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To describe the behavior of polydisperse multiphase systems in an Eulerian framework, we solved the population balance
equation (PBE), letting it account only for particle size dependencies. To integrate the PBE within a commercial
computational fluid dynamics code, we formulated and implemented a novel version of the quadrature method of moments
(QMOM). This no longer assumes that the particles move with the same velocity, allowing the latter to be size-dependent. To
verify and test the model, we simulated the mixing of inert polydisperse fluidized suspensions initially segregated, validating
the results experimentally. Because the accuracy of QMOM increases with the number of moments tracked, we ran three
classes of simulations, preserving the first four, six, and eight integer moments of the particle density function. We found that
in some cases the numerics corrupts the higher-order moments and a corrective algorithm, designed to restore the validity of
the moment set, has to be implemented. VVC 2012 American Institute of Chemical Engineers AIChE J, 58: 3054–3069, 2012
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Introduction

Several industrial processes, such as catalytic polymeriza-
tion, combustion, and gasification, involve fluidized bed
reactors. These are attractive because they maximize the
contact area between the phases and guarantee excellent heat
and mass transfer. Even so, developing, innovating, and scal-
ing up these processes is still quite challenging, because the
dynamics and reactive behavior of fluidized suspensions are
extremely difficult to predict and control. The complexity
originates from the many physical and chemical phenomena
that occur concurrently: chemical reactions take place, which
usually affect the properties of the particles; in addition,
these can aggregate or break into subelements, whereas
others can form through nucleation. The end-product quality
strongly depends on all these competing phenomena, which
in turn are influenced by the suspension fluid dynamics and,
indirectly, by the reactor internals, geometry, and size.

To design these units, process engineers have resorted for
many years to experimental correlations and pilot plants.
However, since these correlations are valid only for the
specific units investigated, they cannot help engineers to
innovate or improve design and performance; pilot plants,
conversely are expensive and time-consuming, not always
leading to adequate scale up.

Thanks to the availability of high-speed computer process-
ors, computational fluid dynamics (CFD) plays nowadays a
key role in understanding the behavior of multiphase systems
and in particular fluidized beds. The improvement in accu-
racy of recent fluid dynamic models1–5 has substantially
increased the interest of industry in this technique; neverthe-
less, since many limitations in the predictive capabilities of
such models still exist, much theoretical research is required
to turn CFD into a fully reliable design tool. One of the
assumptions which restricts even the most advanced models
is the particles having constant and equal size.6–13 As just
pointed out, in industrial processes there exists a particle
size distribution (PSD), whose changes in time and space
reflect the course of the very physical and chemical phenom-
ena characterizing the processes. These changes in PSDs are
associated with the possible occurrence of segregation phe-
nomena, which result into uneven distribution of the par-
ticles within the bed. Depending on the application at hand,
segregation may be beneficial or detrimental,14–17 but in ei-
ther case being able to predict its extent and dynamics is
key to properly design and operate fluidized bed reactors.

To partially overcome this limitation, research groups
have extended to polydisperse suspensions models originally
developed for monodisperse. This approach still hinges on
the constant-size assumption, but now two or more particle
classes differing in size are accounted for, so that powders
can segregate.18–27 Even so, variations in size are not
allowed for, whereas in reality particles can shrink, aggre-
gate, break, and nucleate, their size distribution varying
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continuously in time and space. Predicting this evolution,
which depends upon the local conditions wherein the system
operates, is essential for a reliable description of the suspension
behavior, but requires a more powerful modeling strategy.

To account for size-changing phenomena, which character-
ize the physics and chemistry of the process at hand, and
describe how the PSD evolves locally within the reactor, we
need to solve, along with, or in place of, the averaged trans-
port equations of conservation of mass, linear momentum and
possibly energy, a population balance equation (PBE). Doing
so, however, is not trivial, because the dimensionality of this
equation depends on the application and on the strategy that
the modeler wishes to use (e.g., on how many internal coordi-
nates he uses to characterize the state of the particles). Hence,
PBEs are not necessarily three-dimensional (3-D) and cannot
be easily integrated within customary CFD codes. In the con-
text of multiphase flows, not so many research groups have
used this modeling approach. Olmos et al.28 simulated bubble
columns considering 10 different size classes to represent the
bubbles, but solved only the dynamical equation for the mix-
ture. The bubbles consequently shared the same velocity.
Using similar strategies, other groups have simulated gas–
liquid systems.29–31 Dense fluid–solid systems, conversely, in
which the phases strongly interact and move with different
velocities, have been investigated much less.32–34

Various techniques can solve PBEs numerically; for a
comprehensive review we refer to Ramkrishna. 35 Here, we
focus on the so-called method of moments. Frequently engi-
neers do not really need to know the particle density func-
tion, which describes how the population of elements is dis-
tributed locally over the properties of interest, but are only
interested in some integral properties of the latter. Such
properties, called moments, may be important because they
control the product quality or because they are easy to mea-
sure and monitor. The idea behind the method of moments
is to derive transport equations for the moments of interest
by integrating out the internal coordinates from the PBE.36

The method is attractive, because the transport equations that
govern the moments are 3-D and the number of moments to
be tracked is small; however, the transport equations are
unclosed, because for any given set of moments that the
modeler wishes to consider, the equations normally involve
also higher-order moments external to the set.37,38

The quadrature method of moments (QMOM), which
approximates the particle density function using a quadrature
formula, overcomes this problem; turning integrals of the
density function into summations, the formula eliminates the
problem of closure.39,40 To compute the quadrature nodes
and weights, QMOM forces them to agree with a set of in-
dependent lower-order moments41 that the model tracks by
integrating their transport equations. From this set, QMOM
then determines the finite-mode representation of the density
function.

For monovariate distributions, that is, distributions with
only one internal coordinate, to back-calculate the quadrature
nodes and weights from the moments of the density function
we can adopt the product-difference (PD) algorithm of Gor-
don,42 which requires finding the eigenvalues of a real sym-
metrical tridiagonal matrix, or the algorithm of Wheeler.43

Nevertheless, these algorithms cannot be applied when a
higher number of internal coordinates is present. The quadra-
ture approximation must then be determined using multivari-
ate inversion algorithms, such as Brute-Force methods,44

Tensor-Product methods,45 or Conditional QMOM.46 Even if

some of these algorithms are very efficient, in this work we
let the PBE account only for size dependencies; under this
hypothesis, particles with the same size move with the same
velocity, the latter being excluded from the set of internal
coordinates, and the density function is monovariate. We
then solve the PBE with the averaged dynamical equations
of multiphase flows, adopting a hybrid approach.

In the present work, we develop and implement a new
version of QMOM into the multifluid model of the commer-
cial CFD code Fluent. There are two important novelties: (1)
the model is based on a volume, and not on a number, den-
sity function, so that it deals with volume fractions instead
of number densities, and (2) the particles no longer share the
same velocity, so that they can freely mix and segregate.
The method is quite general and can treat any type of partic-
ulate process, but in what follows we verify and validate it
on a simple process in which the particles neither react nor
agglomerate nor break. The PSD changes solely because the
powders mix. This is a relatively simple problem, but its
very simplicity is key to test the method, understand it better
and highlight possible issues or limitations. We believe that
before tackling more complex problems, involving continu-
ous and discontinuous changes in particle size, this analysis
is necessary.

The article is thus structured. First, we introduce the sys-
tem investigated. Next, we describe the experimental meth-
odology and findings. We then present the mathematical
model and the numerics, reporting the predictions of the
simulations and showing how these compare with the experi-
mental data. As we shall see, when QMOM is solved with
spatial discretization schemes that use higher-order numeri-
cal schemes or when it tracks a sufficiently high number of
moments (eight in this work), some moments corrupt, this
leading to poor results or generating instabilities that eventu-
ally make the simulations crash altogether. We thus discuss
the problem of moment corruption and present a few strat-
egies that may be able to overcome it. One of these, reported
by Wright,47 is implementing a corrective algorithm that
replaces invalid moment sets with valid ones in the cells
where moments corrupt. To conclude the article, we describe
and discuss this method, assessing its potentials and limita-
tions.

Goal of this Work

We intend to describe the mixing of two inert polydis-
perse fluidized powders initially segregated and test our new
QMOM model. The physical system that we are going to
investigate is a packed bed constituted of two superposed
layers of polydisperse particles of equal density. Referred to
as powders A and B, respectively, lower and upper layers
differ only in PSD, the one on top having greater mean par-
ticle size. To thoroughly mix the powders, we feed fluid at a
superficial velocity much greater than both minimum fluid-
ization velocities uA and uB. The resulting powder, referred
to as powder C, has a PSD that combines the two original
ones. Adopting the QMOM, we intend to predict the new
PSD and see how it compares with the experimental one.

Experimental

A description of the experimental apparatus, shown in
Figure 1 along with its schematic representation, and a
detailed discussion of the experimental results are reported
in our previous work.34 Here, let us just remind that the

AIChE Journal October 2012 Vol. 58, No. 10 Published on behalf of the AIChE DOI 10.1002/aic 3055



powders are ballotini particles with density of 2500 kg/m3.

Figure 2 reports their density and cumulative PSDs found by

sieving. For powders A and B, the Sauter average diame-

ters,48 coefficients of variation36 and minimum fluidization

velocities are equal to 88 lm, 273 lm, 0.16, 0.20, 1.00 cm/s

and 6.40 cm/s, respectively.
When fluidized, the powders mix almost perfectly,

the PSDs in the bed being nearly identical everywhere.

Figures 3A,B report the PSDs averaged over the most signif-

icant bed layers: the lowest, which lies on the distributor,

and the highest, which separates the bed from the freeboard.

The new PSDs are identical and seem to be obtained by

juxtaposing the two original distributions reported in Figures

2A,C; this indicates excellent mixing.

Multiphase Fluid Dynamic Model

The particle population that we consider is characterized by
diameter and velocity; so, there are two internal coordinates,
one scalar and one vectorial, and the internal state space is
4-D. To describe the population of particles, we introduce a
volume density function (VDF); denoted by fv, this is defined
so that fv(s,v,x,t) ds dv dx represents the expected volume of
particles contained at time t in the physical volume dx around
x with size s in the range ds and velocity v in the range dv.

Figure 1. Photograph and schematic representation of the experimental apparatus. (1) Nitrogen tanks, (2) oil filter,
(3) flow meters, (4) pressure taps, (5) fluidized bed, (6) electronic manometer, and (7) on/off valves control
switch, (X) freeboard, (Y) fluidized bed, and (Z) windbox.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. Experimental normal and cumulative PSDs for powders (A) and (B).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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We denote the domains of variation of s and v by Xs � Rþ

and Xv � R3, respectively. The reason for preferring a vol-
ume to a number density function is that the former deals
directly with volume fractions, a more usual choice when one
treats fluidized systems.

To determine fv we should solve a PBE written in the 4-D
internal state space mentioned earlier. Because neither heter-
ogeneous reactions nor particle attrition occur, s does not
vary continuously and the particles have zero velocity in
size space; so, the PBE reads

@fv
@t

þrx � ðfv vÞ þ rv � ðfv _vÞ ¼ @efv
@t

(0:1)

where rx� and rv� are divergence operators in the physical
and velocity spaces, respectively, _v is the particle acceleration
and qefv/qt is a source term that accounts for discontinuous
jumps in the particle state space. Instead of solving Eq. 0.1
directly, we approximate the VDF using a quadrature formula,
which expresses fv as a summation of m Dirac delta functions

fvðs; v; x; tÞ �
Xm

r¼1

/rðx; tÞ d½s� srðx; tÞ�d½v� vrðx; tÞ� (0:2)

where sr(x,t) and vr(x,t) are the rth quadrature nodes and
/r(x,t) is the rth quadrature weight. Eq. 0.2 states that the
particle population is represented by m classes, the rth of which
having volume fraction /r(x,t), diameter sr(x,t) and velocity
vr(x,t). Therefore, the problem reduces to predicting the
evolution in time and space of these 3m functions.

This choice of internal coordinates – particle size and ve-
locity – results in a multivariate density function. As previ-
ously mentioned, although multivariate inversion algorithms
exist, in this work we first reduce the dimensionality of the
problem before going on to solve it. Being the velocity a
vector, this is the coordinate that we should eliminate to turn
the VDF into a monovariate distribution. In the following
sections, we first do this and then develop our new version
of the QMOM model.

Reduction of the VDF dimensionality

To reduce the dimensionality of the VDF, we integrate out
the coordinate v from Eq. 0.1; this results in the reduced PBE

@�fv
@t

þrx � ð�fv hvjsiÞ ¼
@e�fv
@t

(0:3)

where, by definition, it is

�fv �
Z
Xv

fv dv; �fv hvjsi �
Z
Xv

fv v dv;
@e�fv
@t

�
Z
Xv

@efv
@t

dv

(0:4)

In this equation, hv|si(s,x,t) is the mean particle velocity
conditioned on the particle size s. Note that being hv|si size-
dependent, the reduced PBE features no diffusive flux in
physical space. This is because particles with different size
are convected with different velocity. Spatial diffusion would
arise if we replaced hv|si with the mean velocity of
the whole particle population, which would be averaged
over s.49 Using Eq. 0.2 to approximate the VDF, we find

�fvðs; x; tÞ �
Xm

r¼1

/rðx; tÞ d½s� srðx; tÞ� and

hvjsi½srðx; tÞ; x; t� ¼ vrðx; tÞ ð0:5Þ

Hence, as expected, the particles belonging to the size
class sr are advected with the velocity vr(x,t), this coinciding
with their conditional velocity hv|si(sr,x,t). Note that, as par-
ticles neither aggregate nor break, the size-dependent source
term @e�fv=@t vanishes, reducing Eq. 0.3 to

@�fv
@t

þrx � ð�fv hvjsiÞ ¼ 0 (0:6)

This new PBE governs the evolution of the monovariate
function �fvðs; x; tÞ. We can use it to find the 2m functions
/r(x,t) and sr(x,t), but the equation can no longer provide
any information about the velocities vr(x,t). To compute
these, we resort to the averaged dynamical equations of mul-
tiphase flows (refer to the section Multifluid dynamical and
pseudointernal energy equations). With this hybrid approach,
the particle velocity is no longer an internal coordinate and
the VDF becomes monovariate, but additional equations are
necessary in addition to the PBE, this being left only with
the task of governing the PSD evolution.

QMOM transport equations

Our objective is determining the 2m scalar functions
/r(x,t) and sr(x,t), because these would tell us how the PSD
evolves in time and space. To this end, our strategy is

Figure 3. Experimental PSDs in the top (near the freeboard) and bottom (near the distributor plate) layers of the
bed after collapse.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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developing transport equations that govern the evolution of a
set of 2m independent moments of the VDF and back-calcu-
lating from this set the quadrature nodes and weights, which
in general entails solving a nonlinear algebraic system. We
remind that, given a function u(s,x,t), the integral transform

uðs; x; tÞ ! MkðuÞ ðx; tÞ �
Z
Xs

uðs; x; tÞ sk ds (0:7)

defines the moment of order k with respect to the internal
coordinate s of u(s,x,t). Applying this transform to Eq. 0.6
yields

@Mk

@t
þrx � ðMk v̂kÞ ¼ 0 (0:8)

where Mkðx; tÞ is the kth order moment of �fvðs; x; tÞ andbvkðx; tÞ is the velocity with which this moment is advected; this
is defined so that

Mkðx; tÞ v̂kðx; tÞ �
Z
Xs

�fvðs; x; tÞ hvjsiðs; x; tÞ sk ds (0:9)

The quadrature approximation allows us to relate this ve-
locity to the quadrature nodes and weights /r(x,t) and sr(x,t)
and to the velocities vr(x,t) with which these variables are
advected; introducing the relations (0.5) into the defining
expression of the moment velocity bvkðx; tÞ yields

v̂kðx; tÞ ¼
Xm

r¼1

pkrðx; tÞ vrðx; tÞ where pkrðx; tÞ �
/rðx; tÞ skr ðx; tÞ

Mkðx; tÞ
(0:10)

As we can see, each moment moves with a different ve-
locity, which is a linear combination of the velocities vr(x,t).
The transport Eq. 0.8 governs the evolution of the moment
of order k of the VDF, allowing us to determine its value in
each point of the computational domain as time goes by.
Assuming we know the values of 2m independent moments
in a generic point x at time t, we can then back-calculate the
quadrature nodes and weights corresponding to this set of
moments. To do this, we need to solve the nonlinear alge-
braic system made up of the 2m equations

Mkðx; tÞ ¼
Xm

r¼1

/rðx; tÞ skrðx; tÞ (0:11)

Here, we can choose any set of 2m values of k. The alge-
braic system and the VDF representation, however, depend
on the set that we select, because different moments preserve
different properties of the distribution. Among the many pos-
sible choices, one is particularly accurate: if we preserve the
first 2m integer moments, /r(x,t) and sr(x,t) fulfill the quadra-
ture condition

Z
Xs

�fvðs; x; tÞ pkðsÞ ds ¼
Xm

r¼1

/rðx; tÞ pk½srðx; tÞ� (0:12)

for any polynomial pk(s) of degree k with 0 � k � 2m � 1 and k
integer. Hence, this particular choice of nodes and weights
renders Eq. 0.5 a Gaussian quadrature: with m nodes, the
approximation reaches an accuracy of order 2m � 1 instead of m

� 1, which is the order of accuracy that a non-Gaussian
quadrature formula yields (for more details, we refer to Refs,
38 and 50). Thus, preserving the first 2m integer moments of
the VDF is the most convenient option from the standpoint of
mathematical accuracy. Also, when the quadrature is Gaus-
sian, we can solve the nonlinear algebraic system and
determine weights and nodes very efficiently by adopting
the PD algorithm of Gordon.42 For these reasons, in this study
we selected this particular set of moments. This choice makes
physical sense as well, because the lower-order moments of
the distribution relate to important properties of the PSD. For
example, M0 represents the overall solid volume fraction,
whereas M1=M0 the volume-averaged particle size. Other
important properties of the distribution such as the variance
and the skewness, which represent respectively its broadness
and its shape, can be calculated from the moments of order two
and three.36,38 These simple examples prove that knowing the
first four moments already suffices to solve most problems of
engineering interest concerning fluid-solid flows. Should more
properties of the distribution be needed, however, more
moments can be tracked.

Let us conclude by summarizing the main steps of the
method: (1) we track the first 2m integer moments of the
VDF, choosing k ¼ 0,1,2,…,2m � 1, where m is the number
of quadrature nodes; (2) integrating the transport Eq. 0.8, we
compute how the moments evolve in time and space; (3) in
any point x of the computational domain and for any time t
of interest, we finally solve the nonlinear algebraic system
(0.11) using the PD algorithm of Gordon42 and back-calcu-
late the nodes and weights of the corresponding VDF finite-
mode representation.

A final consideration is in order. The moment transport Eq.
0.8 features no diffusive flux because each moment is con-
vected with its own velocity. Similarly to what we said about
the PBE, in these equations diffusion would arise if we
replaced the velocities bvkðx; tÞ with a mean velocity shared by
all moments. If we used this approach, diffusion would appear
in the moment transport equations, and we would have only
one average dynamical equation to solve. With our approach,
conversely, there is no diffusion, but we need to determine the
velocity field of each moment of the distribution.

We should point out, nonetheless, that the finite-volume
scheme that the CFD code uses to discretize the equations of
change (refer to the section Numerical schemes and imple-
mentation techniques) generates numerical diffusion. Hence,
the moment transport equation that the code really solves is

@Mk

@t
þrx � ðMk v̂kÞ � rx � ðDn rx MkÞ ¼ 0 (0:13)

where Dn is a numerical diffusivity that depends on the
discretization scheme and on the computational grid. The
diffusive flux cannot be eliminated, for numerical diffusion is
always present when one integrates purely convective equations
with CFD codes. A classical example is given by the multifluid
equations of continuity for monodisperse fluidized suspensions,
where numerical diffusion smoothes out the spatial volume
fraction profiles of the fluid and solid phases.

We can estimate the value of Dn employing the relation
Dn � uLc, where u is the velocity at which the property is
convected and Lc is the length of a computational cell. This
relation is valid only for first-order upwind discretization
schemes, which we indeed used in most of the simulations.
Taking as characteristic velocity 0.10 m/s, a value that has
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the same order of magnitude as the gas superficial velocity,
and Lc equal to 10 mm, we obtain a diffusion coefficient of
order of magnitude equal to 10�3 m2/s.

The diffusive term rx � ðDn rx MkÞ, as we well-know,
alter the results. Notwithstanding, since the PBE and the
moments are linear in the VDF, and since mixing is a linear
process, the mixed moments and in turn the mixed VDF are
correctly estimated. There is no way around this problem,
but numerical diffusion can be reduced if one uses fine
computational grids and higher-order discretization schemes.
Unfortunately, the latter are less stable than lower-order
schemes and in consequence might compromise the numeri-
cal stability of the simulations. Furthermore, as we shall dis-
cuss later on, higher-order discretization schemes are liable
to corrupt higher-order moments, leading to unphysical val-
ues of quadrature nodes and eventually making the simula-
tions crash. A tradeoff must therefore be accepted.

Multifluid dynamical and pseudointernal energy
equations

We assume that the dynamical equations for the fluid and
particle phases (the latter really representing the quadrature
nodes) are the customary multifluid equations of multiphase
systems, obtained by mathematical averaging.5 For details
we refer to the literature. We have a dynamical equation for
the fluid and for each quadrature classes; the first reads

qe
@

@t
ðe ueÞ þ rx � ðe ue ueÞ

� �
¼ rx � Se �

Xm

r¼1

nr f r þ e qe g

(0:14)

where qe and e are its density and volume fraction,
respectively, ue its averaged velocity and Se its effective
stress tensor. Moreover, nr is the number density of particle
phase r and fr is the force exerted by the fluid on a single
particle of the rth phase. Finally, g is the gravitational field.
We do not need a transport equation for e, because e ¼ 1�/,
where / is the sum of all the quadrature weights. The
dynamical equation for the rth quadrature class reads

qs
@

@t
ð/r vrÞ þ rx � ð/r vr vrÞ

� �
¼ rx � Sr þ nr f r þ

Xm

k¼1

nr f rk

þ/r qs g ð0:15Þ

where qs is the solid density (which is the same for all the
classes), Sr is the effective stress tensor of phase r and frk is the
force exerted by phase k on a single particle of phase r.

In the equation above, the effective stress Sr accounts for
collisions between alike particles, whereas the particle–parti-
cle interaction force frk accounts for collisions between par-
ticles of different sizes. Both terms are functions of the gran-
ular temperatures of the quadrature classes involved.51 To
find the granular temperature for the rth quadrature class, we
solved the following pseudointernal energy balance equation

qs
@

@t
ð/r UrÞ þ rx � ð/r Ur vrÞ

� �
¼ �rx � qr þ Sr : rxvr

þ Gd
r � Svr � Scr ð0:16Þ

Here, Ur(x,t) : 3Hr(x,t)/2 is the pseudointernal energy,
Hr(x,t) is the granular temperature and qr(x,t) is the pseudo-
thermal heat flux. The above equation differs from the usual

internal energy balance equation because of a sink term
Scr (x,t) representing losses of pseudointernal energy caused
by inelastic collisions, a source term Gd

r (x,t) representing the
generation of particle velocity fluctuations by fluctuating
fluid-particle forces, and a sink term Svr (x,t) representing
their dampening by the viscous resistance to particle motion.
For the constitutive equations adopted to express the
unclosed terms in Eqs 0.14, 0.15 and 0.16, among which we
find the effective stress tensors, the fluid–particle interaction
forces (consisting of buoyancy and drag forces) and the par-
ticle–particle interaction forces, we refer the reader to Maz-
zei et al.52 These are standard closure relations for dense flu-
idized suspensions.

Boundary and initial conditions

The computational grid (uniform, with square cells of 5
mm side) is 2-D; hence, front and back wall effects were
neglected. On the left and right walls, we used no-slip
boundary conditions. At the bottom of the bed, the inlet gas
velocity was set to 15 cm/s. At the domain upper boundary,
the pressure was set to 105 Pa. On all boundaries, the
moment fluxes were set to zero.

To assign the initial conditions, we need to know the val-
ues of 2m independent moments everywhere within the com-
putational domain. In its initial state, the bed is fixed and
made up of two superposed layers; these are 15 mm high,
and together occupy half of the vessel. As we know the ex-
perimental PSDs in the two layers (refer to Figures 2A,C),
we can compute the moments Mkðx; t0Þ; being the powders
well mixed, in each layer the moments do not depend on x
and it is

Mk � ð1 � eÞ
Xm
i¼1

r kþ1
i � r kþ1

i�1

ðk þ 1Þ ðri � ri�1Þ

� �
xðri�1;riÞ (0:17)

where m is the number of sieves used (10 in our case), ri is the
aperture of the ith sieve and x(ri-1,ri) is the mass fraction of
powder in the size range (ri�1,ri). Eq. 0.17 tells us that Mk is
a function of e; this is because, whereas the PSD refers to solid
mass fractions on a void-free basis, the VDF accounts for
voids and provides volume densities, that is, volumes of solid
per unit volume of physical space.

Table 1 reports the experimental values of VDF
moments, nodes and weights for quadratures with two,
three and four nodes. First, we computed the moments
using Eq. 0.17 and setting e ¼ 0.400; then, we calculated
nodes and weights using the PD algorithm of Gorden.42

We used the values of the moments to initialize the
QMOM transport Eqs. 0.8.

Numerical Schemes and Implementation
Techniques

To run the simulations, we used the commercial CFD
code Fluent. We implemented the governing and constitutive
equations in the multifluid model of the package, which is
based on an Eulerian description of the dynamics, using
user-defined functions and subroutines. Simulations ran with
a quadrature approximation of order two (i.e., m ¼ 2)
required tracking the evolution of the first four integer
moments of the VDF and defining three phases in the multi-
fluid model: one gas and two particle phases. Similarly,
when three and four nodes were used (i.e., m ¼ 3 and m ¼ 4,
respectively), the first six and eight integer moments of the
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distribution were respectively tracked, and four and five
phases were respectively defined. As pointed out, balance
equations for linear momentum and pseudointernal energy
were solved for each phase.

As we computed the quadrature weights (that is, the vol-
ume fractions of the particle phases) from the moments by
using the PD algorithm of Gordom,42 we disabled the equa-
tions of mass conservation and passed the volume fractions
to the main CFD solver and to the user-defined subroutines
(for instance, those that implement the drag force closure
and that determine the moment convective fluxes) through
user-defined memories and define-property functions (for
details, we refer to the code manual).

We could not treat the VDF moments directly as user-
defined scalars, adding their transport equations to the
default equations of the numerical code. This is because Flu-
ent associates user-defined scalars either with a specific
phase (the fluid or any granular phase) or with the mixture
of all phases. In the first case, the equation solved by the
code is

@

@t
ð/k MkÞ þ rx � ð/k Mk vkÞ ¼ 0 (0:18)

where, being constant, the solid density qs does not appear. In
the second case, when Mk is associated with the mixture, the
equation solved by the code instead is

@

@t
ðqm MkÞ þ rx � ðqm Mk vmÞ ¼ 0 (0:19)

where qm and vm are defined so that

qm � e qe þ qs
Xm

r¼1

/r; qm vm � e qe ue þ qs
Xm
r¼1

/r vr

(0:20)

Both equations differ from Eq. 0.8. To overcome this
problem, we first modified the velocity field in Eq. 0.18,
replacing the velocity vk of the k th quadrature class with the
velocity bvk of the k th moment of the distribution. To do
this, we used a user-defined function (that is, a routine that
the modeler writes and runs along with the CFD simulation)
available in Fluent and called defined-uds-flux. In addition,
we used as defined scalar the ratio Mk=/k, so that the vol-
ume fraction cancels out and the transport equation reduces
to the correct one, which is to say, Eq. 0.8.

We implemented the PD algorithm (described in detail in
Ref. 50), the closures for the velocities of the moments (that
is, Eq. 0.10) and those for the fluid–particle interaction
forces reported in Ref. 52 using additional user-defined func-
tions called define-adjust and define-exchange-property. We
did not have to implement the other constitutive equations
mentioned in the previous sections, because they are avail-
able in Fluent as default. We used the pressure-based solver,
which is recommended for low-speed incompressible flows.
To convert scalar differential equations into algebraic equa-
tions which can be solved numerically, the code adopts a
finite-volume discretization scheme. Part of the simulations
were run using the first-order upwind spatial discretization
scheme, where cell-face quantities are determined by assum-
ing that the cell-center values of any field variable represent
cell-averages that hold throughout the entire cells; thus, face
quantities are identical to cell quantities, and are set equal to
the cell-center values in the upstream cells (relative to the
velocity direction). Some simulations were also run using
second-order upwind schemes that, as we shall see, signifi-
cantly affect their stability. The temporal discretization is
first-order accurate and implicit. At every time step, we used
a maximum of 150 iterations to calculate all the flow varia-
bles. Setting the tolerance to 10�5, we saw the simulation
converge within the iteration limit. We fixed the time step to
10�3 s, because shorter times steps gave equal results.
Finally, we used under-relaxation factors of 0.20 for all the
variables.

The Numerical Corruption of Higher-Order
Advected Moments

As mentioned, the moments of a distribution represent
some important physical properties of the underlying popula-
tion of particles. For this reason, they have to satisfy some
mathematical constraints. For instance, the positiveness of
the density function over the phase space of the internal
coordinate implies that the moment of order zero must be
positive (note, however, that the positiveness of this moment

Table 1. Values of the VDF Moments and of the Quadrature
Nodes and Weights Obtained from the Experimental
PSDs Reported in Figures 2A,C Assuming a Void

Fraction of 0.400

Moments of the Volume Density Function

Powder M0 ½ � � M1 ½ lm � M2 lm2½ � M3 lm3½ �

A 0.600 5.45 � 101 5.06 � 103 4.82 � 105

B 0.600 1.70 � 102 4.98 � 104 1.52 � 107

Powder M4 ½ lm4 � M5 ½ lm5 � M6 lm6
� �

M7 lm7½ �

A 4.67 � 107 4.61 � 109 4.63 � 1011 4.73 � 1013

B 4.80 � 109 1.57 � 1012 5.32 � 1014 1.86 � 1017

Quadrature Nodes and Weights for a Two-Node Quadrature Formula

Powder s1 [lm] /1 [�] s2 [lm] /2 [�]

A 75 0.262 103 0.338
B 240 0.380 355 0.220

Quadrature Nodes and Weights for a Three-Node Quadrature Formula

Powder s1 [lm] /1 [�] s2 [lm] /2 [�]

A 61 0.069 89 0.400
B 208 0.143 287 0.376

Powder s3 [lm] /3 [�] – –

A 112 0.131 – –
B 395 0.081 – –

Quadrature Nodes and Weights for a Four-Node Quadrature Formula

Powder s1 [lm] /1 [�] s2 [lm] /2 [�]

A 52 0.018 77 0.214
B 181 0.043 252 0.322

Powder s3 [lm] /3 [�] s4 [lm] /4 [�]

A 98 0.318 119 0.050
B 328 0.194 413 0.041
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does not guarantee that the distribution is non-negative).
Additionally, there are other simple, intuitive rules, such as
that the moment of order zero of a VDF has to be smaller
than one, for M0 represents the overall volume fraction of
solid. Also, since M1=M0 is the volume-averaged value of
the particle size, which is bounded between zero and infinity,
the moment of order one (as well as all the other higher-
order moments) must be positive. Another important prop-
erty of the VDF is its standard deviation r2. As Randolph
and Larson36 report, in terms of moments it is

r2 ¼ M2

M0

� M1

M0

� � 2

(0:21)

The standard deviation of a monodisperse distribution is
zero, while is positive for polydisperse distributions. Accord-
ingly, it has to be M2 	 M2

1=M0. If one (or more) of these
conditions are not respected, the set of moments is invalid,
because no VDF can generate them. A moment set corre-
sponding to a physical VDF is instead said to be valid.

In general, to verify that a moment set is valid, we must
ensure that the Hankel–Hadamard determinants53 are all
non-negative

Ma Maþ1 … Maþb

Maþ1 Maþ2 … Maþbþ1

..

. ..
. ..

. ..
.

Maþb Maþbþ1 … Maþbþb

���������

���������
	 0 (0:22)

for a ¼ 0, 1 and b 	 0. For the first four moments, the validity
condition is fulfilled if the natural logarithm of Mk vs k is a
convex function. The reader can verify this by building a
difference table as explained by Petitti et al. 54. Note that for a¼
0 and b ¼ 1 the Hankel-Hadamard determinant is M0 M2�
M2

1, the validity condition thus reducing to M2 	 M2
1=M0.

Because mixing is a linear process and because the PBE
and the moment transform (0.7) are linear in the VDF, the
moments of a powder obtained by blending together two or
more powders whose initial sets of moments are valid should
remain valid. Nevertheless, the moment transport equations
are integrated with a finite-volume numerical code, which
makes discretization errors. As Wright47 clearly reports,
most of the problems are caused by the approximation of the
convective term, in particular with higher-order discretiza-
tion schemes, which can turn a valid set of moments into an
invalid one. This phenomenon is called moment corruption
and poses a serious threat to our simulations, because when
an invalid set of moments is fed to the PD algorithm, this
yields negative nodes and leads to numerical instabilities.

The reason why in finite-volume numerical codes convec-
tion corrupts valid sets of moments is that these codes are
designed to transport in physical space independent variables,
without having to preserve relations among them. But
moments are not independent scalars, since they have to satisfy
the constraints posed by Eq. 0.22. So, even if the code trans-
ports each individual moment with sufficient accuracy, the
(possibly small) advection errors are enough to substantially al-
ter the relationships among the moments of the entire set, mak-
ing the latter invalid. For more details we refer to Wright.47

Results and discussion

As described in Mazzei et al,34 in the experiments we first
of all fluidized the powder until it reached a pseudostation-

ary state and then froze the bed by cutting off the gas sup-
ply. Finally, we divided the collapsed bed in layers and by
sieving them we measured the PSDs. These were identical,
for the powders had well mixed. From the PSDs reported in
Figure 3, we calculated the moments using Eq. 0.17 and
then applied the PD algorithm to compute the nodes and
weights of the quadrature. We remind that, while the VDF
accounts for the presence of the interstitial fluid, the PSD is
a property of the powder and refers to void-free volume
fractions. Consequently, to determine the quadrature weights
from the experimental PSDs we had to assign a value to the
void fraction; we chose the reference value of e ¼ 0.400, for
this is roughly the one found experimentally in the collapsed
bed. Table 2 reports the experimental VDF moments and the
nodes and weights of the quadratures.

If we wanted to simulate exactly the same procedure used
in the experiments, we should first simulate the fluidization
phase and then the collapse phase. This, however, is
unnecessary and might even be detrimental. Numerically, we
can easily calculate the VDFs and the PSDs when the bed is
still fluidized; to this purpose, we just have to divide the bed
in layers and from the numerical profiles of the VDF
moments determine their average values in each layer and
then the corresponding average values of the quadrature
nodes and weights. There is another reason as well for which
it is better to calculate the VDFs while the bed is still

Table 2. Values of the VDF moments and of the quadrature
nodes and weights obtained from the experimental PSDs
reported in Figures 3 assuming a void fraction of 0.400

Moments of the Volume Density Function

M0 ½ � � M1 ½lm � M2 lm2½ � M3 lm3½ �

0.600 1.16 � 102 2.82 � 104 7.84 � 106

M4 ½ lm4 � M5 ½lm5 � M6 lm6
� �

M7 lm7½ �

2.34 � 109 7.32 � 1011 2.37 � 1014 7.95 � 1016

Quadrature Nodes and Weights for a Two-Node Quadrature Formula

s1 [lm] /1 [�] s2 [lm] /2 [�]

105 0.332 304 0.268

Quadrature Nodes and Weights for a Three-Node Quadrature Formula

s1 [lm] /1 [�] s2 [lm] /2 [�]

88 0.258 244 0.259

s3 [lm] /3 [�] – –

360 0.083 – –

Quadrature Nodes and Weights for a Four-Node Quadrature Formula

s1 [lm] /1 [�] s2 [lm] /2 [�]

84 0.226 174 0.106

s3 [lm] /3 [�] s4 [lm] /4 [�]

275 0.222 379 0.046
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fluidized. As reported by Mazzei,52 freezing the bed is detri-
mental, because while the experimental collapse is instanta-
neous, and the bed conserves its PSDs, the simulated col-
lapse is not and permits the bigger particles to segregate
toward the bottom of the vessel, altering the original
segregation profile. For these reasons, we simulated only the
fluidization phase, calculating the VDFs in pseudostationary
conditions.

As said, in the simulations we used two-node, three-node
and four-node quadrature formulas. Many modeling and nu-
merical parameters were tested and changed, in particular
the effect on the final predictions of the closures for the
fluid–particle and particle–particle interaction forces and of
the strategies to evaluate the granular temperatures were
investigated. We found that only the particle–particle inter-
action term seemed to influence significantly the final predic-
tions. In fact, when this term is neglected, the expansion of
the bed is much higher than the experimental value and a
certain degree of segregation, with small particles floating
and accumulating above the large particles, is present. The
different closures examined for the fluid–particle force
(namely, those reported in Wen and Yu,55 Gidaspow1 and
Mazzei and Lettieri56) had little effect on the behavior of the
simulations, both in terms of quality of the predictions and
overall stability. The strategies to find the granular tempera-

tures, that is, solving the differential Eq. 0.16 or their alge-
braic approximations (refer, for instance, to Ref. 57), did not
significantly affect the predictions either, at least for the
operating conditions investigated in this work.

Let us first consider the results obtained with the two-
node and the three-node quadrature approximations by using
first-order upwind discretization schemes. At the high fluid
flux used the bed dynamics is very fast; the volume fraction
profiles are not uniform, for the system operates in the bub-
bling regime, but vigorous mixing takes place continuously.
We observed this both in the experiments and in the simula-
tions. Figure 4 reports the profiles of the quadrature nodes
and weights, for a two-quadrature approximation, at the start
of the simulation and in pseudostationary conditions. Phases
2 and 3 represent the first and second quadrature classes
respectively, the second corresponding to the greater particle
size. As we see, while at the beginning of the simulation the
upper and lower portions of the bed are clearly visible, from
the different values of the nodes and weights, at the end of
the simulation the bed is well mixed. This is particularly evi-
dent from the profiles of the quadrature nodes at the end of
the simulation, which are completely flat. This shows that
the model is capable of describing the very good mixing
observed experimentally and the resulting uniformity of the
PSD throughout the fluidized bed.

Figure 4. Numerical profiles, for a two-node quadrature formula, of nodes and weights within the fluidized bed at
the start of the simulation and in pseudostationary state.

Phases 2 and 3 refer respectively to the first and second quadrature classes. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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As mentioned, the profiles of the quadrature nodes are flat,
that is to say, the nodes are equal everywhere within the bed,
their values being s1 ¼ 104 lm and s2 ¼ 318 lm. These
results agree well with the experimental values of s1 ¼
105 lm and s2 ¼ 304 lm reported in Table 2, showing a
very small error in the prediction of the evolution of the
VDF. For the weights, we report the averaged values in the
top and bottom layers, for these are the most representative.
In the top layer, we found /1 ¼ 0.330 and /2 ¼ 0.270, while
in the bottom layer /1 ¼ 0.331 and /2 ¼ 0.269. Also these
results agree well with the experimental values of /1 ¼ 0.332
and /2 ¼ 0.268 reported in Table 2. This is summarized in
Table 3, in which we compare the numerical and experimen-
tal findings. Figure 5 helps to visualize the results, reporting
the two-node representations of the experimental and compu-
tational PSDs in the top and bottom layers of the bed and
showing in the background the experimental PSD that we
obtained by sieving. An additional element that supports the
correctness of the approach comes from the comparison of
the averaged values of the experimentally measured and com-
puted moments of the VDF. Comparison of these moments
resulted in an error for M0 smaller than 1% and from 5 to
10% for M1, M2, and M3. We shall come back to the pos-
sible sources of these errors when discussing the results of the
simulations based on the three-node quadrature.

Also, the simulations based on the three-node quadrature
formula ran smoothly. Starting from the initial packed condi-
tion, the bed expanded, under the action of the fluid, eventu-
ally reaching a global height in good agreement with what
expected. In this instance as well the profiles of the quadra-
ture nodes are flat, the bed being uniformly mixed and the

PSDs the same in every point of the computational domain.
Table 4 shows the pseudostationary values of quadrature
nodes and weights in the top and bottom layers of the bed,
comparing experimental and numerical findings. As we can
see, little difference is found between the two layers, which
indicates that the simulated fluidized bed well mixes. The
nodes are predicted well, the maximum deviation between
their experimental and numerical values being about 6%.
However, the finite-mode representation of the VDF appears
not to be exact, since the quadrature weights are affected by
an error larger than for the two-node quadrature. Experimen-
tal evidence tells us that the lowest nodes, s1 ¼ 88 lm and
s2 ¼ 244 lm, share the same weight, each one accounting
for about 42% of the powder mass; the greatest, in contrast,
has less importance, accounting for about 14% of the powder
mass. The simulation, conversely, ascribes roughly the same
weight to the lowest and greatest nodes, s1 ¼ 90 and s3 ¼
378 lm, each one accounting for about 17% of the powder
mass, and letting the intermediate node dominate, this
accounting for about 64% of the powder mass. Figure 6
reports the three-node representations of the experimental
and computational PSDs in the top and bottom layers of the
bed, with in the background the experimental PSD measured
by sieving. This larger error in the value of the weights is
also confirmed by the errors committed on the tracked
moments. Also in this case, we evaluate the error in terms of
the difference of the experimentally measured and computed
averaged moments of the VDF. The moment of order zero is
again affected by an error smaller than 1%, while the error
found for the higher-order moments with order from one to
five ranges from 15 to 30%.

Table 3. Experimental and Numerical Values, for a
Two-Node Quadrature Formula, of Nodes and Weights
Back-Calculated from the VDF Moments Using the PD

Algorithm and Assuming a Void Fraction of 0.400

s1 [lm] /1 [�] s2 [lm] /2 [�]

Top Layer

EXP 105 0.332 304 0.268
CFD 104 0.330 318 0.270

Bottom Layer

EXP 105 0.332 304 0.268
CFD 104 0.331 318 0.269

Figure 5. Two-node representations of the experimental and computational PSDs of powder C in the top and bot-
tom layers of the bed.

The arrows symbolize the Dirac delta functions of the quadrature formulas, their positions and heights indicating respectively the

quadrature nodes and weights on a void-free basis. For reference, the figure also reports the experimental PSD obtained by sieving.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 4. Experimental and Numerical Values, for a
Three-Node Quadrature Formula, of Nodes and Weights
Back-Calculated from the VDF Moments Using the PD

Algorithm and Assuming a Void Fraction of 0.400

s1 [lm] /1 [�] s2 [lm] /2 [�] s3 [lm] /3 [�]

Top Layer
EXP 88 0.258 244 0.259 360 0.083
CFD 90 0.107 259 0.386 378 0.106

Bottom Layer
EXP 88 0.258 244 0.259 360 0.083
CFD 90 0.107 259 0.386 378 0.106
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Many are the possible sources of error. The powder
being fluidized has a broad PSD, with diameters going
from 45 to 425 lm, as shown in Figure 3. The superficial
fluid velocity is sufficiently high to fully mix the fluid
bed, being in particular much higher than the minimum
fluidization velocity of the smallest particles. These, in
consequence, tend to be dragged by the fluid in the free-
board of the bed and then fall back again in the dense
bed. To reduce the computational time, in the simulations
we considered a vessel whose height is twice the initial
height of the resting powder. This height might not be
sufficient to allow the small particles to fall back in the
dense bed; if this happens, these escape the computational
domain and are irreversibly lost. However, the contribu-
tion of this effect on the error is likely to be small, since
this would be reflected on M0. This quantity, which rep-
resents the total particle volume density (and therefore its
integral throughout the bed represents the total volume of
solid) is predicted with a very small error, which is fur-
thermore very similar to the error we found when using
the two-node quadrature.

Other possible sources of error are likely related to the
spatial and temporal discretizations; these could be drasti-
cally reduced by using higher-order discretization schemes
(which, however, corrupt the moments, as we shall see
below) or by using finer grids and smaller time steps. A
few tests performed with a time step 10 times smaller and a
computational grid four times finer did not alter the
observed behavior and confirmed the grid-independency of
our results. In fact, with this much finer temporal and spa-
tial discretization, some very limited improvement was
detected at the expense of an unacceptably large computa-
tional time.

Although one might expect the opposite behavior, the over-
all error being larger with a three-node, instead of a two-
node, quadrature is probably due to the fact that, since for
this application higher-order moments are more sensitive to
the numerical errors than lower-order moments, the resulting
three-quadrature, which uses higher-order moments, badly
approximates the real VDF, when compared to the quality of
the approximation given by the two-node quadrature. This
irregular behavior of the error that one observes when using
QMOM with quadrature approximations of increasing order
has been also highlighted by Grosch et al.58

The simulations based on the four-node quadrature did not
run as smoothly as the previous ones. This is because after a
few (275) time steps the PD algorithm yielded some nega-
tive (and thus unphysical) values of the nodes, this resulting
into numerical instabilities that crashed the simulation. As
the voidage contour plot in Figure 7 illustrates, this happens
when the bed has just begun to expand.

To confirm the nature of these instabilities, we imple-
mented in Fluent, using define-adjust user-defined func-
tions, an algorithm capable of checking the validity of
moment sets. The algorithm first checks that the function
generated by the natural logarithm of the moment set Mk

vs. k is a convex function; then it also checks the positive-
ness of the Hankel–Hadamard determinants, but only for
moments of order k greater than or equal to four. If both
checks are successful, the set is valid and can be fed to the
PD algorithm; otherwise, it is invalid and this is flagged by
check variables.

Figure 7 illustrates this procedure for detecting moment
corruption. The flag variable ‘‘overall-check’’ is equal to
three in the cells where no solid is present, to one if the
moment set is valid and to zero if it is not valid. The vari-
able ‘‘check-45’’ is equal to zero only if the moment set is
invalid because the determinant of the Hankel–Hadamard
matrix of order three is negative, this meaning that the
moments of order four and five are inconsistent with the
others. Finally, the variable ‘‘check-67’’ examines the cor-
rectness of the moments of order six and seven through the
positivity of the determinant of the Hankel–Hadamard ma-
trix of order four. As we can observe in Figure 7, the
moments that do not pass the validity checks are located
where sharp node gradients develop; in particular, the
moments begin to corrupt at the boundary separating the
two powders. Another location where this problem often
arises is the upper surface of the bed, where sharp node
gradients are also present; this can be observed in the last
snapshot, taken after 0.275 s.

By implementing this detection algorithm, running several
simulations and changing various parameters (including the
size of the grid cells, the size of the time step and the discre-
tization scheme), we were able to confirm the key role
played by the discretization scheme used. Our results show
that when using the two–and three-node quadrature approxi-
mations (or in other words when transporting the first four

Figure 6. Three-node representations of the experimental and computational PSDs of powder C in the top and
bottom layers of the bed.

The arrows symbolize the Dirac delta functions of the quadrature formulas, their positions and heights indicating respectively

the quadrature nodes and weights on a void-free basis. For reference, the figure also reports the experimental PSD obtained by

sieving. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and six moments), and when using the first-order upwind
discretization scheme, QMOM is always stable. Numerical
diffusion takes place, accelerating the mixing of the pow-
ders, but does not significantly alter the solution. The simple
interpolation used in first-order upwind schemes preserves
the validity of the moment set when only four or six
moments are tracked. But if a number of moments greater
than six is tracked, then higher-order moments corrupt, even
with the first-order upwind discretization scheme. This issue
does remain important even when working in double preci-
sion (as we did in the present work) and when improving
the convergence criteria and/or increasing the maximum
number of iterations per time step.

Our results also indicate that the introduction of higher-
order discretization schemes (such as the simple second-
order upwind) corrupt all the moments leading to instabil-
ities and the crash of the simulations. Let us therefore dis-
cuss the numerical strategies that modelers can adopt to
overcome the corruption problem. Here, we report two
that are simple to implement in commercial codes and
could be effective. The first is using the direct quadrature

method of moments (DQMOM), instead of QMOM,
whereas the second is replacing invalid sets of moments
with valid ones in the computational cells where the prob-
lem arises.

QMOM and DQMOM both approximate density func-
tions with quadrature formulas; the methods differ in how
they calculate the nodes and weights of this formula. As
pointed out, forcing these to agree with a set of independ-
ent lower-order moments, QMOM tracks the moments by
integrating their transport equations and back-calculates
nodes and weights; conversely, DQMOM tracks directly
the latter, integrating transport equations that govern their
evolution. In both models, the number of transport equa-
tions that one needs to solve is the same: if a quadrature
formula with m classes is adopted, QMOM requires 2m
equations for the moments, whereas DQMOM requires m
equations for the quadrature nodes and m equations for the
quadrature weights. However, to back-calculate the latter
from the moments, QMOM also needs to run the PD algo-
rithm in each computational cell at each time step.
DQMOM needs this additional computation only once, at

Figure 7. Numerical profiles of the void fraction and of the moment corruption check variables for the simulation
based on the four-node quadrature formula.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

AIChE Journal October 2012 Vol. 58, No. 10 Published on behalf of the AIChE DOI 10.1002/aic 3065



the beginning of the simulation when one has to initialize
the quadrature nodes and weights (at t ¼ 0 one knows the
PSD of the system and therefore knows the values of the
moments and not of the quadrature nodes and weights).
However, at each time step the source terms of DQMOM
(zero in our simple test case) must be calculated by solv-
ing a linear system, which when is singular (i.e., two
identical nodes) cannot be inverted. We also point out that
for multivariate systems the PD algorithm can no longer
be used and back-calculating the quadrature nodes requires
the use of other algorithms. Another important aspect is
that DQMOM does not corrupt the moments of the distri-
bution. This is because the quadrature nodes and weights
can be advected as independent scalars and always result
in valid moment sets. For details, we refer to Marchisio
and Fox40 and Wright.47

DQMOM, however, also presents two major disadvan-
tages, as Mazzei et al,34 have recently reported. In the pres-
ence of numerical diffusion, the transport equations govern-
ing nodes and weights feature not only diffusive terms but
also source terms that relate to the node spatial gradients
and the coefficient of numerical diffusion. As this coefficient
is unknown and (in nonuniform computational grids) varies
from cell to cell, estimating correctly the source terms is
quite difficult. This undermines the method, since if the
source terms (which the modeler has to implement) do not
match sufficiently well the diffusive fluxes (which numerical
diffusion generates), the nodes and weights are wrongly pre-
dicted; in other words, the moment set is valid, but the val-
ues of the nodes and weights – even if physically possible –
are incorrect. Moreover, DQMOM (for its derivation)
requires the continuity (in time and space) of the weight and
node functions, making the description of problems with dis-
continuities (such as the mixing problem investigated here)
very difficult to solve. For details, we refer to Mazzei
et al.34 This explains why in this work we opted for an alter-
native numerical strategy, which we now briefly discuss.

A strategy that may overcome the problem of moment
corruption in QMOM is replacing invalid moment sets,
where and as soon as they appear, with similar valid ones.
The objective is eliminating the invalid sets in the cells
where they are detected, solving the problem locally
before it can spread to the rest of the domain and corrupt
all the simulation. An algorithm of this kind was devel-
oped by McGraw.59 It is an iterative minimization method
that identifies and corrects the moment of index k that af-
ter adjustment maximizes the smoothness of the function
lnMk.

This is done by calculating a difference table of the func-
tion lnMk vs. k up to the third order. A function is convex
if the second-order difference is positive. As already men-
tioned, the convexity of lnMk vs. k is a necessary condition
for a moment set to be valid. If the difference table is con-
structed and the second-order difference contains negative
elements, then the set is invalid. One way to cure the inva-
lidity would be to change one of the moments, to transform
the second-order difference vector into a positive sequence
of numbers. However, this method would not be able to
quantify how positive these numbers should be, since any
positive sequence of numbers would correspond to a valid
moment set. Therefore, a more stringent condition is used:
that of the smallest third-order difference vector. In fact, the
distribution resulting in a null third-order difference vector is
the log-normal distribution, which results in a parabola for

the function lnMk vs. k. By changing one of the moments
(the one that has to be changed the least) the algorithm tries
to minimize the third-order difference vector, transforming
the distribution into one that is as close to a log-normal as
possible. The algorithm normally converges in few iterations,
defining the index of the moment to be corrected and restor-
ing the moment set. One can use this method when tracking
sets of six or more moments. For four moments, and for the
other cases where this method fails, another approach must
be used. The simplest and most effective consists in replac-
ing the moments with those of a log-normal distribution
which shares with the original one only some correct
moments. Because the corruption usually affects higher-order
moments, one can normally find the parameters of the log-
normal distribution from the lower-order moments M0, M1,
and M2, whose physical meaning, as stressed, is particularly
important; then, using the log-normal distribution, one can
calculate the other moments. For details, see McGraw59 and
Petitti et al.54 As recently suggested by this last research
group, when using higher-order discretization schemes or
when tracking the evolution of higher-order moments (or in
other words when using quadrature approximations with m 	
3), one should always run the corrective algorithm to detect
moment corruption and immediately restore the corrupted
moments.

To overcome the problem of moment corruption, we
implemented within Fluent the correction algorithm of
McGraw,59 adapted to the specific QMOM version used in
this work, by resorting to a define-adjust user-defined func-
tion. The correction operates as follows. When the moment
set is found to be invalid then the correction procedure of
McGraw is applied. As mentioned, this is based on the sim-
ple idea of correcting the one moment which needs to be
changed the least to restore the convexity of the function
lnMk vs. k. If this first correction is unsuccessful then a sec-
ond one is used. This replaces the corrupted moment set
with that of a log-normal distribution that shares with the
original set M0, M1, and M2. Figure 7 reports the outcome
of the correction. As we can see, the variable ‘‘Overall
Check-After Correction’’ is equal to one in all the computa-
tional cells, this meaning that the validity of the moment set
has been restored everywhere. In most cells, this was done
by the first correction algorithm, but in some the second one
acted (where the flag variable ‘‘Check-Log-normal Correc-
tion’’ is equal to one).

Although this algorithm has been successfully used in
many cases, it did not solve the stability problem in ours.
We should stress, however, that the correction algorithm has
been applied so far only to multiphase systems simulated
with QMOM with the assumption that the dispersed phase
moves with one single velocity. This is therefore the first
time that the algorithm is tested with multiple solid veloc-
ities. We tested it in all the cases were corruption was
detected, that is, when we used the second-order upwind
scheme and/or tracked eight moments. Unfortunately, the
algorithm failed to overcome the problem, for it only delays
divergence. This is illustrated in Figure 8 through one of the
quadrature nodes, which is far easier to interpret than a
higher-order moment. After some time, we observe that in
some cells the node becomes negative; these cells are col-
ored in white and are located where sharp node gradients
develop. Without correction the simulation would stop now,
whereas, thank to the corrective algorithm, it proceeds a bit
further. But the algorithm fails to prevent the rapid
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spreading of corruption to larger regions of the bed, and
eventually, half second later, the simulation crashes. As al-
ready mentioned, we found the same outcome in other tests
in which we used finer computational grids, one with cells
of 2.5-mm edge and another with cells of 1.0-mm edge,
and smaller time steps of about 10�4 s (in some cases we
had to use smaller computational domains and/or shorter
real simulations times). The first simulation ran for about
four real-time seconds and then crashed, whereas the sec-
ond ran only for about three real-time seconds. In this
instance, the corrective algorithm prevented the nodes from
becoming negative, but not from taking on unphysical val-
ues; in particular, in some cells we found values lower
than ten microns, which are impossible because the initial
PSDs did not include particles with such a small size. We
therefore concluded that the solution is indeed grid-inde-
pendent and that smaller cells do not assist the numerics.
Also note that this strategy increases the computational
times so much to be impractical. Simulating 10 real-time
seconds with cells of 5.0-mm edge takes about 10 days;
reducing the edge to 1.0 mm increases the simulation run-
ning time 25-folds, bringing it in the region of eight
months (of course, parallel processing alleviates the issue).
This is why we had to use a smaller domain for the finest
grid.

As already mentioned, one possible reason for the failure
of the correction algorithm is that it is coupled here – for
the first time – with a new version of QMOM. The correc-
tion algorithm has worked well in QMOM implementations
where the dispersed phase is assumed to move with the fluid
in the low Stokes number limit60 or where all the particles
of the disperse phases share the same velocity,54 which is
different from that of the fluid. Instead, in our implementa-
tion each moment is convected with its own velocity, the
method using a quadrature approximation with m nodes and
coupling it with a multifluid model with m disperse phases.
This QMOM implementation transports only pure moments
(with respect to particle size and velocity), decoupling the
evolution of the two internal coordinates. Even if this strat-
egy was successful in some cases,61 in some others it was
shown to be inadequate.62 We shall consider other solutions,
such as different formulation of spatial discretization

schemes and/or transport of mixed moments, in our future
work.

Conclusions

In this work, we presented a new formulation of the
QMOM. There are two novelties: (1) the model is based on
a volume, rather than on a number, density function, so
that it deals directly with volume fractions instead of num-
ber densities; (2) the moments, and in turn the quadrature
classes, no longer share the same velocity, so that particles
are free to mix and segregate. To test the model, we con-
sidered the simplest case possible: inert powders initially
segregated that mix in physical space. Hence, particles do
not nucleate, agglomerate, break, react, and wear, being
allowed only to freely move in the bed. We selected this
system because its simplicity allows to test the method,
understand it better and highlight possible issues or limita-
tions, a necessary analysis before one can tackle tougher
problems.

We know that theoretically the higher the order of the
quadrature formula, the better its accuracy. So, to model the
mixing dynamics, we considered two-, three-, and four-node
quadratures, assessing their numerical performances and
comparing their predictions with experimental data. When
we used a first-order spatial discretization scheme, the two-
node quadrature gave very good results, predicting nodes
and weights accurately (1% being the maximum deviation);
the three-node quadrature predicted the nodes well (with 6%
maximum deviation) but the weights poorly (with 60% being
the maximum deviation); finally, the four-node quadrature
corrupted the higher-order moments, crashing the simulation.
Higher-order spatial discretization schemes exacerbated the
problem. This numerical issue, described by McGraw59 and
Wright,47 arises from the convective terms in the moment
transport equations: each moment is correctly advected, but
the relations among them, which make their set valid, are
not preserved. This leads to unphysical node values that
eventually crash the simulation.

There are various strategies to overcome this problem. In
this work, we used a corrective algorithm developed by
McGraw59 that replaces invalid moment sets, in the cells

Figure 8. Numerical profiles, for a four-node quadrature formula, of the third node within the fluidized bed.

Owing to moment corruption, in some computational cells (appearing in white) the node becomes negative. Then corruption

spreads to neighboring cells. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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where they appear, with similar valid ones, attempting to
solve the problem locally before it can spread to the rest of
the domain and corrupt the entire simulation. Unfortunately,
this procedure was not successful, which indicates that the
problem of moment corruption needs to be investigated fur-
ther. One possible strategy to be investigated and imple-
mented in the future is based on the idea of calculating the
moment flux by decomposing it into nodes and weights, and
then use higher-order schemes only for the weights. This
will be the subject of our future work.
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