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Abstract

Despite being governed by the principles of nonequilibrium transitions, gene expression dynamics underlying cell fate
decision is poorly understood. In particular, the effect of signaling speed on cellular decision making is still unclear. Here we
show that the decision between alternative cell fates, in a structurally symmetric circuit, can be biased depending on the
speed at which the system is forced to go through the decision point. The circuit consists of two mutually inhibiting and
self-activating genes, forced by two external signals with identical stationary values but different transient times. Under
these conditions, slow passage through the decision point leads to a consistently biased decision due to the transient
signaling asymmetry, whereas fast passage reduces and eventually eliminates the switch imbalance. The effect is robust to
noise and shows that dynamic bifurcations, well known in nonequilibrium physics, are important for the control of genetic
circuits.
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Introduction

Cellular decision making is an inherently nonlinear process

requiring multistability, a common feature in nonequilibrium

physical systems. This process is driven by gene and protein

circuits, which are fundamental for the regulation of many cellular

processes, including cell differentiation [1], maintenance of

pluripotency [2], developmental pattern formation [3,4], apoptosis

[5], and cell dedifferentiation leading to cancer [6]. In cellular

decision making, the cell is forced to decide between alternative

fates depending on extracellular conditions. A common circuit that

sustains decision making is one in which the two master regulators

of the two competing fates inhibit each other, while self-activating

themselves in order to increase the stability of the decision

outcome (Fig. 1A) [7]. When the interactions are sufficiently

symmetric with respect to the two master regulators, this circuit

exhibits bistability which is associated with two distinct cell fates

and is the focus of our work. In fact, in order for the cell to be able

to flexibly choose either of the two fates depending on the

conditions, mutually inhibitory cellular decision circuits do need to

be as structurally symmetric as possible. Therefore, knowledge of

the intracellular circuit structure is insufficient to explain the

outcome of phenotype selection. In this situation, external signals

may provide the bias necessary for the bistable circuit to fall into

one attractor or the other. However, it seems unlikely that the

signals will be maintained asymmetric in the long term. Thus the

question still remains, as to how does a consistent bias emerge

from a symmetric bistable switch subject to signals that are

symmetric in the steady state. Here we show that differences in the

speed at which the input signals reach their (common) steady state

are enough to provide a transient asymmetry that will bias the

bistable switch in a consistent manner. In our model, this speed-

dependent cellular decision making (SdCDM) arises from the inclusion of

time-dependent bifurcation parameters, similarly to dynamic

bifurcations in applied mathematics [8] and ramped nonequilib-

rium phase transitions in statistical physics [9]. Since external

signals are clearly time-dependent and unlikely to emerge at the

same rate in different pathways, we can expect SdCDM to play an

important role in many cellular decision-making processes.

Results

External signals induce symmetry breaking and transition
to bistability

As mentioned above, we study a paradigmatic decision circuit

consisting of two mutually repressive proteins under the action of

two signals S1 and S2 (Fig. 1A), and equate attractor selection with

cell fate decision. The proteins, X and Y , represent transcription

factors (TFs) that, when phosphorylated (X a, Y a) and subsequent-

ly dimerized ((X a)2, (Y a)2), activate their own expression and

repress that of the other TF. Many pairs of transcription factors

have been shown to act according to this mechanism, including

GATA1 and PU.1 in haematopoietic cell differentiation [1], Cdx2

and Oct3/4 in embryonic stem cell differentiation [10], and Pax2

and Pax4 in visual cell specification [11], and it is current practice

to construct the models accordingly [7] (see Methods section).

With the intent of determining the number of attractors existing

for a certain combination of input signals, we performed

bifurcation analysis of the circuit using the software XPPAUT
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[12]. In order to focus on the asymmetry provided by the external

signals, the values of all parameters associated with transcription

or translation processes are assumed symmetric (see Eqs. (1) to (4)

and Table 1 in Methods section). Bifurcation analysis shows that in

the parameter space (S1,S2) (Fig. 2A) the system can be either

monostable (regimes IL and IH ) or bistable (regime IIA). The

action of the two external signals takes the system from a state

where the cell is undecided (point Pi) to a situation of bistability

(Pf ), where the system ends up in one of two possible states, which

defines the result of cellular decision making. If the two signals S1

and S2 are identical and evolve in time at equal rates, the cell

undergoes a transition to bistability through the straight path

PiPf . Everywhere along this path there is complete symmetry, and

consequently the cell will choose its fate stochastically between the

two equally possible stable states.

The situation changes qualitatively if we consider that the two

external signals grow at different rates, which is a more realistic

situation. In this case the cellular decision path is PiPmPf , along

which the steady states follow an asymmetric bifurcation diagram,

as shown in Fig. 1B. At the final decision point (Pf , t~TS2
) one of

the branches (depending on which signal is the fastest, here the top

branch) is the preferred one. Although the asymmetry generated

when the system follows PiPmPf is transient (see Fig. 1C), the

memory of the bias induced in the vicinity of the critical region is

retained even if the circuit’s structure, the initial conditions and the

end stationary signaling state are completely symmetric.

Figure 1. Paradigmatic integrated signaling–transcriptional circuit switch. (A) Schematic representation: Nodes represent proteins,
regulated by protein kinases with concentrations S1 and S2 , where X and Y stand for transcription factors that can be phosporylated to generate X a

and Y a. Black lines represent transcriptional interactions, while grey lines stand for protein-protein interactions. (B) Time evolution of the input
signals S1(t) (black) and S2(t) (grey), with Smax~10. In this work S1 is considered to have a rising time TS1

smaller than S2. (C) Amplitude of the
transient asymmetry between signals DS(t)~S1(t){S2(t). Here the maximal asymmetry is A~max(DS(t))~Smax 1{(TS1

=TS2
)½ � (see also Table 1 and

Methods).
doi:10.1371/journal.pone.0032779.g001

Table 1. Parameters in the decision genetic switch with external stimulation model.

Parameter Interpretation Value

S1 External signal 1 Smax

TS1

t, 0ƒtƒTS1
and Smax , t§TS1

S2 External signal 2 Smax

TS2

t, 0ƒtƒTS2
and Smax , t§TS2

Smax Maximum amplitude of S1,2 10

TS1,2
Rising times of S1,2 –

A Maximum asymmetry between S1 and S2 Smax 1{
TS1

TS2

� �

gX ,Y Basal transcription rate multiplied by translation rate divided by mRNA and protein degradation rates 1

kX ,Y Ratio between binding and unbinding affinities of dimers to promoter regions for self-activation and
cross-inhibition, respectively

1

cX ,Y Ratio between rate of expression of the respective gene when homodimers are bound and basal transcription 1

t Combined dimensionless time scale for transcription and translation of proteins 0:05 and 0:5

ta Dimensionless time scale for phosphorylation processes 0:05

s Intensity of Gaussian noise ji,j (t) with zero mean and Sji(t),jj (t’)T~s2dijd(t{t’) 0:01 and 0:05

Parameters used in Eqs. (1) to (4) and their respective interpretation and values. See also [7,15].
doi:10.1371/journal.pone.0032779.t001
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Cell fate decision depends on the speed of passage
through the critical region in the presence of fluctuations

The behavior described above is robust to noise. Figure 3A shows

a typical time series of the circuit, when the signals increase linearly

as described in Fig. 1B. We used a Heun method [13,14] for

integrating the differential Eqs. (1) to (4). The distribution of X values

for 1000 different realizations of the dynamics is shown in Fig. 3B for

two time points. Initially the distribution is unimodal and starts to

broaden until the saddle-node bifurcation (Fig. 2B) is reached. At

that point a bimodal distribution emerges, which is strongly

asymmetrical due to the transient signaling asymmetry, with the

upper branch being much more populated than the lower one.

We now study the effect of the signaling speed on the decision.

To that end, we vary the value of TS1
and TS2

according

to 1{ A
Smax

� �
~

TS1

TS2

, while keeping the parameters A and Smax

constant (see Fig. 1C and the respective caption and Table 1). In

that way, we change the speed of the transition but keep constant

the decision path PiPmPf in the parameter space (S1,S2). The

result is plotted in Fig. 3C, in terms of the fraction

R~PH=(PHzPL) of realizations ending in the upper state

Figure 2. Parameter analysis of the decision switch with external stimulation. (A) Phase diagram for X in the space (S1,S2). Thin lines
represent borders between different regimes: IL,H stands for monostability, with X having a low or a high value, respectively. IIA denotes bistability
between two states at which X and Y have opposite concentrations, (high, low) or (low, high). Pi , Pm and Pf correspond to the initial (t~0),
intermediary (t~TS1

), and final (t~TS2
) points of the signaling (see Fig. 1B). (B) Bifurcation diagram for protein concentration X vs parameterization

of path PiPm , for several values of the maximal asymmetry A (see Fig. 1C). r stands for the distance between the origin and a point along the path
PiPm. Parameters are gX ,Y ~cX ,Y ~kX ,Y ~1 and sXa ,Ya ,X ,Y ~0 (see also Table 1 and Eq. (1) to (4) in Methods).
doi:10.1371/journal.pone.0032779.g002

Figure 3. Asymmetric decision under fluctuations. (A) Typical time series of X and Y for two input signals that grow at different speeds. (B)
Initial and final distribution functions of X values for 1000 cells. (C) Dependence of the fraction R of cells that end up in the high branch, on the
speed of the transition (measured by TS1

) for different values of the maximum asymmetry A (see Fig. 1C). For all curves in (A), (B) and (C) with
exception of plot A~1:1 (ii), (iii) and (iv), the underlying equations are Eqs. (1) to (4) with sXa ,Y a ~0. Also shown in (C) for A~1:1 are the ratios R for
an extended version of the system of Eqs. (1) to (4) with noisy mRNA dynamics (dashed dark blue line, no symbols (iv)) and without noise (solid light
blue line, no symbols (iii)) (see also Eqs. (6) to (9) in Methods). We also tested the effects of fluctuations in phosphorylation reactions, i.e. sX a ,Y a=0
(see (C), dashed light blue line, no symbols A~1:1 (ii)) for the extended system of equations (Eqs. (6) to (9)) with noisy mRNA dynamics. Parameters
for (A), (B) and (C) A~1:1 (i) are those of Fig. 1 and t~ta for all curves (see also Table 1 and Methods). Parameters for (C) A~1:1 (ii), (iii) and (iv) are
g’mX ,mY

~cX ,Y ~1 and t~t’~ta~0:05 (see also Eqs. (6) to (9)). For all curves Smax~10 and where fluctuations are considered s~0:01.
doi:10.1371/journal.pone.0032779.g003
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((X ,Y )~(H,L), see Fig. 2B). The plot evidences the existence of

SdCDM, since for slow signaling speed (Smax=TS1
) the decision is

asymmetric, while the decision becomes unbiased when the

signaling speed becomes large enough, with the ratio R tending to

0.5. It can also be observed that higher values of maximum

asymmetry A between S1 and S2 induce a stronger bias in the

decision, i.e. higher R ratios (Fig. 3C).

For comparison purposes we also show in Fig. 3C the ratio R
calculated when, in addition to the processes represented in Eqs.

(1) to (4), mRNA dynamics are considered, both in the absence

(solid light blue line, no symbols, A~1:1 (iii)), and in the presence

(dashed dark blue line, no symbols, A~1:1 (iv)) of fluctuations (in

the latter case, noise is introduced following the same rationale of

Eq. (11)). In these simulations, the mRNA dynamics was assumed

to be dependent on transcription initiation (see Eq. (10)) following

a function similar to GX (X a,Y a) in Eq. (5), and the protein

dynamics was considered to depend linearly on mRNA concen-

tration (see Eqs. (6) to (9)). Both species are subject to linear

degradation terms [7,15], and have equal time scales (t~t’). We

observe that SdCDM persists in the presence of mRNA dynamics,

although a shift towards smaller R ratios appears when compared

with the original case in which only protein dynamics was

considered (Fig. 3C, solid dark blue line, diamond symbols A~1:1
(i)). Overall, the extra steps degrade, but only slightly, the

probability of reaching the upper branch due to a delay emerging

from the mRNA dynamics. We also tested for the extended system

(Eqs. (1) and (2) and (6) to (9)) the effects of fluctuations in the

phosphorylation reactions (Fig. 3C, dashed light blue line A~1:1
(ii)). Again, during the simulations the noise term was calculated

through an expression that follows the rationale of Eq. (1). The

extrinsic noise source present when fluctuations are included in

phosphorylation reactions degrades additionally the ratios R, but

still elicits SdCDM. Further investigations are necessary to clarify

the effect of extrinsic noise [16] on SdCDM and to establish the

limits of sensitivity of SdCDM to intermediate steps (see for

example [17,18]).

So far we have considered that the time scales of phosphory-

lation and production of transcription factors were equal. Yet,

extracellular signals usually change the activity state of transcrip-

tion factors in a sub-second scale, while transcription and

translation of target genes may take minutes, and accumulation

of protein products minutes to hours, with the additional delay

being due to macromolecular transport [19]. To understand the

effect of different time scale ratios t=ta and noise on the decision

bias, we performed extensive numerical simulations of Eqs. (1) to

(4) on a 100|100 grid of combinations of maximum asymmetry A
and signaling speed Smax=TS1

, with Smax at a constant value (see

Methods section and Table 1). For simplicity we focused only on

the case where no fluctuations in phosphorylation reactions are

present, and the mRNA dynamics were assumed again to be in a

quasi-steady state. The results are shown in Fig. 4, and clearly

reveal that as the difference in the phosphorylation and

expression/translation time scales increases, and also as the noise

intensity s grows, the ability of the decision circuit to choose

consistently a cell fate depending on the signaling speed decays.

Discussion

The mechanism of SdCDM can be understood from previous

studies in dynamic bifurcations and parameter sweeping experi-

ments in physical systems [8,9]. As in the case of the generic

bistable potential [9,20], the speed at which the system crosses the

critical region strongly influences the sensitivity to the transient

asymmetry (see Fig. 4). Although the signaling is symmetric in the

steady state, during the signal build-up the circuit is momentarily

exposed to asymmetric signals. With high speed the system is able

to ignore this transient asymmetry, but slow enough sweeping

speeds increase the probability of reaching one of the steady states

over the other one, because they induce a smaller bifurcation delay

[21–23]. Bifurcation delays arise when the system takes a long time

to leave the neighborhood of the unstable state. In the case of large

bifurcation delays the probability that the system jumps across the

potential barrier is increased, and consequently the circuit capacity

to discriminate signals S1 and S2 is reduced. On the other hand,

higher maximum asymmetries between S1 and S2 reduce the

bifurcation delays and also the amplification of fluctuations [9,22].

Similarly to [9], the probability of biasing the distribution depends

on the maximum amplitude of the asymmetry to noise ratio, on

the one side, and inversely on the sweeping speed and time scale

ratio, on the other. This can be seen when comparing for instance

Figs. 4A and 4C; it is clear that the loss of bias in the final

distributions caused by an increase in the time scale ratio can be

compensated by decreasing also the sweeping speed controlled by

TS1
. Graphically, this means that cross sections of R versus A (for

constant Smax=TS1
) in Fig. 4A are similar to those observed in

Fig. 4C when shifted to the left by approximately log(1=10).

Certain cell differentiation processes are driven by slow build-up

of decision-driving signals [24]. A mechanism of temporal control

of differentiation has also been proposed [25], and experiments

have revealed that temporal competition can determine cell fate

choice in multipotent differentiation [26]. Here we have shown

that the speed of signaling in genetic switches dramatically changes

the result of cellular decision, an effect that we have termed speed-

dependent cellular decision making (SdCDM). In contrast to other

aspects of nonequilibrium physics [27–29], dynamic bifurcations

have not been systematically studied in systems biology despite

involving fundamental aspects of cell fate decision. It is of special

interest in this context because all genetic switches are asymmetric

and stochastic and, hence, can be expected to demonstrate

SdCDM. Our study extends the well-known delayed bifurcation

effect in physics to a wide class of equations used to model gene

expression. This will be of importance for understanding the

dynamics of genome-wide networks and meets the recent interest

and relevance of delayed dynamics in fields such as developmental

biology [30]. In contrast to previous studies, in our work

asymmetry in signaling/genetic network models is transient and

non-additive. It is an open question which additional dynamics can

appear due to the interplay between speed of asymmetry

emergence and speed of decision making. It would also be

interesting to understand, through analytical techniques, the

importance of reaching the maximum asymmetry A (see Fig. 1C)

before or after the bifurcation point and establish a parallel with

the canonical bistable potential [20].

We can conjecture that evolutionary adaptation has provided

embryonic development with the optimal speed for cellular

differentiation and, consequently, deviation from this speed may

lead to pathologies. The conditions leading to such anomalies, and

their potential treatment, constitute still an important open

question. The mechanism demonstrated here should have further

impact in investigations of genetic circuits with high dimension

and undergoing more complex types of bifurcation [31]. Also,

since both subcritical and supercritical pitchfork bifurcations can

explain decision making in cell differentiation (see e.g. lineage-

commitment in bipotent blood progenitor cells [1]), it should be

interesting to determine how the type of the bifurcation will affect

SdCDM. Experimental differentiation studies, with special

emphasis on pattern formation, constitute also a viable avenue

that is expected to reveal interesting relationships between the

Speed-Dependent Cellular Decision Making
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speed at which the system grows, and the organized complexity

permitted in morphogenesis [3].

Methods

The dynamics of the protein concentrations involved in our

circuit (see Fig. 1A) is described by a phenomenological model

following [7,15] and assumed to be dimensionless:

_XX
a
~

1

ta

FX (S1)X{X að ÞzsXa ja
X (t) ð1Þ

_YY
a
~

1

ta

FY (S2)Y{Y að ÞzsYa ja
Y (t) ð2Þ

_XX~
1

t
GX (X a,Y a){Xð Þ{ 1

ta

(FX (S1)X{X a)

zsX jX (t)

ð3Þ

_YY~
1

t
GY (Y a,X a){Yð Þ{ 1

ta

(FY (S2)Y{Y a)

zsY jY (t),

ð4Þ

In this model, Eqs. (1) and (2) represent the phosphorylation-

dephosphorylation dynamics, where the latter is assumed to occur

with a constant rate (corresponding to a constant phosphatase

concentration, a common assumption in pathway modeling [32]).

Phosphorylation, on the other hand, is considered to depend on

the external signals. Following Fig. 1A this process is represented

by: FX ,Y (S1,2)~1zS1,2, with the unit term standing for basal

activation. The transcriptional input of X contains the stimulatory

action of its phosphorylated form X a and the inhibitory effect of

Y a, and is modeled according to a mean-field approach to

promoter site occupation [15] (see Eq. (5)).

GX (X a,Y a)~gX

1zcX (X a=kX )2

1z(X a=kX )2z(Y a=kY )2
ð5Þ

Respectively for the protein Y . Both TFs are assumed to act as

homodimers, a usual situation in real systems [33]. The

parameters cX ,Y represent the ratio between the maximally

activated expression rate and basal transcription, while kX ,Y

denote ratios associated with activation and repression thresholds.

The parameters gX ,Y are a measure of the promoter strength

multiplied by translational efficiency [15]. Finally, the character-

Figure 4. Effect of time scale differences and noise on SdCDM. The decision bias, measured by the fraction R of cells that end up in the high
branch, is plotted in color scale versus the transient asymmetry parameter A and the signaling speed (controlled by TS1

), for several noise and time
scale ratios. (A) s~0:01 and t=ta~10. (B) s~0:05 and t=ta~10. (C) s~0:01 and t=ta~1. (D) s~0:05 and t=ta~1. Blue denotes a symmetric
decision, and red an asymmetric decision, which appears for slow enough speeds if the transient asymmetry is non-zero. Parameters are those of
Fig. 1, plus Smax~10 (see also Table 1 and Methods). The underlying equations are Eqs. (1) to (4) with sXa ,Ya ~0.
doi:10.1371/journal.pone.0032779.g004
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istic time scales of phosphorylation and protein expression are

given by ta and t, respectively (see also Table 1).

Eqs. (1) to (4) were derived by assuming that transcription factor

binding and unbinding, on the one hand, and mRNA dynamics,

on the other, are fast when compared to protein dynamics

[7,15,19]. Although there is also a substantial difference between

the time scales of translation and phosphorylation events [19], the

profile of activation of each transcription factor or of signals S1,2

has been proven to be fundamental to understand cell fate decision

[34–36]. Therefore, we maintained the activation Eqs. (1) and (2).

Moreover, this option allows us to extend in further studies the

impact on cell fate decision, here equated with attractor selection,

of partial inhibition of phosphorylation processes exerted by

specific classes of drugs [37]. Most of the results on SdCDM

presented in this work follow the system of Eqs. (1) to (4) with

sX a,Y a~0. Yet, for comparison purposes we extended part of the

results of Fig. 2C (curve A~1:1 (i)) to include mRNA dynamics

(curves A~1:1 (ii), (iii) and (iv), see Results section), where Eqs. (3)

and (4) are substituted by Eqs. (6) to (9), with or without noise in

mRNA and phosphorylation dynamics.

_mmX ~
1

t’
GX
0(X a,Y a){mXð ÞzsmX

jmX
(t) ð6Þ

_mmY ~
1

t’
GY
0(Y a,X a){mYð ÞzsmY

jmY
(t) ð7Þ

_XX~
1

t
cX mX {Xð Þ{ 1

ta

(FX (S1)X{X a)zs’X j’X (t) ð8Þ

_YY~
1

t
cY mY {Yð Þ{ 1

ta

(FY (S2)Y{Y a)zs’Y j’Y (t) ð9Þ

In Eqs. (6) and (7) the functions GX ,Y
0 follow a similar

expression to Eq. (5), with adjusted parameters gmX ,mY

0~
gX ,Y

cX ,Y
(see Eq. (10) and also Table 1 for comparison with the reduced

model), but continue to set the model as dimensionless. Parameters

cX ,Y (see Eq. (8) and (9)) represent translation.

G’X (X a,Y a)~g’mX

1zcX (X a=kX )2

1z(X a=kX )2z(Y a=kY )2
ð10Þ

Correspondingly for mY . Both the reduced model (Eqs. (1) to

(4)) and the extended one (Eqs. (6) to (9)) assume that the circuit

operates in a constant-volume cell. In the case of the reduced

model we take into account stochastic fluctuations only in gene

expression [38], i.e. sX a,Y a~0 (see Fig. 3 A, B, A~1:1 (i) plot in C

and Fig. 4). To that end, jX ,Y (t) represents a Gaussian noise with

zero mean and correlation SjX (t),jY (t’)T~s2dXY d(t{t’), and

models the contribution of intrinsic random fluctuations inherent

to transcription and translation processes [16]. The multiplicative

noise term in Eqs. (3) and (4) is interpreted according to Ito, which

is the correct stochastic interpretation for a noise term arising from

stochastic protein-gene interaction events [39]. Accordingly, the

noise intensity functions sX and sY that appear in Eqs. (3)–(4) take

the following form [39] (see Eq. (11)).

s2
X ~

1

t
G(X a,Y a)zXð Þz 1

ta

FX (S1)zX að Þ ð11Þ

Correspondingly for protein Y . For the parameters sX a ,Y a in

Eq. (1) and Eq. (2) and smX ,Y
and sX ,Y

0 in Eq. (6) to Eq. (9),

wherever it was computed (see Fig. 3C, plots A~1:1 (ii), (iii), (iv)),

the procedure that led to Eq. (11) was once more applied [39] and

j0X ,’Y ,X a,Y a ,mX ,mY
(t) also represent Gaussian noise with intensity s.

All bifurcation diagrams (see Fig. 1) were created in XPPAUT

[12]. Parameter r in Fig. 1B can be determined by r~
S1=cos(arctan((Smax { A)=Smax)) ~ S2=sin(arctan((Smax{A))=
Smax)), where A stands for the maximum asymmetry reached

between S1 and S2 (see Fig. 1C).

Furthermore, all simulation results were performed by numer-

ically integrating the stochastic differential equations using the

Heun method [14] with a scaled time-step of 10{5. Each simulation

was started at the steady state available for S1(t~0)~S2(t~0)~0
and subsequently the external signals S1,2 were changed linearly

until reaching the maximum value allowed (Smax~10, see Fig. 1B).

In order to calculate the ratio R~PH=(PHzPL) (see Fig. 3), the set

of simulations was performed until an instant t far beyond TS2
to

secure that the system had converged.

With respect to Figs. 4A to D, the results were generated by

sampling a 100|100 matrix of the (A,log(Smax=TS1
)) space and

fitting a surface, through the TriScatteredInterp linear interpo-

lation method (MATLAB R2010b), to the numerical data

obtained.
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