
Heuristis and MathematialDisovery:The Case of Bayesian NetworksDonald Gillies
1 IntrodutionI will begin this paper by disussing some ideas to be found in two re-ent books on the philosophy of mathematis. These are (i) Carlo Cel-lui's Filoso�a e matematia, published by Laterza in 2002, and (ii) DavidCor�eld's Towards a Philosophy of Real Mathematis, published by OxfordUniversity Press in 2003. I will start with Cellui's book.In his book, Cellui is highly ritial of the traditional or foundationalapproah to the philosophy of mathematis, based on the attempt to justifymathematis. Instead he advoates what he alls the heuristi approah tothe philosophy of mathematis. As he says (2002, p. viii):Aording to the dominant point of view the prinipal problemin the philosophy of mathematis is that of the justi�ation ofmathematis. . . . In this book I maintain instead that the prini-pal problem of reetion on mathematis is that of mathematialdisovery. This problem inludes the problem of justi�ation . . .I partly agree and partly disagree with this. It is ertainly true that tra-ditional philosophy of mathematis foussed exlusively on the problem ofthe justi�ation of mathematis and negleted the problem of mathematialdisovery. So I de�nitely think that philosophers of mathematis should nowtake up the problem of mathematial disovery and that interesting resultsare to be expeted from investigating it. On the other hand, I do not thinkthat the problem of disovery inludes that of justi�ation. So I hold thatthe problem of justi�ation should remain on the agenda of philosophers of



88 Donald Gilliesmathematis, as a problem partly related to, but partly separate from thatof disovery. For the purpose of this paper, however, I want to emphasizemy agreement with Cellui and to adopt his heuristi approah.Now the obvious objetion to the laim that philosophers should studythe problem of mathematial disovery is that disoveries in mathematisdepend on psyhologial fators suh as insights of genius, the subjetiveintuitions of reative mathematiians and so on; and that, onsequently,mathematial disovery annot be given a systemati philosophial treat-ment. Cellui strongly hallenges this point of view in the following passage[2002, p. xvii℄:Aording to the dominant point of view mathematial disoveryis an irrational proess, whih is not based on logi but rather onintuition. . . . In this book I maintain instead that mathematisis a rational ativity at every moment, inluding the most impor-tant, disovery. Sine antiquity many have reognised not onlythat mathematial disovery is a rational proess, but also that amethod exists for it, namely the analyti method. This methodgave a great heuristi power to the anient mathematiians forthe solution of geometrial problems, and has had a deisive rolein the new developments of mathematis and physis at the be-ginning of the modern era. In it logi plays an essential role inthe disovery of hypotheses, though this is not logi understoodin the restrited fashion . . . but in a wider fashion whih inludesalso and above all non-dedutive inferenes.Cellui does not merely advoate a heuristi approah to the philosophyof mathematis, but atually makes a start with developing it, partiularlyin Chapters 30 to 38 of his book. Here he lists and illustrates quite a numberof priniples whih he regards as fruitful for mathematial disovery. Thisinvestigation of Cellui's does indeed all into question the laim that math-ematial disovery is exlusively a matter of subjetive intuitions and thelike. There is however a point whih an be regarded as doubtful. Celluimakes lear in the passage just quoted that he believes that the priniplesunderlying mathematial disovery are logial in harater, so that thereis, in e�et, a logi of mathematial disovery. However, another point ofview would be that there are indeed priniples underlying mathematialdisovery but that these priniples are heuristis, or guides to disovery,



Heuristis and Mathematial Disovery 89whih are not logial in harater. It is not an easy matter to deide be-tween these two points of view, sine it is not lear what we should regardas onstituting logi. If there is to be a logi of mathematial disovery,then logi will ertainly, as Cellui stresses, have to extended to inludenon-dedutive inferenes. Yet how far an we extend logi beyond its oreof dedutive inferenes while still retaining something that is reognisablylogi? Is there an indutive logi for example? And if so, what is its har-ater? More generally what are the boundaries of logi? In the last setionof this paper (Setion 6) I will ome bak to this question and disuss someof the interesting ideas of Ladislav Kvasz on this subjet. However for themoment, I will take the goal to be that of eluidating some of the heuristipriniples involved in mathematial disovery, and leave aside the questionof whether these priniples should be regarded as logial in harater.Let me now turn to Cor�eld's new book. This ontains a mass of interest-ing material ranging from automated theorem proving, through Bayesian-ism applied to mathematis, to a onsideration of groupoids and higher-dimensional algebra. However, for the purposes of this present paper, I wantto onsider only one general methodologial point whih Cor�eld makes to-wards the beginning of his book. He points out that the mathematis on-sidered by philosophers of mathematis tends to be almost exlusively thefoundational mathematis of the period 1880{1930, and that, in partiular,the mathematis of the last 70 years is largely ignored exept perhaps, insome ases, for a onsideration of further developments of foundationalistmathematis. As Cor�eld himself says [2003, p. 5℄:By far the larger part of ativity in what goes by the name philos-ophy of mathematis is dead to what mathematiians think andhave thought, aside from an unbalaned interest in the `founda-tional' ideas of the 1880{1930 period, . . .Cor�eld alls this attitude `the foundationalist �lter'. This �lter removesfrom the attention of philosophers of mathematis any mathematis whihis not foundationalist. Cor�eld thinks that philosophers of mathematisshould remove this �lter and onsider mathematis whih is not founda-tionalist. This ould be some of the mathematis of the past, but Cor�eldreommends very strongly that philosophers of mathematis should take aninterest in the non-foundationalist mathematis of the last seventy yearswhih he thinks that they have hitherto largely ignored. As he says [2003,pp. 7{8℄:



90 Donald GilliesStraight away, from simple indutive onsiderations, it shouldstrike us as implausible that mathematiians dealing with num-ber, funtion and spae have produed nothing of philosophialsigni�ane in the past seventy years in view of their reord overthe previous three enturies.Cor�eld attempts in his book to redress the balane by onsidering fromthe philosophial point of view many developments in mathematis duringthe last seventy years.That onludes my disussion of some of the ideas in the new books byCellui and Cor�eld. I will now explain how they have led to the planfor the present paper. Essentially I have taken from Cellui the idea ofstudying the heuristis of mathematial disovery, and I will try to add tohis treatment by onsidering an example of mathematial disovery di�er-ent from the ones whih he onsiders. Following the reommendations ofCor�eld, I have taken this example form the �eld of non-foundational math-ematis in the last seventy years. The example in fat omes from my ownfavourite branh of mathematis: probability theory. Probability theory isusually onsidered by philosophers of siene rather than philosophers ofmathematis, and there are obvious reasons for this. Probability is loselyonneted to indution whose analysis, or in some ases denial, is a entralissue in philosophy of siene. Probabilities also appear in many sienti�theories, notably quantum mehanis. But despite its interest for philoso-phers of siene, probability theory is after all a branh of mathematis andan important one. So there may be some value in onsidering some of thegeneral problems of the philosophy of mathematis in relation to probabilitytheory.Sine I started studying probability theory in the 1960s, the most im-portant development in the �eld has been, in my opinion, the disoveryof Bayesian networks, whih took plae in the 1980s | fortunately wellwithin the Cor�eld limit of seventy years. Many mathematial disoveriesare of proofs of theorems, but some disoveries are of new mathematialonepts whih give rise to new theories involving many theorems and hav-ing many uses in di�erent areas. The most famous disovery of this type isperhaps the disovery of the group onept. The disovery of the oneptof Bayesian network has this harater. It has resulted in the developmentof an entirely new branh of probability theory whih is now expounded intextbooks like Neapolitan 1990. None of the ontents of Neapolitan 1990



Heuristis and Mathematial Disovery 91would have appeared in a textbook of probability theory written before the1980s. We have something here that is really new and that has also beenapplied with great suess in a wide variety of di�erent areas. We are thusdealing with a disovery of onsiderable importane and an analysis of theheuristis whih led to this disovery may be not without some interest. Inthe next Setion 2, I will give a brief historial aount of how the disoveryof Bayesian networks was made. This should also serve as an introdutionto the onept for those who have not met it as yet. Then in Setions 3,4and 5, I will state and analyse three heuristis whih seem to me to havebeen involved in the disovery.2 The Development of Arti�ial Intelligene and theDisovery of Bayesian NetworksOne route whih led to the disovery of Bayesian networks began with in-vestigations into arti�ial intelligene (AI). This is the route whih I willdesribe in what follows. The full story however is more ompliated. Therewas another largely independent route whih began with investigations intodeision theory and whih led to onepts not dissimilar from Bayesiannetworks. Another strand in the story is onstituted by attempts to �ndeonomial ways of storing probability distributions in omputers. The de-velopments whih I will desribe, however, were largely self-ontained andare suitable for analysis from the point of view of the heuristis involved. Iwill therefore leave the full aount as the task for a more detailed history.Researh in AI began in the 1950s and many important ideas were de-veloped by the pioneers. Then in the 1970s a breakthrough was produedby the reation of expert systems. The lead here was taken by the Stan-ford heuristi programming group, partiularly Buhanan, Feigenbaum, andShortli�e. What they disovered was that the key to suess was to extratfrom an expert the knowledge he or she used to arry out a speialised task,and then ode this knowledge into the omputer. In this way they wereable to produe `expert systems' whih performed spei� tasks at the levelof human experts. One of the most important of these early expert sys-tems (MYCIN) was onerned with the diagnosis of blood infetions. Thissystem will now be briey desribed, and it will then be shown that itsimplementation led to the problem of how to handle unertainty in AI.MYCIN was developed in the 1970s by Edward Shortli�e and his ol-leagues in ollaboration with the infetious diseases group at the Stanford



92 Donald Gilliesmedial shool. The medial knowledge in the area was odi�ed into rules ofthe form: IF suh and suh is observed, THEN likely onlusion is suh andsuh. MYCIN's knowledge base omprised over 400 suh rules whih wereobtained from medial experts. An example of suh a rule will be given in amoment, but �rst it would be as well to present some evidene of MYCIN'ssuess.To test MYCIN's e�etiveness a omparison was made in 1979 of its per-formane with that of nine human dotors. The program's �nal onlusionson ten real ases were ompared with those of the human dotors, inludingthe atual therapy administered. Eight other experts were then asked torate the ten therapy reommendations and award a mark, without knowingwhih, if any, ame from a omputer. They were requested to give 1 for atherapy whih they regarded as aeptable and 0 for an unaeptable ther-apy. Sine there were eight experts and ten ases, the maximum possiblemark was 80. The results were as follows [Jakson, 1986, p. 106℄:MYCIN 52 Atual therapy 46Faulty-1 50 Faulty-4 44Faulty-2 48 Resident 36Inf dis fellow 48 Faulty-5 34Faulty-3 46 Student 24So MYCIN ame �rst in the exam, though the di�erene between it andthe top human experts was not signi�ant.Let us now examine one of MYCIN's rules. The following rule is givenby Shortli�e and Buhanan [1975, p. 357℄:If: (1) the stain of the organism is gram positive (S1), and(2) the morphology of the organism is ous (S2), and(3) the growth onformation of the organism is hains (S3)Then: there is suggestive evidene (0.7) that the identity of theorganism is streptoous (H1)In symbols this ould be written: If S1 & S2 & S3, then there is sug-gestive evidene p that H1, where p = 0:7. Here S1; S2; S3 are the ob-servations/symptoms, whih support hypothesis H1 to a partiular degree.These rules were obtained from the medial experts. The numbers theyontain suh as 0.7 were also obtained from the experts. The expert was in



Heuristis and Mathematial Disovery 93fat asked: \On a sale of 1 to 10, how muh ertainty do you aÆx to thisonlusion?" The answer was then divided by 10.At �rst sight it looks as if the �gure 0.7 in the rule from MYCIN is anordinary probability, but this is not the ase, as Shortli�e and Buhananmake lear in the following passage [1975, p. 358℄:. . . this rule at �rst seems to say P (H1jS1&S2&S3) = 0:7; : : :.Questioning of the expert gradually reveals, however, that des-pite the apparent similarity to a statement regarding a ondi-tional probability, the number 0.7 di�ers signi�antly from aprobability. The expert may well agree that P (H1jS1&S2&S3) =0:7, but he beomes uneasy when he attempts to follow the logi-al onlusion that therefore P (not:H1jS1&S2&S3) = 0:3. Thethree observations are evidene (to degree 0.7) in favor of theonlusion that the organism is a streptoous and should notbe onstrued as evidene (to degree 0.3) against streptoous.Shortli�e and Buhanan used this observation to motivate the introdu-tion of a non-probabilisti model of evidential strength. Their measure ofevidential strength was alled a ertainty fator, and ertainty fators nei-ther obeyed the standard axioms of probability theory, the Kolmogorovaxioms, nor ombined like probabilities.Certainty fators were ritiized by those who favoured a probabilistiapproah, f. Adams [1976℄ and Hekerman [1986℄, and in fat the nextexpert system we will onsider (PROSPECTOR) did move more in thediretion of standard probability.PROSPECTOR, an expert system for mineral exploration, was devel-oped in the seond half of the 1970s at the Stanford Researh Institute.A good general aount of the system is given by Gashnig in his 1982.PROSPECTOR's most important innovation was to represent knowledgeby an inferene network (or net). This is motivated by Duda et al. in their[1976, p. 1076℄ as follows:A olletion of rules about some spei� subjet area invariablyuses the same piees of evidene to imply several di�erent hy-potheses. It also frequently happens that several alternativepiees of evidene imply the same hypothesis. Furthermore,there are often hains of evidenes and hypotheses. For these



94 Donald Gilliesreasons it is natural to represent a olletion of rules as a graphstruture or inferene net.A part of PROSPECTOR's inferene network is shown in Figure 1.H1 H2H3E1 E2 E3Figure 1.H1 = There are massive sul�de deposits.H2 = There are lay minerals.H3 = There is a redution proess.E1 = Barite is overlying sul�de.E2 = Galena, sphalerite, or halopyrite �ll raks in rhyolite ordaite.E3 = There are bleahed roks.Evidene E1 is taken as supporting hypothesis H1, and this is indiatedby the arrow joining them in the inferene network. Similarly E2 supportshypothesisH1, while E3 supportsH3 whih supportsH2 whih supportsH1.Note how these rather ompliated relations are simply and elegantly rep-resented by the arrows of the network. Eah inferene arrow has a strengthassoiated with it, and this obtained from the expert as in the ase ofMYCIN.



Heuristis and Mathematial Disovery 95PROSPECTOR, however, di�ers from MYCIN in using subjetive Ba-yesianism rather than ertainty fators. This subjetive Bayesianism is notentirely pure, sine it is ombined with fuzzy logi formulae, whih werealso used in MYCIN. This use of fuzzy logi tended to disappear in furtherdevelopments.In PROSPECTOR, Bayesianism is formulated using odds rather thanprobabilities. The odds on a hypothesis H [O(H)℄ are de�ned as follows:O(H) = P (H)=P (:H)Writing down Bayes theorem �rst for H and then for :H , we getP (H jE) = P (EjH)P (H)=P (E)P (:H jE) = P (Ej:H)P (:H)=P (E)So dividing gives(1) O(H jE) = �(E)O(H)where �(E) is the likelihood ratio P (EjH)=P (Ej:H). (1) is the odds andlikelihood form of Bayes theorem, and it is used in PROSPECTOR tohange the prior odds on H to the posterior odds given evidene E.Let us now onsider the problems whih arise if we have several di�erentpiees of evidene E1; E2; : : : ; En say. We might in pratie have to up-date using any subset of these piees of evidene Ei; Ej ; : : : ; Ek say, where(i; j; : : : k) is any subset of (1; 2; : : : ; n). If we use (1), this would involvehaving values of �(Ei&Ej& : : :&Ek) for all subsets of (1; 2; : : : n). When weremember that, on this approah the values of � are obtained from the do-main experts, we an see that obtaining the requisite values of � is sarelypossible. Clearly some simplifying assumptions are neessary to produe aworkable system, and the designers of PROSPECTOR therefore made thefollowing two onditional independene assumptions:(2) P (E1; : : : ; EnjH) = P (E1jH) : : : P (EnjH)(3) P (E1; : : : ; Enj:H) = P (E1j:H) : : : P (Enj:H)Given these assumptions, the whole problem of updating with many pieesof evidene beomes simple, and, in fat,O(H jE1& : : :&En) = �1 �2 : : : �nO(H) where �i = �(Ei)



96 Donald GilliesThe only remaining problem was whether the onditional independene as-sumptions (2) and (3) are plausible. The searh for a justi�ation of theseassumptions led, as we shall see, to the modi�ation of the onept of infer-ene network, and the emergene of the onept of Bayesian network.The onept of Bayesian network was introdued and developed by Pearlin a series of papers: Pearl [1982; 1985a; 1985b; 1986℄, Kim and Pearl [1983℄,and a book: Pearl [1988℄. An important extension of the theory was arriedout by Lauritzen and Spiegelhalter [1988℄, while Neapolitan's 1990 bookgave a lear aount of these new ideas and helped to promote the use ofBayesian networks in the AI ommunity.The atual term Bayesian (or Bayes) network was introdued in Pearl's[1985b℄ where it is de�ned as follows (p. 330):Bayes Networks are direted ayli graphs in whih the nodesrepresent propositions (or variables), the ars signify the exis-tene of diret ausal inuenes between the linked propositions,and the strengths of these inuenes are quanti�ed by ondi-tional probabilities.This verbal aount is illustrated by a diagram whih is reprodued, withdi�erent lettering, in Figure 2. AB CED FFigure 2.



Heuristis and Mathematial Disovery 97If we ompare the network of Figure 2 with that of Figure 1, two di�er-enes should be noted immediately. First of all the arrows in the inferenenetwork of Figure 1 represent a relation of support holding between e.g.E3 and H3, while the arrows in the Bayesian network of Figure 2 representausal inuenes, so that, e.g. the arrow joining A to B means that Aauses B. Seondly, orresponding to the �rst di�erene, we an say that,in a ertain sense, the arrows of a Bayesian network run in the oppositediretion to those of an inferene network. Pearl puts this point as follows[1986, pp. 253{4℄:. . . in many expert systems (e.g. MYCIN), . . . rules point fromevidene to hypothesis (e.g. if symptom, then disease), thusdenoting a ow of mental inferene. By ontrast, the arrowsin Bayes' networks point from auses to e�ets or from ondi-tions to onsequene, thus denoting a ow of onstraints in thephysial world.This reversal of arrows from inferene networks to Bayesian networks isillustrated in Figure 3, whih shows one pair of nodes taken from the portionof PROSPECTOR's inferene network shown in Figure 1.(a) Inferene Network E3 H3(b) Bayesian Network E3 H3Figure 3. Reversal of ArrowsHere E3 = There are bleahed roks, while H3 = There is a redutionproess. From the point of view of an inferene network (a), we regardthe evidene of bleahed roks as supporting the hypothesis that there isa redution proess, while, from the point of view of a Bayesian network(b), we regard there being a redution proess as a ause of there beingbleahed roks. In his 1993, Pearl gives an aount of his disovery ofBayesian networks, and says that one fator that led him to the idea washis onsideration of the onept of inuene diagrams introdued by Howardand Matheson (1984). Pearl deided to limit the inuenes spei�ally to



98 Donald Gilliesausal inuenes. Now Howard and Matheson were working on deisiontheory. So this is one point where the investigations of deision theory mayhave had an input into the investigations in arti�ial intelligene.I will now make a few further points about Bayesian networks. If, insuh a network, an arrow runs from node A to node B, then A is said tobe a parent of B, and B a hild of A. Children of A, hildren of hildrenof A, and so on are known as desendants of A. If a node has no parents,it is alled a root, so that in Figure 2, A is a root. In a Bayesian network,it is possible for a hild to have several parents. Thus in Figure 2, Ehas parents B and C. If, however, every hild has at most one parent,the network is alled a tree. As in the earlier ase of PROSPECTOR'sinferene networks, in order to make omputation feasible, some onditionalindependene assumptions have to be made. For a Bayesian network, theseare that a node is onditionally independent given its parents of the rest ofthe network exept its desendants. I will all the onditional independeneassumptions de�ning a Bayesian network the generalised Markov ondition.The nodes of a Bayesian network are random variables. Suppose wespeify for eah node the onditional probability distribution of that nodegiven its parents, then it follows from the generalised Markov onditionthat these onditional probability distributions suÆe to determine the jointdistribution of all the variables of the network. This is an important resultsine it shows that Bayesian networks enable us to store joint distributionsin a very onise way.After introduing the onept of Bayesian network, Pearl developed al-gorithms whih allow Bayesian updating to take plae in suh networks. Ifone of the variables whih represents an observation is set to a partiularvalue, the hanges brought about by this new information in all the proba-bilities throughout the tree an be omputed in an eÆient manner. Pearlbegan in his 1982 by developing an updating algorithm for a simple formof network, namely a tree. He then extended his algorithm to more om-pliated networks. Kim and Pearl [1983℄ generalised from trees to Bayesiannetworks whih are singly onneted, i.e. there exists only one (undireted)path between any pair of nodes. Pearl in his 1986 takled the further exten-sion to Bayesian networks whih are multiply onneted. This problem wasalso investigated by Lauritzen and Spiegelhalter who in their 1988 solved itusing the idea of reduing a multiply onneted network to a tree of liques.Their algorithm has been generally adopted by the AI ommunity.



Heuristis and Mathematial Disovery 99Let us now turn from these powerful mathematial developments to theonsideration of a oneptual point. How exatly are auses and proba-bilities onneted in Bayesian networks? In his original de�nition whihhe gave above, Pearl mentions both auses and probabilities. The arrowssignify ausal inuenes, while the nodes have assoiated with them proba-bility distributions onditional on their parents. Pearl's idea about the linkbetween auses and probabilities seems to have been that, if in a networkthe parents of every node represented the diret auses of that node, thenthe relevant onditional independene assumptions (the generalised Markovondition) would automatially be satis�ed. As he says [1993, p. 52℄:Causal utteranes suh as \X is a diret ause of Y " were given aprobabilisti interpretation as distintive patterns of onditionalindependene relationships that an be veri�ed empirially.A suggested link between ausality and onditional independene in fatgoes bak to Reihenbah [1956℄. Reihenbah onsiders two events B andC say whih are orrelated. For example, in a travelling troupe of ators,B = the leading lady has a stomah upset, and C = the leading man has astomah upset. We an explain suh orrelations, aording to Reihenbah,by �nding a ommon ause, namely that the leading lady and the leadingman always have dinner together. The ommon stomah upsets our whenthe food in the loal restaurant has gone o�. Denote `dining together' byA. We then have the ausal graph shown in Figure 4.BA CFigure 4.Reihenbah then laimed that, onditional on A;B and C were no longerorrelated but independent, i.e. P (B&CjA) = P (BjA)P (CjA). He alsoexpressed this idea by saying that a ommon ause A sreens one of its



100 Donald Gilliese�ets B o� from the other C. Reihenbah's ausal fork is just a simplease of a Bayesian network. We an indeed apply his term `sreening o�' toBayesian networks by saying that in suh networks, the parents of a nodesreen it o� from all the other nodes in the network exept its desendants.We are now in a position to summarise the ingenious way in whihBayesian networks solved the problem of handling unertainty in expert sys-tems. In most of the domains onsidered, e.g medial diagnosis, a domainexpert is very familiar with the various ausal fators operating. It shouldtherefore be an easy matter to get him or her to provide a ausal network.By the addition of probabilities this an be turned into a Bayesian network.In earlier systems suh as MYCIN or PROSPECTOR, onditional indepen-dene assumptions were made for the purely ad ho and pragmati reason ofallowing the updating to beome possible. For Bayesian networks, however,the ausal information obtained from the expert provides a justi�ationfor making a set of onditional independene assumptions (the generalisedMarkov ondition) in the manner �rst suggested by Reihenbah. Moreoveras Pearl, Lauritzen and Spiegelhalter have shown, the generalised Markovondition is suÆient to allow Bayesian updating to beome omputation-ally feasible. Everything �ts together in a most satisfying manner. Thereis only one weak link in the hain. It turns out that it is possible to have abona �de ausal network in whih the generalised Markov ondition is notsatis�ed. I have disussed this last point with examples in Gillies [2002℄,but I will not pursue the development of the theory of Bayesian networksfurther here. I have given enough of the history of their disovery to enableus to examine in the next three setions the heuristi priniples involved.3 Heuristis Involved: (a) the Use of PhilosophialIdeasThe �rst of the heuristis whih I think was involved in the disovery ofBayesian networks was the use of philosophial ideas as a guide to the de-velopment of new mathematial onepts. The proess whih led to thedisovery of Bayesian networks was begun by Shortli�e and Buhanan's at-tempt to onstrut a formal model for evidential support whih ould beimplemented in their expert system: MYCIN. Shortli�e and Buhanan'skey 1975 paper: `A model of inexat reasoning in mediine' ontains 33referenes and no less than 14 of these (or over 42%) are to works in thephilosophy of siene onerned with the on�rmation of sienti� hypothe-



Heuristis and Mathematial Disovery 101ses by evidene and related questions onerned with indution and the in-terpretation of probability. These 14 referenes are: Barker [1957℄, Carnap[1950℄, De Finetti [1972℄, Harr�e [1970℄, Helmer and Resher [1960℄, Hempel[1965℄, Keynes [1921℄, Popper [1959℄, Ramsey [1931℄, Salmon [1966; 1973℄,Savage [1954℄, and Swinburne [1970; 1973℄. In fat Buhanan and Shortli�ereferred to nearly all the philosophers of siene who were famous for theirworks on probability, indution and on�rmation.The main debate within philosophy of siene about the on�rmationof sienti� hypotheses was at the time between the Bayesians and theanti-Bayesians. The Bayesians were divided in turn between the logialBayesians suh as Carnap and the subjetive Bayesians suh as De Finetti,Ramsey, and Savage. The leading anti-Bayesian was Popper. As we haveseen, Shortli�e and Buhanan in onstruting their formal model adoptedan anti-Bayesian position. They were then immediately attaked by theBayesians, and it was the members of the subjetive Bayesian shool, parti-ularly Pearl, who sueeded in developing the suessful theory of Bayesiannetworks. Reently Pearl has introdued some quali�ations into his sup-port for Bayesianism. His 2001 paper is signi�antly entitled: `Bayesianismand Causality, or Why I am only a Half-Bayesian', but at the very beginningof the paper he reveals that he had no suh doubts about the orretnessof subjetive Bayesianism when he introdued the onept of Bayesian net-work. This is what he says (2001, p. 19):I turned Bayesian in 1971, as soon as I began reading Savage'smonograph The Foundations of Statistial Inferene [Savage,1962℄. The arguments were unassailable: (i) It is plain silly toignore what we know, (ii) It is natural and useful to ast whatwe know in the language of probabilities, and (iii) If our sub-jetive probabilities are erroneous, their impat will get washedout in due time, as the number of observations inreases.In other words, Pearl adopted a partiular philosophial position (sub-jetive Bayesianism) and this ated as a heuristi guide to his mathematialwork.Pearl may also have been inuened by Reihenbah's philosophial viewson ausality, for, as we saw earlier, Reihenbah's notion of a ausal forkantiipates the onept of Bayesian network in a simple ase. However, thetextual evidene here is not deisive. In his 1988, Pearl refers to Reihen-bah's 1949 book on probability, but this book did not ontain a disussion



102 Donald Gilliesof ausal forks whih are introdued by Reihenbah in his 1956. In his1988, Pearl refers to another philosophial work on ausality, namely Sup-pes 1970 monograph: A probabilisti theory of ausation. However, thiswork of Suppes does not mention Reihenbah's notion of ausal fork.I think this establishes beyond doubt that philosophial ideas were usedas a heuristi guide in the disovery of the mathematial theory of Bayesiannetworks. But is this an unusual and exeptional ase, or does philosophyquite often at as a heuristi in mathematial disovery? The idea thatphilosophy ould be a heuristi guide in the natural sienes is in fat nowquite familiar. It was introdued by Popper in 1934 as part of his ritiqueof the Vienna Cirle. While the Vienna Cirle held that metaphysis wasmeaningless, Popper argued that metaphysis was not only often meaningfulbut ould be helpful to siene. Popper ited the example of atomism whihbegan as a metaphysial theory and long remained one, but whih waseventually turned into a sienti� theory. Before Popper, Duhem had givenmany interesting examples of metaphysial ideas ating as heuristis for thedevelopment of siene. More details of the work of Duhem and Popper onmetaphysis in relation to the development of the natural sienes is to befound in Gillies [1993, Chapter 9, Setions 1{3, pp. 189{201℄.Although the idea of philosophy ating as heuristi guide is familiar inthe ase of the natural sienes, there has been surprisingly little disussionof philosophy as a heuristi guide for mathematis. If we examine the his-tory of mathematis, however, we an �nd many examples of philosophialideas ating as heuristi guides to mathematial disoveries, though, at thesame time, there are also many mathematial disoveries in whih philoso-phy played no role. An obvious example of the inuene of philosophy onmathematis is provided by the development of mathematial logi. Frege'srevolution in the subjet arose from his attempt to support the philosophi-al view that arithmeti was reduible to logi (see Gillies [1992℄ for details).The mathematial theory of probability too was strongly inuened by phi-losophy at earlier periods. The mathematial work of Thomas Bayes wasdesigned to promote Bayesianism whih, in turn, was devised in order toanswer Hume's septial doubts about indution, as I have argued in Gillies[1987℄. Another example from probability theory is provided by von Miseswho in his development of his frequeny theory of probability gave a philo-sophial analysis and de�nition of randomness. This de�nition appearedto have some aws, and attempts to resolve this diÆulty led to important



Heuristis and Mathematial Disovery 103mathematial results by Wald and Churh. Details are to be found in Gillies[2000, pp. 105{9℄.These examples of the inuene of philosophy on the development ofmathematis taken from the history of mathematial logi and mathemat-ial probability are not dissimilar from Popper's leading example of theinuene of metaphysial ideas on the development of the natural sienes,namely: atomism. Before a preise experimentally testable theory of atom-ism ould be developed it was neessary that atomism as a general view ofthe world should be elaborated in a less preise, metaphysial fashion. Nowlogi and probability form an integral part of philosophy beause of their im-portane for epistemology. Some preliminary philosophial analysis of logiand probability was surely neessary to provide a jumping o� point for amore preise mathematial theory of these onepts. This explains why inthese ases, philosophial ideas were able to at as a guide to mathematialdevelopment.Logi and probability, so I have argued, are part of the subjet matterof both philosophy and mathematis. The same is true of the oneptof in�nity. This is the subjet of philosophial disquisitions as well as ofCantor's theory of the trans�nite. Indeed Cantor in developing his theory ofthe trans�nite, made an intensive study of philosophial and also theologialideas about the in�nite. Details of this are to be found in Dauben's 1979 lifeof Cantor, whih is signi�antly entitled: Georg Cantor. His Mathematisand Philosophy of the In�nite.As my �nal example of philosophial ideas as a heuristi for mathematialdisovery, I want to onsider a ase whih is rather di�erent from those oflogi, probability, and the in�nite. This is Riemann's disovery of non-Eulidean geometry. I have argued that logi, probability and in�nity areall subjets of both philosophy and mathematis and that a preliminaryqualitative philosophial analysis of these notions was needed before morepreise mathematial theories ould be developed. Geometry, however, isnot per se part of philosophy. However, sine the time of Plato, geometryhas been of great signi�ane for Western philosophy as a prime exampleof exellent, indeed ertain, knowledge, and therefore as a most importantexample for epistemology. In a famous passage from his 5th Meditation,Desartes says [1641, p. 181℄:. . . I learly see that existene an no more be separated fromthe essene of God than an its having its three angles equal to



104 Donald Gilliestwo right angles be separated from the essene of a [retilinear℄triangle, . . .Now the proposition that the three angles of a retilinear triangle areequal to two right angles is equivalent to Eulid's 5th postulate. So Desartesis laiming that the truth of Eulidean geometry is as ertain as the exis-tene of God. Of ourse by this he means that the truth of Eulidean geom-etry is ompletely ertain. Later on Kant laimed that Eulidean geometrywas syntheti a priori, implying that its truth was known with ertaintyindependently of experiene.These well-known philosophial dotrines aÆrming the ertain truth ofEulidean geometry ertainly onstituted an obstale to the disovery ofnon-Eulidean geometry. Riemann presented his new ideas on non-Eulideangeometry in his famous leture: `�Uber die Hypothesen, welhe der Geome-trie zu Grunde liegen' (On the Hypotheses whih lie at the Foundationsof Geometry) delivered as a qualifying leture (Habilitationsvorlesung) forthe title of Privatdozent to the faulty at G�ottingen on 10 June 1854. Rie-mann regarded it as neessary to begin his leture with some philosophialanalysis. This in e�et onstitutes an empiriist aount of geometry whihritiizes impliitly the Kantian view of Eulidean geometry as syntheti apriori. Riemann says that he has made use of some philosophial investiga-tions of Herbart, an empiriist philosopher, and he remarks rather modestly[1854, p. 412℄:. . . I think myself the more entitled to ask onsiderate judgmentinasmuh as I have had little pratise in suh matters of a philo-sophial nature, where the diÆulty lies more in the oneptsthan in the onstrution . . .In fat Riemann had studied theology before turning to mathematis andwas by no means unfamiliar with philosophy. Here is a passage from hispreliminary philosophial disussion [1854, p. 412℄:. . . the propositions of geometry are not derivable from generalonepts of quantity . . . those properties by whih spae is distin-guished from other oneivable triply extended magnitudes anbe gathered only from experiene. There arises from this theproblem of searhing out the simplest fats by whih the metrirelations of spae an be determined, a problem whih in nature



Heuristis and Mathematial Disovery 105of things is not quite de�nite; for several systems of simple fatsan be stated whih would suÆe for determining the metrirelations of spae; the most important for present purposes isthat laid down for foundations by Eulid. These fats are, likeall fats, not neessary but of a merely empirial ertainty; theyare hypotheses; one may therefore inquire into their probabil-ity, whih is truly very great within the bounds of observation,and thereafter deide onerning the admissibility of protrat-ing them outside the limits of observation, not only toward theimmeasurably large, but also toward the immeasurably small.The title of Riemann's leture is itself an impliit ritiism of Kant, sineRiemann's point is that hypotheses (whih may be empirially on�rmed ordison�rmed) and not a priori truths lie at the foundation of geometry. Thispoint is made more expliit in the passage just quoted, sine Riemann laimsthat Eulidean assumptions are `not neessary but of a merely empirialertainty', and that sine `they are hypotheses', `one may therefore inquireinto their probability'. Riemann regards this probability as very high forwhat falls within the bounds of observation, but still regards it as possiblethat Eulidean assumptions might break down `toward the immeasurablylarge' or `toward the immeasurably small'.More details about Riemann's disovery of non-Eulidean geometry andhis empiriism in the philosophy of geometry are to be found in Gillies,[1999, pp. 174{78℄. For the purpose of the present paper, however, wean observe that Riemann's empiriist philosophy of geometry, whih hedeveloped with the help of Herbart's writings, played a very importantrole in his disovery of non-Eulidean geometry. It formed the basis ofhis ritiism of the dotrine of Kant and other philosophers who held thatEulidean geometry was known with ertainty a priori, and so opened up theway to introdue new forms of geometry whih ontradited the Eulideanaxioms.In the present setion I have given quite a number of examples of mathe-matial disoveries where philosophial ideas played an important heuristirole. However it should be stressed in onlusion that this is not a generallaw of mathematial development and there have been many mathematialdisoveries in whih philosophy played little or not part. An obvious exam-ple of suh a disovery is the disovery of the onept of group in algebra.This arose from mathematial researh into the problem of �nding solutions



106 Donald Gilliesto polynomial equations in terms of radials. Lagrange found a onnetionbetween this problem and permutations of the roots of the equation, andolletions of suh permutations onstituted the �rst examples of the lateronept of abstrat group. Here we have a disovery emerging from internalmathematial investigations whih did not have a onnetion with externalphilosophial questions.4 Heuristis Involved: (b) New Pratial ProblemsThe study of new pratial problems often leads to mathematial disover-ies. The disovery of Bayesian networks is a perfet example of this. As wehave seen the disovery arose out of the problem of implementing expertsystems for mediine, geologial exploration and other areas. These expertsystems involved handling unertainty in a way whih was rather di�er-ent from previous appliations of the probability alulus. The solution ofthis problem involved the development of new tehniques involving a newmathematial onept.One again the pattern here exhibited in the disovery of Bayesian net-works is to be found in many other disoveries in the history of mathematis.The mathematial theory of probability itself originated from the problemof alulating fair odds in gambling games. This was a very pratial prob-lem at the time, sine gambling houses of that period o�ered odds whihwere empirially based. A mathematiian who ould alulate the orretodds stood a good hane of making money. New pratial problems aboutthe kinematis and mehanis of moving bodies suh as annonballs, planetsor omets stimulated the development of alulus in the 17th entury. Inthe previous setion we saw how a philosophial researh programme (theattempt to establish logiism in the philosophy of mathematis) led to thedevelopment of mathematial logi. However mathematial logi, though itoriginated in philosophy, was to �nd pratial appliations in the �eld ofomputer siene. The new pratial appliations led to developments inmathematial logi itself, and, in partiular, to the disovery of a quite newtype of logi | non-monotoni logi. Some details about the disovery ofnon-monotoni logi are to be found in Gillies, [1996, pp. 72{75℄.Although the investigation of new pratial appliations often leads tothe disovery of new mathematial onepts, sometimes this is not the asebeause the existing body of mathematis is suÆient for handling the newappliation. An example of this is provided by Shr�odinger's work in quan-



Heuristis and Mathematial Disovery 107tum mehanis. Shr�odinger's equation was a very important disovery inphysis, but the equation turned out to be of a type whih was familiarto mathematiians, and whih ould be solved by existing tehniques. So,although Shr�odinger was investigating some very new, indeed one mightalmost say, weirdly new phenomena, he was not led to formulating any newmathematial onepts.Let me onlude this setion by omparing the heuristi of using philo-sophial ideas with that of studying new pratial problems. At �rst sightthey seem to be quite distint and rather opposed approahes. Philosophy,one might think, may be suitable for the abstrat pure mathematiian likeCantor who is far removed from any pratial problem in the real world.Suh a person would, it might be thought, be very di�erent from the downto earth researher working on pratial problems. Of ourse this point ofview is orret in Cantor's ase, but one �nds in many other ases, inludingour prinipal example of the disovery of Bayesian networks, that the studyof pratial problems and philosophial onsiderations, far from being op-posed, atually go hand in hand. The reason for this is that philosophy neednot be remote from the real world, but an be losely related to pratialation, and, onversely, it may often be diÆult to at in pratie withoutsome philosophial orientation.5 Heuristis Involved: () Domain InterationThe third heuristi whih I will onsider is what I will all: domain in-teration. This ours when two separate domains are brought togetherand partially uni�ed. This proess an often result in new disoveries andthe growth of knowledge. Domain interation has been studied by EmilyGrosholz, who has emphasized its role in the development of mathematis.In this setion, therefore, I will reverse the order used in the two preedingsetions. I will �rst give a general aount of Grosholz's ideas on domaininteration, inluding examples of where it has led to mathematial disov-ery. I will then show that domain interation was an important heuristipriniple involved in the disovery of Bayesian networks. In fat the exam-ple of Bayesian networks provides a striking vindiation of Grosholz's ideason this subjet.In a series of publiations [1981; 1985; 1991; 1992℄, Grosholz has studieda number of ases in whih knowledge (partiularly mathematial knowl-edge) has advaned through the interation of separate domains. In 1981,



108 Donald Gilliesshe onsiders Logi and Arithmeti, in 1985 Logi and Topology, while inher 1992 she argues that Leibniz invented and developed the alulus bybringing together geometry, algebra, number theory, and mehanis. Her1991 book shows that to a remarkable extent all Desartes' intelletual workan be seen as bringing together di�erent domains. As she says [1991, pp.2{3℄: . . . Cartesian domains . . . an be understood as a novel amalga-mation of formerly distint or at least very inompletely uni-�ed domains: the Geometry brings together geometry and alge-bra, the Priniples geometry and physis, the Treatise of Manphysis and medial physiology, and the Meditations mehanialphilosophy and sholasti theology.This is an interesting passage sine it shows that the heuristi of domaininteration is not limited to mathematis, but applies to other subjets aswell. However the passage also gives one of the most famous examples ofdomain interation in mathematis, namely the bringing together of geom-etry and algebra to reate analyti geometry. Although Grosholz approvesof Desartes's method of bringing together separate domains, she nonethe-less ritiizes the way in whih he arries out this proess. In her view theinteration of di�erent domains is most fruitful, if, while interating, theynonetheless retain some degree of autonomy. An attempt to redue one do-main to the other will generally inhibit fruitful developments. As she says[1991, p. 3℄:. . . the uni�ation of domains ontributes to the growth of knowl-edge when and beause it exploits partially shared struture be-tween domains that none the less retain their autonomy anddistintness. Revelation is impaired when domains are heldtoo far apart, or assimilated too losely. But Desartes's wayof onstruting knowledge an produe both these unfortunateoutomes . . .Aording to Grosholz, Leibniz was more suessful that Desartes inhandling domain interation (see [Grosholz, 1992℄).Another important onept whih Grosholz uses in this onnetion is theonept of hybrid. As she says [2000, p. 82℄;



Heuristis and Mathematial Disovery 109Moreover, my examination of the growth of mathematial knowl-edge sheds important light on mathematial hybrids, objetswhih exist in the overlap of domains and provoke disovery inunexpeted ways.An important feature of suh hybrids is that they exhibit a kind of in-stability or inonsisteny. As Grosholz says [2000, p. 88℄:. . . the two domains as it were overlap, or are superimposed. Atthis overlap, objets are onstituted whih must simultaneouslyexhibit features of both domains; if the domains are truly het-erogeneous, one must expet a kind of submerged heterogeneityin these objets. And in fat suh hybrids often exhibit an in-stability or inonsisteny that is however held in plae or madetratable by the rational relatedness provided by the abstratstruture that holds the domains together.This instability or inonsisteny is not seen by Grosholz as a defet, butrather as a potential stimulus to further growth and development.Let me now show that these ideas apply very well to the example ofBayesian networks. In fat, Bayesian networks involved two instanes ofdomain interation. To begin with, Bayesian networks put together thedomains of probability theory and graph theory whih had previously beenlargely separate. Seondly, however, Bayesian networks put together thedomains of probability theory and ausality. In fat there had earlier beenthe beginning of an attempt in the philosophy of siene ommunity toonnet these domains. Suppes [1970℄ A probabilisti theory of ausation isa leading example of this trend. However the development of the oneptof Bayesian network was a notable advane in linking the two domains. Ina Bayesian network, an arrow joining two nodes A and B usually indiatesthat there is a ausal onnetion between A and B. Furthermore eah nodein a Bayesian network has a onditional probability distribution assoiatedwith it. Thus ausality and probability are brought together.However this hybrid of ausality and probability is by no means unprob-lemati. Pearl originally hoped that the ausal onnetions between thenodes of a network would justify adopting the generalised Markov ondi-tion for the probability distributions. However it emerged that there an begenuine ausal graphs for whih the generalised Markov ondition does not



110 Donald Gillieshold. More details about this are to be found in Gillies [2002℄. So the rela-tions between ausality and probability in a Bayesian network turn out tobe highly problemati. Bayesian networks thus �t very well the desriptionswhih Grosholz gives of other mathematial hybrids. As she says [2000, p.88℄: ` . . . one must expet a kind of submerged heterogeneity in these ob-jets. And in fat suh hybrids often exhibit an instability or inonsisteny. . . '6 Heuristis of Mathematial Disovery versus Logiof Mathematial DisoveryHaving given my example of a reent mathematial disovery and attemptedto analyse the heuristis whih were involved, I now want to raise the generalquestion of whether suh heuristis onstitute a kind of generalised logiso that one ould speak of a logi of mathematial disovery, or whetherheuristi priniples are not logial in harater. This question is by nomeans an easy one. The ore of logi is obviously standard dedutive logi.However, it has often been suggested that logi ould be extended to inludenot just dedutive inferenes but ampliative inferenes of various kinds.For example, many philosophers of siene have supported the idea of anindutive logi. Might heuristi priniples onstitute an extension of logiof whih indutive logi is just a part?I will begin my examination of this problem by onsidering an interestingrelated disussion by Ladislav Kvasz in his 2002. Kvasz here deals not withthe relation between heuristis and logi, but with the obviously loselyonneted question of the relation between dialetis and logi. Kvasz inhis paper ritiizes dialetiians, but under that heading he inludes notjust the paradigm dialetiians (Hegel and the Marxists), but also Popperand Lakatos whom he regards as also dialetiians, notwithstanding theirstriking disagreements with Hegel and the Marxists. What is ommon to allthese thinkers aording to Kvasz is that they regard dialetis as a branhof logi. As Kvasz himself says [2002, p. 211℄:Usually, the dialetiians believe that the pattern of the develop-ment of knowledge is of a logial nature (Hegel's idea of dialeti-al logi, Popper's logi of sienti� disovery, or Lakatos' logiof mathematial disovery), whih reates a tension between thedevelopment of knowledge and formal logi.



Heuristis and Mathematial Disovery 111This `onfusion of dialeti with logi' [Kvasz, 2002, p. 211℄ is responsi-ble, aording to Kvasz, for grave failings in Hegel on the one hand and inPopper and Lakatos on the other. However, these failings are di�erent in thetwo ases. The problem with Hegel and the Hegelians is that they regardtheir dialetial logi as being in ompetition with and superior to ordinarydedutive logi. Hegelians therefore rejet ordinary dedutive logi whihKvasz thinks is a mistake. Popper and Lakatos did not give up ordinarydedutive logi, but their attempt to reonile it with the development ofknowledge led to them on�ning their analyses to ases in whih the on-eptual hanges in the growth of knowledge are relatively small. This ishow Kvasz puts this argument [2002, p. 229℄:Both solutions to the dialetiian's onit between logi andevolution of knowledge are unsatisfatory. Philosophers whofollow Hegel, in the attempt to replae lassial logi by somenew dialetial one, were unable to o�er anything omparable tothe suessive formal logi, and thus their researh programmedegenerated. On the other hand, dialetiians like Popper orLakatos, who were not prepared to sari�e logi, and thoughtthat logial onsisteny is ruial to rational disourse, werefored to give up evolution. The fat that Lakatos was un-able to reonstrut any deeper oneptual hange in history ofmathematis or physis is not aidental. As a dialetiian, heoneived evolution to be in onit with logi, but as Popper'sdisiple he was not prepared to give up logi. Thus he omittedsome of the most interesting moments in the history of mathe-matis. If he had tried to reonstrut them, he would have beenfored to violate logi. Therefore he reonstruted only thosehanges, in whih relatively small oneptual hanges our. . . .The one extreme is dialetial logi (of Hegel and Marxism),whih for the sake of evolution sari�es logi. The other ex-treme is logial dialeti (of Popper or Lakatos), whih for thesake of logi sari�es evolution.Kvasz argues for this general position by giving an analysis of somehanges in the development of mathematis whih he regards as being toolarge to be ompatible with formal logi. These hanges all involve a hangein the form of the language used. Following Wittgenstein in the Tratatus,



112 Donald GilliesKavasz regards any language (L say) as having a form whih is not express-ible in the language. We an however inorporate the form of the languageL into L thereby reating a new language L0 say. A simple example of thisproess ourred in the transition between the language of perspetive usedby Renaissane painters and the language of projetive geometry reatedby Desargues. As Kvasz says [2002, p. 221℄:. . . the entre of projetion represents, in an abstrat form, theeye of the painter from D�urer's drawing. For Desargues, . . . , thepoint of view is expliitly inorporated into language.In fat Kvasz analyses a whole series of examples of hanges in mathe-matis whih follow this pattern in his papers [1998℄ and [2000℄.We an now see learly why formal logi is inadequate to deal with suhhanges. Any system of formal logi presupposes a language L in whih itis formulated, and this language is held onstant when the dedutions arebeing made. If therefore we make a fundamental hange in the harater ofthe language, altering it from L to L0, this hange annot be aptured usingformal logi. On the other hand we an apply formal logi without anyproblems either within L or within L0 so that there is no need to abandonformal logi altogether as the Hegelians deem to be neessary. Formal logihas only to be given up temporarily in the ourse of a large hange involvinga onsiderable alteration in the form of the language used. This then is abrief summary of Kvasz's position. Let us now see if we an apply it to ourproblem about heuristis and logi.It is lear that the disovery of Bayesian networks involved the reationof a new language formed through the synthesis of the languages of earlierprobability theory and graph theory. The language of Bayesian networkswith its network diagrams has an ioni harater whih is not to be foundin earlier probability theory. As this is a major hange in language, thenwe an use Kvasz's argument to onlude that the disovery of Bayesiannetworks is a transition whih annot be expliated logially so that theheuristis involved are not logial in harater. Indeed we an generaliseto say that many appliations of the domain interation heuristi take usoutside logi. Cartesian geometry, for example, has its own spei� languagewhih di�ers both from the language of lassial Eulidean geometry andfrom that of algebra unrelated to geometry. Similarly alulus introduednew symbolisms suh as dy/dx or �y whih made the language of alulusradially di�erent from preeding mathematial languages.



Heuristis and Mathematial Disovery 113Changes of this magnitude annot, aording to Kvasz's argument, beexpliated using logi. However, Kvasz's analysis also indiates that somehanges might be logially expliated. These would be smaller hanges. Anexample might be the disovery of the proof of a mathematial onjeturewhere both the onjeture and the subsequent proof are formulated withina well-de�ned mathematial system, whih is not hanged in the proess ofdisovery. There is no reason why the heuristis of disoveries of this sortmight not be expliated in a way that ould be desribed as logial.These onlusions are supported by another approah to the problem.This approah relies on the onnetion between logi and mehanisation.If mathematial proofs are translated into formal logi then the validityof eah step an be heked mehanially by means of a omputer. Thedisovery of the proof, however, an be left entirely in the hands of humanmathematiians. The development of automated theorem proving, and ofnon-monotoni logi programming languages suh as PROLOG has arriedthe mehanisation proess one stage further by mehanising the onstrutionof proofs. In this respet, then, it goes beyond Fregean formal logi.I have suggested (in [Gillies, 1996, p. 85℄) a way of haraterising thisnew kind of logi whih has been introdued by investigations into arti�ialintelligene. The formula proposed isLogi = Inferene + ControlWhen we employ Logi, we start with a set of assumptions from whih wewant to derive some onlusions. To arry out these derivations we needa set of rules of inferene (the Inferene omponent). If the derivation isarried out by a trained mathematiian, then he or she will rely on intuitionto deide whih rule of inferene to use at a partiular stage in order to arryout the derivation. If, however, we are trying to program a omputer toarry out the derivation, then we will have to give the omputer guidane asto whih assumptions to hoose and whih rules of inferene to apply. Thisguidane onstitutes the Control omponent. Thus the Control omponentmight speify at eah stage of the derivation, whih of the assumptionsshould be employed, and whih of the rules of inferene should be appliedto these assumptions or to previously obtained results. More generally,the Control omponent would be designed to help in the onstrution of aderivation or proof of a onlusion.



114 Donald GilliesI further suggested (in [Gillies, 1996, Ch. 5, pp. 98{112℄) that thisformula enables one to defend the possibility of an indutive logi. Thedevelopment of mahine learning has lead to the formulation of indutiverules of inferene, while on�rmation theory onstitutes the ontrol ompo-nent. In the ase of automated theorem proving, the heuristis used ouldbe formulated as part of the ontrol omponent, and ould then, using theformula above, be onsidered part of a logi of mathematial disovery.This riterion suggests therefore that a heuristi an be onsidered a logi-al priniple if it an be formulated with preision and inorporated into asuessful omputer system for automated theorem proving. This riterionimplies the Kvasz riterion sine, at least as things stands at present, anyautomated theorem proving system has to operate within a �xed formallanguage spei�ed at the beginning.The kind of heuristis whih I have onsidered in this paper (use of philo-sophial ideas, onsideration of new pratial problems, and domain inter-ation) are to vague in harater to be suitable for preise formulation andimplementation in programs for automated theorem proving. I would there-fore argue that they are not logial in harater.A riti might say at this point that heuristis whih are not preiseenough to beome part of logi are unlikely to provide muh useful guid-ane. However suh a omment would be unfair. The somewhat vague non-logial heuristis onsidered in this paper are ertainly not preise enoughto guide a omputer in the exeution of a program. However they are pre-ise enough to suggest strategies for a human mathematiian arrying outmathematial researh. Moreover the kind of strategies suggested by thethree heuristis given are rather di�erent from those ommonly adopted byhuman mathematial researhers. It is all too ommon for researh math-ematiians to beome exlusively absorbed in their own small �eld and todevote themselves to reading only the literature of that speialty. The ana-lysis given of the disovery of Bayesian networks suggests a quite di�erentsort of researh strategy, one whih would involve a broader more inter-disiplinary approah, with the study of some philosophy, an interest inareas whih might require new tehniques for suessful pratial applia-tions, and a knowledge of several branhes of mathematis whih ould bebrought together for `domain interation'. The example even suggests somemore spei� reommendations. Mathematiians preparing for researh inthe area of probability and statistis would normally take a master's degree
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