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ABS'T'RACT 

i 

Existing theories which include the effects of shear 

defonration in elastic beans and plates are corared and their 

relationship with each other examined. 

Three approaches are applied to a range of problems 

in the bending of beains and circular and square plates. The 

first of these uses Reissner's theory, or, where this is not 

immediately applicable, a theory is developed based on his 

fundamental assertions. Secondly, the possibility of employing 

a partial deflection method for horogeneous isotropic cases is 

considered, in which the effects of bending and shear can be 

separated. the third approach is a theory of specified order of 

accuracy, developed as a modification to Reissner's theory. It 

leads to a sixth order system of equations, thus c=abling three 

conditions to be satisfied'at each boundary of a rectangular 

plate, and is in terms of transverse displacnit as the single 

variable. 

The application of finite difference and localised 

Rayleigh-Ritz techniques to the solution of these three approaches 

is considered. 

Two series of experinental tests are reported which 

investigate the effects of shear defoirration on the deflection 

of bears and square plates. 
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SYMBOLS 

a radius of circular plate 

dimension of local region - localised Rayleigh-Ritz method 

D (=Eh3/12(l - V2)) flexural stiffness of plate 

E Young's modulus 

G shear modulus 

h depth of beam or plate 

H (= h/L) non-dimensional depth 

I second mxrent of area of beam 

L length of beam 

L representative length - span of beam or side of plate 

M bending moment in beam 

M Mt 
" 

Mn Mt bending tents per unit width of plate 

Mx' My 

t 
nrnmts per unit width of plate 

xY 

n, t, z nonnal and tangential orthogonal co-ordinate system 

P mesh length - finite difference method 

P(= p/L) non-dimension l mesh length 

concentrated load 

q unifoarly distributed load - per unit length of beam 

or per unit area of plate 

Q shear force in beam 

QX, Qy shear forces per unit width of plate 
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I 

r, t, z radial and tangential orthogonal co-ordinate 

system 

S shear stiffness per unit width of beam or plate 

u, v, w displacements in orthogonal co-ordinate system 

U strain energy in beam or plate 

V potential energy of beam or plate 

wb, ws partial deflections due to bending and shear 

W(= w/L) non-dimensional transverse displacement 

X, Y, Z (=x/L, y/L, z/L) non-dimensional co-ordinates 

Shear strain 

aX ay 

, 
L2 2)2 Z? 2 (a-x, --2 

ay2 

A3 äö3 

E direct strain 

Poisson's ratio 

(= x/a) non-dimensional co-ordinates in local region - 

7 (= y/a) localised Rayleigh-Ritz method 

cr direct stress 

average rotation of section initially normal to the 

neutral surface 

Reissner stress function 

shear stress 
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Subscripts: 

n, t 

r, t refer to relevant co-ordinate system 

X, Y, ' z 

o (e. g. M0, wo) - indicates value given by classical 

theory 

Constants: Various constants are employed as necessary and are 

given a temporary meaning which is defined locally. 

0 
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dx 
dy 

q. dx. dy 

I. 

1 
h2 

hY2 i 
i: y= 

_0. 

I--, 

Iz 

dz 

Conventions for stresses and stress resultants. 

ý' 
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CHAPTER 1 

IN 'LMDUGTIc1 AND HISTORICAL SURVEY 
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1.1 Introduction 

The assertions of classical small deflection theory of 

thin plates as presented, for exale, by Tirroshenko (1) are: 

(a) there is no deformation in the plane of the neutral 

surface of the plate 

(b) nonrals to the neutral surface remain straight and 

normal as the plate defozms 

(c) direct stresses transverse to the plate may be. neglected. 

The first of these holds providing that there are no 

external forces applied in the neutral plane, and that deflections 

are small so that there is no membrane action, while the second 

implies that the effects of transverse shear on the deflection of 

the plate may: be neglected. Thus an essentially three-dimensional 

elasticity problem is reduced to two dinersions since the transverse 

disrolac rent is 

W= f(x, Y) (1.1) 

i. e. independent of z, and stresses and stress resultants may be 

expressed in terms of wand its derivatives. 

A further problem is introduced, however, in that the 

resulting theory enables only two conditions to be satisfied at a 

boundary instead of three. Kirchoff's reduction of the three 

Poisson conditions for a free edge is the best knc n exarrple of this 

feature. 

Thus the two principal limitations of classical thin 

plate theory are the inconsistency in dealing with boundary conditions, 

and the failure to take into account the-deformation due to transverse 

shear. 
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For most engineering purposes the classical theory will be adequate, 

but its approach cannot be applied to plates of significant 

thickness without at least the second of these limitations being 

overran. 

In the past thirty years a great deal of work has been 

carried out in an attempt to iirprove. classical theory within the 

confines of the two-dimensional description of transverse displacement 

of equation (1.1), thus enabling useful results to be obtained 

without carrying out a fully three-din nsional analysis. The work 

of Reissner occupies a unique position amongst the literature of 

this period and will be regarded here as a standard for purposes 

of comparison. Reissner preserves the two-dimensional formulation 

of the problem by defining w, not as the transverse displacement 

of the neutral surface, but as a weighted average displacement 

through the depth of the plate, such that at any point the wirk done 

by the resultant transverse shear force acting through the average 

shear displacement is equal to the work of the corresponding shear 

stresses on the actual displacement. 

1.2 Survey of previous work 

This is not intended as an exhaustive survey, but singly 

to state the underlying assertions of Reissner's theory and hence 

establish its position in relation to other iniportant developimnts. 

1.2.1 Reissner 

Reissner first stated his theory in 1944, (2) and 

subsequently developed it and restated it in 1945 and 1947, (3) and 

(4). The starting point is the assertion of the following 



-14- 

distributions of stresses: 

crx 
12M 

h 

O' 
y 

12M 
= -3 Z (1.3) 

h 

Ty 1 2MXY 
=Z (1.4) 

h 

-t = 2. 
C1- (h-2] (1.5) 

3 
ýyz - 2h L1 

(hZ)2 
] 

(1.6) 

Q'z -4 
C3-2Z+3 (122)3] (1.7) 

For a hcarogeneous plate, the strain energy including that due to 

transverse shear and transverse direct stress is given by 

U= 2E 
JJf[2+ 

o, 
2 

+o2-2J (a-oy + cr a- + 6yo) 

+2(1+ J)(tXy2+ 
Xy2+ -r 

2)] dxdydz (1.8) 

which may be alternatively expressed in terry of the stress 

resultant as 
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u= 
2rf 1(Mx2+My2_2VMd4y+2(1+vj Mh 

l 
/ JJ 

[hJ 

\ 

+12(1+y) 
(2ý2) 

h/2 
6 z2 dz dx dy 

- . 
12Va (b +My) 

(1.9) 

To obtain the oclenntary energy the work done by the boundary 

stresses must be deducted, and'the resulting expression is then 

minimised subject to the usual plate equilibrium equations 

ä 4x + o`' 
_ -q (1.10) 

Y 

Qx = 
Tx 

+ bty (1.11) 

CY =' + 
il! Lxz (1.12) ay ox 

This minimisation is carried out by using the calculus of 

variations, the Lagrangian multipliers used being identified as 

the generalised displacements of a point, namely w, OX and 0y 

the average transverse displacement and average rotations. The 

precise form of these displacements will be discussed- later; it 

is sufficient to note here that the rotations will take account 

of the .. shear deformation and hence will not be the slope of the 

neutral plane, but the average rotaticn of a plane initially nornal 

to it. 

The resulting equilibrium equations and stress resultants 

are finally established in terms of w and a stress function, Jr. 
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This system of partial differential equations is sixth order overall, 

being of fourth order in w, and second order in thus requiring 

that three conditions be satisfied at each boundary. 

Frown equation (1.8) it can be seen that Feissner's 

theory includes the energy due to both transverse shear stress 

( -G xz, 'L yZ) and transverse direct stress ( ox). The only, 

limitation of the initial assertions is that linear distributions 

are attributed to the bending stresses o-,, Qy whereas in thick 

plates with the distortion of the cross-section due to, shear this 

will not be strictly accurate, as is demonstrated for example, by 

Tiiroshenko's analysis of beams (26) discussed in section 3.2.2. 

1.2.2 Application of Reissner's theory by other writers 

Annng the alternative statements of Reissner's theory 

and applications of it the mrore notable are listed in references 

(5) - (11). Where analytical solutions are obtained these are in 

series fcrrn, and thus suffer the limitations of Navier or Levy type 

solutions - mathematical carplexity and the fact that only simple 

geometric shapes can be treated. The need to satisfy three 

boundary equations adds considerably to the difficulties of 

obtaining solutions, and in some cases these are avoided altogether 

by considering infinite. or semi-infinite plates. None of these 

papers considers the problem of concentrated loading, although this 

could be presented in Fourier form. 

In Goodier's discussion of Reissner (3) a set of 

equations is derived which is almost identical with Feissner's. 

The only difference is a small discrepancy in score of the constants, 
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which is noted by Langhaar (12) and appears to arise frcan 

Reissner taking a weighted average displacement, while Goodier 

uses the neutral surface displacement. 

1.2.3 Other advanced theories 

1.2.3.1 Love (13) 

Love presented a theory for moderately thick plates in 

which the equations for bending and twisting mcerents allow for 

shear deformation. However, the equations for shear forces are 

identical with those of classical theory, and hence the 

governing equation is the usual biharmonic allowing only two 

boundary equations to be satisfied. 

1.2.3.2 hronm (14) and (15) 

Another approach in which initially arbitrary functions 

are assured for the distribution of bending and shear stress 

through the depth of the plate is due to Kram. Ti-oshenko (1) 

cat nts that this theory does, however, neglect the effects of 

transverse direct stress, arz. The final form of the equations 

shows a remarkably close reserblance to those of Feissner. 

1.2.3.3 Goldenveizer and Kolos, (16 - 18) 

These writers stn: marise the methods by which the three- 

dimensional stress equations have been reduced to a two 

dimensional form, and themselves perform this task by asymptotic 

integration. Again their results are very similar to those of 

Reissner. 

1.2.3.4 Ambartsimtjan, (19) 1 

Ambartswnyan has developed a general'theory for 

anisotropic plates which includes the effects of shear deformation` 
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but omits transverse direct stress, although this is included in 

a particular theory derived for one or two cases. It can 'easily 

be shown that the resulting equations are identical to those of 

Reissner when reduced to a form for homogeneous plates. The work 

is nest notable for the fact that it is developed in anisotropic 

form, and for the range of solutions presented explicitly. 

1.2.4 Experimental Investigations 

Experimental work on plates has been largely limited to 

the deteanination of stresses by photoelastic methods, and only 

two papers discuss the problems of the experimental verification 

of Feissner's theory. Carley and Laghaar (9) atterpted to confirm 

the predictions of Peissner's theory in respect of the distribution 

of shear stress, but their investigation was largely inconclusive 

due to lack of precision in the experimental botmdary conditions. 

Haberland (20) formulates the relationships between the bending 

manents as given by Reissner's theory and the photoelastic 

parameters. Both of these investigations concentrate on the 

distributions of stress and there is no record of attenpts to 

confirm the increase in deflection due to shear which is predicted, 

especially for thicker plates. 

1.2.5 Special methods used for the analysis of sandwich plates 

Sandwich plates represent a class of problems where the 

effects of shear defomation can be highly significant, and it is 

of interest to note here the methods of solution cam-only e loved. 

In the partial deflection method, discussed extensively 

by Plantema (21) and Allen (22), two partial deflections wb and ws 

are errployed. 
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Mtaent and shear stress resultants are expressed in terms of 

derivatives of these partial deflections, which are thus related 

through the equilibrium equations (1.11) and (1.12). The total 

deflection at any point is the sum of these two ccxtonents, which 

in beam preblems and certain plates problems can be regarded as 

the deflections due to bending and shear so that in these cases 

this approach amounts to a sitrple superposition of deflections 

due to these two effects. 

Libove and Batdorf (23) adopted a different approach by 

developing expressions for the curvatures and twist which contain 

the effects of both bending and twisting n ets and shear forces. 

Recent papers by William and Chapman (24) and Morley (25) have 

successfully applied the results to cellular problems, and the 

latter has found close agreement with scene published experimental 

results. 

1.3 Statement'of objectives 

The unique position of Reissner's theory is clear. - It 

represents the rrst ccaprehensive investigation of the problems 

of the inclusion of the effects of shear deformation, and indeed 

of transverse direct stress, on plate flexure. But, as can be 

seen from the preceding historical survey, largely as a result 

of the mathematical form of the Reissner equations, which involve 

the stätr nt of the problem in terms of both the deflection w 

and a stress function solutions have been obtained to only a 

limited range of problems. 
, vet-, "i _ .., 
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Even more scant are references to the application of numerical 

techniques to the problem, and any account of experimental 

verification of the theoretical predictions of deflection. 

The objectives of this work may, therefore, be 

summarised as, 

(a) to vaare and appraise existing iiproveznts to thin 

plate theory to include the effects of shear deformation 

(b) to develop a new theory as a modification of Reissner's 

theory which will be formulated in terms of a single 

variable, w, the transverse displacement. 

(c) to apply finite difference and finite element methods to 

the solution of a range of problems, and to assess the 

relative merits of the various approaches in terms of 

the applicability of these ntunerical techniques. 

(d) to test score of the results experinE_ntally. 

Although most of the work has been directed-towards plate 

problems, it was found that the relationship between the various 

approaches and the consequences of their respective assutions 

can be more readily demonstrated by applying them to a si ler 

class of problems, namely beams. Thus a chapter is devoted to beam 

problems, and these are discussed before the section dealing with 

square plates, although in strict chronological terns much of this 

latter section was carpleted first. An added advantage in the case 

of beams is that more existing solutions are available for 

purposes of caparison. 

The work is concerned with haTogeneous bearrs and plates, 

but the application to anisotropic, sandwich and cellular systens 

is briefly discussed. 
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4 

CHAP'T'ER 2 

SHEAR DEFORNATIM IN CI 1R PLATES. 
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2.1 Introduction 

Tirroshenko (1) , Love (13) and Ambartsurrgan (19) all give 

solutions to symetrically supported and loaded circular. plate 

problems in which the effects of shear deformation are included. 

Reissner did not apply his theory to this class of problem, but 

a theory is developed here, employing his assurptions, thus 

enabling theories so based to be assessed in relation to other 

approaches. 

There; are three particular advantages in first 

considering circular plates. 

(a) Because of syrrimtiy, three boundary conditions are 

autanatically, satisfied by all solutions, and thus in 

cavaring the theory with those already existing any 

disparity, at least for'singly supported plates, must 

derive from differences in the initial assumptions 

rather than the state nervt of boundary conditions. 

(b) It is found that there is no need to introduce Reissner's 

stress function, ', in this case and a solution is 

obtained in tees of transverse displace zt, w, only. 

(c) As has been noted in Section 1.2.1, Reissner's theory 

includes both the effects of shear and transverse direct 

stress. For these problems it is possible to quantify 

the influence of these effects separately, so that their 

relative importance can be assessed. 

After a brief discussion of existing solutions, the theory 

is applied to uniformly loaded circular plates with simply 
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supported and clamed boundaries. From the results obtained. the 

accuracy of theories based on Rei 
4er's 

assutions is assessed, 

and the influence of shear and transverse direct stress on the 

deflection and state of stress of the plate examined. 

In essence it is found that while Tinioshenko's method 

is the superposition of deflections due to bending, shear and.,, 

transverse direct stress, the utilisation of Reissner's approach 

involves a superposition of curvatures due to these three effects. 

For circular plates these approaches are identical in effect, and 

the differences which arise here are shown to result fron a 

different definition of shear stiffness. In the case of clan. ed 

boundaries the disparities are found to arise from differences in 

the assurrnd mode of action of this type of support. 

The results obtajned from the theory are identical with 

those of Ambartstmtyan, but differ slightly fmn Love's solution, 

due to the latter`s use of 'a more refined non-linear distribution 

of bending stress. 

..:, ý 



- 24 - 

2.2 Existing solutions for circular plates including the 

effects of shear defonnaticn 

2.2.1 Timoshenko (1) 

Timoshenko gives two simple corrections to be super- 

iosed on the classical solution, one for deformation due to 

shear, and the other for transverse direct stress. Assuming a 

parabolic distribution of shear stress through the depth of the 

plate the maximiin shear stress occurs at the neutral surface, 

and at radius r is given by 

_ trz max =2 (2.1) 

and the corresponding shear strain is 
dwl 

dr 4 (2.2) 

where wl is the additional deflection at the mid surface due to 

shear deformation. 

Integrating and setting wl =0 at r=a gives 

W1- 16D(1 - J) (a2 - r2) (2.3) 

For transverse direct stress the usual cubic distribution 

for uniform loading, is assumed, giving the following. values for 

transverse direct stress, a z, and radial strain Er: 

upper surface QZ = -q -Cr = 
Eq 

mid-surface QZ = -q/2 . fr = 

lower surface a-Z =0, Er =0 

The distribution of radial strain is approximated to a linear form, 

giving a curvature at the mid-surface of V q/. Noting that this 

positive curvature will produce negative (i. e. upward) deflection, 

the correction w2 to be applied to the nidplane deflection is 

found on integration to be 
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W2 - 
Jq 2h 

(2.4) 2 24D(1 - 
2) 

Tinoshenko argues that a clamped boundary would prevent 

in-plane radial strains which would eliminate w2, so that the 

deflection of a plate with such boundaries would be the spun of 

the normal classical expression, 

(a2 - r2)Z 

and the shear correction, w1 

i. e. W= (a2 - r2)2 + (loh 

2 

V) 
(a - r2) (2.5) 

64D - 

For a simply supported plate, however, these radial 

strains would be free to occur and hence corrections due to both 

shear and transverse direct stress have to be applied giv"ing 

__q_ (a2 - r2) (5 +V a2 _ r2 
2 

)+ (3 + V) (32 - r2) (2.6 ) 
64D 1+v 48D (1 - V2) 

2.2.2 lave (13) 

Love presents a theory for moderately thick plates . 

which includes the effects of both shear and transverse direct 

stress. In the case of circular plates a solution is presented 

which is not limited by the assertion of a linear distribution 

of radial or tangential strain. The resulting formulae for the 

deflection of the mid-surface of uniformly loaded plates are: 

(a) silly supported edges 

w= 6D(a2-r2)(55+ßa2-r2) + ah 
2 8+V+2(x2-r2) (2.7) 

160 1 -92 
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(b) clamped edges 

[(a2 
- r2)2 + -1- 

4' 
U- h2 (a2 - r2)] (2.8) w= 64D - 

2.2.3 Ambartsimiyan (19) 

Anbartstmlyan applies both his general and particular 

theories to circular plates,. so that solutions are available for 

uniform loading omitting and including the effects of transverse 

direct stress. 

(a) For a simply supported plate the deflection is defined 

by one of the two following functions. If the effects of 

transverse direct stress are included the deflection is 

w= (a2 - r2) (i a2 - r2) + gh2 (a2 - r2) (2.9) 
20D(l-v 2) 

and if these effects are omitted this expression is xrcdified to 

wa225+V2_ Qh2 (a - r2) (2.10) -64D (a -r)(1+V a r2) +20D (1-V) 

(b) For a plate with c1air ed edges the deflection is the sari 

whether'or not the effects of transverse direct stress are included 

and is given by 

?. 12 
w (a2 - r2)2+ 16D(1 -) . 

(a2 - r2) (2.11) 
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2.3 Developnt of a theory based on Peissner's assertions 

2.3.1 Basic assumptions 

Figure 2.1 

Diametral section of circular plate. 

In the classical theory of circular plates as given, 

for exanple, by Timoshenko (1) the principal curvatures of 

radial and tangential sections at radius r are defined as 

1_ (2.12) 

1_ Ll 
Rt r 

(2.13) 

where g is the rotation of a plane initially normal to the neutral 

plane. In classical theory this is equal to the neutral plane, 

slope, dw/dr, but when the effects of shear deformation are 

included a relative rotation between the neutral plane and the 

plane initially normal to it will occur. In keeping with 
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Reissner's work, 12(1 + Q)Qr/5Eh is adopted for the average value 

of this relative rotation through the depth of the plate due to 

shear force Qr. Thus the angle O in Figure 2.1 is the total 

average rotation of an initially vertical plane due to both 

bending and shear, and will- therefore be given by 

12 (1 + V) 4 (2.14) "dr 5Eh r 

in which, for a uniformly distributed load 

A_ SE 
2 (2.15) 

If the radial and tangential Lending =rents Mr and Mt 

are nor..; expressed in terms of the principal curvatures in the 

usual manner, then 

M= D( + r) (2.16) 

Mt =D (r + 
dro) 

(2.17) 

and by virtue of the new definition of 95 these expressions include 

the effects of shear deformation. 

These relationships are consistent with P issner's 

assumptions in respect of shear deformation, but no account has 

yet been taken of transverse direct stress. Inspection of 

Reissner's equations for bending rt nts indicates that the 

additional curvature caused by this stress is 6V (1 + V)q/5Eh 

and including this term would modify equations (2.16) and (2.17) 

to 

MD(++1') ýLO q) (2.18) 

M=D 
(r 

+Vä +6 VU v) 
q (2.19) 
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In-the following two sections solutions will be developed for 

uniformly loaded circular plates with clamped and simply 

supported boundaries, firstly including the effects of shear 

deformation and secondly transverse direct stress in addition. 

In each case the usual form of the equilibrium equation will 

apply, namely 
dm 

Mr+ r- Mt+Qr=O (2.20) 

and it only remains to substitute the appropriate expressions for 

M. and Mt and to satisfy the relevant boundary conditions. 

2.3.2 Deflection of circular plates including the effects of 

shear deformation. 

Substituting for Mr and Mt from (2.16) and (2.17) in 

(2.20) leads to the classical form of the equilibrium equation 

dr 
(1: 
r 

dr (r 0 )1 ;- 4/D (2.21) 

but with 0 now defined 
/by 

equation (2.14). 

2.3.2.1 C1aed boundary 

Ata clamped boundary it will be asses that the average 

rotation of an initially vertical plane is zero, although such a 

plane will clearly be distorted by shear stresses and hence this 

condition is only satisfied on average rather than that the radial 

displacement at every point on the boundary is zero, (See figure 

2.2(a)). It is worth noting that if the mid-plane slope, '-, , is 

set equal to zero at the boundary, then the deflection function 

which results is the normal classical expression. The physical 

explanation of this is that in order to produce the latter boundary 

condition, the initially vertical boundary surface plane would' have 
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to be rotated outwards through an angle equal to the average 

N. A. 

Figure 2.2 (a) Figure 2.2 (b) 

Clanged boundary Type 1: 0=0 Clamped boundary Type 2: =0 

Mid-plane slope 36 0, average 'Outward' rotation of initially 

shear strain permitted. vertical section necessary to 

eliminate average shear strain. 

shear strain at the boundary as shown in Figure 2.2 (b). This is 

tantamount to giving a vertically upwards displacement to the 

interior of the plate which in this case of uniform loading is 

equal at all points to the downwards displacement which would be 

caused by shear deformation. 

Substituting for Q fram (2.15) integrating twice and 

satisfying =0 at r=0 and r=a gives 

32 

6D +1D (2.22) 

Hence, noting (2.14) 
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dw 
= fir - ga2r - gh2r (2.23) 

3 

dr 16D 16D 10D(1 - J) 

Integrating and satisfying w= 0'at r=a the final form of the 

displacement function is 

w= 64D (a2 -r2)2+2 20D(1 - V), (a2 - r2) (2.24) 

where the first terns is the normal classical expression and the 

second the additional deflection due to shear. 

Since the expressions for 0, Mr and Mt given in 

equations (2.22), (2.16) and (2.17) are the same as in classical 

theory the distributions of radial and tangential r. nt 

throughout the plate are given by the usual classical expressions. 

2.3.2.2 Simply supported boundary 

Integrating the equilibritun equation (2.21) twice and 

satisfying the conditions =0 at r=0, and Mr as given by 

equation (2.16) equals zero at r=a gives 

cTr3 + ga2r (3 +J) 
16D 16D (1 + V) 

(2'25) 

which is identical in form to classical theory, but 0 is now given 

by equation (2.14). Substituting this expression for 0, 

integrating and satisfying the boundary condition w=0 at r=a 

leads to 

225 +V 2'2* qh2 (a2 - r2 ) w= Z4D (a -r)(1+Ja -r)+ 20D(1-V) (2.26) 

Again the second term in this expression can be identifiedas the 

additional deflection due to shear deformation. As would be 

expected this is identical to the additional deflection in the 

clamped plate, since the distribution of shear is the safte in both 

Cases. 
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For the same reasons as given for the clamped plate, the 

distribution of radial and tangential nmmnt will be unaffected by 

shear and identical to. the expressions given by classical theory. 

2.3.3 Deflection of a circular plate including the effects of 

shear deformation and transverse direct stress 

Substituting the expressions for Mr and Mt fran equations 

(2.18) and (2.19) in the equilibrium equation (2.20) gives 
2 

dr 
(. 

r dr (r0)) 
D 1OD(1 - V) dir 

(2.27) 

but with uniform loading =0 and this becanes identical with 

(2.21). 

2.3.3.1 Clamped boundary 

In this case the deflection is the sane as that given by 

equation (2.13) of section 2.2.2.1 for the case with transverse 

direct stress omitted. Tl1e equations giving the distribution of 

matents will be slightly modified on account of the further 

curvature caused by transverse direct stress, becoming 

r 
(a2 

_ (1 + J) 16 
\ 

- r2 (3 +)J + 1O (2.28) 

Mt =1 -SL 
(a2(1 

+ J) - r2(1 + 3J) 
2 

+ 1O( 
(2.29) 

2.3.3.2 Singly supported boundary 

Integrating the equilibritun equation (2.21) twice and 

satisfying the conditions 0=0 at r=0 and N. as given by 

equation (2.18) equals zero at r=a results in the following 

1r3 + qa (1 
+ J) 

Vgh2r 
2 (2.30) 

10D(1- 
. 
V) 

Substituting in-(2.14), integrating and satisfying the boundary 

condition w=0 at r=a gives the deflection function as 
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2 5+ 22 gh2(a - r2) 
w -ý- (a - r) (a- r) + (2.31) 

64D 1+ 20D(1 - V2 

The distribution of radial and tangential ant 

throughout the plate can then be found by substituting for g5 fran 

(2.30) in equations (2.18) and (2.19) giving the usual classical 

values. 



- 34 - 

2.4 Stirnazy of theoretical results 

2.4.1 Circular plate with simply supported edges 

The fo=lae for the central deflection of uniformly 

loaded circular plates with simply supported edges are summarised 

in Table 2.1, and the relationships coared graphically in 

Figures 2.2 to--: 2.6 

Theory Central deflection 

Clässical. Qa4 (5 + Jj 
64D 1+V 

Timoshenko with shear a4 5+V 4(3 + V) h2 6D (1+V)(1 +3(1-V)(5+V) a2 
correction. 

Ambartsimlyan and present qa4 5+ J) (1 + 
16'(1 + \) h2 

64D 1+V 5(1-))(5+V) 
a2 theory (ignoring the 

effects of ab). 

Ambartsurnyan and present aa4 
64 (5 + J) (1 

+ 16 h2 
2 D 1+V 5(1 - J)(5 + V) 

theory (including the a 

effects of Q=Z) - 
Love a4 

6ý4 
5+J )(1 (1 2(8 +V +V2) + 

h2 0 
D +V 5(1-J)(5+V) 2 

a 

Table 2.1 

Central deflection of simply supported circular plates. 

2.4.2 Circular plate with clanged edges 

The formulae for central deflection of uniformly loaded 

circular plates with clamped edges are summarised in Table 2.2, 

and the relationships conpared graphically in Figures 2.7 - 2.10. 
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I 

Theory Central deflection 

Classical 4 

64D 

Tinnshenko with shear 4 2 
64D +4V a2) 

correction 

Ambartstmiyan and Love 4 2 16 a2 C1+3 l - Present theory 
) ( 

Table 2.2 

Central deflection of clanged circular plates. 

2.4.3 Bending mcenent 

There is only one case in which bending mr. ents different 

fr m those of classical theory are predicted and that is for 

clamed plates when the effects of transverse direct stress are 

included. From equations (2.28) and (2.29) it can be seen that 

the classical values obtain when V=0, but that a difference 

develops which increases with Poisson's ratio. Values of the 

radial tents at the centre and at the boundary expressed as 

ratios of the classical values are given in Table 2.3 for V=0.3 

and a range of values of the ratio of depth to radius, h/a. 
r 
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h/a Moat centre 
ki 

at boundary 

0.0 1.000 1.000 

0.1 1.005 0.997 

0.2 1.021 0.986 

0.3 1.047 0.969 

0.4 1.084 0.945 

0.5 1.132 0.914 

0.6 1.190 0.876 

0.7 1.258 0.832 

Table 2.3 

Radial nrst at the centre and boundary of a clarrped 

circular plate subjected to uniform loading expressed 

as a ratio of the classical values. (V = 0.3). 

Figure 2.11 illustrates the manner in which the radial 

bending* nxrrent is altered along a radius for a typical case in 

which Poisson's ratio is 0.3 and the depth/radius ratio 0.6. 

r' ' 
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f. 4 
1 Yw, 

1.3 
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1.1 

10 4 
0 

Love, Arbbartstu; iyan and 
theory based on 
Reissner's assucrPtions / 

----- Timoshenko 

1 7 Z 

. 0001, 

vI uz 0.3 0.4 0.5 

Figure 2.3 

Central deflection ratio. 

Simply supported circular plate carrying 

uniformly distributed load (V= 0) 

0.6 
-{ 

h'a 
0.7 

1. 
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Figure 2.4 

Central deflection ratio. 

Simply supported circular plate carrying 

uniformly distributed load (V=0.1) 

Love / 

/ 
Timoshenko 

/ 
Ambarts yan and theory / 
based on Reissner's / 
sass irptions ( matted) 

Z 

--- Arbartst yan and theory 
based on Reissner's 

00 ass tiaras (o included) 
op 11 

/ 

l op 

hl 
C, 
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Figure 2.5 

Central deflection ratio 

Silly supported circular plate carrying 

unifoi ly distributed load (V = 0.2) 

Love 

Timoshenko 
-- -- 

Ar^bartstunyan and theory 
- -' based on Peissner's 

assertions (c r- 

-- Ambartsunyan and theory 
based on Reissner's 
assurnptions (o included) 

V 

000, 
01, 

00, 

v. 0 -4 P/a 
0.7' 
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Wj 
Wo 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

--ý 1.0 1 
0 0.1 0.2 0.3 0.4 0.5 

Figure 2.6 

Central deflection ratio 

Sirply supported circular plate carrying 

uniforrnly distributed load (V = 0.3) 

Love 

Timoshenko 

_ 
Ambartsurnyan and theory 
based on Reissner's 
assurpticns (c omitted) 

-- Ambartsuriyan and theory 
based on Reissner's / 
assertions (Z included) 

0.6 0.7 
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W/W 

3.0 T 

2.5 

2.0 

1.5 

1.0_}. 
0 

Tirmshenko, 
Arbartstmyan and Dave 

----- Theory based on 
Reissner's assui tions 

100, 

00. 

10, ý; ooo- 

u. I u. d v. 3 0.4 0.5 

Figure 2.7 

Central deflection ratio. 

Claxrped circular plate carrying 

tmifozmly distributed load (v = 0) 

1'4 
hip 

0.6 0.7 
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W 

3.0 _/W° 
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2.0 
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1-04 
0 0.1 0.2 0.3 0.4 0.5 

Figure 2.8 

Central deflection ratio. 

Clamped circular plate carrying 

uniformly distributed load (v = 0.1) 

Tirroshenko, 
Ambarts yan and Lave 

--- -- - 
Theozy based on 
Reissner's assurnptions 

. Ole 

i 

0.6 
hl 

0.7 
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3.5 
WI 
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3.0 

2.5 

2.0 

1.5 

1.0 . ß. 
0 

Tirashenko, 
Ambartsu: tyan and Love 
Theory based on 

--- Reissner's assutions 

GL1 0.2 0.3 0.4 0.5 

Figure 2.9 

Central deflection ratio. 

Clamed circular plate carrying 

tmifozmly distributed load (V = 0.2) 

1ý 
hia 

0.6 0.7 
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Timoshenko, 
Ambartsurryan and Love 
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Figure 2.10 

Central deflection ratio. 

Clad circular plate carrying 

uniformly distributed-load (V = 0.3) 

0.6 

h'a 

0.7 

4' 
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Figure 2.11 

Modification, to distribution of 

Radial bending rent due to the effects of crZ 

(h/a-0.6, V=0,3) 

- ri 0a 



- 46 - 

A- 

2.5 Discussion 

2.5.1 S ly supported boundaries 

Considering Figures 2.2 - 2.5 and Table 2.1, and 

taking Love's solution as the standard for purposes of amparison 

two general characteristics may be observed: 

(a) Tin shenko's corrections consistently lead to an 

overestimate of deflection. 

(b) the other theories give identical results when J=0 

and diverge to an increasing extent from Love's 

solution as Poisson's ratio increases. 

The first of these features arises because in irking the 

shear correction Tim shenko has taken the neutral plane shear 

strain and evaluated an additional deflection based on this. 

Choice of a maxirrnn rather than an average value through the 

depth of the plate leads to an overestimate of the deflection. 

As far as the second characteristic is; concerned, 

those solutions which alit the effects of cs2 lead to an 

overestimate of the deflection, which is to be expected since 

the resulting curvature and related negative deflection have 

been ignored. The results obtained from using Reissner's 

assptions and Pzbartsimlyan's solution in which crZ tenets have 

been included lead to a very small underestimate of the deflection 

predicted by Love,. and the difference in this case would be due 

to the latter's allowance of greater refinement in the non-linear 

distributions of v-r, 0t and -ý:. t with depth. 
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r 

The extent of the differences in the results of the various 

theories is surrtnarised in Table 2.4 for a thickness ratio, h/a, of 

0.6 and v) = 0.3. 

Theory Difference in central 

deflection compared 

with Love 

Timoshenko + 7.8% 

Present theory and 

Ambartsumyan 

(a) transverse direct 

stress canitted + 5.5% 

(b) transverse direct 

stress included - 1.3% 

Table '2.4 

Ccararison of theoretical results for central 

deflection. Simply supported circular plate 

carrying uniform loading h/a = 0.6, V=0.3. 

2.5.2 Clapped boundaries 

Turning now to the clamped plates, for which the results 

are summarised in Table 2.2 and Figures 2.7 - 2.10, for this type 

of boundary the results of Love, Tinoshenko and Ambartsumyan are 

identical while the new work based on Reissner's assurtions predicts 

a smaller value of deflection. When h/a = 0.6 and .=0.3 the 

central deflection is about 13% less. This disparity is accounted 

for by a differs ce in the condition of cla11 ing which is illustrated 

in Figure 2.12. 
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Figure 2.12(a) Figure 2.12(b) 
au 

=0 at the neutral surface average rotation =0 äZ 

lave defines the effect of the clamp as restraining a, 

tangent initially notmal to the neutral surface at the boundary in 

its original position, so that restraint is applied only at the 

neutral surface and not throughout the depth of the plate. 

Distortion due to shear then results in a net rotation at the Clapp 

as illustrated in Figure 2.12(a), causing additional deflections 

throughout the plate. In this present work the clamp has been assumed 

to cause the average rotation to be zero. This situation is 

illustrated in Figure 2.12(b), and clearly results in a greater degree 

of restraint at the boundary and hence smaller deflections elsewhere. 

The fact that Tirnshenko's correction leads to a solution 

in exact agreeeent with that of Love is consistent with this 

explanation in that a neutral surface slope equal to the maximum shear 

strain will be permitted by the support. °ý: 
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The precise action of a practical support is r, 7ore likely to 

produce restraint of the type =0 than the local neutral surface 

'restraint assumed by Love, although neither model may be a perfect 

representation of the real situation. 

2.5.3 Effect of shear deformation and transverse direct stress 

on stress resultants. 

It is found that no changes in the classical distribution of 

bending n of result from the inclusion of the effects of shear alone 

for either simple or`clanped supports. Transverse direct stress also 

has no effect on bending n ets in the simply supported case, since 

the resulting curvature can develop without generating in-plane 

stresses. The clamped boundary; however, prevents radial straining 

frown transverse direct stress, but in doing so generates an additional 

system of in-plane stresses vhich for large valües'of Poisson's ratio 

and depth/radius ratio can significantly change the distribution of 

bending went. 

In these syrtretric cases the shear force at any point is 

determined by equilibrium considerations alone, and will therefore 

remain unchanged by either of these effects. 



- So- 

2.6 Conclusions 

The purpose of this chapter has been to develop a theory for 

circular plates which has as its basis the same assumptions as 

Reissner used, and to compare the results with those obtained by 

other nxans. For plates with clamped boundaries same differences 

arose fran the differing action assumed for the support, but these 

difficulties do not arise with simple supports, and therefore a-true 

ccanparison can be made in this case. 

First, considering the differing nature of the approaches, 

Tinoshenko uses superposition of three c mponents of deflection due 

to bending, shear and transverse direct stress, while use of 

Reissner's approach involves expressing the bending rcrents"in teIT 

of a superposition of curvatures due to these effects. 

In principle these two approaches are the same in this case, 

differences arising because of the approximate manner in which 

Tizrbshenko evaluates his corrections. As far as shear is concerned, 

by taking the mid-plane shear strain instead of an average value 

through the depth of the plate calculated in the manner of Reissner, 

Timoshenko calculated a correction in deflection due to shear which 

is 25% greater than that which is obtained in this present work. 

In dealing with transverse direct stress by approximating 

the actual distribution of strain to a linear form)Timoshenko 

calculates the curvature produced as Vq/Eh. On the other hand 

peissner uses the usual cubic distribution with depth in the energy 

function and the resulting curvature produced is found to be 

6V(l + V) q/5Eh, - and this again leads to a difference in final values 

of deflection. 
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Love's solution canes from a stress function approach and 

thus is not limited by an initial assuir tion of a linear distribution 

of bending stress, but it has been shown that the disparity is very 

small for even quite large values of depth/span ratio. 

Thus the present approach is found to be simple to apply 

to synrr trically loaded and supported circular plates, and to give 

excellent results for the modification in deflection due to shear 

and transverse direct stress. It is found that there is no change 

in the distribution of moment and shear stress resultants for' 

simply supported plates, but that for clamped plates transverse 

direct stress causes a minor modification to the distribution of 

bending mcmnt when Poisson's ratio is non-zero. 



-"52 - 

CHAPTER 3 

SHEAR DEFOI TION IN BEAMS. 

f 

.- . r: weg; .. 
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3.1 Introduction 

In this chapter all the methods which will be used later 

for square plates are applied to beams. The reasons for so doing 

are : 

(a) There are existing solutions in a number of cases with 

which the results can be mod. 

(b) Solutions can be derived analytically, without the need 

to resort to numerical methods. Hence the differences 

in the results obtained from the various theories can be 

genuinely attributed to differences in the assertions 

made or the general approach, rather than possibly being 

introduced by the numerical technique. 

(c) Numerical methods can then be employed and any associated 

prcbler. ýs investigated. 

(d) Lstperimental tests can be used to illustrate the validity 

of the theoretical results, without the difficulties 

associated with plate tests of physically reproducing the 

theoretical boundary conditions. 

After the opening discussion of existing solutions three 

theories are developed for beams which take into account the effects 

of shear deformation, and in two cases transverse direct stress also. 

The first is based on the partial deflection method while the others 

are based on Reissner's assumptions, in one case following his 

theoretical development for plates and in the other introducing a 

modification which produces a final solution of specified order of 

accuracy. Each of these three approaches is applied in turn to a range 

of beam problems, the results oa ared and an assessment of than made. 
It I el 
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Finite difference and localised Rayleigh Ritz techniques 

are then used, and the results campared with those obtained 

analytically. 

Finally a series of experimental tests was conducted for 

one support and loading condition, and excellent agreement found 

with the deflection predicted by the various theories. 

0 

-1" P 

r 
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3.2 Exisitng solutions 

3.2.1 Singly supported beam carrying a uniformly distributed load 

The solution to this case is also given by Timoshenko and 

Goodier (26), and this is examined first in spane detail as it is 

probably the mrost refined consideration of this type of problem 

available. 

The general arrangement and dimensions are shcwn in Figure 

3.1. 

4 

X, U 

h/2 
iý- 1 12 1 /2 ----'1 

1Z, 
w 

Figure 3.1 

Sirply supported beam carrying uniformly distributed load. 

The stress boundary conditions to be satisfied are: 

upper face Z=-2; -cry = 0, 
. 4'z = -q 

lower face Z=+2 zy = 0,6 =O 

h 

ends X=2%2t Xzdz =+ (end shear) 2 
h 
2 

h 
2 

6 dz =0 (no net longitudinal 

h force) 
2 
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h 

J oXz. dz 0 (no end m ent) 
h 
2 

By superposition of stress distributions to satisfy these 

conditions, expressions for stresses (o-, a, T. ) and displacements 

(u, w) at any point in the bean are found. 

For longitudinal stress, the equation is 

222 
_q ! 1_ (4 Z3 1hZ 
21 

which in addition to the linear distribution asstnned in elementary 

theory represented by the first term in this equation, contains a 

cubic term. 

From the expression for vertical displacenent, w, the 

central deflection, defined as the vertical displacenent of the 

point (0,0) relative to the points (± -, 0) is found to be 

'4 2 
6 

384 EI 
C1+1512 

(5+2)) (3.2) 

cared with the normal classical expression, 5g14/384EI. 

The usual parabolic distribution of shear stress, zxz, 

is obtained and the transverse direct stress, c z, 
is found to be 

distributed with depth according to a cubic law, From the equation 

(3.1) and (3.2) the influence of the other effects can be seen. 

Detailed examination of Tirmshenko's equations sheds light 

on some in Dortant issues, on the basis of which an assessnnt of the 

assti. ons made by other theories can be made later. 

_ýýý 
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(i) The non-linearity of longitudinal stress. 

Considering (3.1), it can be seen that on the centre line 

oX is given by 

q82 
I+ 

(3 Z3 
2 

lz (3.3) 

If v- ( 8'1 
) is the corresponding value given by elementary 

theory, then the deviation fron linearity is: 

(7x 6xo 
=43 

z2 2 h2(3.4) 
6 xo 10F) 

2 
The departure from the classical linear distribution is + 

4h 

15 0 at 
O'X 

z=- 
Zý- Values of the ratio for a range of values of 

h xo 
I are given in Table 3.1. 

h/` 
x 

at Zh 

0 1.0 

0.1 1.003 

0.2 1.011 

0.3 1.024 

0.4 1.043 

0.5 1.067 

Table 3.1 

Deviation from linear of löngitudinal stress on the centre- 

line of a silly supported beam of rectangular section 

carrying a uniformly distributed load. 

A sketch of the distribution of stress for h1 
= 0.3 is 

shown in Figure 3.2. The greatest departures fron linearity in this 

case are +2.4% and -4.9%. 
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+2.4%-ý 

i 

Figure 3.2 

Stress 

distributions 

----- Linear 

Timoshenko 

Distribution of c r. for h/L 
-=0.3. 

(ii) The non-linearity of longitudinal strain. 

Timoshenko and Gbodier give an expression for u, the 

displacement in the x-direction at any point in the beam. From this 

the longitudinal strain can be calculated as e 
au 

x=d -X 

On the centre-line of the beam Ex is given by 

e_ -c -l 
L2Z 

+ (2 Z3 -1 h2Z) + (1Z3 - 
2Z 

+1 
3) (3.5) 

x 2EI \43 10 34 12 

The first of these terms gives the linear strain distribution of 

elementary theory, and the second the modification due to shear 

deformation. The third teen is a further modification due to the 

inclusion of transverse direct stress o--,, and if V*0 this term 

will cause differences in the value of ex at the upper and lower faces, 

and cause ex to be non-zero on the centroidal axis. Observing the 

magnitude of the modifications made to elementary theory the correction 

for shear is seen to be of order h2, and the correction due to transverse. 

direct stress of order Vh 2 
. 

za-0.39 h 

z=- 0,22h 
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Evaluation of the difference between the value of Ex given by this 

theory and that of elementary theory (e) gives 

6-_ 
3Z3 

- 
1O h2Z +V (3Z3 - 

2Z 
+ -112-}l3) 

E 4ý2Z (3.6) 

The departure from linearity at the lower face is 

Ex- Ex. 
__"4 

h2 
EXO 15 L2 

(3.7) 

and at the per face is 

Ex 6XO h2 4 4V) 
E3 (3.8) 

L2 15 

The values of the ratio x/ý for a range of values of 
h/ 

and J 
xo 

are given in Table 3.2. 

h /L 

E ex 
at z= h Ex/E at Z=- /2 

+h 
2 V=0 V=0.1 V=0.2 J=0.3 J=0.4 

0 1.0 1.0 1.0 1.0 1.0 1.0 

0.1 1.003 1.003 1.001 1.0 0.999 0.997 

0.2 1.011 1.011 1.005 1.0 0.995 0.989 

0.3 1.024 1.024 1.012 1.0 0.988 0.976 

0.4 1.043 1.043 1.021 1.0 0.979 0.957 

0.5 1.067 1.067 1.034 1.0 0.966 0.933 

Table 3.2 

Deviation from linear of longitudinal strain on the centre-line 

of a simply supported beam of rectantular section carrying a 

unifonnly distributed load. 

On the centroidal axis, the longitudinal strain at mid-sFan, 

. Vqh is 24 I 
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(iii) Variation of vertical displacement through the depth of the 

beam. 

From Titroshenko and Goodier's equations for the vertical 

displacement at any point in the beam, it can be shown that on the 

centre-line of-the beam the variation displacement w with depth is 

defined by the following ratios: 

vertical displacement of lower face 
vertical displacement of mid-plane 

3 rH4 2h2 
_ 

2h4 
-LT Wz=tie 5\+ V( 

L2T 15 LWO 

1+12h2 (5+2) 
5 L2 . 

vertical displacement of upper face 
vertical displacenent of mid-plane 

13 h4 2h 24 2h 
W 12(4 + 2 15C4 

= 1+ (3.10) Wz -0 
1+ 52 h2 (5 + 

2) 

Table 3.3 shows the values of these ratios for a range of values 

of the ratio 
h/L for V ='O and J=0.4. 

,. 
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J=o J= 0.4 
h, 

wz-V, 
1/WZ=o 

WZs-iah/w 
, 

WZ 
. b/2/z 

O s 

wZ. 
-h! 2. 

o s 

0 1.0 1.0 1.0 1.0 

0.1 1.000 1.000 0.995 1.009 

0.2 0.999 1.001 0.980 1.036 

0.3 0.996 1.007 0.964 1.065 

0.4 0.988 1.020 0.944 1.100 

0.5 0.975 1.042 0.924 1.137 

Table 3.3 

Values of 
lower face deflection 

and upper face deflection 
on the 

mid-plane deflection mid-plane deflection 

centre-line of a simply supported beam carrying a unifozmly 

distributed load. 

(iv) Pint-curvature relationship. 

Timoshenko and Goodier show that at the mid-point of the 

beam the curvature is 

2_ 
ý2 

2 L2 4+2 

ax 
)) (3.11) a2= 

8EI 
(1 

+iJ 

The bending Ir nt at this point is qC2/8 and is therefore not 

proportional to curvature when the effects of shear are included. 

(v) State of stress at the ends of the beam. h/2 

The boundary equation at the ends of the beam isf 6 ZdZ = 0, 
"h/2 

(i. e. M= 0) not X=0, and hence there will be a residual 

longitudinal stress at x=± L/2. This is 

6xXý 
t 

. 
ýZ =- i3Z3 - 

. i2Z) (3.12) 
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which, from equation (3.1) can be seen to be the departure fran 

the linearity of elementary theory. 

Parabolic distributions of shear stress -cxz at the ends 

provide the supporting forces, in contrast to the simple support 

reactions. 

3.2.1 Cantilever with end load. 

Timoshenko and Goodier (26) also give a two dimensional 

elastic-analysis of the end-loaded cantilever problem, and as this 

gives an opportunity to consider the conditions at a fixed support 

this is examined here. 

width of cantilever =1 
iL 

X, u 

P 

z, w Figure 3.3 

Cantilever under end load, P. 

The solution is obtained by the superposition of various 

stre ss distributions in order to achieve the following boundary 

stress conditions: 

(i) upper and lower faces free fran load and shear, stress 

(ii) a parabolic distribution of shear stress, cc`, at x=0, 

the point-of load application 

(iii) a linear distribution of longitudinal stress through the 

depth of the beam. 
., 4 
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Equations for displaces meu and w are then derived for 

the appropriate displacem nt boundary conditions at the sport at 

point A on the axis of the beam (x = I., z= 0), which are: 

(i) u=0 

(ii) w0 
äX=0oräZ 

=0 

This third condition represents a choice between either 

the tangent or the normal to the neutral surface of the bean remaining. 

fixed, while relative rotation of the other is pennitted. If the 

first of these (öw/bx = 0) is chosen, it transpires that the vertical 

deflection of the tip is Pt3/3EI, which is the usual classical 

" expression. Thus, in requiring a tangent to the neutral surface at 

A to remain fixed, the beam has to be given a clockwise rigid body 

rotation about A, eliminating the additional deflection due to'shear 

deforiration, which is proportional to the distance from A. 

If the second possibility (Bu /bz = 0) is chosen, then by 

contrast a tangent to the neutral surface at A is free to rotate in 

an anticlockwise direction, and the tip deflection is found to be 

w= 
Pý3 h2 

(3.13) 4 2) 
(1+3a 

L 
'There is an important difficulty associated with this solution 

resulting fran the assurred state of deformation at the support, which 

is illustrated in Figure 3.4 and is clearly different fron that which 

would actually occur at a practical support. 
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A-- 3P/2l 

NA. 
--- --- --- -ý 

Figure 3.4 

The essential features are: 

(a) the normal to the initial position of the neutral 

surface at A remaining vertical 

(b) the tangent to the neutral surface at A rotating 

through an angle of 3P/2C2ß 

But, in addition, there is a distortion in which longitudinal 

displacements occur at points acaay from the neutral axis, which would 

not occur physically at a fixed support. 

As a consequence of this distortion being permitted, the 

additional vertical deflection due to shear takes the form of that 

resulting from a rigid body rotation about A, equal in magnitude to 

the neutral surface shear strain. Since the effect of shear on the 

overall deflection of the cantilever is therefore evaluated on the 

basis of the greatest shear strain, any theory which takes account of 

the actual distribution of-shear strain through the depth of the beam 

would be expected to predict a smaller increase in deflection. 
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3.2.3 Simply supported began carrying a central point load 

This problem has received less attention than the two 

previously discussed, presumably because of the difficulties 

associated with the stress distribution due to the concentrated 

load. 

Three approaches are available: 

(i) Correcting the mid-plane slope to allow for shear 

deformation. Timoshenko adopts this approach (27), 

but also points out its limitations in another place 

(26). The maximum shear strain is calculated at the 

neutral axis, and used to. detemine the increase in 

curvature and hence in deflection. In effect, this 

attributes the maximum shear strain to the entire depth 

of the section,. and consequently results in a 

considerable over-estimate of deflection. 

The central deflection calculated on this basis would be 

32 
b 

48EI 
(1 

+ 3(1 + J) h2 (3.14) 
L) 

(ii) The use of strain energy considerations, assuming linear 

bending and parabolic shear stress distribution, and 

ignoring stress concentrations in the region of the 

T 
h 

-P 49- 

Figure 3.5 

load (e. g. Sechler (28)). 

D 
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In this method the strain energy is taken as 

_U 

fff (Cx Ex +- tixz Yxz) dx dy dz (3.15) 

.ýL f 
N2dx +5 

fQ2dX 
(3.16) 

00 

Taking the usual longitudinal distribution of shear force 

and bending nn nt gives finally 

23 
U= 96EI + 

(1EI J) P2[, h2 (3.17) 

The deflection under the load is äP 
whence the central 

deflection is 

s- PL3 1+ 12 (1 +'') h2 (3.18) 
48EI 

C52 

(iii) Seewald's work on this problem, which is fully discussed 

by Timoshenko and Goodier (26), considers in detail the 

local distributions of stress in the region of the load. 

Fran these an additional local curvature is evaluated and 

the corresponding correction to the deflection of the beam 

calculated. It is found that the deflected form of the 

beam then contains a discontinuity, of slope at the load, 

and hence a small second correction is subtracted which 

rermves this sharp change of slope. For the case under 

consideration here the central deflection would be 

323 
S =48EI 

C1+ 
(52+ 2ý) h2_0.84h (3.19) 

L L3 

3.2.4 Stutmary and Conclusions 

Existing solutions to three beam problems have been 

studied in the foregoing sections, and it is now possible to 
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assess the inportance of certain factors in developing other 

theories. 

There are two issues of sane in-portance concerning 

the state of defonration within the beam: 

(a) When the effects of shear defoanation are included an 

initially plane section will warp, and the distribution 

of bending stress with depth will no longer be linear 

as assumed in si to classical bending theory. 

(b) If the effects of transverse direct stress are also 

considered, then a variation in vertical displacement 

through the depth of the beam is introduced, and, unless 

Poisson's ratio is zero, a further modification made to 

the distribution of longitudinal strain. 

Now it is innloortant to establish whether in future work 

these two modifications to the deformed state of the beam need be 

defined in this precise runner, or whether the effects frcun which 

they result can be taken into account in principle in some average 

way without considering the detailed changes in the distributions 

of stress and strain irplicit in Tlnoshenko's treatment of the 

uniformly loaded bears discussed'in Section 3.2.1. 

As far as non-linearity in the distribution with depth 

of longitudinal stress is concerned, the variation fron a 

statically equivalent linear distribution has been shuun in Table 

3.1 and Figure3.2 to amount to only a 'few percent for even quite 

large values of depth ratio h/L. It seeins unlikely that this would 

have a very significant effect on the overall deflection of the 

beam, and an equivalent linear distribution would probably give 

good results for deflection, while for stress the difference 

between actual and assured values can be estimated from -Tirroshenko's 
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results . 

The variation in displacement through the depth of the 

beam was described in Table 3.3. It is necessary to assess here 

whether these variations can be neglected, and the displacement 

represented by either the value at the mid-plane or an 

appropriate average value, without serious error. The error 

introduced increases with depth/span ratio and Poisson's ratio, 

and is always greatest at the upper face. Taking a typical 

value of h/l. of 0.3, the error at the upper face is 0.7% for 

V=0 and 6.5% for V=O. C. so that Poisson's ratio is seen to 

have a significant influence. There may therefore be a case for 

giving special consideration to a situation involving large 

values of both h/ L and v,, but otherwise the mid-plane or an 

average deflection will be adequate. This consideration could 

consist simply of applying a correction to the mid-plane or 

average deflection to obtain the deflection of the upper or lower 

face, based on-the results derived fran Timoshenko's analysis. 

Considering next the state of stress and deformation 

at the ends of the beams, the following points are important: 

(a) The action of si to supports has been assumed to prevent 

vertical displacement of the mid-plane and to supply the 

end reaction as a parabolic distribution of shear stress. 

(b) The end of a singly supported beam is not free fran 

longitudinal stress, as is shown'by equation 3.1, but 

only the rr rent stress resultant is zero. 

(c) Clamed boundaries present a serious problem of 

representing accurately in theory the true physical 

action of a fixed support. 
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No improvement in the theoretical description of a 

single support can really be made, but it is unlikely that 

these very local differences will have any significant effect 

on the overall deflection or on the state of stress away from 

the support. The exception to this will be the deflection due 

to local deformation at a real support consisting of a 

concentrated vertical reaction rather than an end shear, and 

this is mire conveniently investigated experimentally than 

theoretically. 

The possible models of a clanked boundary discussed 

represent two extrextes, and it is likely that if the warping due 

to shear is replaced by an average rotation of a nonrýal to the 

neutral surface in the manner already discussed, setting this 

rotation equal to zero may come much closer to predicting the 

correct overall deflected four of a beam with practical fixed 

supports. 

Turning now to problems involving concentrated loads, 

it is necessary to assess the effects of local stress 

concentrations on the overall deflection of the beam. A cursory 

caiparison of equations (3.18) and (3.19) shows that an approach 

which avoids altogether consideration of local stress concentration 

leads to a final result for overall deflection which is very 

similar to that obtained by taking them into account, and typical 

values of the difference when h/t is 0.3 can be shown to be 1.9% 

for V=0 and 3.9% for V=0.3. 

,. ý_ 
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With such small discrepancies involved for depth/span ratios 

of this order, it is clear that theories not taking local effects 

into account will be sufficiently accurate for predicting the 

overall deflected form of the beam. 

Fran this discussion the following will be accepted 

as reasonable assumptions on which theories including the effects 

of shear deformation to be developed in the following sections 

can be based: 

(a) The warping of sections initially nornal to the neutral 

surface due to shear may be replaced by an equivalent 

average rotation of such a section relative to the mid- 

plane. 

(b) 4Kfien the effects of transverse direct stress are 

included in addition to those of shear, theories ray 

be based on the mid-plane or on an average vertical 

displacement through the depth of the beam. 

. 
(c) At sitrple supports it may be regarded as sufficiently 

accurate for the n . nt stress resultant to be zero, 

rather than requiring the bending stress to vanish 

throughout the depth of the beam. 

(d) In theoretical work support reactions may be assumed 

to provide a parabolic distribution of shear stress 

over the end face of the bean, the effects of replacing 

this by a concentrated transverse direct stress 

reaction becoming a matter for experimental investigation. 

(e) The most likely description of a c1ared support to be 

physically accurate may be taken as one which provides 
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for the average rotation described in (a) to be set 

equal to zero. 

(f) The local stress concentrations associated with 

concentrated loading may be assumed to have negligible 

effect on the overall behaviour of the beam. 

On the basis of the earlier detailed consideration, 

the adoption of these ass options may be expected to lead to 

reasonably accurate results for values of depth/span ratio up 

to 0.3 or 0.4. 

" 

ýý- 
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3.3 Application of the method of partial deflections 

3.3.1 Introduction 

This method has been used extensively in the analysis 

of sandwich beams and plates, e. g. Plantema (21) and Allen (22). 

Essentially no interaction between bending moment and shear is 

assumed; the effects of each are evaluated separately and then 

added to find the overall deflection. 

In its usual form this approach is applicable only to 

problems where 

(a) the core has a low shear stiffness 

(b) the transverse direct stiffness is high 

The core is assured to carry the shear force, and the faces the 

bending mattient. A unifoul shear stress is assured in the core, 

giving a shear strain which is independent of depth at a given 

section. In cases where there is a longitudinal variation of 

shear force, a curvature due to shear will be induced causing 

additional bending ninents in the faces. A further assuaption 

is that these are small and may therefore be neglected. 

In this section the possibility of applying this general 

method of approach to homogeneous isotropic bearrs is investigated. 

In order to do this there are two problems which have to be 

resolved: 

(a) The basis on which the shear deformation is to be assessed 

has to be established. This will be expressed as an 

average shear strain through the depth of the beam, 

rive, defined by 

h/2 

ITY dz Q 'rave (3.20) 

-h/2 
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i. e. that the shear strain energy produced by the 

shear force Q acting through rave, is the sinne as that 

produced by the actual distribution of shear stress 

and strain. 

Taking t= 
2Q (1 

- 
hZ) 2) 

and y= 

gives Y ave = 5Gh (3.21) 

(b) It must be established in which situations this method 

amounts to a simile superposition of the deflections 

due to bending and shear effects. Such an approach 

means that no interaction between bending and shear is 

permitted, and hence the distributions of stress 

resultants will be unchanged from those given by simple 

bending theory. This will be the case in statically 

detenr3nate begs, and in indete_nirate cases in chilch 

the reactions, and hence distribution of shear force, 

is known because of syrrinetry. (In this context, it may 

be recalled that in the symmetrical circular plates 

considered in Chapter 2, the only change in bending 

mar : nt found was due to transverse direct - stress .) 

However, in non-syrrietric indeterminate besrrs interaction 

between bending and shear may occur, and then an 

approach consisting of a simple superposition of two 

separately assessed partial deflections could not be 

used. In such situations the deflections wb and ws 

would not necessarily vanish separately at a rigid 

support, but only their sun would be zero. 
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They would then no longer have the simple physical 

significance of being the deflections due to bending 

and shear. 

The assumptions tobe made may be summarised in 

mathematical form as: 

Wb = partial deflection due to bending (3.22) 

ws = partial deflection due to shear (3.23) 

w= wb + ws = total deflection (3.24) 

2 
M= -EI 

b (3.25) 
dx 

Q=S dwa (3.26) 

where d' =YaveandS=5Qi/6= 25 EI (3.27) 
h (1 + V) 

The following load and support cases are investigated 

for the reasons stated: 

(a) silly supported beam with uniformly distributed load 

to give an indication of the general accuracy of 

the approach by ccatparison with the most refined 

solution available (Timoshenko and Goodier, see Section 

3.2.1). 

(b) simply supported beam with central point load - to 

reveal any problems associated with concentrated loads 

(c) cantilever carrying an end load - to investigate the 

behaviour of a clamped support 

(d) clamped beans with uniformly distributed load - as an 

exile of an indeterminate, synmetric case 

(e) propped cantilever with uniformly distributed load - to 

investigate the possibility of changes in the 
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distributions of stress resultants due to shear 

I 
deformation in an indeterminate, non-syrrretric case. 

In the solution of these cases in the following sections, the 

working is presented in full in the first case, and only 

significant points of difference noted in the others. 

3.3.2 Simply supported beam carrying a uniformly distributed 

load 

I>X 9 

. 
A44 44 ýy 1116 

tj 

w 
Figure 3.6 

The basic equation of equilibrium is 

dQ 
_ -q dx (3.28) 

with Q= dM (3.29) 

Substituting for M and Q fran (3.25) and (3.26) gives 

d 4wb 
= q/EI (3.30) 

dx4 

d'as 
= -q/s (3.31) 

dx2 

Integrating (3.28) four times and satisfying the boundary conditions 

wb = 
22 

=0 at x=0 and x=G gives 

4 ,X33 
wb =1(- cX + g24X ) (3.32) 

EI 24 

Integrating (3.29) twice and satisfying botmdary conditions 

ws =0atx=0andx=( gives 
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2 
ws = E- + 

-) (3.33) 

so that finally the total deflection is given by 

433 
w=Wb+wEl ( 24 -ý2 + 24 

CLýjx) +S(- +g) (3.34) 

Substituting for S from (3.27), the deflection at the centre is 

then found to be 

42 (1 
+ 

48`(1 h ) (3.35) 
3 4EI 2 " 25 

3.3.3 Sirrply supported beam carrying a central point load 

In this case the rate of loading tends to infinity 

under the load and is zero everywhere else. The issue of local 

effects is easily avoided by working directly from the 

expressions for shear force and bending n-anent, i. e. 

Q=S=ZP where. = 0,0 <x <'i12 

(ýi=1, L/2 <x<l (3.36) 
d - ý Plx and M= -EI = 

dx 
- 22 

where "`x-2 I =0 if (x-2) <0 (3.37) 

Integrating as required, and satisfying wb = ws =0 at x=0 and 

x= L/2 gives the central deflection as 

PL 3W 
L=" 

Cl 
+ 

52 (1 + 1) E (3.38) (3.38) 
x= /2 48 IC 

3.3.4 Cantilever carrying. an end load 

The method is the sane as used in'3.3.3. The initial 

expressions for M and Q are 

d M= -EI =-P(L-x) (3.39) 

Q=Sa=P (3.40) 
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The boundary conditions to be satisfied in this case are w=0 

and =0 at x=0. In-accordance with the discussion relating 

to slope boundary conditions in 3.2.2 

dw 
= 

dws 

dx dx 
is non-zero at the support; since there is shear force at the 

support shear strain must also be pennitted and hence the total 

neutral axis slope is non-zero. It is that part of the slope due 

to bending (i. e. the rotation of an initially vertical element) 

which is zero. 

The final value for the deflection at the tip is 

32 
Wx=t -36I 

(1+5 
(1+V) h2) (3.41) 

3.3.5 Cl beam carrying unifonnly distributed load 

The solution in this case is obtained in the sarre manner 

as the simply supported beam of 3.3.2, excepting that the Lotmda+ry 

conditions in this case are wb = ws =h=0 at x ='O and x =i . 

The choice of the slope boundary condition is governed by the sane 

considerations as the cantilever of 3.3.4. The result obtained 

for the central deflection is 

qL4 
---(1+ 

48(1+d) h2 (3.42) wx= L/z - 384EI 5 F2 J 

The acompanying distributions of shear force and bending meet 

are the same as those given by elementary theory. 

3.3.6 Propped cantilever carrying uniformly distributed load 

Fran equations (3.30) and (3.31) it is clear that wb and 

ws are related by 

EI =q= -S (3.43) 
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The solution is obtained by integrating this equation and 

satisfying as boundary conditions, 
#A dwb 

at the fixed support wb + ws ==0 

at the propped support Wb + ws = 
dgl 

=0 
dx 

Of more interest in this case than the deflected form are the 

distributions of shear force and bending moment. These may be 

evaluated fron the values of the reactions at the fixed support, 

which are found to be : 

12(1 + V) h2 (1 
+ 

3(1 ± ý) h2 (3.44) vertical reaction =t + 25 T2) ` 8Ct 

22 -1 
moment reaction = -q8 

(1 
+3 

(15+ V) C2 i (3.45) 

I. <, 

- 
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A 

3.4 Developnent of a theory for beams based on Reissner's 

assn rptions 

3.4.1 Introduction 

Reissner presented his theory for plates, but his 

ass tptions can readily be adopted for beams. A theory for beam 

bending including the effects, of shear and transverse direct 

stress based on the assiptions and approach of Reissner is 

developed in Appendix A. 

It is itrortant here to note the assumptions associated 

with this solution: 

(a) bending stress IrX = (3.46) 

(b) shear stress TZ = 1- (h) 2, (3.47) 

(c) transverse direct stress cr 
3 2z 1 ) (3.48) =-G (? + z 3h h 3 

Tin shenko and Goodier's exact solution for the sinrly supported 

beam carrying a uniformly distributed load discussed in 3.2.1 

offers the further refinement that non-linearity in the distribution 

of bending stress is permitted, but otherwise it has exactly the 

same assurnptions regarding shear stress and transverse direct 

stress. 

In the applications which follow, the solution is worked 

in full in the first case, and any important points of difference 

noted in subsequent exiles. 

3.4.2 Singly supported beam carrying uniformly distributed load 

(See Figure 3.6) 

Fran Appendix A equation (A. 22) the governing equilibrium 

equation for a uniformly distributed load (q = constant)is 

l 
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EI d 4w 
=q (3.49) 

dx 
Integrating gives 

ä2w 
= qx2+Ax+B (3.50) 

dx 

432 
and EIw =4+6+ 

B2 +cx+D - (3.51) 

The boundary equations are w=M=0 at x=0 and x=L. Fran 

equation (A20) and (3.50) the bending ant is 

M= -ý= - -g- 
(2+V) h2q 2 10 

(3.52) 

The deflected form is finally found to be 

EIw = qx4 
- 

ýX 
+qtx- qh2 2 cth2 

24 12 24 20 (2 +x +-20(2 + V) Lx 

From which the central deflection is 

w -_ 
5g14 

1+ 2A (2 + V) h2 1 (3.53) 
x= L/2 384E! 25 i2 

3.4.3 Singly supported beam caring central point load 

The main problem associated with concentrated loads is 
2 

that texts such as q, , becoire indeterminate at the load. 

A solution can only be obtained if the loading is represented in 

the form of a Fourier Series. The appropriate form of such a 

series for a central point load is 

q=P sin L2 sin hrx (3.54) 

n= 1,3,5... 

substituting this expression into the Reissner equilibrium equation 

(A. 22) gives 

EI 
d4 

Of 

dx 
n 

A sin sin ^ýx 
2 (3.55) 
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where =2Pr1+ 
11 tr2 h2 (2 + V) 

L L2 10 
) 

Equation (3.55) nay be integrated in the usual manner, and 

satisfying the boundary conditions w=M=0 at x=0 and x=L, 

where M is given by (A. 20), the deflected form is finally found 

tobe va 

w_'1 
2P 1+ h2(2 + V) n2712 

4S 
nTr S nTrx 

EIý LC 10 24C L 
ýnn 

2 

nx 1,3" 

Form this the central deflection is 

_1 
2PL3 1 

Wx/24 
[i+++.... 

+h2(2)u2 10 ý2 

+ :2+ 12 
+ .... 

35J 

_ 
PC3 r 6(2 + V) h2 
48EI +'5 L2 

) 

3.4.4 Centilever carrying an end load 

(See Figure 3.3) 

(3.56) 

(3.57) 

(3.58) 

It is supposed that the load is applied as an end shear, 

so that q=0 throughout the cantilever. Fran (A. 20)it follows that 

the bending mcarent is 

M EI d Px (3.59) 

Integrating twice and satisfying the boundary conditions w= qS =0 

at x =_(. where f is equal to the average rotation of an initially 

vertical elerent. is equivalent tos of equation (A. 19) and 

hence 
dw+12(l+') Q (3.60) ý-'- dý: 5Eh 
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In this case the shear force, Q, is equal to -P. The deflected 

form is -found to be 

W EI 
(P33 

- 
P2 X+6- (1 

5 
1) Ph2x+(1 5 

J) Ph21. 
) (3.61) 

Hence the deflection at the tip is given by 

PC3 C1 
+ 

3(1 + V) h2 (3.62) Wx =0- 3EI 5 L2 

3.4.5 Clamped beam carrying uniformly distributed load 

The solution in this case is obtained in a manner similar 

to that used for the singly supported beam of Section 3.4.2, but 

in this case satisfying the boundary conditions w=0=0. The 

deflected form is then found to be 

-IL 4 
X12 + 24 + 4(1 iö )h2 (lx - x2)) (3.63) W EI `2 

and the central deflection-is 

= 84E 
r1+ 48(1 + V) h21 (3.64) 

1/2 34EI \5 12 
) 

The bending nrnnent can be obtained- fns (A. 20) and (3.63), 

and is 

M- 
(_qx 

- _qtx + q12 (1 
5 

V) h2q) h2 (2 + J) 
. 

(3.65) 
22 10 

Of particular interest are the values of M at the support and at 

mid-span. 
22 

Atx=0andx=L M 12 
(1 5Ji2) 

22 
and at x= L/2 M =q 

2 
(1 + 

12V h2) 

So that in this indeterminate case the distribution of bending 

na rent differs. frc a that given by elen ntaiy theory, the 

correction taking the form of a constant, dgh2/10 to be added to 

(3.66) 

(3.67) 

the classical value at any point. 
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The magnitude of these differences is shown in Tables 3.4 and 3.5. 

h/G v =O. 1 V =O. 2 V =O. 3 Q =O. 4 

0.1 0.9988 0.9976 0.9964 0.9952 

0.2 0.9952 0.9904 0.9856 0.9804 

0.3 0.9892 0.9784 0.9676 0.9568 

0.4 0.9808 0.9616 0.9424 0.9232 

0.5 0.9700 0.9400 0.9100 0.8800 

Table 3.4 1 

Values of 
M 

at support for clarped beam carrying distributed 
0 

load. 

h/L v =O. 1 Vß. 2 Uff. 3 J=0.4 

0.1 1.0024 . 1.0048 1.0072 1.0096 

0.2 1.0096 1.0192 1.0288 1.0384 

0.3 1.0216 1.0432 1.0648 1.0864 

0.4 1.0384 1.0768 1.1152 1.1536 

0.5 1.0600 1.1200 1.1800 1.2400 

Table 3.5 

Values of 
M 

at mid-span for claied beam carrying uniformly 
0 

distributed load. 

M= bending nrar nt as calculated fran theory based on 

Peissner's assuinptions 

M0= bending n went as calculated from elementary theory 
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3.4.6 Propped cantilever carrying uniformly distributed load 

The solution in this case is obtained in the same manner 

as for the simply supported beam of Section 3.4.2, but with the 

appropriate boundary conditions substituted. The point at issue 

here is the distribution of shear force and bending int. 

These are determined frm the reactions at the fixed support, 

which are found to be 

vertical reaction 
5 (i+ 6(22+ V) h2 2) (1 

+ 
3(15+ V) h2 ) (3.68) 

L2 12) 

q12 2(4 + 5V) h2 
_ 

12(1 +V) (2 + V) h4 
xricnt reaction 8 

ýl 
-52 25 L4 l 

'-1 2 
1+ 3(15+ J) h2 (3.69) C (ý S- 
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3.5 A modified form of the theory based on Reissner's 

º assumptions 

3.5.1 Introduction 

In Chapter I it was rr ntioned that Reissner's theory for 

plates involves the use of a stress function in its solution, and% 

it was listed as an objective of this work to develop a theory based 

on Feissner's assumption whose solution did not require the use 

of a stress function. A theory based on Reissner's assunptions 

has been developed for beams in Appendix A, and the cases 

considered in Section 3.4 show that there is no need for the 

introduction of a stress function to'obtain a solution for beams. 

However a modification to this theory is developed here in the 

form which will be required in order to avoid the stress function 

in plate problems, so that*the general characteristics of the 

approach can be observed and the accuracy of its results assessed. 

3.5.2 Theoretical develoruent 

Consider equation (A. 21) for shear force. Since q= 

this may be rewritten as 

Q= -Q 
d3+ (2 + J) h2 d2Q (3.70) 
dx 10 2 

Differentiating twice 

d2Q 
-- -EI 

dw+ (2 + J) h2 d4Q (3.71) 
clx2 

5 10 4 

Substituting for d2Q/dx2 fron (3.71) in (3.70) yields 

Q -EI 
(+ h2(10 V) d55 (ter w in h4 and higher pavers 

dx dx 
of h) 

) 
(3.72) 
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In considering the required degree of accuracy at this 

stage, two points must be borne in mind: 

(a) The initial assertion of a linear distribution of 

bending stress and the averaging of shear deformation 

through the depth of the beam are thenselves 

approximations. 

(b) Finite difference techniques will later be enplayed, and 

the normal central difference formulae are themselves 

accurate only to order (mesh length) 2 

Clearly the inclusion of terms in equation (3.72) of high powers 

of h would attribute a degree of accuracy to the expression for 

shear force which is not justified by the accuracy of other parts 

of the analysis or solution. Terns in the fourth and higher powers 

of h will therefore be ignored. So that, considering equations 

(A. 20 - A. 22) the final foam of the equations for bending mn*_rent 

and shear force to be used here are 

d3w h2(2 + V) d5w Q =-EI( 3+ 10 ý \dx dx 

/d2w h2(2 + V) d4w M =-EI (2+ 10 4 \dx dx 

and for the equilibrium equation 

d4w 
+ 

h2 (2 + V) d6w 
= 

-dx 
4 10 dx6 EI 

where q=q (x) . 
0 

(3.73) 

(3.74) 

(3.75) 

. ý-ý 
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This theory will be referred to as the modified Reissner 

theory, and owing to the close similarity with the theory based 

directly on-Reissner's assumptions only simply supported beams 

carrying uniformly distributed and central point loading will be 

investigated. 

3.5.2 Simply supported beam carrying uniformly distributed load 

As it stands the problem is the solution of a sixth order 

partial differential equation, which demands three boundary 

conditions to be satisfied, while strictly only two such conditions 

will apply in the case of a beam. This difficulty can be overcame 

by separation of the contributions to total deflection of bending 

and shear and setting each equal to zero at a support. 

The general solution to (3.75) is 

W= EI 
r+ 

63 + B22 + Cx +D+F cos, ux +G sinýx) (3.76) 24 
, 

where 
1= h2 (2 +J) 

ý2 10 

Differentiating this expression as required and si: bstituting in (3.73) 

and (3.74) gives the following expressions for shear force and 

bending Want. 

22 
M=--- Ax Bh 

(2 + v) 
q (3.77) 

Q=- qx +A (3.78) 

From statics Q=0 at x=2 and hence A=-q L/2 

M=O and hence B=- h2(2 + J) 
10 q 

0 
The boundary conditions at x=0 regaire w =. 0, i. e. 

O=D +F' (3.79) 
rE' 
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i 

If the contribution to total deflection of bending deflection is 

to be zero then D=0 and hence F-= 0 also. 

Therefore, since w=0 at x=L. 

422 

6h 
(210 v) ý+CC+GsinyL 0= q24+ )3 (3.80) 

If bending and shear deflections are to be separately zero then G=0 

and hence 

C= _%L3 + 
h2(2 + V) 

qý (3.81) 
24 20 

So that finally the deflected form is given by 

w_1x_ glx3 gL3x h2(2 + V) h2(2 + J) 2 
W- EI 24 12 + 24 + 20 

lx - 20 gx (3.82) 

frcan which the central deflection is 

w 
C1 

+ 
24(2 + V) h2 (3.83) 

x= L/2 - 384EI 25 C2, 

3.5.3 Singly supported beam carrying central point load 

Representing the point load in Fourier form as before 

(3.54), the governing equilibrium equation (3.75) becrnies 

od 
w4 + 

(2 + v) d66 
- EIL sin 2 sin nýX (3.84) w 2p 

dx dx 
" 1,3* 

Integrating four times gives 

00 
h2 (2 + t)) 

2w 
_ 

2P (4 ntr ntrx w+ 10 dx2 
- EI IT nn) sin 2 sin + 

1 3'* ** 

32 

6+ 
B2 + Cx +D (3.85) 

so that the shear force and bending ur nt are 
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Q= 2P t, 
sin 

! 
cos nnx +A (3.86) 6 nn 2 

1 3' 
eo 

M= 2P (ri )2 sin 2ý sin n`x + Ax +B (3.87) 
... 1,3* 

The general solution to (3.85) is 

CPO 
_ 

2P E 1 nTr nix (3.88) W EIL ntt4h (2+V) nn 2sin 2sL 
1ý3.... (L) 

10 LI 

+Cx+D+FcosXx+G. sinXx 

where X is given by (3.56). 

Applying the arguments similar to those used in section 3.5.2 this 

equation can then be solved, and gives for the central deflection 

w 
PL3 C1 

+ 
6(2 +ýl) h2 

(3.89) x= C/2 48EI 5 ý2 

I 
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3.6 Su -pry of theoretical results 

3.6.1 Introduction 

At this stage the results obtained by the three theories 

developed in Sections, 3.3,3.4 and 3.5 can be canpared with the 

existing solutions discussed in Section 3.2, and also the results 

for other cases examined. Before doing so it may be noted that the 

results obtained from both theories based on Reissner's 

assumptions are identical'(c anpare equation (3.53) with (3.83) and 

equation (3.58) with (3.89). The results from these theories will 

therefore be referred to together as the results obtained from the 

application of Reissner's assumptions. 

3.6.2 Summary of deflection results 

The expressions for central deflection obtained for each 

load and support case considered are summarised below, and 

illustrated graphically in Figures 3.7 - 3.10. 

(a) Simply supported beam with miformly distributed load 

(See Figure 3.7 and 3.8) 

2. 
Tin shenko and Goodier (3.2) 584EI C1+ 25 (1 + 

8'' 
L 

)h2, 

Partial deflection method (3.35) 384EI 
C1 

+ 
25(1 

+ V)h2 
) 

1 

Theories based on Reissner's, 4 V 

5qß 1+4(1+v)h2 384E2 25 / assertions (3.53) and (3.83) 2 `2 
(b) Simply supported beam with central point load 

(See Figures 3.9 and 3.10) 

3 
Timoshenko (3.14) 48 

LI (1+31+vh2' 

2 
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Sechler (3.18) pL3 
48E1 

( 
1+ 5(1+J)h) 

L2 

Seewald (3.19) 

Partial deflection 

method (3.38) 

Theories based on 

Reissner's assertions 

(3.58) and (3.89) 

323 

48EI `1+ 
52(1+' 

8) -0.85(3, 

32 

48EI 
C1+ 52(1 

+ý) t2/ 

2)h 
Pt 3 

48EI + 
52(1 

+ ?. 
2 

L 

(c) Cantilever with end load 

(See Figures 3.11 and 3.12). 

Timoshenko and Goodier 
Pt3 r1+3(1+V) h2 

(3.13) 3EI 4 2, 

Partial deflection method 
PC3 3(l. + V) h2 

(3.41) 3EI 
(1 

+5 2) 

Theories based on Peissner's 
32 

asstmptions (3.62) 3EI 
(1+3 (15+ J) h21 

GJ 
(d) Clamped beam with uniformly distributed load 

(See Figure 3.13) 

Partial deflection method 
qL4 48, (1 + V) h2 

(3.42) 384EI 
C1+ 

5" 2) 

Theories based on Peissner's 

assurnptions (3.64) -ý- 1+ 48(l + J) h2 
384EI 

C5l2, 
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Tinashenko and Goodier (3.3) 

Theories based on Reissner's assertions (3.53) and (3.83) 

------ Partial deflection method (3.35) 

1.4 -r-- 

1.. 3 . 

1.2. 

V. 

1. oß. 
0 

JI 
i 

, or 

10ý10ý 

0.1 0.2 0.3 

Figure 3.7 

Central deflection ratio. 

Singly supported beam carrying uniformly 

distributed load (J = 0.1) 

h/( 

0.4 
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1.4 - 

"1.3 

1.2 
. 

1.1 

1.04 
0 0.1 0.2 0.3 

Figure 3.8 

Central deflection ratio. 

- Timoshenko and Goodier (3.3) 

Theories based on Reissner's. assptions (3.53) and (3.83) 

Partial deflection method (3.35) 

WI 
/we 

i 

z 

10 
f 

. - 

f 

i 
i 

Siiply supported beam carrying uniformly 

distributed load (V=0.3) 

0.4 

hIL 
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Seewald (3.19) 

Theories based on Reissner's assutions (3.58) and (3.89) 

------ Partial deflection rrethod (3.38) 

- Timoshenko (3.14) 

wI 
w, 

1.6 

1.5 - 

1.4 

1.3 
- 

1.2 
- 

1.1 - 

1.0 
0 

i 

i 

i 

/' i 

01 i 

1' 0111 -04" 
L"ll 

0.1 0.2 a3 

Figure 3.9 

Central deflection ratio 

Singly supported beam carrying 

a central point load (V = 0.1) 

h/L 

0.4 

w: 
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Smia1d (3.19) 

Theories based on Peissner's assuq*ions (3.58) and (3.89) 

------ Partial deflection riethod (3.38 ) 

- T1n shenko (3.14) 

W1w 

1.6 

1.5. 

1.4 - 

1.3 . 

1.2. 

1.1 

1.04 
0 

i 

., 004.000, 

0.1 02 0.3 

Figure 3.10 

Central deflection ratio. 

Sitply suuTorted beam carrying 

a central point load (V=0.3) 

ýI 
hl 

L 
0.4 
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Tir: nshenko and Goodier (3.13) 

Partial deflection method (3.41) and theory based 

on Reissner's assertions (3.62) 

WI We 

17 is C_ 

1.1 

1.0 hl 
L 

0 0.1 0.2 0.3 0.4 

Figure 3.11 

Tip deflection ratio 

Cantilever with end load (V=0.1) 

-. . f- 

ný 
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I 

1.2 

1.1 

Tii shenko and Goodier (3.13) 

Partial deflection method (3.41) and theory based 

on Reissner's assertions (3.62) 

W/ 
Wo 

S. 

os-5: 0-, ý 
1.0 h/- 

L 
0 0.1 0.2 0.3 0.4 

Figure 3.12 

Tip deflection ratio 

Cantilever with end load (J = 0.3) 
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Partial deflection method (3.42) and theory based 

on Reissner's assertions (3.64) 

W/ 
Wo 

3.0 

2.5 

2.0 

1.5 

10 4 
0 

h, 
L 

0.1 0.2 0.3 0.4 

Figure 3.13 

Central deflection ratio. 

Clamed beam carrying uniformly distributed load. 

Yý+. 
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3.6.3 Discussion of deflection results 

Before ccrparing the formulae developed in this chapter 

, with the results of existing work, it is convenient -to note first 

the relationship between-the partial deflection rethod and the 

theories based on Reissner's assumptions. The latter include the 

effects of transverse direct stress, but two cases have been 

considered in which these have no effect on deflection, namely 

the end-loaded cantilever (cc =0 throughout) and the clamped beam 

with uniformly distributed load (the clamped boundary prevents 

the associated in-plane strain - see discussion relating to 

circular plates in Section 2.2.1). The results for these cases 

are suunnarised in cases (c) and (d) above and in Figures 3.11 - 

3.13. Ccenparing the formulae it is observed that the partial 

deflection method and the theories based on Feissner's 

assutions give identical results, and it may be deduced that 

in estirnating the effects of shear both approaches are essentially 

the same. Thus, any differences between the results that these 

two approaches give in other cases will be due to effects other 

than shear deformation. 

Ccparing next the results given by these two theories 

for the simply supported beams (Sumiaiy cases (a) and (b) and 

Figures 3.7 - 3.10), it is found that they are the same when J= 0, 

but, due to the inclusion of transverse direct stress in the 

theories based on Reissner's assertions, they differ for other 

values of Poisson's ratio. It may be observed that the Reissner 

based theories predict a slightly smaller deflection, which is 

consistent with the general effect of transverse direct. stress. 
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If this term had been omitted fron the development of the theory 

in Appendix A, the deflection results given by the partial 

deflection method and the theories based on Eeissner's assturptions 

, would have been the same in all cases. 

Having discovered the common ground between the theories 

developed in this chapter, it is now possible to ccnpare them with 

existing solutions. 

Considering first case (a), the simply supported beam 

with tniifozm loading, it is found that the results obtained in this 

work are the same as those given by Tiirshenko and Goodier when 

J=0, but differ slightly for other values of Poisson's ratio. 

The magnitudes of the differences for h/L = 0.3 are shown in Table 

3.6, and can be seen to be very small 

V= 0.1 V=0.3 

Partial deflection method + 0.35% +. 1.66% 

Theories based on Reissner's - 0.14% - 0.5% 

assuirptions 

Table 3.6 

Differences in central deflection ccztpared with 

Timoshenko and Goodier. Sinply supported beam 

with unifomn load, h/L = 0.3. 

Turning next to case (b), the simply supported beam with 

central point load, it is not surprising that Sechler's result 

(3.18) is the same as that obtained by the partial deflection 

mmthod, since it is derived from energy. considerations based on 
-4,4 
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the sane assumed distributions of bending stress and shear stress. 

However, Tinroshenko's foznula (3.14) gives a greater increase in 

deflection due to shear than any of the others, and this is because 

his estimate is based on the mid-plane-shear strain, rather than 

an average value taken through the depth of the beam. Undoubtedly 

Seewald's consideration is the frost detailed, and regarding his 

solution as the standard for oarparison, the results obtained in 

this chapter differ slightly, typical values of the differences 

for h/L = 0.3 being indicated in Table 3.7. 

V= 0.1 V= 0.3 

Partial deflection method +2.9% +3.8% 

Theories based on Peissner's 

assumptions +1.7% +1.2% 

Table 3.7 

Differences in central deflection compared with Seewald. 

Simply supported beam with central point load, h/L = 0.3 

The only remaining result to be considered is Tlxroshenko 

and Goodier's equation (3.13) for case (c), the end-loaded 

cantilever, and this is seen to indicate a deflection due to shear 

25% greater than that predicted by the methods developed in this 

work. This disparity is attributable purely to the difference in 

the assumed action of the boundary c1. Tirroshenko's 

assertion, illustrated in Figure 3.4, is that a tangent to an 

initially vertical elerent at the neutral axis refrains vertical, 

and this obviously allows a greater deflection to occur than with 

the prevention of an average rotation of an initially vertical section. 
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3.6.4 Theoretical results for stress resultants 

It has been established-that inclusion of shear 

deformation can only alter the distributions of stress resultants 

from those of classical theory in non-symmetric indeterminate 

beams. For the propped cantilever considered in Sections 3.3.6 

and 3.4.6 both the partial deflection method and the theory based 

on Reissner's asswiptions are seen to predict such a modification 

to the distributions of both shear force and bending mmrant. The 

relevant equations are (3.44), (3.45) and (3.68), (3.69) and while 

the first pair contain the effects of shear deformation only, the 

second pair, based on Feissner's assertions, take into account 

transverse direct stress as well. Omitting these last terms from 

the Feissner based theory developed in Appendix A would again lead 

to identical results to those given by the partial deflection 

method. The modifications due to shear alone are small, and typical 

values for h/ L=0.3 and V=0.3 are reductions of 1% and 6% in the 

fixed support reaction and ant respectively, with corresponding 

changes in the shear force and bending moment throughout the beam. 

Transverse direct stress has a more significant effect 

on the distribution of bending mcarent in all indeterminate cases, 

except when Poisson's ratio is zero. In syraretric beam4 the 

modification takes the fom of a constant correction throughout, 

since the distribution of shear force mast remain unchanged. In 

non-syrrimtric cases the distributions of both shear force and 

bending trovent are modified, although changes in shear force are 

only slight. The order of magnitude of the change in bending 
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r rannt can be quite significant for large values of both h/L and 

together, as indicated in the typical values sham in Tables 

3.4 and 3.5 for the uniformly loaded, clammed beam. 

3.6.5 Conclusions 

At the end of this theoretical discussion scm general 

conclusions can be drawn before proceeding to an examination of the 

application of numerical rethods and experimental verification. 

Three theories have been developed in this chapter, the 

first based on the partial deflection irthod and the other two on 

Eeissner's asst tions. It is found that all three give the same 

values for the additional deflection due to shear, whilst the last 

two give an additional correction due to transverse direct stress. 

The main conclusions reached are: 

(a) Estimation of the. effects of shear defonnation by taking 

either an overall shear stiffness or by evaluating an 

average rotation of a section initially normal to the. 

neutral surface gives extremely accurate results when 

catpared with a more refined solution. The averaging in 

both cases is carried out by equating the work done by 

the shear force acting through the average distortion to 

that done by the actual distributions of shear stress 

and strain. 

(b) Consideration of transverse direct stress can, in sane 

cases, lead to a small reduction in deflection. The 

theories based on Reissner's assertions take this factor , 

into account, and again make very accurate predictions of 

the correction to deflection involved. 
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(c) A modification to the theory based on Reissner's 

assertions has been made, the order of accurrcy of which 

has been specified as h2. The results confirm that this 

accuracy has been achieved, and any errors involved would 
4 be of order h 

(d) The partial deflection method arrounts to a simple 

i superposition of deflections due to bending and shear, 

except in non-synmetric indeterminate beams. In such cases 

the two partial deflections do not separately vanish at a 

rigid support. For exannle wb an&ws are not separately 

zero at the fixed support in the propped cantilever 

considered in Section 3.3.6. 

(e) Both types of theory developed-indicate madifications in 

the distributions, of stress resultants due to shear in 

cases where the distribution of shear force is not 

determinate by consideration of equilibriia and s << try. 

These have been evaluated, but coared with the changes 

in deflection due to shear, are relatively insignificant. 

(f) Transverse direct stress has been found to have an effect 

on the distribution of bending marent in indeterminate 

bens which can be fairly important when large values of 

both h/L and v occur together. 
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3.7 Solution, of the m dified Feissner theory by numrical 

mthods. 

3.7.1 Introduction. 

The modified Peissner theory has no particular advantage 

to offer for beam problems; its potential lies in the field of 

plates. The purpose in developing it in the context of beamshas been 

to assess its accuracy, and this has been found to be excellent 

in the cases considered. Although analytical solutions are 

possible for beams it is useful to consider the application of 

numerical methods to the theory here, so that any fundamental 

difficulties can be resolved before considering the more canplex 

problems associated with plates. 

Thus in this section, finite difference and localised 

Rayleigh Ritz techniques will be applied to sirply supported bens 

with both uniformly distributed and central point loading. 

3.7.2 Solution by finite differences 

Non-dirrnnsionalising equations(3.73) - (3.75) in 

accordance with the method given in Appendix C, the bending m=rnnt, 

shear force and equilibrium equations become 

EL d2W H2 (2 + J) A 
(3.90) 

EI d)2 10 

QL2 d3W 
_ 

H2 (2 V) A 
(3.91) 

EI dX3 10 5 

d4W 
__ 

H2(2 + J) A 
__ 

qL3 (3.92) 
dX4 10 EI 
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The finite difference forms of these equations are 

obtained by substituting the finite difference equivalents öf the 

derivatives given in Appendix C. They then beccsne 

Mt 
EI I -C -1+4C 2-6C 1-1+ 4C -C (3.93) 

QL2 
EI -ac I--I -14LC 

C 1- 2-2 +2C -2 (3.94) 

3 
=C 1-6C -4+15C 16-20C -4+15C 1-6C HC (3.95) 

N+3 N+2 N+1 N N-1 N-2 N-3 

where C= ßi2 (2 + 

loP2 

A reasonably accurate result can probably be obtained using a fairly 

coarse mesh for a uniformly distributed load, but in order to give 

a good representation of a point load a finer mesh is required. 

P= 12 was finally selected after investigating the convergence of 

the solution. The scheme of mesh points required is as shown in 

Figure 3.14. 

234 S' 6789 ro u 12 13 14 15 11,17 t8 19 

support support 

Figure 3.14 

Finite difference r. r-sh used for solution of beam problems. 

Points marked. are fictitious points. 19 equations are required for 

solution, and these are 
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equilibrium 13 

boundary equation w=02 

M=O 
,2 

Two further equations are therefore needed, and these can be found 

by extrapolating for Wl and W19. Alternatively points 1 and 19 
. 11 

can be eliminated altogether by using an off-centre finite 

d6W in the equilibrium equations at difference equivalent for au 

points 4 and 16. Forms of this type are described in Appendix C. 

The numrical results obtained are the same in either case, and 

are given in Section 3.8. Methods of solution used for the set of 

simultaneous equations are described in Appendix E. 

3.7.3 Solution by the use of Localised Rayleigh-Ritz technicrues 

The basis of this method is given, by Thomason (30) . Scae 

aspects relevant to this work are discussed in detail in Appendix D. 

The deflected form of the beam is defined by local 

Rayleigh functions over a number of regions. The displacement 

functions will be continuous between regions at the nodes up to the 
dnw 

nth order derivative, . The least value of n required is one 

less than the highest order derivative contained in the energy 

function, so that integration does not involve indeterminate 

quantities. 

For a bean of unit width, -the strain energy due to bending 

and shear in region i, of length a, is 
11 

Ui EI A'iýdf +5 4i dE (3.97) 

00 

where the non-dimensionalisation is achieved by setting E. = x/a. 
;, rýý 
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Substituting for G and h in terms of E and I gives 
11 

Ui = 2EI Nljdf + 
(1 

5. 
V) h2 Qi dt (3.98) 

00 

" Substituting for M and Q from (3.73) and (3.74) gives 
1 

_EI 
22 (2+V) h2dwd4w ((2+V) h2 2d4w2 

4) Ui = 
2a3 

()+`12 
dý df, 

24+ 10 2 d4 aa 
0 

+ 
(1 +J) h2 d3w 2 (1 +V) h2 (2 + V) h2 dwdw 

5 
a2 

( 3) +25 
a2 

10 
a2 dý3 dý5 

+ 
(1 + J) h2 (2 + h2 2. 

(dw) 2 dl. (3.99) 5 5a2( 10 
aý dE 

The question now arises as to whether all the terms in 

equation (3.99) need to be retained or not. The expressions for 

Mi and Qi are thamselves correct to order h2, but because they are 

squared and the shear further multiplied by (1 ") 
h2 the resulting 5 

equation for Ui contains terms in h, h, and h. Once the order 
246 

of accuracy of Ni and Qi is fixed at h2, Ui can also only be 

accurate to this same order, even though it contains scare higher 

powers of h. A number of possibilities arise: 

(a) Ui is made accurate to-order h2. All tens in h4 and h6 

in equation (3.99) are then anitted, leaving 
1 

U 2-- 
EI (d2w) 2+ 2(2 +V) h2 d2w dw+ (1 + V) h2 

(d3w)z d, (3.100) i 2a3 2 10 
a2 de dj 5 

a2 d3 
0 

The main disadvantage of this approach is that Ui contains 

an inecr plete description of the bending meint. 
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The shear force, however is simply equal to -EId3 dX3 
(b) Mi is made accurate to order h2. Equation (3.99) would 

then become 
1 

U 2(2+J) h2dwd'4w+ h2(2+J) 242 
_'EI 

d2w)2+ 
i32 10 2242) 4_7 ý 

2a dý a dý dF. a 10 d 
0 

+ 
(1 

5 
V) h2 2 

(d33) 2 

a de 
(3.101) 

At least the expression for Mi is now canplete, but " 

another inconsistency is introduced, in that only some 

of the h4 terms have now been included. 

(c) Ui contains all the terms in h2 and h4 which arise from 

2 
establishing the accuracy of Mi and Qi at order h.. 

Equation (3.99) then becc s 
1 

__ 
EI d2w 22 (2 + y) h2 dw d4w (2 + h2 2 d4w 2 

vi 
2a3 

()+ 
10 

a2 
2+C 10 2) 

d4 dCd4 a 
0 

+ 
(1 + V) h2 d3w)2 

+ 
2(1 +V) h2 (2 +-0) 

5 
a2 d, 5 a2 10 

h2 dwdw dt 
a2 d43 

d (3.102) 

If this expression is adopted then the expression for Qi 

is incxplete. 

(d) Ui contains all terms in h2, h4 and h6 which arise from 

establishing the order of accuracy of Mi and Qi at h2. 

Equation (3.99) then stands. The only qualification is 

that if more accurate expressions for Mi and Qi were taken, 
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further terns in h4 and h6 would arise, so that even 

this expression contains inconsistencies. 

'(a) and (b) would require local Rayleigh Functions to be continuous 

at least in d, 
while obviously mere accurate results and more 

d4 
rapid convergence would be expected with functions which are 

continuous in d 4w 
as well. (c) and (d) would require this 

dý 
additional degree of continuity in any,, case. 

Each of these was tried, and the eventual choice was 

made purely on numerical grounds, as it was found that in certain 

cases the inclusion of higher powers of h led to an ill-behaved 

system of equations. A ccazparisom of the results is given in 

Section 3.8.2. 

Whichever course is folloo-ied, the general procedure is 

the same. If continuity ug to and including dn is required then 
" dý 

the displacement function in region i (see Figure 3.15) is 

m 

wi = 
ý. 

ai1i = [A](3.103) 

i=o 

where m= (2n + 1) 

node i (i +1) (i+2) 

____i region ii 

Cl ct 

Figure 3.15 

Region and node notation for local Rayleigh functions for a bean. 
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Local Rayleigh functions are fonred giving freedcsn to each 

derivative as required. Two sets of such functions are associated 

with node i, f- and fk. These give freedom to 
lk 

at i. f't extends 
d& 

fran node i to node (i + 1) and is such that 

dL fk 
= 0for0 ý. L 4nat'=0 

dCl 

dt fk ýt1 =0 for 0 . ýL n but LAk at 
d f. t 

di_ 
= 1for L =k at =1 

dý 

Similarly fk extends from node (i + 1) to node (i + 2) and has the 

folladng properties 

df=0 for 0l4n but C# k at '= 0 
d 4c 

dt 
=1 for L=k at =0 

de 

dt 
= OforO 4L4nat '=1 

dlý 

Qi is the coefficient associated with fk at node i, so that 

the deflection in region i is given by 

nn 

wi = cifk ýi+l fk (3.104) 

k=o k=o 

Hence [A] = [B] [Q 

where 
L QJ = LQi' Q .... 

di, 
' Qi+l .... Qi+1 j (3.105) 

Figure (3.16a)shows the value for [BI for continuity up to 
d 

and 
d4w dZ 

4. =. Figure (3.166)for continuity up to and including 
de 
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1 0 0 0 0 -0 0 0 

0 1 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 

0 0 0 6 0 0 0 0 

-35 -20 -5- 32 35 -15 
2 

-16 

84 45 10 1 -84 39 -7 

-70 -36 
15 3 70 -34 

3 1 

20 10 2 S 
-20 10 -2 

6 

Figure 3.16o Matrix EBI for continuity ofd3W 
do 

0 0 0 O 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 2 O 0 0 0 0 0 0 

0 0 0 0 0 0 0 
,0 

0 

0 O 0 0 24 0 0 0ý 0 0 

-126 -70 
35 5 

_5 126 -56 
21 

-1 2 2 24 2 24 

420 224 105 
- 

20 5 
-420 196 ' 77 

- 
23 

_ 2 3 12 2 6 6 

-540 -280 -63 
25 

- 
12 540 -260 53 - 

21 
4 

315 160 35 4 5 
24 -315 155 65 

2 
7 
2 --6 

-70 -35 
15 5 1 70 -35 

15 
_5 

1 
2 6 24 2 6- 24 

4 d 
Figure 3.166 Matrix H for continuity of 4 dO 
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The strain energy associated with region i can then be 

written in the form 

Ui = 
2a3 

LATE] = 
2a3 {Q ] [BTý] [Q] (3.106) 

where the coefficients of [C] are found in the manner described in 

Appendix E. 

The total potential energy of the whole system of N 

regions is N 
V= Ui - [pllsl (3.107) 

i=1 

where [r [S] , is the loss of potential energy of the loads. For a 

concentrated load, P, acting at node i this is simply P. Qi . If 

the load is q per unit length uniformly distributed, then the loss 

of potential energy is qx (volume of deflection function). This 

can be expressed in terms of the coefficients Q as shown in Appendix 

D. 

The potential energy is then minimized with respect to 

each coefficient Qi , and this gives the system of simultaneous 

equations, which when solved gives the values of these coefficients. 

The form of these equations is 



- . 114 - 

i 
EI 
a3 

5' 

0 Qi 
Qý 

ý X " _ 

m+l 

where IýL 
ý_k 

for uniformly distributed load (3.108) 

k=1 

At the boundaries the appropriate rows of the matrix are 

replaced by the boundary equations. These may be expressed in 

terns of coefficients fron [B] and [Q] as follows. At node i 

wi = Q° (3.109) 

M EI d2w 
+ 

h2(2 + V) d4w, 
i 

a2Cd2 
10 d4 

n2+1 4B51i) E2 (2')B3, + (4! )(2 10) Qi (3.110) Ca a 
j_1 
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dw+ (1+V) h2d3 w+ (1+V) h2 (2+V) h2dw 
aC d4 5352 10 25 

a dý aa dý 

m+1 

_-äB+ (3: ) (1 5 J) h2 B4 + (5; ) (1 +a5Ö +V) Ca ý=1 

-h 
44 

B6ýj 
)Q 

(3.111) 
a 

_ _EI 
dw (2+v) h2dw Qi -2 

(c110 

a$a dý 

m+1 2 
E3 E (3B4, 

j + (5') (? 
10 

h2 B6, j) (3.112) 
aa j=1 

The last term in the equations for 01 and Qi would be omitted if 

h4 and h6 terms arising from the shear are omitted from the 

expression for Ui, as discussed in points (a), (b) and (c) above. 

After solution of the equations (3.108) the bending ironmt and 

shear force at any node can be evaluated from equations (3.110) 

and (3.112). 

L 
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3.8 Co arison of numerical results 

3.8.1 Comrents on the finite difference solution 

In the case of uniformly distributed loading the finite 

difference equations are almost always well behaved. The only 

occasional exception to this is when a particular value of H causes 

a critical coefficient (e. g. the central coefficient of the molecule) 

in equation (3.95) to become very nearly zero. 

But, with a central point load, the equations become 

unstable at certain values of depth/span ratio, H, and no meaningful 

solution can be obtained for higher values of H. The precise reason 

for this remains obscure. 

3.8.2 Carm nts on the localised Rayleigh-Fitz solution 

L Since continuity is required up to relatively high order 

derivatives the deflection function is itself very accurate, so 

that the Rayleigh functions need not be highly localised. Using 

a=2 or possibly a=4 was found to be quite satisfactory. In 

any case nun rical prthlems arise if a is too small, since the 

ratios (i) 2 
and (ý 4 ) can then beccare very large, and in the energy 

function shear ter s dominate to an extent which makes the solution 

very unstable. 

The results obtained by the various methods outlined in 

Section 3.6.2 are compared in Figures 3.17 to 3.20. For a siir1y 

supported beam carrying a uniformly distributed load, Figures 3.17 
d3w d4 

and 3.18 shot that with continuity of jj3 or 
W 

very close 

agreement with the theoretical values is obtained by using Ui as 

given by equation (3.101), where h4 tens arising franl are 

included in addition to all h2 tem. 
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Theoretical 

Ui contains h2. tezms only 

-- --- -- Ui contains h2 terns and h4 terms from Mi 

- Ui contains h2 tears and h4 tenrs from My and Qi 

wýwo 

1,4 

%3 

1.2. 

1.1 

1.0 

i 
/ 

______ 
/ /7 

0 0.1 0.2 0.3 

rigure 3.17 

Central deflection ratio 

Simply supported bears carrying 

uniformly distributed load (V = 0) 
3 

Localised. Rayleigh-Ritz results - continuity of a 

0.4 

hIL 
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Theoretical 

Ui contains h2 terns only 

Ui contains h2 terms and h4 terms fran 141 

Ui contains h terns and h terms from Mi and Q1 24 
- 

1.4 - 

1.3. 

1.2 

1.1 

w 
W0 

1-04 
0 0.1 0.2 0.3 

L 
hl 

0.4 

/ /// 

___ 

"/ i 

.' 

Figure 3.18 

Central deflection ratio' 

Silly supported beam carrying 

fimifor.: ay distributed load (J = 0) 

Localised Rayleigh-Ritz results - continuity of 
dIw 

dx 
Irl 
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Theoretical 

Ui contains h2 teens only 

------ Ui contains h2 terms and h4 terrrs fran Mi 

Ui - contains 
2 h terms and h4 terns fran Mi and Qi 

W/ 
0 

1.4 

1.3 . 

1.2 

1.1 

1. o4 
0 

i 

/ i 
0 

00 
I . 

0.1 0.2 0.3 

Figure 3.19 

Central deflection ratio 

Simply supported bears carrying 

-central point load (J = 0) 

Localised Rayleigh-Ritz retults - continuity ofd W 
3 diý 

L 
hl 

0.4 
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Theoretical 

Ui Domains h2 tezms only 

----- -- Ui contains h2 terns and h4 terms from Mi 

- Uf contains h2 terms and h4 terms from Mi and Qi 

-- Ui contains h2 , h4 and h6 ter s fron Mi and Qi 

w 
Wo 

1.4 

1.3 

1.2 

1.1 

1.0 

- _ _ _ _ 

0 0.1 0.2 0.3 0.4 

Figure 3.20 

Central deflection ratio 

Simply supported beam carrying 

central point load (J= 0) 
4 

Localised P ryleigh-Rita results - continuity ofd w 
dx7 

hYL 
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Cc arison of these two Figures also shows that with continuity. of 
d 4w 

a solution is unobtainable for values of greater than 0.325, 
dx 
so that the use of a higher order of accuracy in the deflection 

function can be disadvantageous. The reason for this is again 

numerical. Assuming that the scaling of the matrix [B] is roughly 

related to the ratio of its greatest to smallest coefficients, 

this ratio is approximately 13 x 103 for continuity of 
d w4 but 

3 dx 
only 0.5 x 103 for continuity ofd 3, indicating that while the 

dx 
fonrer should theoretically give more accurate results, numerically 

it may have sane disadvantages. 

In all. other cases the results begin to shod substantial 

deviation from theoretical values for ratios of 
h 

greater than 0.2. 

In sca cases, as can be seen fron the termination of the graph at 

a relatively low value of stable numerical results can only be 

obtained for a limited range. 

A similar pattern of results is seen in Figures 3.19 

and 3.20 for a central point load. Taking Ui as given by 

equation (3.101) does not give such close agreement in this case, 

however, and the range of values of 
h for which a solution can 

be obtained is more limited. In fact, closer agreement with 

theory in this case is obtained by using equation (3.100) for 

Ui , that is including h2 terms only. 

3.8.3 Conclusions. 

Fran this brief examination of the applicability of 

numerical methods it is seen that the finite difference approach 

is excellent for uniformly distributed load, but for concentrated 

loading will only give results for values of h/t up to 0.2. 
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On the other hand, by careful selection of the degree 

of continuity and the terns to be included in the energy function, 

the localised Rayleigh-Ritz method gives results of reasonable 

accuracy. It is found that 
3 

(a) Continuity to 
d3 is sufficiently accurate, a higher 
dx 

order of continuity offering no clear advantages, 

and even introducing its own numerical problems. 

(b) Of the possible expressions for Ui, use of that given 

by equation (3.101) leads to the greatest consistency 

in the numerical results, while equation (3.100) gives 

the most accurate results for the point loaded case. 

S 
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r 

a 

3.9 Experimental tests on beams 

3.9.1 Description of tests 

Tests were carried out on a series of bears sirly 

supported over a span of 260 man and carrying a central point load. 

The depths of the beams ranged fran 10 rm to 100 nm in intervals 

of 10 mn, giving depth/span ratios from 0.0385 to 0.385. Central 

deflections and mid-span strains on the lacer face were measured. 

The beams were made from Araldite CY219, a cold setting 

resin. Square plates 300 un x 300 nun x 25 rm deep were cast in 

the mould shown in Plate 1, which were then cut into strips of 

varying width to give the range of beam specimens required. A 

vacuum pump was used to extract air entrained during mixing, and 

after curing the beams were machined flat and square to the 

required dimensions before. testing. 

the tests were conducted in a Clockhouse testing machine 

which delivers the load by'screw jacks and can be controlled 

either manually or by motor. The load was measured by a load cell 

connected to a digital voltmeter. The load range was 0-800 N with 

a sensitivity of 1 N. 

Displacemnt measurements were made using a displacement 

transducer of infinite resolution, and with the associated digital 

voltmeter enabled displacements to be measured to an accuracy of 

0.5xl04mn. 

2 nm foil resistance strain gauges were used to deterrine 

the strains, and on two beams rosettes were incorporated so that 

Poisson's ratio could be found. 



i 
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J 

load cell 

fixed roller 

The test rig used is shown in Plate 2 and Figure 3.21. 

A rectangular hollow section resting on the bed of the test 

machine carried two saddles which in turn support the beam on 

25 nm diameter rollers. The load was delivered to the beam via 

a fixed 25 mm diameter roller. 

displacemmnt 
transducer 

C 

cross-head of 
testing machine 

a 

roller support 

beam saddle 

rectal- lar 
hollow 

section. 

Figure 3.21 

Test rig for si. rrply supported beams. 

In some of the deeper beams the deflections involved are 

very small and secondary effects from other ruvemmnts in the 

general arrangement of the rig beeonm increasingly significant. 



Plate 2 

Cerlf-r. al ýýs? arir, crr;.:: unt for be, -. in tests. 
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Assessing such effects and making the necessary corrections called 

for extreme care. 

The vertical deflection recorded at point A in Figure 

3.21 by a displacaTent transducer mounted at C contains the 

following cczrponents, 

(a) The vertical deflection of the beam 

(b) the embedment of the beam on the roller supports 

(c) the relative displacement between the saddles and point 

C (the rectangular hollow section showed a slight 

tendency to hog under load). 

To obtain the true deflection of the beam it is necessary to assess 

the components (b) and (c) and apply a correction to the actual 

measurement recorded by the transducer. In order to obtain the 

embecxrent the displacement of B relative to D was m ured, and 

measurement of the displacement of C relative D gives the hogging 

movement of point C. 

Pure bending tests were carried out on scene of the beams 

to determine the value of Young's modulus. The arrangerent used 

for these tests is shown diagrairmatically in Figure 3.22. 
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0- 

half roller 

saddles and 
er supports 

F 50 80 -- - 80 +- 50 

Figure 3.22 

General arrangement for pure bending tests. 

Lower beam is in a state of pure bending between 

the saddle supports. 

3.9.2 Experimental results 

A summary of the dimensions of the beams, the displacement 

measurer nts and corrections is given in Table 3.8. 

0 
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h (Tran) 

(1) 

I- (nm) 

(2) 

Displacerrnnt per unit 

load (mn/N) 

(5) 

(2) x (4) 

(5) 

133 

measured (3) corrected (4) 

10 1.925 x 103 69: 1 x 10 3 69.1 x 10 3 133 1.0 

20 15.92 x 103 8.67 x 10 3 8.65 x 10-3 138 1.035 

30 52.0 x 103 2.72 x 10 3 2.70 x 10 3 140.5 1.065 

40 123.0 x 103 1.18 x 10 3 1.162x103 143 1.075 

50 240.3 x 103 0.64 x 10 3 
0.617x103 148.5 1.117 

60 418 x 103 0.38 x 10 3 0.358x 10 3 150 1.13 

70 661 x 103 0.27 x 10 3 0.246 x 10 3 162.5 1.22 

80 991 x 103 0.20 x 10 3 0.174 x 10 3 172 1.29 

90 1401 x 103 0.15 x 10 3 0.125 x 10 3 175 1.315 

100 1920 x 103 0.12 x 10 3 0.097 x 10 3 187 1.405 

Table 3.8 

Surrinaxy of experimental results for sinly supported beam 

carrying central point load. 

Frcrn the pure bending tests an average value of 2.7 x 103Iýi/rr.? 

was obtained for Young's mclulus, and 0.38 for Poisson's ratio. 

There are two ways in which the experinrntal results 

can be ocerared with the theoretical values. Firstly, for each 

beam, frorna knowledge of Young's modulus and the span, the deflection 

which would be given by elementary bending theory can be 

calculated and. the present results expressed as a ratio of these. 

The main disadvantage of this rrethod is that it is highly sensitive 

to any error in the span measurements. 
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For exarrple, in the pure bending test an error of 1 nn in each 

of the four parts of the, span would lead to an error of about 

6.5% in the, value finally obtained for Young's rxxlulus. Setting 

up supports with a relatively large radius roller to an 

accuracy of 1 nm is extremely difficult. 

An alternative method is used here, in which the actual 

values of the span and Young's i näu lus do not need to be ]moo-m, 

providing they are constant for all tests, which they are in this 

case. If wo is the central deflection predicted by elementary 

bending theory for a beam of second mmcnt of area I, carrying 

a central point load P, then for any beam having a material of 

the same Young's m Zulus and Poisson's ratio and the same span 

öI 0=k= constant 

If w is the deflection measured experimentally then 

w-_ (W /P) 
_ wi 

wo . (W0/P) kP 

If it is asswved that for the 10 non beam the shear deformation has 

negligible effect on the deflection (it actually accounts for about 

0.4% of the total deflection) then for this beam 

P= 
WP 

i. e. k= WI 
10 

where the suffix refers to the depth of the beam. 

Therefore for any other beam of depth i 

W=tP. 
W0 

P) 10 

giving the required ratio of experimental deflection to that given 

by elementary bending theory, without involving the errors 

associated with span nx asurement. 
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The final cols of Table 3.8 and the graph of Figure 

3.23 show the results presented iri this manner, the experirmntal 

results are oca ared with the theoretical values predicted by 

equation (3.19). Close agreement is found, all the experinr-ntal 

results lying within 3% of the theoretical values. 

Table 3.9 gives a summary of the strain measurements. 

h (zrm) Strain per 

unit load 

lN 

(Strain per unit 

load) x h2 

10 62.2 6220 

20 14.7 5990 

30 6.67 6010 

40 3.78 6050 

50 2.45 6120 

60 1.64 5920 

70 1.21 5950 

80 0.905 5980 

90 0.718 5820 

100 0.595 5950 

Table 3.9 

a 

Strain measurements on the lower face of the beans 

at mid-span. 

For beams of constant span, breadth and Young's modulus, 

the strain per unit load at mid-span on the lower face will be 

proportional to 12 if the distribution of longitudinal strain is 
h 

linear. 



- 132 - 

Theoretical 
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Figure 3.23 

Central deflection ratio 

Sirply supported been carrying 

central point load. 

0 Experinontal 
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-i 
hl 
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Experimental Results 



- 133 - 

Although no theoretical results are available for this load case, 

it was found in Section 3.2.1 that for the uniformly loaded bean 

longitudinal stress at the extreme fibres was 2.4% greater than a 

linear distribution would predict when h/ L=0.3. obviously a 

variation of the saner order would be expected in the point loaded 

case considered here, and since this is within the range of normal 

error of strain gauge work the ratio h2 (P) would be expected to be 

more or less the same for all values of h. This is borne out by 

the last column of Table 3.9 where values of this ratio are given. 
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3.10 Conclusions 

Detailed discussions and conclusions have been included 

at the end of the sections dealing with existing work (Section 3.2.4), 

the new theories developed in this work (Section 3.6) and the 

application of numerical methods (Section 3.8.3). It merely 

remains here to summarise the principal conclusions in general 

tezms. 

(a) The theories developed here are approximate in that the 

warping due to shear has been replaced by an average 

shear distortion. The error introduced by this assunption 

in the estimation of the overall deflection is found to 

be insignificant. 

(b) Both approaches used here (the partial deflection rothod 

and the theories based on Reissner's assertions) have 

identical effect in their treatxrent of deflection due to 

shear defor ation. 

(c) Theories based on Peissner's assertions are shown to deal 

very adequately with the modification to overall deflection 

caused by transverse direct stress. 

(d) Scare changes frm the classical distributions of stress 

resultants occur in certain cases and the theories 

developed have been shown-to be capable of taking these 

into account. 

(e) The modified Reissner theory, developed specifically for 

later use in connection with plate problems, has been 

iýl 
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shown to be fundamentally amenable to solution by 

finite difference and localised Rayleigh-Ritz rethods, 

although some difficulties have been found to be 

associated with concentrated loads. 

(f) For one load and support case experimental tests have 

confirned the theoretical results to within the limits 

of experinental error. 

s 
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QIPTER 4 

SHEAR DEFOPMTIC 1 IN SQUARE PLATES 

1` 
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4.1 Introduction 

The assurr tions which Feissner made in his plate theory 

have been outlined in Section 1.2.1, and the limited range of 

solutions noted in Section 1.2.2. The purpose of this chapter is 

to develop two further theories, one Employing the partial 

deflection method and the other as a modification to Reissner's 

theory in the manner adopted for beams in Section 3.5. The 

possibility of applying nurexical methods to these two theories, 

and to Reissner's theory itself, are then to be investigated. 

After a simenazy of the principal formulae associated 

with Reissner's theory it is coared with various other theories 

and approaches. A modification to this theory is presented eich. 

is in the form of a sixth order system of partial differential 

equations in terms of transverse displacement only, so that the 

use of a stress function is avoided. An application of the 

method of partial deflectionsto homogeneous plates is then also 

developed. 

Next these three theories are assessed in relation to 

each other and some general observations made concerning their 

respective fundamental theoretical bases. 

Nuirerical methods are then applied to obtain solutions 

to a range of problems. In one case it is possible to assess the 

accuracy of these solutions by MrParison with an existing series 

solution to Peissner's theory. The problems associated with the 

application of numerical rethods to each of these three theories 

are discussed and their potential evaluated on this basis. 
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A series of experimental tests for one support and loading 

case is described, which indicates the extent to which the 

theoretical predictions are verified practically. 

i 

t- 
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4.2 Reissner's theory 

The basic assumptions and derivation of Reissner's 

theory have been summarised in Section 1.2.1, and it is only 

necessary here to state the principal results. 

The shear deformation causes an additional rotation 

of sections initially normal to the neutral plane, and these 

sections are also distorted by shear, so that their average 

rotations are given by 

aW 12 (1 + ý) OX =' äX + 5Eh Qx (4.1) 

aw 
+ 

12 (1 + J) (4.2) 
y Z-y 5Eh 4y 

The bending and twisting mints may then be expressed in terns 

of these average rotations as, 

24X = D(aaX + Ja + 
6JSEh+ J) (4.3) 

Ii- DI 
laoy 

+ -ax + 6J5Ehq (4.4) 
lY 

D(1-') (0x 
+ 

aiyý 

Y-2ayx 

These relationships reflect two features of Reissner's theory, ' 

(a) the bending and twisting t: rnmnts are no longer 

proportional to neutral surface curvature$and twist, 

(4.5) 

since a part of these is na-7 caused by shear 

(b) the final terra in equations (4.3) and (4.4) shows that 

an additional curvature is caused by transverse direct 

SASS. 
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Substitution of (4.1) and (4.2) in (4.3) - (4.5) and 

then of the resulting expressions in the plate equilibrium 

equations (1.11) and (1.12) leads to the fo1]x i. ng 'relationships 

22 
QX -0 QX D 

aa X+ 

a3w 
2) - 10(1 -h V) 2 x aXay 

2 
0_ 

2A 
4 - -D (ö3w+ 3 

ä 3w 
) l 

2 
-h 10 (1 -V) 

22 (4.7) b y y ay ay y 

These expressions and the remaining equilibrium equation (1.10) are 

satisfied by expressing the shear forces in tear of transverse 

displacement and a stress function as 

aX ZXay 

Qy =- D(a33 + 
a3 

2 (4.9) w -P 
By . öx äy 

a7x 

Fence the final expressions for the bending and twisting µm 

MD (a2w 2 +V 
a2w) 

2 
h2D ö4w 

+ 4 
a4w 

) 2 2 + 
h2 a-- 

- 
qh2 V (4.10) 

X ax ay 5 ax ay ax 5 3xuy 10 1-V 

äw 3w h2D a4w a4w h2a2w qh2 y D MY 
2)y2 

+V ) 
ax 

( + 9 ay4 ax2ay2 
+ 5 8xay (4.11) 10 1- 

a h2D Al a4W _ h2 w May= (1-V)Daxýy+ 5(3+3 10(; 2 2) (4.12) 
öx ay öxäy by ax 

The governing equations for the transverse displacement and the 

stress function are then found to be 

2W 
_ _q _ 

h2 (2 - J) Lq 
D. 1OD(1 - J) 

(4.13) 

=0 (4.14) and 
10 

Y 
h 

so that the system of equations is fourth order in w and second order 

in /, that is sixth order overall. 
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4.3 Conparison with other theories and approaches 

4.3.1 Libove and Batdorf (23) 

This theory is presented for sandwich plates in teens of 

flexural and shear stiffnesses; curvature due to shear is included, 

but not that due to transverse direct stress in line with the normal 

sandwich plate assertion of transverse incompressibility of the 

core. Bending and shear stiffnesses, Dn and Sn respectively, are 

defined as 

Dn =-I /a w 
when Mn acts alone 

än2 

Sn = Qn/ rn when Qn acts alone 

where, in the original application to sandwich plates a"n is the 

mid-plane slope aw/ ön. The resulting expressions for rrom nt: 

and shears are not given in. a form which can be directly cared 

with Eeissner's equations, but both sets can be reduced to a 

conitnn forniat as shown in Table 4.1. 

If Libove and Batdorf's theory were to be applied to 

homogeneous plates an appropriate value for the shear stiffness, 

S, would have to be chosen. Clearly the normal sandwich plate 

assertions would not be valid and a value of S related to 

neutral-plane slope alone could not therefore be used. If an 

average rotation of the Reissner type is chosen so that the shear 

strain energy produced by the shear force acting through the 

average rotation is the same as that produced by the actual 

distributions of shear stress and shear strain then 

5Eh S 12(1 + V) 
(4.25) 

( this basis the ratio of bending stiffness to shear stiffness is 
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h2 
5 (1 - J) 

The two sets of equations in Table 4.1 can now be 

compared using this value for the ratio D/S and the following 

points noted: 

(a) the expressions for the bending moments MX and My as 

(4.26) 

given by the two theories are the same except for an 
2h 

additional teim 1 (1 
q 

V) in the Reissner equations. 

(b) the expressions for the twisting ant N are identical 

(c) the expressions for the shear forces QX and Qy are the 
2 

same except for an additional tezm 10(l 
h_ 

V) 
; in the 

Peissner equations. 

If the origin of these additional terms in the Reissner equations 

is traced it bect s clear that these are due solely to the 

inclusion of transverse direct stress, and that the two theories 

are the saire in the modification resulting from consideration of 

transverse shear. The difference in the equations for shear forces 

would in any case vanish in the case of uniform loading. 

4.3.2 Ambartsurlyan (19) 

As mentioned in Section 1.2.3.4 the assumptions and 

results of the general theory are identical to those of Reissner 

with the effects of transverse direct stress anitted. For example, 

it can easily be shown that Ambartsumyan's equations for bending 

and twisting irai nts are identical with those derived from Libove 

and Batdorf's equations, (4.15) - (4.17), which, as has just been 

dennnstrated, are those which would result from Reissner's theory 

if the trz terms are omitted. Further it ray be shown that the 

three equations of equilibrium are the same as those of Libove and 

Batdorf. 
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In the particular theory, when the effects of transverse 

direct stress are included, Ambartsuityan himself shows that his 

results are identical with those of Reissner. 

In one case of the general theory the consequence of 

selecting a fourth order rather than parabolic distribution of 

shear stress is examined and found to make an aln st negligible 

difference to the values of deflection obtained. 

4.3.3 Love (13) 

In his theory for moderately thick plates, derived 

initially for plane stress problems, Love includes the 

deformation due to shear, but the resulting expressions for the 

shear forces are the usual classical form, and hence the 

governing equation for deflection is the normal bihamonic. The 

equations for bending and twisting n=rents are, however, modified 

by the consideration of shear, and the resulting expressions are 

in terms of transverse displacerrcnt alone. 

4.3.4 Finite elen-ent approaches 

4.3.4.1 Clough and Felippa (30) 

One approach which has been used for the inclusion of 

shear deformation in the finite element solution of plate bending 

prablens is based on the usual 12 terra polyncaria1 which gives 

three degrees of freedam at each node. An exarple of this approach 

is that of Clough and Felippa, but from the discussions to 

references (31) and (24) it is evident that very similar methods 

have been used elsewhere. 
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The general technique is to maintain continuity of 

transverse displacement and rotation of a plane initially normal 

to the neutral surface at the interface between elements. In 

Reissner terms this is equivalent to the three degrees of freedc*n 

at a node being w, c& , and 0, 
y. 

This means that there is a 

discontinuity in the slope of the neutral surface between 

elements, so that a typical element interface would be as-shavvm 

in Figure 4.2. Further, only two conditions can be satisfied 

at each boundary. 

Figure 4.2 

Continuity conditions between e1erents. (Clough and Felippa) 

No extensive numerical results are given, but for a 

si aly supported square homogeneous plate with a thickness equal 

to 1/10 of the span increases in deflection due to shear 

distortion are reported of 10% for a uniformly distributed load rk 

Image removed due to third party copyright
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and 294% for a concentrated load at the centre. It may be noted 

in passing that the first of these figures is approximately 

twice the increase which series solutions to Reissner's theory 

predict, while the second would appear to be out of all 

proportion. No comment is made about this value, but it could be 

due to a serious overestimate of the deformation local to the 

concentrated load,. or to ill-behaviour of the system of equations 

which was not detected. 

In the discussions to references (31) and (24) various 

writers have described how this general method has been applied 

to sandwich plates, and close agreement with series solutions 

is reported for a range of shear stiffnesses. Their results, 

however, only cover Uniform loading and thus do not shed any 

light on the strange result obtained by Clough and Felippa for 

concentrated loading. 

4.3.4.2 Pryor, Barker and Frederick (32) 

Reissner's theory is used in this case with two 

simplifications: 

(a) terms arising from transverse direct stress are omitted 

(b) plane sections are assumed to remain plane after bending, 

so that shear distortion is prevented and the rotations 

Ox, Oy of planes initially normal to the neutral surface 

are actual and not average values. However, average 

shear strains are taken in calculating 0 although the 

basis for averaging is not stated, and so the net 

effect may in the end be the same as taking average 

rotatims. 
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Two additional degrees of freedom are permitted at 

each mesh point, namely yx and yy, the average shear strains, 

giving 5 degrees of freedom in all, w, ,y. The 
xy Yx y 

usual 12 term polynomial is deemed to be adequate and this 

results in linear variations of yx and yy in the x and y 

directions so that continuity of these terms is achieved along 

the elerent interfaces, while s and 0y are continuous only at 

the mesh points. 

Results for the central deflection of a simply 

" supported plate carzying a uniformly distributed load are ccmpared 

with those obtained by Salerno and Goldberg in a series solution 

(6), and close agreerent is found for values of thickness ratio 

h/ L up to 0.25. Care should be taken in comparing the two sets 

of results, however, since the series solution contains the 

effects of transverse direct stress while the finite element 

solution anits them. This would be unimportant for small values 

of Poisson's ratio but Pryor, Barker and Frederick's results 

appear to be for a value of 0.3, and omitting the effects of oZ 

in this case should lead to deflections which are greater than 

Salerno and Goldberg's by up to about 5%, whereas they are 

actually slightly smaller. 

In the cases of a concentrated load there is no basis 

for cm-parison for values of h/l, in excess of 0.1. Up to this 

value the deflections are considerably in excess of those found 

by Smith (36), who argues in the discussion that the author's 

solution overestimates the true deflection for this loading case 

due to incoitDatibility of the elements. 
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4.3.4.3 Smith (33) 

Smith has developed a finite element xr thod based on 

Iove's theory which is notable for the fact that it uses 

seventh order displacerrent functions and 10 generalised 

displacenents per node 

aW aw Bw a2w w a3w aw a 3w aw W' -DX' ay' 21X2' 
W, 

äx3'"öx2ay' ÖX 2' Öy3 

For a plate with a thickness ratio h/L of 0.1 the following 

increases in deflection over those given by classical theory 

are found, 

simply supported uniform load 3.5% 

central point load 4.0% 

clamed uniform load 8.5% 

. central point load 7.0% 

Referring to his own results in the discussion of reference (32) 

Smith regards his deflections due to point loads as being 

underestimates of the true values. 

4.3.5 Conclusions 

A wide range of theories and approaches for the 

inclusion of shear deformation in plate problems has been 

proposed, scene of which have been discussed here. Although it 

is not possible to classify than in a systematic manner some 

useful observations can be made: 

(a) None of the approaches considered offers any fundamental 

improveimnt on Peissner's theory, which must therefore 

still'be regarded as the best of its type available frau 

a theoretical point of view. 
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(b) Fran the standpoint of shear deformation alone the 

Libove and Batdorf approach of curvature superposition 

can lead to the same formulae as Reissner if an 

appropriate shear stiffness is chosen. 

(c) Among the finite element solutions some considerable 

variations occur in the results for deflections, 

especially for concentrated load. 
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4.4 A modification to Reissner's theory 

As has been mentioned before the usual formulation of 

Reissner's theory in tem. of transverse displacement and stress 

function i oses a ntrber of difficulties in-obtaining a solution. 

Hence a modification to Reissner's theory has been developed which 

is expressed in terms of transverse displacement alone. 

The basis of this modification is to include in the 

various equations and relationships only those term which are 

independent of the plate thickness, h, or of order h2; all terms 

containing higher poa1ers of h are excluded. If equations (4.6) 

and (4.7) are differentiated to form expressions for pox and 1. 'ý5, %, 

and these are substituted back into (4.6) and (4.7) and terms in 

h4 and higher powers anitted, then the new expressions for shear 

forces beccme 

(ö3w+23w _h2(2-V) D (öw+2aw +a 
5w 

ö x3 axay2 10(l - v) äx3a ,2 axöyi) 
(4.27) 

-D(ä3w+ 
ö3w ) _h2(2-D (äw+2 aw 

+a5w ) (4.28) Qy 
ay3 öx2ay 10(1 - v) öy5 öx2öy3 ax4ay 

Substituting these relationships for shear forces in equations 

(4.3) - (4.5), noting (1.10), (4.1) and (4.2) and again omitting 

terms in h and higher degrees, the following expressions for 4 

bending and twisting mrunents result, 

ö2w Tw h2D N= -D(ý +V 
x äy2) 10(1 - V) 

-D(a2w +Va2w 
h2D I 

ay2 -2 10(i - v) 

a4 42 
+V2 

44 ((2 
- J) 

ax 
ý+a 2--- 2 

ax äy by 
a4w (2-V + 2+Ja 

4a 

4 ax ay ax ay 

(4.29) 

(4.30) 

(4.31) (1 -V) 5J2 
2 

7+h5D 
aý3 

+ 
äw 

3 CaX a ax Y aY 

f 
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The sixth order governing equation for w is found by 

substituting (4.27) and (4.28) in (1.10) and is 

2 
Lý2w +2 

(2 
_ J) 

ý3w =D (4.32) 

The main part of this work is limited to a consideration 

of homogeneous plates, as is the original statement of Reissner's 

theory, but a developnt of the above modification in an 

anisotropic foun is given in Appendix B. 
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4.5 Solution by the method of partial deflections 

The basis of this method has been outlined in relation 

to beams in Section 3.3. The process can easily be extended to 

the study of plate problems, and the fundamental relationships 

for displacements in stress resultants are: 

w= wb + WS (4.33) 

a2w a2w 
M = -D (- 

2+V b 
4 x -- 2 ) (4.3 

ax ay 

a2w aw 
b my = -D( 2 +J 2b) 

(4.35) 
äy x 

a2w 
Nýy= (1 -V )D-XZy (4.36) 

aw 
s QXS 

x ax (4.37) 

aw 
Qy = Say s (4.38) 

Ccznbining the equilibritun equations (1.11) and (1.12) and noting 

(1.10) leads to 

D2M 
y 

a2rý a2Mxy 
+ -2 _ ax2 ay2y 

(4.39) 

Substituting from (4.34) - (4.36) leads to the usual bihammnic 

equation 

0 wb 
=D (4.40) 

which is in terms of the partial deflection wb rather than the 

overall deflection. 

,ý 
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There are now two possible approaches. The first amounts 

to a simple superposition of deflections due to bending and shear, 

wb and ws having their in separate governing equations and 

boundary conditions. The governing equation for ws is found by 

substituting for QX and Qy from equations (4.37) and (4.38) in 

(1.10) giving 

Ows = -S (4.41) 

and it follows fran (4.40) and (4.41) that the relationship 

between wb and ws may be expressed as 

Aws = S02wb (4.42) 

or ws =-S Owb +C (4.43) 

where C is an arbitrary constant. This gives rise to the second 

approach in which the governing equation is written for wb only, 

the boundary equations are written in terms of mb and ws together, 

and ws defined by equation (4.43). In this case ws will 

autcanatically take its boundary conditions fran those set for wb. 

Obviously the superposition approach can only be used 

when the boundary conditions imposed for ws coincide with those 

implied by equation (4.43), otherwise the boundary values of 

n . nts and shears will not satisfy the equilibrium requirements 

of equations (1111). and (1.12). The only type of boundary for 

which this approach is valid is a simply supported case, where 

Awb =O and hence frcan (4.43) ws is ccr stant along the boundary. 

This results in Qt =0 being the implied boundary condition and 

is ccnpatible with ws being set arbitrarily equal to zero. 
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The solution is therefore a siile superposition' of the 

separately assessed deflections due to bending and shear, with 

both vanishing independently at the boundary and the boundary 

conditions amounting to w= Mn =Ot=0. 

By contrast, at a claiped boundary Awb v0 and so ws 

will not be constant and hence wb and ws cannot separately vanish 

but only their sum is zero. 

The use of numerical techniques in applying this method 

to the solution of plate problen will be discussed in the 

following sections, where the shear stiffness will be defined by 

S= 5Q 
6 

for the reasons already discussed in the application to beams. 

A 
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4.6 Discussion and conclusions 

The place of the modified Reissner theory and the 
. 

partial deflection method can now be discussed in relation to 

Reissner's theory. From the above the following points ererge: 

(a) T e. form of Reissner's equations indicates that, in 

essence, it results in a superposition of curvatures 

due to bending, shear and transverse direct stress to 

give the total curvature at any point. The r. ified 

Peissner theory will therefore be the saare in concept. 

(b) The partial deflection method for simply supported 

boundaries aTmunts to a simple superposition of 

deflections due to bending and shear, but in other 

cases wb and ws cannot be given this sirple physical 

interpretation, and then they do not vanish separately 

at a rigid boundary. 

(c) The Reissner, modified Reissner and partial deflection 

theories are the same in their treatment of shear 

deformation, since the first two take an average 

rotation of a section initially norxr l to the neutral 

surface, thereby averaging out the distortion due to 

shear, while the partial deflection method takes an 

overall shear stiffness which defines an average shear strain 

through the depth of the section, and hence the same 

net average rotation. 

(c) The Reissner and modified Reissner theories, being sixth 

order systems, enable three conditions to be satisfied 

at each boLmdary, while in cases where wb and ws cam-lot, 
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be considered independently the partial deflection 

imethod permits only two. In certain circunstances this 

will lead to differences in the results, and the extent 

of these remains to be assessed. 

(e) Therefore, from a theoretical point of view, differences 

in results given by these three theories can arise only 

from the omission of transverse direct stress in the 

partial deflection method and fresn differences in the 

statement of boundary conditions. Other discrepancies 

which may occur in the numc- rical results can only be due 

to computational factors. 

ol 
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4.7 Boundary conditions 

Where a sixth order system of equations is under 

consideration three boundary conditions must be satisfied at any 

. 
boundary. Three support cases must be considered: 

(a) Free edge 

A free edge must be stress free at all points and will 

therefore require as boundary conditions zero normal 

and twisting moments and zero normal shear, that is 

Mn, IýIt = Qn =0 (4.44) 

Thus the Kelvin-Tait combination of Mnt and On into a 

single total shear n(=%- 
ant 

) is no longer 

necessary and each will be separately set equal to zero. 

(b) Simply supported edge 

In classical theory two boundary conditions are imposed, 

namely zero transverse displacc'rcnt and zero no=rml 

moment, 

w=Mn='0 (4.45) 

For the third boundary condition, either the tangential 

edge rotation, A, or the twisting nu ent, Mht, is set 

equal to zero. 

Timoshenko (1) conceives a simple support as a knife edge 

of the type shin in Figure 4.1. 
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support 

Figure 4.1 

plate 

Action of a sinple support. 

Such a support clearly prevents rotation of an initially 

vertical tangent about an axis perpendicular to the edge 

plane, that is 

ot=0. (4.46) 

Now in Reissner's theory this wcald be identical to the 

average rotation defined as 

Oaw + 12 (1 + d) 
(4.47) t IFE 5Eh 4t 

and as the first term is zero at a simply supported edge 

then 'Qt will also be 'zero. In fact this condition is 

automatically satisfied in classical theory, since Qt is 

given by 

Qt = D(? +W (4.48) 
at 

3 

an a2 t 
and both the derivatives are zero along the boundary, the 

first because w is zero and the second because the nonral 

ma lt is zero, requiring 02w/än2 to be zero. In theories 

in which shear deformation is included, haaever, 0=0 is 

valid as a third independent boundary condition because 
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the bending mttnt is no longer proportional to 

curvature. 

This type of support generates twisting rirnnts, rat, 

along the boundary, and analysis using classical theory 

also predicts such forces. Equilibrium is achieved 

only by applying corner reactions. 

Thus as an alternative third boundary condition, the 

twisting tr nt can be set equal to zero, 

Nnt -0 (4.49) 

It is difficult to visualise a physical support which 

would produce this set of boundary conditions since the 

only stresses it may generate are vertical shear stresses, 

and yet tangential rotation of initially vertical 

filaments must-be permitted. 

It seems unlikely that any practical simple support 

could be properly described by either of two possible 

sets of theoretical boundary conditions described. 

(c) Fixed edge. 

A fixed edge will prevent transverse displacement and 

rotation of a vertical tangent about both normal and 

tangential axes. Thus the boundary conditions are 

W= On = Ot =0 (4.50) 

In using Beissner type theories the rotations are average 

rotations, that is, distortion of tangents initially 

normal to the neutral plane may still occur, but in 
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such a way that the average rotations resulting are 

zero. As has already been observed in dealing with 

circular plates, and beams (see Section 2.3.2.1 and 

3.2.2) rotation of the neutral plane is not prevented 

by fixed supports, that is öw/ ön ý0. 

I 
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4.8 Finite difference solutions 

In this section techniques will be used to find 

solutions to square plate problems based on the partial deflection 

method, Reissner's theory and the modified Reissner theory. The 

mesh size used is 12 x 12 in all cases, and for dealing with 

syrmmtric loading and support conditions only a triangular portion 

foxming 1/8 of the plate need be considered, as indicated in 

Figure 4.2. 

Figure 4.2 - 

1/8 plate used for finite difference analysis of 

synmetrically loaded and supported square plates. 

Gaussian elimination was used for solving the resulting 

system of equations in each case, the details of which are 

discussed in Appendix E. 

4.8.1 Application of finite differences to the partial 

deflection method 

The equations to be used are shown in non-airmnsional 

finite difference form in Figures 4.3 - 4.6. A scriare . ̂resh of 
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non-dimensional mesh length P (- p/t = 1/12), and the 

normal central difference formulae are used. 

Since this solution is in ter s of two variables, 

wb and ws,. there will be two unknowns at each real mesh point. 

As the highest order derivatives of wb and ws involved are 4th 

and 2nd respectively, using the normal central difference 

formulation will involve values of wb at fictitious nesh points 

up to two mesh lengths outside the 1/8, plate region, but values 

of ws at only one mesh length away. The term 'fictitious' is 

used to noan external to the 1/8 plate region being considered; 

sore such mesh points lie within the boundary of the ccsrplete 

plate and are therefore not fictitious in the normal sense. 

dis is illustrated in the scheite of mesh points she in Figure 

4.7, from which it may be seen that 126 unknowns are involved. 

The equations to be solved for single supports are 
summarised in Table 4.2. ' 
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1 
P+ 

Fib 4.3 

Partial deflection i thud. 

W6 

Finite difference form of governing equation for. Wlb. 

1 
P2 

Figure 4.4 

Partial' deflection iothod. 

W= qL 
S 

qL 
D 

Finite difference form of governing equation for W. 
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Figure 4.5 

Partial deflection method. 
Finite difference equivalents for bending and twisting mo meets. 
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Figure 4.6 

Partial deflection r: etticd. 

Finite difference equivalents for shear forces. 
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Figure 4.7 

Finite difference mesh for the partial deflection method. 

'umber of unknowns 

Pub "28 real and 48 fictitious values 76 

W 28 real and 22 fictitious values 50 

Total rnunber of unknowns 126 
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0 

Equation Number 

Governing equation for Wb 28 

Governing equation for Ws 28 

Boundary equations on AB W=0 7 

0 7 

Oy= 0 6 

Synmtry equations for Nb 33 

Symretry equations for Ws 15 

Additional equations: Ws =0 at riesh point 97 

and extrapolation along CB to find Wb at 109 2 

Total 126 

Table 4.2 
. 

Equations for the partial deflection method. 

The following points should be noted: 

(a) The third condition on AB at Hash point 31 is automatically 

satisifed by the statement of symnetxy about OA, and 

hence this equation is only written at the remaining 

six mesh points on this boundary. 

(b) To obtain a solution it is necessary to fix the value 

of Wb or Ws at one point. In this case Ws was set 

equal to zero at mesh point 97, the corner of the plate. 

(c) The governing equations for Wb and. 6Vs, the boundary and 

symnetxy equations and the fixing of one point give a 

total of 125 equations leaving'one further equation to 

be found, and this can be done in one of two ways. 
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Firstly the need for one unknaan can be eliminated by 

the use of backward differences (for ex 1e, Wb at 

mesh point 109 could be eliminated by the use of 

backward or off-centre differences for some tern's in 

the equation A Wb = ciL3/D at point 97). Alternatively, 

an additional equation can be formed by extrapolation 

to determine a fictitious value of one variable. This 

was found fron a progrzur¢ning point of view to be the 

simplest method, and wb at mesh. point 109 was 

determined by extrapolation along the diagonal 0B. 

This sets out the procedure for a superposition 

solution. When this is not applicable equation (4.50) replaces 

the governing equation for Ws, and fictitious values of tIs will 

no longer be required, so that the total nurber of equations is 

reduced to 104. 



- 168 - 

4.8.2 Application of the finite difference method to Reissner's 

theoxy. 

The non-dimensional fours of the equations used in this 

case are shown in Figure 4.8 - 4.10. The governing equation for 

W for unifoni loading is the usual bihanronic, and is the same 

as that shcwn in Figure 4.3 for Wb. 

The scheme of mesh points used in this solution is 

sham in Figure 4.11. There are 150 unknowns and the equations 

used to determine these are summarised in Table 4.3. 

Equ ation Number 

Governing equation for W 28 

Governing equation for ý1 28 

Boundary equations on AB: W=0 7 

mx=0 7 

95y='Oor M 
_=0 ý1' 

7 

Symmetry equations for W 46 

Synmtxy equations for IJ 24 

Special equations: W=0 at mesh points 108 

and 119, and extrapolation along OB to find 

W at mesh point 109 3 

Total 150 

Table 4.3 

Equations for Peissner's theory. 
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The following points should be noted: 

(a) Throe additional equations are required in this case. 

It is permissible to use W=0 at mesh points 108 and 

119 on the grounds that along the line AB W=0 and 

thus all derivatives of W with respect to Y are zero 

at all points including the corner. The form of the 

classical finite difference equation for I. =0 would 

autcamatically establish this but the form used here 

does not and so these zero values may be stated as 

separate equations. The third additional equation is 

again extrapolation along OB to establish the value of 

W at mesh point 109. 

(b) It is not necessary to give an arbitrary value to Y 

at one point because the governing equation does not 

contain only its derivatives but I1 itself. 

(c) The finite difference forms of the equation-, Oy =0 or 

MXy =0 are not syrrn tric about a line X= constant and 

hence these equations are not autanatically satisfied 

at mesh point 31 by general syim try about QA. Hence 

the third boundary equation has to be applied at all 

7 mesh points fron A to B, in contrast to only 6 in 

the previous case. 

(d) Not all the fictitious values sharan in Figure 4.11 are 

strictly required in order to solve the governing 

equations; the values of W at mesh points 34,46,58, 

70, '82,94 and 106 and of V at 35,47,59,71,83 and 

95 are required only for subsequent calculation of- 
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bending and twisting iroments along the diagonal OB 

if the usual finite difference forn are to be used. 

Similarly, when the third boundary condition used is 

Oy =0 then the values of W at mesh points 110,118 

and 120 are not required. 

However since all these values are governed by syrt try 

relationships it is convenient to include them in the 

analysis. 

I 
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4.8.3 Application of the finite difference rthod to the 

modified Reissner theory. 

The non-dininsional finite difference form of the 

equations required in this case using the normal central difference 

formulae are sham in Figures 4.12 - 4.14. 

Farmnation of these finite difference molecules shows 

that for certain values of H2 large differences in the magnitude 

of the various coefficients in a particular molecule can exist. 

While this would not be a disadvantage if the large coefficients 

lay on or near the leading diagonal of the solution matrix and 

the smaller coefficients further away, the nature of the set of 

equations involved in a finite difference solution is such that the 

reverse will often be true, with the possibility of illconditioning 

in certain cases. The general form of the equations involved here 

is 

fl + i? f2 = constant (4.51) 

where ¬1 and f2 are functions of derivatives of W, and from 

equations (4.27) - (4.32) it may be seen that fl contains lower 

order derivatives than f2. 

Now the usual central difference forms used so far are 

of order of accuracy (mesh length) 2 that is they contain an error 

term of order p2, where p is the mesh length, but rrore accurate 

fonts can be derived which will always involve additional mesh 

points and'thus enlarge the finite difference molecules. It was 

thought that by using finite difference forms of order of accuracy 

p for those derivatives contained in f, of equation (4.51) the 4 
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numerical irrbalance in the magnitude of the coefficients could to 

some extent be redressed, the only constraint being that the 

resulting irolecules should not involve any mesh points other than 

those used in Figures 4.12 - 4.14. The reason for this last 

condition is that otherwise additional fictitious points would be 

introduced, with no further equations available to enable their 

values to be determined. This meant that not all the derivatives 

contained in f1 could be written in a form where all the finite 

difference equivalents were of order of accuracy p4. In song cases 

as 
ae 

XBY2 
and 

ax äy 2) a mixture of p2 and p4 
öx2dy äöy 

accuracy 

terms were used in such a way that the difference in magnitude 

between the coefficients of a particular molecule was kept as small 

as possible and no points additional to those of Figures 4.12 - 

4.14 were introduced. 

The derivation of a typical finite difference equivalent 

of order of accuracy p4 is given in Appendix C together with 

molecules for this and the other derivatives involved. the actual 

forms of the finite difference equations finally used are shown in 

Figures 4.15 - 4.17. 

Figure 4.18 shows the finite difference mesh used for 

this theory, from which it can be seen that a total of 106 un3n 7n 

values of W are involved. The equations to be solved for sircple 

supports are sham in Table 4.4. 
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I 

Equation Nturber 

Governing equation for W 28 

Boundary equations on AB: W=0 7 

Mx 0 7 

y =O orMY= 0 6 

Synmtry equations 55 

Additional equations :W =0 at mesh points 

140,153 and 166 3 

Total 106 

Table 4.4 

Equations for modified Peissner theory. 

The following points should be noted, 

(a) Because of general syrrnmtry about OA the third boundary 

equation on AB is autcaratically satisfied at nosh point 

49, and hence is used as an independent equation only at 

the remaining mesh points on the boundary. 

(b) 
-Three additional equations are required in this case. It 

was found that the nature of the equations did not 

autcsnatically produce zero values for the fictitious 

values of W on A3 produced at rah points 140,153 and 166. 

In order that all derivatives of W with respect to Y 

should be zero at A these three values were set equal to 

zero, giving the additional equations needed. 
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4.9 Localised Rayleigh-Ritz solutions 

In this section the means by which localised Rayleigh- Ritz 

techniques can be applied to the rodified Raissner theory and the 

partial deflection method will be described. 

4.9.1 Application to the modified Reissner theory 

On the basis of the conclusions reached in Section 3.7.2 

when discussing the application in connection with beams, displacement 

functions giving continuity in derivatives up to third order were 

selected. In the energy function all terns in h2 and those tents in 

h4 arising from the expressions for bending and twisting n ent were 

included. The'energy function is then cc p1ete with respect to these 

stress resultants. 

The displacement in a local region is defined by the following 

64 teen polynomial 

w= al + a2t+ a39 + a4c. 
2 

+ a5Eq + a67 
2+ 

a7& 
3+ 

a8.29 + a9C 72 + , 1093 

+ all&4 + a121*39 + a13,29 
2 

13 , 
292 

+a 14E 93 +a 1594 

5532eg4 
+a16t +a17Zrý+a1837 +a19 rý +a20 +a 219 

+ a22e + a2A + a244492 + a254393 + a26429 + a27t75 + a281i6 

+a E7+a ý6 +a 052+a t. 43+a e34+a 5+a 6+a 7 
29 30 31 32 33 9 34e 35 7 369 

+a X77+a 62+a X593+a 4+a 395+a 26+a ßg7 37 38C 39 40 41 42t: 9 43 

72 
+ a444 

63 
+ a45ý 

54 
+ a464 9 ... + a47 

45 17 36 27 
+ a48ý ýj + a49E 

+ aX73 50 +a c64 51 +a X55 
52 9 +a 53 

46 t% 37 
+a 54t 
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+ a55t 
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a56ý6rý5 + a57,5r16 + as8ý, 
4? 

+ a5ß X775 + a60ý'6r6 +. a61ý'S77 

76 67 
+ a62F, 9+ a631, i7 

77 +a641 

or w= [A] C, v] (4.52) 

This will give 16 degrees of freedom at each node, namely w, 

a2w ö2w a2w aw a3w ä3w ä&w a4w a4w a4w 

aJ , DEag a9 , aýa92 , aý3 , acTag 
, ae ' tl&ar3 

a5w aw 6 

aý3a72 'a 2a? 3 " a&3a9 

iI 

Y, 9 
q 

W 
"t 

Figure 4.19 

Plate region-n for localised Rayleigh-Ritz solution. 

For the local region n shc, in in Figure 4.19 the 64 coefficients 

[Q] giving the 16 degrees of freed= at each node are related to the 
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coefficients [A] by 

[A] 
= 

[B] [Q 1 (4.53) 

The coefficient of the 64 x 64 matrix [B] are calculated fran those 

of the matrix [B] used for beans in Figure 3.16a by the method given 

. 
in Appendix D. 

The expression for total strain energy was taken as 

equation (1.8) with the term OZ omitted. In tern's of the stress 

resultants this gives the strain energy function as 

U =2E 
f ý13 (M2 

_2-2M +2(12, 
Y 

+ 
12 (5Eh (QX 

+ Qy2 - 
15h (M 

{+ 
Pýi) dxdy (4.54) 

In teams of derivatives of w, including only those terms in h2 and h4 

specified above the strain energy in a region maybe written as 
11 

U= 122 (1 -J 
2) (() 2+ caw) 22 (1 +)2 

2Eh3a4 

f1a2a2 

oha 
00 

(ö3w) 2+ (8 
w) 2+2 a3w Al 

+2 cT3w ä3w 
+( + a3W 2+ Ö3w 2 

(333223l 

ý aq aý, aýarý aý, aq aýaý ý aq 
4 

+ 
r2a(2-V) 

(1-V )-V (aaw 

aa 

w+ ä2w öw 
+ (4c«i--V ((-j 

+ 
w) 3w 

4)Y, 2 a2a 2) ý, a 
+(2 av(1-V2)-v(ö2w 

a4w+ 2L7 a+ 4(1-V, 2) ((a w+ a4w )aw 
a2a4 a4ö2ý 

Y` 38 a3 a 

+ 2(1-1) (2-J2)ä (a4ý7)2 + (a4w)2 + 4J2(1-J oc2 
Ai ä4w 

44)44 aý a7 aý, aý 

+ 8(1-9)a2 
((ö4w 2+aw a4w 

+. 
ö4w a4w 

+ 2(1+ 2 
2a2 a4a 2a2 4a2 2, Y 

(a4w )2+ (a w)2+ 2V ̀ýw " 
4w 

dd 
3a 33 aý 9 aE aý at aq aR 
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h2 in which ' of = 
10(1-9)a2 

I 
+ 2_h2 
5a 

2 h 
5a 

(4.55) 

The analysis now fo11ais the pattern described for beams 

in Section 3.7.3. The strain energy'is expressed as 

UD2 ýýTýý =D24 QT [nTý]Q (4.56) 
2(1 -9 )a 4 2(1 -V )a 

the total potential energy evaluated as before and thenminimised 

with respect to each coefficient Q subject to the desired boundary 

conditions. The calculation of the displaýnt vector for a 

uniform load is discussed in Appendix D. 

In order to satisfy the minimum condition for convergence, 

narrely that continuity should be achieved for all derivatives up to 

and including one order lcwer than those contained in the strain 

energy expression, continuity of only the first 10 of the 16 

derivatives mentioned earlier is required. N erically it was found 

that atterpts to solve the equations using [B'`CB] as the 64x64 matrix 

were thwarted by loss of significance at about stage 42 of the 

elimination. However, when'the 6 coefficients from Q relating'to 

the derivatives at each node for which continuity is not 

necessary and the corresponding teens from [BTCB] were deleted 

the system proceeded to a solution without loss of significance, 

producing extrettly accurate results for very thin plates with 

a= L/2. Since only symetrical support and loading cases were 
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considered the nkr of equations to be solved is therefore only 

40. 

4.9.2 A lication to the partial deflection method. 

When using the partial deflection method the effects of 

transverse direct stress are ignored, so that the total strain 

energy due to bending and shear is 

U= 2ýf` 13 (MX2+My2-2VWIY+2(1+J) MxV2) 
J, J h\ 

+12(1+J) 
(QX2 

+ QY2 
] 

dxdY 
- 5h 

Substituting for these stress resultants fron equations (4.34) - 

(4.57) 

(4.38) and setting S= 5(1 - J)D/h2 as before, gives the following 

expression for the strain energy of a local region in terITS of 

derivatives of wb and ws, 

D112ö 
2(1 

wb 2 ow b2 2°Wb Vkb 

2a4 [ci J) ( 
öt2) 

+( 2) +2 V(1 
-J)`ö? äý ärß 

00 

ö2 
+2(1+V)(1-ý)2(wb)2+5(1+J)(1-J)2 

a w)2+ 
(---2) 2d d9 

a4a 
(a4 

a 7h '7 
(4.58) 

The highest order derivatives involved are second for'wb and first 

for ws, and hence the minimize degree of continuity required for wb 

is of slope, while ws need only be continuous itself and may be 

discontinuous in its derivatives. 

Appropriate displacement functions for wb and wS are then 

wb=al+a2j+a39+a4 
z+a5Z9+a692 

+ a7ý3 + a8,2 + a9t2 + a107 + allf- 
r7 

+ a12, r72 + a13493 

+ a14 
392 

+ a15 
29 3+ 

a16&393 
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(4.59) or wb = 
k] [&] 

öwb öwb ö_wb 
giving freedom to wb, 

w, 
and 

b 
at each node, and 

= al+a2ý+ocýrý+a4ý7 

or s= 
[AJ [�r7] (4.60) 

Thus a typical region will have a total of 20 degrees of 

freedcgn, and in terms of the associated coefficients CQb] and [Q5] 

[Ab] = [B 
b] 

['P-b I (4.61) 

and [AS] 
= [Bs] [Qs] (4.62) 

The coefficients of [Bb] and [Bs] are. given in Appendix D. 

The strain energy is then evaluated by 

DT 5(1 +-22T =( b+a QQ) 
2(1 \ 

[T] 
h 

[TcsBs] 

(4.63) 

and the solution proceeds in the usual manner. 
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4.10 Corparison of numerical results for deflection 

4.10.1 General a : rison: sirr ly supported square plate carrying 

uniformly distributed load. 

This case was taken as standard for ccinparing the various 

methods outlined previously, as a series solution to Reissner due 

to Salerno and Goldberg (6) is available. The results obtained 

are she 'n in Figure 4.20 for J=0 and J=0.3 and values of depth 

ratio h/t up to 0.4. They are presented in the form of a ratio to 

the results given by classical theory. 

The results obtained for the central deflection have the 

following general features: 

(a) Partial deflection rrýthod 

(i) The results obtained using finite differences and 

localised Rayleigh Ritz techniques are the sar, within 

the limits of corrputing accuracy, differing by less 

than 1% when P for the finite difference solution is 

1/12 and a for the localised Rayleigh Ritz solution 

is t/6. 

(ii) When V=0 the results are the sane as those given 

by the series solution to Reissner, but are larger 

than the latter when 9=0.3. This confirms the 

earlier conclusion that in adopting average rotations 

due to shear Reissaer's theory effectively simply 

superimposes bending and shear effects. In ignoring 

the effects of transverse direct stress, the partial 

deflection method overestimates the deflection when 

V #0. T. 
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The general extent of the disparity may be seen fron 

a typical set of values. For example, when V=0.3 

and h/(, = 0.3 the central deflection given by the 

partial deflection method is 146% of the classical. 

value, while the series solution to P, eissner gives 

138%. This excess is due to the omission of the 

effects of transverse direct stress. 

(iii) No catputing difficulties were encountered using this 

method for either the finite difference or localised 

Rayleigh-Ritz solutions. 

(b) Reissner Theory - Finite difference solution 

(i) P, eferenco to Figure 4.20 shows that this set of results 

always underestimates the deflection, the difference 

from the series solution being of the order of 6% when 

h/ C. = 0.3. 

(ii) The results lie on the smooth curves shin in Figure 

4.20 for all values of h/L investigated. 

(c) -Modified Reissner theory 

(i) Firstly, ccaaring the finite difference and localised 

Rayleigh-Ritz solutions for this theory it can be seen 

from the graph for J=0 that both give an overestimate 

of the deflection. These differ slightly in that the 

`localised Rayleigh-Ritz results follow the series 

solution up to h/L = 0.2 

while the finite difference results are always greater 

than the series values but do not diverge fran them so 

rapidly at larger values of h/L. 
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(ii) In the finite difference solution, as the value of the 

ratio h/f. changes there are scare coefficients in the 

solution matrix [A] which change sign and therefore 

there are values of this ratio for which a critical 

coefficient may became zero or very small, in which 

9 case a totally meaningless solution is obtained. 

(iii) In general the localised Rayleigh-Ritz results fit 

well to the 'smooth curve shown, while the finite 

difference results show a little scatter. 

(iv) In using finite differences no solution was 

obtainable for values of h/ L greater than 0.3. 

All the above results have been computed assuming that 

the boundary conditions are 

w=r =ot=o 
The third of these conditions can alternatively be replaced by 

Mnt =0 in the Poissner and modified Reissner theories, and in the 

formr case it was found to result in larger deflections, 

typically when h/I. = 0.025 and V=0 the increase in central 

deflection was found to be about 14%. However, it was found that 

this boundary condition produced. very rapid changes in the stress 

function p in the region of the boundary, and thus extremely large 

values of Qt along the boundary, a whole order or Imre greater than 

values of On. Since Qt would be zero here in the case of Ot =0 

being the boundary condition this solution has some unrealistic 

features at least numerically, and thus the deflection results 

should be treated with scare caution. 
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In general, the application of Mnt =0 as boundary 

condition seems to generate considerable problems nwrerically, and 

when used with the modified Reissner theory the resulting system 

of equations would not produce a solution which was acceptable 

fresn the point of view of boundary values of 'Zt. 

4.10.2 General comparison: silly supported square plate carrying 

a central point load. 

In dealing with a point loaded plate a very significant 

pattern emerges when the numerical results are cat aced. Considering 

each set of results individually in the first instance, 

(a) Partial deflection method. 

Both numerical methods gave identical results again, and 

the variation of central deflection with h/L for %7= 0 

and V=0.3 is shown in Figure 4.21. All results fitted 

exactly to the curves shown. 

(b) Reissner's theory , 
Attempts to obtain a solution, to the point loaded case 

by finite difference methods were totally unsuccessful. 

(c) Modified Reissner theory. 

(i) The finite difference method gave results which such a 

wide scatter that no clear trend emerged. 

(ii) The localised Rayleigh-Ritz method gave results through- 

out the range of values of h/C investigated, and these 

are shown for V=0 in Figure 4.21. Haaever, a serious 

underestimate of the deflection as predicted by the 

partial deflection method is found, the increase in 

deflection due to shear being little over half that 
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expected. Further, a fairly significant scatter in 

the results was found. 

4.10.3 General conclusions. 

Sane general conclusions can be made at this stage before 

investigating other support and loading cases. Fran the foregoing 

section it is clear that both the Reissner and rodified Reissner 

theories have a number of limitations in respect of the application 

of n merical techniques to them. There are two oorrron features: 

(a) In the case of uniform loading, although each method 

gives a consistent trend of results, same significant 

differences from the series solution are found. 

(b) Concentrated loading presents an extremely probler atic 

situation which presiurably derives fron attempts to cope 

with such teens as öQx/'bx which are theoretically 

infinite at the load, and even when Fourier representation 

of the load was used the variation of these texts between 

mesh points was still extremely large for a series 

representing anything near a. true point load. 

It was therefore concluded that the partial deflection 

method was likely to be the most generally useful technique to apply 

to other cases since the effects of bending and shear are 

completely separated except at certain boundaries, and the resulting 

systems of equations are perfectly behaved during computing. 

Attractive though the prospect of working in terns of a single 

variable may be, in numerical terms it would appear to be 

inpractical in cases of concentrated loading. 

=ý` 
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In considering results obtained using the partial deflection 

rrethod, it has to be r eyed that the effects of transverse 

direct stress are not included and that therefore when Jý0 an 

overestimate of the deflection will result, although this will 

amount to only a few percent even for relatively large values 

of Poisson's ratio and depth/span ratio. In estinating the 

deflection due to shear alone, however, it is as accurate as 

Rissner's theory and suffers no limitations in the application 

of numerical techniques. 

Further support and loading conditions are investigated 

in the following sections, in host cases using oy the method of 

partial deflections. 
I 

4.10.4 Square plates with clamped boundaries. 

Figures 4.22 and-4.23 show the results for central 

deflection for uniformly distributed loading and a central point 

load for values of Poisson's ratio of 0 and 0.3. 

In plates with clamped and singly supported boundaries 

the actual increase in deflection due to shear is very nearly the 

sane in both cases, but since the deflection due to bending is 

much smaller for clai ed boundaries the percentage increase due to 

shear is r much greater. 

4.10.5 Corner supported plate carrying a central point load. 

The results for central deflection for a square plate 

resting on simple supports at the corners and carrying a central 

point load are shvcim in Figure 4.24 and illustrate that the partial 

deflection method can equally well be applied to cases of point 

rather than line support, and to 4 case of free edges. - 

4 
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4.10.6 Square plate with two opposite edges simply 

supported and the other edges free. 

This is another case of scene interest since Salerno 

and Goldberg (6) indicate a series solution to Peissner's theory 

for it, although they do not include any supporting numerical 

results in their paper. The results for this case are given in 

Figure 4.25. 

f 
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4.10.7 Stunnary of central deflection results. 

The success in obtaining a solution in the range of 

problems covered in the foregoing sections indicates that any 

support or loading condition should be capable of solution by the 

partial deflection method. Neither the finite difference nor 

localised Rayleigh-Ritz method seems to have any particular 

advantage over the other in the cases considered here, but in 

general it may be that, bearing in mind the manner in which the 

problem is formulated numerically, the finite difference approach 

may be more convenient when force boundary conditions are imrosed, 

while the position is reversed when displacar nt boundary 

conditions obtain. From a corputing point of view the localised. 

Rayleigh-Ritz solution is nore compact. 
_ 

Fran the graphs of Figures 4.20 - 4.25 of the actual 

nur rical results it is possible to deduce algebraic expressions 

for the central deflection as given by the partial deflection 

method, and these are sunmarised here for the sake of 

convenience in Table 4.5, and the precise nature of the dependence 

upon depth/span ratio and Poisson's ratio can be clearly seen. 
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Boundary Loading Classical central Central deflection 

conditions deflection, wo ratio, w/wo 

Uniform load 0.00406 gL4/D 
2 

1+ (3.62 ý 
`2 

Simply 

supported 
Central point 

PL 2/D 0 01160 25 h2 1+ i' 

low . ( - V) ý2 

Uniform load 0.00126 gt4/D 1+ 12.35 h2 

Clarped 
Central point 

0 00560 P 
2 

D 
2 

1 +. 
19.0 

load . ( / V) 7 

Corner Central point J=0 2 

2 1+5.93 
h2 

supports load 0.0449 P( /D 

V=0.3 h2 
2 1+7.79 

0.0399PL. /D 

TWO 
opposite 
edges 
siply Uniform load 0.01309 q (. 

4/D 2 
1+ 1' 92 h 

supported, (1 - V) (. 2 
other 
edges free 

Table 4.5 

Surmiary of central deflection fonnulae obtained by the 

partial. deflection method. 

,. 
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4.11 Numerical results for stress resultants. 

4.11.1 Introduction. 

As might be expected from the consideration of beams, the 

codification to distributions of bending and twisting moments and 

shear forces are fairly insignificant in nbst cases. Hence great 

detail is not appropriate here, and a sumaxy of the general trends 

is adequate. However, it is necessary to distinguish between the 

changes caused by a different statement of boundary conditions, by 

shear deformation and by transverse direct stress. These aspects are 

now considered for each type of boundary in turn. 

4.11.2 Simply supported boundary. 

Ztao different types of simply supported boundary have been 

noted, depending on the choice of the third boundary condition. 

(a) If Ot =0 is imposed as the third boundary condition, then 

the distribution of shear throughout the plate is identical 

to that of classical theory since precisely the same 

conditions obtain at the boundary. It follows that the 

distributions of bending and twisting nimmt remain unaltered 

by consideration of shear defonnation. 

Hawever, in the Reissner type theories, transverse direct 

stress is shown to cause minor changes to the distribution 

of bending mcnt when Poisson's ratio is non-zero. For 

example, the central rannt in a uniformly loaded square 

plate for 9=0.3 varies with depth as shorn in Table 4.6, 

and when h/G = 0.3 the codification is only about 3%. 
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h/ M/q t2 

0 0.0479 

0.1 0.0482 

0.2 0.0487 

0.3 0.0494 

0.4 0.0504 

Table 4.6 

Central bending marent: simply supported square plate: uniform load 

(J= 0.3) 

(b) Greater changed in the distributions of irarents would be 

expected if the third condition itosed were Ny= Or 

particularly near the boundary itself. In fact Reissner's 

theory was found to predict small overall increases in 

deflection and bending moment throughout the plate when 

this boundary condition is selected. But this cannot be 

investigated by the partial deflection method, and, 

numerically, the modified Reissner theory did not yield 

consistent results for this type of boundary. The most 

significant change which occurs is at the boundary itself, 

since the normal and tangential mounts beccane principal 

maients, and the latter are no longer zero. 

4.11.3 Clairped boundary; 

Considering the three factors which may cause changes in 

the stress resultants in turn: 

(a) Different statements of boundary conditions. 

The conditions imposed in classical theory result in zero 

twisting rra nt along the'baundary, and the partial 
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deflection. theory has the sie effect. Reissner's theory, 

however, setting Ibn =0 instead of the neutral surface 

slope (or the slope of v7b in the partial deflection method) 

has the result that the twisting ncr, ent is not necessarily 

zero. In fact it was nevertheless found to have very small 

values indeed, never exceeding 1% of the normal ant, so 

that the discrepancy is effectively negligible. 

The third boundary condition imposed in using Peissner's 

theory is. ot =0 which results in the elimination of the 

fairly substantial values of Qt given by classical theory 

at the boundary. This in turn has its effect on the 

distribution of Mt along the boundary. These are very local 

effects, and the variations vanish rapidly in the interior 

of the plate. 

(c) Effect of shear deforxration. 

As the partial deflection nthod takes no account of transverse 

direct stress the changes in stress resultants found from this 

theory are due solely to the effects of shear deformation. 

Table 4.7 stunnarises the changes with depth in central 

bending nrrnt and the normal mint and shear force at the 

mid-point of a 'side for J=0. 
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h/L (central nt rent) /qt2 (normal ntent) /q L2 (shear force) /q 

0 0.0178 - 0.0493 0.438. 

0.1 0.0180 - 0.0491 0.429 

0.2 0.0184 - 0.0486 0.411 

0.3 0.0190 - 0.0481 0.395 

Table 4.7 

Variation with depth in central bending mant and normal 

nrtm nt and shear force at mid-point of a side. 

Clamped plate: uniformly distributed load: J=0. 

(c) Transverse direct stress. 

Inclusion of this teen can have a significant effect on 

the distributions of bending ant when Poisson's ratio 

is non-zero, since the clanged support prevents the 

corresponding straining and hence generates additional 

stresses. The variation in central bending'mom., nt and 

mid-face norntial n of with depth predicted by Peissner's 

theory are shcin in Figure 4.26. 

4.11.4 Free Edge 

The main point here is the effect of different boundary 

conditions, since, while in Reissner type theories Nt., Q. and rýt 

are separately zero, in the other approaches only q, and n are 

zero. This obviously makes local modifications, but in the case 

of the plate singly supported on two opposite faces with the other 

faces free these were found to have very little effect on the 

overall behaviour of the plate. 
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4.12 Experimental tests on plates 

4.12.1 Description of tests 

Tests were carried out on a series of plates 200 mit square 

and varying in depth from 10 mn to 60 nm, giving a range of depth/ 

span ratios of 0.05 to 0.3. Since the effects being investigated 

here are of second order it was in-portant that the support 

conditions chosen should represent exactly the theoretical 

conditions with which the results were to be catpared. Zb reproduce 

experimentally the theoretical sir; pie or clammed supports is 

extremely difficult, and thus the tests were carried out on corner 

supported plates, loaded at the centre. 

The plates were cast fron Araldite CY219 in the T)U1d 

shaven in Plate 1. A vacuum pump was connected to the ITould to 

remove any air entrained during mixing. In order that each plate 

should be cast and cured tinder identical conditions tour castings 

were made each measuring 300 nm x 300 rin x 80'mm deep. A pair of 

plates was then cut frcun the central 200 nm square in the following 

sequence: 

casting 1 Plate depths 10 nm and 60 rim 

2 20nm and 50mm. 

3 30ranand40mm 

4 25 mit and 35 T 

The excess of cast depth over total plate depth gave an adequate 

alle warce for cutting by the band saw and subsequent machining 

flat and square. Fran each casting two beam of 25 r: 1 1square 

section were cut from the discarded edge strips, so that a comparison 

of the properties of each casting could be made. 
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Me Clockhouse testing machine was again used for the 

tests and the general arrange^ nt is shown in Plate 3 and Figure 

4.27. The main features are 

(a) Three of the corner supporting pillars were of fixed 

height, and the fourth adjustable so that contact at 

each corner of the plate oras ensured at the start of 

each test. (See detail in Plate 4) 

(b) The corners of the-plate rest on quadrants of 10 nm 

diamter circular pads, which in turn rest on a 

spherical bearing in the top of the pillar, this 

arrangeTlent permitting free rotation of the corner of 

the plate. The bearing area is relatively small, but 

large enough to circumvent the problems of embean nt 

encountered with the beano on roller supports. 

(c) The pillars rest on two sets of rollers at right angles 

so that no in-plane stresses could be generated by any 

corner restraint. In fact, for the very small deflections 

occurring in the tests this precaution was found to be 

unnecessary. 

(d) In the beam tests it was found best to use a low load 

range and very. -accurate deflection measurement, and the 

sane principle was adopted here. The load was applied 

through a proving ring for load measurerent, and either 

directly to the plate through a ball bearing, or through 

a ball and square pad giving a bearing area 16.5 nnm square. 

This latter arrangement simulates the finite difference 

load application model of the load being uniformly 
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distributed over a square of side equal to the mesh 

length, L/12. The load could be measured to an - 

accuracy of 3N. 

(e) Deflection was rnasured at the centre of the plate and at 

the mid-point of each face, using displacement transducers 

which enabled the displacement to be measured to an 

accuracy of 0.002 rrrn. The mid-point readings were taken 

to ensure that syinretry was achieved. 

4.12.2 Experinental results 

Tests on the beams cut from the plate edge strips confinTed 

that the same material properties were produced in each casting, and 

thus the deflection rates for the various plates can be ccrpared in 

simple ratio without any correction for variation in Young's modulus 

or Poisson's ratio. 

The bearing area was found to be adequate to render any. 

embedment undetectable. Also the base was sufficiently rigid to 

prevent any relative movement between supports and displacement 

transducer mounting points. Inevitably a certain amount of 

settlement occurs in the ball seating arrangement, and in view of 

the extremely small displacements involved for the thicker plates 

it was ne-cessaxy to measure this and make an appropriate correction. 

Graphs were drawn of deflection against load, and the 

slopes determined by the n thod of least squares where necessary, 

although in nearly all cases the points fitted almost exactly to 

a straight line. The average values from four sets of readings 

were taken, and the results obtained are surranarised in Table 4.8. 
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(1) 
h 

(m) 

(2) 
central deflection 

(ß/I`1) 

(3) 3 (2) xh 
(4) 

(3)/4.77 

10 4.77 x 10 3 4.77 1.0 

20 0.605 x 10 3 4.85 1.02 

25 0.318 x 10 3 4.97 1.045 

30 0.189 x 10 3 5.11 1.075 

35 0.123 x 10 3 5.25 1.11 

40 0.082 x 10 3 5.25 1.11 

50 0.0455 x 16-3 5.69 1.195 

60, 0.0313 x 10 3 6.78 1.422 

Table 4.8 

Summary of experimental results 

Corner supported plate : central point load 

In calculating the values in colurrn (4) it is assumed 

that the deflection due to shear in the 10 rrn plate is insignificant. 

If there were no shear defounation at all then the values in column 

(3) ought to be all the sane, and hence their ratios in colurm (4) 

show clearly the increase in deflection due to shear which actually 

occurs, 

These results are cazpared with the predictions of the 

partial deflection method in the graph of Figure 4.28. The validity 

of this method of presenting the results is, of course, dependent on 

the accuracy of the value for the deflection of the 10 nm plate, 

since all the other results are expressed as ratios of this value. 
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The central deflection of this plate as given by the theoretical 

results for the appropriate values of Young's modulus and Poisson's 

ratio is 4.85 x lÖ-3 mn/N ccrpared with the theoretical value of 

4.77 x 10 3 
nn, /N obtained experimentally. 

Figure 4.28 shows quite good agreement between the 

experimental and theoretical results. There are two factors which 

may explain the fact that all the experimental values are lower 

than those predicted by the partial deflection method. Firstly, 

all the results are expressed as ratios of the value for the 10 nm 

plate asstuning that there is no deflection due to shear in this case. 

If an allowance for this had been made all the results would have 

been increased slightly as shown by the set-of corrected points. 

The second fact is that in the cca; parable point loaded bean the 

partial deflection method was found to give an overestimate of the 

deflection for non-zero values of Poisson's ratio. In these tests 

the value of Poisson's ratio is almost 0.4, and it is therefore 

reasonable to assume that the theoretical results for this case 

would also be larger than those which might be expected in practice. 
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4.13 Conclusions 

Detailed. suzmiaries have been given at various points in 

this chapter in order to establish the conclusions reached at each 

stage. Section 4.3.5 summarises the position of Reissner in 

relation to other theories, and Section 4.6 the place of the nodified 

Reissner and partial deflection approaches developed in this chapter. 

Discussion of the theoretical results for deflection and stress 

resultants is given throughout Sections 4.10 and 4.11 and some 

specific issues are dealt with in Section 4.10.3. 

It is convenient now to make a final sag up in veXY 

general terms. The principal points are: 

(a) A modification to Reissner's theory has been proposed 

which is a sixth order system of partial differential 

equations in terms. of transverse displaoerent as the only 

variable. For uniform loading finite difference and 

localised Rayleigh-Ritz methods have given quite good 

results, but as with Peissner's theory itself, there are 

limitations in-dealing with point loads. 

(b) The partial deflection method, with an appropriate choice 

of shear stiffness, can be developed to give a method for 

dealing with shear defornation which has been sham, from 

a theoretical point of view, to be identical to Reissner 

except for scene localised boundary effects. 

(c) Numerical solutions in tezrs of a single variable are 

" always subject to occasional random ill-conditioning, since 

the interaction of bending and shear tens can cause 
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critical coefficients in the solution matrix to became 

very small, or even zero, with resulting loss of 

significance. 

(d) In the partial deflection method the bending and shear 

terms do not interact numerically, and the resulting 

system of equations is amenable to num rical solution in 

all support and loading cases considered. 

(e) The deflectiom due to shear deformation have been assessed 

for a nunber of cases. 

(f) Modifications to the classical distributions of stress 

resultants have been found to arise from three causes 

a different statenint of boundary condition., shear 

deformation and transverse direct stress. The first of 

these can cause significant differences at the boundary, 

but these have little effect on the overall behaviour of 

the plate. Modifications due to shear deformation alone 

are relatively minor, but transverse direct stress can 

have significant effect in clarped plates. 

(g) Results for deflection in experimental tests for one 

loading and support case have shin reasonable agreement 

with the theoretical results. 
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5.1 Introduction 

Detailed sLmamaries and discussions have been given at 

various points in this work so that the conclusions reached at 

each stage can be clearly seen before proceeding to the next 

section. It is not intended that this chapter should repeat these 

'detailed conclusions, but rather that a general overall stn¢naxy 

should be given in the form of an assessment of the extent to 

which the objectives stated in Section 1.3 have been achieved. 

5.2 ýMraisal of existing theories 

(a) This investigation has confinr. ed the position of 

Reissner's theory as the most comprehensive of the 

existing two-dinnxnsional approaches for plates, 

including the effects of both shear and transverse direct 

stress. It derives its two-dim_nsional nature fron 

working initially in ternrs of three average displace ants 

w, 0X and 95y. The last two of these are average 

rotations of sections initially normal to the neutral 

surface, and therefore express an average deformation 

due to shear, which is evaluated from work/energy 

considerations. 

These approximate representations may lead to errors in 

the evaluation of both the internal state of stress and 

overall deflection behaviour. The extent of these errors 

has been assessed by developing a theory for beams which 

is based on Peissner's assurptions and cc nearing its 

predictions with those of the more refined solution of 
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Timoshenko and Goodier. It was shown that the 

deviations from linear of the distributions of 

longitudinal stress and strain are small, and that the 

consequent error in the overall deflection introduced 

by ignoring this is minute, even for large values of 

depth-and Poisson's ratio. 

It is clear that the fundamental approximations will 

not lead to any significant error, and the indications 

are that efforts to improve upon the basic assumptions 

by, for, exan? le, allowing for non-linearity in the 

distribution of bending stress, are not likely to convey 

any cmuensurate advantages. 

(b) Peissner's theory has been shown to antunt, in effect, to 

a superposition of curvatures due to bending, shear and 

transverse direct stress. With respect to shear it can 

be demonstrated that some other theories (notably that 

of Libove and Batdorf) lead to the sane results 

providing that an appropriate shear stiffness is chosen. 

(c) The principal limitation to Reissner's theory is the 

difficulty of obtaining analytical solutions, and the 

most obvious csnission in all the theories is an attempt 

to deal with concentrated loading. Clearly a theory 

must be amenable to the application of rnunerical 

nmthods if it is to be useable for complex boundary 

geaetxy or loading. 
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(d) The partial deflection method is well established for 

sandwich beams and plates, and it has been demonstrated 

that the general approach can be readily applied to 

homogeneous beams and plates. Although it takes no 

account of transverse direct stress, in its treatment 

of shear it can be sham to be the same as Peissner, 

given a suitable choice of shear stiffness. The 

situations in whichthis approach amounts to a simple 

superposition of deflection due to bending and shear 

have been noted for both beams and plates. 

For beams it has been sha n analytically that the 

deflection results given by this r. -thcd will always be 

identical with those predicted by the theory based on 

Peissner's assumptions if only the effects of shear 

deformation are considered. For plates the situation is 

not so straightforward, as for clanged and free edges the 

boundary conditions have to be formulated in a different 

manner. Hciever, it has been ccnfint d that apart from 

sane differences in the distributions of stress 

resultants adjacent to the boundary this has a negligible 

effect on the overall behaviour of the plate. 
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5.3 Development of a theory in terms of a single 

variable. 

(a) A theory for plate bending containing the effects 

of both shear defonnation and transverse direct 

stress has been developed which is based on 

Reissner's assertions, and yet is in tens of 

transverse displacement as the only variable. 

It has been shown that such a theory can only 

be stated to a specified order of accuracy, and 

in this work h2 has been regarded as adequate, 
4 

error terms being of order h. 

(b) This theory is a sixth order system of equations, 

and therefore requires the satisfaction of three 

conditions at each boundary. 

(c) The theory has been applied to beams for purposes 

of comparison only, and to the order of accuracy 

stated the results obtained are identical with 

those given by the theory based on Reissner's 

assturptions. 

5.4 Application of n xical methods 

(a) Finite difference mthoda have been applied 

to the solution of Reissner's theory for plates 

and, together with localised Rayleigh-Ritz 

techniques, to the 
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rnxlified Reissner theory and the partial deflection 

method. Singly supported, clamped and free boundaries 

have been considered and solutions investigated for 

uniformly distributed and concentrated loading. 

(b) For Reissner's theory, the finite difference method was 

successfully applied to uniformly loaded plates with 

simply supported and clamped boundaries. In the first 

case the results are an underestimate of the deflections 

given by an existing series solution, while for the 

second case excellent agreement is found with the results 

predicted by another method. The error in the first case 

may illustrate that there are numerical difficulties in 

dealing with the stress function, which may be very small 

or zero throughout most of the plate but subject to very 

rapid changes at the boundary and the external 

fictitious mesh points. It was found that no useful 

results could be obtained for cases involving 

concentrated loads, and it can only be assumed that this 

is due to failure to cope with terms such as b, /äx, öq/öy 

and Aq involved in the formulation of the theory. 

(c) Both numerical methods were applied to the modified . 
Reissner theory for beans and plates. 

For uniformly loaded beams the finite difference method 

gave results identical with those obtained analytically, 

but for point loaded cases results were not obtainable 

for values of h/L in excess of 0.2. The localised 

Rayleigh-Ritz solUtion gave acceptable results for both 
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uriförm and point loading, but the main difficulty is 

the choice of terms to be included in the energy 

function. Scare inconsistency has to be accepted here, 

and the best cmromise appears to be for each stress 

resultant to be of specified order of accuracy, although 

not necessarily the same for mints and shears. 

The pattern for plates is similar. For uniformly loaded 

plates there is a greater spread in the results than in 

the case of beams, but both numerical methods give 

consistent trends of results fitting well to wroth 

curves. While the finite difference method shcied a 

total inability to cope with concentrated loads, the 

localised Rayleigh-Ritz fornlulation did yield results, 

although these were subject to a greater'scatter than 

for uniform loading. It was found to be helpful to mix 

the order of accuracy of the finite difference 

equivalents used, giving careful regard to the order of 

magnitude of the various coefficients. 

(d) The partial deflection method keeps the bending and shear 

effects separate in the ecsrrutation and as a result 

solutions by both finite difference and localised 

Rayleigh-Ritz methods give carpletely consistent 

solutions in all cases examined, without any systenunatic 

or randan errors being introduced numerically. 

The drawbacks of this approach are that it takes no 

account of transverse direct stress and that it limits 
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the nuirbxr of boundary conditions which can be satisfied 

to two. However, the work on other theories has 

identified the effects of transverse direct stress and 

enabled heir magnitudes to be assessed. These are 

principally to cause a relatively small reduction of 

deflection in simply supported cases, and a change in 

the distributions of masts in clamped cases which tray 

be significant for large values of depth and Poisson's 

ratio together. The boundary condition problem may cause 

soßte local differences but certainly is no limitation to 

an investigation of the overall behaviour. The partial 

deflection method for plates is a shale superposition 

of the deflections due to bending and shear only for 

simply supported. boundaries. If a superposition approach 

is used in other cases the values of wb and ws would be 

incompatible at the boundaries, with incorrect values of 

shear resulting, and further, changes in the distributions 

of rrancnts due to shear deformation would not be detected. 

However, it was found that in spite of these 

inconsistencies, at the centre of a clarred plate, for 

ei le, the error in the deflection would be less than 

1% even for large values of h/6. In some situations 

this apparently crude approach might prove quite useful 

providing its limitations are understood, since it would 

enable the effects of shear to be separately assessed 

and added to a kncxan bending solution. 
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(e) A randcxn nurrerical problem has been noted, namely that 

in any approach in which the bending and shear effects 

interact in the solution matrix, scare critical 

coefficients ray change sign as the ratio h/l is changed, 

and hence for certain values may be very small or even 

zero. A corresponding loss of significance in the 

corputation will then result and a spurious solution 

be obtained. 

(f) Finally, it is useful to rake an assessment of the 

relative merits of the finite difference and localised 

Rayleigh-Ritz approaches for this type of work. Perhaps 

the only significant point to note about their actual 

performance is that, apart from the application to the 

partial deflection theory, the finite difference it thod 

is not suitable for dealing with concentrated loading in 

theories which include the effects of shear deformation. 

This is presumed to be because of its concern with the 

high local rate of loading and rate of change, whereas 

the localised Rayleigh-Ritz method depends upon an 

evaluation of the work done by the load. 

Due to rapid development of the finite element formulation 

in recent years the finite difference approach has been 

largely neglected. Certainly for analysis of shapes which 

would necessitate a variable grid size the corputer 

formulation of a finite difference analysis would prove 

" more cumbers , but the two r: ethods are certainly of 

cartparable accuracy. 
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In the particular applications of this work the higher 

order equations require irore fictitious points in the 

finite difference foimul. ation and hence larger nuirbers 

of unknowns. Mere the localised Rayleigh-Ritz m3thod 

uses high order displacement functions the resulting 

increase in accuracy means that the local regions need 

not be small and hence the total number of equations 

involved may be appreciably less than in the finite 

difference method. 

5.5 rinental results. 

(a) The absence of experimental verification of the theoretical 

predictions has been noted and a series of tests conducted 

on both beano and plates. 

(b) Tests to investigate the deflection due to shear 

deformation are far from easy to conduct as there are 

difficulties at both ends. of the depth range. At the 

la wer end the effect being investigated is very small, 

while at the upper end of the scale the overall 

deflections are very small and hence secondary effects 

such as embedmnt and rrov ents in the test equipment 

become highly significant. Thus throughout the range of 

depth very accurate deflection measurement is called for 

and for the deeper specilrens very careful investigation 

of secondary effects is essential. 

r, ý . 
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(c) Having recognised these problems the tests can be 

regarded as having provided useful confirmation of the 

theoretical results for one support and load case for 

beams and plates. 

. _11. 
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5.6 Applications and suggestions for further work. 

5.6.1 Introduction. 

Two alternative theoretical formulations are suggested in 

this section, one for Reissner's theory and the other for the 

modified Reissner theory, which may have certain advantages when 

numerical methods are used. 

This is followed by a brief review of several fields 

where shear deformation is known to be i rtant, with an indication 

of how the theories discussed in this thesis could be employed. 

5.6.2 Theoretical approaches. 

5.6.2.1 Solution of Reissner in terms of three variables. 

Another approach to the solution of fieissner's theory 

which does not involve the use of the stress function is to work in 

terms of the three generalised displace nts w, USX, ýy as variables. 

This has similarities with the finite element approach of Clough and 

Felippa (30), and also with the solution of Williams and Chapman (24) 

using the equations of Libove and Batdorf (23) and working in terms 

of w, QX, Q. 

The governing equilibrium equations (1.10) - (1.12) with 

the stress resultants written in terms of w, O 
xi, c, fran equations 

(4.1) - (4.5) becare 

aOX 
'Zx +aý iyX a2W 

2 
a2a 

+ 2 ax ay 

h2 
5 (1 - V) D 

(5.1) 

h2 
2 a ýx 1+y 

51-v 
(2+2 

aI 
h2 a2ýy+1+J 

5(1-J) 22 

d 

2 

äxöy 2 ßy2 

a2 ny+... ý2 
a 

.2 ax 

- (0X+ w) 
=0 (5.2) 

- (cy+j) =o (5.3) 
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These equations are correct for uniform loading including the 

effects of transverse direct stress. Non-uniform loading would 

introduce terms such as 1öq/ax and in such cases, especially for 

concentrated loads involving very high rates of change of loading, 

it would be sirtpler in the first instance to omit the effects of 

transverse direct stress. 

The solution of Libove and IIatdorf in terms of w, QX, Q 

in finite difference form involves the complication of having to 

use backward differences at the boundary in the second and third 

equilibrium equations, since they involve terms such as ä3w/äx3 

and only one fictitious value of each variable can be found for 

each boundary mesh point. Working in terms of w, OX, ¢y as suggested 

here would avoid this difficulty since no derivatives above second 

order are included. 

5.6.2.2 Solution of the modified Peissner theory in terms of two 

variables. 

The form of the modified Peissner governing equation has 

been shown to be 
dw+h2(2 

-J) 
dw 

=q 

10 (1-V) D 

If a new variable wl is defined as 

wl w+h2(2 - J)L w 

10(1 - V) 

then (5.4) can be rc ritten as 

L2w1 = q/D 

(5.4) 

(5.5) 

(5.6) 
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Noting (5.5) the shear forces can be written as 

aw aw 
Qx = -D( 31 + 12) (5.7) 

äx 8xöy 
3w 3 

Qý- -D( 
1+ 1) (5.8) 

Y äy3 öx2öy 

Suitable expressions for bending and twisting mirents are found by 

substituting for q from (1.10) in (4.20) to (4.22) and then for QX 

and Qy from (5.7) and (5.8) giving. finally 

2 a2 2 Z4w w a4w 

((2 Mx -D (a 2 +J 2)- 
10(h 1D V) -l+2 21 241 ax ay ax ax öy BY 

(5.9) 

222w 
4w a4w 

M_ _ -D( 2 +v 
a 

2) - 10(i 
D2- J) +2 21 2 +U 411 

lY; 

ax ay äx äy öx 
J 

(5.10) 

2 
NXy = (1 - J)D 

xD y 

aß 
+5( 

u 
31 

aw 
+ 

1) (5.11) 
öx ay axöy 

This formulation would be particularly arrenable to a finite 

difference solution with (5.6) and (5.5) as the governing equations 

and the boundary conditions being satisfied in the usual manner. 

It has the advantage of avoiding fifth and sixth order derivatives, 

and-also ensures that coefficients in the finite difference 

molecules do not contain both a constant and a term in h2, with the 

exception of (5.5) where it is quite clear which, if any, values of 

h might cause difficulties. 

5.6.3 Sandwich and cellular structures. 

5.6.3.1 Existing approaches. 

Excellent s varies and bibliographies on this topic are 

given by Plantema (21) and Allen (22), and it is sufficient here to 
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1( 

note one or two points relevant to the then of this work. The 

principal objective has been to describe the overall behaviour 

of beams and plates, and Peissner (34) concludes that the effects 

of transverse direct stress are negligible in this context. Allen 

also concludes that general theories including transverse core 

deformation have proved more or less intractable in practice. They 

are of much greater significance in local effects where, for 

exattle, the transverse core flexibility might result in short wave 

wrinkling instability of the faces. 

For an overall treatment the partial deflection method 

has been used effectively and is subject only to the various 

constraints noted in this work. Although a uniform shear strain 

through the depth of the core is generally asses this is not 

essential and any appropriate method of assessing the shear stiffness 

could be used.. 

5.6.3.2 A form of the modified Reissner theory suitable for 

Sandwich strictures. 

Assuming that for sandwich structures the effects of 

transverse direct stress can be ignored then the equations derived 

fron Reissner are identical in form with those of Libove and 

Batdorf, since both are then a superposition of curvatures due to 

bending and shear. (see Section 4.3.1) If the shear stiffness 

is defined as S the resulting system of equations can be subjected 

to the modifying procedurewsed in Section 4.4, repeatedly 

substituting for derivatives of shear forces and neglecting terms 

in (D/S) 2 
or higher po iers which are the equivalent of the h4 terirs 

in the hcmgeneous case. ý' ý 
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For an isotropic sandwich plate the following equations 

are then obtained: : f't - 

the governing equation is 
2w 

+ 
S. A3w = q/b 

the bending and twisting rmrmnts are 

(5.12) 

-D(-- 
a2w 

+w _D 
a4w öw a4w) 

2+ (1 ++J (5.13) 
ax Dy 2) 

D 
öx4 öx2 ay 2 by 4 

M. _ -D(a22 +Ja2W) - 
Df a44 

+ (1 +ý)aý2 2 +Va44 (5.14) 
ý' äy 8x `öy ax ay ax 

Mxy = D(1 -V öxä +D 
(1 

S 
J) (+) a4 (5.15) 

öx öy öxay 

and the shear forces 
a3w 

Qx - -D( 3+ ax 

Zýw 
_ 2) a a 

Döw 
- S(-7 + 

a 

2a ýý 

3 ä a 

öw 
+ ý) 

(5.16) 
a ä y x x y x x y 

_ _D( 
w+ 

a 3 
D w) 

ä 2ö _ Dia w+ 
-§(ä-T 2a w 

öx2a 3 +a 
ýý 

(5.17) 
ä ýö 

y x y y y x y 

5.6.3.3 Box and cellular structures. 

The overall behaviour of box and cellular structures can 

be represented brr an equivalent sandwich system, and this has been 

the subject of sate recent work. The discussion on Morley (25) brings 

together some relevant references on this topic fran which it is clear 

that the principal difficulties are-the determination of appropriate 

stiffness parameters and the effect of stiff end diaphra-ns. 

f ý,, 
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5.6.4 Non-linear and tine-dependent problems. 

The present work has been confined to linear elastic 

problems, but it could profitably be extended to materials with 

non-linear elastic stress/strain relationships. The solution for 

this type of problem would require an incremental approach 

considering the cumulative effect of successive changes of loading. 

Research could also be usefully carried out in 

connection with materials subject to creep. - Where bending and 

shear are both significant the time-dependent problem may he 

carplicated by creep due to bending and shear proceeding at 

different rates. There is the need for both the provision of 

experii ntal data within this area, and the establishzrent of a 

, 
theoretical method for incorporating this in the analysis of the 

behaviour of such structures. 

5.6.5 Beams and plates on elastic foundation. 

Ratcliffe (35) suggests that shear deformation can became 

significant when beams are supported on elastic foundations, even 

for large values of span/depth ratio. Investigation of this 

effect in connection with plates could readily be conducted using 

the methods developed in this work. 

Structures on soil foundations could be considered here, 

and also mining structures where subsidence can result in loss of 

contact over part of the structure, shear deformation being of 

potential lirportance in both cases. 

4 
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5.6.6 Iower bound solutions. 

Parkhill (36) suggests a method of establishing lower 

bounds by evaluating the elastic mcemazts throughout the segments 

bounded by a given yield line pattern along which yield mcnts 

are applied. The case he considered is a square slab, uniformly 

loaded and simply supported, but the discussion points out that 

the method is not of general application since in cases other 

than this one it would not be possible to maintain continuity of 

D, Milt and Qn across the yield line, as this would require a 

plate theory which enables the satisfaction of three conditions 

at each boundary. 

It was this problem which initiated the work in this 

thesis, since Parkhill's general approach clearly calls for the 

use of a Reissner type theory. Hcxaever, early attemints to apply 

Reissner's theory showed that there were difficulties fran both 

theoretical and numerical viewpoints. Hence the objectives of 

this work were directed towards an examination of theories which 

include shear deformation, and their use in conjunction with 

numerical methods. An early interest in Parkhill's work, which 

used finite difference mthods, explains the slight predominance 

of the same approach in this work. 

Returning briefly to the lower bound problem, the shape 

of the finite difference rrolecules involved make the investigation 

using Reissner's theory practically intractable since the 

molecules for stress-resultants involve mesh points outside the 

basic biharmonic. 
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Haaever, in the modified Reissner theory no mesh points other 

than those incorporated in the molecule for the governing 

equation are required for the stress resultants, making it 

suitable for examining lower bound solutions. 

The partial deflection rrethod would not be applicable 

since it would not allow the necessary continuity to be satisfied. 

5.6.7 Vibration and buckling problems. 

Timoshenko (37) gives a solution to the vibration of a 

beam in which the effects of shear deformation are included. In 

essence the governing elerental equation 

22 dM _eA dx . 
aX at 

is written in such a way that shear deformation is taken into 

account so that M is no longer proportional to the curvature. 

The effect begins to assure sore importance for higher rcdes of - 

vibration, where the depth of the beam is a Hare significant 

fraction of the wavelength. 

A similar situation arises in buckling problems, and in 

the typical equation 

(5.18) 

d2M 
+P 

d2 
=0 (5.19) 

dx dx 

M would be redefined to a116w for the shear conronent of curvature. 

The buckling load is found to be modified to 

p n222EI/t2 
2 

(5.20) 
1-nn EI/(!, S) 

and is equal to the Edler load when the shear stiffness, S, is 

infinite. 
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The modification is unlikely to be significant in 

practical cases, but a prcrnising field of further research is 

in the field of post-buckling behaviour where shear deformation 

may lead to a further reduction in stiffness. 
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APPENDICES 
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APPENDIX'A 

DEVELOPP= OF AT EORY FOR BENTS BASED ON 1EISSNER' S ASSU? Y ? TIONS 

A. 1 Introduction 

A theory for beans is developed here which includes 

the effects of shear defornnation and transverse direct stress. 

It is based on Reissner's assumptions and follc» s the general 

approach he originally used for plates. 

A. 2 Elastic properties in two dimensions 

The elastic stress/strain relationships in two 

dimensions are 

(A. 1) E (a - 'gz) 

6y =-E (X +Z (A. 2) 

Z-E 
(- VX+ ßx) (A. 3) 

ýxx 
Yxz (A. 4) 

with o'y = 'C = *C = 0. 

A. 3 Strain energy and ccgt 1c ntary energy 

The strain energy for a two dimensional system is 

U ((AXE + CýEz + ZxzYxz) dxdydz (A. 5) 

and substituting for strains in terms of stresses fron equations 

(A. 1) to (A. 4) gives 

U=2U (X2 +p-Z2-2VX6z+2 (1 +9). C2) cýxdyäz (A. 6) 

. ýý. 
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The following distributions of stress are now assuned 

Irx = Iz. (I h3 
^ 12 

29 2_2z 1 2z 3 crz 43h+3( hý 
, 

3Z 
2hh 

(1 (ZLhz ) 2) 

So that the strain energy (A. 6) can be rewritten in terms of stress 

resultants as 

(A. 7) 

(A. 8) 

(A. 9) 

2 

U=1f 2EI 

(M2+ h2 (5 + J) Q2 
_J 

52 x1 dx + dxdydz (A. 10) 
. 

JýfýL 

The boundary work is 
f 

(M +Q w)ds where and w are 

generalised boundary displacemnts, and hence the cczlemrentary 

energy is 

C= U-+ 
f 

(M +Q ds (A. 11) 

A. 4 Minimization of com -)lemexitary energy 

The equilibrium equations are multiplied by Lagrangian 

multipliers Xa and Xo and added to the cozrplementary energy and 

the variation of the resulting expression set equal to zero. 

i. e. C+J Aa + q) + X(- Q) 
l 

dxdy =0 (A. 12) 

which gives MSM + 
h2 (1 + J) 

QSQ _ 
dgh2 Sm +F (dg + q) 

C 
EI 5EI 10EI a dx 

+ %ý b(- Q) dx + !p (PM +w 9 Q) ds =0 (h. 13) 

Peissner identifies the Iagrangian multipliers as 

'\a =w and AC 

Integrating terto by parts where necessary gives 

(A. 14) 
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wb( ) dx W 5Q -S8q dx (A. 15) 

dx = p5M -I6M dx (A. 16 ) 

so that equation (A. 13) finally beccnms 

M 
E- 10EI dux) sM + 

(h2 (1 J) 
Q- 

dx 
-P) 6Q1 dx =O (A. 17) C( J 

2 
Hence E 

dx + 1v)qh 0EI 
(A. 18) 

and _ 
E. + 

h2(1 + Q) 
Q (A. 19) p= 

cx 5EI 
Differentiating (A. 19) and substituting in (A. 18) and noting that 

dQ 
_ Z-q gives 

22 
M= -EI 

d2h (210 J) 
q (A. 20) 

dx 

and Q=_ EZ 
A 

dx dx 3 

The governing equilibrium equati 

EI d4w--h2(2+? ) 

dx4 
-q 10 

h2(2 + J) dq 
10 dx (A. 21) 

on is therefore given by 

2 
_q (A. 22) 

dx 

--go 
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I 

anl: )T7nmTV u 
4 

ORrHOTROPIC FORM OF THE MODIFIED REISSNER THEORY 

For an orthotropic plate the strain energy is given by 

2V Vzx 
U=1 

ýN 

++ 
6z-2au xy-20'6 y-2cra- fff( 

E EZ x ex YzEzxE xyzxyz 

. ýy 
2 

+G+G+ GzX dxdyaz (B. 1) 
xy yz zx 

Following exactly the same procedure as Reissner gives for homogeneous 

plates (3) the following expressions for stress resultants are found 

__ 
ö2w ö2w ýaQx 1a ýy VYx 

X- 
DX (ax + Vyx 

a 2) + DX-ý (SX -X) +a (5y -A )ý 
YY 

22 aQ a 
My y2+ Vxya 

2ý + Dy(`Y p) + 
by ax ay ax x 

Z? w 1 aQx 1 
y 

DxY 2öxäy+Sx. 
ay+Sy ( 

3 a2g 
Qx =-D ( 3+Vyxö3w2) 

_2()xyöw2+ 
2D (S -X) 

DX axäy öxöy ax x 

+a2Qx +a2 bx +- ax 
ýx 

s 
yll 

-)s 2S by xYY 

pý =-n 
'3w+J a3w ) -2D 

4w+D (1 -) QY y 
(' 3 xY öx2öy xY öx2öy öy2 y Sy 1J 

+a2 '+2°x 
ax2 y axal' s) 

(D Q-p) +'' \y x 

(B. 2) 

(B. 3) 

(B. 4) 

(B. 5) 

(B. 6) 
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221 

where D- 
12 (E -ED= 

lý (1 -D= 
12 

xhxyyh Ey 
x xy h GX, 

1616 
Tx 5hG ' Sy -- 5hG- 

yz 

12 (JXZ + 
vyz 12 (--. + 

Jam) 
(B. 7) 

10h ", EX Ey lOh Ey EX 

Differentiating (B. 5) and (B. 6) as required to find 
2 

etc, 

substituting back and neglecting terms in h4 
aX 

and higher powers 

the follming expressions for shear forces result, 

35 -5 
QX=-Dx -al 3- (V D +2U ,) 

öw2-gla5 
123 2-q3 

W4 (B. 8) 
öx äxay ax ax cry 8xöy 

335 
ya 3 (9 'D + 2Dxy) 2- q4ö 

a5- 
q2a 3 q6 (B. 9) 

öy 8x ay y 
'dxy äx cry 

where ql =. D? (S - A) q4 = Dy2 (S -N. ) 
xy 

DD 
q2= yxD +2D )D (S -X) +S (Q D +2Dý) 

xx 

(D. 
-x ) +Sx') 

Y 

DD 1 
q5 =(QY+ 2D, )'DY (S + yS + (d__DY + 2Dx) 

YY Yý 

+ xy) 
yS Sx 

x 
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q3 = (VyxDx + 2Dxy) S+ Dy 
CDx(ySY 

- X) +) 
xyy 

q6 = (VxyDD+2DXy) Ste'+ x 
(D_, 

+) 
Yxy 

Substituting (B. 8) and (B. 9) in (B. 2) - (B. 4) and again cffnitting 

terms in h gives for the bending and twisting moments 
4 

244 
M . -Dx(ý2+J 

a2) 
-Dx 

a4 
Dx( -A) +a4 Dy( -%) X öx ay öx x öy y 

(B. 10) 

JJ 
+ 

a4 
22 vyxDx (S -ýý+ V%Y y (-S - X) + 2Dxy (S +S-2 )/ 

öx ay yxy 
(I3.11) 

rq=-D(2+J a2) - DD( - +a4WDt' Y ay4 Y Sy Ö4x Sx -/u Y äy ß'äx27x 

+ a42 
2 CVXYDy (S -, v) + \7x ( -'v) + 2D (S + I aX ay yysx (B. 12) 

DVD 2D 4DVD 2D 2 b2-vi öwx xy Y xy öwy yx x xY Dom, axöy + 
ax3 Sx + Sy + Sy) + 

axäy3 
(Sy + Sx + Sx 

) 

(B. 13) 

Finally the governing equation for w is found by 

substituting (B. 8) and (B. 9) in (1.10) which gives 

a4w 
DX 

Ö+ 
(vy 

)Px + Vx1'Y+4D, ) +D 

ax2ay2 y by4 

a6 w' +gla6+ (q2+q6) 
a4a 

2+ ö 

6 
(q3+ q5) 

a2ý 
4 ö 

6 
+q4a 6=q (B. 14) 

ax Y Y Y 
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APPENDIX C 

NO'T'ES ON ASPECr2S OF THE FINITE DUI'EFE N(E SOLUTIONS. 

C. 1 Non-diiension. alisation. 

A finite difference analysis is conveniently carried out 

in a non-dinnnsional form, and the usual procedure is followed here. 

Lengths and linear displacements are expressed as ratios of a 

representative dimension, in this case L, the span of the beam or 

side of the plate, so that non-dJirensional forms for co-ordinates, 

displa t, plate thickness and rresh length are 

x =y- _W =h =P X= L, Y L, W- L, H L, PL 

Derivatives of w then bccane 

a, i afz 
aX Lý-1 a 

and all derivatives of he type ä ^: /ä. ̀ : n are then non-dim -'sicnal, 

Inspection of the form of the equations for bending and twisting 

iarents and shear forces shows that in non-dimensional form these 

become 

M, M 
_L 

M,, L QXL2 Q L2 

D1 
yD 

'D'D' 
xD 

and the load per unit area is gL3/D. 

C. 2 Finite difference' equivalents for 5th and 6th order 

derivatives. 

Application of the modified Peissner theory involves the 

use of 5th and 6th. order derivatives of W, and as the finite 

difference equivalents for these are not ccaronly in use the 

molecules for ä7/8X5 and ä6W/8X6 accurate to order P2 are shcJtirn 

in Figure C. 1. 
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Figure C. 1 

Finite difference molecules for Aa/c 
and 

Al/äX6 

The appropriate expressions for the other higher order 

derivatives, ö a/öXnaYS-n " a6tiý/ax1 ay6-n are then found in the 

usual manner. 

C. 3 Finite difference equivalents of order of accuracy 

P -' -P `t p ý( 

42013 
t-ýx 

First and second order derivatives of w at mesh point 0 

can be written in finite difference form to accuracy p4 in terra 

of the values of w at the five points shmm. 

Taylor's series are used to express w at mesh points 1, 

2,3 and 4 in terms of w and its derivatives at mesh point 0 as 

follows: 

Wl = wo + pww 
2 

+2 wö +6 wö 
4 

+ 24 wö' + .... 

w2 = wo - pw0 p2 � +2 
3 

.º 6ö p4 , n. + 24 0".... 

w3 = wo + 2pwo + 2; >2%r0 
3 

+ -3 
wö + 

24 3 wog + .... 

W= n W� - 2AWý + 2p 
Wn 

_4 
01 

w_ 
2p4 

wa' r + -- _ .... -s vvVjüj0 

where primes denote differentiation with respect to x. From these 

equations it can be seen that 
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8 (w1 - w2) - (w3 - w4) = 12 pVaö 

and hence tax) o= 12 p 
(8w1 - ew2 - w3 + w4) (C. 1) 

The next term in the series would be of order p5 giving an error 

of order p4. 

The corresponding expression for the curvature at mesh 

point 0 is found by observing from the Taylor's series that 

16 (wl + w2) - (w3 + w4) = 30wo + 12 p2wý 

and hence 

(bx )° - 
11 

2 3C`'ao + 16w1 + 16w2 - w3 - w4) (C. 2) 

., p 
In order to form the finite difference equivalents of this 

order of accuracy for third and fourth order derivatives the two 

mesh points at distance 3p from mesh point 0 are involved, and the 

Taylor's series expanded to the term in p6. The derivation is then 

as before, and the resulting nolecules are shown in Figure D. 2. 

I---} X 
?. W- 1 

x 12P 

aha 
ax2 12P2 

dw 

3 3 1 
äx 8P 

a4w 
4 

1 
P -1 

ax 6P 

1 -8 8 -1 W 

[@ & 
16 13 w 

-8 13 -13 F -1 w 

12 -39 56 -39 12 -Figure 

C. 2 

Finite difference molecules accurate to order p4 
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Cross derivatives are then found from these in the usual 

way, or, where mixed order accuracy is used, in conjunction with 

the normal derivatives of order of accuracy p2. 
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APPENDIX D 

COMPUTER FORMULATION FOR LCCPLISED RAYIEIGH-RITZ SOLUTIONS 

D. 1 Introduction. 

Localised Rayleigh-Ritz techniques have been used to apply 

the rbdified Reissner theory to beams (Section 3.7.3) and plates 

(Section 4.9.1) and the partial deflection method to plates. This 

Appendix discusses the c uter formulation of some of the matrices 

and vectors involved. - 

D. 2 Matrix (C]. 

The strain energy in a local region is written as 

U=k [ACA] T 

, where the displaceit nt function is 

w=Ctý) 
D. 2.1 Matrix [C] for beaus - continuity to third order derivative. 

In this case the deflection function is 

m. L 
ai ci (D. 1) 

i=1 

and hence the kth derivative is 
Ai 8 

mi -k 
= mi(mi - l)..... (mi -k+ 1) ai E. (D. 2) 

dk i=1 

mi >k for each tern 

The energy function contains N tens each of which is the product 

of two derivatives, 

N1 
dk? w dtpw df, (D. 3) U-ý dp - 

p=1 o 
d, & dttp 
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C88 
Ndwd w_ 

(mi 1)... (mi-k+l)m. (mj-1)... (mj- +1) 
T mi+m -k- G +l aia 
dý, dC i=l 'j=1 

j 

mi >k -and ihj >L (D. 4) 

and hence the coefficients of matrix [Cl are given by 

N- 
mi(mi - 1)... (mi-k+l)rý (mm-1)... (nn -(p+l) 

cii rý ok p 
mi + mj - kt, -+1 p=1 p 

mi>kandnth(, (D. 5) 

D. 2.2 Matrix C for plates - continuity to third order 

derivatives. 

The local deflection function for a plate region is 

64 

W ai cri 7si (D. 6) 

i=1 

frcan which atypical derivative may be written as 

'ak+Cw 64 
-k si= L 

k ri (ri 1) .... (ri-k+l) si (si 1) .... (si L+1) aid, 
öý aý i=1 

ri ; ý, k and si >, C (D. 7) 

The strain energy function in terms of derivatives of w has the form 

N1 1' 

f 
k+L en 

u= ýfaww dt d7 (D. 8) 

, 
D9 

p=1 00a 
x' ahn 

Integrating a single term gives 
11 k+CW am- w 

0oa 
ka? ̀  S. m aha 

64 
TT 

64 
ri(ri-1) ... (ri k+1)si(si-1) ... (si-L+1)rj(rj-1)... (rj-m+1)sj(sj-1) 

i=1 j=1 .. (Sj -n +1) 

ri+r, -. m+1)(sl+s'-L-n+; 

ri >r k, F si >,, rj >,, m and sj >n (D. 9 ) 
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and hence the coefficients of matrix C are given by 

N 
ri... (ri k +1)si... (si V1)r.... (r. -m +1)s. (s. -n +1) 13 p Cij =)Ap (ri +r-k +1 (si+s-C -n +1) 

P_1 7 PAP JPP 

ri >, kp, Si >, L 
P, rj :> rnp and sj > rý (D. 10) 

D. 3 Matrix B. 

D. 3.1 Matrix B for plates with continuity in third derivatives. 
k+( 

Freedam is given to a typical derivative " 
ký by fanning 

the product off () and fq (7) , the functions which iv freedan to 

the kth and Lth derivatives at node, q. These functions are 
8 q (E) _E aii (D. il) 

' i=1 

8 
fq (7) _ aj (D. 12) 

j=1 

where the coefficients oti and c(j are the relevant values from matrix 

[B] for beams shown in Figure 3. I6ä. The 64 term expression giving 
nk+tw freedom to the general derivative is 

ae a2 
88 

q() 
" 
q(ý) 

_TT (D. 13) 
i=1 j=l 

If the deflection in the local region is 
64 

mn 
w= apý ß'r7 P (D. 14) 

a=1 
then the pth elorent of the 'colin of. [B] relating to freedom of 
ak+C 

ask ý 
at node q is ai aý when i= rý and j= np 

D. 9 Matrix [B] for partial deflection method. 

Matrix [B] for the partial deflection r thod is coiled 

fran the matrices. [B and JB ] shc»in in Figures D. 1 and D. 2. [Bb] 

gives freedom tow , 
lb 

b aý , 

s wb 
a9 

ä2w 
1, aý aq and [Bj to ws at each node. 
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ,0 

o" 0 1 0 0 0 0 0 0 0 o c 0 0 0 o 

-3 -2 0 0 3 -1 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

-3 0 -2 0 0 0 0 0 -3 0 -1 0 0 0 0 0 

2 1 0 0 -2 1 0 0 0 0 0- 0 0 0 0 0 

0 0 -3 -2 0 0 3 -1 0 0 0 0 0 0 0 0 

0 -3 0 -2 0 0 0 0 0 3 0 -1 0 0 0 0 

2 0 1 0 0 0 0 0 -2 0 1 0 0 0 0 0 

0 0 2 1 0 0 -2 1 0 0 0 0 0 0 0 0 

9 6 6 4 -9 3 -6 2 -9 -6 3 2 9 -3 -3 1 

0 2 0 1 0 O 0 0 0 -2 0 1 0 0 0 0 

-6 -3 -4 -2 6 -3 .4 -2 6 3 -2 -1 -6 3 2 -1 

-6 -4 -3 -2 6 -2 3 -1 6 4 -3 -2 -6 2 3 -1 

4 2 2 1 -4 2 -2 1 -4 -2 2 1 4 -2 -2 1 

Figure D. 1 

Matrix [Bb] 

10 00 

-1 1 00 

-1 0 10 

1 -1 -1 1 

Figure D. 2 

Matrix [Bs] 

ý. 
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D. 5 Loading vector for uniformly distributed load. 

The displacement of a local region of a beam where 

continuity of the third order derivative is prescribed is defined 

by 8m8 

w= ai 
i 

where ai = BijQj - 
(D. 15) 

i=1 j=1 

and hence a load of q per unit length will suffer a loss of potential 

energy in the region of 
88 

V=- qwdt, = -q m+ 1 BijQj (D. 1G) 
Jo 

i=1 j =1 
1 

Minimizing this with respect to Qi will lead to expressions of the 

form 
ay 

_ 

B. 
(D. 17) 

aQj Ami+1 

from which the total right hand side vector is form d, by addition of 

such terms for each local region. 

For plates subjected to a uniform loading of q per unit 

area where continuity of third order derivatives is prescribed the 

following three equations apply in place of equations (D. 15) - (D. 17) 

respectively 
64 64 

W= ai 
mini 

where ai =E IBijQj (D. 18) 

i=1 7=1 

11 64 64 B., 
V=-ff qwdý dry = -q + 1) Qj (D. 19) 

(m i+ 1) (n i 
00 i=1 j=1 

. av 
-ý 

64 B. 
a 

Qj q (mi+l ni+1) 
i=1 

(D. 20) 
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APPENDIX E 

OONPUTATION AND NUMERICAL ANALYSIS 

All computation was carried out on the IBM 360 at 

University College, London, or the CDC 7600 at the University of 

London Computer Centre. Gaussian elimination was used to solve 

the systems of simultaneous equations using a subroutine from the 

IBM SSP3 library, which was available on both ccrriputers in single 

and double precision form. Because of the relatively short word 

length of the IBM 360 most of the calculations on this machine were 

carried out in double precision, while single precision was found 

to be"adequate on the CDC 7600. 

Any possible loss of numerical significance in the solution 

is determined using a tolerance defined by 

tol = aijE 

where aid is the largest element of the left hand side coefficient 

matrix [A] and e is a relative tolerance which may range from lÖ-7 

in single precision to lÖ 14 in double precision. If at any stage 

of the elimination the absolute value of the pivotal element falls 

below tol a warning is given that possible loss of significance has 

occurred, although this does not necessarily invalidate the 

solution values. 

Table F. 1 gives a carrarison of the storage and CPU times 

required for the various plate solutions. 
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Finite difference solutions - IBM 360 

No. of equations Storage CPU time 

Partial deflection 126 104k3 29 sec 

method 

Reissner's theory 150+ 218kB 50 sec 

M dified Reissner 106+ 126kß 18 sec 

theory 

Localised Rayleigh-Ritz solutions - CDC 7600 

Modified Reissner 40 24K 5 sec 

theory 

Partial deflection 45* 16K 2 sec 

method 

+ double precision 

* Using a 4x4 mesh for wb and ws. Since the sets of 

equations for wb and ws are independent in the 

superposition approach the same size mesh need not 

necessarily be used for both. 

Table E. 1 

Storage requ1rerr nts and CPU times. 

For purposes of conparison 1K of storage and-1 sec CPU 

time for the CDC 7600 roughly equivalent to 4kB and 20 sec CPU time 

for the IBM 360. 
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