. b) seems to be the 

only other permissible alternative. 

The same can be concluded for the other four slabs. The 

mechanisms shown in Fig (4.9) to (4.12) seems to be the only kinematica- 

lly acceptable patterns without corner fans which are consistent with a 

unique solution for the collapse load. 

4.6. CONCLUSIONS 

The discussion in this chapter was aimed at correcting and 

clarifying the mathematical proof for uniqueness and multiple mechanisms 

given by Wood and Armer. For slabs designed by the strip method, although 

the principal applied moment and the principal yield moment can be made 

equal at all points9 it is however not generally possible to make the 

applied and yield normal. moments equal in all directions. If in the slab 

as a whole the applied and yield normal moments are identical at all points 

in every direction (positive - positive or negative - negative moment 

field) then there exists a unique solution with an unlimited number of 

simultaneous modes. 

In general a slab designed by the strip method will not only 

have regions where the two normal moments coincide. Rules have been derived 

for the postulation of yield lines for such slabs with a combination of 

moment fields. In view of these rules, some of which are very restrictive, 

it is not possible to argue that the strip method will always lead to a 

unique solution. However it must be admitted that it is remarkably 
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difficult to find a practical example of a slab (with distributed load) 

designed by the strip method for which there is notat least one collapse 

mechanism consistent with these rules and therefore leading to a unique 

collapse load. Exanples have been presented where the strip method can 

be demonstrated to approach the unique solution as a limiting case or to 

be a lower bound solution. In the latter case the load distributions 

could be altered to obtain uniqueness. 

The derived rules for uniqueness were also applied to some 

minimum weight designs. In all cases there appear to be only a limited 

number of such mechanisms consistent with the unique solution for collapse 

load. In the absence of corner fans there seems to be only one mechanism. 

The slabs considered in this chapter were confined to distribu- 

ted types of loading. Point, patch loads and point supports Will be-con- 

sidered in Chapter Six. 
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CHAP= FIVE 

STRIP DEFIECTION -A GENERALISED METHOD OF REINFORCED CONCRETE 

SUB DESIGN. 

5.1 INTRODUCTION 

The current elastic and plastic methods of-reinforced 

concrete slab design were discussed in Chapters 2 and 3 with 

comments on their merits and limitations. Limit state methods are 

well established for the design of reinforced concrete structures and 

for slabs the critical limit state for design is usually the state of 

collapse. Design is therefore commonly based on this state with checks 

made on crackst deflections and any other serviceability condition 
I 

where necessary. 

An ideal method of slab design should be easily understood, 

simple in computation, applicable to any shape of slab, boundary condit- 

ion and loading system. Ideally the method should give the unique value 

of the collapse load. In addition it should provide information about 

the total moment field, shears, reactions, deflections etc., which for 

good serviceability condition should not depart too far from the working 

load conditions. The site conditions too need recognition and simple 

banded layouts of reinforcement will be helpful and economical in steel 

fixing. Ideally the total quantity of steel must be as close as possible 

to the minimum weight solution. Not surprisingly none of the methods 

discussed so far satisfy all these requirements. 

The purpose of this chapter is to present a generalised approach 

to the strip method of slab design, which aims at retaining all its attact 

iveness and eliminating its disad-ýantages. This method intends to accomm- 

odate point loctds, point supports, free edges, to cover the design of any 

slab system. It will also ensurethat the designer will not depart too 

fax from the working load moment fields, shears reactions'and thereby 

ensure that serviceability is Satisfied 
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comments on their merits and limitations. Limit state methods are 

well established for the design of reinforced concrete structures and 

for slabs the critical limit state for design is usually the state of 

collapse. Design is therefore commonly based on this state with checks 

made on cracks, deflections and any other serviceability condition 

where necessary. 

An ideal method of slab design should be easily understoodo 

simple in computation, applicable to any shape of slab, boundary condit- 

ion and loading system. Ideally the method should give the unique value 

of the collapse load. In addition it should provide information about 

the total moment field, shears, reactions# deflections etc. p which for 

good serviceability condition should not depart too far from the working 

load conditions. The site conditions too need recognition and simple 

banded layouts of reinforcement will be helpful and economical in steel 

fixing. Ideally the total quantity of steel, must be as close as possible 

to the minimum weight solution. Not surprisingly none of the methods 

discussed so far satisfy all these requirements. 

The purpose of this chapter is to present a generalised approach 

to the strip method of slab design, which aims at retaining all its attact- 

iveness and eliminating its disad'ýrantages. This method intends to accomm- 

odate point loaAs, point supports, free edges, to cover the design of any 

slab system. It will also ensure that the designer will not depart too 

far from the working load moment fields, shears reactions and thereby 

ensure that serviceability is satisfied 
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5-2. THE CHOICE OF THE WAD DISTRIBUTIONS. 

5.2-1. Introduction. 

There axe two main features in the simple strip method 

which have prevented its more general application. Firstly, the 

designer chooses a load distribution q. and qy to be constant 

over an extensive area of the slab. The second is that the distribut- 

ion factor CC is chosen to be between 0 and 1 and usuarty the 

extreme values 0 or 1 are selected, since the designer at present 

has no way of intuitively selecting values of CC outside this range. 

Due to these factors it is possible to depart fax from working load 

moment fields an: 1 so serviceability may not be satisfied. A method of 

overcoming some of these restrictions was suggested by Kemp (28) in 

which the shear forces were distributed over a. 'grid area rather than 

choosing load distributions. This approach has lifted some restrictions 

on Cý, but except for simple problems it is too tedious and could lead 

to unsatisfactory service conditions. 

5.2.2. Elastic load distributions - Uniformly loaAed slabs. 

Consider the simply supported square slab shown in Fig (5-1)- 

It is an easy task to design this slab, by the strip method. It is how- 

ever curious to find out what axe the realistic values of the load dis- 

tributions at any point of the slab. The basic equilibrium equation-in 

plate theory is(Fig. 2.1. ). 

a Qx +q 
6x ay 

which is satisfied by 6%C OCq qx 

x 

and AQ q 

y 

Navier's methcxi of solving elastic Plates can be used to determine 
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shown. The load distribution factor oCin each grid-area are also shown 

and these agree very closely with values for similar positions in Fig 

(5.1). Being a symmetrical problem CC is 0-5 along the diagonals 

and for this particular example cK varies between 0 and 1.0 with 

the extreme values along the boundaries. 

5.2.3 Elastic load distributions - concentrated loads. 

Consider the same simply supported square slab, this time 

carrying a unit concentrated load at the point P(x= 0-5, Y= 0-3) 

as in Fig. 5-3. Navier's method of solving slabs with concentrated 

loads can be used to calculate the elastic load distribution factors 

OC and (1- 0C ) in the directions x and y. These factors co=- 

espond to values of x and Qv respectively. The intensity -ý-ýx 
.6Y 

of loading at all points other than P is zero and at P it becomes 

infinite. Elastic calculations show that values of 
- 

; bGx and o' 07, 
4) x 46 y 

are equal'and oppo. site'at'-all*points other than P as equilibrium requires. 

Fig (5.3) shows the vertical shear force distribution pattern 

with a division of strips identical to the example in Fig (5.2). Here 

too the individual values were obtained by inte., grating the shear Inten- 

sities along each side of the grid. 

5.2.4. Comment. 

The example shown in Fig (5.1) shows the variations of the 

load distribution factor over the area of the slab. Values vary subs- 

tantially from element to element although in the simple strip 

method extreme values are chosen over large regions. 
0, 

The method of determining the shear force distribution pattern 

as illustrated in Fig (5-2) and (5-3) is similax to the one suggested 

by Kemp (28). Effects of torsions are ignored and the strips can be 

designed on the basis of the distribution Patterns. 



96 

Y 

0-011 0.030 0-037 O-Ozo 0-011 

, Ln 
W7 

0 
0.0125 0-0355 0-046 

N A LCI n 
0 0 

0-0145 0-0530 0-081 
CN 

9 0 
0 0.00.5 

0 
0-053 0-225 

tin 
to 

A 
m Ul% l p LC\ 

N C14 1 .0 0 

0- 02 J> 0*099 C-285- 
Ul\ 

x 
0-0325 0.114 0-17, ýi 

Coods of LodcL P (zr--o-5 

For &II. c3rids -the ýosltlon = nc-L the 
ma, anitude of ifie downwa-rcl -. bear 
forces alre Shown 

FIG. (5.5) VERTICAL SHEAR FORCE DISTRIBUTION PATTERN FOR A SIMPLY 

SUPPORTED SQUARE SIAB CARRYING A POINT LOAD 



97 

This elastic method is limited to simple slab problems and 

even for these the procedure is very tedious. Therefore a general 

method needs to be developed to system&tically determine the shear 

force distribution or the load distribution factors. 

5.3 THE STRIP DEFIECTION METHOD 

_5.3.1. 
The basic principles. 

Consider the rectangular slab shown in Fig 5.4. The slab is 

divided into m strips parallel to the x-! --axis which will be referred 

to as I. - strips. Similarly there are n strips parallel to the 

y- axis'. - The slab is therefore divided into (mxn) grid areas 

and the key assumption is that the load distribution (q) is uniform 

over each grid area, but of course its value 'can vary from grid to grid. 

For any grid area (1j) the load distribution (q)ij is divided into two 

components (qx): 
Ij and (qy) 

ij the respective load distributions 

transmitted in the x and y direction and it follows from equilibrium 

that (qx) ij +. (q 
Y) ii 

.- 
(q), 

j 
( 5.4 ) 

To determine the load distributions ( qX or qy ý we examine 

the elastic deflections of the slabs strips in the x and y directi- 

ons when they are loaded with the unknown (qx) and (q 
y) respectively. 

That is at each intersection point of the centre lines of' the X and 

Y strips we insist that the elastic deflection (AX )ij of the X-strip 

is equal to the elastic deflection (A 
y 

)ij of the Y strip. Hence 

for the strip X. the deflection (AX) 
ij at point P is given by 

X 
(k 

X 
)j, (k 

X 
)ij 

... 
(k 

X in] X) ii 

(qx )j 

00 L 

or )ij E (kX )ij (cLx ), j X 3=1 
(5-5 
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where (k 
xj represents the flexibility coefficients for the strip Xi 

Similarly for the strip Yi the deflection (AY) 
Ij at 

point P is given by 
M 

y) ij 
E(ky) 

ij . (qy) ij 5.6 

The deflection equation for the point P is 

xiy) ij 

nM 
ie 2: (k 

x ij 
(qx) 

jj 
(k 

y) ij, 
(qy) 

jj. - 
I-At ( 5.7 

or substi tuting for (qy), 
j from equation (. 5.4) we have 

M 
(k 

x 
)ij. (qx)ii 

ij- 
I (q)ij - (qx): 

Ij], 
( 5.8 

Jai 'Jai 
This procedure can be applied to each of the grid areas and 

there will be (mxA) independent deflection equations exactl7 equal 

to the number of unknown load. distributions (q 
x 

)ij. The plate problem 

is therefore reduced to solving a set of simultaneous linear equations. 

In some practical examples it may be more convenient to consider the 

total imposed load (W),, rather than the distributed load (q), 
j and 

the corresponding governing equations will be 

(Wx)jj + (WY) ii = (W)jj 5-9 

nm 

ard 
E(C 

X)ij i (w 
x 

)ii - 
1: (CY)ij Mij- (wy)ij 

( 5.10 ) 

The total loads (44i 
, 

(w 
x)ij and (Wy)ij 

are also 

assumed to be distributed uniformly over the grid area (ij). 

5.3.2 An Example of the Strip Deflection Method 

The method is best illustrated by reference to a simple 

slab example. Fig (5-5) shows a rectangular slab simply supported on 
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two short sides, fixed and free along the two long sides and carrying 

a uniform load q. The slab is divided into four equal strips in each 

direction and in this example all X- strips are of length Lx and 

all Y- strips are of length Ly. The first assumption is that in 

each of the 16 rectangular grid areas theimposed loads (q or W) 

and the corresponding distributions in the x and y directions are 

uniform over a particular grid area (see Fig. (5- 5) grid 32 )- 

To determine the individual load distributions we examine 

the elastic deflections of the slab strips in the x and y -directions. 

In this example X- strips are all simply supported and Y- strips 

are all cantilevers and therefore all strips are statically determinate. 

The deflections can be calculated by using simple beam theory. Fig (5-5) 

also shows how these deflections are equated for the point A at the 

centre of the grid (3.2). 

End reactionst fixed end moments and deflections for the 

f ollcrwing types of slab strip, are given in Appendix 1. 

(a) Both ends simply supported 

W Both ends built in 

(c) One end built in one end simply supported (proped. cantilever) 

(d) One end free one end built in (cantilever) 

It is of importance to mention that due account of the width 

of strips must be taken in the flexural rigidity in the computation of 

deflections at required points. 

It is assumed that Lx: Ly-1.4 and the total imposed 

load which is distributed uniformly over the slab is 140 units. The 

total load on each of the 16 grid areas is therefore 8.75 units. 

Due to symmetry strips Y3 and Y4 axe identical to strips Yl and 

YZ respectively. The details of the analysis axe given in Appendix , 2. 

The eight valuas of W are considered the basic unknowns and the result- y 
ing set of eight simultaneous equations are shown here and have been 
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solved using a standard matrix inversion prop, =amme. The solutions 

are given in Table (3.1). It is evident that the loads are carried 

towards the nearest support andmcre towards the fixed support than 

the simple support. The values for load distribution factors vary 

widely. That is for the centre grid near the fixed edge the values 

are outside the usual range of 0 to 1.0. Also shown are the fixed 

end moments and end reactions for the X and Y strips. 

The values of the load distributions in the X and y direct- 

ions are also shown in Fig (5.6) together with the vertical shear forces 

acting at the boundaries of the grids. The vertical shear force acting 

at the extreme edge of each strip give the reaction at the support and 

of course these values are zero at the free edge. 

The moments, shear forces in both x and y directions can now 

be calculated by statics. The moments are uniform across the width 

of any slab strip and so the requixed reinforcement will be in simple 

banded layouts. In this symmetrical example there will be four differ- 

ent, bands in the x direction and two different bands in the y direct- 

ion. 

If the slab is now reinforced according to the strip deflect- 

ion method, the simply supported X strips will carry positive reinfo- 

rcements and the-cantilever Y strips will ca=y: negative reinforce- 

ments. Consider the family of yield lines shown in Fig (5.5) defined 

by parameter x. Analysis shows thatýunique collapse load is only app- 

roached as x tends to zero. A similar example was Illustated in 

Chapter 4. For this slab the positive yield lines are consistent with 

the rules postulated in the Chapter 4 only when x is zero. Here too 

the mechanism is strictly not kinematically admissible but becomes 

valid with an infinitely small value of x. 
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wl 8.844 (1.011) 8.817 (1-008) 

w 2 7.757 (0-887) 7.689 (0-879) 

w 3' 4.826 (0.552) 4.889 (0-559) 

W4 1.320 (0-151) 1.495 (0-171) 

w5 7.462 (0-853) 7.535 (o. 861) 

W6 3.652 (0.417) 3.923 (0.448) 

w 1.712 (o. 196) 1.815 (0-207) 
7 

W8 0.502 (0-057) -0.5o6 
(0-058) 

(RX), 1.194 1.148 

(RX)2 6. ogi 5.888 

(R 
x)3 

: Lo. 962 10-796 

(1ýx)4 15.678 15-4-99 

(R 
Y), 

13-328 13-779 

(R 
Y)2 

22-747 22.890 

(m 
Y), ý3-8115 

3.990875 

(m )2 8.185625 8.34925 
Y 

Strip Deflection No - Torsion Grid 
Method Method 

Load distribution factors are shown within brackets. 

Table 5-1 Solution To The Illustrative-Example Shown In Fig. (5-5) 
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5.4 COPTARISON OF STRIP DEFLECTION METHOD WITH OTHER METHODS 

OF CONCRETE SLAB DESIGN. 

5.4.1 Rankine and Grashof's Method 

The Rankine and Grashof's method which is still recommended 

in the Codes of Practice CP110 and CP114 can be seen as a special 

case of the strip deflection method with just*one strip in each direct- 

ion and is restricted to simply supported slabs ca=jing a uniform 

load. As discussed in Chapter 2 this method assumes a single distri- 

bution of load for the entire slab based on the elastic deflections of 

the centre strip and it ensures that equilibrium (q 
x+ q3r = q) is 

satisfied at all points. 

If reinforcement is Provided exactly : in accordance with the 

calculated moments in each directions then the resultant moment field 

is positive-POsitive. Rankine and Grashof's method can be shown to 

provide the unique so2ution for all possible mechanisms composed of 

positive yield lines only. This perhaps explain its sucess over the 

years. 

5.4-2. Grid analoKy Method 

A strong similarity exists between the strip deflection 

method and the old established grid analogy approach to slab design. 

Before proceeding to discuss further applications it is helpful to 

compare the two approaches, since this will show how we can utilise 

existing computer programmes for grid works to solve problems by the 

strip deflection method. 

In the grid analogy method the slab is divided into an 

intersecting set of beam'-strips to form an equivalent grid. system. - 

If these beam strips are orthogonal and assumed to be torsionless we 

have a very similar system to the one proposed in the strip deflection 
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method. The only important difference is that in the grid'analogy 

method the load interaction takes place only at the intersection 

point, where as in the strip deflection method a uniform interaction 

is assumed to occur over the area of the grid rectangle. 

In both cases the load interactions can be determined by 

equating the vertical deflection at the grid intersection points. 

The difference between the results obtained by the two approaches 

will obviously decrease as the grid size is reduced. Since we only 

require load distributions reasonably. close to the elastic working 

load conditions there is no reason why we should not use the grid 

analogy programmes for calculating these load interactions. 

FRAME AXALYSIS /1a subsystem of the GEVESYS computer 

programme was used to solve the grids. It must be mentioned that a 

small positive value of torsional rigidity must be assumed for each 

member otherwise the programme will not work. The subsystem can 

accommodate any slab geometry, boundary cordition including elastic 

deflections, elastic rotations or permanent settlements. The output 

gives a print out of the bending moments, shear forces at the internal 

nodes and reactions, end moments at the supports. For four or more 

strips in each direction, the difference between the results from the 

strip-deflection method and the above values which are based on point 

loads applied at the corresponding grid intersection points is insigni- 

ficant. 

The load distributions# reactions and shear values for the 

slab discussed in section (5-3.2) and calculated by the grid method 

are compared and shown alongside with the strip deflection results 

in Fig (5.6) and Table (5-1)- The'assimed equivalent grid is described 

in Appendix Z. - Point loads of value identical to the total distributed 

load within. each element area were applied at the corresponding' inter- 

section points. -, 
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However in calculating the statical moments in each beam 

strip the load interaction must be strictly assumed to be distributed 

over the grid area, otherwise the equilibrium equation qx+qyýq 

will not be satisfied at all points'of the slab and uniqueness of the 

collapse load will be lost. This example too, provides a positive- 

negative moment field for the entire slab. With uniform load inter- 

action over the gridareasifor the family of yield lines shown in Fig(5.5) 

the unique solution is again approached as the value of x tends to 

zero confirming the rules set out in Chapter 4. 

We therefore have the surprising conclusion that the grid 

analogy method can be used to produce a completely generalised strip 

method of slab design. Using an orthogonal grid system of torsionless 

beams to calculate theload interaction and distributing these over the 

grid areas to calculate. the bending moments 3 phear forces etc. The olu- 

tion, will in general give a unique collapse load. In retrospect it is 

fascinating to note that the efforts expendedýn the past to include the 

torsion component in the equivalent grid system can now be seen to have 

the effect of changing a unique solution to a lower bound solution. 

West (32) has recently proposed the use of grid method to 

analyse slabs and bridge decks arguing that it has the advantages of 

being universally applicable, easy for the engineer to visualize and 

prepare data for the analysist cheaper computation cost especially 

compared with the finite element method and that the agreement between 

the analysis and experimentatobservations is encouraging. Now that 

the relationship between the grid analogy method and the plastic strip 

method axe estab2ished the r"son -f or its success become clear. 

5.5 APPLICATIONS OF THE STRIP DEFLECTION METHOD 

The application of this method to uniformly loaded slabs of 

any shape will be discussed here. The next Chapter will be devoted exclu- 

sively to slabs with point loads and point supports. 



109 

5.5.1. Flexible Sup-ports - Partial composite action 

Where the slab is suPported at its boundaries by flexible 

beams, the strip delfection method readily allows some composite 

action to be taken into account. The basic equilibrium equations 

are unaltered but the deflection equation ( Ax)ij 
y 

): 
Lj 

takes into account the deflections at the boundary. For point P 

in Fia- 5 . 7. 0 
strip xia+b Sa) 1+ SX)ij 

L 
x 

and strip Yy) 
Ij C+ 

Sd Y+y )jj 
I; - 

y 
For compatibility 6a+ba+ )jj 

Lx 
x 

C+d-cy+ 
)ij 

1; y 
y- 

where 8a, 8 
b' -8C, 

Sd are the deflections at points A, B, C, D 

which are at the ends of strips Xi and -Y J. 
(SY )ij and (8 

y): Ij are the deflection at point P below the 

line joining AB and CD respectively. 

For each Intersection between a slab strip and a supporting 

beam there will be one additional unknown reaction. However by 

considering the deflection at the supporting beam, it will be possible 

to write one additional equation to give the same number of equations 

as there are unknowns which are the load distributions plus slab-beam 

: interactions-.. 

To illustrate the effects of flexible supports consider a 

square slab side L carrying a uniform load shown in Fig (5.8 a). 

The slab is supported by four identical edge beams of flexural stiff- 

ness (EI). It is divided into five equal strips in each direction 

and the beams are. supported at the four corners. The total load is 

assumed to be 1001units and therefore the uniform load on each of 
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the grids is four units. Due to symmetry the load distribution m each 

of the diagonal grids is 2 units each way and the number-of unknowns 

is reduced to 6 (wl, W2, W 3' Rlp RZ, R3). The reactions (Rlt R2 

and R3) between the slab strips and the supporting beams are again 

assumed to be spread uniformly across the slab strips widths. 

For a given stiffness of edge beam EI and of slab strip, 

their ratio -e is defined by 

Stiffness of each strip = (D L) /(E 
I 

Stiffness of each edge beam 5 

where D is the stiffness of unit width of slab. The stiffness 

factor ý used by Wood 8) is 

Stiffness of beam 1 0.4 
Stiffness of half width 
of slab (IY L 

i 

Detail calculations for-this slab are given in Appendix 2, 

but the final set of equations based on equilibrium and deflection 

compatibility for a given value of -e are in matrix form 

220 -2 00 

-1 00 -2 0w2 -8. 

0 -1 0 0, -2 w3 -16. 

281.55 61 73 25.125-C 36.075-C 12 f Ri 685-5 

61 147-75 195 86.12_rye 134. ot 47-875-e 

36.5 97.5 184. o6 61. oe 97-92-54 35-87-'4 

1343.5 

R31 879.7 

( 5.12 

In the derivation of the above equations it was implied 

that only vertical shearfor-ces were transmitted between the slab 

and the edge beam. This assumption is similar-to the partial compýsite 

action discussed in Chapter 2. The Equations (5.12) were solved for 

four value-, of and the results for the distribution of load on the 
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supporting beams were compared with values obtained by Wood (8). The 

c o=e sp onding value s for a unit impmed lmd are , -hcwn in Table 5.2 ard Fig 5.9. 

R R R3 

oc , 0-0706 0.0615 0.028? - 

2.0 0.059? - 0.0555 0.0399 

1.0 0.05 0.05 0.05 

1/3 0.0278 0.0310 0.0801 

TAKE 5.2 

Wood's (8) results were based on solving Iagranges plate 

equation by the finite difference method. Effects, of Poissons ratio 

were neglected and the centriods of slab and edge beams were assumed 

to coincide. Fig. (5-9) shows the values of beam siab reaction R obtained 

by Wood which includes a-concentrated corner reaction and the arrows 

show the direction of this reaction on the beam. The corner reaction 

does not appear in the strip deflection method-where the effects of 

torsion are ignored. 

1 can be instantly recognised as Wood's twistless case 

and the strip deflection results are then in complete agreement with 

Wood's values with the corner reaction R-0. Alsot in equation 

(5.12) W1. W2. W3 -0.02 which means that the loadis equally 

distributed in two orthogonal directions at all points of the slab 

and the bending momentp shear force diagrams for all, slab strips are 
I 

identical. 

For values of ý>1 the beams will carry more load at the 

centre of the span., For-values of, ý<1 the load on the beams will 

diminish at the centre and correspondingly increase near the support. 
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Both codes of practice CP110 and CP114 , repommend a 45 0 

triangular load distribution to be taken by the beame of a square 

panel or the ýhorter sides of a rectangle, irrespective of the stiffness 

of the supporting bea,, rL. The maximum bending moment at the centre of 

the beam due to this distribution is qL3 / 24. Corresponding., values 

obtained by the strip deflection method are less than this value for 

all values of A comparison of values of maximum beam moments 

predicted by different methods for rigid beams OC ) is shown in 

Uble 5.3. 

Method Maximum Beam Bending Moment (multiple of qL3 /24 ) 

Code of P=actice 114,110 1.0 

Wood (8) 1.203 

Timoshenko (1) 1.207 

Strip deflection 0.892 

TAKE 
-- 

5.3. Comparison of maximum ýbeari bending moments (- or- ) 

f 

Woods and Timoshenko's values for the maximum bending moment 

are greater than the code of practice values and this is entirely 

because the load applied to each beam is in excess'of one quarter of 

the total load. In their elastic analysis this is due to concentrated 

corner reactions R/2 at each end. In the strip method and the code 

of practice the load carried by each beam is exactly one quarter of 

the total load. However the strip deflection distribution is more uni- 

form than the 45 0 triangle and the corresporuiing beam moment is less. 

Finally let us consider a square slab carrying a uniform load 
41 

in which one supporting beam is more flexible than the other three. 
a 

In Fig (5.10. a) the stiffness values axe (2,2,2,1/4) and in 

Fig. (5.10. b) co3=espondi,., ig values are ( ii, 1 -1 1/16). It can be 
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seen that the slab beam interactions are very different from the code 

of practice recommendations. For these examples the maximum bending 

moment on the supporting beams varies between 0.16 (qL3 / 
24 

) and 0.78 

(qL3 / 
24). The strip deflection method will clearly provide a close 

approximation to the actual load distribution on supporting beams 

than given in current codes of practice and in most cases will result 

in a saving in material. 

For the distribution of loads shown in Fig (5.9) and Fig (5-10) 

Of. 
modes failure which include simultaneous yielding in the slab and supp- 

orting beams were checked. For all cases the moment field within the 

slabs is positive -positive and f or-the beams it, is- positive over its entire 

length. For combined mechanisms with positive yield lines within the 

slab and positive hinges in the beams the strip deflection method design 

load is identical to the collapse load. It can therefore be concluded 

that the rules for uniqueness set out in Chapter. 4 can now 

be extended to composite systems as well. 

For the square slab on simple supports. ( le OC ) the 6 

equations in Egri. r%5.12) reduces to j which can be easily solved. Fig 

(5.8. b) shows the vertical shear force diagTam, for this slab. Shown 

alongside in Fig (5-8. b) are the corresponding results obtained from 

the torsionless grid method. The loading, shear-force and. bending 

moments at corresponding points show remarkable similarities. The 

moment field for the slab in both designs is positive - positive. For. 

the slab designed by the strip method the collapse load is again iden- 

tical to the the design load for all mechanisms with positive yield 

lines, as expected from the rules in Chapter 4. Unique results can 

also be obtained when the load distributions obtained by the no torsion 

grid method are uniformly distributed over-the grild-area. 

5.1.2, Comparison of Reinforcement quantities. 

Economy of steel is clearly of considerable importance in 
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Method X10C%, 

1) Minimum Weight Solution 100 

2) Strip deflection Method 

3 Strips each way 144.7 

4 *1 17 139-Z 

5 137.0 

10 133.0 

-3) Hillerborg strip method 

4 Strips each way 160.5 

59 31 159.9 

Minimum possible with continuously 120 

variable reinforcement 

4) Rankine and Grashof's Method 158.8 

5) Yield line theory uniform isotropic 

reinforcement, no top steel Mp = pL 
2 22 174.5 

6) Elastic Moment field, reinforced to satisfy 159.6 

yield criteria and straight reinforcements 

7) CP 3.10- Four edges discontinous-with torsion 164-5 

reinforcements at each corner 

8) CP 114- Four edges discontinous with torsion 146.9 

reinforcements at each corner 

TABLE 5.4 COMPARISON OF MOMENT VOLUMES FOR A SQUARE SIAB 

ON SIMPLE SUPPORTS CARRYING A UNIFORM LOAD. 
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the design of such commonly occuring structural members as rein: f orced 

concrete slabs. It is therefore instructive to compare the steel 

quantities required by the strip deflection method with those demanded 

by other currently used design methods. For a square slab, side L on 

simple supports carrying a uniformly distributed load q per unit area 

the minimum weight solution ( see Chapter 3) gives a moment volume V 
min7 

4 5196 qL . For any other design the moment 'Volume can be expressed 

as V= X( -9916 qL4 ) and Table 5.4 compares the values of ?ý obtained 

by various design methods. 

It can be seen that the strip deflection method compares 

well with the other methods for steel quantity. The moment volume de- 

creases with the number of strips and with five strips in each direction 

it is 377oabove the absolute minimum. It is about 137o less than the 

Hillerborg strip method with five strips, the elastic moment field 

method and Rankine and Grashof's method., 27% less than the yield 

line theory soluti on. When compared with the coefficients given CP110 

0% and CP114, the strip deflection method claims economies of steel-of 2o 

and 7.2% respectivety, however these figures do not take into account 

the minimum reinforcement required in the edge strips so that the total 

economies will be greater. 

5.6. TREATMEVr OF OTHER BOUNDARY CONDITIONS 

When the slab strips are cantilevers or simply supported as 

in the examples discussed so far they are statically determinate. Other 

bounlary conditions can however arise and these will now be considered. 

5.6.1 Free edges. 

Free edges can be readily accommodated by the strip deflection 

method. Three situations can arise where free edges occur, a slab strip 

may be free at one end and either (a) fixed (b) simply supported (c) 

free at the other end. In the first case the slab strip is a cantilever 
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and deflections may be calculated directly as in illustrative example 

already discussed with no change in the number of unknowns. 

In each of the other two cases the deflection of the slab 

at the free edge will introduce one additional unknown. However, 

there will be one corresponding additional equation of statics for 

the strip at each free edge. With one simply supported edge and one 

free edge the slab strip must-be in moment equilibrium under the 

unknown load distributions. With both edges free there will be a 

moment and a vertical force equilibrium equation and the number of 

unknowns will again be equal to the number of independent liner 

equations. 

5.6.2 Fixed or Continous edges. 

If the boundaries of the slab are fixed or continous, the slab 

strips are effectively statically indeterminate beams. The strip 

deflection method can be used to analyse such slabs. Consider the slab 

shown in Fig (5.11 a). it is continous over three equal spans bothways 

and is simply supported at the outer edges thus forming a (3 x 3) 

panel. The entire slab is divided into fifteen strips each way and 

it is assumed that the total uniformly distributed load on each panel 

is 100 units. Equilibrium and deflection compatibility equations can 

be written to each grid and these in general will take into account 

the support conditions. If the loading and the support conditions are 

symmetrical the number of unknown load distributions (qx or qy) will 

be 28. 

Certainly'it is more convenient here to utilize a torsionless 

grid progra=e. The strip layout is replaced by equivalent grid and 

at each internal intersection a point load of 4 units is applied 

Fig 5.11 b) shows the vertical shear force distribution pattern 

and -the load distribution factor CK when all support nodes are inelastic. 
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Values of CK for the grids on the diagonal are 0.5 and for some 

areas near the continous supports OC takes values outside the normal 

range of 0 to 1.0. Figures shown within the rectangles are the values 

of reactions at the continous supports. 

Although the slab is continous both ways and has nine panels 

a closer look will reveal the existance of only three types of panels 

with different edge conditions. The panel R is similar to an internal 

panel continous over all four edges. Panel Q resembles one that is 

continous over three edges and discontinous over one edge and the panel 

P has two adjacent edges continous and the other two edges discontinuous. 

The slab can be assumed to be an assembly of panels P, Q and R 

as shown in the key diagram and Fig (5-11.0 shows the vertical sheax 

force distribution pattern for the whole slab so obtained. The reactions 

at the, support nodes and the load distribution factors for the grids 

are also shown. Figures (. 5.11. b) and (5-11.0 shows that there is remark- 

able agreement between the results obtained by the two procedures. The 

second has advantages in that it considers one panel at a time and the 

number of equationscan be small in compaxison and in general can be solved 

using a small computer. This method of panel assembly is particularly 

useful in the design of floor systems of buildings which consists of 

regular a=ay of rectangular panels.. 

The designer has considerable freedom in the choice of the 

strip layout. Fig (5.12) shows an internal rectangular panel (ly: ix-1.4) 

and the chosen strip layout'is identical to the one that is currently 

recommended in CIP110 or CP114. Clearly the edges of panels are consider- 

ed to be fully fixed. Also shown are the load distribution factors, 

bending moment for the middle stripscalculated by the grid method. 

Shown alongside are the bending moment diagram for the middle strips 

in an internal panel from a design according to CPUO. Clearly consider- 

able saving of material can be achieved by providing steel according to 
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the strip deflection method. 

Therefore it can be concluded . that although it appears to 

be rigourous to analyse a continous slab as a single unit this proce- 

dure is scarcely worth while. It is much simplar to analyse each 

panel as a single unit. For many practical examples it will be possible 

to assemble the slab system with panels having standard edge conditions. 

5.7 SKEW SIABS. 

The strip deflection method can be readily applied to skew 

slabs carrying uniformly distributed loads. Fig (5-13 a) shows a skew 

slab with two opposite edges simply supported and the other two edges 

free. A layout of the strips must be chosen such that they are parallel 

and perpendicular to the simple supports. Due to the presence of trian- 

guilar shaped elements the Y- strips such as PQRS are trapeziodal 

and all X- strips are in the-shape of a parallelogram. 

In the strip deflection method we only deal with rectangular 

strips and these must be replaced by ones that are of the same width. The 

procedure is shown in Fig (5-13. b) and the assumed strips for strips 

Y3 ylo and X3 are 

Actual strip 

Y3- PQRS 

Y10 TUVW 

x3 RSTU 

Assumed Strip 

PQGS 

THVW 

RGUR 

Equivalent Grid 

AB 

CD 

BC 

The triangular elements at the boundaries are replaced by 

rectangular ones of same width and overall length. Hence for points 

within these triangular elements equilibrium will only be satisfied 

approximately. In the provision of reinforcements within the triangle. 

the variation of strip width is taken into account. The procedure will 
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not affect the equilibrium conditions for rectarigular elements within 

the slab. diearly the equivalent grid so produced comprises of members 

which axe of the same mean length. 

To determine the load-distributions elastic deflections can 

be equated at the intersection points along centre lines of the ortho- 

gonal strips. For triangular elements (RES) these correspond to mid 

points (B) of the hypotenuse (RS). 

The skew'slab can again be solved using the torsionless grid 

method and a grid consisting of equivalent torsionless beams positioned 

along the Centre lines of the orthogonal striPs is used. For the slab 

shown in Fig (5-13) the equivalent grid is shown with the dotted lines. 

The load interactions takes place at the grid 

intersection points and for triangular elements (RES) these 

correspond to mid points (B) of the hypotenuse (RS). 

Fig (5.14)'shows the vertical shear force distribution pattern 

obtainecJ6ýthe grid method for a skew slab simply supported on two oppo- 

site edges with the following Properties. 

Simply supported side -bM 10 units 

skew length -M 
fiT 

- 9.9 units 

clear span - Ix M7 units 

ratio -b: l 0 1.01 

angle of skew 450 

Uniform load - one unit per unit area. 

Also shown are the loading on strips X5 and Y6 . The 

shear forces and loadings are rounded off to the second decimal and 
therefore there can be very small out of balance moment at the free 

edges and simple supports. 

In skew slabs an extremely high bearing reaction occurs 

near the obtuse angled corner. This may 
-be 

many times as high m the reaction 
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of corresponding right angled slabs and in this example over 57% of 

the total load is concentrated over, the strip width nearest to this 

corner. The other noticeable feature is that the load distribution 

factors on the grid nearest to this corner are (0ý 9-7) and 

1 10-7 These two values lie widely outside the assumed 

range for the load distribution factors in the simple strip method. 

The other factor that is of importance is to check the collapse 

load of the skew slab. The positive yield line at the centre, of the slab 

and shown in Fig (5.14) conforms with the uniqueness rules set out in 

Chapter Four. A numerical analysis shows that the collapse load is with- 

in 0.2% of the design load. The slight variation from uniqueness can 

be attributed to the fact that equilibrium is satisfied approximately 

at the triangular elements near the free edge. 

In'the above example rigid supports have been assumed but the 

effects of flexible supports in skew slabs is by no means negligible. 

The effects of this flexibility is to reduce the beaAng reaction and 

the bending moment in the regions of the obtuse angled corner. Rusch 

and Hergenroder (32) haveused model tests to determine the bearing 

reactions of skew slabs. These were measured at 10 equally spaced 

points along the support with highly sensitive instruments. The models 

which were made of a special low setting plaster had the following 

geometry. 

angle of skew 300 
ratio b: 1 1.2 

clear span 500 mm 
slenderness ratio 1Xd 25 

The spring constant c for the bearings were chosen such that 

12C 370 - 
'Where 

k is the flexural rigidity per unit width of x k 

the slab E d3 

12 1-/X 
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I Fig (5-15) shows the distribution of r-aaction as a fraction 

of half the total load on the slab corresponding to a uniform load. 

Also shown are the values obtained by the torsionless grid method 

for a similar slab. The agreement between the experimental results 

and the theoritical values is verj clear and therefore this method 

can be recommended to determine the bearing reactions of all slabs. 

_5.8 
CONCLUSIONS 

A generalised strip method of concrete slab design has been 

presented in which the load distribution over finite regions of the 

slab are determine systematically by ensuring compatibility of elastic 

deflections of orthogonal slab strips. It has been shown that all types 

of distributed loading, slab shape and boundary conditions including 

partial composite action with supporting beams can be accommodated. 

Point loads, point supports and patch loads will be considered in the 

next chapter. 

I 
The designer has considerable freedom in choosing the strip 

layout, but whatever the choice the method ensure that the resulting 

load distribution will not depart too far from elastic working load 

conditions and should therefore ensure adequate serviceability. The 

method provides full information about bending moments, shear forces 

and loading at all points. The resulting layout of reinforcement is 

orthogonal and banded and the total amount of reinforcement required 

comýares favourably with other methods of design commonly used. With 

uniformly distributed load the method leads to a unique solution for 

the collapse load in all the cases which have been considered, except 

for skew slabs and even here it is very close to the unique. Therefore 

the strip deflection method appears to offer a unified collapse limit 

state approach to the design of all slab type structures which is 

simple, safe and economical. 
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For many designs the calculations can be carried out ona 

simple desk calculator but the. method has been shown to be closely 

related to the torsionless grid analogy method and so existing computer 

Programmes for. grid work can be readily used where they are available. 

The GENESY'S system which has been used for all the grid analysis 

presented L- very flexible and any type of slab geometry or support 

condition can be accommodated. The only difference between the strip 

deflection method and the torsionless grid approach is the assumption 

made about the load distribution between the slab strips. In most p: rac- 

tical. cases the difference between the bending moment fields will be 

insignificant but for a unique solution for the collapse load the load 

interactions should be assumed strictly to be uniform over a grid area. 



134 

CHAPTER SIX 

STRIP METHOD OF SLAB DESIGN WITH POINT LOADS AND POINT SUPPORTS. 

6.1. Introduction. 

An 
, plication of the strip method of slab design with distru- 

bed loads was discussed in the earlier chapters. When the applied 

load q is uniform over a certain area)then q can be distributed 

in the x and y directions such-that qx+ qy =q. The value 

of q can vary from region to region and for each such region there 

is an equilibrium equation. When equilibrium conditions are satisfied 

at all points of the slab and at the boundaries, the strip method 

will produce a safe solution and in most cases of distributed loaded 

slabs it is possible to find a unique solution. 

Consider the arrangement of strips in the rectangular slab 

shown in Fig ( 6.1. ). The slab ca=ies a single patch'load W on 

its centre grid. If the dimensions of this patch load fits that of 

the centre grid then the problem is the same as that just considered. 

However it may not always be practicable to have a layout of strips 

to fit the Positions and dimensions of all applied patch loads. 

Where the loaded area does not coincide with a grid area it is not 

possible to satisfy equilibrium and therefore a safe solution is not 

produced. ' 

A similar situation can arise due to a point support or a 

column and Hillerborg's tYPe 3 element was an attempt to overcome this 

problem. This load distribution element has the function of a distri- 

buting concentrated load over the, grid area, but the moment f ield 

within this element is complicated and has to include torsional moments. 

Wood and Armer (27) in their alternative treatment of the 

type 3 element suggest the use of strong bands, together with strong 
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strips of short length to spread the column reaction see Fig (6.1. a). 

Unfortunately the authors did not give rational methods of designing 

such strips and no information is available on the reinforcement in 

the unloaded regions. 

Hillerborg (34) also solved the simply supported slab carry- 

ing a narrowly distributed line load Q, per unit length as shown in 

Fig (6.2). The load Q was carried by strips in the x direction, 

which in turn was carried by strips in the y direction. Hillerborg 

suggested a suitable choice of 'a' the length over which the load is 

spread. The maximum design moments per uniý length are m, x-Q. a(Sagging) 

and my =a 
el (Sagging). Hillerborg's procedure clearly ensures that 

equilibrium is satisfied at all points and. does so without the use of 

torsional moments. Hillerborg has devoted considerable efforts and 

ingenuity. to generalise the simple strip method, 'but surprisingly he 

didnot develop this simple concept of spreader systems to distribute 

concentrated load in more general problems. It is the purpose of this 

chapter to illustrate how a particular layout of strips can affect the 

uniqueness of the strip method. Point loads, patch loads and columns 

will be dealt with in detail and in general these can occur within the 

slab, along an edge or at a corner. In each case recommendations will 

be given to ensure that the strip method will provide a safe solution 

with respect to collapse. 

6.2. STRIP SYSTEMS M. UIRED TO PRODUCE UNIQUE COLLAPSE LOAD. 

6.2.1. Corner and-edge columns. 

In the strip method the load distribution over a grid area 

is assumed to be uniform. With an external column however the designer 

may sometimes be inclined to consider the column reaction to be concen- 

trated at an edge and thereby the bending moment diagram of the strips 

is affected. The effect of this assumption on the collapse load of the 
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slab will be discussed here. 

Consider the square slab supported, at the four corners and 

carrying a central point load as shown in Fig (6-3). The centre 

strip containing the point load is of the same zero width as the load 

thus eliminating any load distribution errors. The edge strips are 

each of width pL which is different from the width of column q L. 

One quarter of the load is taken by. each of the columns and 

Fig (6-3. b) shows the three possible assumption about the distribution 

of reaction. In assumption (1) the reaction is concentrated over the 

outer edge of the slab and therefore the effective span of the column 

strip is L. (2) Assumes a uniform distribution of reaction over the 

column grid and the effective span is L(1-p). If designed accord- 

ing to assumption (3) the reaction is assumed to be concentrated at 

the inner edge of the column grid arx1 the effective span is further 

reduced to L(1-2p). Due to the difference in span in each of 

the methods the bending moment in the support strip is different which 

will affect the collapse load of the design. The moment field for the 

entire slab is positive - positive and the collapse load is checked 

for the diagonal and central line mechanisms. 

Assumption (1) column reaction concentrated at the outer edge 

a) diagonal collapse mode 

E We x1 

and D 4M x 1/1_ (1-2q) 8M 

-ZL (1 - 2q 

where M is the total moment accross the diagonal 

ie M=2WxpL+W 2L WL 
,92 17 22 

equating E-D gives We <W 2q 

b) Central line collal)se mode. 

E We 

and DMx 2-& where -G- - P- 
L Zq) 



138 

Load 

JPL 

Diagonal mocle 

Central Ling Mocle. 

B, andinq Moment 
Column 5triý 

Loadln3 
W/4 WA 

uL- 
8 

B, endinc3 ---' I 
Moment 

Cc fre Str 

Assumption (1) 

8 

ASSUMPtion(2) 

Assumýticn(3) 

Leading Column 5tri 

0 0 

WL(I-P) T9* (2) 
NL 
16 A 

(b) 

FIG (6.3) SQUARE SLAB ON FOUR CORNER SUPPORTS CARRYING A CENTRAL 

POINT LOAD 

column't Q-L 



139 

and M-WL (1-p)+2WL - WL (1-p) 
az 

equating E and D gives 

we 4w(i-2 
2 

1_ 2q. 7 

The central line mechanism will therefore govern and when p> 4q 

then Wc <W. It is therefore possible to have a support strip 

width upto four times without producing an unsafe solution 

Assumption (2) Column reaction uniformly spread over column grid 

(a) Diagonal Collapse Mode 

M- WL p)+2W. p. L x1- WL (1-2p 
7 16 7 

Similarly E- We and D 8M 
L(-1-2q) 

. 
*. We <Wý1 .- 2/3 P) 

(I-2q) 

(b) Central line collapse mocle 

M- WL (1-p)+ WL (1-P WL p 
7- U- 77 

cleaxly Wc x1<W(2-p4 IT 1- Zq 

or Wc, <w (1-P) 
(1- 2q) 

(6 .2) 

Clearly the central line collapse mode governs and uniform distribution 

of support reaction over the column grid area will thus enable a designer 

to choose a strip width up to twice the column width and ensure a safe 

I solution. 
Assumption (3) column reaction concentrated at the inner edge of the 

column grid. 

Diagonal collapse mode 

M- WL p 9- 

equating E and D as above gives' 

We <w 
(1 2q 
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Central line collapse mode 

M- WL p+2 WL (1- 2p 
T -13 
WL 3P) 
77 2 

DMx4 and E- Wc 
L (1 - 2q) 

therefore W. <W 3PJ2) 
q) 

Again the central line mode governs and Wc W when p'- 4 q/3 

This example shows how the collapse load can be influenced 

by the boundary assumption. Contrary to the observations in chapter 

four only one collapse mode governs the ultimate load of the slab, 

which is due to the fact that equilbrium is not satisfied in the 

corner grid. The critical collapse mode for all cases is the central 

line mode and for eaclý assumption a particular layout of strips will 

ensure uniqueness. 

It is recommended. that the column reactions are distributed 

uniformly over the grid areas rather than being concentrated at an 

edge. Under this condition a choice of strip width twice as large as 

the column width will give the unique collapse load and can be used 

for practical designs. 

To prove why the above assumptions lead to a unique solution 

let us considerthe rectangular slab carrying an eccentric point load 

as shown in Fig 6.4ý- The'load strip--is of zero width thus eliminating 

any load distribution errors and the loading in this strip is shown in 

Fig (6.4. ) The reaction -1ý 
is spread uniformly over the column 

strip which is of width p-L. If, this uniformly distributed reaction 

is replaced by a single concentrated force R. of the same value at 

the centre of the column strip, then for points outside the column 

strip the shear forces and bending moments remain unchanged. For a 

strip width ( pL ) exactly equal to twice the column width (Zx q L) 
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the line of action Of the column reaction R will coincide with the 

inner edge of the column. At failure with a Centre line mechanism 

the deflection at this edge is zero and for such mechanisms this 

assumption will therefore produce unique results for the collapse 

load. For the slab shown in Fig (6.4)this can be again 'Verified by 

analysis. For the central line mechanism 

EWcx1 

and DMx iý 

where M=W (2- -D -2 x) Lx 
2p 

and + I 
r. -X. L-Lx - ql J Lx (1 -q- x) 

Equaling E and D 

<w2-p -- 2x wc(z-p)(1-x 

clearly if the column strip width (p) is equal to twice the column 

width (2xq) this mode of failure will give a unique solution for 

all values of x. 

The uniqueness assumption can be exteruied to slabs subjected 

to uniform loads as well and can be illustrated by the example shown 

in Fig (6-5). The rectangular slab (Lxt) is suppo*6d by four 

columns size ( q, Lxq2L) at the corners. The Y strips are of width 

p, L, 1- 2p, ) L, p, L and the Y strips are similarly P2 t' (l-2P2)" 

P2 The layout of the strips and the loading, bending moments 

for the Y strips are shown in Fig. (6-5)- In the design it is assumed 

that the column reaction is uniformly distributed over the corner grid 
(p, Lx P2 I ). Collapse'is*governed... by the central line mechanism 

for which E 2q,. He - 2q, ( Zq 1) WC 
21- 

2q 1Z 

Wc (1- 4q* 
1 Z (1 - Zql) 
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Where Wc is the total uniform load on the slab at failure and 

D =Mx2& 

where M is the total moment 
. _bcross 

the yield line 

M- WL (1- 2pl) 1- 42)4ý_M (1-2pl) (1+2 
3z 

P2) 

WL 2P 
8 

and a=L2(1- 
72q- 117 

Equating E and D 

WC <Wi 2p, 

Results are unique when the column strip width (p1L) equals twice 

the column width (2xq, L 

Similar results can be derived by considering the ', f- strips, then 

Wc =W when p2- 2q2. For convenience it was assumed that the 

load distribution factor within the centre grid was half and the 

yield line passes through the middle of the slab. The results will not 

be changed for any other distribution nor for any other yield line 

within the centre grid. 

These examples confirm that the designer can if support is 

assumed to be distributed uniformly over the column grid, uses a strip 

layout such that the width of the strip adjacent to the edge is twice 

the width of the column and obtain a safe solution. This recommendat- 

ion has been proved for corner columns and columns at an edge. 

6.2.2 Point and -patch loads 
. 

For point an 
Id patch loads equilibrium must be satisfied at 

all points within the loaded grids and for such slabs reinforced accO3: d- 

ing to'the calculated moment fi'eldthe' strip method will give unique 

vlaues of collapse 10--d. if a kinematically admissible collapse mechanism 

is possible -in which the yield lines satisfy the riles postulated in 

Chapter Four. 
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The application of the strip method to a square slab ca=ying 

a central point load W is shown in Fig (6.6). The slab is supported 

by -a joint support. - at each corner. A possible vertical shear force 

distribution for the slab is also shown, together with the loading and 

bending moment diagrams for strips A A, B B, and C C. The edge 

strips CC containing the column is of the same zero width as the 

columns. The width of the strips AA and that of patch load are identical. 

The moment field of the entire slab is positive-positive and 

for all valid mechanisms with positive yield lines only the collapse 

load will be identical to the design load. This is so for any value of 

x( see Fig. 6.6) ie any load distribution can be assumed. 

What is interesting is to compute the moment volume for this 

slab when the diamensions of the patch loads are zero. ie for a central 

poirrt load 

Moment volume of the slab -j>. Strip CC + 4. Strip BB + 2. Strips AA) 

4[2 IL/ 2 (0.125Wy -X )d +4[ 2f 
L/2 

xy. dy Z2 Y] If 
0L0 

+212f 
L/2(0.25 

Wy - 2XV + ? -xy 
?) dy 

0 L' 

1 

2w 
f 

y. dy 
0 

WL4 
-v 

For a square slab supported at the four corners it is easy to postulate 

a neutral(spherical) region with JKJ - IK21 -K for the entire 

slab surface. For such a slab loads can be distributed in any direction 

(see section 3-8). The strip method provides one possible load distri- 

bution and therefore the corr-esponding moment volume is a minimum. 

6.3. ERRORS IN COLIAPSE LOAD DUE TO EQ. XJiLlBjjTjM NOT -SATISFYING 

AT ALL POINTS 9 

Conditions under which the strip method produces the unique 
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collapse load for (a) external and edge columm (b) patch or point 

loads were discussed in the earlier section. It may not always be 

practicable to choose a layout that will give unique results. It is 

therefore of interest to know the errors associated with a choice of 

a strip layout. 

6.3.1 Simply supDorted rectangular slab with a central load 

Unequal load and load strip widths. 

The simply supported rectangular slab of side L and '; NL 

is symmetrically divided into three strips each way such that the widths 

of the centre strips are aL and ? ýaL as shown in Fig (6-7). The 

central load has dimensions U and AbL respectively. The designer 

assumes that the load W is spread uniformly over the central grid 

area and the effects of this on the collapse loads needs to be determined. 

Also shown in the figure is a possible vertical shear force 

distribution and the loadings, and bending moment diagram for a centre 

strip. The collapse load WC is dtermined for a diagonal mechanism by 

the vector method 

External work E-W3 2b 
T 

Internal work D-2 (m +z (M ). i- 
x 7, Y 17-2- 
mx +mY (6-3) 
AL L 

Where mx and my are the average moments ever the central grid for 

the central x and y strips respectively 

clearly mx=WLa )-ýZ (a 
4z34 

=WL3- 2a 
Z4 

similarly MyWL3- 2a 
24 
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Hence D-H( 3-2a 
3- 

Equaling E and D we get 

We ( 3-2a) 
W 4ýý ( 3-2b) - 

Clearly equilibrium is satIsfied when a-b and then 

the results are unique. The least value of Wc/W is 1/3 ie when 

a =. I and b-0 (point load). Further when equilibrium 

is not satisfied the collapse load can be above or below the design 

load depending on the values of a and b, . It is relevent to note 

that the loads are considered "flexible" in calculating the external 

work E is the deflection of the slab at any point is identical to 

the deflection of the load at the same point. 

6.1.2 Unequal column widths and column strip widths for corner 

and edge columns. 

The conditions for uniqueness for edge and corner columns 

were discussed in section 6.2.1. For the example shown in Fig. (6-3) 

the column reaction is concentrated at the outer edge, the collapse 

load Wc is given by Eqn. (6.1). 

we <(1= -P /2- 
w(1 2q 4 
If : it is assumed that the column reaction is spread over 

the column grid area then Wo calaulated from Eqn (6.2) Is 

We <p) w 2q) 

Where p and q represent the widths of the column 

strip and the actual width of the column respectively and W is the 

design load. The collapse load could be above or below W depending 

on the values of p and q. 
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6.4. USE OF SP=ER SYSTEMS TO SATISFY EQU=RIUM - INTERNAL 

LOADS AND INTERNAL COLUMNS-*'* 

A method of obtaining uniqueness for the ultimate load 

of slabs supported by columns at the corners or edges has been 

established. It is necessary to choose width equal to twice the 

dimension of the column for the edge strip and in most practical 

problems this width is sufficeint to accommodate the required reinfo- 

rcement. 

For loads however it has been concluded uniqueness can 

be achieved by insisting that the dimensions of the loaded grid are 

identical to the widths of load. When the load dimensions are largre 

it is possible to choose such a laYout which will accommodate the 

required reinforcement. -I 

When the dimensions of the load axe small it may not be 

practicable to accommodate-this reinforcement. Pupposing as in Fig 

(6-7) the chosen strip layout is such that the centre grid is larger 

than the. dimensions of the load, the question therefore is how can 

equilibrium be maintained and thereby ensure uniqueness. 

In order to do this a series of load distributions as origi- 

nally suggested by Hillerborg (34) for the slab, in Fig. (6.2. ) can 

be employed. 

(a) The central patch load W is distributed half in each of 
the x and y and directions. 

(b) Each half of the load is spread along a band of the same 

width as the load and length equal to the co=esponding dimension 

of the grid. 

(c) The band loads axe theri transf ormed into a patch load such 
the the dimension of the patch load coincide with that of the grid. 

(d) Finally this patch load acts on the grJA of the same area. 
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6.4.1 Interml lcads. 

These steps are illustrated in Fig. (6.8). Clearly the 

transf ormation of the patch load to a uniform load over the grid area 

will effectively change the moment field with: Ln the gr3. d. But this 

procedure will not change the moment field elsewhere which are produced 

by step (d) alone. 

The ultimate load of the slab can be calculated I: rj the yield 

line theory. For the same diagonal mechanism the external work E 

remains unchanged as (see Fig 6.7. ) 

E= Wo 3- 2b 
T 

The internal work D is giveý'by (Equation 6-3). 

D4(Mx+mY 
71 L 

and the value of mx in this example is 

MxWAL 3-2a 
2-7- 

The increase in mx due to the spreader load systems can be 

shown to be 

-M: L +bX (Ml + (Ml + 2M2 
3a 3 

2 Mla + Na + M2b 
5a- 

NOWM1 
=WNL (a' b)? - and M2 -V^; ý L( a-b 

16a 16 

The increase on mx- 
-WL a-b)ý 

12 

and the new value of mx WL ?ý, ( 3-2a) + WL 
24 12 

WL 
24 3- 2b 

Similarly the value of my= WL (3 - 2b) 
iv- 
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On equating E and D the collapse load Wc becomes identical 

to W the design load. Since equilibrium and yield conditions are 

satisfied and the principal moments are positive evorywhere there 

is a multiple collapse mechanisms all leading to the same value of 

collapse load. 

6.4.2. Internal Columns 

The use of spreader systems which ensure local equilibrium 

can now be extended to slabs with internal columns. The use of torsion 

free spreader systems will provide unique solutions if it is possible 

to postulate a yield line mechanism in accordance with the rules given in 

Chapter Four. 

Fig. (6.9) illustrates a square slab of side 2L, simply 

supported along the four edges and carrying a uniform load of q per 

unit area. In addition the slab is supported by a square column of 

side 2x at the centre. For simplicity the load distribution factor 

cK (and 1- o< ) is assumed to be o.. 5 everywhere. The moment fields 

are chosen to be positive - positive all over except for the centre area 

of side 2a. where the moment field is negative - negative. This is 

attained by properly choosing the values of a, R A, RB and RC such 

that the bending moment for the strip AA along the edges of the central 

grid are zero. 

Taking moments about the edge of the centre grid 

RA(L -'a ) -'qa L-a 
2 

RA 

Further ZRA + R(: qa 'ý 2L - 

RC -qaa+ L) 

For the entire slab 4RA + 811B, + 2-RC 4qLZ 

and RB LLa 
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Max. moment for strip BB qL2 L-a 

To maintain equilibrium within the centre grid the column reaction 

2R C is distributed by two spreader strips each carrying RC and. 

the bending moment in the spreader is negative. 

The mechanism shown in Fig (6.9) with positive and negative 

yield lines conforms to the rules stated in Chapter Four for unique 

solutions. The external work E for a unit deflection along the edges 

of the centre grid and zero deflection at the column and at the supp- 

orts is given by 

E= qc (L-a)? - 4+ 2a (L-a) +2 (a-y)2 4+ 2y (a-y) 
37 21 

4 q, + aL - ay -y 7 
211 

The total dissipation of energy D is given as a sum of 

(1) For positive moments - mean moment q (L - a)Z (Z. L+ a) 
12 

Dissipation of Energy - q(l=a)? -(2L +a) L_ -. Z q (L-a) (2L +a) 
1z L-a 3 

(11) Negative moment 

spreader q(a+La-y)2 7- 

centre grid - qa (a-y) (L-y). 2y + qa (a-y) (3L-a-2y). 2(=) 
7 2a 'M 2a 

(a-y) Y+ (-a-. Y. ) M-a-2y) Iz 

12 
1 

Total negative moment - q(a- 4 +6Ia -4ya) 2) (2a Yý, 
12 

Dissipation of Energy =q(a-y), (2a 2 
-A + 61a -, 4ya) 4 Yý 

12 a-y 

and total dissipation of ene 2e- rgy 
- 

4y 
31( A 

4q L2+ aL - ay - 
3 

The external work done, E and the dissipation of internal 

energy D are equal and the strip method design load is the unique 
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collapse load as predicted. For this example there are multiple 

collapse mechanisms all giving the same unique failure load. 

Therefore we arrive at a very important conclusion for 

internal point (patch) load or internal supports. A strip layout is 

chosen such that the load or the column is at the centre of an internal 

grid. The forces are distributed within the internal grid area by a 

spreader system which ensures that equilibrium is satisfied at all 

points of the slab. 

The slab is then designed for a moment field which is the sum 

of that due to the uniform distribution of load or reaction over the 

internal grid area and that due to the spreader system within the 

grid area. 

In such cases of slab design it is possible to draw a collapse 

pattern that conforms to the rules set out in chapter f6ur and for such 

mechanisms the collapse loýd will be identical to the strip method 

design load. 

6.5 USE - OF SPFEOER SYSTEMS - EDGE AND CORNER LOADS. 

When the load or the column is within the slab it is possible 

to choose a strip layout such that the load or the column is at the 

middle of a g:: Id. However when the load or column is at an edge or 

a corner the layout of the spreader system is more restricted. 

6.5.1. Edge Loads. 

Consider the rectangular slab shown in Fig (6.10). The slab is simply 

supported along the two long edges of length L and carries a point 

load at the middle of one of the other two free edges of length L. 

The slab is diveded into two equal strips- along'the x direction. Due 

to the position of the load the spreader system SS is restricted to 

span only in the y 'diýectioL '- The, spreader 'system 
P the loading and 

bending moment diagrams'for each"strip are also 'shown. -The load is 

first'spread to produce a uniform line load in the y directiono 
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which iný turn produces a concentrated line edge load on the x strips 

In order to produce overall equilibrium the strip AA is assumed 

to carry a load of 2H ) downwards and the strip BB a load of 
2 

(W) upwards each uniformly distributed. The bending moments along 
2 

the strip AA and spreader SS are positive, and those along 

strips BB and XX are negative. The collapse load of the slab 

is calculated by 

(a) Central line mechanism ( parallel to simple supports at the middle 

of the slab). 

External Work E- Wc. 1 

Internal Work D- WL + WL x 1.5 4 1a7L 

= 1-25 W 

Equating Eý and D 

Wc", ' 1-P. 5ý- 
(b) For the yield line pattern shown in Fig ( 6.10b) 

The External Work E WC xl 

DissiPatiOn of internal Energy D 

(wL) x4+ (2' 6'(x 
;NL+W L(x-1.5x 2). 

8L380.5 ALL xAL 

=,. IWF + Wx +W- 1-5WX -W 
2 ZI 

Equating E and D 

W, <WN- X1 22 

This solution is valid for 0 4x < 0.5 and the minimum value of 

W is equal to 1.25 W, when x 0-5. It can be shown that the 
0 

collapse load Wc is greater than 1.25W when x >0-5. Therefore 

for this particular layout of strips a lower bound solution is produced. 

This is because it is not possible. to postulate a yield line mechanism 

in accordance with the'.. rules for uniqueness given in chapter four. 

it is however possible to obtain a unique solution for this 
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slab problem by altering the strip layout. As shown in Fig(6.11), strips 

AA and Mare now of- width zero and AL respectively. Consequently the 

total load carried by strip AA is W and that by BB is zero. 

The bending moment for spreader system SS is unaltered 

and the parabolic moment diagram for strip AA has a maximum value 

of WL . Strips XX and BB will not cater for any bending moment. 

The combined loading and the bending moment of SS and AA are also 

shown. The moment field in AA, SS are positive - zero and in BB, 

XX -it is zero - zero. Under these conditions there will be a multiple 

of collapse patterns all producing the collapse load identical to the 

strip method design load. 

To illustrate the effects of spreader system in a more general 

moment field consider the square slab'shown in Fig ( 6.12) carrying 

a point load W at the middle of the free edge. The side opposite 

this free edge is built in and the other two are simply supported. The 

load is distributed along the free edge by a spreader system SS. The 

positive moment in the spreader system has a maximum value of WL 

The line load so produced acts at the edge of the slab producing a 

negative principal moment all over the slab with a maximum value of W 

per unit width. The principal moment normal to the simple supports 

is zero for the entire slab. Thus the moment field for the slab is 

negative - zero and for the spreader system SS is positive - zero. 

For the yield line pattern shown in Fig (6.12) 

External work E-WCx1 
2 

Internal Energy, D - -W x+ Wy 
IL ZI_I"y X 

- 

L 

The minimum value of Wc-W is when x-0. Similar to the example 

in Fig. (4.4. ) the collapse pattern agrees with the conditions for 
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uniqueness although the Pattern is not strictly kinematically admissible. 

Alternatively if the spreader is designed to take the entire 

bending moment ie the spreader has a triangular bending moment -diagram 

with a maximum value of WL at the Centre as shown in Fig ( 6.12. b 
T. - 

and the remainder of the slab is free of moment, then from the previous 

arguments It can be concluded that there will be an infinite number of 

collapse mechanisms all producing the unique collapse load. 

6.5.2. Corner Loads. 

To conclude the special treatment of loads consider the square 

slab of side L shown in Fig 6.13. Two adjacent edges are built in 

and the remaining two edges are free. The-slab carries a point load at 

the corner formed by the two free edges. Equilibrium is maintained 

through two spreader strips SS, each carrying one half of the load W. 

The strips AA and BB are of width L/2 and Fig (6-13) also -shews the 

loading and bending moment diagrams for the strips AA, -BB and spreader 

SS. The yield line pattern shown is one which conforms to the unique- 

ness rules given in Chapter 4. and analysis of this mechanism conf irms 

that a. unique, solution is obtained. 

External Work - Woxl 

Dissipation of internal Energy - 2WL x2+ 2-3 WL .2 
16 1 -13 1 

= 

which shows that the collapse and design loads are identical. 

6.6. APPLICATION OF THE STRIP DEFIECTION MMOD OR NO TORSION 

GRID METHOD FOR SLAB DESIGN 'WITH POINT LOADS AND POINT COLUMNS. 

It is now possible to extend the strip deflection method 

described in chapter five to cover point loads and point columns. 

To obtain safe solutions with internal columns and point or patch 

loads will in general require spreader systems which ensure that local 

equilibrium is maintained However with edge or corner columns safe 
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solutions can be obtained by choosing the edge strip containing the 

column to have a width equal to twice the dimension of the column and 

assuming that the reaction is spread uniformly over the column grid. 

To illustrate the application of the strip deflection consider 

the square slab side L carrying a central patch load W as shown in 

Fig ( 6.14 ). The slab is supported by four identical square columns 

assumed to be of side (L/10). The first step would be to choose a 

column strip of width 2xL=L and assume that the designer decided 
10 3 

to choose a strip layout with five equal strips each way. 

The vertical shear force distribution diagram shown in Fig 

( 6.14 ) was obtained by assuming a uniform spread of column reaction 

over the centre grid. Safe conditions prevail over the column grid area 

and equilibrium conditions axe maintained over the rest of the slab 

except in the central loaded area. The spreader system SS transforms 

the patch load first to a line load and next spreads it over the grid 

area. The loadings and bending moments in the slab strips and the spreader 

are also shown and these must be added where relevent. Analysis of this 

slab again will show that the design load and the collapse load are 

identical. 

6.7. coNnusioNs. 

A generallsed-method of--designing slabs with patch loads and 

patch columns has been presented. Generally local equilibrium must be 

satisfied at all points including the boundaries for the strip method 

to produce safe solutions. It is not always practicable to have a 

layout of strips to fit the position and dimensions of columns and loads 

and thereby to satisfy equilibrium. Procedures have been derived to 

produce spreader systems for loads and internal columns. These spreaders 

will ensure that equilibrium is satisfied and the collapse load of such 

slabs will be unique or lower bound depending on the possibility of post- 

ulating a yield line pattern which confoms to the rules given in 6hapter 

four. 
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With edge or corner columns however safe solutions can 

be obtained by choosing a strip layout such that the width of the 

column strip is twice the dimension of the column and assuming that 

the column reaction is spread uniformly over the column grid. In 

most practical problems this width is sufficient to accommodate the 

required reinforcement. 

If the above conditions are not fulfilled, the collapse load 

and the proposed strip method design loads will differ. The ratio will 

depend on the chosen strip layout and an extreme example was presented 

where the collapse load was only a third of the design load. 
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CHAPTER SEVEN 

EXPERIMENTAL TESTS ON REINFORCED CONCRETE SIABS 

7.1 INTRODUCTION 

In the earlier chapters the theory of'both the strip method 

and the strip deflection method were presented in a manner suitable 

for practical design. In order to investigate some aspects of the 

theory and design recommendations, tests were carried out on nine square 

reinforced concrete slabs. The, testing procedure and comparison of 

experimental results'with the corresponding analytical predictions will 

be presented in this chapter. 

During the loading -of the slab, whenever possible the following 

items were recorded. 

(1) Deflection of the slab under the applied load. 

(11) The loads corresponding'ý to the-first visible crack and the 

developement of the cracks. 

(111) Mechanism of failure and a photographý of the pattern of the 

slab. 

(1V) Maximum applied load. 

Because of factors such, as, casting, cu#ý,,, handling and the 

size of the, testing-rig, the dimensions of, all. rlabs was fixed at 

800 mm x 800 mm x : 5Cý. mm. 
,, 

The overall span to depth, ratio, was 16. The 

length and breadth of the, slabs . were , such that they, were, about, 3.1.6 scale 

models and Clark, (35), has, shown that,,,, with such modelsAt is pot, possible 

to draw wholly reliable conclusions regardingthe crack widths in full 

scale slabs. Therefore it, was, realised at the outset of this investi- 

gation that, the primary aim was-to,, check-the ultimate load, behaviour 

rather,, than-the, serviceability_COnditions-although some information is 

prýcvided on the latter. 
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7.2 MATERIAIS 

(a) Concrete 

In all the slabs a medium workability mix was used. The design 

of the mix was based on Table 5 cP114 (4). For a 19 mm (3/4 in) 

maximum aggregate size the mix had the following propotions. 

Water :. cement ratio 0.5 
Coarse aggregate : cement ratio 1.. 8 

Sand : cement ratio 1.3 
Total aggregate : cement ratio 3-1 

Preliminary tests carried out on 12,152.4 mm, (6 in) cubes 

and made from the specifiedmix gave 28 day crushing strength of just 

over 40N/mmý. Therefore this strength (40 NIMM 2) 
was used in the 

design of slabs'and for the provision of steel reinforcements. 

The aggregater. were cleaned, washed and dried for 24 hours 

before use. The three 152.4mm (6 in)-cubes. cast with the slab were 

cured with the slab for 28 days. in water. The slab and the cubes were 

tested on the sane day. Table 7-1 gives details of cube strength of 

the concrete for each test. 

(b) Reinforcements, 

The overall depth of the slabs was 50mm. The cover to the 

reinforcement was 'L l2.5mm'(1/2'in). ', Sever'e restrictions had to be placed 

, on the diameter of the. bars in order to keepýthe effective depth of the 

, slab as large as possible and reasonably conýtant in both directions 

of the two directions of span. Further a smaller diameter bar ýý the 

'advantage of a smaller bond length 80-2-38mm-diameter'bright mild steel 

, bars were considered, suitable. 

-The, stress- strain., ch,, iracterist! Lcs, of-this-stee1 was deter- 

mined using a Hounsfield Tensometer. Friction grips were used to apply 

the tensile force which was measured directly from a mercury column. 
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AGE AT AVERAGE 

TEST NO TEST CUBE STRENGTH CUBE STRENGTH 
(DAYS) 

ýN mm 
2 NIMO 

44.1 
1 28 44.5 44.3 

44.2- 

37.2 
2' 28 38.6 38.2 

38.9 

37.8 
3 2-8 38.6. 38.6 

39.3 

43.9 
4 28 '44.7' 44.4 

44.7 

''4301 
5 28 43.6 43.1 

43.0 
6 28 

., 
42,. 9 42.6 
42.0 

44.8 
7 28 42.1 43.9 

44.8 

38.8 
8 28"', 40. '3"" 400`3 

. 7, , 

41. a 
9 42.5,, 42.1 

42.0, 

TABLE ", 7 1", -Properties of Concret6 e in the test, slabs' 
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The extension of 50.8mm (Z in) length under test was measured using 

a mechanical extensometer. Fig (7-1) shows the average of four. 

stress - strain curves. The bright mild steel does not show a defi. - 

nite yield point. but does have a long yield plateau. It was decided 

to take the yield stress of steel as the 0.2,19 proof stress, which has 

. the value 615 N/mmý. The strain corresponding to this yield point is 

o=496. 

7.3 CASTIM', AND TESTING OF SLABS 

The slabs were cast on the mould shown in ]Photo (7-1)- The 

bottom of the mould was covered with Fablon to prevent water entering 

the wooden mould and to produce a smooth under surface on the slab. 

12.5mm (1/2 in) plastic cover blocks-were used to position the steel 

reinforcements. The concrete'was mixed for 2 minutes, placed carefully 

in the mould and compacted well on the vibrating table. 

The general arrangement"for the tests is shown in Photo, (7.2). 

The slabs were tested vertically to permit easy observation of cracks 

as they developed during the. experiment., The urAersides of the slabs 

were covered with an even coating of white emulsion to facilitate the 

observation of. these cracks. 

Each corner of slab'lin--Tests Nos. 1, to'8 was supported against 

transverse displacement by a 25rrii diameter steel ball'as shown in, 

Fig (7.2. a)., In 'plane movements were allowed by the use 
I 

of two 
I 
steel' 

plates placed between thesteel-ball and the concrete slab. The . mating 

surfaces of the platesiý the surface of, the ball seat we - re well greased.: 

Slab No 9 was simply supported at two edges; - The support'sketched in, 

Fig (7.2b)-has a 25mm diameter bar and 'a 450- V groove. A6', thick -3mm 

steel plate was plastered to the bI ack'of -the slab. and the mI ating surfaces 

were, well greased. to facilitate. the in, plane movements. 

In all-tests loads''were aPplied horizontally, using an hydraulic 

jacý and a . 
50, rim in)-diameter býll seat tO'Spread the load. 
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Slabs in Tests ITOS-I-. 5 were subjected to a patch load and a piece of 

wood of the required dimensions was glued to the front of the slab 

as a local spreader. The loading arrangement can be seen in Photo 7.2. 

The applied. load was measured using a load cell and a digital 

volt meter. The load cell, the voltage stabliser'and the digital 'volt- 

meter were accurately calibrated before the test programme and the same! 
I 

set was used for all the tests. The deflections of the slab under the 

applied load were measured using dial gauges. The roadings of the digi- 

tal voltmeter and and the dial gauge were recorded at desired intervals. 

At each stage of loading the underside of the slab was examined using 

a magnifying glass for any cracks under the illumination supplied by 

spot lamp. It was not intended to measure the crack widths whilst loading 

but the first 'visible crack were of the order of 0.03mm width. 

. -The slabs were loaded until the load passed the peak value. 

All cracks visible on the surface were marked using a felt pen and 

photographs were taken of the crack patterns at collapse. 

7.4 DESIGN-OF SLABS 

Much research has been carried out to. study the characteris- 

tiqslpý the concrete. cOmPressive stress blocks and various methods are 

available, to approximate its shape. The concrete stress distribution 

adopted here is, due to Hognestad, 
_, 
Hanson and McHenry (36) aul the corres 

ponding yield principal moment, of the slab M can be expressed. as u k'ý -. I. I 'i - 

3f 
where 

A-,, is,, the area, of tension reinforcementin width b, 
B 

;y is the yield,; stre., ss,. of reinf orcements 61. ý14mý2* 

fc is the crushing strength of concrete 

b is the width of slab strip'- 

d is the effective depth to the, reinforcement. 
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Factors kj, k2, k3 define the magnitude and position of the resultant 

compressive force. -The variation of these factors with the cylinder 

compressive strength (f ) is given in (36). 
c 

Initially the value of. cube strength 40 N has been 

assumed to determine the steel reinforcement in each slab-strip. The 

design load (WD) and the theoretical failure load given in Table (7-2) 

are however based on the average crushing strength of cubes cast with 

each slab. The relationship between the theoretical failure load and 

the design load will be discussed in detail for each test in the. next 

section. 

7.5 DETAIIS OF SIAB TESTS. 

7.5.1 Unique design by the strip deflection method 

TEST No 1. (Slab*No-12) 

This test was aimed at investigating the behaviour of a slab 

designed to give a unique collapse load. The slab has five strips of 

widths 100 =n, 
I 

250 mm, 100 inm, 250 mm, and 100 mm each way and was 

designed by the strip deflection method. The strip layout, the vertical 

shear force distribution pattern and the position of supports are shown 

in Fig (7-3)- 

In chapter 6.2 it was shown that by assuming a uniform spread 

of column reaction over the column gricl area and choosing a column 

strip width equal,, to twice-the column width it was, possible to obtain a 

unique solution., Accordingly, in the test a column strip width 
"of 100mm and 

column width of 50mm were chosen. The errors due to loads were elimin- 

ated by choosing a square central grid of dimension 100mm x 100mm and 

gluing a piece Of wood of same dinensi6n so as to'distribute the applied 
.. " 



176 

r. tnfll 

ýiece of wooct locirnrin x ioornrn 
distributes the Icaci UniformiLi over bi e ca"traL 

4 Columns 700 Mrn Oýart 

:L 50 

700 o 

0-115 0-251 0.1 IS 
1 J 

0-1 is 0-25\ 0-II 

N 

US ' I I Iý 1 , 

00 

260 

100 

250 

loo 

FIG 7.3 STRTP LAY0111.2O2lTjQN-O? 
--COLUMNS--AND 

YERTTCAL SHEAR FORCE 

DISTRIBUTION PATTERN FOR TEST 1. 



- ; -. .- ; -_ - k--- . --. - - -- 

-- 
1 

--. 
"_- : 

__:: 
:-: - 

177 

_____ ___________ " 

" 
-S "".::. : 

------------ 
-- ------------ - 

------------- 
---- -- ---- -- ---------------- 

-- --------- 

W 0 
-- - ------- -7, - 4.4 K NJ 

.6 t< 
------------- -- 

- ------------ --7: 77-7. -. 
- iB-ZKN 

IRST 
ý V 15 I BLE 'CR ACK 

-- . -. ...... . .... 
- 77 

-- 
. ..... 77 

...... ..... -------- 77 

--- 
*- --- --- - ------ - 

......... ......... 

......... .. 

uj- 
- ----- 

---------- ....... 

........ ..... ...... 
---------------- 

77 
---------- - 

---- --------- 

p 

-------- --- 

-7.4 LO Ala DEFL5-CTION, C, URVE FOR T F- ST 

a 7 

777- : 

-4 -7ý777 



178 

load uniformly over the grid area. 

The results of the tests are given in Table (7.2) and load 

deflection curve in Fig (7.4). The slab failed by a central yield 

line mode. The theore. tical failure load NT) was 10.44KN and the 

maximum applied load WM was 9.6 KN (921o WT). The first crack appeared 

at 8.2 KN (78.5% ý, ) and the slab has deflected 2.7mm (span 300) 
T 

at this stage. 

The'collapse mode agreed with the one predicted. The differ- 

ence between the theoretical and experimental maximum loads is, within 

the accuracy obtainable. If partial safety factors of 1.15 and 1.5 

are allowed for steel and loaLcis, the combined factor is 1.725, Then 

the working load for the slab can be established as (W + 1-725) or 
i, T 

6.05 KN. There were no visible cracks at this load and the correspon- 

ding deflection was 1*'6mm (span 500). 

(b) TEST No. 2. (slab NO. 5) 

This test too was aimed at producing a unique collapse load 

but a different assumption was made for the column width and the assumed 

point of application of the column reaction. In Chapter 6.2 it was 

shown that by assuming the support reaction concentrated at the outer 

edge, unique results can be obtained by choosing a column strip width 

equal to four times the column width. In the test the column*width was 

50 mm and corresponding column strip width was 200mm. The errors 

due to loads were, again eliminatedby spreading the applied. load, 
lover 

the central grid area as in the earlier test. The strip layoutg verti- 

cI al^ sh&irf o-r-c-e- -di: st-ribution'"pattern, position of columns are shown 

in Fig 

The test results are given in Table (7-2. ) and load deflection 

curve shown in Fig (7.6). The theoretical failure load (W ) and maximum T 

applied load (W. ) were 12-03KN and 11-7KN. (Wm - 97-3% WT) respectively. 
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Clearly these values agree remarkably. The first crack appeared at 

8.4KN (701- WT) and the corresponding deflection was 2.6mm, (span 4-300- 

The slab failed by a central yield line mode the one predicted by the 

design and the crack pattern at failure is shown in Photo (7-3). The 

working load of the'slab can be established as 6.98KN (WT-; 
- 1-725)- 

There were no visible cracks at this load and the corresponding deflect- 

ion was 1.5m (span -: - 533) 

7.5.2 Errors due to load assumPtions 

TEST No. 3 (Slab No. 7) 

The purpose of.: ýhis test was to investigate the influence 

on uniqueness when loaded areas and load grid areas are not identical. 

The slab has three strips eachway (100mm, 600mm, 100mm). These together 

with the position of columm etc axe shown in Fig. ( 
-7 -7) . The 

column reaction is spread uniformly over the column grid area and 

corresponding support errors are eliminated by choosing the column 

width (50 mm) equal to. half the 5tr, iý 'width (100 mm). The load is 

applied uniformly over central area Of 100mm x 100mm. The central load 

grid is however much larger than the loaded area and has a dimension 

of 6oomm x 6oomm. 

It can be shown from yield line theory that the design load 

WD and the theoreticalfailure 
, 
load W for the Slab is related by 

w T, L)wD 
Lta -b, 

where L- length of slab (800 mm) a- -load strip width (600 mm) 

and b= load width (100mm). For these dimensions W o. 615 w TD 
Test results axe given in Table (7.2) and load deflection 

curve shown in Fig (7-8). The design loadtheoretical failure load 

ancl experimental failure load W axe 16.63KN, 10-23KN and 8-7KN 
,m 

(85% WT). The ratio WM: WD obtained in the experiment was 0-523 
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which is about 151o' below the expected ratio The first crack appeared 

at a load of 7.0.5 KU (692AIT) and at this stage the slab has deflected 

1.6mm (span -* 500) photo 7.4 shows the central yield line pattern. 

7.5. Errors due tO SUPPort assUMPtions 

The next two tests were designed -to investigate errors 

produced in the collapse load when the column strip vidih and column 

width differ from the conditions required for uniqueness. In both 

tests the central grid is 100mm x 100mm and a piece of wood of these 

dimensions glued to the front of the slab distribute the applied load 

uniformly to eliminate any uniqueness errors., due to applied load. 

(a) TEST Tio. 4 (Slab No. 11) 

Fig (7-9) shows the strip layout position of column etc for 

this test. The column reaction is assumed to be spread over the column 

grid area. If the column strip width (3... 50mm) e3cpressed as a ratio to 

the span (8oomm) is P and similarly the column width (50mm) as a fac- 

tor q then it was shown in Chapter 6.2- that the design load WD and 

the theoretical collapse load W,, axe related by 

W v'3 (1W T 32 ) 
2D 2q 

substituting for p and q gives WT 0.61+3 WD . Test results 

are given in Table 7-2 ) and load deflection curve shown in Fig (7-10)- 

The design load WDp theoretical collapse load WT and the experimental 

maximum applied load W. are 10.60KN, 6.81KN 'and, 7.40KN, (108.7%1 WT). 

The ratio'--, WM.:, WD obtained in the experiment is' o. 698 (about 8.7% 

above the,. expected ratio). The first crack appeared at a load of 6,7KN 

(98.3% WT) and the corresponding deflection of-the slab being 2.4mm. 

(span -L-330 The slab failed by a central yield 11 ine 1. 
mode as anti- 

cipated. 
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(b) TEST No. 5 (Slab No. 

Fig- (7-11) shows the strip layout, position of column and 

the vertical shear force distribution Pattern for this design. For 

this slab it was assumed that the column reaction is concentrated at 

the outer edge of the slab. For factors p and q defined in the 

last test it'can be shown that design load WD and the theoretical 

collapse load WT are related by (Chapter 6.2), 

WT 1-P/2 WD 
1-2q 

the values of p and q used are 350/800 and 20/800 and therefore 

WT - 0.822/ WD 

Test results are given in Table (7.2) and the load deflection 

curve shown in Fig (7-12)- The values of WD, WT and the experimental 

maximum applied load WM Nere 
- 
8.89 KN, 7-31 HN and 7-05 KN (96.4% wT) 

respectively. The ratio WM: WD obtained in the experiment 
ýeing 

0-793 compared with 0.822 predicted by the theory. The first crack 

appeared at a load of 5.95-KN (81. V. wT the deflection of the slab 

at this stage was 1.4 mm (ýpainý-570). Photo 7-5 shows the central yield 

line mechanism which caused the failure of the slab. 

(7.5.4) (a) Small errors clue to load and support assumptions 

TEST NO. 6 (slab No. 4) 

In this test the slab has five equal strips of width 160 mm 

each way. - The vertical': shear force distribution'pattern obtained-by the 

, strip deflection method, position of supports etc for the slab is shown 

in Fig (7.13). In addition in the design it was assumed that (1) the 

load was distributed uniformly over the central grid area (11) the slab 

was supported at each edge over a strip width. 

The test cond itions were however different in that (1) the 

load was applied directly through'the ball seat (11) the slab was 
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supported at four points 50mm frcm the edges. It so happens that 

the support errors were favourable and the load errcrs were adverse. 

Test results are given in Table 7.2 and Fig ( 7.14) 

sýows the l9ad deflection curve, The design load (W ) of the slab D 

and the theoreti'cal-failu're"load W were 14-37 KN and 13.15 KH 
T 

respectively. The maximum applied load was 14.40 KN ( 109. ý76 WT). ' 

The fi. rst crack appeared at load of 10-05KN (76.4%. WT) and the 

Corresponding deflection, of_the, slab was 1.4mm (span +570). The 

failure of-the slab is shown in Photo -7.6* Although the slab failed 

by the central yield line mechanism, cracks were visible over the 

whole slab area. 

(b) Large errors due to design-assumptions 

-TEST NO. 7 (Slab No. 

This iest-was-iniýnded-ýO illustrate the variation of design 

load WD and, the. theoretical collapse load WT with large errors in 

design assumptions. The slab shown in Fig (7-15) has one strip each 
," --, ) ,, t%I.. ý -" 

way and is supported at the four corners 50mm from the edges. The 

centre point-load. was assumed to be distributed uniformly across the 

slab and one half each way, thus producing a triangular bending moment 

diagram with a maximum yield moment of WD L/8 where L is width of 

the slab (800 mm). Yield line analysis shows that WT due to a 

central yield line mode is given by 

ýT-, ýD, L) 
2 

where,. L',, is-the-distance,. between the supports (700mm). If L 'and t 

were equal then W 0.5 W However for values used in test T D. 

WT WD 
7 

Test results are given in Tabie 7-2 and Fig 7.16 shows 

the load deflection curve. The values of WD and WT and the 
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maximiua experimental load were 18.67KN, 10.67EIT and 10.4 KN 

(97.5% WT). The agreement between wM and WT is remarkable 

The. first crack appeared when the applied load was 7.6 KN (71-21- WT) 

and the deflection of'the slab at this stage was 1.3mm (span 4.600) 

7.5-5. Use of spreader system 

TEST . NO. 8 (Slab No. 8) 

This test was devised to investigate the use of spreader 

system to produce unique solutions. Without these spreaders the slab 

is identical to 
I 
the 

I 
slab in Test 7. In order to accomodate the required 

reinforcements, the width of all spreaders were chosen as 100 mm. 

position of coliLims, spreader system and the vertical shear. fbrce 

pattern is shown in Fig (7-17). 

The test results are given in Table 7.2 and the load defle- 

ction. curve shown in Fig (7-18)- 

The design load and the theoretical collapse load for this 

unique designare equal (18-57 IM). 

The maximum applied load was 18.20 KN (981"o'-W 
T 

). The first 

crack appeared at a load of 15.0 KN 80. W, WT ) and the corresponding 

deflection was 3.7mm (span 216 If appropriate safety factors 

-Were used for design then the working load can be established as 

10.7 KN (WD 1.725 There were no. visible cracks at this load 

and the corresponding deflection of the slab, was,. 1.75mm (span,, -. *,, 4.57) 

7.5.6. Positive NePýative moment f ield 

ZEST NO. 9 (Slab No. 10) 

This test was intended *to illustrate some conditions under 

which the striPmethod produces a lower bound solution to the collapse 

load. The layOut- Of the strips and the position of the simple supports 
are shown in Fig' (7-19). The . moment field and the bending moment in 

strips is similar to the slab shown in Fig (6.10). 
-The moment'fields 
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AVERAGE CUBE DESIGN THEORETICAL, MAXIMUM LOAD AT 
APPLIEDi FIRST VISIBIE 

TEST NO. STRENGTH LOAD FAILURE LOAD LOAD CRACK. 
(WD) NT) (WM) 

11 mm2- KN KN KN KNS 

44-'3 . 1o. 44 io. 44 9.6 Ba 
(92%) (78.5%) 

2 38.2 12-03 12-03 11-7 8.4 
(97.3%) (70 %) 

3 38.6 16.63 10-23, 8.7 7.05 
(85 %) (69 %) 

4 44.4 lo. 6o 6.81 7ý4 6.7 

1(108-7r-) 
(98-3%) 

5 43.1 7.31 7.05 5.95 
(96.4%) (81.4f. ) 

6 4? -. 6 14-371, -, 13-15 14.40, 10-05 
(ý09--51-') (76.4015), 

7 43.9 18., (37' -10.61 lo. 4o- 7.6o 
(71.2%) 

8. '40.3 8 18-57 18020"' 15olO 
(981,70 (80. 

9 42.1 9.34 11.68- 9.90 8.05 
(84.8, %) (6902%) 

For each'test- the I maximim applied'-load and th e load at first"visible crack 

is expressed'as'a' of'the theoretical failure"load. 

TAKE RESULTS OF TESTS 
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for strips SS, AA and BB axe (positive - zero), (positive - negative) 

ard (negative - negative) respectively. Theoretically the slab can fail 

by two yield line modes and the collapse load WT determined by analysis 

for both is 1-25 x design load (W 
D 

The load was applied at the centre of the spreader SS and 

edges of the strip BB had a tendency to lift from the simple supports. 

Any lifts were prevented by the use of smooth bars and G clamps. 

Test results are given in Table 7.2 and the load deflection 

curve shown in' Fig (7.20). WD arxl WT'were 9.34 XN and 11.68 xN 

respectively. The maximum experimental load WM was 9.9 KN (84.81- WT). 

was 1,06. The first crack recorded at a load of The ratio WM : WD 

8. o5KN (69.2% wT ) ard the deflection of the slab at this stage was 

1.6mm. The slab failed by a central yield line. 

7.6 SUMMARY OF RESULTS AND CONCLUSIONS 

These tests were performed with a main objective. of assessing 

the ultimate strengths. of slab designed by both the strip method and. 

the strip deflection method. * In all-tests slabs sustained loads 

very close to the theoretical collapse load calculated by the yield 

line theory. The chosen support system therefore must have reduced 

the effects of membrane action to a minimum. For the nine tests the 

average maximum applied load (W theoretical collapse load (W MT 

was 96. W. and the extreme values varied between 109. % and 85 % 

These values axe well within the results that can be expected for 

concrete slabs. All slabs failed by a well defined mechanism)the 

mechanism predicted by the yield-line analysis. 

Although, the information on serviceability condition was 

not the primary aim, however some interesting conclusions can be 

drawn on the position Of the j1r5t C 
-rk, and deflections. These positions 

are shown'in the load'deflection curves' and this position corresponds, 



204 

to an average load of 77-216 WT and a minimum value of 69.276 

w. If partial safety factors of 1.15 and 1-5 are allowed for 
T 

steel and lo_ack_s -, then a working load can be established as 

57-Wo" WT ( WT . 
)- For all slabs there were no visible 

1-15 x 1-5 
cracks at this load. The deflection of the slab correspor4ing to 

the first visible crack was about 1.6 mm ie a span to deflection 

ratio of 500. 

Therefore the general acceptability of the theory is thus 

demonstrated espepially in the axeas. of'ultimate strength or unique- 

ness of collapse load. The concepts of equilibrium, spreader systemsý 

. 
or recommendations relating to corner support strip widths can now 

be used in the design of concrete-slabs. In the event of deviation 

the design load will differ from the collapse load and the design can 

still predict the variations. 

The infox-mation on serviceability was encouraging. However 

large scale tests-not less than half size are needed to examine the 

behaviour of slabs at. working loads. Armer (37)-has shown that the 

performance. of, slabs designed by the strip method with extremes of-load 

distribution, factors over, extensive areas was satisfactory, in terms 

of_deflection and, -cracking.,,, 
The, following, toples are suggested, for 

incorporation in the, large, scale., test programme. 

(a), Influence, of strip'layout, on serviceability. 

(b) Use of,, spreader.,,, system-,, f, o. r. i, nte=al, polumns, and -. loads.., 
-,. -_., 

(c), Use, 
-Of-strip widthequal to, twice. the, column width-for 

external and, corner, columns. 

(d) Behaviour of slabs in (b), and (c) above at, service . loads. 

There Is, little doubt that, the-ultimate-load, condition of these, laýrge 

sc&le slabs. will. be-satisfactory. 

:.:. 
�----. -.. 
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CHAPTER EIGHT 

SUMMARY CONCLUSIONS AND RECOMMENDATIONS 

8.1 INTRODUCTION 

The study presented of the available literature on the 

design and analysis of reinforced concrete slabs shows how restri- 

cted they are in their application and illustrates the limitations 

on their reliability and efficiency. Although the assumptions in 

the elastic plate theory are not strictly valid, such methods are 

still adopted for the design of slabs. Due to the fact that maximum 

stresses are restricted to permissible values, the performance of 

these slabs under working load conditions has usually been satisfac- 

tory and the estimate of load factor is generally conservative which 

is probably the reason for the continuing use of elastic methods. 

The other commonly used method in the design and aLnaly-' 

sis of reinforced concrete slabs is the yield line theory. According 

to the plastic theorems it is known that this theory. will lead to an 

unsafe solution with respect to the collapse load, although in prac-'-'- - 

tice strain hardening effects and membrane action which are not con- 

sidered in the theory will provide a reserve of strength. The method 

when compared with an elastic solution for the same design is genera- 

lly associated with economy of materials. The yield line theory 

however does not give information on the load distribution on the 

supporting beams and distribution of reinforcement on the rigid reg- 

ions between the yield lines. Serviceability of slabs designed by 

the yield line theory is controlled by specifying ratios of span to 

depth together with the choice of load factor. In the application 

of yield line theory to complex slab systems particularly with a com- 

bination of loading there is a risk of incorrect choice of collapse 

mode leading to a. reduction in the load factor. 
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A powerful alternative to the elastic methods and the yield 

line theory is the strip method first proposed by Hillerborg. This 

design procedure aims at a lower bound solution to the collapse load 

by satisfying the equilibrium conditions and the yield criterion at 

all points. When the loading 04 the slab and its supports are both 

distributed the strip method of-design is simple and versatile. When 

point loads or supports occur no satisfactory general treatment has 

been previously produced. A number of researchers have devoted cons- 

iderable time and effort to overcome these limitations, but in all 

cases the simplicity and the appeal of the simple strip method 

has been lost. Test on slabs (37) designed by the strip method using 

ektreme values of load distribution factors over extensive areas have 

shown that the method provides a safe solution for the ultimate load 

and at working loads the performance of the slabs in terms of deflec- 

tions and cracking is satisfactory. 

8.2 UNIQUENESS OF COLTAPSE LOAD 

When Hillerborg proposed the strip method his intention 

was to produce a lower bound solution for the collapse load. later 

Wood and Armer (27) concluded that when reinforced precisely in acco- 

rdance with the strip moments, "Hillerborg. 's method provides an 

exact solution with an unlimited number of collapse modes". Their 

proof was however based on an assumption that the applied normal mom- 

ent at any point in any direction be identical with the yield normal 

moment. This assumption has been shown here to be true only when 

both applied principal moment and the yield principal moment have the 

same sign and magnitude. In general slabs designed by the strip 

method will not only have such moment fields. Taking into account 

the sign of the principal moments rules have been derived for the 

postulation of the yield lines in a mechanism to be consitent with 



207 

the unique solution. These are: - 

(1) Both principal moments Positive, positive - positive 

moment field: - Positive yield lines may act in any position and 

in any direction. Negative yield lines are only allowed in a 

reinforcement direction along which the principal moment is zero. 

(2) Both principal moments negative, negative - negative 

moment field: - Negative yield lines may act in any position and 

in any direction. Positive yield lines are only allowed In a 

reinforcement direction along which the principal moment is zero. 

One principal moment Positive and the other negative, 

positive --negative moment field The only yield lines allowed 

are positive yield lines normal to the Positive reinforcement and 

negative yield lines normal to the negative reinforcement. 

Unique solutions can therefore be found only when a valid 

mechanism can be formed in accordance with these rules. The number 

of such mechanisms are obviously limited and if at least one possib- 

le mechanism does not exist the strip method will then lead to a 

lower bound on the collapse load.. However it must be concluded that 

it Is remarkably difficult to find a practical example of a slab 

carrying a distributed load and designed by the strip method, for' 

which there is not atleast one such collapse mechanism consistent 

with these rules and therefore leading to the unique collapse load. 

No general proof is yet available for this curious occurence of 

uniqueness for slabs designed by the strip method, when only the 

lower bound theorem is satisfied intentionally and further research 

is required on this problem. 

The rules for uniqueness has also been applied to optimum 

solutions for slabs. In'some examples there appears to be only one 

consistent mechanism. When'corner fans occur'in the mechanism their 

f orm is dictated by the'rules which has been postulated. 
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8.3 TIM STRIP DEFLECTION METHOD 

The strip deflection method has been proposed as a gener- 

alised strip method of reinforced concrete slab design which is 

easily understood and applicable to any shape of slab and boundary 

conditions. For many slabs the computation is simple and standard 

problems can be solved using desk calculators. commonly found in 

design offices. The design is based on the critical limit state 

of collapse. The method has been shown to produce a safe solution 

and with distributed loads the method leads invariably to a unique 

solution. Effects of strain hardening and membrane action has been 

excluded from this study and in most cases these factors are known 

to enhance the carrying capacities of the slabs. The designer has 

considerable freedom in choosing the strip layout, but whatever the 

choice, the load distributions over finite areas of the slab are 

determined systematically by ensuring compatibility of elastic defl- 

ections of orthogonal slabs strips. The method therefore ensures 

that the load distributions will not depart too far from the elastic 

working load conditions and therefore it can be concluded that the 

strip deflection method provides better serviceability conditions 

than the simple strip method which itself has been shown to be gener- 

ally satisfactory in tests. 

In addition the strip deflection method provides full 

information on loading, shear forces and bending moments at a3-l 

points of thes, lab. The resultant layout of reinforcement is ortho- 

gonal and. banded, the total quantity of reinforcement compares 

favourably with_other design methods commonly used and frequently can 

approach minimum weight design. It also accomodates partial compo- 

site action with supporting beams and provides a closer approximat- 

ion to the actual load distributions on the supporting beams than 

those in the current codes of practice. The uniqueness rules discussed 
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in the earlier section can be extended to slab - beam systems 

and for such consistent combined mechanisms the collapse load 

will be identical to the design load. 

The strip deflection method has been shown to be closely 

related to the torsionless grid analogy method. The only differ- 

ence between these is the assumption made regarding the load 

distribution. In most practical problems with a sufficient num- 

ber of strips or equivalent beams the difference between the two 

moment fields is insignificant. However for a unique solution the 

load interactions must strictly be assumed to be uniformly spread 

over the corresponding grid areas. Therefore existing computer 

programmes for grid systems can be readily used. The 'Genesys' 

computer system which has been used here is very flexible and any 

type of slab geometry, loading and support conditions can be 

readily accommodated. 

Therefore the strip deflection method offers a unified 

collapse limit state approach to the design of all slabs which is 

simple, safe and economical. Its attractiveness as a slab design 

method appear to be greater than that of any existing method and It 

is hoped that these will become recognised by the profession and the 

method become a recommended procedure in design codes. 

8.4. POINT SUPPORTS AND POINT LOADS 

For slabs'with point supports or point loads it is again 

true to say that if equilibrium and the yield conditions are satis- 

fied the strip method will lead to a safe solution. Unlike the 

case of distribiAed-supports and loads it is not possible to con- 

clude that'the collapse load will always be identical to the design 

load. -For a particular layout of strips it may not always be possi- 

ble to postulate a yield line mechanism consistent with the uniqueness 

rules. 
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With edge or corner columns safe solutions can be obtained 

by choosing a strip layout such that the width of the column strip 

is twice the dimension of the column and assuming that the column 

reaction is spread uniformly over the column grid area. In most 

practical problems this width is sufficient to accommodate the requi- 

red reinforcements. 

It may not always be possible to have a strip layout which 

satisfies equilibrium at all points and in such cases tte solution 

may well be an upper or lower bound on, collapse load. Depending on the 

design assumptions and the choice of strip layout the ratio of the 

two loads ( WC; / WD ) can be alarmingly low. However procedures 

have been developed using spreader systems for internal columns and 

loads to overcome this problem. The slab is then designed for a 

moment field which is the sum that is due to the uniform distribLi- 

tion of load or internal column reaction over the corresponding grid 

axea and that due to the spreading of the load within the grid area 

(spreader systems). 

In all cases with spreader systems the design load will be 

a safe solution on the collapse load and in many cases the results 

will be unique. 

8.5 EXPERIMENUL WORK 

It has already been pointed out that to establish the strip 

deflection method as a common design method for reinforced concrete 

slabs would require. further testing particularly of large scale 

slabs. This also applies forthe special recommendations for slabs 

with point loads and point supports mentioned in the earlier section. 

Such a programme of tests-including slabs of different shapes, edge 

conditions and. loading was outside the scope of present work. Further 

it was,, realised at, the outset, of. the-, investigation, that the primary 
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aim was to check the ultimate behaviour of the slabs rather than 

the serviceability. 

The theoretical failure loads of the slabs were deter- 

mined by the yield line theory. Corner supports used in most of 

the tests reduced the effects of membrane actions and it was not 

surprising that the actual collapse load agreed very well with the 

theoretical values. Although the model tests cannot be considered 

wholly reliable for providing information on serviceability and 

cracking they did show that first visible cracks of about 0-03 mm 

width occured at about 77% of the failure load. 

8.6 FUTURE WORK 

The areas of uncertainity in both the theory and experi- 

mental work have been pointed out throughout this thesis but it 

seems worth while to summarise them at this point and to point out 

the need for further research studies. 

In the theoretical field it would be interesting to invest- 

igate the possibility of establishing a general proof of uniqueness 

for slabs designed by the strip method. Also in its present form 

the strip deflection method does not take into account the effects 

of membrane action and research might usefully be directed towards 

incorporating this important, strengthening phenomenon. 

There appears to be only one slab example where the strip 

deflection method could fail to Provide a design solution. This is 

the case of a square slab supported at the two diagonal corners and 

loaded equally at the other two diagonal corners. This is equivalent 

to the application of pure torsion along all the boundaries and if 

the strips are chosen parallel to the boundaries no load can be 

carried since the twisting moments are not equal to zero. However 

a solution seems to be possible if the strips axe chosen to lie in 
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the diagonal directions. Therefore there is a need to investigate 

the behaviour of slabs designed by the strip deflection method 

where torsional moments predominte. 

The need for further testing of large scale slabs to study 

the serviceability conditions under working loads has been empha- 

sised. There is little doubt that the ultimate load conditions 

will be satisfactory and from the tests that have been carried out 

on large scale slabs designed by the simple strip method in which 

extreme load distributions are assumed it seems very likely that no 

real serviceability problems will be encountered using strip deflect- 

ion method. The programme of tests should cover the following 

(a) Influence of the strip layout on serviceability. 

(b) Slabs with internal columns. 

(0) Slabs with openings. 

(d) L shaped and skew slabs. 

(e) Use of spreader systems for internal columns and loads. 

(f) Use of edge strip width equal to twice the column width 

for slabs w3. th columns at an edge or a corner. 

v 

) 
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APPENDIX I 

SIAP STRIPS WITH STANDARD BOUNDARY CONDITIONS 

2.13 

Methods of calculating the elastic end reactions, fixed end 

moments and deflections at required points are presented here. These 

values are calculated for strips having the following boundary conditions. 

(a) Slab strips simply supported at both ends 

(b) Cantilever slab strips 

(c) Slab strips fixed at one end and simply supported at the other 

(d) Slab strips fixed at both ends 

Some of these results are available in standard design hand 

books or elementary theory of structures text books. To illustrate a 

uniform slab strip of length L and carrying four patch loads W it WZP 

w3 and W4 each of length (L/4) is considered. The end reaction, fixed 

end moment and the deflection at the centre of each patch load are calcu- 
lated for the above boundary conditions. 

It, is of importance to note that in the strip deflection method 

it is normal to encounter strips of different widths. Care must be there- 

for*taken to insert the correct values of second moment of area 

In all calculations value of, the elastic modulus E Is kept constant. 
,_ab I% 

FG (A. 1. ) 

-(a) 
Slab strips SiMT)1'Y supported at both ends 

Fixedend moments 1ýa ý Mb 0 

Boundary Conditions y=0X 

Y0x-L 

Clearly reactions R. W Qa +c and Rb (_b + a) 
L .2L .2 

B 

Rb 
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It can be shown that the deflection 

4) 4)] 
y=W 

Fb(b+2c)(2I, 2-b2-2bc-2c')x 
-4b(b+2c)x3+ X-a) (x-a-b) 

_ZVE IbLLL 

Ma -* 
I ab C 

L 

R 

Fig (A. 2) 

(b) Cantilever slab strips 

Clearly ýa =W and Ma-W (a4ýb) 
2 

Boundary Conditions dy -0 at x=O 
dx 

y-0 at x=O 

W 
24EI b 

[6b(2a+b) 
x2 -4bx3 + 

ý(X-a) 4) 
_ 

[(x-a-b t) I 

Ma 
. 

A 

b 

to -L 

Ra 

Fig (A 

9 

B 

Rb 

(c) Slab st"ri'Ds-fixed at one end and siffplv suPPorted at the other 

Boundary conditions y-O at x=O 

Y-O, at' x-L 

and at X=O 
dx 

C 
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Ra - ra + Ma and Rb 
LL 

Where ra and rb are the simple support reactions 

2- -). (2L2 -c? - -d? ) Ma MX (d c? (Hogging) 

8L2 b 

Then y-W_ 12bM 
a xZ - 4bR 

a x3 + 
I(x-a) 4) ((x-a-b) 411 

24EI bI 

d 
MI aabM be, 

Aw 
-0 vp 
Ra 

Fig (A. 4) 

(d) Slab st-i'"ps fixed at both ends. 

Boundary conditions y=O at x-O and yý-O at x-L 

1170 at x-O and a=O at x-L 
dx dx 

Ra+ ýa - Mb 

L 

Mb -N 
L 

Where ra and rb axe the simple support reactions 

Ma . WIe3. (4L -3e) - r3 (4L -3c (Hogging) 
122 b 

Mb 22 W 
[d3 

(4L -3d) -a3 (4L -3a 
d 

(Hogging) 
12e b 

Then y-W x3+ 
[(x-a) 4)_ 

x2 - 4. b. R 2. b. M 
[l [(x-a-b)4)1 

24EI b a a 
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L 

L/4 L /4 L /4 
mwwm 

W4 b 

L L/4 
R 

L/4 b Ro L LA 

2 13 64 %B 

Fig (A 
-5) 

slab strip carrying four patch loads of equal length. 

End reactions fixed end moments and. deflections at the centre of 

patch loads. 

(a) Slab strips simply supported at both ends 

Ra. - 0.875 W, + o. 625 W. + 0-375 W3 + 0-125 W4 

Rb - 0.125 W, + 0.375 W2 + 0.625 W3 + 0.875 W4 

M0 a 

Mb 0 

61 
23.0 4 6.25 39-75 15.25 wi 

62 L3 46.25 109.0 101.25 39-75 w 2 6144 

63 39-75 101.25 109.0,46.25 w3 

64 15-25,39-75 46-25 23.0 W4 
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(b) Cantilever slab strip (End A Fixed. )End B Free) 

R w + w + w + W a i 2 3 4 

Rb () 

maL(0.125W, + 0-375W2 + o. 625W 
3+ 0-875W4 ) 

Mb c) 

61 
4.25 16 28 

62 L3 20 108.25 216 
6144 EI 

63 36 220 500.25 

84 52 332 804 

40 wi 

324 w2 

800 w3 

1372-25 W41 

Slab strips fixed-at one edge (A) 'and simply supported 

at the other (B) 

1 Ra - 7.765625w, + 6.484375W2 + 4.26562-5w 3+1.484375W4) 

Rb ý1 (0-234375w, + 1-515625w, + 3-734375W3 + 6.515625W4) 

ma-L 49W, + 95W2 + 81ý13 + 31WO 
512 

Mb m0 

81 743 1865 1671 649 wi 

- 
S2 L3 

6144 x Z56 Ei 2285 9379 10725 4131 w 2 

63 2091 10245 14539 6725 w3 
64 

817 4191 6737 3935 
L 

W4 
j 
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(d) Slab Strips fixed at both edges. 

Ra 1(7.5625W, + 5.4375W2 + 2.56? '5w3 +, 0.4375w4) 
8 

Rb ( 0.4375W1 + 2-5625W2 + 5.4375W3 + 7.5625w4) 

maL( 67W 1+ 109W2 + 67w 3+ 13W4 
7; S 

Mb 
-L( 

l3w, + 67W2 + 109W 3+ 67w4) 
769 

163 

L3 425 62 
6144 x ; TEI 

63 279 

L 
64 45 

349 22-7 45 wi 

1591 1305 279 W2 

1305 1591 425 W3 

227 349 163 W4.. 

Matrices for cantilever slab strips and slab strips fixed on 

both edges have-been used in the illustrative example shown in Fig 5.6 

In Chapter 5 the effects of partial composite action and the load 

distribution on supporting beams was illustrated by using a square slab 

with five equal strips each way. It is therefore of use to establish 

the deflection matrix for the slab strip shown in Fig (A. 6) 

L 

L15 
. 

L/5 
_. _ 

L/5 
_. _ 

L/5 L/5 

R 
al 

WI W2 W3 W4 W5 Rb 

A SI 82 63 64 
14d 01d 

L 110 L/5 L/ 5 L/S L15 40 

Fig (A. 6) Simply Supported slab strip carrying five 

patch loads of equal length. 
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R 0.9 W, + 0.7 W2 + 0-5 W3 + 0.3 W4 + O'l W5 
a 

Rb 0.1 W1+ 0.3-W2 + 0.5 w3 + 0.7 W4 + C)*9 W5, 

0 

Mb 0 

15.425 34.3 36.5 26.7 9.7 

34.3 86.025 97.5 72-9 26.7 
2 

3 L3 36.5 97-5 122.625 97-5 36.5 
6000 Ei 

6 26.7 72.9 97-5 86.025 34.3 
4 

&5 9.7 26.7 36.5 34.3 15.425 

t 

wi 

w2 

w3 

W4 

w5 

0 
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APPENDIX 11 

DETAILS OF CALCULATION - STRIP DEFLECTION AND TORSIONLESS 

GRID METHOD 

as W for each grid and denoted as W to W The total distributed 80 

load on each grid is 8.75 units. Consider the grid (32) formed by strip 

x and strip Y and shown in Fig (A-7). 
3z 

Clearly Wy MW3 

and equilibrium requires Wx. = 8.75 -W3 

The Wx values for the other grid can be similarly determined. 

The fixed end moments and the end reactions can again Itle, calculated as 

f 03-lows. 

'( R X)l- M 17.5 - W, -W5 

( RX)2 M 17.3 - W2 ý' W6 

Due to the symmetry there are only eight unknowns. These are taken 

Rx) 3 17.5 - W3 -w7 

Rx)4 17 *5- W4 - ý18 

( 

( 

Check: - 

my), 
my)2 

Consider the illustrative example described in Chapter (5.3.2). 

w5+ W6 +w7+w8, 

wi +w2+ W3 + W4 

[(Rx)l + (]Rx)? + (Rx) 3+ (Rx)4 + (R 
y+ 

(R 
Y), 

] 

140 Units ' total imposed load 

Ly (0-125 W5 + 0-375 '46 + 0.625 W7 + 0-875 W8) 

Ly (0-125 W, + 0.375 W2 + 0.625 W3 + 0.875 W4) 

For this example Lx=1.4 and LY - 1.0 Units 

In order'to calculate the individual values of W, to W8 

the elastic deflections (6x) and ( ts 
y) of the res; ective X 

and Y strips axe equated. For the grid (32) these can be easily 

I 



2zl 

lic Y, YZ y3 (Y2) Y4 (yl 

(Ryl ýPY), (Ry)2 (M 02 1 -x eci 

iS -75 

8; '75-wz Z . 75-W 8 'Is- v4z 
c 

-a- 2 
Wý a- 

o 

0 

)(3 8 -75- W7 13*75-W"f 

3 3 
14 0 

4 8075-W 6 
*-ý: 

W S 

LF 

4 X4 

4 
WA 

Y, 
q--d 

L m- 1-. 4un! Ls Free 

FIG (A-7) EXAMPLE ILLUSTRATIVE OF THE APPLICATION OF THE 

STRIP DEFLECTION METHOD 
0.1-1! 5 0-115 

5 

V 

2 

1 Ul - 

19 
Ul 

112 
La 

12.1 

Of 

Z5 

FIG (A. 8) EQUIVALENT GRID FOR THE SUB SHOWN IN FIG (A-7) 
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calculated using the matrices given in Appendix I. Inserting the 

appropriate values of lengths ard stiffness. 

(&), W (1.49 (46.25 109 101.25 39-75) . 75 -W- x 32 6144 EI 
7 

8.75 - W3 

8.75 - W3 

8.75 -W7 L 

and (Aý) 36 220 500-25 800) W, 
32 6144 E (1 -41) 

W2 

W3 

W4 

Equaiing ZSx) 
y) 

for each grid the following set of 8 

equations are obtained. 

3.8416. E 86 (8-73 - T5) + 210.25 8.73 - "Wl) I 

3.8416E 86 (8-75 -"6) + 210.25 8.75 - W2 )I- 

3.81+16 t 86 (8 05 -'w7) + 210.23 8.75 - W3)] 

3.8416t 86 (8-75 -W8) + 210.23 8.7.5 - W4)] 

3.8416E 38.25 (8-73 -d3) + 86. 8.75 - 'dl)l 

3.8146t 38-25 (4-75 -'d6) + 66. 8.75 --WZ)l 

3.8416 [38.25 (8.73 -W 7 + 86. 8.75 - W))] 

3.8416E )8. Z5 (8-75 -W8) + 86. 8.73 - W4)3 

4. z5 vi + 16' v2 + 2a it3 + 4o '4 

20 vi + 108.23w2 + z16 w3 + 3Z4 V4 

36 Idl + 200 wZ + 500.25wa+ 8", 0 V4 

U vi + 332 x + 604 V + 1372-25 W4 

4. z5 w5 + 16 "6 + 28 dr? + 40118 

+ 108,251 6 16 , w7 +2 + 324 'r8 

36 v5 + 200 w6 + '500*2--'5d 7+ cýM. w8 

+ 33? - 'W6 + 804 7+ l^ 
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The simultaneous equations can be easily solved using a 

stanýard programme. The resulting load distributions, end reactions 

and fixed end moments are given in Table A 1. 

To solve the same slab by the torsionless grid method, the 

grid shown in Fig (A. 8) is used. The X and Y strips are replaced 

by equivalent beams of the same length and flexural rigidity. The 

flexural rigidity of the beams are propotional to the widths of the 

corresponding strips and the torsional. rigidity of all beams should be 

zero. However a very small value must be inserted for the torsional 

rigidity in using the Genesys Frame - Analysis programme. 

The equivalent grid is 

STRIP EQUIVAIENT BEAMS 

x 5,6,7,8,9,10 

x 11,129 13t 14tl5t 16 

X3 17,18,19,20,21,22 

X 4 23,24,25,26,27,28 

Y 1,6,12,18,24 

Y2 2,7,13,19,25 

Y3 3v 8,14,20v 26 

Y4 4,9,15t 21,27 

To simulate similar boundary conditions, the grid is held 

fixed at points 1,2,3,4 and simply supported at 5,10,11,16v 179 

22,23,28. Point loads of 8.75 units are applied normal to the grid 

surface at each of the 16 internal grid points - 6,7,8.9,12, 

'13,14,15t 18,190 20,21,24,25,26,27. The results are given in 

Table A1 arA ccmpared with those from the Strip deflection method. 



wi 8. &ý4 (1.011) 8.817 (1-008) 

W2 7.757 (0-887) 7.689 
. 
(0.879) 

w3 4.826 (0-552) 4.889 (0-559) 

W4 1-3ZO (0.151) 1.495 (0-171) 

w5 7.462, (0-853) 7.535 (0.861) 

W6 3.652 (0-417) 3.923 (0.448) 

w7 1.712 (0.196) 1.815 (0-207) 

w 8 0.502 (0-057) 0.506 (0-058) 

(R 
X), 

1.194 1.148 

(RX)2 
. 
6.091 5.888 

(R 
x)3 

10.962 10-796 

(RX)4 15.678 15-449 

(R 
y 

), , 13-328 13-779 

(R )2 22-747 22-890 

(my), 3.8115 3.990875 

(MY)2 8.18.5625 8.34925 

Strip Deflection 
Method 

225 

No - Torsion Grid 
Method 

Load distribution factors are shown within brackets. 

Table (A. 1) Comparison of results from the strip deflection method 

ani torsionless grid method for the slab example shown in Fig (5-5) 

I 
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Bending moment and shear forces at all points of the slab 

can now be calculated. However it is of interest to ascertain the 

collapse load of this glab which has one principal moment positive 

and the other negative at all points. Consider the yield line pattern 

shown in (Fig-5-5) defined by parameter x. 

External work done - W. [x x4x 100 + (1.4 - 2x) 100 
7-3 

L20-21 

Wc [7' 
- 100 x 

Dissipation of Internal energy D is given by 

WD 2(M 
y1+ 

MYZ +R1. x+ Rýc2 - 3x +R . 5x +R . 7x) 
.1 x x3 x4 x 

-x2, 
f(8.7'5--w. )+9(8-75 -w6)+25(8-75-W 7 )+49(8-75 -W8)) Zj 

2xO . 35 xx 

Substituting for MsRs and WS 

D- WD ( 70 - 28 .0 X) 

Clearly the collapse load and the design load are identical 

when x-0 

Consider also the sqila e alsb of side L supported on four 

identical flexible beams discussed in Chapter 5.5 and shown in Fig(A. 9). 

The slab is div-vied into five equal strips bothways and carries a total 

load of 100 units. The loading on each of the 25 small grids is 4 Units 

aril due to symmetry there are only 6 unknowns (W 
l' ý12' 'ý43' Rlt R2, R3) 

which are also assumed to be uniformly distributed. Also shown are the 

loading on strips and supporting beams-From equilibrium. 

2W 1+ 2W 2- 2R 1= -2 

-W1 + zw 3- 2R 2= -8 

-W 2- 2W 3 -2R 3= -16 (7-1) 

Check (4R, + 8R2 + 8R 
3 100 Units - Total imposed load 
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32 

2 R E. w 4- W3 4-W2 
2 urh ts eachway 4-W3 

an diagonal grids R. EW --I-- W3 
. 
4-Wi 

4 -W2 4-Wi 2 R 
wl 

(D L/ 

Stiff neSS(E 

3 2 

lotaL load= 100uhits 

R5 

R 

Rl 

WZ W2 

SIRIP II Ri R, 

2 -74-W, W3 ý2 

I STRIP 22 1 
R2 

RZ 

A-W3 4-W 4- W3 

R R3 
STRIP 33 

R3 I R2 I R, I R-2 I R-S 
(W2ý 2WIIIII 

, 5+4+2R. 3? 
20) 

12-5 EDGE BEAM lzst 

20 1 ao 20 -1 20 20-1 

"N 

- 
T-50 50T 

FIG (A. 9) SQUARE SLAB SUPPORTED ON FOUR FLEXIBIE BEAMS 

ký 
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more equations can be written by considering the elastic 

deflections for points A, B and C. The edge beams being flexible the 

respective (Ax) and (Ay) takes into account the deflection at 

the boundary. Using the matrices given in Appendix 1 for point, B, 

X 
)B 0 (73,1957122.625) 2+ (25-125,61,36-5) R3 

6000(EI 
S) 

ZOOO(EI 
B), 

4-w 3R '2 

4-w R 
21 

and 

(AY)B OL3 (25.125,61,36-5) W2 (73,195)122.625) 
R3 ZOOO(Els) 6ooo(EIB) 

wi R2 

2R1 

Where (EI 
s) and (EI 

B) are the stiffness of the slab strips and supporting 

beams respectively. 

also (EI 
B)m -f- 

(EI 
S) 

The deflection compatibility equation can be simplyfied as 

61w, + 147-75W; ý+ 195W 3+ 
86-125iR, + 134-A R2+ 47-875<-R 

3ý 1343.5 

Two more equations can be written for points A and C and the 
I 

three equilibrium and three deflection can be rearranged in a matrix-form. 

0 

281-55 

61 

36.5 

2 

61 73 

147-75 195 

00 

-2 

25-125t 36-0756 12.0-C 

86.125C 134.0, e 47-875-C 

97.5 184-05 61. O-E 9719251 35-8754- 

w2 
w3 

R2 

R3 

-8 

-16 
685.5 

1343.5 

879.7 
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The solution of the six simultaneous equations are given 

in Table A. Z. To determine the collapse load of this slab beam 

composite system consider the mechanism shown in Fig (A. 9) defined 

by the parameter x, consisting of positive hinges in the supporting 

beams and positive yield lines in the slab. 

External Work done E=W 100.50 W 
Cc 

At collapse internal energy will be. dissipated along the 

slab strips and at the beam hinges. In order to determine tho value 

of D let us consider the gross loading on to the beams and strips 

along the x directions. Fig (A. 9. b) clearly shows that this loading 

(100 units) is distributed uniformly along the length. 

D- WD 50-x - 100 x2 (1 +1 

Ix ) 
- WD . 50 

Clearly the design load is identical to the collapse load 

for all values of x. This can be Proved for all mechanisms with positive 

yield lines and positive beam hinges. Results will not be changed even 

if the supporting beams are all of different stiffness 

The equivalent torsionless grid is shown in Fig (A. 10). The 

internal beams eg Z, 9,16, Z3,30,37,44 represent the strips and 

external beams such as 1,2,3,4,5,6,7 represent the supporting 

edge beams. Corresponding flexural rigidities must be assignpd"for the 

internal and edge beams. The grid is simply supported at the four cor- 

ners, 1,7,43,49. The results obtained from the Genesys computer 

programme are given in Table AZ and compared with those from the 

strip deflection method. 
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14 it Zia 3S 42 
7 

6 

5 

4 

3 

2 

zo : 41 

its 132 J, )q 

L 
110 17 2A 31 

Cj 

4q 

48 

41 

46 

45 

44 

41 

is 22 Z9 
. 36 

FIG (A. 10) EQUIVAIENT GRID FOR THE SIAB SHOWN IN FIG (A. 9) 
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STRIP DEFLECTION METHOD 

w1 0.0256 (0.64) 

W2 0.0350 (0.87) 

w3 o. o343 (o. 86) 

Ri O. O7o6 

R2 o. o6l5 

R3 0.0282 

TORSIONLESS GRID METHOD 

0.0254 (o. 63) 

o0354 (0.88) 

,, 0340 (0-85) 

0.0708 

o. o6l3 

000282 

The above results are for the case 6- infinity and unit 

imposed load. Values of load distribution factors are given within 

brackets. For varying beam /slab stiffnesses the values of the reactions 

given by the strip deflection method are; 

w Ri R2 R3 

c; lc 0.07o6 0.0615 0.0282 

2.0 0.0592 0.0555 0.0399 

1.0 0.05 0.0500 0-0.5 

113 0.0278 0.0310 . 0801. 

Table (A. 2) Solution to the square slab supported on flexible 

beams - Chapter 5.5 
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