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Abstract

Drug lipophilicity is known to have a major influence on in vivo drug absorption from

intramuscularly and subcutaneously administered solutions.  Indeed, chemical

modification to increase drug lipophilicity is used to enable sustained drug release

from solutions.  In contrast to the wealth of knowledge on drug release from simple

solutions, the influence of drug lipophilicity on its release from controlled release

formulations, such as, microparticles and in situ forming depots, have not been

systematically studied.  Controlled release vehicles are designed to ‘control’ drug

release, hence, in vitro studies show negligible influence of drug lipophilicity on

release.  The situation could however be different in vivo, due to interactions between

the vehicle and biological tissue.  We therefore investigated the influence of drug

lipophilicity on its in vivo release in rats from two controlled release formulations,

PLGA microparticles and in situ forming depots. Both systems exhibited a burst drug

release. Subsequent to the burst release, we found that lipophilicity did not influence

the rate or extent of drug absorption from the two formulations over a 10-day study

period, which would imply that drug partitioning out of the depots was not the main

mechanism of drug release from both formulations.  This study must however be

repeated with a greater number of animals to increase its power.
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Introduction

Sustained release of drugs from depot formulations has a number of advantages, such

as, reduction in dosing frequency, increased patient compliance, optimisation of the

drug’s pharmacokinetic profile, hence increased efficacy with reduced toxicity and

cost.   Sustained release drug formulations range from simple oil solutions and

aqueous suspensions to more complex formulations such as polymeric microspheres

and in situ forming implants.  The rate of drug release from the more complex

vehicles depends on a large number of parameters, and in this paper, the influence of

drug lipophilicity from polymeric microspheres and in situ forming implants is

reported.

Polymeric microspheres have been extensively investigated as controlled release

vehicles for the past decades and a number of preparations have been commercially

available for a number of years. The formulations are available as lyophilised

microspheres which are reconstituted with a diluent prior to subcutaneous or

intramuscular administration.  Drug is released from the depot over a period of weeks

to months, by drug diffusion out of the polymeric matrix and/or by erosion of the

matrix.  Thus parameters which influence these 2 processes control the drug release

profiles [1]; these include polymer chemistry and erosion mechanism, polymer

molecular weight, copolymer composition, crystallinity, polymer-drug interactions,

excipients, microsphere size and porosity, drug distribution. [1-2].

More recently, an in situ forming drug depot - Eligard™ - was approved by the FDA.

This consists of a solid component (the drug leuprolide acetate and the polymer

PLGA) which is dissolved in an organic solvent (N-methyl-2-pyrrolidone, NMP)
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immediately prior to injection.  Upon administration, the water miscible NMP

dissipates into the surrounding tissue, which leads to polymer precipitation into a

depot (entrapping the drug) at the site of injection.  The obvious advantage of such in

situ forming implants over polymeric microspheres is their relative ease of

preparation – a water-insoluble polymer (e.g. PLGA) and the drug are dissolved in a

water-miscible solvent. The in situ forming implant is also easier to inject – we found

injection of microsphere suspensions to be hampered by needle clogging by

particulates.   The obvious disadvantages are the fact that an organic solvent is

administered (which can lead to toxicity) and the variable shape and size of the

implant formed in vivo, which leads to variable rates of drug release [3].  Many

parameters are expected to influence the drug release profile, and some of these have

been investigated in vitro and/or in vivo.  For example, the in vitro burst release was

related to polymer molecular weight [4], solvent nature [4-6], presence of additives

[7] and polymer concentration [4, 6, 8].  The duration of drug release in vivo was

related to polymer molecular weight [9], polymer nature [10] and drug loading (3 vs

10% studied; [8].  Some of the parameters were found to have no significant effect on

duration of implant efficacy when narrower ranges were investigated (3-6%

leuprolide acetate drug loading and 40-50% polymer concentration studied [9]). To

our knowledge, the influence of drug lipophilicity has not been studied and this is the

first report on the effect of drug lipophilicity on release from in situ forming implants.

In addition, as mentioned above, the influence of drug lipophilicity on the in vivo

release from microspheres is addressed in this paper.  Despite the extensive literature

on microspheres as drug carriers, the influence of drug lipophilicity on in vivo release

profile has received scant attention.  Thus, in this paper, the 2 depot systems
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(microspheres and in situ forming implants) are compared with respect to release

rates.  Despite the fact that polymeric microspheres and in situ forming implants are

two of the most common complex sustained release parenterals, there is currently

very little literature where the two systems have been compared.  Comparison of the 2

depot systems could only be performed to a certain extent, as the 2 depot systems did

not have the same drug:polymer ratio (the animals received 15 mg drug and 75 mg

PLGA (in situ forming implant) or 150 mg PLGA (microspheres)).  The smaller

amount of PLGA used in the in situ forming implant formulation was due to the fact

that volume of NMP required to administer the higher amount of PLGA (0.3ml) was

found to be irritating to experimental animals.

Rats were used as the experimental animals, and octanoate salts of the beta-blockers,

metoprolol and alprenolol, which have similar molecular weights and pKas, but

different lipophilicities, were used as model drugs.  Log P of metoprolol and

alprenolol octanoates were experimentally determined to be 0.6 and 1.25 respectively

[11]. The octanoate salts were used as these had a significantly reduced in vitro burst

release from PLGA microspheres compared to the tartrate and hydrochloride salts

[11], which enabled investigations into sustained drug release.   The octanoate salts

(hydrophobic ion pairs) were prepared and loaded into microspheres and in situ

forming implants.  Experimental animals were subcutaneously injected with drug-

loaded microspheres or in situ forming implants, then bled at time intervals to

determine the plasma drug levels.  Subsequently, Wagner-Nelson deconvolution

calculations were performed to obtain and compare the absorption profiles from the 2

depot systems.  Control animals received subcutaneous injections of aqueous

solutions of the octanoate salts to confirm the effect of encapsulation within
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microspheres and in situ forming implants.  In separate experiments, the drugs were

administered intravenously to rats to establish the pharmacokinetic parameters for use

in deconvolution calculations.

Materials and Methods

Alprenolol hydrochloride, metoprolol tartrate, propranolol hydrochloride, sodium

octanoate, Tween 80, N-methyl-2-pyrrolidone (NMP) and formaldehyde 37 - 40%

(molecular biology grade) were obtained from Sigma-Aldrich (Poole, UK).  The

polymer PLGA 5050 DL 2.5A was purchased from Alkermes Inc. (Medisorb® Ohio,

USA). Disodium hydrogen orthophosphate, potassium dihydrogen orthophosphate

and sodium chloride were all analytical grade and purchased from VWR International

Ltd. (Poole, Dorset, UK). Acetonitrile (HPLC grade), methanol (HPLC grade) and

formic acid were purchased from Fisher Scientific (Loughborough, UK). Hypnorm™

was supplied by Janssen Pharmaceutical (Oxford, UK).  All chemicals and reagents

were used as purchased.

Male Wistar rats weighing 162 - 265 g were purchased from Harlan (UK) and allowed

to acclimatise for a minimum of 7 days prior to experimentation.  Food and water

were provided ad libitum before and during experimentation.  All procedures had

been approved by the School’s Ethical Review Committee and were conducted in

accordance with UK legal and Welfare standards.
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Intravenous (IV) administration of drug solutions

Rats (lightly anaesthetised with intraperitoneally administered 0.2mL of Hypnorm™)

were intravenously dosed with solutions of the beta-blockers (0.5mL, containing 1.15

or 1.28 mg alprenolol HCl and metoprolol tartrate respectively in phosphate buffered

saline, pH 7.4, equivalent to 1 mg of free base) via the tail vein. The rats were then

bled from the tail veins at time intervals over a 3 hour period and blood samples (each

approx. 150-200 µL) were collected into anticoagulant (EDTA) - coated centrifuge

tubes (Microvette CB300, Sarstedt, UK). To separate the plasma, the blood samples

were centrifuged for 10 minutes at 3000 rpm (Eppendorf Centrifuge 5415D,

Eppendorf AG, Hamburg, Germany), after which the plasma (supernatant) was

collected and frozen (ca -20 °C) until assayed. The last blood samples were collected

by cardiac puncture, after the animals had been euthanised.

Preparation of hydrophobic ion pairs of metoprolol and alprenolol

The hydrophobic ion pairs, metoprolol and alprenolol octanoates, were prepared by

the dropwise addition of an aqueous solution of sodium octanoate into an aqueous

solution of each beta blocker (alprenolol hydrochloride or metoprolol tartrate; 5ml of

20mg/mL), such that the sodium octanoate:beta blocker molar ratio was 1:1.5.  In the

case of alprenolol, a white precipitate – alprenolol octanoate, was formed, which was

collected by centrifugation with subsequent freeze-drying of the pellet (Drywinner

110, Heto-Holten A/S, Gydevang, Denmark).  Metoprolol was collected by

lyophilisation. The formation of the hydrophobic ion pairs was confirmed by analysis

of the melting points of the original salts and of the hydrophobic ion pairs [11].  The

aqueous solubility of alprenolol and metoprolol HIPs in PBS was found to be 5.4

mg/mL and greater than 5 mg/mL respectively.
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Subcutaneous administration of aqueous solutions of the hydrophobic ion pairs

Alprenolol octanoate HIP (10.8 mg) and metoprolol octanoate HIP (10.24 mg) were

each dissolved in 10 mL PBS to give solutions equivalent to 1 mg (free base)/1.5 mL.

The experimental rats were then subcutaneously dosed with 1.5 mL of an HIP

solution into the dorsolateral area of the neck. Subsequently, the animals were bled

over a 6-hour period (at 5, 15, 30, 60, 90, 120, 240 and 360 minutes post

administration) and the plasma was collected, as described above.

Preparation and subcutaneous administration of HIP-loaded PLGA

microspheres

HIP-loaded PLGA microspheres were prepared by spray drying using a Büchi B-191

Mini Spray Dryer (Büchi Labratoriums, Flawil, Switzerland) fitted with a 0.5 mm

nozzle and a high performance cyclone.  The feed solution was prepared by dissolving

150 mg freeze dried HIP (alprenolol or metoprolol octanoate) and 1.5 g PLGA in 50

mL dichloromethane (DCM), giving a nominal loading of 9.1% w/w HIP. This

solution was spray dried at an inlet temperature of 45 °C, an outlet temperature of 36 -

40 °C, a solution feed rate of 4%, aspiration ratio of 65% and compressed air flow of

800 L/h.  The spray dried microspheres were stored in a glass vial, under desiccation

and protected from light until used. Scanning electron microscopy revealed the HIP

loaded microspheres to be smooth and spherical. Laser diffraction particle size

analysis revealed volume median diameters of 4.8 ± 0.2 μm and 6.1 ± 0.1 μm for

alprenolol and metoprolol HIP loaded microspheres respectively (n = 3).
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Immediately prior to in vivo experiments, HIP-loaded microspheres (180mg) were

reconstituted with 1.8 mL of PBS pH 7.4 with 0.1% w/v Tween 80 in a glass vial

which was shaken and briefly bath-sonicated (Grant Ultrasonic Bath XB6, Grant

Instruments, Cambridge, England). 1.5 mL of this suspension was then

subcutaneously administered into the dorsolateral region of the neck. On occasions,

when the needle became blocked partway through dosing, the needle was withdrawn

and replaced with a new needle, and injection recommenced. In such cases, the dose

was adjusted in subsequent calculations to account for the slight loss of volume. The

animals were bled over a 10-day period (at 0.5, 1, 2, 4, 8 and 24 h, then daily for 7

days and a final sample on day 10) and the plasma was collected as described above.

Preparation and subcutaneous administration of in situ-forming implants

In situ forming implants were prepared immediately prior to in vivo administration.

The plunger from a 1 mL disposable syringe (Syringe A) was removed, 30 mg of a

lyophilised HIP (alprenolol octanoate or metoprolol octanoate) was loaded into the

barrel, after which the plunger was carefully replaced. Into a second syringe (Syringe

B),  0.3 mL of a 50% w/v solution of PLGA in N-methyl-2-pyrrolidone was drawn up.

The two Syringes A and B were coupled together via a male-male Leuer Lock®

connector (kindly donated by Atrix Laboratories) and the contents of the syringes

were thoroughly mixed by alternately depressing the plungers for 50 cycles, or until a

homogenous solution was formed. The syringes were then uncoupled and excess

solution was discarded, leaving 0.15 mL of the polymer/drug solution in NMP in

Syringe A. The formulation (0.15 mL, containing 15 mg HIP) was then injected

subcutaneously into the dorsolateral region of the neck of rats.  The animals were bled

at the same time intervals as those receiving microspheres and plasma was separated
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as described above. It must be noted that the drug loading of the in situ-forming

implant was double that of the microspheres (i.e. 20% w/w drug/polymer cf 10%

w/w); a higher drug loading was used to minimise the volume of NMP administered

to rats. Despite having a subcutaneous LD50 > 2 g/Kg in rats, an injection volume of

0.3 mL was previously found to cause significant discomfort to the animals. Drug

loading was therefore doubled to enable an equivalent drug dose to be given (15 mg

HIP) in half the volume of the polymer solution.

Analysis of drug levels in plasma

Alprenolol and metoprolol concentration in rat plasma was measured, following their

extraction, by HPLC with electrospray ionisation tandem mass spectrometry (LC-

MS/MS) using propranolol as the internal standard.  The frozen plasma samples were

thawed by standing at room temperature for 1.5 h, after which the analyte and the

internal standard were extracted from the plasma using a protein precipitation

procedure, as follows. Fifty μL of each plasma sample was transferred to borosilicate

glass tubes (Fisher Scientific, UK). Fifty µL of acetonitrile:water (1:1 v/v) was added,

followed by  the internal standard (425 µL of a 50 ng/mL propranolol solution),

followed by 300 µL of acetonitrile as the crash solvent.  The mixtures were vortexed

for 2 minutes, after which they were centrifuged at 4500 rpm for 10 minutes at 4 °C

(Mistral 3000I, MSE, Leicester, UK).  The supernatants were transferred into 100 μL

glass vial inserts, which were placed in 2 mL amberglass auto-injector vials.  The

latter were capped. Calibration standards were prepared by adding 50 µL of an

analyte solution of appropriate concentration to 50 μL of naïve rat plasma, after which

the analyte and the internal standard were extracted as described above.
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An HPLC system (Agilent Series 1100, Agilent Technologies, Germany), equipped

with a HTC PAL autoinjector (Leap Technologies, France), was employed. A 3 μm

C18 ACE column (50 x 4.6 mm i.d., HiChrom Ltd, UK) was used in conjunction with

a Phenomenex MAX RP guard column (4 x 3 mm) at a temperature of 35 °C. The

mobile phase comprised of water (solvent A), acetonitrile (solvent B) and a 2.5% v/v

aqueous formic acid solution (solvent C). The composition of the mobile phase (with

respect to percentage of solvents A, B and C) was controlled using a quaternary pump

over the course of each run. Solvent C was maintained at 2% throughout. At 0 - 0.5

min, isocratic conditions were run at 10% B. Solvent B was increased from 10% to

90% in the time range from 0.5 - 2.5 min, and from 90% to 95% from 2.5 - 3 min

(linear gradient). Re-equilibration was performed from 3.5 to 4.5 min at 10% B. A

sample volume of 10 μL and a mobile phase flow rate of 1.0 mL/min with a total run

time of 4.5 minutes were used.

Data were collected using a PE SCIEX API 4000 triple quadrupole mass spectrometer

(ABI-SCIEX, Toronto, Canada) operated in Multiple Reaction monitoring (MRM)

mode. Atmospheric pressure chemical ionisation was performed, using a Turbo Spray

ion source, in the positive ion mode. The vaporiser temperature was set to 700 °C, and

the ionisation voltage 3500 V. Nitrogen was used for curtain gas (setting 10 psi),

nebuliser gas (50 psi) and heater gas (55 psi). The CAD gas setting was 5 psi and the

declustering potential was 81 V. The ions monitored were: alprenolol m/z 250.3→

116.2, metoprolol m/z 268.3 → 116.3 and propranolol m/z 260.38 → 116.3.

Fragmentation of these ions using collision activated dissociation (CAD) and a

collision energy of ca 27 eV in the Q2 region of the mass spectrometer resulted in
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strong product ions for the analytes and the internal standard. The predominant ion

observed from the fragmentation was at m/z 116 for all three compounds.

To validate the assay, the linearity of the standard curve was determined by plotting

the area ratios of analyte to internal standard against the actual concentration using

1/x weighted least squares regression over a calibration range 0.2 - 250 ng/mL.  Six

quality control (QC) standards (2 each of low, medium and high QC concentrations)

were analysed before, during and after each batch of test samples. The acceptability of

each batch of test samples depended upon the data from the calibration standards and

the QC samples, fulfilling the following requirements: a) a minimum of four out of

six QC’s being within ± 15% of their respective calculated concentrations and no

more than one QC be of greater than ± 15% at any one concentration and b) at least 5

calibration samples being within ± 15% of their respective target concentrations or ±

20% at the lower limit of quantification. In order to minimise the possibility of carry

over effects, mobile phase injections were run between samples when it was

necessary to follow a high concentration sample with a low concentration sample.

The liquid chromatography-tandem mass spectrometry method developed gave good

levels of specificity and sensitivity for the quantitative determination of analytes and

internal standard in 50 μL of rat plasma.  Retention times for alprenolol and

metoprolol were ca 2.7 and 2.5 minutes respectively and no interference from the rat

plasma was observed. The assay showed excellent linearity and the calibration curves

had regression coefficients greater than 0.999. The lower limit of quantification

(LLOQ) was 0.2 ng/mL, while the lower limit of detection (LLOD) was in the region

of 0.05 ng/mL.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

13

Pharmacokinetic analysis

Firstly, all plasma drug concentration values were normalised to a rat weight of 250 g

to correct for differences in rat body weight.  When the drug plasma concentration

was below the lower limit of quantification, it was considered to be 0.05 ng/mL

(LLOD) when the plasma volume of 50 μL was available.  When a 50μL plasma

volume was not available, the data point was removed. The plasma concentration data

obtained following intravenous drug administration were fitted to an unweighted non-

compartmental model using WinNonlin® and the area under the plasma drug

concentration-time curve (AUC) from time t = 0 to infinity (AUC(0-∞)), the apparent

volume of distribution at steady state (Vss), the elimination half life (t1/2) and the rate

of clearance of drug from the plasma (CL) were obtained.

Plasma drug concentration data from the subcutaneous administration of aqueous

solutions, microspheres and in situ forming implant were fitted to an unweighted non-

compartmental model for a single extravascular input using WinNonlin®. Partial

AUCs were generated from t = 0 to each time point using the linear trapezoidal

method. The geometric mean of each AUC value was used, along with the mean

pharmacokinetic parameters derived from the intravenous data, in Wagner-Nelson

deconvolution calculations to obtain the absorption profiles of metoprolol and

alprenolol from the different formulations.  Deconvolution allows the plasma

concentration time curve to be separated mathematically into its absorption

component and its distribution/elimination component. The calculated fraction

absorbed was then plotted against time to give the absorption profile of each
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compound from the subcutaneous site. Absorption rate constants at different time

intervals were then calculated from the slopes of the curves.

Statistical analyses

Statistical operations were carried out using SPSS 14.0 for Windows (SPSS Inc.).

Repeated measures ANOVA was used to determine the influence of lipophilicity and

of formulation type on the fraction absorbed with time profiles.  Students t test was

used to compare the drug absorption rates.

Results and Discussion

HIP absorption from aqueous solutions

The mean plasma concentration-time profiles of the two hydrophobic ion pairs,

following their subcutaneous administration in aqueous solutions, are shown in Figure

1. The profiles are as expected for extravascularly administered compounds - a rapid

absorption phase, followed by the elimination phase characterised by a gradual

decline in plasma drug concentration.  A plot of fraction of drug absorbed versus time

showed a greater extent of drug absorption for the more lipophilic alprenolol (Figure

2). Repeated measures ANOVA, conducted to explore the impact of drug nature

(lipophilicity) on fraction of drug absorbed over time, confirmed that the two profiles

were significantly different (F(1,6) = 26.1, p = 0.002), with a large effect size (eta

squared = 0.8). To compare the 2 drugs’ absorption rates, approximate absorption

rates between time intervals 0 - 5, 5 - 90 and 90 - 360 minutes were calculated as the

gradient of the straight lines drawn between these points. An independent-samples t-

Test showed that alprenolol absorption rates were significantly higher (p < 0.005)
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than those of metoprolol (0.03 ± 0.005 vs 0.01± 0.004 at 0-5 min and 0.005 ± 0.0010

vs 0.002 ± 0.0008 at 5-90 minutes) for the first 90 minutes, after which the absorption

rates for both compounds were approximately equal to zero, indicating that no further

drug absorption occurred after this time. As expected, the more lipophilic alprenolol

(log P 1.25) was absorbed to a much greater extent and at a faster rate than metoprolol

(log P 0.6), due to its greater partitioning from the aqueous vehicle, into and across

the lipophilic epithelial wall of blood vessels.

HIP absorption from PLGA microspheres and from in situ forming implants

As expected, HIP loading into PLGA microspheres and in situ forming implant

provided a sustained release of drug compared to the aqueous solutions and drug

levels were detected in the blood for more than one week, as shown in Figures 3 and 4

for PLGA microspheres and in situ forming implants respectively. The fraction of

drug absorbed with time is shown in Figure 5, while Cmax and tmax are shown in

Table 1.

From Figures 3 and 4, it can be seen that both microspheres and in situ forming

implants showed burst release of the 2 drugs.  Burst release from microspheres is a

common problem and has been associated with drug localisation (due to trapping at

and/or migration to) at the microsphere surface as a result of the manufacturing,

drying and storage processes and/or with porous polymeric matrices [12].  The burst

release from in situ forming implant arises as a direct result of the implant

formation/solidificaton in situ.  Following injection of the formulation (a drug and

polymer solution in an organic solvent), the water-miscible solvent dissipates away

from the site of injection and the polymer precipitates entrapping the drug.  During
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dissipation of the solvent away from the injection site, a portion of the drug dissolved

in the solution is taken away by the dissipating solvent [13]. In addition to this solvent

drag effect, the burst release has also been assigned to the lag time between

administration of the liquid formulation and the formation of a release-controlling

solid polymeric implant, during which drug release is not totally controlled [8].

While the burst release (often defined as the drug released in the first 8 or 24h as a

percentage of total drug released) can be seen in Figures 3-5, it was not quantified due

to the fact that in our studies, total drug release was not seen by the end of the 10-day

investigation.  However, an indication of the burst release is given in the rates of drug

absorption within the first 8 hours, which is discussed later.

Duration of drug release from PLGA microspheres and in situ forming implants

Following the initial burst, drug levels in plasma decreased for both microspheres and

in situ forming implants, as drug release was controlled by diffusion through the

polymer matrix and the latter’s erosion (Figures 3-4), increasing once more at day 10

in the case of alprenolol microspheres, (Figures 3) which suggested the onset of

particle degradation. Such triphasic plasma drug profile is often associated with

PLGA microspheres [2].  In contrast to the microspheres, plasma drug levels

remained low in Figure 4, which shows that the in situ forming implants were still

controlling drug release at day 10 of the study.  This correlates with previous in vivo

studies which have shown fairly long residence and efficacy of in situ forming depots.

For example, Ravivarapu et al were able to retrieve implants 105 days after

administration of in situ forming implants in rats [9].  The shorter residence time of

microspheres compared to in situ forming implants shown in our studies is likely to be
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a result of faster hydrolytic degradation of the microspheres, due to the much larger

surface area exposed to interstitial fluid and available for erosion.

Extent of drug absorption from PLGA microspheres and in situ forming implants

When the fraction of dose absorbed profiles of PLGA microspheres and in situ

forming implants were compared (Figure 5), they appeared to be quite different.

Firstly, larger error bars are associated with the in situ forming depots, indicating

higher variability.  Such high variability has previously been reported, and is

attributed to the irregular and variable size and shape of the implant formed following

administration of the drug/polymer solution and dissipation of the organic solvent

[13]. Secondly, more drug was absorbed from the in situ forming depots than from the

microspheres.  Repeated measures ANOVA, showed significant differences between

the profiles for the microspheres and the in situ forming depots for both drugs: (F(1,7)

= 32.8, p = 0.001, eta squared = 0.8 for alprenolol, and (F(1,8) = 11.5, p = 0.009, eta

squared = 0.6).  The significantly greater drug absorption from the in situ forming

implants compared to the microspheres is most likely to be due to the fact that much

less polymer (the release-rate controlling material) was used in the formulation of the

in situ forming implants (each animal received 15 mg drug and 75 mg PLGA (in situ

forming implant) or 150 mg PLGA (microspheres)). As mentioned earlier, the smaller

amount of PLGA used in the in situ forming implant formulation was related to the

fact that 0.3 ml of a 50%w/v PLGA in NMP solution was required to administer

150mg PLGA, and this volume was found to be irritating to experimental animals.

While the same drug loading in the 2 depot systems would have been desirable, the

amount of polymer that can be used in the in situ forming implant formulation was

found to be limited by the nature of the solvent.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18

When the influence of drug lipophilicity on the fraction absorbed profile was

examined, no statistical difference was found between the profiles of the 2 drugs, for

both microspheres and in situ forming depots (F(1,8) = 1.4, p > 0.05, eta squared =

0.15 for microspheres, and (F(1,7) = 0.4, p > 0.05, eta squared = 0.06, for in situ

depot).  Drug absorption must be preceded by drug release from the polymeric

systems (microspheres/in situ forming depots) into the interstitial fluid.  The lack of

difference between the two drugs suggests that drug lipophilicity did not have a great

influence on drug release from the 2 depot systems. However, the low power of these

studies (less than 80%, due to the large differences between the drug absorption

profiles of the different animals and the small number of animals - 5 - used per group)

means that a larger study should be conducted in future.

Rates of drug absorption from PLGA microspheres and in situ forming implants

To compare the absorption rates from the 2 depot systems, approximate absorption

rates were calculated as the slope of the lines drawn between times 0 - 8 h, 8 h - 7

days and 7 - 10 days, and are shown in Table 2. Students t tests showed that drug

lipophilicity did not have an impact on the 3 rates of absorption from both

microspheres and from the in situ forming depot (p>0.05). This implies that the rate

of drug partitioning out of the polymeric matrix into the interstitial fluid did not

influence the rate of drug absorption.

The formulation type was found to be important, especially for the first 0-8h time

period.  The initial absorption rates from in situ-forming depots were significantly

faster (Student’s t test, p<0.05) than from microspheres for both alprenolol and
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metoprolol.  The lower polymer concentration in the in situ forming depot is an

obvious reason for the faster rate.  However, the main reason for the faster absorption

rates from the in situ forming implant (compared to the pre-formed microspheres) is

likely to be due to lag time between administration of the in situ forming depot and

polymer precipitation into a solid implant.  The kinetics of in situ polymer

precipitation and depot formation has not been reported in any detail, however,

Royals et al reported that NMP was released over approximately 24 hours following

injection of the polymer solution in rats [3].  Lambert and Peck suggested that a

significant amount of the solvent remained in the in situ formed depots 13 days after

their formation in vitro in Phosphate Buffered Saline at 37oC [4].  During solvent

movement out of the in situ forming implant, the latter is not as good a barrier to drug

release as the pre-formed microspheres.  Furthermore, solvent movement out of the

forming implant is likely to enhance drug movement out of the implant, further

contributing to drug release.

Conclusions

Both PLGA microspheres and in situ-forming implants provided a sustained drug

release over the 10-day study period, after a burst release.  Drug lipophilicity did not

influence the rate of drug absorption or the extent of drug absorption (fraction of dose

absorbed) from PLGA microspheres and from in situ forming depots.  There were

significant differences between PLGA microspheres and the in situ forming implants,

in terms of plasma drug profiles, and the rate and extent of drug absorption. Greater

variability was found in the drug absorption profiles of the in situ forming implants,

assigned to the variable shape and size of implants formed in vivo.  The microspheres
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showed smaller rates and extent of drug absorption, which was thought to be, in part

(but not totally), due to their lower drug:polymer ratio.
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Table 1: Cmax and tmax from solutions, microspheres and in situ forming implants. Means and S.D are shown; n=5.

HIP aqueous solution

(1mg HIP dosed)

PLGA microspheres

(10mg HIP dosed)

In situ forming depot

(10mg HIP dosed)

alprenolol metoprolol alprenolol metoprolol alprenolol metoprolol

Cmax (ng/mL) 262 ± 61 21 ± 4 115 ± 31 32 ± 18 368 ± 38 41 ± 30

tmax (min) 60 15 120 0-30 Within 120 30
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 Table 2:  Absorption rates following subcutaneous administration of microspheres and in situ forming depots

Time Absorption rates (min-1 x 10-6)

PLGA microspheres In situ forming depot

Alprenolol Metoprolol Alprenolol Metoprolol

0-8 h 83 ± 11 83 ± 31 323 ± 183 345 ± 162

8h – 7 days 6 ± 4 3 ± 1 10 ± 4 17 ± 8

7-10 days 15 ± 10 4 ± 3 12 ± 17 3 ± 2
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Figure 1: Weight normalised alprenolol (♦) and metoprolol (○)plasma concentration-time curve following a 1 mg (free base equivalent)
subcutaneous dose of alprenolol or metoprolol HIP in aqueous solutions. Means ± SD are shown. N=5.
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Figure 2 Fraction absorbed vs time curves of aqueous alprenolol (♦) and metoprolol (○) subcutaneous injection. Means ± SD are shown. N=5.
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Figure 3 Weight normalised alprenolol (♦) and  metoprolol (○) plasma concentration vs time curves following subcutaneous dosing of
microspheres. Means ± SD are shown. N=5.
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Figure 4  Weight normalised alprenolol (♦) and  metoprolol (○) plasma concentration vs time curves following subcutaneous dosing of in situ-
forming depots. Means ± SD are shown. N=5.
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Figure 5  Fraction absorbed vs time curves of subcutaneously administered  alprenolol in situ forming depot (□), metoprolol in situ forming
depot (x), alprenolol microspheres (♦) and metoprolol microspheres (○). Means ± SD are shown. N=5.


