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Abstract 

This thesis concentrates on the development of a process-chain for the manufacture of the 

mirror segments for the European Extremely Large Telescope (E-ELT). This revolutionary 

scientific project with a 39.3m primary mirror will be the largest optical/near-infrared 

telescope in the world. The primary mirror design consists of 798 aspheric hexagonal segments, 

each 1.44 metres across-corners, but only 50mm thick. The manufacture of these aspheric 

segments poses many challenges. Edge mis-figure is regarded as one of the most difficult 

technical issues for segment production, impacting directly on the telescope’s science output, 

such as the detection of extrasolar terrestrial planets. The other challenge is how to speed up 

the process for the manufacture of almost 1000 segments in a reasonable time and cost. 

The 'Precessions' polishing technique is an advanced polishing method with high precision and 

efficiency. To achieve the specification of E-ELT’s segments, there are some key techniques 

that need to be researched, such as: edge control, removal of mid-spatial frequency errors and 

a massive improvement in process speed c.f. classical methods. The research work in this 

thesis contributed to the delivery of an effective process, including the characterisation of tool 

influence functions for the 'Precessions' technique; optimisation of the process parameters; 

edge control; diagnoses of edge asymmetry of hexagonal parts, and speeding-up the whole 

process. Two process-chains giving substantially different depths of removal have been 

developed and demonstrated on a hexagonal Zerodur part (200mm across-corners) with edge 

control, and the results meet the E-ELT specification. As a result, different top-level strategies 

for addressing the manufacture have been considered, leading to a preferred direction for the 

research.  
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Chapter 1  

Introduction 

 

Galileo invented the first astronomical telescope to observe the sky, and discovered Jupiter’s 

four major satellites. His startling discoveries were described in the book, Sidereus Nuncius 

(usually translated into English as Sidereal Messenger), which was published in March 1610 

(Barker, 2004). 

From the time of the earliest developments of the telescope in the 17th century, optical 

elements have steadily increased in size. This is because these telescopes with a large primary 

mirror are capable of gathering more light and achieving high image resolution (Canales et al., 

2006). Monolithic primary mirrors for ground-based optical/near-infrared telescopes have 

probably reached their limit with the 8.4m diameter mirror today (Martin et al., 2004 and 2006; 

Walker et al., 2011A).  

The next generation of optical/infrared telescopes, collectively known as Extremely Large 

Telescopes (ELTs), will see primary apertures greater than 20m. This is a huge increase over 

http://en.wikipedia.org/wiki/English_language
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the current 8-10m facilities and will revolutionise ground-based capabilities, increasing photon 

collecting power and theoretical angular resolution (Gilmozzi, 2004).  

The European Extremely Large Telescope (E-ELT) is a revolutionary scientific project with a 

39.3m primary mirror telescope that will be the largest optical/near-infrared telescope in the 

world and will gather 13 times more light than the largest optical telescopes existing today 

(Ramsay et al.,  2010). The primary mirror design consists of 798 aspheric hexagonal segments, 

each 1.44 metres across-corners, but only 50mm thick. The manufacture of these aspheric 

segments poses many challenges. The research work in this thesis has been involved in 

developing an advanced process for the fabrication of the E-ELT segments. 
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1.1 Overview of this thesis 

1.1.1 Outline of this thesis 

Chapter 1 gives an introduction to the subjects involved. 

Chapter 2 summarises various aspheric surface polishing techniques currently employed to 

fabricate segments. 

Chapter 3 describes the ‘Precessions’ polishing technique in detail. 

Chapter 4 characterises tool influence function based on modelling and measurement.  

Chapter 5 presents three edge control techniques for the fabrication of E-ELT segments by 

experiments. 

Chapter 6 diagnoses the edge asymmetry of a hexagonal part and a strategy that can avoid 

the edge asymmetry is given and verified by experiments. 

Chapter 7 demonstrates the whole process-chain for the fabrication of E-ELT segments and 

reviews the results with comparison to E-ELT specification. 

Chapter 8 summarises the work done and suggests future work. 

1.1.2 Contribution of this thesis 

This thesis concentrates on developing the processes for the production of E-ELT’s prototype 

segments, and aims to achieve ESO’s specification (discussed in Section 1.9). The E-ELT 

segment process-chain is described in Figure 1.1. The research work in this thesis is helping to 

deliver an effective process. The original academic contributions that have been made to the 

subject in this dissertation are as follows: 
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1. Different top-level strategies for addressing the manufacture have been considered, 

leading to a preferred direction for the research.  

2. The tool influence functions (TIFs) characterise the local effect of the process and 

therefore is of fundamental importance. TIFs have been characterised based on 

computer simulation and experimentation, which helps to achieve a successful 

deterministic ‘Precession’ process.  (in Chapter 4) 

3. Two novel edge control techniques for segments are demonstrated. For the ‘tool lift’ 

edge control technique, to obtain the full tool influence function at the edge, a novel 

hybrid-measurement method is presented, which uses both simultaneous phase 

interferometry and profilometry. (in Chapter 5) 

4. A strategy that can avoid edge asymmetry is given and verified by experiments. (in 

Chapter 6) 

5. Two possible process-chains giving substantially different depths of removals have 

been developed and demonstrated on a hexagonal Zerodur part (200mm cross-corners) 

with edge control, and the results meet the E-ELT specification.  (in Chapter 7)  

 

Figure 1.1 The contribution of this thesis for the E-ELT project (drawn by the author) 
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1.2 Science drivers for E-ELT 

Although this thesis is not about astronomy, it is useful to understand the science drivers for 

the next generation of telescopes. This provides the context for the research in mirror 

fabrication. 

Since the invention of the telescope, generations of astronomers have expanded the 

boundaries of the known universe ever further. The largest telescopes in operation today have 

primary mirrors of 8-10 m in size. Since 1995, using these telescopes, astronomers have 

discovered over 300 planets outside our solar system and have made the first direct image of 

giant self-luminous planets orbiting nearby stars (Cunningham, 2009). 

Now astronomers want to detect extra-solar terrestrial planets and the first generation of stars 

and galaxies. The enormous improvements in light gathering power and image resolution to be 

offered by E-ELT will have a profound effect on scientific observations as follows: 

1. The habitable zone is the narrow region in a planetary system where water exists in 

liquid form, which is a prerequisite for life as we know it. For over a decade, we have 

known that exoplanets exist, but we have not yet been able to detect the faint 

signatures of Earth-like planets directly (Gilmozzi, 2004). The E-ELT will have the 

resolution to obtain the first direct images of such objects, and even analyse their 

atmospheres for the biomarker molecules (such as oxygen, ozone, water, methane and 

nitride) that might indicate the presence of life (Hook, 2004). 

2. Trying to understand galaxy formation and evolution has become one of the most 

active fields of astronomical research of the last few decades, as large telescopes have 

reached out to high redshifts.  Yet distant galaxies cannot be resolved into individual 

stars. The unique angular resolution (50 milliarcsec at 10 um wavelength) of the E-ELT 
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will revolutionise this field by allowing us to observe individual stars in galaxies out to 

distances of tens of millions of light-years (Hook et al., 2005 and Pantin, 2012). 

3. Black holes have excited physicists and astronomers since they were first postulated in 

relativistic form a century ago by Karl Schwarzschild (Celotti et al., 1999). Observations 

have implied that these bizarre objects exist and on a grand scale (Hook et al., 2005). 

However, it is not known how supermassive black holes grow and what their role is in 

the formation of galaxies. 

4.  

 

 

 

 

 

To answer these exciting questions, a telescope with a substantial advantage in Signal to Noise 

Ratio (SNR) over the state-of-the-art is crucial for observing the fainter and more distant 

objects.  The SNR of a telescope is expressed as (Roggemann et al., 1994): 

    
 

         
    

 

Where, N is the integrated photon signal from the object; 

     is the shot noise from the source; 

    is the background shot noise; 

   is the readout noise; 
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    is the thermal noise. 

Now that detectors approach the fundamental limits of performance, the SNR of the telescope 

can be increased by three main factors: 

1. Increasing the aperture of the primary mirror to collect more signals from the object  

2. Increasing the quality of the surface of the optics to sharpen the image and improve 

contrast against the background 

3. Reducing the degradation of image due to effects of the atmosphere, through 

adaptive optics (see Section 1.7) 

Three ELT projects have been proposed: the Thirty Meter Telescope (TMT) (Sanders, 2008), the 

Giant Magellan Telescope (GMT) (Martin et al., 2004) and the European Extremely Large 

Telescope (E-ELT) (Ramsay et al., 2010). The E-ELT with a 39.3m primary mirror (consisting of 

798 aspheric hexagonal segments) will be the largest ground-based telescope in the world. The 

specification of manufacture of these segments (as discussed in Section 1.9.2) is extremely 

challenging.  The Figure 1.2 shows the E-ELT compared to TMT and GMT.  

 

 

 

 

 

Figure 1.2 E-ELT compared to other future ELTs (pictures are from GMT, TMT and E-ELT project 

website and put together by author, 2011) 
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1.3 Evolution of ground telescopes 

The very first telescopes were believed to have begun to appear around the year 1608 (NPG, 

2001). These early refracting telescopes consisted of a convex objective lens and a concave 

eyepiece.  Galileo invented the first astronomical telescope to observe the sky, and discovered 

Jupiter’s four major satellites. His telescope also enabled Galileo to produce the first maps of 

the Moon, revealing its rough terrain (NPG, 2001).  

However, the main disadvantage of the refractors was the tendency for the object glass to 

focus different wavelengths of light at different distances, causing them to produce rings of 

false colour around stars and planets (chromatic aberration). The optical theory of the 

refractor made no advance after Galileo because the physical origin of the dominant colour 

aberration was not understood, which blocked further development of the refractor for over 

50 years (Wilson, 2004). 

In 1663, Scottish mathematician, James Gregory, pointed out that a reflecting telescope with a 

mirror that was shaped like part of a conic section would correct spherical aberration, as well 

as avoiding the chromatic aberration seen in refractors. He designed the first reflecting 

telescope, composed of a concave parabolic primary mirror with a central hole and a concave 

ellipsoid secondary mirror as shown in Figure 1.3. Gregory’s design proved extremely difficult 

to build because of the fabrication of aspheric elements (NPG, 2001). Therefore, his early 

attempts to build the telescope failed, since he could find no optician capable of actually 

constructing one.  
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Figure 1.3 Gregorian reflecting telescope design, where the primary mirror is a concave 

parabolic and the secondary mirror is a concave ellipsoid. The secondary mirror relays the 

conjugated f 1 to f 2, which is geometrically perfect on-axis (drawn by the author) 

However, his idea was not forgotten; three and a half centuries later this idea became the 

basis for some reflection telescopes. Compared to Cassegrain telescopes (introduced in the 

following section), Gregorian telescopes have the advantage of a real exit pupil, a position 

along the beam path where the secondary forms an image of the primary mirror surface. A 

larger primary-to-secondary distance is a structural disadvantage, especially for large 

instruments (Stark et al., 1997). Currently, there are several large modern telescopes that use 

the Gregorian configuration, such as the Vatican Advanced Technology Telescope, the 

Magellan telescopes, the Large Binocular Telescope (Martin et al., 2006) and the Giant 

Magellan Telescope (Martin et al., 2004).  

In 1671, Isaac Newton simplified Gregorian’s design and built the first reflective telescope 

(Wilson, 2004). His simple construction based on the use of a concave spherical primary mirror 

instead of a parabolic mirror and a flat diagonal tilted secondary instead of a concave elliptical 

mirror. Though this could not avoid the spherical aberration, a spherical primary mirror is 

sufficient for high visual resolution at focus ratios of f/8 or longer (Wilson, 2004). Today, the 
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modern Newtonian design has a parabolic primary mirror. The Newtonian reflecting telescope 

design is shown in Figure 1.4.  

 

Figure 1.4 Newtonian reflecting telescope design, where, in the original design, the primary 

mirror is spherical concave mirror. The modern Newtonian primary mirror is parabolic. The 

light from infinity relays at the focus of the parabolic primary mirror f1, which is geometrically 

perfect on-axis (drawn by the author) 

The aspheric shapes are very difficult to produce. In fact, astronomers would have to wait until 

1721 for Hadley to grind the first non-spherical telescope mirror (Wilson, 2004). 

In 1672, another reflecting telescope, invented by French sculptor Cassegrain is more 

convenient, whose design is shown in Figure 1.5. The secondary mirror is convex and placed 

between the primary mirror and its prime focus; this makes the telescope more compact. The 

combination of concave and convex mirrors also reduces the off-axis aberrations introduced 

by the primary mirror. The reduction in the overall length of the Cassegrain telescope 

(compared to the Newtonian telescope) directly reduces the size of its construction and dome, 

with a consequent saving of cost. Thus, the Cassegrain telescope quickly became popular for 

astronomical use (NPG, 2001).  
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Figure 1.5 Classical Cassegrain reflecting telescope design, where the primary mirror is a 

concave parabolic and the secondary mirror is a convex hyperbolic. The secondary mirror 

relays the conjugated f 1 to f 2, which is geometrically perfect on-axis (drawn by the author) 

The classical system is not affected by spherical aberration. However, it is perfect only on axis 

and suffers from coma, an optical aberration of the parabolic primary mirror. Coma causes a 

point source off the centre of the field to be spread out into a comet shaped image. A 

modification of classical Cassegrain was proposed by Schwarzschild in 1905 and fully 

developed by Ritchey and Chretien in 1910 (Bely, 2003). It is called the Ritchey-Chretien 

system, in which both the primary and secondary mirror are hyperbolic. This configuration 

could correct the coma over a large field while retaining freedom from spherical aberration.  

For much of the time since the earliest developments of the telescope in the 17th century, the 

evolution of the telescope was very slow. At the beginning of the 20th century, the primary 

mirror diameter scarcely exceeded one meter (Enard et al., 1996). The essential technical 

difficulties in producing the primary mirror, the cost and the construction time, were the main 

limitations to progress in this field, see Figure 1.6. Each advance in telescope aperture has 
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provided unexpected observation on the threshold of detection, which has driven the science 

case for yet larger telescopes.  

 

Figure 1.6 Increase in telescope diameters over time. E-ELT with 40m primary mirror will be 

the largest ground -based telescope in the world (graph by the author) 

The Hale 5.1m telescope went into operation in 1948, at the Palomar Observatory in California 

(Baade, 1948). It was the world’s largest telescope for 45 years (1948-1993) until the 

construction of the Keck I in 1993. It is still a workhorse of modern astronomy.  It represented 

the culmination of continual telescope design improvements since the invention of the 

reflecting telescope (Tokunaga et al., 2006). Figure 1.6 shows the increases in telescope 

aperture over time. After the completion of the Hale telescope, astronomers recognized that 

building a larger telescope would require completely new approaches. Simply scaling classical 

techniques would lead to a primary mirror that would be too massive, and an observatory 

(including the dome enclosure) that would be too costly to build (Tokunaga et al., 2006). 

http://en.wikipedia.org/wiki/Palomar_Observatory
http://en.wikipedia.org/wiki/California
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Since 1990s, computer technology has developed to enable light-weight mirror design and 

active control in use, and a number of ground-breaking approaches have been tried and 

several 8m generation telescopes have been built (VLT, JNLT, and Gemini) (Iye et al., 1994 and 

Oschmann et al., 1997). However, with technology limited (see Section 1.4.1), 8.4m seems to 

be the practical maximum diameter for monolithic mirrors. Therefore, due to these limitations, 

increasing the aperture diameter of an optical telescope by scaling it up is not a realistic 

solution, transportation is a key issue (Flores et al., 2003). 

Nelson (2000) and Malacara et al., (2001) who were interested in building a large telescope for 

increasing resolution and light-gathering capabilities, adopted mirror segmentation. This 

approach avoids the overwhelming challenges of manufacturing and shipping a large 

monolithic primary mirror. Segmented mirrors have successfully been applied in Keck I&II, HET, 

SALT and GTC telescopes (Geyl et al., 2004 and Semenov et al., 2004). They will be introduced 

in the following section. 

1.4 Segmented mirror 

A segmented mirror is an array of smaller mirrors designed to act as elements of a single large 

curved mirror. The segments can be either spherical or aspheric. The idea of the segmented 

mirror was originally from Guido Horn D’Arturo, director of the Bologna Observatory in 1932 

(Marra, 2000). The necessary technologies were initially developed under the leadership of 

Jerry Nelson at the Lawrence Berkeley National Laboratory and University of California during 

the 1980s, and have since spread worldwide to the point that essentially all future large optical 

telescopes plan to use segmented mirrors (Mast et al., 1982 and Nelson 2005). 

 

http://en.wikipedia.org/wiki/Curved_mirror
http://en.wikipedia.org/wiki/Spherical_mirror#Mirror_shape
http://en.wikipedia.org/wiki/Jerry_Nelson_(astronomer)
http://en.wikipedia.org/wiki/Lawrence_Berkeley_National_Laboratory
http://en.wikipedia.org/wiki/University_of_California
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1.4.1 The needs for segmented mirrors 

As mirrors grow to such large sizes (above 8m), they become extremely difficult to produce. 

This is because of the technological limit of a primary mirror made of a single rigid piece of 

glass (Jones, 1982). Using a monolithic mirror much larger is prohibitively expensive due to the 

cost of both the mirror and the massive structure needed to support it. A mirror beyond that 

size would also sag more under its own weight as the telescope was rotated to different 

positions, changing the precision of the surface and requiring a more complex support system.  

Monolithic mirrors larger than the current 8m generation are impractical to produce, and 

would set severe constraints on the design of their support structures, to maintain their shape 

and alignment (Kendrick, 2009).  This is because:  

1. The transportation for such huge mirrors is impractical (maybe impossible), shipping is 

limited by the road infrastructure(e.g. bridge) 

2. The mirror support and handling system  become very delicate 

3. It is difficult to cast the mirror blank and retain homogeneity of the material 

4. It needs special equipment for polishing  

As a result, segmentation seems to be the only promising solution to reach diameters of 20m 

and beyond (Storm et al., 2003). Small segments are easier to manufacture and transport than 

a large monolith. They can be much thinner and lighter, reducing the overall weight and cost of 

the mirror and maintaining their shape more easily. 
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1.4.2 History of segmented mirror telescope 

Hence, the idea of a segmented mirror was proposed in 1932 and Guido Horn D’Arturo, 

created a 1.8-meter mirror composed of 61 hexagonal tiles 20 cm across in 1950 (Marra, 2000). 

The mirror was static and could be used only horizontally.  

In 1970, Pierre Connes in France made a 4.2m segmented mirror telescope for infrared 

astronomy. It was fully steerable, and active. Unfortunately, the optical quality was too low to 

be useful for astronomy (Nelson, 2005). 

Another type of segmented mirror telescope was developed in the 1970s and completed early 

in 1980s. This was called the Multiple Mirror Telescope (MMT), and was built in southern 

Arizona. The telescope was made of six 1.8m primary mirrors, each axisymmetric and circular 

(Nelson, 2005). 

In the late 1970s, a very ambitious project to build a 10 m diameter segmented mirror 

telescope was begun, called the Keck Observatory. This project was formally started in 1984 

and completed and began science observation in 1993 (KECK, 2011). Due to the success of 

Keck I telescope, Keck II was completed in 1996. The success of the Keck telescopes led to 

building of HET, SALT and GTC telescopes. They are the largest telescopes in operation today. 

The details are introduced in the following section. 
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1.4.3 The current large segmented telescopes 

1. Keck I and II Telescopes (USA, 1993 and 1996) 

Large scale segmentation was first implemented successfully in the optical and near IR Keck I 

and II telescopes, which were commissioned in 1993 and 1996 respectively at Mauna Kea, 

Hawaii, USA. Their primary mirrors are made of 36 hexagonal 1.8m across-corners segments, 

for an effective aperture of approximately 10m, making them at that time the largest optical 

telescopes in the world, although superseded by the Gran Telescopio Canarias (Nelson et al., 

1994). Figure 1.7 shows a picture of the primary mirror of the Keck telescopes (KECK, 2011).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Keck I & II 10m telescopes: up, the telescopes inside their enclosures; bottom, front 

view of the segmented M1 (Keck, 2011) 
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2. The Hobby-Eberly Telescope (HET, USA, 1997) 

The Hobby-Eberly Telescope (HET) is orientated at a fixed elevation with a segmented 

spherical primary mirror array and a moving star tracker at the prime focus to follow 

astronomical objects.  The stars are tracked by moving the instrument package to follow the 

image as seen in the stationary primary mirror. The attitude of the telescope structure is fixed 

at 35o to the zenith and the telescope is able to be rotated through 360o in azimuth to access 

different regions of the sky. The final image is formed by a 4-mirror double-Gregorian spherical 

aberration corrector (Palunas et al., 2006). The HET was designed to be the prototype for the 

construction of an extremely cost-effective large telescope and was completed in 1997. The 

HET is located at the McDonald Observatory in West Texas. The primary mirror of the HET is 

about 11m by 9.8m and composed of 91 spherical segments. All segments are identical regular 

hexagons with 1m edge to edge (as shown in Figure 1.8). At any given time, not all the primary 

area is used, and the effective aperture is 9.2m (Krabbendam et al., 1998).  
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Figure 1.8 Hobby-Eberly Telescope (HET) (HET, 2011) 

3. The Southern African Large Telescope (SALT, South African, 2005) 

The Southern African Large Telescope (SALT) was planned to be a copy of the HET i.e. fixed-

altitude, segmented spherical primary mirror with an aperture of approximately 11m x 10m. 

All 91 segments are identical regular hexagons with 1m edge to edge (as shown in Figure 1.9). 

The SALT was funded by a consortium of international partners including South Africa, the 

http://www.salt.ac.za/about/people-partners/partners/
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United States, Germany, Poland, India, the United Kingdom and New Zealand (Meiring et al., 

2003). The construction phase of the SALT was completed at the end of 2005 at Sutherland, 

South Africa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 South African Astronomical Observatory (SALT, 2011) 
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4. Gran Telescopio Canarias (GTC, Spain, 2009) 

Gran Telescopio Canarias (GTC), inaugurated in 2009, is based on a design very similar to that 

of Keck, with a slightly larger segmented primary mirror of 10.4m diameter (75 square meters 

light collecting surface) (Alvarez et al., 2010). It is currently the biggest telescope in the world 

and located at one of the best astronomical sites in the Northern Hemisphere: La Palma in the 

Canary Islands. The GTC primary mirror is made up of 36 hexagonal segments. GTC is the last 

of the so-called generation of 8-10 meter telescopes, as shown in Figure 1.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10 Gran Telescopio Canarias (GTC) (GTC, 2011) 
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1.4.4 Challenges for the segmented mirror 

A segmented mirror has several advantages such as lower blank cost, ease in handling and 

transporting and less risk of breakage, simpler coating equipment and the telescope is more 

lightweight and compact.  However, segmented mirrors present their own set of challenges 

(Amodei et al., 2003 and Nelson, 2005). These challenges are discussed in the following 

paragraphs: 

1.4.4.1 Segments are difficult to polish 

The fabrication of the individual segments poses certain problems. Segments are usually 

fabricated such that together, their surfaces match those of their parent monolithic mirror. As 

the primary mirrors of the next generation of telescopes will be aspheric, the asphericity of 

segments grows as they are located further away from the vertex of the primary mirror and all 

the segments will be off-axis sections of the desired aspheric surface (Bastaits, 2010).  

Segments are no longer all identical and have slightly different radii of curvature and aspheric 

profiles. The primary mirror of E-ELT has been designed with 6-fold symmetry. There are 133 

families of identical segments. The details are discussed in Section 1.9.1. Furthermore, a 

curved surface cannot be tessellated with identical hexagons and achieve uniform gaps. Either 

the hexagons will not be regular or the gaps will vary. Therefore, the fabrication processes 

cannot rely on figure symmetry. Polishing an aspheric surface is difficult because polishing 

traditionally only works well when the polishing tool fits the glass surface, to obtain the 

desired smoothness (Nelson, 2005). In addition, the segments must have a good figure right to 

their edges. Significant edge errors are unacceptable for segments since the edges would be in 

the aperture of the composite mirror produced by the segments. The edge effect is introduced 

in Section 1.5. 
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1.4.4.2 The diffraction effect 

The segment’s edges and inter-segment’s gaps will introduce diffraction effects (Troy and 

Chanan, 2003). A monolithic mirror produces a circular symmetric Airy pattern. The diffraction 

effect of segmented mirrors is complicated. The gap and the segment edge mis-figure produce 

a regular pattern of the higher-order diffraction peaks (Espinosa et al., 1997 and Yaitakova et 

al., 2003).  

1.4.4.3 Segments increase infrared emissivity 

In the infrared region, with wavelengths longer than 2.2µm, the thermal emission from the 

environment (including the telescope and optics) becomes an important source of background 

noise (Nelson, 2005). The infrared emission is derived based on the Stefan-Boltzmann law 

(heat radiation law), and increases as T4, T being the temperature (K) of the object surface (Lin 

et al., 2011). An extra-solar terrestrial planet will be at similar temperature to the telescope 

and so has a similar black body spectrum. Thus, the infrared emission from the telescope could 

dominate the faint planet. 

Bevels are typically added to the mirror to avoid chipping of the edges, and the air gaps 

between segments are there to avoid mirrors touching each other during installation and 

removal. There is also an additional thermal background effect due to material behind the 

gaps between the segments. Therefore, segmentation of the mirror increases the infrared 

emissivity of the telescope.  
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1.4.5 Hexagonal mirror segmentation 

Generally, there are two patterns of segmentation geometry: ‘petals’ and hexagon, as shown 

in Figure 1.11. The ‘petals’ pattern is tessellated using annular rings, which provide a maximum 

of identical segments. This geometry was used for ALOT (Advanced Large Optical Telescope, A 

4 - meter space telescope, NASA) (Bely, 2003). The hexagonal segmentation was used for Keck 

I&II, HET, SALT and GTC telescopes. 

 

 

 

 

 

  

Figure 1.11 Segmentation with ‘petal’ (left) and hexagon (right) (Bely, 2003) 

There are significant advantages of choosing the hexagonal section. This is because it is 

possible to fill the entire aperture with segments that have similar dimensions, therefore, 

making mirror cell design, handling and maintenance easier. In the segmented mirror, the gaps 

between the segments should be as small as possible to ensure best possible performance in 

the infrared observations. Segmentation with a hexagonal shape is able to achieve the 

minimum gaps (Anderson et al., 2003 and Nelson, 2005). The segments are supported on 

whiffletrees that have 120o (triangular) symmetry. Therefore, it is convenient to preserve the 

triangular symmetry for the structural design of the primary mirror cell, because it makes it 
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possible to apply a systematic and regular structure. Furthermore, the corners of a hexagon 

are easier to polish than triangular or square shapes. 

The choice of the segment size is mainly a cost minimisation issue. Large segments are thicker 

and hence the blank cost is larger and mechanical supports more complex. Small segments 

increase the number of edge sensors and amount of associated electronics. Small segments 

also increase the total length of edges and area of the gaps of the primary mirror. The 

segmentation of the primary mirror must be optimised in a trade-off of cost, weight and 

performance (Edward et al., 1998).  

1.5 Edge effect of segmented mirrors 

A segmented mirror introduces a serious issue that is the mirror edge effect (Zeiders et al., 

1998; Troy et al., 2003; Wang et al., 2007; Yaitakova et al., 2011). The edge effect can 

adversely affect the science mission performance by: 

1.  Increasing the diffraction effect (side-loads to image) 

2. Increasing  the total scattered light and background noise (infrared emission) 

3. Reducing the wave front quality or total clear aperture due to edge roll-off 

The edge effect is a serious contributor to light diffusion around the central spot of the image 

delivered by a segmented aperture telescope. This would make the detection of faint objects 

much more difficult, i.e. exoplanets, close to bright stars. Such a type of discovery is one of the 

main motivations to construct large (>10m) telescopes; it is therefore clear that great 

attention should be given to such an edge effect (Geyl et al., 2004). The turned edge could be 

marked with black paint, however, that paint would be at about 280K and would radiate 

infrared emissions as well. 
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Most polishing techniques induce a surface error at the edge of the mirror, which is generated 

by the non-continuity of the surface, and the boundary conditions of the pressure field applied 

to the edge of the part under polishing (Guo et al., 2006, Kim, et al 2009, Hu et al., 2011 and 

Ruch, 2011). This sudden-edge effect tends to be localized in the last millimetres of the mirror 

surface.  

The edge effect significantly dominates the performance of the segmented-mirror telescope. 

This is because the total length of the edge of the segmented optical systems is much longer 

compared to the conventional system with one mirror. For example, there are near 4000m in 

total length of edges in the E-ELT’s primary mirror. These edges are distributed across the 

whole pupil.  

1.6 Mirror materials for ELTs 

1.6.1 A brief history of mirror materials 

Early reflecting telescopes were made with metal mirrors (speculum), because they were 

easier to make than glass, and in any case, at that time, there was no process for silvering glass. 

Once figured and polished, these metal mirrors would begin to corrode after only a few 

months, whereupon it would need to be polished again. In 1835, a process for depositing a 

layer of silver on glass was developed by the German chemist, Justus Leibig (Tobin, 1987). This 

was a major step forward because when the silver tarnished, it could be chemically removed 

and a new layer redeposited without altering the curvature of the mirror, due to the chemical 

stability of glass. Material experimentation has been ongoing for more than a century. 
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Compared to the metal material, glass makes a good optical substrate due to its low softening 

point, low hardness and its absence of a grain structure. This allows it to be formed, ground 

and polished into complex shapes with a precise figure and very smooth surface finish. 

From the mid-20th century, glass and ceramics were the materials of choice for telescope 

mirrors. The main constituents of this category include borosilicate (also known as Pyrex or 

BK7 glass), fused silica and ultra low-expansion fused silica (ULE), Zerodur ceramic glass and 

silicon carbide.  

1.6.2 Advanced mirror blank materials  

Traditional glasses such as borosilicate have a relatively high Coefficient of Thermal Expansion 

(CTE), about 3x10-6/°C, which make them less attractive materials for making a large mirror 

blank, as thermal gradients spread through the volume very slowly. Another issue is that the 

intrinsic inhomogeneity of the material can cause large thick substrates and a high number of 

cracks, fissures or bubbles (Dierickx, 2000). This makes polishing and grinding difficult. To 

overcome these problems, advanced materials have been developed. 

1.6.2.1 Ultra low-expansion ceramics 

The primary mirror segments material for the large telescopes require extremely low thermal 

expansion to minimise distortions from thermal changes. Four categories of ultra low-

expansion ceramics are briefly reviewed in this section: Zerodur®, ULE®, Sitall® and 

Clearceram®, and compared in Table 1.1. 
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1. Zerodur® (Schott)  

The near zero-expansion glass ceramic Zerodur® was developed at Schott in Germany in the 

late 1960s. It is a well-established material for astronomical mirrors. Due to continuous 

improvements, it has been the preferred mirror blank material for most of the existing large 

segmented telescopes (Keck I, Keck II, HET). The success of this material is based on a set of 

outstanding properties (Dohring et al., 2004 and 2006): 

1. The very low (less than ±0.05 x 10-6/°C) linear CTE (Coefficient of Thermal Expansion), 

Figure 1.12 illustrates the typical CTE over the entire temperature range. It can be seen 

that Zerodur® shows a near zero CTE in the room temperature range 

2. The excellent polish ability allows a roughness of less than 1nm without special 

coatings 

3. The outstanding reproducibility of the material’s properties and quality is a very 

important requirement for the production of E-ELT’s segments, because these 

segments (nearly 1000 segments in E-ELT) will be produced over several years with 

consistent high quality 

 

 

 

 

 

Figure 1.12 Plot of the coefficient of thermal expansion of Zerodur® (Glaswerke, 2006) 
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For the casting of Zerodur® mirror blanks with diameters of 1 m, 2 m or 4 m, usually circular 

moulds are used. This leads to an excellent quality of circular mirror blanks. Hexagonal mirror 

blanks for most of the present 10 m class telescopes were also cut from those circular discs. 

The main disadvantage of this procedure is that much more material is needed. Therefore, a 

direct casting of hexagonal shaped castings was developed to reduce the amount of raw 

material used during the GTC projects. The advantages are less casting time, better stress 

distribution and significant material savings (Dohring et al., 2006; Hartmann et al., 2006).   

2. ULE® (Corning)  

Ultra-Low Expansion (ULE®) glass is a near-zero thermal expansion material, developed by 

Corning Incorporated (USA). It is unique from other low expansion materials in that it is 

fabricated by a flame hydrolysis process instead of being poured. The advantage of this 

process is the minimisation of impurities. ULE® is a titanium silicate glass, not a glass-ceramic 

(Sabia et al., 2006). Corning Incorporated has been making ULE® glass for astronomical 

applications since the 1960’s. ULE® has been successfully employed for numerous monolithic 

and lightweight mirror telescopes, including the 2.4m Hubble Space Telescope and the Subaru 

Telescopes (Japan’s 8.2m optical telescope, located at Mauna Kea, Hawaii).  

3. Sitall® (LZOS)  

Sitall® (or Astrositall®) was developed by the Russian company LZOS. It is a crystalline glass 

ceramic material with ultra low CTE (about 0.15 x 10-6/°C in the temperature range  -60°C to 

+60°C) (Abdulkadyrov et al., 2004). The Southern African Large Telescope (SALT) has selected 

Sitall optical glass-ceramic for the manufacturing of its 91 primary mirror segments (Ponin et 

al., 2003).  
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4. Clearceram® (Ohara) 

Clearceram® is another glass ceramic with an ultra low thermal expansion coefficient (for the 

regular Clearceram®, it is about 0.1x 10-6/°C at room temperature). It was developed by the 

Ohara Company in Japan. Ohara has manufactured Clearceram® for many years. This material 

is used in the industrial ultra-precision instruments such as photolithography equipment 

(OHARA, 2012). Recently, Ohara established a manufacturing process and capability for large 

diameter blanks (about 2m diameter) (Kishi et al., 2010). 

1.6.2.2 SiC 

SiC (Silicon carbide) is a family of materials used for reflective mirrors. The basic material is 

composed of a tetrahedron of carbon and silicon atoms with strong bonds in the crystal lattice. 

SiC is not attacked by any acids, alkalis or salt up to 800oC. The high thermal conductivity, low 

thermal expansion and high strength give SiC exceptional thermal qualities. The specific 

numbers can be found in Table 1.1 in the following section. SiC technology is being increasingly 

adopted for future space observatories, such as Herschel, whose secondary mirror was made 

from SiC (Spano et al., 2006). 

However, to date, SiC optical components have not been produced in sizes exceeding 1.5m, 

and their performance beyond this figure remains to be proven. Several attempts were made 

to produce Gemini M2 blanks adopting SiC, but all cracked during cool-down. As a result, 

Zerodur® was adopted as a back-up solution (Bougoin et al., 2004). The polishing pressure 

required for SiC mirrors was up to four times greater than for a glass ceramic. In addition, SiC 

mirrors are known for their high cost and SiC manufacturing facilities are extremely specialized 

and technically demanding (Bougoin et al., 2004). In 2006, UCL aborted two 1m SiC blanks 

from different vendors, but both failed in manufacture (Walker, 2012A).    
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1.6.2.3 Vaporised Beryllium (Be) 

Beryllium (atomic number: 4) is a promising material for mirror substrates and like aluminium 

substrates, it is normally nickel coated before polishing. Its surface is highly resistant to 

oxidization in air and its Young’s modulus is high, therefore the mirror becomes stiff. Beryllium 

also has a relatively low coefficient of thermal expansion. Beryllium has been used in the 

cryogenic space telescope as the primary mirror for the past 30 years, as on program IRAS 

(Infrared Space Astronomical Telescope) (Parsonage, 2004). In a ground astronomical 

telescope, the four secondary mirrors for the VLT (Very Large Telescope) were made from 

Beryllium (Cayrel et al., 1996). A new grade of Beryllium was chosen for the primary mirror on 

the 6.5m JWST (James Webb Space Telescope) (Parsonage, 2004).  

One important disadvantage is its extreme toxicity, causing diseases of the skin and lungs 

(Matson et al., 2004). Stringent safety precautions have to be applied when working with this 

material, thus increasing the cost of manufacture.  

1.6.3 Comparison of mirror materials  

Evaluating materials and processes for the fabrication of a large optical mirror is a rather 

complex task, which depends on budget, schedules and acceptable risks. The essential 

characteristics of material selection for large segment mirrors are (Bougoin et al., 2004): 

1. Specific stiffness and thermal stability 

2. Cost effective manufacturing and a reasonable time span 

In order to reach a low mass and a high stiffness, a material with a small ratio of density and 

Young’s modulus is required. Furthermore, the ratio of the coefficient of thermal expansion 
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and thermal conductivity should be low as well. A graphic example is shown in Figure 1.13, 

which compares some mirror materials for their thermo-mechanical figures of merit. From this 

graphic, it can be seen that some potential materials for ELT are on the left-bottom.  

Beside their thermo-mechanical quality, those of cost and production difficulties are also 

important for large astronomical telescopes. There is an overview of possible materials, which 

are suited for the optical mirror in Table 1.1. 

 

 

 

 

 

 

Figure 1.13 Thermo-mechanical figures of merit for a variety of mirror materials (ρ/E specific 

stiffness, where E is the Young’s modulus and r the density and CTE/k, steady state thermal 

distortion coefficients, where CTE is the Coefficient of Thermal Expansion and k the thermal 

conductivity) (Dierickx, 2000) 
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Table 1.1 Materials comparison for candidate lightweight mirrors (Abdulkadyrov et al., 2004; 

Frank et al., 2005; Sabia et al., 2006; Kishi et al., 2010) 

 Desired 

Value 
AI Be SiC® 

(CVD) 
Zerodur® ULE® Sitall® Clearceram® 

Density [kg/m3] Low 2,700 1850 3,210 2,530 2,210 2,460 2,550 

Young’s modulus [GPa] High 68 287 465 91 67 92 90 

Coefficient of Thermal 

Expansion [1x10-6/°C] 
Low 22.5 11.3 2.4 0.05 0.03 0.15 0.1 

Thermal Conductivity 

[W/m x °C] 
High 167 216 198 1.64 1.31 1.18 1.51 

Ability to be Diamond 

turned 
High High High Low Low Low low low 

Difficulty of 

Superpolishing 
Low Medium High High Low Low Low low 

Cost of finished Mirror Low £ £££ £££ ££ ££ ££ ££ 

1.7 Active optics and Adaptive optics in ELTs 

Although the technology about active and adaptive optics is beyond the research work of this 

thesis, it is necessary to review their fundamentals. An ELT to deliver its science case would be 

impossible without active/adaptive optics (Love and Saxena, 1994). The E-ELT segments will 

have a warping harness which enable low order aberrations to be ‘tuned out‘ and this has 

been taken into account in ESO’s specification (ESO, 2011). 
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Active optics generally refers to the figure control of optical elements at low bandwidth (less 

than one Hertz) to correct residual aberrations and gravity and thermal effects. Adaptive optics 

refers to the correction of high frequency (above a few Hertz) wavefront disturbances by 

atmospheric turbulence (Bely, 2003; Kendrew, 2006). The basic principle of both techniques is 

introduced in the following paragraphs: 

1. Active optics 

The primary mirrors of the next generation of large ground-based optical telescopes are highly 

segmented which will involve thousands of degrees of freedom in the primary mirror. An 

active supporting system is crucial to ensure good positioning and orientation of the segments 

with respect to their parent shape, because of the inevitable distortions of the steel structure 

that support the segments. To reduce the total mass of ELTs, primary mirror segments will be 

made very thin cf. classical telescopes (for ELT’s segments, 1.4m cross-corners, are only 50mm 

thick). It would be impractical to keep them rigidly in the correct relative positions. Therefore, 

active optics are required to maintain the figure of the overall primary mirror during operation 

of the telescope.  

Figure 1.14 is a schematic of an active optics system (Wilson et al., 1987A). Starlight from the 

telescope is simultaneously sent to the focus and to a wavefront sensor by a beam splitter. The 

computer analyses the output of the wavefront sensor and sends control signals to the 

primary mirror to correct any errors from the optical elements of the telescopes, such as rigid 

body movements of the mirrors and deformation of the mirrors, by adjusting the support 

forces. 
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Figure 1.14 Active optics fundamental principles (Wilson et al., 1987A) 

2. Adaptive optics 

The performance of high-resolution imaging with ELTs is severely limited by atmospheric 

turbulence. Adaptive optics is a technique that allows ground-based telescopes to remove the 

blurring effects caused by the Earth's atmosphere.  

Adaptive optics was first proposed by astronomer Babcock (1953) for improving the 

performance of ground-based telescopes in 1953. Adaptive optics offer real time 

compensation (a few milliseconds time constant) of the atmospheric turbulence. The 

simplified principle of adaptive optics is shown in Figure 1.15. If there was no atmospheric 

turbulence, the wavefront of the light from stars would be plane. However, over large fields of 

view, atmospheric effects are considerable for the ELTs. The adaptive optics system uses a 

http://en.wikipedia.org/wiki/Millisecond
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guide star (either natural guide stars or artificial laser guide stars) as a calibration source and 

then deforms a small mirror (adaptive mirror) to correct for distortions caused by the 

atmosphere (Love et al., 2004). 

 

 

 

 

 

 

 

Figure 1.15 Simplified diagram of an adaptive optics system (Tokunaga and Jedickle, 2006) 

1.8 European Extremely Large Telescope (E-ELT)  

The European Extremely Large Telescope is a proposed ground-based facility featuring an 

optical/near-infrared telescope operation. It is being designed by the European Southern 

Observatory (ESO). The E-ELT completed its detailed-design phase at the end of 2011 and final 

approval for its construction is planned for 2012. The artistic illustration of E-ELT is shown in 

Figure 1.16. 

http://en.wikipedia.org/wiki/Extremely_large_telescope
http://en.wikipedia.org/wiki/European_Southern_Observatory
http://en.wikipedia.org/wiki/European_Southern_Observatory
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The primary mirror of the E-ELT was originally proposed as 42m in diameter, 84m radius, with 

984 aspheric segments, as shown in Figure 1.17. In the summer 2011, ESO Council endorsed a 

revised design for E-ELT with the purpose of a trade-off of the budget and risk.  The new design 

slightly reduces the diameter of the primary mirror to 39.3m, 69m radius, which will be 

composed of 798 hexagonal segments, each 1.44 meters across corners. The details of the 

39.3-metre primary mirror are introduced in the following section. 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 Artist’s rendition of the E-ELT (ESO, 2011) 

 

 

http://www.eso.org/
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Figure 1.17 E-ELT’s original primary mirror pattern with 984 hexagonal segments (Preumont et 

al., 2009) 

The E-ELT is a five-mirror telescope design that includes a three-mirror anastigmat optical 

solution (M1, M2 and M3), one 2.5m adaptive optics mirror (M4) and one 2.5m tip-tilt mirror 

(M5). Adaptive optics are fully integrated in the telescope design (M4) for fast correction of 

the ground layer atmospheric turbulence (Ramsay et al., 2010). The five mirror design is shown 

in Figure 1.18. 

 

 

 

 

 

 

Figure 1.18 Five mirrors design of E-ELT (ESO, 2011) 

http://www.eso.org/
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1.9 E-ELT segments and specification 

1.9.1 E-ELT segments 

The revised E-ELT primary mirror is a 39.3m diameter elliptical concave mirror with a conic 

surface expression as following: 

2

2 21 1 ( 1)

c
z

k c








    
                                              

where: 

 c  is the curvature of the vertex, c=1/R=1/69000mm-1; 

k  is the nominal conic constant (k=e2, where e is the eccentricity), k=-0.995882; 

 ρ is the distance between point (x, y, z) and original point (0, 0, 0) in the XOY system 

(ρ2=x2+y2).  

The E-ELT primary mirror is made of off-axis aspheric segments, which have a quasi-hexagonal 

contour. The segments are about 1.44 m across corners (maximum dimension) and 50 mm 

thick. The total manufacturing requirement is 931 segments, only 798 of which are installed in 

the telescope. In view of the 6-fold symmetry of the assembled mirror (shown in Figure 1.19, 

left), there are 133 (798/6) families of identical segments, allowing one spare for each family of 

segments. Having 7 identical segments per family allows for a realistic operation scheme in 

relation to coating, as a cluster of segment taken out of the telescope for recoating (segments 

need to be re-coated periodically) can immediately be replaced by another cluster (of the 

same family), which has been prepared beforehand (ESO, 2011).  
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Figure 1.19 Layout of E-ELT primary mirror (on the left) and location of 7 prototype segments 

(on the right) (ESO, 2011) 

The specifications of these segments’ surface are highly challenging and the manufacture of 

931 such segments in a few years demands a new process that requires deterministic, 

automation of fabrication, metrology and handling, minimization of manual interventions and 

streamlining of data-flow for measurement analysis and process-control. European Southern 

Observation (ESO) awarded OpTIC, St. Asaph UK, a contract for the production of seven 

prototype segments for the E-ELT project. At the time, OpTIC was owned and operated by the 

Wales Assembly Government as part of the Technium network. OpTIC was subsequently 

acquired by Glyndwr University and took its current name ‘OpTIC Glyndwr’. These prototype 

segments are located on the peripheral region of the primary mirror (as shown in Figure 1.19, 

right) and production of these seven segments will be the most difficult in the E-ELT primary 

mirror system as they are highly off-axis. The manufacturing of each of them is highly 

challenging. The details of the specifications are introduced in the following section. 
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1.9.2 Specifications of the segments 

As mentioned previously, the design of primary mirror for the E-ELT was changed from 42 

metres to 39.3 metres in diameter. However, the prototype segments still correspond to the 

original design of 42 metres.  

1 The form specification of useful area 

The ‘useful area’ is defined as the bulk surface excluding the 10mm wide peripheral zone. The 

data need to be measured by interferometry. The maximum allowable surface errors (RMS) 

over the useful area of any single prototype segments are: 

(a) 50nm (RMS) for the overall surface error, which covers all term including curvature 

deviation 

(b) 30nm (RMS) for the residual surface error, which allow the terms of Tip/Tilt, Defocus 

and Astigmatism to be removed 

2 The edge specification  

From interferometry data, the ‘edge zone’ is defined as 10mm wide peripherals of the useful 

area of the segment. A 0.5mm wide band around the periphery of the segments is allowed to 

be removed for the final bevelling. The 10mm wide hexagonal ring is divided into six individual 

trapezoidal edge-segments, each of which is analysed separately to provide the PV of the edge 

mis-figure values, as shown in Figure 1.20. The edge specifications are: 

(a) The maximum edge mis-figure (PV) of six edges shall be less than 200nm surface error 

(b) The average edge mis-figure(PV)  of six edges shall be less than 100nm surface error 
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Figure 1.20 Analysis of interferometry data for edge mis-figure (Walker, 2012B) 

The ESO specification is ambiguous regarding the datum with respect to which edge mis-figure 

is measured, also the method of measurement (interferometry or profilometry etc). D.D. 

Walker proposed to ESO a refined measurement protocol, that ESO accepted, in which the 95% 

PVq (rather than 99% PVq adopted previously) represented a significant but reasonable 

concession on the segment of ESO (Walker, 2012B).  

3 The Roughness  

The roughness of the polished surface of any prototype segment shall not exceed 3nm. The 

definition of the metric with respect to how roughness is measured was not specified by ESO. 

In this thesis, the measurement region of 1.4mm x 1mm with 1000 pixels is adopted, with any 

tip/tilt & defocus term remained in analysis. 

The specification of the E-ELT segments is summarised in the Table 1.2. 
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Table 1.2 Specification of the E-ELT segments (ESO, 2011) 

 Specifications 

The useful area  

(excluding the 10mm wide 

peripheral zone)  

Overall surface error: <50nm (RMS) 

Residuals surface error after removal of low- and 

mid-spatial frequency terms: <15nm (RMS) 

The edges 

(the 10mm wide peripherals 

of the useful area of the 

segment) 

The maximum edge mis-figure (PV) of six edges shall 

be less than 200nm surface error 

The average edge mis-figure (PV)  of six edges shall 

be less than 100nm surface error 

The roughness 
The roughness of the polished surface shall not 

exceed 3nm in the surface area 

 

 

 

 



Chapter 1 Introduction 

64 
 

1.10 The techniques for fabrication of the large aspheric part 

Three fundamental techniques for fabrication of large aspheric part are listed in Table 1.3. The 

details of these aspheric fabrication approaches are introduced in Chapter 2. 

Table 1.3 Three fundamental techniques for fabrication of large aspheric part 

 Polish techniques Limited range 

1 Stressed mirror polishing 
Only circular parts, and residual distortion after 

cutting hexagonal requiring rectification 

2 Large stressed-lap polishing Only circular parts can be processed 

3 Small sub-aperture polishing 
From general shape up to extreme aspheric shape; 

Challenge of edge mis-figure 
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Chapter 2 

Review of aspheric surface polishing and 

figuring techniques 

This chapter is based around a discussion of optical aberrations, and then polishing and 

figuring techniques for fabrication of the large aspheric part are reviewed. A brief comparison 

of these techniques is given at the end of this chapter. 

2.1 Introduction 

In general, spherical optics produce wavefront aberrations which blur the image, and may be 

offset by other optics, at the expense of added weight and size. A high quality optical system 

often consists of several groups of lenses with spherical surfaces. This adds weight, and 

precision mechanics that are required to mount and align these surfaces, increase the cost 

considerably. 

More and more, aspheric surfaces are used in optical systems. Aspheric surfaces provide the 

designer with additional degrees of freedom in ray-tracing optimization, compared with an all-

spherical solution. In general, this allows independent correction or balancing of various 

aberrations (Schulz, 1987). Finally, it achieves some or all of the following: fewer elements, 

more compact packaging, and lower mass and superior imaging performance. 

However, manufacturing difficulties and the cost of producing aspheric surfaces is substantially 
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higher than that of spherical surfaces optical elements (Yuan and Wang, 1999; Pollicove et al., 

2000). Producing an aspheric surface poses several challenges using traditional polishing 

methods. For example, the part radius of curvature varies across the surface, and so a rigid 

tool can make intimate contact in only one zone. Imperfect contact introduces low and high 

pressure spots, leading to zonal errors. This tends to force the craft optician to use a range of 

small tools with consequent reductions in volumetric removal rates and increases in 

manufacturing time. 

The breakthrough in modern optical processing compared to traditional technique was the 

advent of computer controlling ‘small tool’ polishing. The processing technology is often 

referred to as computer controlled polishing (CCP). Its technical ideas were first proposed by 

Rupp and Jones of the American Company Itek in the 1970s (Jones, 1977). The computer-

controlled small polishing tool technique was based on the Preston hypothesis (the details are 

discussed in Section 2.3), and modelling of the polishing process (Jones, 1978). Thus, this 

method is also known as the certainty polishing technique (Jones and Rupp, 1991).  

A more modern word is ‘deterministic’ which basically means the result conforms to the 

computer model. In the processing of large-scale optical components, particularly these that 

are non-spherical, these computer controlled polishing technologies are increasingly being 

applied. These polishing technologies are usually aimed at, at least some of, three 

characteristics: low tooling cost, deterministic material removal, and embedded process 

control intelligence (Jacobs, 2004; Kim et al., 2005). 

Currently, the developing deterministic polishing or figuring technology includes a variety of  

technologies, such as dynamic stressed lap polishing technology, magnetorheological finishing 

(MRF), fluid-jet finishing (FJ), ion beam figuring (IBF), reactive atomic plasma technology (RAPT) 

and the ’Precessions’ process. These techniques have been developed over the last few 
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decades for the fabrication of aspheric optical surfacing (Pollicove et al., 2000; Burge et al., 

2009). An overview of these techniques is introduced in a later section. 

2.2 Optical aberrations and Zernike polynomials 

Before considering the manufacturing technologies any further, it is useful to introduce the 

problem that these technologies aim to solve. This is considered below at the most 

fundamental level – the image defects that arise in optical systems.  

A perfect optical system would focus the light of a distant point source into a diffraction-

limited image on the focal surface, to establish a point-to-point correspondence between an 

object and its image. Any deviation of the wavefront away from the spherical causes a 

deterioration in the quality of the point images as shown in Figure 2.1. It can be seen that rays 

emerging from a spherical wavefront converge towards a single point in the image plane (on 

the top), and rays emerging from an aberrated wavefront form an extended area, spreading 

the light energy (on the bottom) (Bastaits, 2010). 
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Figure 2.1 Diagram of wave aberration and image (Bastaits, 2010) 

In general, it is convenient to express wavefront data in a compact polynomial form to help in 

the interpretation of optical test results. Zernike circle polynomials (because of their 

orthogonality over a circular pupil) are often used for this purpose as they are made up of 

terms, which are the same form as the types of aberrations often observed in optical tests 

(Zernike, 1934). Zernike circle polynomials are formed as: 

            

 

   

      

where        and         are respectively the wavefront and the     Zernike polynomial 

expressed in polar coordinates,    is the coefficient of the polynomial        . In this 

polynomial, a series of radial orders can be demonstrated as different wavefront error maps. 

Table 2.1 contains a list of Zernike polynomials up to 4th order and their meanings relative to 

the optical aberrations. The description of optical aberrations by Zernike polynomials is 

depicted in Figure 2.2. 
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However, Zernike circle polynomials are not appropriate for noncircular pupils, such as annular, 

hexagonal, elliptical and square pupils, due to their lack of orthogonality over such pupils. 

Various approaches for calculating the Zernike coefficients for noncircular pupils were carried 

out, including when such a pupil is treated as being circular (Hou et al., 2006, Dai et al., 2008 

and Lee, 2010).   It is a common practice to draw a unit circle around the interferogram, define 

a centre, and use the circle polynomials to determine the content of the aberration function 

represented in the interferogram (Dai and Mahajan, 2008).  

Table 2.1 Zernike Polynomials (up to 4th order) (Zhu et al., 1999) 

order         Meaning 

0 1 Piston 

1           Tilt in y direction 

1           Tilt in x direction 

2              Astigmatism with axis at 450 

2           Defocus 

2              Astigmatism with axis at 00 

3              Trefoil 

3                   Coma along y axis 

3                   Coma along x axis 

3              Trefoil 

4               Trefoil 

4                      Secondary Astigmatism 

4               Spherical Aberration, Defocus 

4                     Secondary Astigmatism 

4              Trefoil 
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Figure 2.2 Zernike Polynomials (up to 4th order) (Bastaits, 2010) 

In general, most of the wavefront errors due to misfiguring, thermal distortions and 

misalignment, can be described by combining the first 20 polynomials. However, they are 

limited in their ability to describe those errors at mid-spatial and very high spatial frequencies, 

such as surface roughness of mirrors and point defects, which would require high order terms.   

The precision of manufacturing optical surfaces is limited by the accuracy of the metrology, 

because the error in a test will be inputted into the surface on the next run. The real attribute 

of the low order aberrations in the optical test is analysed in Table 2.2: 
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Table 2.2 The real attribute of the low order aberrations in the test (Walker, 2012A)    

Aberrations The real attribute 

Tip/tilt The misalignment  in the test, normally removed in data analysis 

Defocus 
The error in base radius of the asphere, or a Z-distance error in 

an interferometry  test   

Astigmatism 
The principle bending modes of a plate-as may occur on a 

defective support system 

Coma The decentration of part in a test 

Trefoil The print through of a 3 point support 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 Review of aspheric surface polishing and figuring techniques 

72 
 

2.3 Preston equation 

The theoretical basis for estimation of removal rates in polishing was provided by Preston 

(1927) in 1927, and underpins most CCP techniques. This simple model is commonly used to 

describe the optical surface for processing, as follows:   

p(x,y)ν(x,y)kx,y)Δh (            

where:  

)y,(xh  - Removal in unit time at point ),( yx  

K - Preston coefficient, related to the part-material, polishing-tool, polishing liquid and 

temperature of work area 

),( yx  - Instantaneous relative speed of the polishing tool at point ),( yx  

),( yxp  - Instantaneous pressure exerted by the polishing tool at point ),( yx  

Preston simplified the complex mechanism of material removal during polishing: the local 

material removal rate is determined by tool pressure and relative speed. Many Computer 

Controlled Polishing technologies (CCP) are based on the Preston equation to optimize the 

dwell time map. 

2.4 Traditional polishing approach (Craft) 

The traditional polishing technique has been used for figuring the optical surfaces for centuries, 

and is mainly used for the generation of flat and spherical optical surfaces. A polishing tool has 

the inverse form of the part. The intimate contact between the polishing tool and the 

workpiece, working with the abrasive slurry, slowly enhances the surface finish. The material 

removal takes place by chemo-mechanical modes.  
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A pitch layer is one of the most historic surfaces for a polishing tool and Wilson (2004), 

referred to the fact that Isaac Newton might have been the first optician to use a pitch lap for 

polishing on an optical surface in 1668. Pitch is a viscoelastic material with complex material 

properties, such as a low softening point (55-70oC) (OSA, 2011). Compared to glass, pitch is 

very soft; therefore, it takes the shape of the part during polishing and remains in close contact 

without scratching. 

Polishing pressure and dwell time are controlled by a repetitive stroke made by hand; 

therefore, the accuracy and efficiency of the process very much depends on the experience of 

the optician (as shown in figure 2.3). 

The process is based on feedback from a test, and the fabricator works on the part for a while 

and checks the surface. Reacting to the results, the experienced fabricator controls various 

parameters to improve the errors on the surface in an interactive procedure. Clearly, higher 

quality surfaces require more time to polish. Flats and spheres can be produced by the 

conventional method down to 10nm RMS or better, depending on the size and surface shape. 

Aspheric surfaces can be made by the traditional method with a few adjustments; however, 

they are considerably more difficult to polish. 

 

Figure 2.3 Craft polishing process (picture by the author, 2011) 
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2.5 The techniques of polishing aspheric part 

As already mentioned in Section 1.10, there are three fundamental techniques of fabrication 

for aspheric parts, which are stressed mirror, stressed lap and small tool polishing. This section 

gives a brief review of these techniques. 

2.5.1 Stressed mirror  

The stressed mirror polishing technique was developed by Lubliner and Nelson in 1980 

(Lubliner and Nelson, 1980). The principle of this method is based on the theory of elasticity; 

the mirror blank is stressed to a different shape - the inverse of the asphere required. Thus, a 

mirror could be polished into a sphere, then when the forces are released, the mirror relaxes 

back into the desired asphere.  

 

 

 

 

Figure 2.4 Stressed mirror polishing on Keck’s segment (Mast and Nelson, 1990) 

This method was successfully used to polish the 1.8m, across corners, hexagonal segment 

mirrors of the Keck’s primary mirror. The diagram of the stressed mirror polishing is shown in 

Figure 2.4. Forces and moments are applied under and at the edge of the part by a set of 24 
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levers. The spherical shape was polished by a traditional pitch lap. Finally, the forces and 

moments were released and the mirror elastically deformed to the desired hyperboloid (Mast 

and Nelson, 1990). Keck’s segments were polished from circular blanks, then after polishing 

had been completed, they were cut into a hexagon shape using a diamond saw. 

Stressed mirror polishing allows an aspheric part to be polished as a spherical part. However, 

the high order error is difficult to bend. Thus, this method provides a low process precision. It 

has been reported that the surface form error of 225nm RMS was achieved after stressed 

mirror polishing of Keck’s segment (Mast and Nelson, 1990). This residual error was addressed 

using ion beam figuring. This is introduced in Section 2.5.3.3. 

2.5.2 Stressed lap  

The stressed mirror polishing technique stresses the mirror to the inverse asphere, and it can 

be polished with standard spherical tooling. The stressed lap is the exact opposite approach ─ 

the tool is deformed. 

The Stressed lap polishing technique was demonstrated by the Steward Observatory Mirror 

Laboratory, University of Arizona in the early 90s (Anderson et al., 1991). In the beginning, the 

research effort led to the development of a new deformable large-tool polishing technique, 

ultimately to polish 8m glass mirrors with highly aspheric figures. For example, a rigid passive 

lap cannot maintain an accurate fit to a paraboloidal surface because of the variations in 

curvature across the surface. In principle though, a large stiff tool is advantageous because it 

produces high glass-removal rates and natural smoothing over a wide range of spatial 

frequencies. The stressed lap permits the use of a large stiff tool on highly aspheric surfaces, 

because the tool’s surface form is actively changed as it is moved over the surface. The form 
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changes are induced in a large circular plate through the application of bending and twisting 

edge moments. 

The stressed lap consists of a metal disk with actuators attached to the upper face and coated 

on the lower face with the traditional squares of pitch (Martin, 1990). It is pressed against the 

mirror prior to polishing. When the polishing run starts, the actuators must induce the correct 

changes in form as the lap moves relative to the mirror. Stressed lap polishing technique has 

been adopted as the core technique for the Giant Magellan Telescope (GMT) segments. The 

GMT’s segments have 15 mm peak-to-valley aspheric departure (Martin et al., 2004). As shown 

in Figure 2.5, under the effect of 12 variable torques generated by the installed drives around 

the lap, the stressed lap can be deformed according to the requirements of the polishing 

process. The actuators are programmed to make the lap shape match the ideal aspherical 

surface. In large optical component processing, actively stressed lap polishing has some 

advantages, such as high processing efficiency and natural smoothness. 

 

 

 

 

 

Figure 2.5 A 1.2m ‘stressed lap’ tool is used to polish an 8.4m diameter segment for GMT 

(Martin et al., 2004)  
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The Steward Observatory Mirror Laboratory has been improving this technique since 1990 and 

has completed two 8.4 metre diameter primary mirrors for the Large Binocular Telescope. The 

mirrors were figured to an accuracy of 15 nm RMS surface after subtraction of low-order 

aberrations (Martin et al., 2006). However, there are some difficulties in processing large 

aspheric surfaces using stressed laps. The stressed lap is very complex and needs to be highly 

maintained especially for deep off-axis aspheric surfaces. The tool has to be re-built for each 

new process (Chen et al., 2010). There are no published reports available on processing non-

circular (for example, hexagon) parts using stressed-lap techniques. 

2.5.3 Small tool polishing and figuring techniques 

Rather than deforming the part or the tool, the aspheric misfit problem can be addressed by 

reducing the tool’s contact area, and introducing some mechanism for passive compliance 

over the area of contact, such as: Magneto-rheological finishing (MRF), Fluid-Jet (FJ), Ion Beam 

Figuring (IBF),  Reactive Atomic Plasma Technology (RAPT) and ‘Precessions’ polishing. 

2.5.3.1 Magneto-rheological finishing (MRF) 

The MRF approach for processing optics was invented at the Luikov Institute of Heat and Mass 

Transfer in Minsk, Belarus in the late 1980s by a team led by William (Prokhorov et al., 1992; 

Jacobs et al., 1998). It is a deterministic method for producing complex optics. This process 

was developed at the Center for Optics Manufacturing (COM) by a group of international 

collaborators (Jacobs et al., 1995) and commercialized by QED Technologies Inc. (Golini et al., 

1999 and 2001). It is mainly used in the field of high quality optical production for nonmagnetic 

materials. 
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MRF’s schematic setup is shown in Figure 2.6. MRF is based on a magneto-rheological fluid 

with nonmagnetic abrasive particles. The polishing fluid includes magnetic particle (typically 

carbonyl iron), and may be stiffened in a controlled manner by an applied magnetic field. The 

stiffened fluid constitutes the polishing ‘tool’ that removes material from the sample (Harris, 

2011). On optical glasses a typical removal rate of 10µm/min is observed and surface 

roughness can be achieved up to 1 nm rms. Form errors can be reduced from a few   to /5 

PV (Tricard et al., 2006; Schinhael et al., 2006). 

The safety issue (slurry has to contain magnetic sensitive particles) and high cost of Magneto-

rheological fluid are the MRF’s disadvantages (Demarco, 2005). It is also a finishing process and 

is not used directly to polish a ground part. 

 

 

 

 

 

 

 

Figure 2.6 Schematic view of the MRF setup (Harris, 2011) 
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2.5.3.2 Fluid-Jet (FJ) 

 Fluid-jet was first developed at Delft University of Technology in 1998. Fähnle’s research 

(1998A, 1998B, 1999) showed that it is feasible to utilize Fluid-jet for precision polishing. With 

Fluid-jet, they polished one flat BK7 optical glass with surface roughness of the surface (RMS) 

which decreased from 475nm to 5nm.  

The Fluid-jet system uses a nozzle to guide premixed slurry as a jet to the workpiece at high 

speed. Material is removed by collision and shearing actions between an abrasive and the 

workpiece. An overview of the Fluid-jet setup is shown in Figure 2.7. Therefore, this method is 

also called Abrasive Jet Polishing (AJP). It is a novel deterministic precision optical 

manufacturing technique.  

 

 

 

 

 

Figure 2.7 Overview of the Fluid-jet schematic setup (Brug et al., 2002) 
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Compared with classic polishing methods, Fluid-jet’s advantages are: the precision of the 

surface shape can be controlled easily and the tool is cooled. In addition, Fluid-jet is suitable 

for polishing various complex surfaces with no edge effects, because the tool is a liquid column 

(Gonzalez et al., 2004 and Salinas et al., 2006). 

However, Fluid-jet is still in the early stage and has shortcomings such as low removal rate and 

difficulty in controlling the stability of influence function. Thus, Fluid-jet is usually used at the 

stage of final surface finishing. Another application of Fluid-jet is to remove diamond turning 

marks on diamond turned mirrors (Li et al., 2010). 

The magneto-rheological fluid jet (MR-Jet) has been developed by QED Technologies Inc, 

which has a long standoff distance (tens of centimetres). This enables the polishing of steep 

concave surfaces (principally the inside of missile cones) that are impossible to reach with a 

MRF wheel-based tool (Kordonski et al., 2003). 

Zeeko Ltd. has developed Fluid-jet on their hybrid machines, which accommodate both the 

fluid-jet and bonnet processes (Walker et al., 2006B). The jet direction is precessed to give a 

Gaussian-shaped influence function. It has potential for edge-correction; this is introduced in 

Section 3.3. 

2.5.3.3 Ion Beam Figuring (IBF) 

IBF is a deterministic and non-contacting optics processing technique. Error-correction by ion 

beams uses a focused broad ion beam, which is raster-scanned across the surface of the part, 

according to the dwell time map, to remove the surface error (typically, surface error of 5nm 

RMS can be achieved) as shown in Figure 2.8. 
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Figure 2.8 Error correction processing scheme of IBF (Zeuner and Nestler, 2010) 

IBF has been used for more than 30 years to figure high quality optics of various materials and 

dimensions. The early work on the IBF of optical components was performed by Gale (1978) in 

1978. IBF was first demonstrated by Wilson et al. (1987B) at the University of New Mexico in 

1987. The Kodak Company and Carl Zeiss Company have investigated its application in the 

mirror fabrication field of large telescope systems since 1987 (Drueding et al., 1995). The IBF 

process has been successfully used on the final processing of the primary mirror of Keck 

telescope at Kodak.  

The extremely slow material removal is the main disadvantage of IBF. The segment has first to 

be polished to the final requirement before going to IBF. In the case of ‘Keck’, a 1.8m corner-

corner hexagonal segment required 14 days to correct the residual error (RMS 0.762µm) after 

stressed mirror polishing (Mast and Nelson, 1990). 

2.5.3.4 Reactive Atomic Plasma Technology (RAPT) 

Reactive Atomic Plasma Technology is a new technology for the processing of mirrors, which 

has been developed by RAPT Inc (US) and was patented in 2002. UCL and Cranfield University 

are developing the reactive atomic plasma machine for the production of high power lasers, 

after previous work directed at mirror segments (Fanara et al., 2006A and 2006B). 
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The material removal is performed by a stream of reactive atoms, that is directed onto the 

surface of the glass and produces the volatile SiF4 and CO2 by reaction, both of which are 

exhausted gaseously. The schematic of RAPT processing is shown in Figure 2.9. 

 

 

 

 

 

 

Figure 2.9 RAPT processing (Subrahmanyan and Gardopee, 2008) 

RAPT is a non-contact, sub-aperture, deterministic material removal technology with a wider 

material removal rate capability. In 2008, Subrahmanyan and Gardopee (2008) reported that a 

100 mm diameter fused silica part has been figured by RAPT from RMS 0.124 to 0.015  in 24 

minutes.  

RAPT is an atmospheric pressure process, which precludes the need for expensive vacuum 

chambers for processing larger mirrors that makes RAPT potentially more cost-effective than 

ion beam figuring. Unfortunately, it does not work on Zerodur-type material. Even on ULE, it 

degrades surface texture, requiring post-polishing (Cranfield University, 2011). 
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2.5.3.5 Introduction to the ‘Precessions’ polishing technique 

The ‘Precessions’ polishing technology was developed at UCL in the early 90s and 

commercialized by Zeeko Company in 2000 (Bingham et al., 2000; Walker et al., 2001A and 

2001B). It is an advanced and rapidly expanding innovative technology to polish ultra precision 

surfaces for telescope mirrors and other optical surfaces (Walker et al., 2005; 2006A; 2006B 

and 2011A). 

The ‘Precessions’ process is a deterministic, ultra-precision optics processing technique based 

on computer controlled polishing (CCP) technique. ‘Precessions’ uses a spinning, bulged and 

compliant bonnet tool covered with a suitable standard polishing cloth (such as polyurethane), 

and working via an abrasive slurry.  

2.6 Comparison and summary 

Polishing an aspheric surface is very difficult because there is a mismatch between the 

polishing tool and the surface of the glass. In the special case of E-ELT mirror’s segments, they 

must have a good figure right to their edges. 

The techniques for polishing aspherics have been reviewed in this chapter. The comparison of 

these techniques is summarised in Table 2.3. 

To fabricate almost 1000 segments in a few years with a challenging specifications; the process 

also requires deterministic, automation of fabrication and minimization of manual intervention.  

The ’Precessions’ technique with many advantages has been proposed for the fabrication of 

the prototype segments for E-ELT project. The details of the ’Precessions’ process will be 

discussed in Chapter 3. 
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Table 2.3 The comparison of the aspheric surface polishing and figuring techniques (Mast and 

Nelson, 1990; Kim, 2000; Martin et al., 2004; Harris, 2011) 

Aspheric surface polishing 

techniques 
Description Advantages Disadvantages 

Stressed mirror polishing 

(Keck Observatory) 

The mirror blank is 

stressed during 

polishing.  When 

forces are released, 

the mirror relaxes to 

the desired form 

The aspheric 

part could be 

polished as a 

spherical 

part 

High order error is 

difficult to bend, 

which causes the low 

processing precision 

and needs subsequent 

final figuring process; 

Only circular part 

Stressed-lap polishing 

(Steward Observatory Mirror 

Lab) 

Tool is actively 

deformed to match 

the local asphere 

Large tool 

provides 

high material 

removal rate 

Complex tool has to 

be re-built for each 

new part; 

Only circular part can 

be processed 

Small sub-

aperture tool 

polishing or 

figuring 

Magneto-

rheological 

finishing 

(MRF) 

Magneto-rheological 

fluid abrasive is 

stiffened by 

magnetic field  

Tool 

conforms to 

local 

aspheric 

surface  

Safety issue(slurry 

contains magnetic 

sensitive particle); 

High cost of Magneto-

rheological fluid; 

Will not polish 

Ion Beam 

Figuring (IBF) 

Bombardment with 

ion particle removes 

the material 

Highly 

deterministic 

and no edge 

effect 

Extremely low 

material removal rate  

Fluid Jet (FJ) 

Kinetic energy of 

collisions between 

the abrasive and the 

part 

It is suitable 

for polishing 

complex 

surface and 

no edge 

effect 

Low material removal 

rate and difficulty in 

controlling the 

stability of influence 

function 

Reactive 

Atomic 

Plasma 

Technology 

(RAPT) 

Stream of reactive 

atoms 

Deterministic 

technique 

with no edge 

effect 

Still at an early stage; 

It is not applicable for 

Zerodur and similar 

material; 

 Degrades texture 
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Chapter 3 

‘Precessions’ polishing  

The research work reported in this thesis is based on the ‘Precessions’ polishing method. This 

chapter presents this technique in detail and provides an overview of the machine, choice of 

polishing tools, ‘Precessions’ process parameters, tool paths and metrology that are employed 

in this study. 

3.1 The principle of the ‘Precessions’ polishing  

The basic principle is a section of a compliant spherical bonnet that is pressed against the 

surface to create a circular contact spot. The bonnet is rotated about its axis, and the rotation-

axis precessed, to create a near-Gaussian removal influence function (Walker et al., 2003). The 

geometry of the bonnet is shown in Figure 3.1. The tool contact-area (spot) and polishing-

pressure can be modulated independently by changing respectively the axial position of the 

tool and its internal pressure. The ‘Z-offset’ (bonnet compression) defines the delivered spot-

size for a specific size of bonnet. Different ranges of spot-size can be provided by exchanging 

bonnets between runs, and radii of curvature of bonnet from 20mm to 320mm are available.  

This gives the capability to optimise the process automatically using a limited range of 

different spot-sizes across a surface, and manually using different tools for different stages of 

the work, or for the different demands of smaller and large work-pieces. 
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Figure 3.1 Detailed geometry of bonnet for ‘Precessions’ polishing (drawn by the author) 

In the ‘Precessions’ polishing technique, a pre-polish process can be chosen for constant 

material removal (‘onion skin’ removal). This removes surface and the sub-surface features 

from prior grinding or grolishing (a hybrid technique between grinding and polishing) process, 

whilst preserving the surface form. Pre-polishing is conducted under the constant feed rate 

(Walker et al., 2007).  

Corrective polishing is performed by moderating the polishing tool’s dwell-time at each 

location, according to the required removal needed to correct the measured local error. The 

resulting dwell-time map is interpreted by the machine as a varying traverse speed along a 

pre-determined tool-path. The tool-influence-function (TIF) is stable and the accuracy of 

convergence is typically 80% under well-controlled conditions, but can, under ideal conditions, 

reach 90%. These factors, combined with the ability to change continuously the polishing 

pressure and contact-area, render the method well-suited to both the texture control and 

form control of flats, spheres and aspherics and freeform surface. 

‘Precessions’ has many advantages over the classical pole-down configuration of a spinning 

tool beside that of no mismatch when processing the aspheres (Walker et al., 2003). First, the 
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surface is rubbed in different directions, giving rise to superior surface-texture with almost no 

directional properties, as shown in figure 3.2. Secondly, the tool influence function (TIF) 

integrated over 0o, 90o, 180o, 270o precess positions is near-Gaussian, symmetrical, and lacks 

the high spatial frequencies and centre-zero of removal. Thirdly, the novel polishing tool with 

7-axis motion (see Figure 3.5) provides the capability to polish flat, sphere, asphere, even 

freeform surface and almost no glass material limit. 

 

Figure 3.2 Trace comparisons of pole-down polishing and ‘processions’ polishing (drawn by the 

author) 

The inflated bonnet tool moulds itself around the local curvature of an asphere, to maintain 

(to first order) a constant influence function as the tool traverses the surface.  Traditional hard 

lap tools suffer from mismatch during processing an asphere that produces a high spatial 

frequency error on the surface. Due to the flexibility of the bonnet tool, there is no mismatch 

between the tool and the aspheric surface, as shown in Figure 3.3.  
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(a) Traditional polishing lap tool introduces mismatch on the aspheric surface 

 

(b) Inflated bonnet tool performs an intimate contact with aspheric surface 

Figure 3.3 Comparison of traditional lap and bonnet tool (drawn by the author) 

 

 

3.2 Overview of polishing machines  

The Zeeko ‘Precessions’ polishing process is implemented in a series of CNC machines. Since an 

IRP200 with 200mm capacity was first successfully assembled in 2000 (Walker et al., 2001B), 

Zeeko has developed a range of machines with a capacity of up to 1600mm diameter with 
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associated metrology for the corrective polishing of complex optical surfaces. Figure 3.4 shows 

a range of IRP machines from 50mm to 1600mm capacity. 

 

 

 

 

 

Figure 3.4 Zeeko’s machines (Zeeko, 2011) 

 

Mechanical and control systems of these machines are built according to CNC machine-tool 

principles, and move the polishing tool with respect to the work-piece surface in X, Y, Z, and 

two rotational axes (A, B). The work-piece itself may be rotated (C- axis) and the tool is also 

spun (H-axis) for high removal rate (Walker et al., 2006A). Figure 3.5 shows the 7-axis motion 

of an IRP1200 machine. The A and B axes intersect at a point in space (virtual pivot) located on 

the axis of rotation of the tool spindle. The centre of curvature of the spherical polishing tool 

(bonnet) is arranged to coincide with the virtual pivot. 
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The IRP1200 machine (the main machine used in the work of this thesis) is bridge based and 

built on a 6000kg polymer-granite cast base. This gives excellent stability and damping. Two 

symmetrical Y slide-ways carry a hollow polymer-granite bridge. The bridge carries X slide-

ways and a driver/encoder system. The Z-axis carriage is mounted off the X-axis, and carries 

the virtual pivot assembly. The part is mounted on the horizontal turntable with its axis vertical, 

via a bespoke mounting fixture. For processing small parts on the large machine, standard 

Schunk chuck adaptors are available (Walker et al., 2006A).  

 

Figure 3.5 7-axis motion of IRP1200 machine (picture by the author, 2011) 

A Zeeko IRP1600 CNC polishing machine (1600mm capacity) with integrated test tower has 

been installed at OpTIC Glyndŵr in St Asaph, North Wales, in 2010 for the production of 

prototype segments for the European Extremely Large Telescope (E-ELT). This is of similar 

construction to the IRP1200, as shown in Figure 3.6. 
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A master-spherical-segment (MSS) provides the reference for the measurement of E-ELT 

aspheric segments. It is a 1.5m corner-to-corner hexagon, 84m radius part, and was polished 

on the IRP1600 in June 2011. The form error was PV= 88.5 nm, RMS = 16.8 nm. The MSS 

constitutes the reference with respect to which all segments will be compared in radius and off 

axis distance (Walker et al., 2011B). 

 

 

 

 

 

 

 

 

Figure 3.6 IRP1600 machine and test tower (picture by Dr. Yu, May 2011) 
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3.3 Choice of tooling 

Zeeko IRP-machines support a wide range of sub-diameter tooling (Walker et al., 2006B and 

2006C). This flexibility provides the possibility of accommodating different process steps on 

the same machine, reducing the risks of transportation and greatly saving process time and 

cost. 

3.3.1 Bonnet tools 

This is the standard tooling. The bonnet tool comprises an inflated membrane or solid 

elastomer, covered with a standard polishing cloth such as polyurethane or Uni-Nap cloth. It 

operates in the presence of pumped, re-circulated slurry, typically cerium oxide. A range of 

tool sizes has been designed from R20mm up to R320mm for the different process stages, as 

shown in Figure 3.7. For instance, large bonnets can be selected for the removal of sub-surface 

damage and low spatial frequencies, whereas a small bonnet may be used for the final 

correction and edge quality.  
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(a) Inflated bonnet tools with different size  

 

(b) Solid rubber bonnet tools with different polishing cloths  

Figure 3.7 A range of bonnet tools for ‘Precessions’ polishing technique (picture by the author, 

2011) 
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3.3.2 Pitch process 

Typically, it is an effective ‘smoothing process’ to remove mid-spatial frequency residuals in 

the final stage. The polishing pitch can be designed variously (for example, different sizes and 

shapes, as shown in Figure 3.8) and mounted on the ‘Zeeko’ machine, working with cerium 

oxide. This flexibility is currently being developed for the edge-control programme. The details 

will be discussed in the Chapter 7. 

 

 

Figure 3.8 The different pitch tool design (picture by the author, 2011) 

3.3.3 Grolish process 

BoX™ grinding technology has been adopted in the E-ELT segment process chain to grind the 

aspheric form directly into the surface. There is only a single edge of the ‘cup wheel’ which 

contacts the working surface in the BoX™ grinding process, and such a small contact-area 

introduces mid spatial frequency features. 
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The grolishing process is a wide range of intermediate processes between grinding and 

polishing. The main role of this process is to remove mid spatial features from grinding, and 

provide a fast material removal process. In this case, the working surface cemented to the 

surface of the bonnet is hard, and typically a metal such as aluminium or brass. The loose-

abrasive slurry may be carborundum or diamond, and applied locally rather than by a 

recirculation pump. In 2007, D. D. Walker et al., (2007) have investigated the variations on 

three types of grolishing processes as applied to Zerodur and SiC. The volumetric material 

removal rate of up to 37mm3/mins was achieved. The results also show approximately 10µm 

of sub-surface damage that is of an equivalent level to the BoX™ ultra-precision grinding 

process (using a hard tool). This is due to the flexibility of the bonnet tool, which absorbs the 

vibrations during the grolish processing. Figure 3.9 shows a grolish tool mounted on the Zeeko 

polishing machine of which a 50mm diameter brass-button has been cemented on the R80 

inflated bonnet tool (Yu et al., 2011). 

 

 

 

 

 

 

 

 

 

Figure 3.9 Grolishing tool mounted on the IRP1200 machine (Yu et al., 2011) 
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3.3.4 Zeeko-Jet 

In this model, slurry is pumped at high pressure through jets, and removes material by direct 

impact with the surface of the part. Hybrid machines (such as IRP1200, IRP1600) accommodate 

both jet and bonnet based processes with a simple interchange (Walker et al., 2006B). This is 

invoked by unscrewing and removing the Schunk Chuck that holds the Classic bonnet, and 

replacing it with the jet nozzle assembly. The jet is directed towards the virtual pivot point of 

the machine, which is the intersection of the machine’s A and B rotation axes. The machine is 

adjusted so that this point is located exactly on the surface of the part, as shown in Figure 3.10. 

This mode on the Zeeko polishing machine provides an alternative process for the stage of 

final surface finishing. It has potential for edge-correction, and reaching into deep feature (e.g. 

moulds and dies). 

 

 

 

 

Figure 3.10 The Zeeko-Jet module on the IRP1200 machine (Walker et al., 2006B)    
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3.3.5 Specialised tooling  

The standard machine tooling interface can carry a variety of specialized tooling such as ring-

laps, hard tools etc. Any Gaussian process will leave some high frequency residue, so these 

specialised tools are designed with aim to clean these up. Figure 3.11 shows a ring tool on the 

IRP600 machine with a 500mm diameter part. The ring tool carries a compliant neoprene layer 

on which hard polishing facets are mounted. The tool is passively articulated in order that it 

remains in intimate contact with the part. 

 

 

 

 

Figure 3.11 Ring tool on the IRP600 machine (Walker et al., 2006B)    

3.4 Preparing for polishing 

Similar to other computer controlled polishing techniques, the ‘Precessions’ process uses a 

well characterized bonnet tool driven by a numerically controlled machine. For corrective 

polishing, the motion of the bonnet is optimized to vary the dwell time on the surface of the 

part according to the desired removal and the tool influence functions. This is an iterative 

process, which is continued until that target accuracy of the surface of the part has been 
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achieved. The dwell time map and tool path are defined separately. The traverse speed along 

the tool path is modulated, thus that the integrated time at each point on the surface accords 

with the dwell time map. However, this may demand speeds/acceleration beyond the machine 

capability, due to high slopes or minimal required removal. This is overcome by adding a DC-

pedestal to the overall removal profile.  The ‘Precessions’ process flow is shown in Figure 3.12.  

The Zeeko machines are supplied with a series of software for the ‘Precessions’ process which 

include Metrology Toolkit, Precessions optimization software and Tool Path Generator (TPG). 

These software provide standard interfaces between metrology devices and the polishing 

machine. The Metrology Toolkit is capable of reading data from a wide variety of metrology 

instruments, in order to process and analyze it. ‘Precession’ software is used for the 

optimization of the dwell time map, and TPG outputs a CNC file which is to control the 

polishing machine. 

 

Figure 3.12 ‘Precessions’ process flow (graph by the author, 2011) 
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3.4.1 Preparing bonnet tool 

The A and B rotation axes of the machine intersect at a virtual pivot (V-P) point. The centre of 

curvature of the bonnet surface should be at the V-P. Significant departure can lead to 

asymmetry of the final figure of the part, the details will be discussed in Chapter 6. For an 

unused bonnet, a dressing operation ‘trues’ the surface and removes local irregularities as a 

result of gluing the cloth to the rubber membrane of the bonnet. The procedure of the 

operation is shown in Figure 3.13. 

The cloth is pressed into a metal mould pair to take the spherical form of the bonnet, and then 

cemented in place. The bonnet with cloth is mounted in the machine’s Schunk chuck and 

inflated to its operating pressure. The surface of the cloth is trimmed using either a fixed 

single-point tool or a grinding cup wheel.  

 

Figure 3.13 Tool preparation procedure (graph by the author) 
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After the cloth has been trimmed and trued-in, the absolute radius of curvature of the bonnet 

system and mismatch of the bonnet surface need to be tested. The machine is furnished with a 

precision reference ball mounted on a shaft that is located in the Schunk chuck on the machine, 

as shown in Figure 3.14. This is used to probe the surface of the bonnet in an automated 

procedure. 

 

Figure 3.14 Probing of bonnet surface using a reference ball on the machine (picture on the 

right by author; the picture on the left is from Zeeko CNC software) 

3.4.2 Tool path 

The tool path is defined as the movement of the polishing tool, which covers the entire surface. 

The different tool path can affect the final characteristics of the finished surface, such as the 

surface texture and form errors.  Zeeko software provides several tool path patterns. 

A raster tool path is the most often used in Zeeko software and is suitable for any shape of the 

part, which covers the entire part efficiently and does not produce any anomalies, because the 

entire surface gets the same treatment from the tool, as shown in the Figure 3.15 (a). The 

repetitive action of the raster path creates a periodicity in the texture of the surface, which can 

be reduced by decreasing the track spacing or increasing spot size, or by using an auxiliary 

treatment such as a pitch tool. 
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An adaptive tool path has been developed with edge control using a ‘Nodding bonnet’ 

technique (e.g. on a polygon). This starts as a polygonal spiral at the periphery of the part, and 

then progressively transforms into a regular spiral towards centre, as shown in Figure 3.15 (b).   

In 2008, Dunn et al., (2008A and 2008B) developed a ‘unicursal’ tool path, which is called the 

‘random tool path’, which never crosses itself, see Figure 3.15 (c). Because of this property, the 

‘random tool path’ can avoid periodic signature on the surface, which happens with a regular 

tool path. 

              

(a) Raster tool path                           (b) Adaptive tool path 

 

(c) Random tool path 

Figure 3.15 The different tool paths (pictures from Zeeko software TPG2.0.0.b7) 
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3.4.3 Polishing parameters  

To achieve the polishing accuracies, there are several machine parameters, which need to be 

chosen. The settings of these parameters will vary depending on the form and material of the 

part. Figure 1.16 shows the parameters interface in Zeeko software. 

 

Figure 3.16 The interface of polishing parameters (picture from Zeeko software TPG2.0.0.b7) 

 

1.  Precess angle (degs) 

The precess angle is related to the angle at which the centre line of the bonnet and the 90o 

perpendicular between part and bonnet intersect as shown in Figure 3.1. This parameter 

determines the removal rate and texture of the surface of the part. 10 to 20 degrees is the 
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normal range that can be chosen for the bonnet tool. At the grolishing and pitch tool mode, 0 

degree precess angle is chosen. 

2. Head speed (rpm) 

This parameter is the speed of rotation of the H-axis (tool spindle) of the machine. The H-axis 

can be rotated in either a clockwise or an anticlockwise direction. Head speed determines the 

removal rate according to the Preston equation. Head speed can be chosen up to 2000rpm on 

the IRP1200 machine and depends on the size of the bonnet.  

3. Tool offset (mm) 

The tool offset (bonnet compression) defines the delivered spot-size for a specific size of 

bonnet. Progressively lifting the bonnet gives scope to reduce the spot-size as the spot 

encroaches on the edge of the part, which has been successfully used for the edge control 

programme (this is discussed in Chapter 5).  Different ranges of spot-size can be provided by 

exchanging bonnets between runs, and radii of curvature from 20mm to 320mm are available.   

4. Tool pressure (bar) 

The bonnet tool can be pressurised by a pump integrated in the Zeeko machine. Up to 3 bar 

can be chosen depending on bonnet size. 

5. Raster & Spiral track spacing (mm) 

The track spacing affects the ‘cusping’ feature on the surface of the part. A diagram of the 

‘cusping’ feature is shown in Figure 3.17. Selection of track spacing depends on the tool size, 

spot-size and removal depth.  
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Figure 3.17 The diagram of the ‘cusping’ feature (drawn by the author) 

6. Traverse Speed (mm/min) 

Traverse feed determines the dwell time at each demanded contact point on the surface of the 

part. The ‘dwell time map’ is the main output from optimisation, and the polishing tool is 

traversed by the CNC machine according to the ‘dwell time map’ to achieve target surface of 

the part.  

3.5 Surface metrology  

For the different process steps, the specific metrology instruments and techniques for this 

thesis are outlined below: 

3D-Form measurement 

The form term is measured by the 4D simultaneous phase-shifting interferometers at 633nm in 

the work of this thesis. The 4D interferometers can be set up horizontally or vertically on the 

measurement table, and also can easily be set up above the IRP polishing machine, as shown in 

Figure 3.18. The CCD format is 1000 by 1000 for PhaseCam6000 and 600 by 800 for 

PhaseCam4010. A set of lenses (f/1, f/2.2, f/4, f/6, and f/8) is available for measurement of 

different curvatures. 
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Figure 3.18 4D interferometers (PhaseCam6000 on the left, PhaseCam4010 on the right) 

(picture by the author, 2011) 

2D-Form Talysurf 

‘Extended Range’ Form Talysurf (shown in Figure 3.19) is used for measurements of 2D form or 

2D tool influence functions (TIFs). This Form Talysurf has a 300mm capacity and an accuracy of 

0.3µm peak-to-valley over the full range. In the work of this thesis, for the case of which edges 

of part have been rolled down or turned up, the resulting slopes can be beyond the 

measurement range of full aperture interferometry. To identify the shape of the edges, 2D 

scannings are required. Moreover, 2D Profilometer data is convenient to build an absolute 

removal depth by making a fiducial groove on the surface of the part.  

 

Figure 3.19 ‘Extended Range’ Form Talysurf (picture by the author, 2011) 
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Swing Arm Profilometer for measurement of 3D tool influence functions 

For the measurement of the influence function of a bonnet tool, 2D profiles are adequate; but 

for the full 3D correction of surface, 3D maps of tool influence functions (TIFs) may be required; 

specially, for those TIFs with non-axial symmetry (for example, TIFs of ‘Nodding’ bonnet). For 

the ESO project, spot sizes up to 150mm are required for fast removal. The traditional 

measurement is to use a profilometer with 3D capability, such as the 3D Taylor Hobson 

Talysurf, which has a 300mm gauge range.  A swing arm profilometer with 600mm diameter 

measurement range was built at National Physical Laboratory (NPL), which is used for 

measurement of 3D TIFs, as shown in Figure 3.20. 

 

 

 

 

 

 

Figure 3.20 Swing Arm Profilometer (Jing et al., 2010) 
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Surface Texture 

 Surface texture is measured using an ADE Phase Shift MicroAXM white-light texture 

interferometer (as shown in Figure 3.21), which has sub-nanometre resolution.  The current 

instrument is mounted on a microscope stand that gives 250mm measurement range.   

 

Figure 3.21 ADE-MicroVAX light texture interferometer (picture by the author, 2011) 

Recently, 4D Technology has developed an instantaneous white light interferometer for Zeeko 

Ltd, which is called Zeeko STA1. This is designed to operate in the tooling chuck of Zeeko IRP 

machines. The STA1 has been used for the surface texture measurement of 1.5m master-

spherical-segment (MSS) hexagonal part on the IRP1600 machine, shown in figure 3.22. 

 

 

 

 

Figure 3.22 STA1 light texture interferometer on IRP1600 (Walker et al., 2011B) 
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3.6 Summary 

‘Precessions’ polishing technique has been adopted as the core technique for fabrication of 

prototype mirror segments for E-ELT. The main research of this thesis is based on Zeeko’s 

machine (IRP1200). This chapter provides the details of this technique, including the principle 

of ‘Precessions’, IRP machines and tooling. The metrologies of the surface for this thesis are 

also described in this chapter. 
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Chapter 4 

Measurement and modelling of tool influence functions 

The tool influence functions (TIFs) characterise the local effect of the process and therefore 

are of fundamental importance. Identification of the TIF is crucial for achieving a successful 

deterministic ‘Precessions’ polishing process. The main objective of this chapter is to establish 

a numerical model that is capable of predicting the shape of TIF for a given tool and condition. 

This model will help to optimise the ‘tool lift’ parameters for edge control that is discussed in 

the next chapter. 

4.1 The need for modelling of the tool influence functions 

The Tool Influence Function (TIF) is a material removal map for a given tool and work piece. 

Like other Computer Numerical Controlled (CNC) polishing, a predictable and stable TIF is 

essential for the ‘Precessions’ polishing. The shape of the TIF influences the capability of error 

correction (surface texture and form accuracy). The removal rate of the TIF plays an important 

role in determining the process time.  The TIF of a bonnet tool relies on at least 8 parameters 

(precess angle, tool Z-offset, head speed, tool pressure, dwell time, polish cloth, slurry and 

glass type). These polishing parameters have already been discussed in Section 3.4.3. A TIF 

also depends on the precess motion (static or dynamic see Figure 3.2). Furthermore, in the 

case of TIF at the edge of the part, overhang of the edge is another important parameter. The 

aim of this work is to establish a model that is capable of predicting the shape of TIF for a given 

tool and condition.  
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4.2 Material removing model based on the Preston equation 

The theoretical basis of prediction of material removal in optical surface polishing was 

presented by Preston (1927) in 1927. This was discussed in Section 2.3. As an emphasis, it is 

repeated as follows: 

p(x,y)ν(x,y)kx,y)Δh (                                                        (4.1) 

where:  

)y,(xh - Removal in unit time at point ),( yx  

 k - Preston coefficient, related to the work piece material, polishing-tool, polishing slurry 

and temperature of work environment 

 ),( yx - Instantaneous relative surface velocity of polish pad at point ),( yx  

 ),( yxp - Instantaneous pressure of the polishing pad at point ),( yx  

Define the average removal value of surface materials ( , )R x y  in unit time T as the tool 

influence function, i.e.: 

0 0

1 1
( , ) ( , ) ( , ) ( , )

T T
R x y h x y dt k x y p x y dt

T T
                                (4.2) 

Define the revolution period of the polishing tool: 

02 ＝T  

where, 0   is the angular velocity of the polishing tool. Since, removal function )(rR can be 

written as: 

0
0 0

1
( ) ( , ) ( , ) ( , ) ( , )

2

T k
R r k v x y p x y dt v x y p x y d

T






 
                               (4.3) 

where,    is the rotation angle of the polishing tool.  
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The removal function R(x,y) can be determined by equation 4.3, if the velocity distribution 

v(x,y) and the pressure distribution p(x,y) can be obtained.  The simulation of velocity and 

pressure distribution is introduced in the following sections. 

4.3 Modelling of the velocity distribution v(x,y)   

A sketch of the movement of a precessed bonnet is shown in Figure 4.1. The velocity relation 

of any point in the polishing contact zone is shown in Figure 4.2.   
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Figure 4.1 Sketch of space movement of the tool of the precess (drawn by the author) 
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Figure 4.2 Velocity relation of any point in polishing contact zone (drawn by the author) 
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Where: 

),( yxP is any point in polishing contact zone;  

0 is the angular velocity around axis of tool; 

  is the angular velocity around a normal  work piece; 

O  is the centre of polishing spot; 

  is the process angle; 

d  is the compression value of tool (Z-offset); 

R  is the radius of curvature of the tool 

According to the geometry of precess in the polishing area, the velocity component 

distribution ),(1
' yxv p can be expressed as:  

 0

1
1

' )()()()(cos2),(    ssssdRyxv p ＝                     (4.4)                     

where： 

2/1222 ])[( yxrR  ;           1)(cos)(   dR ;           2/122 ]])[([ xtgdRy   ; 

 
2

1
s  

 rvp2                                                                  (4.5)                                                   

),(),(cos2)),(()),((),( 21
'2

2

2
1

' yxvyxvyxvyxvyxv ppppp               (4.6)  

Based on equation 4.6, relative velocity distribution function in the polishing zone has been 

simulated using MatLab code. Figure 4.3 shows the simulation results. The parameters in the 
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modelling are: 80mm tool radii of curvature, 0.7mm Z-offset and 0o, 15o precess angle. To 

simplify the modelling process, normalization (scaling magnitude of velocity from 0 to 1) has 

been applied in the simulation. From Figure 4.3 (a), it can be seen that material removal at 

central point is zero when precess angle is 0o, because the surface speed at the central point is 

zero. Figure 4.3 (b) is velocity distribution when precess angle is 15o, note the absence of zero 

surface speed anywhere in the tool influence function. 

        

(a)  Precess angle=0o 

   

(b)  Precess angle=15o 

Figure 4.3 Velocity distribution normalised simulation results: R80 tool, Z-offset: 0.7mm, 

where: (a) Precess angle: 0o   (b) Precess angle: 15o (author’s data) 
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4.4 Finite element analysis (FEA) for analysis of pressure 

distribution p(x,y)  

The finite element analysis method is widely used for analyzing stress, displacement and strain 

in complicated structures. The basic theory of FEA is to divide a continuum of analysis of the 

target into a finite number of smaller individual ‘elements’. In the model, these elements are 

interconnected by a stiffness matrix.  

The ANSYS software package is a mature and versatile commercial finite element analysis 

(developed by ANSYS, Inc.).  ANSYS has been adopted in structural simulation to solve many 

challenging engineering problems since 1970 (ANSYS 2011). In this section, ANSYS 8.0 is 

adopted for the FEA of pressure distribution of the bonnet polishing.  

Two FEAs of pressure distribution are carried out in this chapter:  

1. R80mm solid rubber tool, Z-offset: 0.7mm, appropriate  for the form-correction  

2. R160mm solid rubber tool, Z-offset: 2.8mm, appropriate for the pre-polishing and 

early stage of form correction 

4.4.1 FEA model and boundary conditions 

The pressure on the work piece is caused by elastic deformation of the tool.  To simplify the 

problem, a thin layer of polishing cloth is considered to be a second order effect and is 

neglected in the modelling.  A 100mm x 100mm square, 10mm thick, Zerodur part was chosen 

for the model. The bonnet tool was designed as a molded unit in Natural Rubber (BS-1154: 

2003). The material properties for the modelling are listed in Table 4.1. For R80mm tool, 
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0.7mm Z-offset and 15o precess angle is chosen for the modelling. For R160mm tool, 2.8mm Z-

offset and 0o precess angle is chosen for the modelling.  

Table 4.1 The materials characteristics for the modelling (Dohring et al., 2006): 

 
Density 
(kg/m3) 

Yong’s modulus 
(N/m2) 

Poisson's ratio 

Zerodur 2.53 x 103 9.30 x 1010 0.30 

Natural Rubber 

(BS-1154:2003) 
1.12 x 103 1.34 x 106 0.24 

The FEA of the bonnet tool polishing model is defined as a contact problem of two surfaces. A 

set of contact pair is created between the surface of the tool and the polishing surface of the 

part.   

During the polishing process, the back surface of the part is fixed on the support system. Thus, 

all degree of freedom (DOF) of the back surface is constrained with 0 displacements. The top 

surface of the tool is fixed on the polishing machine. The bonnet tool is depressed by the Z-

offset to deliver a spot-size along the Z-direction. Thus, the top surface of the tool is 

constrained with 0 displacements along X-axis and Y-axis and -0.7mm (R80mm tool) and -

2.8mm (R160mm tool) displacement along Z-axis. The elements and restraints of the FEA 

model are shown in Figure 4.4 and Figure 4.5. 
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Figure 4.4 The elements and the restraints on the FEM model for R80mm solid rubber tool 

(author’s picture) 

 

Figure 4.5 The elements and the restraints on the FEM model for R160 tool (author’s picture) 
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4.4.2 FEM results and conclusions  

Two simulation runs have been conducted under the boundary and loads conditions, discussed 

above for R80mm tool and R160mm tool. The simulation results are plotted in Figure 4.6 to 

Figure 4.9. Note that the slight asymmetry in the Figure 4.6 and Figure 4.8 are caused by the 

precision of the meshing. 

 

Figure 4.6 R80mm tool absolute pressure distribution simulation results (0.7mm Z-offset, 

21mm spot-size) (author’s data) 

 

Figure 4.7 2D R80mm tool absolute pressure distribution simulation plot (0.7mm Z-offset, 

21mm spot-size) (author’s data) 
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Figure 4.8 R160mm tool absolute pressure distribution simulation results (2.8mm Z-offset, 

60mm spot-size) (author’s data) 

 

Figure 4.9 2D R160mm tool absolute pressure distribution simulation plot (2.8mm Z-offset, 

60mm spot-size) (author’s data) 
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Two conclusions can be made from the FEA results obtained in this section: 

1. R80mm solid rubber tool, 0.7mm Z-offset and 15o precess angle, the maximum 

pressure on the Zerodur part is 1.79 x 105 Pa for the case considered. 

2. R160mm solid rubber tool, 2.8mm Z-offset and 0o precess angle, the maximum 

pressure on the Zerodur part is 1.17 x 105 Pa for the case considered. 

To verify the simulation result of pressure distribution, the force on the contact area is 

measured. The detail of this work is described in the following section. 

 

4.5 Force measurement for verification of the FEA results 

The total force f applied on the part should be the same as the integral of the pressure 

distribution p(x,y) over the part contact area A, which can be described as: 


A

dxdyyxpf ),(                                                               (4.7) 

The pressure distribution simulation results of 0.7mm Z-offset (R80mm tool) and 2.8mm Z-

offset (R160mm tool) are shown in Figure 4.6 to Figure 4.9. Thus, the simulated force fR80 and 

fR160 can be calculated according to equation 4.7, which are: 

kgfR 19.480   

kgfR 43.16160   

To verify the pressure distribution p(x,y) simulation results, the  force f on the part has been 

measured on the machine. OpTIC Glyndwr has developed a device for force measurement. This 
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device uses three OMEGA (SN: LCM201) standard load cells whose accuracy is ±1.0% (linearity, 

hysteresis and repeatability combined). The sketch of the set-up of the force measurement is 

shown in Figure 4.10. The experimental set-up is shown in Figure 4.11. 

 

Figure 4.10 The sketch of the set-up of the force measurement (drawn by the author) 

 

Figure 4.11 The experimental set-up of the force measurement (picture by the author, 2011) 
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Two sets of force measurements for R80mm tool and R160mm tool were carried out on 

IRP1200 machine. Figure 4.12 shows the force of R80mm tool applied on the part with 

different Z-offset. It can be seen that the force on the part is 4.42kg when Z-offset is 0.7mm for 

R80mm tool (the simulation result is 4.19kg). Figure 4.13 shows the force of R160mm tool 

applied to the part with different Z-offset. It can be seen that the force on the part is 15.87kg 

when Z-offset is 2.8mm for R160mm tool (the simulation result is 16.43kg). The simulation 

errors are approximately 5.2% for R80mm tool, and 3.6% for R160mm tool according to the 

force measurement results. 

 

Figure 4.12 The force with different Z-offset measurement result of R80mm solid rubber tool 

(author’s data) 
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Figure 4.13 The force with different Z-offset measurement result of R160mm solid rubber tool 

(author’s data) 

4.6 Modelling of tool influence function (R80mm tool, 0.7mm Z-

offset) 

After the velocity distribution v(x,y) and the pressure distribution p(x,y) have been obtained, 

the tool influence function R(x,y) can be modelled according to equation 4.3. This was 

mentioned in Section 4.2, repeated here: 

0
0 0

1
( , ) ( , ) ( , ) ( , ) ( , )

2

T k
R x y k v x y p x y dt v x y p x y d

T



 


         

As a demonstration of the modelling, the TIF for R80mm tool, 0.7mm Z-offset, 15oprecess 

angle, was modelled using MatLab code. According to the Preston equation, the absolute 

material removal is also determined by the Preston coefficient k, which is a constant, related 

to the part material, polishing liquid and temperature (see Section 2.3). To simplify the 

modelling result, the magnitude of the TIF has been normalised (scaling of TIF from -1 to 0) in 

the simulation. The modelling result is shown in Figure 4.14. 
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Figure 4.14 The normalised TIF simulation result (R80mm tool, 0.7mm Z-offset, 15o precess 

angle) (author’s data) 

To verify the TIF simulation result, an experiment for the generation of TIF has been carried 

out. The parameters of this experiment are the same as the simulation’s parameters (R80mm 

tool, 0.7mm Z-offset, 150 precess angle). For simplification of the comparison with the 

simulation result, experimental TIF has been normalized by scaling the magnitude of TIF from 0 

to -1. The simplified experimental result is shown in Figure 4.15.  

 

Figure 4.15 The normalised TIF experimental result (R80mm tool, 0.7mm Z-offset, 15o precess 

angle) (author’s data) 
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Figure 4.16 shows the residuals between normalised experimental and simulated TIF. A 2D 

comparison of experimental and simulation result is shown in Figure 4.17. The relative ratio of 

residuals and experimental result are 2.2% by RMS and 8.4% by P-V.  This shows that simulated 

TIF’s shape is in good agreement with the experimental result. The following sources are 

believed to contribute to the residual error: 

1. The calculation errors of the  pressure distributing  by FEA 

2. The measurement error of the TIF 

 

 

Figure 4.16 The residuals between normalised experimental and simulated TIF (author’s data) 
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Figure 4.17 The comparison of normalised 2D experimental and simulated TIF (author’s data) 

 

4.7 Summary 

According to the Preston equation, to establish a model of material removal for ‘Precessions’ 

polishing, the relative velocity distribution and the pressure distribution are required.  In this 

chapter, the velocity distribution is obtained based on the geometry of the precess motion. By 

means of finite element analysis (FEA), the pressure distribution over the polishing spot has 

been calculated. The FEA result is verified by experimental force measurement. Therefore, a 

model that can predict the shape of the TIF for a given tool and condition has been established.  

The demonstration of simulation (R80mm tool, 0.7mm Z-offset, 15o precess angle) shows a 

good agreement with the experimental result.  The next chapter will present the edge control 

techniques.  
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Chapter 5 

Edge control for the fabrication of segment: 

modelling and experiment 

This chapter starts with an analysis of the edge effects under ‘bonnet’ tool polishing. Three 

edge control methodologies are presented: 1) The traditional ‘wasters’; 2) The ‘Nodding’ 

technique; 3) The ‘Tool lift’.  

The ‘Wasters’ method is described in the outline and the reason is given for not pursuing it 

further. To demonstrate the feasibility of the ‘Nodding’ technique, the stability of tool 

influence functions (TIFs) has been investigated and a preliminary trial has been conducted. 

For ‘Tool lift’, the 3D TIFs at the edge are achieved by an integrated method in which the data 

from both a 3D Interferometer and a 2D Profilometer are stitched together. Based on these 3D 

TIFs at the edge, a model that can accurately predict the edge profile has been developed. The 

‘Tool lift’ technique has been demonstrated with some preliminary success. The comparison of 

the three edge control techniques is also summarised in this chapter. 

5.1 Introduction 

The edge effect significantly dominates the performance of segmented-mirror telescopes. This 

is because the total length of the edge of these segmented optical systems is much longer than 

those of the conventional system with one mirror. For example, there is nearly 4000m of total 

length of edge in the E-ELT’s primary mirror. These edges are distributed across the whole 
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pupil. As mentioned in Section 1.5, edge-roll degrades the stray-light and IR-emissivity 

performance. These are key parameters for the key science objectives, such as the detection of 

extra-solar terrestrial planets.    

The edge figuring process is particularly challenging in the fabrication of a segmented mirror. 

The traditional technique pioneered by Keck is to oversize the segment during the polishing 

process. When the surface meets the specification, the segment is cut to a hexagonal shape. 

However, this introduces a risk process step and distorts the surface, requiring ion figuring 

which is slow (Ruch, 2011).  

To obtain a satisfactory profile at the edge, many edge-control attempts were carried out and 

several techniques are demonstrated in recent research (Guo et al., 2006; Kim et al., 2009; Hu 

et al., 2011). It was reported that a small-size tool could be used to process the edge area in 

MRF (Magneto Rheological Finishing) (Hu et al., 2011). However, the processing time is 

unrealistic for large segments. In 2009, Kim et al. established a parametric modelling of edge 

effects based on the ‘Preston equation’ (Kim et al., 2009). However, the cause of the edge 

effect in ‘bonnet’ polishing is different because of the distinct of the removal mechanism. 

5.2 The edge effects under bonnet tool polishing 

The amount of material removal according to the Preston equation (as described in Section 2.3) 

is based on the assumption that the contact spot is fully inside the part (Preston, 1927). When 

the spot extends beyond the edge of the part, the constant pressure between the tool and the 

part no longer exists. Wagner and Shannon, (1974), used the force equation in conjunction 

with the torque equation for static equilibrium. This model, however, presents an important 

problem. Whenever the tool centre is near the edge of the part, the minimum pressure can 

become negative, which means that this model is no longer valid. Jones, (1986), suggested a 
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linear pressure distribution model in 1986. Cordero-Davila et al, (2004), developed this 

approach further using a non-linear high pressure distribution near the edge of the part; 

however, they did not report the model’s validity by experimental results (Cordero-Davila et al., 

2004). 

With the inflated bonnet tool, the pressure on the part is provided by internal air pressure and 

elastic deformation of the bonnet tool. For an elastomeric bonnet (solid rubber tool), the 

properties are similar to an inflated tool. When such a flexible tool overhangs the edge of the 

part, the pressure distribution at the edge is complex. Figure 5.1 shows a sketch of the 

pressure distribution between the bonnet and the part. On the right is the pressure 

distribution at the edge of the part. It can be seen that the pressure on the edge becomes 

extremely high.   

 

Figure 5.1 A conceptual sketch of the pressure distribution between the bonnet and the part. 

On the left is the pressure distribution inside the part, on the right is the pressure distribution 

at the edge of the part (drawn by the author) 
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In general, edge effects under ‘bonnet’ tool polishing are caused by the following (Walker, 

2012A): 

1. When the spot overlaps an edge, the area in contact decreases, thus the pressure 

increases (for constant force). This causes the edge zone turndown.  

2. The membrane of the ‘bonnet’ tool wraps around the edge of the part, which turns the 

edge zone down. 

3. When the spot falls short of leaving the part completely, a zone near the edge of the 

part undergoes less polishing than on the bulk area of the part, which turns the edge 

zone up. 

4. The rotating tools give a bow-wave of slurry when the tool ‘attacks’ the edge of the 

part. This turns the edge down. 

There is interplay between these, but they cannot be made to compensate. If the extreme 

edge of a segment is rolled-down at any process stage, the entire surface must be re-worked 

to rectify it. Figure 5.2 shows that the edge is rolled-down when the bonnet overhangs the 

edge of the part. In order to avoid this time-consuming process, three edge control techniques 

are presented in this chapter.  

 

Figure 5.2 The edge profile when the bonnet projects beyond the edge of the part (author’s 

data) 
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5.3 Traditional ‘Waster’ pieces on the edge  

In traditional lapping, ‘Wasters’ around the edges of a part are used to overcome the increase 

in applied pressure as the tool overhangs the edge.  After the prescription of the surface of the 

part has been achieved, the ‘Waster’ pieces are then detached. Thus, edge roll of the part can 

be avoided.  

In the case of ‘Precessions’ polishing, a waster can provide a surface to support the 

overhanging part of the polishing membrane. Therefore, the wrapping of the membrane 

around the edge of the part can be avoided, giving a constant angle of attack (Walker et al., 

2008), as shown in Figure 5.3. The ideal waster material is the same as the part, as the 

polishing condition and thermal expansion will be identical. 

 

Figure 5.3 The schematic diagram of ‘Waster’ pieces for edge control (drawn by the author) 

Traditionally, ‘Wasters’ are a very effective edge control approach for small parts. 

Unfortunately, the author has been unable to find any publication in which the ‘Waster’ edge 

control approach has been used in the manufacture of large segments. It is believed that the 

risks of the approach on large segments are (Walker, 2012C): 
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1. The issue of waster-adhesives ‘pulling’ surfaces, that lead to form-distortion on large  

parts and subsequent form rectification would be required  

2. Risk of damage to the edges on detaching the wasters 

3. Accidental detachment: if a waster became detached under polishing forces, it could have 

disastrous consequences 

4. Risk of damage in cleaning adhesive from edges after waster-detachment  

5. Handling risk: There are nearly 6000 pieces of glass (for 931 hexagonal segments) to be 

machined, installed and handled in production. An effective waster should accommodate 

the largest spot (for example, R160mm bonnet/60mm spot) and will weigh approximately 

5Kg. This would be difficult to handle manually and would need an automated positioning 

method. 

With the above points taken into account, the ‘Wasters’ method has been retained as a 

possible backup solution. The direct processing of the edges without wasters is preferred. Two 

active edge control techniques are presented in the following section. 
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5.4 ‘Nodding’ technique for edge control 

5.4.1 Methodology of ‘Nodding’ technique 

When the bonnet goes beyond the edge of the part there will be excessive material removal. 

To avoid this, a ‘Nodding’ technique is proposed for edge control. This technique requires two 

conditions: 

1.  A polishing cloth with a truncated edge, which is able to deliver a tool influence 

function with a sharp edge. The sharp edge comes into contact with the edge of the 

part without encroachment. 

2. The ‘nodding’ motion in the edge zone is to maintain the truncated edges of the 

‘Nodding’ tool influence functions, which are always tangential to the edge of the part 

under polishing, as shown in Figure 5.4. 

The ‘Nodding’ motion is controlled by the precess angle continuously changing in the ‘Nodding 

zone’. In this way, the influence function never extends past the edge of the part.  This is 

effectively achieved by starting at the edge with the largest precess angle and decreasing it as 

the tool is moved away from the edge zone (‘Nodding’ zone). When the tool goes into the bulk 

area of the part, the precess angle is maintained constant until the next edge zone is 

encountered. This strategy can potentially enhance processing of the edges and save 

processing time on the segments. 
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Figure 5.4 The sketch of the ‘Nodding’ technique for edge control (drawn by the author) 

5.4.2 ‘Nodding’ tool and influence functions 

1 Preparing the ‘Nodding’ tool 

The ‘bonnet’ tools are characterised as Rx, where x=radius of curvature in mm. The ‘Nodding’ 

tool can be prepared from an R160mm (or R80mm) bonnet by trimming the cloth using a 

single-point cutting tool. Figure 5.5 shows the preparation of R160mm ‘Nodding’ tool. A 

3.2mm thick polyurethane polishing cloth is placed on the R160mm bonnet. It has been found 

that the maximum Z-offset of 1.6mm can be adopted, which gives a spot size of 45mm. The 

cloth is trimmed to allow a maximum nodding angle of 20.5° for this bonnet. 
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Figure 5.5 Preparation of R160mm ‘Nodding’ tool (picture by the author, May 2009) 

2 Generation of ‘Nodding’ tool influence functions 

The ‘Nodding’ tool influence functions were generated on a 150mmx150mm square, Zerodur 

part and measured on a 3D Form Talysurf. The measurement is shown in Figure 5.6. For these 

influence functions, a dwell time of 120 seconds and 0.5mm Z-offset were used. The precess 

angle is varied between 14o and 20.5o. 

From the measurement of the tool influence functions (TIFs), it can be seen that there are two 

significant and distinctive features between these TIFs with the increase of the precess angle, 

they are: 

1 The edge of the TIFs becomes sharper and straighter 

2 The depth of the edge of TIFs becomes deeper 

The TIFs with sharp and straight edges are beneficial for edge control. However, the different 

material removal of TIFs can cause a non-uniform material removal in the edge zone. To avoid 

this, the parameters (dwell time and Z-offset) in the edge zone need to be optimised to 

achieve a uniform edge profile.  
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Figure 5.6 The ‘Nodding’ influence functions with different precess angle, R160mm bonnet, 

0.5mm Z-offset, 120 seconds dwell time(Z scale in mm) (author’s data) 

5.4.3 Stability test of tool influence functions 

The danger of any active edge method is the potential for overshoot: turning an edge down. 

Hence, the stability of the tool influence functions is critical. The aim of this experiment was to 

test the durability of the edge of the cloth during polishing. This can be implemented by 

testing the stability of the tool influence functions (TIFs). This experiment was carried out on a 

200mm cross corners, hexagonal BK7 glass part. An R160mm bonnet was used. Tool Z-offset 

was 0.5mm and precess angle was 17.5o where the edge of the cloth passes through the centre 

of the spot. The head speed was 800rpm. There were altogether 10 TIFs generated. They were 

placed into two rows and numbered as seen in Figure 5.7. TIF1 was generated just after the 
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cloth had been dressed.  From TIF2 to 5, each TIF was generated after the cloth had been worn 

in for 10minutes. From TIF6 to 10, the cloth was worn in for 30 minutes prior to making the TIF. 

The precess angle was set to be 17.5o all the time. The slurry’s specific gravity was measured to 

be 1.016 during this experiment.  

 

Figure 5.7 The position of the ‘Nodding’ TIFs on the glass (picture by the author, 2009) 

The 3D and 2D TIFs were measured on the Form TalySurf PGI 1240. The results are shown in 

Figure 5.8 and Figure 5.9.  The volume of each TIF is listed in Table 5.1. It can be seen that 

there is a significant change in size, shape and removal volume between TIF1 to the others. 

From TIF2 to TIF10, it evolves slightly. This can be associated to cloth wear. After 106 minutes, 

the removal rate becomes stable. 
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Figure 5.8 The measurement of TIFs on 3D Talysurf for stability testing. R160mm bonnet, 

precess angle 17.50, Z-offset 0.5mm, dwell time 60seconds, Z scale in mm (author’s data, 2009) 

 

Figure 5.9 The measurement of TIFs on 2D Talysurf, scale in mm (author’s data, 2009) 

Table 5.1 The volume of each influence function (author’s data, 2009) 

TIF’s numbers 1 2 3 4 5 6 7 8 9 10 

Wear time(minutes) 0 11 22 33 44 75 106 137 168 199 

Volume (mm3) 1.5 2.1 2.0 2.4 2.4 2.5 2.1 2.0 2.0 2.0 
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5.4.4 Experimental demonstration  

The ‘nodding’ bonnet method for edge control on the hexagonal part relies on two aspects. 

First, a set of TIFs in the edge zone requires stability and accuracy including both removal rate 

and shape. Second, a nodding motion is required such that the truncated edge of the influence 

function is tangential to the edge of the part under polishing. A great effort in generating this 

tool path that fulfils this nodding motion was made by Christina Dunn in October 2009, as 

shown in Figure 5.10. By this tool path, a preliminary experiment was conducted on a 

hexagonal flat BK7 part.  

 

Figure 5.10 The precession angle for ‘Nodding’ motion, B-Axis tool path (in degree) (Dr. Dunn, 

2009) 
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Figure 5.11 The interferogram of the edge and Form-Talysurf measurement (author’s data, 

2009) 

The interferogram of the edge and Talysurf scanning (edge to edge) is shown in Figure 5.11. It 

can be seen that a feature is left on the surface throughout the ‘Nodding’ zone. However, 

there is no edge turn-down. This demonstrates that the process is fundamentally sound. The 

up-standing edge is about 7mm wide. This can be flattened by a pitch polishing process. Figure 

5.12 is the interferogram of the edge after ‘Nodding’ polishing and pitch polishing. The details 

about the pitch polishing process will be introduced in Chapter 7. 

 

Figure 5.12 The interferogram of the edge after ‘Nodding’ polishing and pitch polishing process 

(author’s data, 2009) 
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5.4.5 Summary for ‘Nodding’ technique 

A methodology for edge control has been described in this section in which influence functions 

with a sharp edge are acquired in the edge zone to avoid the edge roll-down using a ‘Nodding’ 

motion. This technique can potentially save time on processing the segments. To demonstrate 

the feasibility of the ‘Nodding’ technique, the stability of the tool influence functions was 

investigated and a preliminary trial was conducted. Narrow (about 7mm wide) and up-standing 

edges were achieved. The preliminary result shows that this technique is fundamentally sound 

for edge control. However, to achieve a uniform material removal within the edge zone, the 

parameters (dwell time and Z-offset) need to be optimised, and accurate influence functions 

(position and removal rate) are required. Generating a tool path to perform the ‘Nodding’ 

motion is also an issue upon which more research is required.  

5.5 ‘Tool lift’ technique for edge control 

5.5.1 Methodology of the ‘Tool lift’ technique 

Tool lift is the ability to control bonnet spot-size during polishing. The strategy of the ‘Tool lift’ 

approach is that comparatively large polishing spots are applied over the bulk surface to give 

high volumetric removal rates in pre-polishing and form-correction polishing. Tool lift is 

applied within the edge-zone to leave broad upstanding edges, as shown in Figure 5.13. A 

range of smaller spot-sizes then encroach on the up-stand and progressively reduce its size and 

width.  The lower volumetric removal rates of smaller spots also enhance the sensitivity of the 

process converging on the final form. 
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Figure 5.13 The sketch of the tool lift process for edge control (drawn by the author) 

Smaller spots are deployed to correct the edge zone, following a roughly Nyquist approach. 

The Nyquist theorem states that the sampling frequency should be equal to or greater than 

double the signal frequency to be detected (Deng, 1997). Here it means that the spot size of 

the tool must be less than half of the bandwidth of the surface error in order to remove a 

certain frequency feature. 

The principle of this approach is that the whole surface always needs to be within the 

measurement-range of the interferometer. The tool-path is programmed to perform the tool 

lift. This also conveniently provides a controllable way to manage the local slopes within the 

dynamic range of the full-aperture interferometer. 

5.5.2 Material-removal modelling and experiment 

5.5.2.1 The need for material-removal modelling 

To maintain a gradual edge, so that the whole surface can be within the measurement-range 

of the interferometer, the process parameters need to be optimised. The multiple degrees of 
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freedom (Z-offset, overhang, precess angle, feed-rate, spacing) mean that an unrealistic 

machine-time would be needed if it is not helped by prediction. The aim of the modelling is to 

predict the edge profile. The model accepts input data, a family of TIFs within the edge zone. 

In this model, the surface is divided into the bulk zone and the edge zone as shown in Figure 

5.13.  A large spot size (e.g. 60mm) is adopted for the bulk zone. When the tool moves into the 

edge zone, a family of smaller spots is achieved because of tool lift. Therefore, three sets of 

TIFs are required to predict the removal within edge-zone:  

1. The bulk’s TIF 

2. The TIFs with different Z-offset 

3. The TIFs with different overhang 

To support modelling of the material-removal, the generation of these TIFs is introduced in the 

following section. 

5.5.2.2 Generation of TIFs with different Z-offsets 

When the bonnet moves into the edge zone, a family of different spots is achieved through 

tool lift. Therefore, the TIFs with different Z-offset values are needed for the material removal 

modelling. To capture a complete sampling with different Z offsets, interpolation from a more 

limited sampling of empirical TIFs’ data was deployed. 

The experiment was performed to generate the TIFs with different Z-offsets. The conditions of 

this experiment were: 160mm bonnet tool with LP66 polyurethane polishing cloth, Precess 

angle 15o, Zerodur glass, Dwell time 10 seconds, H-axis speed 800 rpm and Slurry density 1.025. 

A series of TIFs with Z-offsets of 0.1mm, 0.3mm, 0.5mm up to 2.8mm were chosen. The 

measurement results are shown in Figure 5.14. From these measurements, the TIFs with Z-

offsets ranging from 0.2mm up to 2.6mm are extrapolated using MatLab code. The 

extrapolated results are shown in Figure 5.15. 



Chapter 5 Edge control for the fabrication of segment: modelling and experiment 

143 
 

 

Figure 5.14 Experimental measurements of TIFs with different Z-offsets (author’s data) 

 

Figure 5.15 Extrapolated TIFs with different Z-offsets (author’s data) 
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5.5.2.3 Stitching of TIFs in the edge zone 

When the spot projects beyond the edge of the part, the bonnet material at some level wraps 

around the edge. The local edge-removal of the TIF then becomes abnormally high. If not 

managed, this will turn the edge down. Moreover, the resulting slopes can be beyond the 

measurement-range of full-aperture interferometry. From recent research, a swing arm 

profilometer has been developed for the measurement of tool influence function (Jing et al., 

2010). However, it can only measure those TIFs on a circular-shaped surface.  

To obtain the full data of the TIFs at the edge of the part, a simplified measurement method 

has therefore been developed using both 3D interferometer and 2D Profilometer data. The 

schematic diagram of this method is shown in Figure 5.16. Firstly, the depth of an edge was 

measured by individual 2D scanning. A line of the boundary of the TIF was then interpolated, 

as shown in Figure 5.16 (a). After the boundary of the TIF is obtained, the 3D of the TIF at the 

edge of the part is then interpolated, shown in Figure 5.16 (b).   
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(a) 

 

(b) 

Figure 5.16 The schematic diagram of interpolating 3D TIF at the edge, where (a) 2D scanning 

and interpolating boundary of TIF (b) Interpolating of 3D in the vicinity of edge of TIF (author’s 

data, January 2011) 

The stitched results of TIFs at the edge of the part are shown in the Figure 5.17. It can be seen 

that approximately 2mm of the edge data is lost in the interferometer field, which is recovered 

with the profilometer. The result obtained in this section is used to verify the removal 

modelling results in the following section. 
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(a) Z-offset=1.5mm, Overhang=10mm, Process Angle=13.9° 

 

(b) Z-offset =1.1mm, Overhang=12.5mm, Process Angle=15.2° 

 

(c) Z-offset =0.6mm, Overhang=15mm, Process Angle=16.3° 

 

(d) Z-offset =0.3mm, Overhang=17.5mm, Process Angle=17.4° 

Figure 5.17 The results of stitched 3D TIFs at the edge (author’s data) 
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5.5.2.4 Material removal modelling and results 

1 Superposition of material removal 

As introduced in Section 4.2, the polishing tool influence function is defined as the average 

removal value  ),( yxr  in unit time T at the point ),( yxq : 

 
T

dtyxpyxkyxr
0

),(),(),(                                                          (5.1) 

where, ),( yx - Instantaneous relative velocity at point ),( yxq ; 

             ),( yxp - Instantaneous pressure at point ),( yxq  

 

Figure 5.18 The sketch of the superposition of material removal (drawn by the author) 

As shown in Figure 5.18, during the process, the tool dwells for a certain time ),( yxd  at each 

point. When the removal function is at point ),( o , the removal function has different 

impacts on the circular domain which is centred at ),( o , of radius 
0r . When the polishing 

tool moves to the point ),( yxp  in accordance with the scheduled track, the removed material 

in each region will be superimposed. So the material removal can be related to the distribution 

function )y,(xh by the following: 
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 
 

  ),(),(),( yxrdyxh ＝                                       (5.2) 

Eq. 5.2 can be written as an integral formula because of the continuous movement of the 

bonnet tool: 


 

ddyxrdyxh    ),(),(),( ＝                                       (5.3) 

The integral formula shows that the removal distribution function ),( yxh  is equal to the 2-

dimensional convolution between the polishing removal function ),( yxr  and the dwell time

),( yxd : 

),(),(),( yxdyxryxh ＝                                                    (5.4) 

This convolution operation can be performed using MatLab code if removal functions r(x, y) 

and dwell time d(x, y) are given. The verification of this modelling by experiment is introduced 

in the following section. 

2 Verification of the modelling 

A polishing experiment was carried out on a 200mm across-corners hexagonal part to verify 

this model. Figure 5.19 presents the modelling result (purple curve) of a surface profile with 

significant features using multiple influence function data as generated in the previous section. 

The red curve is the experimental result with the same process parameters. As can be seen, 

the model shows good prospects for precisely predicting edge-features, except the asymmetry 

of the experimental profile. This has been investigated and resolved (see next chapter). 

By this model, the parameters of tool lift have been optimized and an up-turn edge profile has 

been obtained.  This is presented in the next section. 
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Figure 5.19 Comparison of modelling and experimental results (author’s data) 

5.5.3 Experimental demonstration 

A 200mm across-corners Zerodur hexagonal part was prepared by loose-abrasive hand-lapping. 

It was then processed in five polishing runs on the IRP1200 machine, comprising three pre-

polishing runs and four form-correction runs. The tool-lift parameters for each stage were 

optimised on separate samples to achieve up-turned edges, systematically within the 

measurement-range of the interferometer. This is introduced in detail in the following.  

5.5.3.1 Measurement set-up 

The 4D 6000TM simultaneous phase interferometer was used to measure the 3D error map, set 

up horizontally on the optical table, as shown on the left of Figure 5.20. To identify the true 

edge of the part, the ‘Extended Range’ Form Talysurf with a 300mm measurement range was 

used for 2D scanning. It is shown on the right of Figure 5.20. 
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Figure 5.20 The measurement set-up, where on the left is the 4D interferometer, on the right 

is the ‘Extended Range’ Form Talysurf (picture by author, March 2011) 

5.5.3.2 Pre-polish with R160/60mm spot 

1 Parameters for pre-polishing  

A R160mm inflated bonnet was used for pre-polishing. The polishing cloth was LP66 

polyurethane. The 2.8mm Z-offset was chosen to deliver a 60mm full-diameter spot-size 

(60mm is the nominal spot-size; the measured spot-size was 51mm). As shown in Figure 5.21, 

due to the elasticity of the bonnet, the actual spot size was smaller than the nominal spot size. 

The 200mm across-corners Zerodur hexagonal part was rastered in three polishing runs, each 

orientated corner-to-corner in 120o steps. Each polishing run took 11 minutes, hence 33 

minutes for the whole pre-polishing. The edge parameters for the pre-polish are shown in 

Figure 5.22. 
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Figure 5.21 The nominal spot size and Z-offset (for R160mm bonnet and 2.8mm Z-offset, the 

nominal spot size is 60mm) (drawn by the author) 

 

 

Figure 5.22 Edge parameters for pre-polishing (160mm bonnet) (author’s data) 
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2 Pre-polish results 

Figure 5.23 shows the results after pre-polishing. Figure 5.23 (a) and Figure 5.23 (b) are the 

interferogram and form error map with PV 3426nm and RMS 992nm for the whole surface. 

Figure 5.23 (c) is the 2D scanning from corner to corner and from edge to edge.  

The mark in the centre of the part is a groove introduced with a diamond tool. This mark 

provides a datum to establish the absolute depths of removal using the Form Talysurf 

profilometer. By this means, it was established that approximately 8 µm depth of material was 

removed in processing this part.  Note that the 'power' term has not been removed from the 

measurement, in order to keep a consistent edge height value. It can be seen that, after pre-

polishing, upstanding edges with approximately 40mm width were achieved. This can be 

corrected by using a 20mm spot in the corrective polishing stage. 
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Figure 5.23 The measurements after pre-polishing, where (a) is the interferogram, (b) is the 

form error map, and (c) is 2D scanning (author’s data) 

5.5.3.3 Corrective polishing with R80/30mm, 20mm spots 

1 Parameters for corrective polishing  

An R80mm solid rubber tool with a 0.7mm Z-offset (21mm spot-size) and 1.4mm Z-offset 

(30mm spot-size) was used in the subsequent form-correction, where the bulk form was 

controlled at the level needed to establish the true form of the edges.  
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Each of the four passes constituted a single raster pass with a different precess position, as 

shown in Figure 5.24. The corrections 1, 2 (30mm spot) and 3, 4(21mm spot) are orthogonal. 

Each of the four correction runs takes about 20 minutes, thus, 80minutes for the whole form-

correction. The parameters for form-correction are shown in Figure 5.25. 

 

Figure 5.24 Direction of tool moving of correction runs (drawn by the author) 

 

Figure 5.25 Edge parameters for corrective polishing (80mm bonnet) (author’s data) 
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2 Results and analysis 

The results in Figure 5.26 show a form error of 479nm PV and 59nm RMS including the edge 

zone, after four form correction runs and a pitch tool process. The ‘Pitch’ process has been 

developed for surface mid-spatial smoothing and edge treatment (see Chapter 7). 

Additional interferograms were acquired with masks placed on the surface of the part to 

identify the true location of the edge, as shown in Figure 5.26 (b). It can be seen that, in this 

experiment, the bottom left edge Figure 5.26 (d) has a narrow up-stand some 300nm high, 

with no down-turn whatever. The other edges have progressive down-turns, but in each case 

<1 mm width. This apparently occurs at the final stage using the smallest spot-size. In this 

experiment, the results show residual asymmetry in the process. This has been investigated 

and resolved, as reported in the next chapter.  
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Figure 5.26 The measurements after 4 runs of form correction and smoothing process, where 

(a) is the interferogram, (b) is the edge detecting masks, (c) is the form error map, and (d) the 

edge results (author’s data, April 2011) 

5.5.4 Summary for ‘Tool Lift’ technique 

A methodology of tool lift for edge control with inflated or elastomeric tools is described in this 

section.  In this approach, the edge is left up-standing at every process-step, and a range of 

smaller spot-sizes encroach on the up-stand and progressively reduce its size and width. To 

optimise the parameters of tool lift, a numerical model was presented to predict the edge 

profile, based on empirical influence function data.  A demonstration experiment was carried 

out on a 200mm across corner hexagonal part. The preliminary results show the potential of 

this process for edge control. The residual asymmetry in the process is investigated in the next 

chapter. 
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5.6 Comparison of the potential edge control methods 

This chapter presents three edge control approaches: the ‘Wasters’, the ‘Nodding’ technique 

and the ‘Tool lift’.  

1. With the risks discussed in Section 5.3, the ‘Wasters’ method has been retained as a 

possible backup solution.  

2. The ‘Nodding’ technique has the prospect of fine edge control with big bonnets and 

spots. However, there are two main problems that need to be addressed: one is the 

very high removal at the edge of the tool influence functions (TIFs), distorting the 

removal. This is believed to be due to the effect of the cross-ply reinforcements in the 

inflated bonnet membrane. It is likely that an elastomeric bonnet would be much 

better in this respect.  Another problem is that the edge of the ‘Nodding’ tool influence 

function is curved, not straight, as shown in the Figure 5.27. From the experimental 

results in Figure 5.6, it can be seen that to achieve a straight edge in the ‘Nodding’ tool 

influence function, the precess angle needs to be increased (to 90o). This is 

diagrammed in the Figure 5.28. The current tools are limited to a precess angle of 25o. 

These two issues caused the ‘Nodding’ approach not to be selected for edge control in 

the process chain. However, the ‘Nodding’ approach is a potential technique for edge 

control of mass manufacturing of segments as big bonnets and spots could be used. 

‘Nodding’ with elastomeric tools is promising approach to address the problems 

mentioned above. 

3. With low risk and preliminary experimental success, the ‘Tool Lift’ strategy has been 

chosen for edge control in processing ESO prototype segments. The whole process 

chain is demonstrated in Chapter 7. 
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Figure 5.27 The schematic diagram of the ideal and actual ‘Nodding’ tool influence function 

(drawn by the author) 

 

Figure 5.28 The schematic diagram of elastomeric bonnet with 90o process angle (drawn by 

the author) 
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Chapter 6 

Diagnoses of edge asymmetry of a hexagonal part 

Chapter 5 presented three methodologies of the edge control for polishing and form-

correcting segments. With low risk, the ‘Tool lift’ technique demonstrated a preliminary 

success. In ‘Tool lift’, the edge is left up-standing at every process-step. However, the results 

showed an asymmetry on the hexagonal part at the final stage (some edges are rolled-down, 

as shown in Figure 5.26). The work in this chapter is to reveal the possible sources of edge 

asymmetry, including the machines, the tools and the part. The verification experiment is 

demonstrated in this chapter. 

6.1 Investigation of edge asymmetry  

A discussion with the Research & Development team was carried out to investigate the edge 

asymmetry.  The analysis has gone through the whole process including the machine, the tools, 

the part and other conditions such as the slurry.  The possible causes and proposed testing are 

listed in Table 6.1. The testing is introduced in the following section. 
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Table 6.1 Possible sources of edge asymmetry (Walker, 2011C) 

 
Possible cause Proposed testing 

1 
Errors in the machine virtual pivot alignment shift 

effective spot positions 

Check the virtual pivot of the 

machine 

2 Error in bonnet radii  entered into TPG Test the real tool radii of curvature  

3 
The part is laterally offset or in rotation with respect 

to the CNC tool-path 

Produce six tool influence 

functions (TIFs) inside of each 

edge.  Measure the peak of each 

TIF with respect to each edge of 

the part. It should all be the same. 

4 
The blank is not a perfect hexagon, so different 

edges are treated differently 

5 
The bevel is uneven, so that the optical surface is not 

a perfect hexagon 

6 

Incorrect non-linear probing procedure (a procedure 

to probe the true tilt of the part  by a program on 

machine) has tilted the part’s surface with respect to 

the tool-path: the Z-offset and so spot size is 

different from one side to the opposite side 

7 
The part moves in X,Y,Z,C or tip/tilt under the forces 

of a polishing run, due to inadequate fixturing 

Measure the deflection with a dial 

gauge when a load equivalent to 

the expected polishing loads on the 

part is applied. 

8 

Legacy of asymmetry from the loose-abrasive 

grinding stage, which is retained through 

subsequent stages of processing. This may not be 

detected because of a relatively large amplitude 

Measure the part at each stage 

with Form Talysurf. 

9 

Asymmetry introduced by either the pre- or 

corrective- polishing stages, due to the mismatch 

between the tool path directions on the hexagonal 

part as shown in Figure 5.24 

Raster tool-path in six polishing 

runs from each corner of the 

hexagonal part, thus, the edges of 

hexagonal part are treated equally. 

10 Other process variability such as slurry conditions 
Measure the density before and 

after each polishing run. 
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6.2 Testing and results  

As proposed in Table 6.1, this work is to explore the possible sources from the machines, the 

tools, the part and other condition such as slurry. 

6.2.1 Virtual pivot of machine testing  

The machine’s virtual pivot errors (A&B) were checked by clocking.  The measurement was: A 

axis: ±7µm and B axis: ±9µm. This is within the normal range of machine accuracy according to 

the specification of the machine (A&B errors less than ±10 µm). 

6.2.2 Radii and run-out testing of bonnet tools 

This work is to find out the true radii and tool surface run-out for R160mm and R80mm solid 

rubber tools. The tool surface run-out is the deviation between actual surface and ideal 

spherical surface, which could cause incorrect form correction and asymmetry in the form. The 

tool radii and the run-out of the tool surface can be tested by use ‘Bonnet Probing’ program on 

the machine. The testing results are shown in Figure 6.1 and Figure 6.2. 

For the R160mm tool, the true radius is 162.2mm (Figure6.1, left) and run-out of the tool 

surface is 117 µm (Figure 6.1, right). 

For the R80mm tool, the true radius is 85.8mm (Figure 6.2, left) and run-out of the tool surface 

is 633 µm (Figure 6.2, right). 

The tool radii that were actually used were 160mm in TPG pre-polishing and 80.3mm in the 

form-correction.  Thus, the differences were 2.2mm for R160 tool and 5.5mm for R80 tool. The 

run-out of the tool’s surface is suggested to be less than 100 µm. These tools were re-dressed 

after this testing. This is introduced at the next section. 
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Figure 6.1 R160mm tool testing results, on the left is the tool radius result (R=162.2 mm) and 

on the right is the tool surface run-out result (117µm run-out) (author’s data) 

        

Figure 6.2 R80mm tool testing results, on the left is the tool radius result (R=85.8 mm) and on 

the right is the tool surface run-out result (633µm run-out) (author’s data) 
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6.2.3 Generation of six TIFs on each edge  

As proposed in Table 6.1, this work generated six dynamic TIFs near to and equidistant from all 

six edges, and measured their removal volume, removal depth, width and the distance to the 

edge with Form Talysurf scanning each TIF individually.  Thus, these measurements can help to 

diagnose the edge asymmetry from the following possible sources: 

By measuring the distance from the edge of the TIFs to the edge of the part, it can be 

determined whether the edges of the part were regular or not, and whether the clocking and 

alignment were correct or not.  

By measuring the width and the removal rate of the TIFs, it can determine whether non-linear 

probing was correct or not, and whether the removal rate was even or not. 

This experiment was carried out on a 200mm cross-corner hexagonal part. This part was the 

same one that was used for the edge control experiment in chapter 5. The six TIFs and the 

respective measurement direction are shown in Figure 6.3. 

  

Figure 6.3 The measurement direction of six TIFs on the hexagonal part (picture by author, 

2011) 
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Figure 6.4 shows the Form Talysurf scanning results of six TIFs on each edge. These six TIFs are 

laid inside of the edge of the part (not overlapping the edges). The measurements and 

statistics are shown in Table 6.2. The measurements of the six TIFs on each edge show the 

results with no significant errors. The errors of the removal rates, the widths, and distances to 

the edge are less than 5% (standard deviation/mean). Thus, the regularity of the part, the non-

linear probing, the alignment, and the clocking are within the normal range. 

 

Figure 6.4 The measurements of six TIFs on each edge (author’s data) 
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Table 6.2 The statistics of parameters of six TIFs (author’s data) 

Location of the TIFs 
P-V 

(µm) 

RMS 

(µm) 

Removal 

volume 

(µm3/min) 

Distance of the peak 

to edge of the part 

(mm) 

Width 

(FWHM) 

(mm) 

Edge1 2.2857 0.6823 1.597 16.33 17.9 

Edge2 2.2159 0.6644 1.476 16.22 17.2 

Edge3 2.2592 0.6761 1.581 16.27 17.1 

Edge4 2.2526 0.6820 1.585 16.14 16.7 

Edge5 2.3006 0.6680 1.469 16.22 17.1 

Edge6 2.3142 0.6755 1.625 16.19 17.8 

      

statistic 

mean 2.2714 0.6747 1.5554 16.21 17.3 

σ 

(standard 

deviation) 

0.036 0.0073 0.0661 0.2481 0.4604 

σ/mean 1.58% 1.08% 4.25% 1.53% 2.66% 

6.2.4 Summary of diagnostic results   

To diagnose the edge asymmetry, machine testing, tool testing and the generation of six TIFs 

on each edge of the hexagonal part were carried out. The results are summarised as following: 

1. Machine testing 

The virtual pivot error of the machine was ±7µm for A axis and ±9µm for B axis.  This 

was within the normal range of machine accuracy according to the specification of the 

machine. 
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2. Tool testing 

For the R160mm tool, there was 2.2mm difference between the true radius and that 

actually used and 117 µm run-out of the tool surface. For the R80mm tool, the 

difference was 5.5 mm and the run-out of the tool surface was 633 µm. This is a 

considerable contributor to the edge asymmetry. The run-out of the tool surface is 

recommended to be less than 100 µm.  

3. Generation of six TIFs in the edge zone 

The measurements of six TIFs on each edge showed no significant errors. Thus, the 

regularity of the part, the non-linear probing, the alignment and the clocking were not 

suspected for edge asymmetry.  

According to the diagnoses’ results, the following aspects are proposed to achieve symmetric 

edges: 

1. Re-dressing of the tools 

2. Pre-polishing from all six directions using  the R160mm tool 

3. Polishing from all six directions in one correction using the R80mm tool 

 

6.3 Verification experiment   

The potential causes of the edge asymmetry were diagnosed in the previous section. The tool 

conditions and the tool-path direction were the main suspects. 

To achieve symmetric edges with no down-turn, the strategy of which a raster tool-path in six 

polishing runs from each corner of the hexagonal part was proposed. Thus, the edges of the 

hexagonal part were treated equally. The work in this section demonstrates this strategy by 

experiment. 
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6.3.1 The part and tools  

A 200mm across-corner Zerodur hexagonal part was prepared on a hand lapping machine for 

this experiment. A groove in the middle of the part was introduced with a diamond tool to 

establish the absolute depth of removal using Form Talysurf profilometer scanning. 

The tools for this experiment are shown in Figure 6.5, R160mm solid rubber tool (SN: SRT-160-

001) for the pre-polishing and R80mm solid rubber tool (SN: SRT-80-005) for the form-

correction. The polishing cloth on both tools was LP66 polyurethane. 

 

Figure 6.5 The tools for the experiment, where on the left is the R160mm tool, and on the right 

is the R80mm tool (picture by author, 2011) 

Both tools were re-dressed and tested on the machine. The tools surface run-out testing 

results are shown in Figure 6.6. It shows that 75µm (before, 117 µm) of run-out for the 

R160mm tool and 61µm (before, 633 µm) of run-out for the R80mm tool after dressing. The 

run-out of the tool surface is recommended to be less than 100 µm, thus, this is acceptable. 
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(a) R160mm tool                                                 (b) R80mm tool 

Figure 6.6 The run-out testing result after re-dressing, where (a) 61µm for R160mm tool (b) 

75µm for R80mm tool (author’s data) 

6.3.2 Measurement set-up 

The 4D 6000 simultaneous phase interferometer and ‘Extended Range’ Form Talysurf were 

adopted for these measurements. These are shown in Figure 6.7. 2D scanning was applied at 

each single polishing run to determine the true edges and the cause for the asymmetry. The 

measurement set-up in this experiment was the same as in chapter 5.  

 

Figure 6.7 The measurement set-up, where left is 4D interferometer, right is ‘Extended Range’ 

Form Talysurf (picture by author, 2011) 
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6.3.3 Pre-polish and results 

The R160mm solid rubber tool with a 60mm spot size was used in the pre-polishing. The tool 

lift parameters were the same as in chapter 5, as shown in Figure 5.22. A raster tool-path in 

the six polishing runs was used, each orientated corner-to-corner in 60o steps. The polishing 

time of each individual run was approximately 3 minutes, hence 18 minutes in total for the 

whole pre-polish. The results in Figure 6.8 show form errors of 3475 nm PV and 981 nm RMS. 

The 'power' term was not removed from the measurement, to keep a consistent edge height 

value. The width of the edge upturn was about 40mm. Form Talysurf scans after Pre-polishing 

show a 6µm removal (at the centre of the part) and no edge roll down in Figure 6.9. 

 

Figure 6.8 Fringe and phase map of surface after pre-polishing (author’s data) 

 

Figure 6.9 Form Talysurf 2D scanning before and after pre-polishing, showing 6µm removal 

and no edge roll down, left is scanning from edge to edge of hexagon, right is scanning from 

corner to corner of hexagon (author’s data) 
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6.3.4 Form correction with R80/20mm spot 

6.3.4.1 Six direction tool path 

An R80mm solid rubber tool with 20mm spot was used for the form correction polishing. The 

slurry density at this stage was maintained in the range of 1.022-1.023. The tool lift parameters 

were the same as in Section 5.5.3.3, as shown in Figure 5.25. 

To achieve a symmetric surface form, six polishing runs were carried out for form correction.  

Each of the six passes constitutes a single raster pass starting from each different corner of the 

hexagonal part. Every raster trace cuts the edge and is never paralleled to an edge. This was 

performed by rotating the machine table in 60o steps for each run. Thus, the tool paths of six 

corrections were identical and the edges of the hexagonal part were treated equally. Figure 

6.10 shows the tool path and the direction of the tool motion for each of the six correction 

runs. 

  

Figure 6.10 The tool path (on the right) and the directions of six correction runs (on the left), 

the tool path of each run starts from each corner of the hexagonal part (author’s picture) 
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6.3.4.2 Form-correction results  

The form-correction was started from a surface error of 981 nm RMS and 3475nm PV including 

the edge zone.  To ensure each edge was treated equally, the same absolute material removal 

was targeted for each correction run. This can be performed by the following: 

1. Optimising the removal proportion of the surface error at each correction run to 

keep the absolute removal the same 

2. Keeping the polishing time of each correction run the same 

The projected pattern and results of each correction run are shown in Table 6.3. The surface 

error of 91nm RMS and 515nm PV including the edge zone were achieved after six corrections. 

From Table 6.3, it can be seen that corrections 1 & 2 were under-corrected. After correction 2, 

it was observed that the slurry density had fallen to 1.016 (the removal rate was tested with 

the density at 1.02). Thus, after correction 2, the starting slurry density was adjusted to 

compensate for this decline. After correction 3 and 4, the slurry density was dropped again, 

which caused the under-correction of run 5 and 6. 

Table 6.3 The projected pattern and results at each correction run (author’s data) 

 

Planned 

proportion of 

removal error 

Polishing time 

(minutes) 

Started error 

including edge 

zone(RMS) 

(nm) 

Residual error 

including edge 

zone(RMS) 

(nm) 

Actual 

proportion 

of removal 

error 

Correction 1 16.7%   (1/6) 23 928 849 9% 

Correction 2 20%   (1/5) 22 849 794 8% 

Correction 3 25%   (1/4) 22 794 563 27% 

Correction 4 33.3%   (1/3) 22 563 338 35% 

Correction 5 50%   (1/2) 23 338 224 34% 

Correction 6 100%   (1/1) 20 224 91 61% 
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The results from correction 1 to correction 6 are shown in Figure 6.11. The interferograms 

were acquired with small masks placed on the surface of the part to identify the true location 

of the edge at each form-correction run. By this means, it can be seen that the edges of the 

part were always controlled within the range of the interferometer through the six corrections. 

The analysis of the edge results is introduced in the following section. 
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(a) Correction1 (PV: 3007nm, RMS: 849nm) 

 

(b) Correction2 (PV: 2816nm, RMS: 794nm) 

 

(c) Correction3 (PV: 1997nm, RMS: 563nm) 
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(d) Correction4 (PV: 1416nm, RMS: 338nm) 

 

(e) Correction5 (PV: 940nm, RMS: 224nm) 

 

(f) Correction6 (PV: 515nm, RMS: 91nm) 

Figure 6.11 The fringe and phase maps of the surface after each form-correction run (author’s 

data) 
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To identify the true edge of the part and to determine the absolute depths of removal by using 

the reference groove in the centre of the part, 2D scannings were carried out on the ‘Extended 

Range’ Form Talysurf PGI 1240 2D Form Talysurf after each polishing run. All have been plotted 

together and are shown in Figure 6.12, where it can be seen that there is no edge roll down 

through the whole process. By use of the reference groove, it has been established that 

approximately 8 µm depth of material removal was removed in the processing of this part. 

 

 

Figure 6.12 Form Talysurf profilometer measurements for each polishing run, the top shows 

the results from edge to edge of hexagon, and the bottom shows the results from corner to 

corner (author’s data) 
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6.3.5 Comparison and analysis of the results  

The comparisons with the previous results are shown in Figure 6.13.  On the left are the results 

achieved from the preliminary edge control experiment in Chapter 5, after four form-

corrections. It presents asymmetry on the hexagonal part and some edges are already turned-

down.  The form errors are 1137nm PV and 160nm RMS including the edge zone. 

 

(a) Comparison of the whole measurements 

   

(b) Comparison of the edge results, cutting from (a) 

Figure 6.13 Comparison with previous results, where (a) is the comparison of the 

measurements of the whole part, and (b) is the comparison of the edge results. On the left is 

the previous result with four directions tool path. On the right is the result with six directions 

of tool path from each corner and equal absolute removal for each correction (author’s data) 
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On the right of Figure 6.13 is the result achieved in this experiment with six directions of tool 

path from each corner and the equal absolute removal for each correction. The results show a 

form error of 479nm PV and 59nm RMS including the edge zone. All of the six edges are up 

standing and are controlled within the range of the interferometer through all six corrections. 

This has been confirmed by means of placing the masks on the surface in the interferogram 

and Form Talysurf scanning. The symmetric edges are achieved. The up-standing edges can be 

treated by the subsequent ‘Pitch’ polishing process. The details of this process are introduced 

in Chapter 7. 

6.4 Conclusion  

In this chapter, the causes for asymmetric edges have been investigated. It is mainly due to the 

tools’ condition and the mismatch between the tool path directions on the hexagonal part. A 

strategy to achieve symmetric edges has been demonstrated. For the hexagonal part, six 

directions of tool path from each corner and an equal absolute removal for each correction run 

are required. This modified process has been demonstrated by an experiment. The symmetric 

and up-standing edges have been achieved. These up-standing edges can be treated by the 

subsequent smoothing process. Chapter 7 will demonstrate the whole process and finally it 

reaches the ESO’s specifications. 
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Chapter 7 

Experimental demonstration of the process-chain 

This chapter presents two sets of experiments with the ‘Tool lift’ edge control technique of 

which the material DC-removals are respectively 3µm and 15µm. The aim of the experiments is 

to demonstrate two possible process-chains for the E-ELT project, following grinding the 

asphere on the BoX with 8-10 µm subsurface damage. 

1. Process-chain 1 (3µm total DC-removal): final rectification after cutting a polished 

roundel to hexagonal shape after  15 µm depth material removal has been achieved  

1.1 Polishing & Correcting a roundel (15 µm removal) 

1.2 Final rectification after cutting a roundel to hexagonal shape (2-3 µm) 

2. Process-chain 2 (15µm total DC-removal): performing all the processing on a hexagonal 

segment (15 µm removal) 

The experiments were conducted on 200mm across-corners, R=3m spherical concave, Zerodur 

hexagonal parts. The parts were prepared by free-abrasive lapping on a cast iron tool. 

R160mm and R80mm solid rubber tools were used in the experiments. 

7.1 Methodology of practical edge control 

In Chapter 5, three Methodologies for edge control were presented. With low risk and 

preliminary experimental success, the ‘Tool lift’ technique has been adopted in the E-ELT 

prototype segments’ processing-chain. As already mentioned in chapter 5, this strategy for 
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edge control is described as follows: 

1. The comparatively large polishing spots are applied over the bulk surface to give high 

volumetric removal rates in pre-polishing and form-correction polishing. The edge is 

left up-standing by tool lift. 

2. The smaller spot-sizes then encroach on the up-stand and progressively reduce its size 

and width. 

The principle of this approach is that the whole surface needs to be always within the 

measurement-range of the interferometer. 

 The stability of this technique was established over three parts. Typically, after form 

correction, edges are turned-up with <1µm in height, 7mm in width. To clean up the up-

standing edges and surface, a pitch tool polishing process was developed, as introduced in the 

following section. 

7.2 Pitch tool polishing process 

Pitch polishing is one of the most historic processes. Polishing with pitch tooling can produce 

surfaces with low roughness and negligible subsurface damage. As already mentioned in 

Section 2.4, pitch is a viscoelastic material with complex material properties, which are low 

softening point (55-70oC) and hardness (60-80, by Shore. D) (OSA, 2011). Compared to glass, 

pitch is very soft; therefore, it takes the shape of the part during the polishing and remains in 

close contact without scratching. Compositions of the pitch are mostly proprietary. Generally, 

the material consists of various amounts of tar, oil, wood and rosin (OSA, 2011). 

 A 100mm diameter pitch tool was developed for the E-ELT project by the Production Team as 

shown in Figure 7.1. The composition consists of two types of optical polishing pitch (Gugolz73 
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and Gugolz64) and wood flour. The proportions are 70% of Gugolz73, 25% of Gugolz64 and 5% 

wood flour by weight. To form a pitch polisher, the pitch is warmed and formed to the optic 

with a 4-5mm layer. A metal tool is then coated. Once the pitch has cooled, the irrigation 

grooves are cut on the pitch tool surface to allow for slurry access.  

 

Figure 7.1 The R100mm pitch polishing tool (picture by author, 2001) 

The pitch tool polishing for the process in the E-ELT process-chain plays two important roles: 

1. Removal of BoX™ mid-spatial features 

2. Treatment of up-standing edges after form- correction 

Figure 7.2 shows the texture measurements after bonnet polishing and after pitch tool 

polishing using an ADE Phase Shift MicroAXM white-light texture interferometer. It can be 

seen that in the measurement region of 1.4mm x 1mm, after bonnet polishing the surface 

roughness Sa=3.71nm and after pitch polishing Sa=0.502nm. 
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(a)  After bonnet polishing                                         (b)  After pitch polishing  

Figure 7.2 The texture measurements in the range 1.4mm x 1 mm, where (a) is after bonnet 

polishing, Sa=3.71nm; (b) is after pitch polishing on the Zeeko machine, Sa=0.502nm (author’s 

data, 2011) 

7.3 Process-chain 1 (3µm total DC-removal) 

In this process-chain: 

1. The pre-polishing and form-corrections have been conducted with an R80mm solid 

rubber tool with a 20mm spot. The polishing cloth was polyurethane LP66. According 

to the diagnosis results in Chapter 6, the total material DC removal was equally divided 

into six polishing runs that were three pre-polishing runs and three correction runs. 

The starting corners were chosen to be evenly distributed. 

2. An R100mm pitch tool was used for the cleaning of the up-standing edges and the 

surface smoothing. At this stage, three sets of pitch runs were carried out and each set 

included six raster runs, one from each corner. 

3. An R80mm solid rubber tool with Uni-Nap polishing cloth was used for the final form 

correction. Polishing with Uni-Nap provides a low material removal rate and good 

quality of a surface topography compare with polyurethane, see the removal rate 

table in the Appendix. It is suitable for the final form correction. 
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The part was a 200mm across-corners, R=3m spherical concave, Zerodur hexagon which was 

prepared by free-abrasive lapping on a cast iron tool. A groove was introduced with a diamond 

tool in the centre of the test-part to provide a datum that establishes the absolute depth of DC 

removal using the Form Talysurf profilometer. 

The masks were placed on the surface of the part to identify the true location of the edges in 

the interferogram through each measurement of the whole process-chain.  

7.3.1 The results of process-chain 1 

7.3.1.1 Pre-polish result 

After three pre-polishing runs with R80/20mm spot, the PVq (99%) and the RMS of the entire 

surface were 860nm and 140nm respectively as shown in Figure 7.3. The processing time for 

pre-polishing was 21minutes x 3=63 minutes. 

 

Figure 7.3 Pre-polishing measurement of process-chain 1, where PVq (99%) =860nm and 

RMS=140nm (author’s data) 
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7.3.1.2 Form-correction result 

To maintain the symmetry of edges, the total error was equally divided between three 

correction runs. Figure 7.4 shows the measurement after three form-correction runs with 

R80/20mm spot. PVq (99%) and RMS of the entire surface were 307nm and 43nm respectively. 

The total processing time for form-correction was 65 (23+21+21) minutes. 

Symmetric and up-standing edges were achieved after the form-correction. The edges were 

about 7mm wide. Although the extreme edge was unable to be acquired through 

interferometry, it can be brought back by cleaning up the surface and edges with the pitch tool. 

 

Figure 7.4 Form-correction measurement of process-chain 1, where PVq (99%) =307nm and 

RMS=43nm (author’s data) 

7.3.1.3 Pitch tool polishing result 

Three sets of pitch polishing process were carried out after the form correction. Each set 

includes six raster runs, one from each corner. The measurements after the pitch tool polishing 

are shown in Figure 7.5. PVq (99%) and RMS of entire surface are 187nm and 36nm 

respectively. It can be seen that the up-standing edges have been treated down by the pitch 
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polishing process and recovered into the measurement-range of the interferometry. The 

processing time for pitch polishing was 36 (3 x 6 x 2) minutes. 

 

Figure 7.5 The measurement after pitch tool polishing of process-chain 1, where PVq (99%) 

=187nm and RMS=36nm, up-standing edges have been recovered into the measurement-

range of the inteferometry (author’s data) 

7.3.1.4 Final correction (Uni-Nap polishing cloth) result 

The pitch tool polishing process introduces a small regression in the form. It can be restored by 

final correction with the R80 solid rubber tool with the Uni-Nap polishing cloth. Figure 7.6 

shows that after one correction run with a 20mm spot, PVq (99%) and RMS including edges are 

120nm and 22nm respectively.  The processing time for this correction run was 17minutes. 
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Figure 7.6 Uni-Nap -correction measurement of process-chain 1, where PVq (99%) =120nm and 

RMS=22nm including edges (author’s data) 

7.3.1.5 Roughness result 

Figure 7.7 is the roughness measurement result after final correction using the ADE Phase Shift 

MicroAXM white-light texture interferometer.  It can be seen that in the measurement region 

of 1.4mm x 1mm roughness Sa=1.42nm. This is within the ESO specification of 3nm, 2nm goal 

(see Section 1.9.2). 

 

Figure 7.7 The roughness result of the process-chain 1, where, the measurement range is 

1.4mm x 1 mm, Sa=1.42nm (author’s data) 
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7.3.1.6 Absolute depth of removal 

Using Form Talysurf profilometer measurements, the absolute depth of removal was 

established by a reference groove on the part. Figure 7.8 shows the profiles after free-abrasive 

lapping and after final correction. It can be seen that approximately 3µm DC-removal has been 

achieved in this process-chain. 

 

Figure 7.8 Absolute material removal measurement of process-chain 1, where, the red profile 

is the Form Talysurf measurement after free-abrasive lapping and the purple profile is after the 

final correction, 3µm DC-removal was built into this process-chain (author’s data) 
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7.3.2 Results analysis of process-chain 1 

This section reviews the results according to the E-ELT specification. As already mentioned in 

the Section 1.9.2, the ESO specification was ambiguous regarding the datum with respect to 

which edge mis-figure is measured, also the method of measurements. Walker (2012B), 

proposed to ESO a refined measurement protocol in January 2012, which ESO has accepted. In 

this protocol, the 95% PVq (rather than 99% PVq adopted previously) represented a significant 

but reasonable concession on the segment of ESO. In this chapter, the data is analysed as 

follows: 

1. The part is measured on the interferometer. 

2. A 0.5 mm wide band around the periphery is removed from the data, to represent the 

margin for final bevelling. 

3. Tip/tilt, de-focus and astigmatism are removed from the resulting data-set. 

4. The useful area is defined as the bulk surface excluding the 10mm wide peripheral 

zone. 

5. The useful area is cut out of the data-set and analysed to provide the RMS. 

6. The remaining 10mm wide hexagonal ring is divided into six individual trapezoidal 

edge-segments, each of which is analysed separately to provide the respective PV and 

PVq (95%) edge mis-figure numbers. 

The analysis of the interferometer data after the final correction is shown in Figure 7.9. The 

statistics of the results are listed in Table 7.1. It is shown that the results (maximum edge mis-

figure, average edge mis-figure and useful area) in this process chain are numerically lower 

than the E-ELT specification (as shown in Table 1.2). The details of comparison with E-ELT 

specification is discussed in the following section. 
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Figure 7.9 Final result of process-chain 1 (3µm DC-removal), where the data-set are analysed 

after removing 0.5mm margin around edge which represents the margin for final beveling, the 

data of six edges is PV and PVq (95%) from each trapezoidal sector (10mm in height), useful 

area of surface is measured excluding 10mm edge-zone (author’s data) 

Table 7.1 The statistics of the final result of process-chain one (3µm DC-removal) (author’s data) 

PV  for each of six 
edge zones 

(nm) 

PVq(95%)  for each  
of six edge zones 

(nm) 

Average of 
PV 

(nm) 

Average of 
PVq(95%) 

(nm) 

RMS(surface) 
useful area 

(nm) 

Roughness 
Sa(nm) 

116 163 168 81 107 112 

142 92 18 

 

1.42 

 143 145 118 92 97 67 
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7.4 Process-chain 2 (15µm total DC-removal) 

7.4.1 The results of process-chain 2 

The part for this process-chain was the same part as used in process-chain 1, which was a 

200mm across-corners, R=3m spherical concave, Zerodur hexagonal part and prepared by 

free-abrasive lapping on a cast iron tool. In this process-chain: 

1. The pre-polishing was conducted with an R160mm solid rubber tool with 60mm 

nominal spot size (50mm in actual), which aimed to achieve a high volumetric removal 

rate over the bulk surface. The polishing cloth was polyurethane LP66. Six pre-

polishing runs in total were started from each corner and the processing time of each 

run was 4.5 minutes. With the ‘Tool lift’ edge control technique, the broad edges were 

left up-standing. The pre-polishing result is shown in Figure 7.10, where, PVq (99%) 

and RMS of the entire surface are 4149nm and 1084nm respectively.  

2. The form-correction was performed with an R80mm solid rubber tool with a 20mm 

spot. The polishing cloth was polyurethane LP66. To achieve symmetric edges, the 

total form error was equally divided into six correction-runs as discussed in chapter 6. 

The polishing time for each correction run was approximately 20 minutes. The result 

after six form-corrections is shown in Figure 7.11, where, PVq (99%) and RMS of the 

entire surface are 803nm and 67nm respectively. 

3. An R100mm pitch tool was used for cleaning the up-standing. In this process-chain, 

five sets of pitch runs were carried out and each set included six raster runs, one from 

each corner. Finally, an R80mm solid rubber tool with Uni-Nap cloth was used for final 

form-correction. After pitch polishing and one final form-correction, the result is 

shown in Figure 7.12. PVq (99%) =189nm and RMS=26nm including the edge zone 

have been achieved. The analysis of the results is introduced in the following section. 
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Figure 7.10 Pre-polishing measurement of process-chain 2, where PVq (99%) =4149nm and 

RMS=1084nm (author’s data) 

 

Figure 7.11 The measurement after six form-corrections of process-chain 2, where, PVq (99%) 

=803nm and RMS=67nm (author’s data) 

 

Figure 7.12 The measurement after pitch polishing and Uni-Nap cloth final correction of 

process-chain 2, where, PVq (99%) =189nm and RMS=26nm (author’s data) 
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The roughness of the final surface was measured using the ADE Phase Shift MicroAXM white-

light texture interferometer as shown in Figure 7.13. In the measurement region of 1.4mm x 

1mm, the roughness Sa=1.42nm. This is within the ESO specification of 3nm, 2nm goal. 

 

Figure 7.13 The roughness result of the process-chain 2, where, the measurement range is 

1.4mm x 1 mm, Sa=1.42nm (author’s data) 

The Talysurf profilometer measurements of the part after free-abrasive lapping and after final 

correction are shown in Figure 7.14. By the reference groove on the part, it can be seen that 

approximately 15µm absolute depth DC-removal was achieved in this process-chain. 

 

Figure 7.14 Absolute material removal measurement of process-chain 2, where the red profile 

is the Form Talysurf measurement after free-abrasive lapping and the purple profile is after the 

final correction, 15µm DC-removal was built into this process-chain (author’s data) 
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7.4.2 Results analysis of process-chain 2 

The data are analysed according to the definition, which is listed in Section 7.3.2. The analysis 

of the final interferometer data is shown in Figure 7.15. The statistics of the results are listed in 

Table 7.2. To sum up, PVq (95%) of each individual edge is lower than the maximum in the E-

ELT specification (200nm, surface). The average PVq (95%) is 138nm, which is above the 

specified average (100nm, surface). The RMS of the surface of the useful area (excluding 

10mm edge-zone) is lower than E-ELT specification (50nm surface). 

 

Figure 7.15 Final result of process-chain 2 (15µm DC-removal), where the data-sets are 

analysed after removing the 0.5mm margin around edge which represents the margin for final 

beveling, the data of six edges is PV and PVq (95%) from each trapezoidal sector (10mm in 

height). The useful area of surface is measured excluding 10mm edge-zone (author’s data) 
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Table 7.2 The statistics of the final result of process-chain two (15µm DC-removal) (author’s 

data) 

PV  for each of six 
edge zones 

(nm) 

PVq(95%)  for each  
of six edge zones 

(nm) 

Average of 
PV 

(nm) 

Average of 
PVq(95%) 

(nm) 

RMS(surface) 
useful area 

(nm) 

Roughness 
Sa(nm) 

161 187 175 115 130 146 

174 138 20 

 

1.46 

 193 180 152 151 149 143 

7.5 Comparison of the results and E-ELT specification  

Two process-chains giving substantial different depth of removals were demonstrated on the 

200mm across-corners, R=3m spherical concave, Zerodur hexagonal parts in this chapter. 

Drawing together, the results for the two process-chains are summarised in Table 7.3. The 

data were analysed according to the definition for E-ELT specification (see Section 1.9.2).  

From comparison with the E-ELT specification, it can be seen that: 

1. In process-chain 1, the final results (useful area, the maximum/average edge mis-

figures and the roughness) were numerically lower than the E-ELT specification. 

2. In process-chain 2, the results of the useful area, the maximum of each individual 

edges and the roughness were lower than the E-ELT specification. The average of PVq 

(95%) of six edges is 138nm, which was above the specified average (100nm, surface).  

It was noted that the dominant edge-defect remaining in the PV numbers was the 

turning-up of the corners (as shown in Figure 7.15), which is currently under 

investigation. A process of final local edge-rectification to treat the turned-up corner in 

the edge zone was proposed. The details of this process and some suggestions are 

introduced in the next chapter. 
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Table 7.3 The comparison of the results and E-ELT specification (author’s data) 

 

Useful area RMS(nm) The edges PVq(95%)(nm) 
The 

roughness 

(nm) 
Overall 

surface error 

Surface error 
after removal 

of low- and 
mid-spatial 

Maximum 
surface error 

Average of 
surface error 

E-ELT specifications 
for single segment 

50 15 200 100 2 

Process-chain1 
(3µm DC removal) 18 11 112 92 1.42 

Process-chain2 
(15µm DC removal) 20 14 151 138 1.46 

The end-to-end process time for the two process-chains is given in Table 7.4.  The initial free-

abrasive lapping on a cast iron tool is excluded. A prediction of the total process time for an E-

ELT segment can be made by scaling all the process-times by the relative areas. For process-

chain 1, 3µm DC-removal, an estimated total time of 148 hours is needed for processing an E-

ELT segment. For process-chain two, 15µm DC-removal, approximately 167 hours is needed. 

This prediction is pessimistic because, on a 200mm hexagon, corrective polishing spends a 

disproportionately large time reducing the large edge up-stand left by pre-polishing. On an E-

ELT segment, most of the time is polishing the bulk surface. 
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Table 7.4 The prediction of total process time for an E-ELT segment (author’s data) 

 
Time for process-chain one on 

200mm across-corners 
hexagon(mins) 

Time for process-chain one on 
200mm across-corners 

hexagon(mins) 

Pre-polishing 
63  

(R80/20mm spot, 1.5µ removal) 

25  

(R160/20mm spot, 10µ removal) 

Corrections 65 120 

Pitch polishing 36 60 

Uni-Nap  cloth 

correction 
17 17 

   

Totals 181 205 

   

Time for simple 
extrapolation to 1.4m 
cross-corners segment 

8,869 mins = 148 hours 10,045 mins = 167 hours 

From Table 7.4, it can be seen that, in process-chain 2 attributed to using a large tool 

(R160/50mm spot) for pre-polishing, the process speed has been significantly increased. It 

needed only 19 hours extra processing time, and the DC-removal is increased from 3µm to 

15µm. Therefore, a large tool (e.g. R200mm) is suggested for further speeding-up of the 

process. The new R200mm solid rubber tool is currently being developed by the Design Team, 

see Section 8.2.2.  
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Chapter 8 

Conclusion and future work 

This thesis has reviewed different techniques for fabrication of the large aspheric surface. The 

'Precessions' polishing technique with many advantages has been adopted as the core 

technique for manufacturing the prototype mirror segments for the European Extremely Large 

Telescope (E-ELT). The specifications of these segments’ surface are highly challenging, and the 

manufacture of 931 such segments in a few years demands a new process that requires 

deterministic, automation of fabrication, metrology and handling, and minimization of manual 

interventions. The research work in this thesis has been involved in developing an advanced 

manufacturing process for E-ELT’s segments. The purpose of this study is to address some key 

techniques for the 'Precessions' polishing approach, such as: characterising tool influence 

functions; edge control; diagnoses of the edge asymmetry of hexagonal parts; optimisation of 

process parameters and the speed-up of the whole process. This goal was achieved and two 

possible process-chains for E-ELT project have been developed and demonstrated on a 200mm 

across corners, Zerodur, hexagonal part, which are following after grinding the asphere on the 

BoX with 8-10 µm subsurface damage: 

1. Process-chain 1 (3µm total DC-removal) for the final rectification after cutting a 

polished roundel to hexagonal shape after 15 µm depth material removal has been 

achieved 

2. Process-chain 2 (15µm total DC-removal): performing all the processing on a 

hexagonal segment  
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8.1 Overview of the technical advance recorded in the thesis 

The tool influence functions (TIFs) characterise the local effect of the process and therefore is 

of fundamental importance for a successful deterministic ‘Precessions’ process. According to 

the Preston equation, a model that can predict the shape of the TIF for a given tool and 

condition has been established by means of finite element analysis (FEA). The demonstration 

of simulation showed a good agreement with the experimental result.  

The edge effect is regarded as one of the most difficult technical issues with segment 

production. Three strategies for edge control have been presented and compared. With low 

risk and experimental success, the ‘Tool lift’ edge control technique has been adopted in the E-

ELT prototype segments’ processing-chain. In ‘Tool lift’, the edge is left up-standing at every 

process-step, and a range of smaller spot-sizes encroach on the up-stand and progressively 

reduce its size and width. To optimise the parameters of the ‘Tool lift’, a numerical model was 

presented to predict the edge profile, based on empirical influence function data. To obtain 

the full tool influence function in the edge zone, a novel hybrid-measurement method was 

presented, which uses both simultaneous phase interferometry and profilometry. 

In order to avoid edge asymmetry on the hexagonal part at the final stage, the causes for the 

asymmetry have been investigated. A strategy that can avoid the edge asymmetry has been 

demonstrated by experiments. Therefore, two process-chains given substantial different depth 

of removals have been developed and considered as top-level strategies for manufacturing E-

ELT’s prototype segments. 
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8.2 Proposed future works 

8.2.1 Small tool for local edge rectification  

In the final results presented in Chapter 7 (as shown in Figure 7.9 and Figure 7.15), the 

dominant edge-defect remaining in the PV numbers is the turning-up of the corners. It is 

believed that the use of a rigid pitch tool must polish the edges more than the corners, 

because the overlap at the corner is less. This leaves raised corners. This factor indicates that it 

needs local treatment in the edge zone using a small tool (e.g.  R20mm tool / 5mm spot size), 

as shown in Figure 8.1. 

 

Figure 8.1 The diagram of the edge zone local treatment using hexagonal tool path (drawn by 

the author) 

To establish its feasibility, the removal function for an R20mm tool / 5mm spot size has been 

tested by polishing three wedges trenched into a part with different feed rates. The test 

conditions were: 0.15mm Z-offset (5mm spot-size); Head-speed 800 rpm; 15o precess angle; 

slurry density 1.02; polyurethane polishing cloth and Zerodur glass. The cross sections of the 

three trenches were measured using the Form-Talysurf, as shown in Figure 8.2.   
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Figure 8.2 The removal trench test for R20mm tool/5mm spot-size (author’s data) 

A model that can predict the edge profile after local edge zone polishing was established. In 

this model, only a constant feed rate can be accepted. Figure 8.3 shows the modelling result 

after hexagonal tool path polishing with 15mm/min feed rate, 20mm tool / 5mm spot-size. It 

can be seen that the up-standing edge of the edge zone has been pushed-down. This 

demonstrated that local edge zone polishing with a small tool has the potential for final edge 

treatment. 

The tool-lift and feed-rate moderation within the edge zone are limited by Zeeko’s current 

software. With this proposal, Zeeko Ltd has written an extension to their standard ‘Precessions’ 

optimisation software, in which: 

1. The continuous Hex-Hex spiral tool-path is constrained to lie within the defined inner 

and outer boundaries of the edge-zone. 

2. The software - extension allows the user to specify different tool-lift parameters for 

the inner and outer boundaries. 
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3. Given a family of measured influence functions for a range of tool-lift parameters, the 

extension is able to compute the numerically optimum dwell-time map (and so feed-

rates) for the tool-lift parameters as specified. 

This software extension has been completed, and is now waiting for the experimental test on a 

machine. 

 

Figure 8.3 The modelling result after hexagonal tool path local polishing (R20mm tool/5mm 

spot-size) (author’s data) 

8.2.2 Development on R320mm tool to speed up the process 

As presented in Chapter 7, attributed to the use of a large tool (R160/60mm nominal spot size) 

for pre-polishing in process-chain 2, the overall process speed has been significantly increased. 

Zeeko’s IRP1600 machine is designed to be able to accommodate tool sizes up to a radius of 

320mm, which is able to deliver a maximum spot-size of 150mm. Thus, increasing the tool size 

is a potential and reasonable way to speed up the whole process for the manufacturing of the 

segments.  
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A R200mm solid rubber tool has been designed and successfully moulded at OpTIC, as shown 

in Figure 8.4. The tool influence functions (TIFs) were tested on a Zerodur part. The testing 

parameters were 2.25 mm Z-offset (60mm nominal spot size), 15o Precess angle, 800 rpm 

Head speed, 10 seconds testing time, Polyurethane cloth, Slurry density 1.02. The 2D Talysurf 

measurements are shown in Figure 8.5. The volumetric removal rate is calculated as 

14.2mm3/min. 

For comparison, the removal rate of an R160mm solid rubber tool (currently in use) with a 

60mm nominal spot size is 8.61 mm3/min (experiment conditions are the same as the R200mm 

tool). Therefore, a 1.65 gain in volumetric removal rate was achieved from increasing the tool 

size from R160mm to R200mm. It has been seen that the measured spot size of the R200mm 

tool is approximately 53mm (60mm nominal spot size) and the measured spot size of the 

R160mm tool is approximately 44mm (60mm nominal spot size). Currently, design work on the 

R320mm solid rubber tool is in progress. 

 

Figure 8.4 New R200mm solid rubber tool with Polyurethane cloth on the IRP 1200 machine 

(author’s picture, 2012) 
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Figure 8.5 2D tool influence functions of the R200mm solid rubber tool (Z-offset: 2.25mm, 

60mm nominal spot size, Precess angle: 15o, Head speed: 800rpm, Testing time: 10 seconds) 

(author’s data) 
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Appendix 

Removal rate table for the process 

The tests in the table below were under same conditions of H axis speed 800 rpm, Precess 

angle 15o. 

A1 The removal rate table  

Bonnet 
Test dwell 

Time (seconds) 
Z-offset 

(mm) 

Nominal 
spot size 

(mm) 

Measured 
spot full 

width(mm) 

 
Slurry 

density 
 

Force 
(Kg) 

Volumetric 
removal rate 
(mm3/min) 

R200 solid rubber 
tool with 

polyurethane 
10 2.25 60 53 1.023 27.9 14.320 

R160 solid rubber 
tool with 

polyurethane 
10 2.8 60 43 1.023 15.9 8.607 

R160 filled silicone 
with polyurethane 

5 2.8 60 45 1.025  7.785 

R160 inflated with 
polyurethane  

with 1 bar 
5 2.8 60 51 1.025 7.7 5.249 

R80 inflated with 
polyurethane  

with 1 bar 

60 1.4 30 25 1.028 2.4 1.230 

120 0.7 20 16 1.028 1.7 0.583 

R80 Solid rubber 
tool with 

polyurethane 

10 1.4 30 25 1.022 14.9 4.961 

10 0.7 20 17 1.022 4.4 2.045 

R80 Solid rubber 
tool with Uni-Nap 

 

10 0.7 20 16 1.022  0.326 
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