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ABSTRACT

A differential positioning technique is proposed that is capable

of exploiting the many radio frequency (RF) signals that are

transmitted using frequency division multiple access (FDMA).

The technique is designed to operate on ‘signals of opportunity’

(signals that are designed for purposes other than navigation),

and requires no knowledge of the modulation format or signal

content. Example FDMA signals of opportunity include ampli-

tude modulated (AM) broadcast signals, frequency modulated

(FM) broadcast signals, and television signals. In principle, the

system can operate simultaneously on these different types of

signals, maximizing performance by exploiting heterogeneous

signal qualities and using whatever signals are available at a

particular location. As a result, the technology has the poten-

tial to provide positioning in Global Navigation Satellite Sys-

tem (GNSS) deprived environments, such as in urban canyons,

and deep indoors.

The proposed positioning technique operates by bringing por-

tions of a signal received at reference and user locations to-

gether and adaptively correlation testing them. The correlation-

testing is used to jointly estimate the differential time off-

set (DTO) and the differential frequency offset (DFO). In or-

der to improve accuracy the DTO measurements are Doppler-

smoothed using the DFO measurements. The DTO measure-

ments are used to calculate ranging measurements that are used

to obtain a position.

The concept is experimentally validated on AM broadcast

signals in the medium frequency (MF) and low frequency (LF)

bands. Preliminary results indicate that the system provides

a position solution in difficult environments, such as indoors.

It is expected that expanding the system to incorporate more

signals will result in significant performance gains.
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1 INTRODUCTION

Global Navigation Satellite Systems (GNSS) have evolved to be

the positioning system of choice for many applications. How-

ever GNSS signals are susceptible to obstruction, interference

and jamming. Signal obstruction is a particular problem in-

doors, underground and in deep urban canyons. Sources of

unintentional interference include adjacent-band satellite com-

munications, harmonics of television transmissions and remote

locking devices, radar and terrestrial aircraft navigation signals

[1].

Deliberate GNSS jamming has historically been a military is-

sue. However the introduction of GNSS-based law enforce-

ment, high-value asset tracking and, potentially, road user

charging have made jamming of interest to criminals. Low-cost

jammers, covering all GNSS bands, are now easily obtainable

via the Internet. Most of these jammers have a very short range;

however, some can disrupt GNSS reception over tens of kilo-

meters [2].

A further source of GNSS disruption is space weather. During

solar maxima, ionospheric scintillation can disrupt reception of

most GNSS signals in polar and equatorial regions at certain

times of day [3], while a solar flare can knock out all GNSS

reception over the side of the Earth facing the sun [4].

Therefore, to maximize the robustness of a position solution, in

terms of availability, continuity and integrity, it is necessary to

augment GNSS with one or more dissimilar positioning tech-

nologies. These technologies must operate independently of

GNSS and be subject to different failure modes.

Navigation and positioning technologies may be divided into

two categories: dead reckoning and position fixing [5]. Dead-

reckoning technologies measure the distance traveled and direc-

tion. Examples include inertial navigation, odometers, magne-

tometers and Doppler radar and sonar. Positioning using dead

reckoning requires a known starting point and the errors are cu-

mulative, so the position error grows with time. However, there

is no reliance on landmarks.

In position fixing, the user position is determined by measuring

the range or direction to landmarks, or both, at known locations

(or by being in close proximity to the landmark). Thus, for a po-

sition solution to be obtained, sufficient known landmarks must

be available. However, there is no degradation in accuracy with

time. Position fixing techniques may be divided into two fur-

ther categories: radio navigation and feature matching [5]. In

radio navigation systems, the radio transmitters normally con-

stitute the landmarks and their radio signals are used for range

and/or direction measurement. Signals are identified by fre-

quency and/or aspects of their modulation. Examples include

GNSS, Loran and ultrawideband positioning systems.

Feature matching systems use characteristics of the environ-

ment as landmarks. Examples include buildings, roads, field

boundaries and terrain height. Traditional “map and com-

pass” navigation is an example of feature matching. Auto-

mated feature-matching systems must both match features to a

database and determine the ranges to and/or directions of those

features. Feature-matching sensors include optical and infra-red

imaging sensors, laser scanners and radar.

Signals of opportunity is a generic term for radio signals that

may be used for positioning, but are not specifically designed

or modified for that purpose. These will typically be broad-

casting or communications signals. Note that, by convention,

signals already used by the user equipment for communications

purposes are not classed as signals of opportunity. A key ben-

efit of using signals of opportunity is cost as there is no need

to install additional transmission infrastructure. A further ben-

efit, for military applications, is that signals that could identify

the presence of a military operation are not required. However,

a major drawback is that the transmissions will not have been

optimized for positioning. For example, transmitters will typi-

cally not be time synchronized and the signal modulation will

not have been optimized for ranging accuracy.

Television and radio broadcasts are often used as signals of op-

portunity because the modulation format of these signals is pub-

licly known and transmitter locations (to a few tens of meters)

are publicly available. In recent years, positioning using both

digital television [6, 7] and digital audio broadcasting (DAB)

[8, 9] signals has been demonstrated. Additionally, a technique

that is capable of simultaneosly exploiting cellular, digital tele-

vision and GNSS signals has been developed [10].

This paper focuses on a generic positioning technique that is

applicable to all signals that use frequency division multiple ac-

cess (FDMA). Example FDMA signals include frequency mod-

ulated (FM) broadcast signals, television signals and differen-

tial global positioning system (DGPS) signals. In addition, the

technique can incorporate communication signals, even though

knowledge of the modulation details may be proprietary [10].

The technique does not require time synchronization to be in-

cluded in the signals, and the system is differential, comparing

measurements made at a rover or mobile receiver at an unknown

location with a reference or base receiver at a known location.

Signals are captured simultaneously at the reference receiver

and user locations. Signature parameters of the signals are then

brought together for analysis to yield measurements of the dif-

ferential timing offsets (DTO) (between the two receivers) of

each signal. These DTO measurements can subsequently be

processed to give the position of the user.

This paper validates the concept on amplitude modulation (AM)

radio broadcasts in the medium frequency (MF) and low fre-

quency (LF) bands. A wide range of AM radio broadcasts are

currently available in most countries. In the LF and MF bands,

the predominant ground-wave propagation mode offers better

coverage in remote areas and over sea than higher frequency

signals. Signals in these bands are also difficult to jam over

large areas as high transmission powers are used to overcome

relatively inefficient receiver antennas. However, not all loca-

tions are served by a sufficient number and geometry of AM

radio broadcasts to generate a position solution. Therefore, a

practical signals of opportunity positioning system would use

AM signals alongside other signals, such as frequency mod-

ulation (FM) radio broadcasts and television. Alternatively, a

hybrid positioning system, combining differential AM ranging

3528



with differential Loran could be used. This would be useful

in areas where there are currently insufficient Loran signals to

meet the accuracy and integrity requirements.

AM radio positioning systems previously reported in the litera-

ture [11, 12, 13] have used carrier phase measurements to gen-

erate a position solution. A sub-25 meter accuracy has been

reported for such systems under optimum conditions. However,

there are problems. Range derived from carrier phase has an

ambiguity equal to the wavelength of the signal (200 - 550 m

in the MF broadcast band). To resolve this ambiguity either the

user must start at a known position [11] or a large number of

signals must be receivable to enable consistency-based ambigu-

ity resolution [12]. Furthermore, it is necessary to calibrate for

azimuth-dependent phase biases at the transmitter and ground-

wave propagation effects. However, the greatest limitation is

that absorption and re-radiation of the signals produces large

random phase variations indoors, in deep urban areas and near

transmission lines [13]. Consequently, the derived position may

suffer from unreliability and rapid deterioration in adverse en-

vironments.

2 CONTEXT AND OVERVIEW

This paper explores positioning using DTO measurements ob-

tained by correlating modulation information between the ref-

erence and user receivers over intervals of half a second. These

measurements are unambiguous and are affected much less

by re-radiation effects. However, they are much noisier than

carrier-phase derived DTO. The modulation-based DTO mea-

surements may be used in four different ways to form a naviga-

tion solution:

1. A snapshot position solution using only single-epoch

modulation-based DTO measurements. This is equivalent

to a snapshot GNSS solution using differential code mea-

surements only.

2. A snapshot position solution using several epochs of

modulation-based DTO measurements that have been

smoothed using either time-differenced carrier-phase DTO

or differential Doppler shift. This is equivalent to a snap-

shot GNSS solution using differential carrier-smoothed

code.

3. An extended Kalman filter (EKF)-based position solu-

tion using both modulation-based DTO measurements and

either time-differenced carrier-phase DTO or differential

Doppler shift measurements. This is equivalent to an EKF

GNSS solution using both differential code and differential

carrier measurements.

4. A snapshot position solution using carrier phase-based

DTO measurements with a modulation-based solution

used to bound the ambiguity resolution search space, en-

abling the ambiguities to be resolved with fewer signals.

This is equivalent to a real-time kinematic (RTK) differen-

tial carrier phase-based GNSS solution.

This paper focuses on the second option, which uses multi-

ple modulation-based DTO measurements that are smoother by

Doppler shift measurements. The first method has been inves-

tigated in [14], and the remaining methods will be described in

future publications.

The method presented here for obtaining range information

by modulation correlation is potentially applicable to any sig-

nal with sufficient information contained within its modula-

tion. It is not even necessary to know the modulation format

of that signal provided it may be separated from its neighbors.

Consequently, it forms the basis of a potential use-anywhere

heterogeneous-signal radio positioning system, which can op-

portunistically use whatever FDMA signals happen to be avail-

able at a particular location.

This paper is organized as follows. Section 3 introduces the

concepts of the system; Including a description of the system

and an overview of the process of obtaining a position from the

measurements. Section 4 presents results obtained from simula-

tions that have been designed to assess the quality, across Great

Britain, of positioning that can be obtained from the AM LF

and MF broadcast band. Section 5 presents details of a series

of preliminary trials. This includes details of the demonstration

apparatus and of the system’s positioning performance during

the trials. Conclusions and future work are presented in Section

6 .

3 SYSTEM DESIGN

3.1 System Concept

The technique is designed to operate on signals that have no

synchronization content; hence, any positioning system must

be differential: comparing measurements made at a rover, at an

unknown location, with a reference, at a known location.

A representation of the system is presented in Fig. 1, which

shows a reference receiver, R, a roving receiver, A, and a set of

N transmitters, {T1, T2. . . TN}. Also shown in the diagram is a

transmission channel that allows information transfer between

the reference and the roving receivers.

The transmitters emit a set n of signals that have the potential to

be used for position signals that shall be referred to as candidate

signals. It is commonplace for more than one transmission to

originate from the same transmitter site. Therefore the number

of candidate signals tends to be greater than the corresponding

number of transmitter sites (in general n > N).

Only one mobile receiver and one reference receiver is shown

in the figure. However, it is conceivable to extend the system to

incorporate any number of rover and reference stations. More-

over, it is possible to blur the distinction in roles of the two

stations. For example, stations could offer dual reference/rover

functionality, as with network or relative positioning systems

[5]. Without loss of generality, only a single rover and single

reference receiver are considered in this paper.

Signals are captured simultaneously at the reference receiver,

R, and rover, A. Signature parameters of the signals are then
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DSP on one PC, post-capture. This bypasses the need for a

datalink and reduces hardware requirements.

3.3 Estimation of Differential Timing Offsets

The estimation of differential timing offsets between versions of

the same signal that have been received at reference and rover

locations is a key part of the DSP operation. It is achieved by

forming a cross ambiguity function (CAF) to correlation-test

signal portions.

The cross ambiguity function technique is also employed by

some GPS receivers for code-correlation. In order to yield mea-

surements, GPS signals are correlated with locally stored clean
replicas of themselves. This is contrary to the system presented

in this paper that, instead of using replicas, correlates signals

with versions of themselves that have been received at a differ-

ent location. In addition, GPS signals are optimized for rang-

ing measurement, whereas, signals-of-opportunity have vari-

able content. As a result, the correlation response of SOPs is

sporadic, further challenging reliable parameter estimation [16].

The CAF technique is also used in radar applications; devices

that use illuminators-of-opportunity to detect and localize tar-

gets are of particular relevance. In this case, range measure-

ments are made by correlating signals that arrive directly from

a transmitter with target-reflected signals. These systems have

many commonalities with SOP systems because of the non-

cooperative nature of the illuminators-of-opportunity. TV and

radio broadcasts in the very high frequency (VHF) and ultra

high frequency (UHF) part of the spectrum are typical illumi-

nators [17].

The steps taken to estimate DTOs are accomplished in DSP. The

key functions (including correlation testing) are as follows:

• Baseband conversion, used to separate signals into chan-

nels and shift them down in frequency to baseband so that

they are centered about zero hertz. Part of this process in-

cludes mixing the signal with a synthesized complex sinu-

soid to ensure that the baseband signals have the complex

representation (in-phase and quadrature (I/Q) outputs) that

is needed for correlation-testing (see for example, [18]). A

key role of the baseband conversion is to reduce the sample

rate, which eases the processing burden for all subsequent

stages.

• Correlation testing is used to jointly estimate the differ-

ential timing offset (DTO) and differential frequency off-

set (DFO). It is a multistage process that is used to form

a complex ambiguity function (the magnitude of which is

searched to find the peak). The DTO and the DFO are esti-

mated from the peak position. Incorporated into the corre-

lation process is an interpolation routine which is needed

to obtain sub-sample precision.

• Time domain smoothing refers to the processing of mul-

tiple DTO estimates (provided by correlation testing) to

produce a smoothed output of greater continuity and pre-

cision. The procedure incorporates low-pass filtering and

outlier detection, and is aided by the DFO observations

that are used to estimate the rate of change DTO estimates.

The sample rate reduction that occurs during baseband conver-

sion is particularly important as it eases the computation re-

quired for the intensive correlation testing.

A plot of a CAF used to estimate DTO and DFO values is dis-

played in Fig. 3a. This plot has been obtained from the data

acquired by the test apparatus (presented in Section 5). The

horizontal plane (the ambiguity-plane) extends over the search

domain of DFO and DTO values, and its scope is limited by

the range of candidate DFO and DTO values. For example,

the search extent is large during the initiation stage when the

position and Doppler uncertainty is high, but reduces in size

as DTO and DFO measurements are made, and consequently

uncertainty has decreased. Using a highly restricted search do-

main is important for real-time applications, as large search ar-

eas are computationally hard to address.

Identification of the dominant lobe within the ambiguity func-

tion is straightforward, while location of the peak within the

lobe is more involved. Because of the large discrepancy be-

tween the required DTO precision and the baseband sampling

interval it is necessary use a digital-to-analogue interpolation

technique. This can be achieved using a reconstruction filter
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that operates in accordance with Nyquist–Shannon sampling

theorem (see, for example, [19]), to calculate exact values of

the signals as they would appear in analogue form. The forego-

ing interpolation technique should be distinguished from super-
resolution methods, which are also used to improve accuracy

in time delay measurements. In particular, super-resolution

techniques are used to separate close spaced correlation peaks

present due to, for example, multipath or re-radiation [20]. The

potential of super-resolution to improve performance of the pre-

sented system is yet to be investigated.

Adequate consideration of the length of the signal portions used

for correlation is important. If the portions are too short obser-

vations are disposed to gross error. This is because the ambi-

guity function becomes more noisy which can lead to incorrect

peak identification.

Time-domain smoothing is also referred to as noncoherent av-

eraging (correlation testing being referred to as coherent aver-

aging). An example of a time series of DTO measurements that

have been smoothed is shown in Fig. 3b. This plot has been ob-

tained from the data acquired by the test apparatus (presented

in Section 5). For clarity, on the plot the DTO observations,

which are plotted on the y-axis, have been multiplied by the

speed of light. Signals of opportunity are uncooperative and

undergo unpredictable changes. In particular, audio modulation

is subject to gaps (for instance, between spoken words) and mo-

mentary bandwidth contractions. This affects the quality of the

sequence of DTO estimates obtained. A smoothing routine is

used to excise rogue measurements. Performance can be further

enhanced by weighting the remaining DTO estimates according

to transient signal metrics, such as amplitude and bandwidth.

3.4 From DTO to Position

As explained in Section 3.3, DTO measurements are formed

from a sub-set of the signals received by both the reference

and rover – each signal producing one DTO measurement. The

DTO measurements, together with the known transmitter and

reference receiver locations, are used to determine the position

of the mobile receiver.

Multiplying a DTO measurement by the signal propagation

speed (approximately the speed of light) gives a measurement

of the difference in the pseudo-ranges from the transmitter to

each of the two receivers. Adding the known range between

the transmitter and the reference leaves a transmitter to rover

pseudo-range analogous to that measured by GNSS user equip-

ment [21] . The key difference here is that the rover receiver

clock offset is with respect to the reference receiver clock in-

stead of the transmitter clock.

The position and clock offset is determined from a set of

pseudo-range measurements using an estimation algorithm and

a measurement model (the deterministic part of which is some-

times known as a functional relationship). As ground-wave

propagation is dominant for MF broadcasting the rover posi-

tion can be determined using a measurement model similar to

that used for enhanced Long range navigation (eLoran) [5].

Note that vertical position information cannot be obtained from

ground-wave propagated signals.

Where the baseline between the rover and reference is short,

a Cartesian approximation may be used, enabling a version of

the GNSS measurement model [5, 22] with two position dimen-

sions to be used. This latter approach has been used for the work

presented here. The relationship between the measurements and

the rover position and clock offset is nonlinear, requiring the

use of a nonlinear estimation algorithm. For the preliminary re-

sults presented here, an iterated least-squares (ILS) algorithm

has been used with the reference receiver position used for ini-

tialization.

Once an initial position solution has been obtained, the mea-

surement model may be linearized, enabling an extended

Kalman filter to be used to process multiple-epoch DTO mea-

surements. However, this is a subject for future research.

In order to make DTO measurements, the signal observation

periods (or windows) at the base and mobile receivers must be

synchronized. This is to ensure that the observation windows

are approximately placed to observe the same portion of signal

as it appears at two different locations. In principle, the receiver

clock offset term in the position solution may be used to peri-

odically resynchronize the rover receiver clock with that of the

reference receiver in order to maintain alignment. However, ini-

tial time synchronization must be performed before a position

solution is available. One option is to incorporate synchroniza-

tion pulses in the data link between the rover and reference.

The a-priori position is used to query a signal source almanac

database that contains a catalog of signals that offer good po-

sitioning potential for that particular location. The almanac

database has been developed by considering a combination of

factors, such as propagation loss, the extent of cross channel in-

terference and signal geometry, all of which are used to assess

the eligibility of a signal for positioning.

4 POSITION QUALITY COVERAGE MODEL

Assessing the positioning quality of AM broadcast signals is

motivated for two reasons: 1) to predict suitability and likely

performance of the system, and 2) to assist in the a-priori selec-

tion of a set of signals for correlation.

Great Britain is in International Telecommunications Union

(ITU) region 1. In this region the medium frequency section

of the spectrum used for AM broadcasting spans from 531 kHz

to 1602 kHz. It is split into 120 uniformly spaced channels of 9

kHz. However, because of channel re-use, there are many more

stations than there are channels.

Shown in Fig. 4 are plots of the coverage, according to a sim-

ple model, of AM MF broadcast signals across Great Britain.

Fig. 4(a) shows a prediction of the number of signals that can

be received at any one location. In the population-dense south-

ern region of Great Britain the number of signals received ap-

proaches its maximum of approximately thirty, whereas in the

sparsely populated northern region, signal reception drops to a

minimum of three signals. Also shown on the plot are the trans-

mitter locations (marked with triangles). Incidentally, there are
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Figure 3: Estimation of differential timing offsets (DTOs)

94 transmitter sites and 232 broadcasts [23, 24].

Shown in Fig. 4(b) is a plot of the horizontal dilution of preci-

sion (HDOP) across Great Britain. HDOP is a measure of the

geometry-dependent effects on precision [5, 22]. In the con-

text of this system, it is the ratio of the DTO variance for the

set of chosen signals to the root mean square of the horizontal

position error. The HDOP for this chart was constructed for a

system that used all available candidate signals for positioning.

The coverage model used to construct the plots shown in Fig.

4 is based on a simple propagation formula [25, 26]. It should

be noted that the model makes many simplifying assumption.

For example, it has been assumed that the terrain is flat with

a homogeneous set of electrical parameters. Moreover, it has

been assumed that transmitters issue an azimuthally isotropic

signal. It should be appreciated that some of the AM trans-

missions included are purposefully directional. In addition, the

model fails to account for cross-channel interference, which has

the potential to render a signal unusable for positioning. Cross-

channel interference is particularly pronounced on channels that

are used within the United Kingdom for the transmission of

single frequency networks (SFN). Additional, potentially im-

portant, un-modeled effects include urban fading and sky wave

interference.

The model assumes a reception threshold: the cut-off received

power level below which the signals are considered unusable.

An estimation of this cut-off level has been made using empir-

ical data obtained from the demonstration apparatus. In using

empirical data, it is aimed to accommodate for antenna and front

end losses that might occur in addition to propagation losses.

Details of the demonstration apparatus are presented later in this

paper.

5 PRELIMINARY TRIALS

5.1 Demonstration System

A demonstration system has been developed to prove the con-

cept of AM positioning and predict the performance of a real-

time system. In accordance with the design presented in Section

3, the demonstration system comprises reference and rover re-

ceivers. Both receivers include an RF front-end that is used to

obtain a digital snapshot of the spectrum. Subsequent process-

ing is then carried out digitally.

To allow real-time operation the system presented in Section 3

incorporates a datalink. However, to ease implementation, the

demonstration apparatus has been designed to operate without

a datalink. Instead, the digitized snapshot is stored in memory

modules by the reference and rover receivers. Following a trial

exercise, the data on the memory modules is downloaded to a

PC for further processing.

Due to the absence of a datalink, it is necessary for the demon-

stration system to employ a method of synchronizing the ob-

servation windows used for correlation that does not rely on

the transmission of either clock corrections or synchronization

pulses. This has been achieved by incorporating a Global Po-

sitioning System (GPS) receiver into each of the demonstration

system receivers. Timing information derived from the GPS re-

ceiver is subsequently extracted and used for synchronization.

It should be appreciated that this reliance on GPS is only a fea-

ture of the demonstration apparatus and the system proposed in

this paper can operate entirely independently of GPS.

Shown in Fig. 5 is a schematic of the demonstration system

apparatus that is located at the reference and rover locations.

Also, shown in Fig. 6 is a photo of the apparatus (not including

the active high-frequency antenna). The apparatus comprises

the following parts:

3533



(a) Number of signals received (b) Simulated HDOP

Figure 4: Simulated signal positioning coverage across Great Britain.

• An active high-frequency antenna (Watson) followed by a

1.9 MHz low-pass filter.

• A 14-bit 140 MS/s analog-to-digital converter (Analog De-

vices AD9254 on an Altera HSMC data capture board) that

is used to capture the RF signal.

• Hardware DSP that is implemented on a field pro-

grammable gate array (FPGA) development board (Altera

Cyclone III 3C120 development board), that writes the

ADC data samples to memory and then, once the capture

is complete, writes the data to a personal computer via a

Joint Test Action Group (JTAG) interface. A processor

is instantiated within the FPGA that configures the cap-

ture hardware, provides user feedback via a liquid crys-

tal display (LCD) and primes the capture system when a

push-button is pressed, ready for capture synchronization

via the GPS time pulse. The development board provides

the 10MHz sample clock for the ADC.

• A GPS module residing in a Terrafix TVC3000 vehicle

computer system, configured to produce a time pulse at the

start of each minute, as defined by GPS time. The pulse is

used to synchronize the capture of data at two different lo-

cations.

A GPS fix of the receiver locations was obtained from the mod-

ule that was incorporated into the demonstration apparatus. The

GPS receiver positions were used to: 1) provide a “true” posi-

tion of the reference receiver - as required by the position algo-

rithm; 2) provide a location for the rover that could be compared

to the SOP derived fix. The GPS receiver used was consumer

grade and had an accuracy of approximately ten meters.

5.2 Positioning Experiments

Fig. 7 is a map of the test region, centered around the city of

Stoke in the UK. Shown on the map is the location of the refer-

ence receiver (marked with a square), and two roving receivers

(marked with circles), denoted A and B. The transmitters (de-

picted by triangles) used for positioning are shown, however,

for clarity, three transmitters (located outside the mapped ex-

tent) have been omitted. Land-use across the region was a mix-

ture of urban and rural, with vertical elevation varying by up to

a hundred meters.

Both rovers were located outside in the vicinity of light infras-

tructure such as communication wires. A representative photo

(the location used for rover A) is shown in fig. 8b. The two sep-

arate rover locations used a common reference receiver, placed

inside a brick building (fig. 8a). In these photos, the elongated

white cylinder is the active antenna of the demonstration ap-

paratus. The baseline distances (i.e. the distance between the

reference and rover) were 15.9 km and 5.9 km for location A
and B respectively.

The results presented are those from positioning tests for rover

location A (Fig. 9a) and rover location B (Fig 9b). The individ-

ual position fixes are marked with a crosses. It should be noted

that the work is ongoing, and the difference in the number of

fixes obtained at location A compared to that for location B re-

flects this fact. Individual position fixes are accompanied by an

error ellipse that represents the region within which there is a
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Figure 6: Photo of demonstration system

40 percent likelihood of a subsequent measurement appearing,

on the assumption that systematic errors and statistical charac-

teristics are constant (see, for example, [27]). The error ellipses

have been calculated by estimation of the variance in the pseu-

doranges that have subsequently been projected into the posi-

tion domain. To give an indication of the overall performance

at each location, pooled results are presented in Table 10. Posi-

tion statistics have been calculated by vector addition of easting

and northing component statistics (not shown in the table). Note

that all position errors are calculated using the GPS position fix

(accuracy ~10m) as the basis for a true position.

5.3 Discussion on Positioning Results

The groundwave propagation mode is predominant for both Lo-

ran signals and for signals in the AM broadcast band. As a re-

sult, an AM positioning system is likely to be subject to similar

error-mechanisms affecting Loran. Therefore, it is useful to use

Loran as a benchmark. In urban-environments Loran receivers

often experience positioning errors of a hundred meters [28],

and indoors, of several hundred meters [29]. For our experimen-

tal setup it should be appreciated that propagation environment

is far from ideal, in particular, the reference station was located

in a building which has some steel frame superstructure, and the

roving receiver was located in the vicinity of overhead power

cables. Metallic objects and electric-installations are known to

have significant impact upon Loran and AM broadcast band

positioning [30, 29][13] and cause biases commensurate with

those observed.

The fixes shown in fig. 9 are not clustered together but are

highly scattered. This implies that the temporal stability in the

range observations is poor. The large variation in the biases are

surprising since, unlike GNSS, which uses moving transmitters

(mounted on satellites), all elements of the system are geomet-

rically fixed. Characterization of the nature and cause of the

bias errors is a topic of ongoing research. However, it should be

remarked that temporal variations of 30m have been observed

in Loran ranging measurements [30]. It has been suggested that

these could be accounted for by fluctuations in power grid con-

sumption causing changing patterns of interference[30].

It should be appreciated that if the biases were highly stable,

or the temporal variations understood, it would be conceivable
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Figure 7: Test region of preliminary trials (scale: 20km per di-

vision)

to map the bias errors, and apply corrections to mitigate their

effect. It is also possible that results could be improved upon

by combining them with carrier phase observations. However,

carrier phase measurements in the AM band are also subject to

large errors [13].

6 CONCLUSIONS AND FUTURE WORK

The technique presented in this paper is applicable to the nu-

merous RF signals that use FDMA. Example signals include

frequency modulated (FM) broadcast signals, television signals

and differential global positioning system (DGPS) signals. In

addition, the technique can incorporate communication signals

even though knowledge of the modulation details may be pro-

prietary.

The technique relies on measuring DTOs between two re-

ceivers. This is achieved by calculating the cross ambigu-

ity function (CAF) from the modulated waveforms. Using

this CAF it is possible to achieve enhanced performance over

methods that first demodulate the signals prior to correlation.

This is because, particularly for FM signals, demodulation can

markedly lower the signal to noise ratio [16]. Moreover, the

CAF technique allows the joint estimation of the DTO and the

(a) Reference receiver location

(b) Rover location A (also representative of location B)

Figure 8: Receiver locations

DFO. The DTO estimation is enhanced by incorporation of the

DFO estimate ,and the error mitigation techniques described in

Section 3.3, which are tailored for the uncooperative nature of

signals-of-opportunity.

In terms of scalability, due to the generality of the technique, the

system architecture is capable of accommodating large number

of signals without major modification. Specifically, the wide-

band receiving apparatus allows the simultaneous capture of

multiple signals. Further, the generality of the CAF operation

dispenses with the necessity for signal specific operations (such

as demodulation), which can complicate processing. Further,

the software-defined approach allows flexibility for easy real-

time signal selection and weighting, both of which assist in the

incorporation of heterogeneous signals.

AM broadcast signals have been used to demonstrate proof of

concept. Currently, the system is accurate to approximately

500m. As discussed in Section 5.2, possible causes of errors in-

clude re-radiation effects due to near-field objects, weather de-

pendent propagation effects, and interference from communica-

tion lines. Further investigation is needed to determine whether
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it is practical to calibrate or mitigate these. The positioning

technique developed may also be used to aid ambiguity resolu-

tion in carrier-phase based AM positioning. However, it should

be noted that carrier-phase based positioning can be unreliable

indoors, in urban areas and near power lines [13].

The potential of low or medium frequency navigation system to

augment GNSS has been recognized [30, 29]. Currently, Loran-

C is the only widely available low-frequency navigation system

[30]. However, its coverage has become less extensive in re-

cent years. It is conceivable that a calibrated AM-based system

would perform to a similar standard as Loran (but without the

need for extensive infrastructure), and help assist in fulfilling

navigation and positioning requirements that are needed to sup-

plement GNSS.

The demonstration apparatus captures signals from both the LF,

and the MF bands. Signals in both bands are of the same format

and propagate predominately by the groundwave mode. How-

ever, it is conceivable to design a system that operates over

multiple bands upon signals with diverse formats. Employ-

ing heterogeneous signals could result in a synergy that safe-

guards the position solution, particularly in difficult environ-

ments. For instance, a system using both AM and FM radio

signals could harness the wider bandwidth of FM signals to

yield accurate positioning in open-areas, while relying on the

penetration of AM signals to enable positioning deep indoors

and underground. Of course, incorporation of a greater variety

of signals requires special efforts to generate and maintain the

signal source almanac[10].
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