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Summary. For the estimation of cumulative link models for ordinal data, the bias reducing
adjusted score equations of Firth in 1993 are obtained, whose solution ensures an estimator
with smaller asymptotic bias than the maximum likelihood estimator. Their form suggests a
parameter-dependent adjustment of the multinomial counts, which in turn suggests the solution
of the adjusted score equations through iterated maximum likelihood fits on adjusted counts,
greatly facilitating implementation. Like the maximum likelihood estimator, the reduced bias
estimator is found to respect the invariance properties that make cumulative link models a good
choice for the analysis of categorical data. Its additional finiteness and optimal frequentist prop-
erties, along with the adequate behaviour of related asymptotic inferential procedures, make the
reduced bias estimator attractive as a default choice for practical applications. Furthermore, the
estimator proposed enjoys certain shrinkage properties that are defensible from an experimental
point of view relating to the nature of ordinal data.

Keywords: Adjusted counts; Adjusted score equations; Ordinal response models; Reduction
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1. Introduction

In many models with categorical responses the maximum likelihood estimates can be on the
boundary of the parameter space with positive probability. For example, Albert and Anderson
(1984) derived the conditions that describe when the maximum likelihood estimates are on the
boundary in multinomial logistic regression models. Although there is no ambiguity in reporting
an estimate on the boundary of the parameter space, as is for example an infinite estimate for
the parameters of a logistic regression model, estimates on the boundary can

(a) cause numerical instabilities to fitting procedures,
(b) lead to misleading output when estimation is based on iterative procedures with a stopping

criterion and, more importantly,
(c) cause havoc with asymptotic inferential procedures, and especially with those that depend

on estimates of the standard error of the estimators (e.g. Wald tests and related confidence
intervals).

The maximum likelihood estimator in cumulative link models for ordinal data (McCullagh,
1980) also has a positive probability of being on the boundary.

1.1. Example 1
As a demonstration consider the example in Christensen (2012a), section 7. The data set in
Table 1 comes from Randall (1989) and concerns a factorial experiment for investigating factors
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Table 1. Wine tasting data (Randall, 1989)

Temperature Contact Responses on the following
bitterness scale:

1 2 3 4 5

Cold No 4 9 5 0 0
Cold Yes 1 7 8 2 0
Warm No 0 5 8 3 2
Warm Yes 0 1 5 7 5

Table 2. Maximum likelihood estimates for the
parameters of model (1), the corresponding es-
timated standard errors (in parentheses) and the
values of the Z -statistic for the hypothesis that
the corresponding parameter is 0

Parameter Maximum likelihood Z-statistic
estimate

α1 −1.27 (0.51) −2.46
α2 1.10 (0.44) 2.52
α3 3.77 (0.80) 4.68
α4 28.90 (193125.63) 0.00
β1 25.10 (112072.69) 0.00
β2 2.15 (0.59) 3.65
β3 2.87 (0.82) 3.52
β4 26.55 (193125.63) 0.00
θ 1.47 (0.47) 3.13

that affect the bitterness of white wine. There are two factors in the experiment: temperature at
the time of crushing the grapes (with two levels, ‘cold’ and ‘warm’) and contact of the juice with
the skin (with two levels ‘yes’ and ‘no’). For each combination of factors two bottles were rated
on their bitterness by a panel of nine judges. The responses of the judges on the bitterness of
the wine were taken on a continuous scale in the interval from 0 (‘none’) to 100 (‘intense’) and
then they were grouped correspondingly into five ordered categories, 1, 2, 3, 4 and 5.

Consider the partial proportional odds model (Peterson and Harrell, 1990) with

log
(

γrs

1−γrs

)
=αs −βswr −θzr .r =1, : : : , 4; s=1, : : : , 4/, .1/

where wr and zr are dummy variables representing the factors temperature and contact respec-
tively, α1, : : : , α4, β1, : : : , β4 and θ are model parameters and γrs is the cumulative probability for
the sth category at the rth combination of levels for temperature and contact. The clm function
of the R package ordinal (Christensen, 2012b) is used to maximize the multinomial likeli-
hood that corresponds to model (1). The clm function finds the maximum likelihood estimates
up to a specified accuracy, by using a Newton–Raphson iteration for finding the roots of the
log-likelihood derivatives. For the current example, the stopping criterion is set to that the log-
likelihood derivatives are less than 10−10 in absolute value. The maximum likelihood estimates,
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estimated standard errors and the corresponding values for the Z-statistics for the hypothesis
that the respective parameter is 0 are extracted from the software output and shown in Table 2.
At those values for the maximum likelihood estimator the maximum absolute log-likelihood
derivative is less than 10−10 and the software correctly reports convergence. Nevertheless, an
immediate observation is that the absolute values of the estimates and estimated standard errors
for the parameters α4, β1 and β4 are very large. Actually, these would diverge to ∞ as the stop-
ping criteria of the iterative fitting procedure used become stricter and the number of iterations
allowed increases.

For model (1) interest usually is on testing departures from the assumption of proportional
odds via the hypothesis β1 =β2 =β3 =β4. Using a Wald-type statistic would be adventurous
here because such a statistic explicitly depends on the estimates of β1, β2, β3 and β4. Of course,
given that the likelihood is close to its maximal value at the estimates in Table 2, a likelihood
ratio test can be used instead; the likelihood ratio test for the particular example has been carried
out in Christensen (2012a), section 7.

Furthermore, the current example demonstrates some of the potential dangers that are
involved in the application of cumulative link models in general; the behaviour of the individual
Z-statistics—being essentially 0 for the parameters β1 and β4 in this example—is quite typical of
what happens when estimates diverge to ∞. The values of the Z-statistics converge to 0 because
the estimated standard errors diverge much faster than the estimates, irrespective of whether or
not there is evidence against the individual hypotheses. This behaviour is also true for individual
hypotheses at values other than 0 and can lead to invalid conclusions if the output is interpreted
naively. More importantly, the presence of three infinite standard errors in a non-orthogonal
(in the sense of Cox and Reid (1987)) setting like the current setting may affect the estimates of
the standard errors for other parameters in ways that are difficult to predict.

An apparent solution to the issues that are mentioned in example 1 is to use a different
estimator that has probability 0 of resulting in estimates on the boundary of the parameter
space. For example, for the estimation of the common difference in cumulative logits from ordinal
data arranged in a 2 × k contingency table with fixed row totals, McCullagh (1980) described
the generalized empirical logistic transform. The generalized empirical logistic transform has
smaller asymptotic bias than the maximum likelihood estimator and is also guaranteed to give
finite estimates of the difference in cumulative logits because it adjusts all cumulative counts
by 1

2 . However, the applicability of this estimator is limited to the analysis of 2 × k tables, and
particularly in estimating differences in cumulative logits, with no obvious extension to more
general cumulative link models, such as that in example 1.

A family of estimators that can be used for arbitrary cumulative link models and are guaran-
teed to be finite are ridge estimators. As one of the referees highlighted, if we extend the work
in le Cessie and van Houwelingen (1992) for logistic regression to cumulative link models, then
the shrinkage properties of the ridge estimator can guarantee its finiteness. Nevertheless, ridge
estimators have a series of shortcomings. Firstly, in contrast with the maximum likelihood esti-
mator, the ridge estimators are not generally equivariant under general linear transformations
of the parameters for cumulative link models. A reparameterization of the model by rescaling
the parameters or taking contrasts of those—which are often interesting transformations in
cumulative link models—and a corresponding transformation of the ridge estimator will not
generally result in the estimator that the same ridge penalty would produce for the reparame-
terized model, unless the penalty is also appropriately adjusted. For example, if we wish to test
the hypothesis in example 1 by using a Wald test, then an appropriate ridge estimator would be
one that penalizes the size of the contrasts of β1, β2, β3 and β4 instead of the size of those
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parameters themselves. Secondly, the choice of the tuning parameter is usually performed
through the use of an optimality criterion and cross-validation. Hence, the properties of the re-
sultant estimators are sensitive to the choice of the criterion. For example, criteria like the mean-
squared error of predictions, classification error and log-likelihood that have been discussed in
le Cessie and van Houwelingen (1992) will each produce different results, as was also shown in le
Cessie and van Houwelingen (1992). Furthermore, the resultant ridge estimator is sensitive to the
type of cross-validation that is used. For example, k-fold cross-validation will produce different
results for different choices of k. Lastly, standard asymptotic inferential procedures for perform-
ing hypothesis tests and constructing confidence intervals cannot be used by simply replacing
the maximum likelihood estimator with the ridge estimator in the associated pivots. For these
reasons, ridge estimators can only offer an ad hoc solution to the problem.

Several simulation studies on well-used models for discrete responses have demonstrated that
bias reduction via the adjustment of the log-likelihood derivatives (Firth, 1993) offers a solution
to the problems relating to boundary estimates; see, for example, Mehrabi and Matthews (1995)
for the estimation of simple complementary log–log-models, Heinze and Schemper (2002) and
Bull et al. (2002), for binomial logistic regression, Kosmidis and Firth (2011) for multinomial
logistic regression and Kosmidis (2009) for binomial response generalized linear models.

In the current paper the aforementioned adjustment is derived and evaluated for the estimation
of cumulative link models for ordinal responses. It is shown that reduction of bias is equivalent to
a parameter-dependent additive adjustment of the multinomial counts and that such adjustment
generalizes well-known constant adjustments in cases like the estimation of cumulative logits.
Then, the reduced bias estimates can be obtained through iterative maximum likelihood fits to
the adjusted counts. The form of the parameter-dependent adjustment is also used to show that,
like the maximum likelihood estimator, the reduced bias estimator is invariant to the level of
sample aggregation in the data.

Furthermore, it is shown that the reduced bias estimator respects the invariance properties
that make cumulative link models an attractive choice for the analysis of ordinal data. The finite-
ness and shrinkage properties of the estimator proposed are illustrated via detailed complete
enumeration and an extensive simulation exercise. In particular, the reduced bias estimator is
found to be always finite, and also the reduction of bias in cumulative link models results in
the shrinkage of the multinomial model towards a binomial model for the end categories. A
thorough discussion on the desirable frequentist properties of the estimator is provided along
with an investigation of the performance of associated inferential procedures.

The finiteness of the reduced bias estimator, its optimal frequentist properties and the ade-
quate performance of the associated inferential procedures lead to its proposal for routine use
in fitting cumulative link models.

The exposition of the methodology is accompanied by a parallel discussion of the corres-
ponding implications in the application of the models through examples with artificial and real
data.

2. Cumulative link models

Suppose observations of n k-vectors of counts y1, : : : , yn, on mutually independent multino-
mial random vectors Y1, : : : , Yn, where Yr = .Yr1, : : : , Yrk/T and the k multinomial categories
are ordered. The multinomial totals for Yr are mr = Σk

s=1yrs and the probability for the sth
category of the rth multinomial vector is πrs, with Σk

s=1πrs = 1 .r = 1, : : : , n/. The cumulative
link model links the cumulative probability γrs =πr1 +: : :+πrs to a p-vector of covariates xr via
the relationship
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γrs =G

(
αs −

p∑
t=1

βtxrt

)
.s=1, : : : , q; r =1, : : : , n/, .2/

where q = k − 1 denotes the number of the non-redundant components of yr, and where δ =
.α1, : : : , αq, β1, : : : , βp/T is a .p+q/-vector of real-valued model parameters, with α1 <: : :<αq.
The function G.·/ is a monotone increasing function mapping .−∞, ∞/ to .0, 1/, usually chosen
to be a known distribution function (like, for example, the logistic, extreme value or standard
normal distribution function). Then, α1, : : : , αq can be considered as cut points on the latent
scale that is implied by G.

Special important cases of cumulative link models are the proportional odds model with
G.η/= exp.η/={1 + exp.η/} and the proportional hazards model in discrete time with G.η/=
1− exp{− exp.η/} (see McCullagh (1980) for the introduction of and a thorough discussion on
cumulative link models).

The cumulative link model can be written in the usual multivariate generalized linear models
form by writing the relationship that links the cumulative probability γrs to δ as

G−1.γrs/=ηrs =
p+q∑
t=1

δtzrst .s=1, : : : , q; r =1, : : : , n/, .3/

where zrst is the .s, t/th component of the q× .p+q/ matrix

Zr =

⎛
⎜⎜⎝

1 0 : : : 0 −xT
r

0 1 : : : 0 −xT
r

:::
:::

: : :
:::

:::

0 0 : : : 1 −xT
r

⎞
⎟⎟⎠ .r =1, : : : , n/:

To be able to identify δ, the matrix Z with row blocks Z1, : : : , Zn is assumed to be of full rank.
Direct differentiation of the multinomial log-likelihood l.δ/ gives that the tth component of

the vector of score functions has the form

Ut.δ/=
n∑

r=1

q∑
s=1

grs.δ/

{
yrs

πrs.δ/
− yrs+1

πrs+1.δ/

}
zrst .t =1, : : : , p+q/, .4/

where grs.δ/=g.ηrs/, with g.η/=dG.η/=dη. If g.·/ is log-concave then Ut.δ̂/=0 (t =1, : : : , p+q)
has unique solution the maximum likelihood estimate δ̂ (see Pratt (1981), where it is shown
that the log-concavity of g.·/ implies the concavity of l.δ/).

All generalized linear models for binomial responses that include an intercept parameter in
the linear predictor are special cases of model (2).

3. Maximum likelihood estimates on the boundary

The maximum likelihood estimates of the parameters of the cumulative link model can be on
the boundary of the parameter space with positive probability. Under the log-concavity of g.·/,
Haberman (1980) gave conditions that guarantee that the maximum likelihood estimates are not
on the boundary (‘exist’ in an alternative terminology). Boundary estimates for these models
are estimates of the regression parameters β1, : : : , βp with an infinite value, and/or estimates
of the cut points −∞=α0 <α1 <: : :<αq <αk =∞ for which at least a pair of consecutive cut
points have equal estimated value.

As far as the regression parameters β are concerned, Agresti (2010), section 3.4.5, gave an
accessible account on what data settings result in infinite estimates for the regression parameters,
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how a fitted model with such estimates can be used for inference and how such problems can
be identified from the output of standard statistical software.

As far as boundary values of the cut points α are concerned, Pratt (1981) showed that, with
a log-concave g.·/, the cut points αs−1 and αs have equal estimates if and only if the observed
counts for the sth category are 0 .s=1, : : : , k/ for all r ∈{1, : : : , n}. If the first or the last category
has zero counts then the respective estimates for α1 and αq will be −∞ and ∞ respectively, and,
if this happens for category s for some s∈{2, : : : , q}, then the estimates for αs−1 and αs will have
the same finite value.

4. Bias correction and bias reduction

4.1. Adjusted score functions and first-order bias
Denote by b.δ/ the first term in the asymptotic expansion of the bias of the maximum likelihood
estimator in decreasing orders of information, usually sample size. Call b.δ/ the first-order bias
term, and let F.δ/ denote the expected information matrix for δ. Firth (1993) showed that, if
A.δ/=−F.δ/b.δ/, then the solution of the adjusted score equations

UÅ
t .δ/=Ut.δ/+At.δ/=0 .t =1, : : : , q+p/ .5/

results in an estimator that is free from the first-order term in the asymptotic expansion of its
bias.

4.2. Reduced bias estimator
Kosmidis and Firth (2009) exploited the structure of the bias reducing adjusted score functions
in expression (5) in the case of exponential family non-linear models. Using Kosmidis and Firth
(2009), expression (9), for the adjusted score functions in the case of multivariate generalized
linear models, and temporarily omitting the argument δ from the quantities that depend on it,
the adjustment functions At in expression (5) have the form

At = 1
2

n∑
r=1

mr

q∑
s=1

tr[Vr{.DrΣ−1
r /s ⊗1q}D2.πr;ηr/]zrst .t =1, : : : , q+p/, .6/

where Vr =ZrF
−1ZT

r is the asymptotic variance–covariance matrix of the estimator for the vector
of predictor functions ηr = .ηr1, : : : , ηrq/T and πr = .πr1, : : : , πrq/T. Furthermore, D2.πr;ηr/ is
the q2 × q matrix with sth block the Hessian of πrs with respect to ηr .s = 1, : : : , q/, 1q is the
q×q identity matrix and DT

r is the q×q Jacobian of mrπr with respect to ηr. A straightforward
calculation shows that

DT
r =mr

⎛
⎜⎜⎜⎜⎜⎝

gr1 0 : : : 0 0
−gr1 gr2 : : : 0 0

0 −gr2
: : :

:::
:::

:::
:::

: : : grq−1 0
0 0 : : : −grq−1 grq

⎞
⎟⎟⎟⎟⎟⎠ .r =1, : : : , n/:

The matrix Σr is the incomplete q×q variance–covariance matrix of the multinomial vector Yr

with .s, u/th component

σrsu =
{

mrπrs.1−πrs/, s=u

−mrπrsπru, s �=u
.s, u=1, : : : , q; r =1, : : : , n/:
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Substituting in equation (6), some tedious calculation gives that the adjustment functions At

have the form

At =
n∑

r=1

q∑
s=1

grs

(
crs − crs−1

πrs
− crs+1 − crs

πrs+1

)
zrst .t =1, : : : , q+p/, .7/

where

cr0 = crk =0, crs = 1
2 mrg

′
rsvrss .s=1, : : : , q/, .8/

with g′
rs = g′.ηrs/, and g′.η/= d2G.η/=dη2. The quantity vrss is the sth diagonal component of

the matrix Vr .s=1, : : : , q; r =1, : : : , n/.
Substituting expressions (4) and (7) in expression (5) gives that the tth component of the bias

reducing adjusted score vector .t =1, : : : , q+p/ has the form

UÅ
t .δ/=

n∑
r=1

q∑
s=1

grs.δ/

{
yrs + crs.δ/− crs−1.δ/

πrs.δ/
− yrs+1 + crs+1.δ/− crs.δ/

πrs+1.δ/

}
zrst : .9/

The reduced bias estimates δ̃RB are such that UÅ
t .δ̃RB/ = 0 for every t ∈ {1 = 1, : : : , q + p}.

Kosmidis (2007a), chapter 6, shows that, if the maximum likelihood is consistent, then the
reduced bias estimator is also consistent. Furthermore, δ̃RB has the same asymptotic distribution
as δ̂, namely a multivariate normal distribution with mean δ and variance–covariance matrix
F−1.δ/. Hence, estimated standard errors for δ̃RB can be obtained as usual by using the square
roots of the diagonal elements of the inverse of the Fisher information at δ̃RB. All inferential
procedures that rely on the asymptotic normality of the estimator can directly be adapted to
the reduced bias estimator.

4.3. Bias-corrected estimator
Expression (7) can also be used to evaluate the first-order bias term as b.δ/ =−F−1.δ/A.δ/,
where

F.δ/=
n∑

r=1
ZT

r Dr.δ/Σ−1
r .δ/DT

r .δ/Zr:

If δ̂ is the maximum likelihood estimator then

δ̃BC = δ̂ −b.δ̂/ .10/

is the bias-corrected estimator which has been studied in Cordeiro and McCullagh (1991) for
univariate generalized linear models. The estimator δ̃BC can be shown to have no first-order
term in the expansion of its bias (see Efron (1975) for analytic derivation of this result).

4.4. Models for binomial responses
For k =2, Yr1 has a binomial distribution with index m and probability πr1, and Yr2 =mr −Yr1.
Then model (2) reduces to the univariate generalized linear model

G.πr/=α−
p∑

t=1
βtxrt .r =1, : : : , n/:

From equation (9), the adjusted score functions take the form
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UÅ
t .δ/=

n∑
r=1

gr1.δ/

{
yr1 + cr1.δ/

πr1.δ/
− mr −yr1 − cr1.δ/

1−πr1.δ/

}
zr1t .t =1, : : : , p+1/:

Omitting the category index for notational simplicity, a re-expression of the above equality gives
that the adjusted score functions for binomial generalized linear models have the form

UÅ
t .δ/=

n∑
r=1

gr

πr.1−πr/

(
yr + g′

r

2wr
hr −mrπr

)
zrt .t =1, : : : , p+1/, .11/

where wr =mrg
2
r ={πr.1−πr/} are the working weights and hr is the rth diagonal component of

the ‘hat’ matrix H =ZF−1ZTW , with W =diag.w1, : : : , wn/ and

Z =

⎛
⎜⎜⎜⎝

1 −xT
1

1 −xT
2

:::
:::

1 −xT
n

⎞
⎟⎟⎟⎠:

This expression agrees with the results in Kosmidis and Firth (2009), section 4.3, where it is shown
that for generalized linear models reduction of bias via adjusted score functions is equivalent
to replacing the actual count yr with the parameter-dependent adjusted count yr + g′

rhr=.2wr/

.r =1, : : : , n/.

5. Implementation

5.1. Maximum likelihood fits on iteratively adjusted counts
When expression (9) is compared with expression (4), it is directly apparent that bias reduction
is equivalent to the additive adjustment of the multinomial count yrs by the quantity crs.δ/ −
crs−1.δ/ .s=1, : : : , k; r =1, : : : , n/. Noting that these quantities depend on the model parameters
in general, this interpretation of bias reduction can be exploited to set up an iterative scheme
with a stationary point at the reduced bias estimates: at each step,

(a) evaluate yrs + crs.δ/− crs−1.δ/ at the current value of δ .s=1, : : : , q; r =1, : : : , n/, and
(b) fit the original model to the adjusted counts by using some standard maximum likelihood

routine.

However, crs.δ/ − crs−1.δ/ can take negative values which in turn may result in fitting the
model on negative counts in step (b) above. In principle this is possible but then the log-concavity
of g.·/ does not necessarily imply concavity of the log-likelihood function and problems may
arise when performing the maximization in step (b) (see, for example, Pratt (1981), where the
transition from the log-concavity of g.·/ to the concavity of the likelihood requires that the latter
is a weighted sum with non-negative weights). That is the reason why many published maximum
likelihood fitting routines will fail if supplied with negative counts.

The issue can be remedied through a simple calculation. Temporarily omitting the index r,
let as = cs − cs−1 .s=1, : : : , k/. Then the kernel .ys +as/=πs − .ys +as+1/=πs+1 in expression (9)
can be re-expressed as

ys +as I.as > 0/−πsas+1 I.as+1 �0/=πs+1

πs
− ys+1 +as+1 I.as+1 > 0/−πs+1as I.as �0/=πs

πs+1
,

where I.E/=1 if E holds and I.E/=0 otherwise. Note that

as.δ/I{as.δ/> 0}−πs.δ/as+1.δ/I{as+1.δ/< 0}=πs+1.δ/�0,
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uniformly in δ. Hence, if step (a) in the above procedure adjusts yrs by ars I.ars > 0/−πrsars+1×
I.ars+1 < 0/=πrs+1 evaluated at the current value of δ, then the possibility of issues relating to
negative adjusted counts in step (b) is eliminated, and the resultant iterative procedure still has
a stationary point at the reduced bias estimates.

5.2. Iterative bias correction
Another way to obtain the reduced bias estimates is via the iterative bias correction procedure
of Kosmidis and Firth (2010); if the current value of the estimates is δ.i/ then the next candidate
value is calculated as

δ.i+1/ = δ̂
.i+1/ −b.δ.i// .i=0, 1, : : :/, .12/

where δ̂
.i+1/ = δ.i/ + F−1.δ.i//U.δ.i//, i.e. δ̂

.i+1/
is the next candidate value for the maximum

likelihood estimator obtained through a single Fisher scoring step, starting from δ.i/.
Iteration (12) generally requires more effort in implementation than the iteration that was

described in the Section 5.1. Nevertheless, if the starting value δ.0/ is chosen to be the maximum
likelihood estimates then the first step of the procedure in expression (12) will result in the
bias-corrected estimates defined in expression (10).

6. Additive adjustment of the multinomial counts

6.1. Estimation of cumulative logits
For the estimation of the cumulative logits αs = log{γs=.1 − γs/} .s = 1, : : : , q/ from a single
multinomial observation y1, : : : , yk the maximum likelihood estimator of αs .s = 1, : : : , q/ is
α̂s = log{Rs=.m−Rs/}, where Rs =Σs

j=1 Ys is the sth cumulative count. The Fisher information
for α1, : : : , αq is the matrix of quadratic weights W =DΣ−1DT. The matrix W is symmetric and
tridiagonal with non-zero components

Wss =mγ2
s .1−γs/

2
(

1
γs −γs−1

+ 1
γs+1 −γs

)
.s=1, : : : , q/,

Ws−1,s =−m
γs−1.1−γs−1/γs.1−γs/

γs −γs−1
.s=2, : : : , q/,

with γ0 = 0 and γk = 1. By use of the recursion formulae in Usmani (1994) for the inver-
sion of a tridiagonal matrix, the sth diagonal component of F−1 = W−1 is 1={mγs.1 − γs/}.
Hence, using expression (8) and noting that gs = γs.1 − γs/.1 − 2γs/ for the logistic link, cs =
1
2 − γs .s = 1, : : : , q/. Substituting in equation (9) yields that reduction of bias is equivalent to
adding 1

2 to the counts for the first and the last category and leaving the rest of the counts
unchanged.

The above adjustment scheme reproduces the empirical logistic transforms α̃s = log{.Rs +
1
2 /=.m − Rs + 1

2 /}, which are always finite and have smaller asymptotic bias than α̂s (see Cox
and Snell (1989), section 2.1.6, under the fact that the marginal distribution of Rs given Rk =m

is binomial with index m and probability γs for any s∈{1, : : : , q}/.

6.2. A note of caution for constant adjustments in general settings
Since the works of Haldane (1955) and Anscombe (1956) concerning the additive modification
of the binomial count by 1

2 for reducing the bias and guaranteeing finiteness in the problem
of log-odds estimation, the addition of small constants to counts when the data are sparse has
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become a standard practice for avoiding estimates on the boundary of the parameter space
of categorical response models (see, for example, Hitchcock (1962), Gart and Zweifel (1967),
Gart et al. (1985) and Clogg et al. (1991)). Especially in cumulative link models where g.·/ is
log-concave, if all the counts are positive then the maximum likelihood estimates cannot be on
the boundary of the parameter space (Haberman, 1980).

Despite their simplicity, constant adjustment schemes are not recommended for general use
for two reasons.

(a) Because the adjustments are constants, the resultant estimators are generally not invariant
to different representations of the data (e.g. aggregated and disaggregated view), which
is a desirable invariance property that the maximum likelihood estimator has, and which
allows the practitioner not to be concerned with whether the data at hand are fully ag-
gregated or not.

For example, consider the two representations of the same data in Table 3. Interest is
in estimating the difference β between logits of cumulative probabilities of the samples
with x=− 1

2 from the samples with x= 1
2 .

The maximum likelihood estimate of α3 is ∞. Irrespective of the data representation the
maximum likelihood estimate of β is finite and has value −1.944 with estimated standard
error 0.895. Now suppose that the same small constant, say 1

2 , is added to each of the
counts in the rows of the alternatives in Table 3. The adjustment ensures that the parame-
ter estimates are finite for both representations. Nevertheless, a common constant added
to both alternatives causes—in some cases large—differences in the resultant inferences
for β. For alternative 1 the maximum likelihood estimate of β based on the adjusted data
is −1.097 with estimated standard error 0.678, and for alternative 2 the estimate is −1.485
with estimated standard error 0.741. If Wald-type procedures were used for inferences on
β with a normal approximation for the distribution of the approximate pivot .β̂ −β/=S.β̂/,
where S.β/ is the asymptotic standard error at β based on the Fisher information, then the
p-value of the test β =0 would be 0.106 if alternative 1 was used and 0.045 if alternative
2 was used.

(b) Furthermore, the moments of the maximum likelihood estimator generally depend on the
parameter values (see, for example, Cordeiro and McCullagh (1991) for explicit expres-
sions of the first-order bias term in the special case of binomial regression models) and

Table 3. Two alternative representations
of the same artificial data set

x Y

1 2 3 4

Alternative 1
− 1

2 8 6 1 0
1
2 10 0 1 0
1
2 8 1 0 0

Alternative 2
− 1

2 8 6 1 0
1
2 18 1 1 0
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thus, as is also amply evident from the studies in Hitchcock (1962) and Gart et al. (1985),
there cannot be a universal constant which yields estimates which are optimal according
to some frequentist criterion.

Both of the above concerns with constant adjustment schemes are dealt with by using the
additive adjustment scheme in Section 5.1. Firstly, by construction, the iteration of Section 5.1
yields estimates which have bias of second order. Secondly, because the adjustments depend on
the parameters only through the linear predictors which, in turn, do not depend on the way that
the data are represented, the adjustment scheme leads to estimators that are invariant to the
data representation. For both representations of the data in Table 3 the bias-reduced estimate
of β is −1.761 with estimated standard error 0.850.

7. Invariance properties of the reduced bias estimator

7.1. Equivariance under linear transformations
The maximum likelihood estimator is exactly equivariant under one-to-one transformations
φ.·/ of the parameter δ, i.e. if δ̂ is the maximum likelihood estimator of δ then the maximum
likelihood estimator of φ.δ/ is simply φ.δ̂/. In contrast with δ̂, the reduced bias estimator
δ̃RB is not equivariant for all φ; bias is a parameterization-specific quantity and hence any
attempt to improve it can violate exact equivariance. Nevertheless, δ̃RB is equivariant under
linear transformations φ.δ/=Lδ, where L is a .p+q/× .p+q/ matrix of constants such that
ZL is of full rank and δ′ =Lδ has α′

1 <: : :<α′
q.

To see that, assume that we fit the multinomial model with γrs =G.η′
rs/ where η′

rs =Σp+q
t=1 δ′

tzrst

.r = 1, : : : , n; s = 1, : : : , q/. Because δ′ = Lδ, η′
rs is a linear combination of δ. Using expression

(9), the tth component of the adjusted score function for δ′ is

U ′
t =

n∑
r=1

q∑
s=1

g′
rs

(
yrs + c′

rs − c′
rs−1

π′
rs

− yrs+1 + c′
rs+1 − c′

rs

π′
rs+1

)
zrst , .13/

for t ∈{1, : : : , p+q}, where c′
rs, π

′
rs and g′

rs are evaluated at δ′. Note that all quantities in equation
(13) depend on δ′ only through the linear combinations η′

rs. Thus, comparing equation (9) with
equation (13), if δ̃RB is a solution of UÅ

t =0 .t =1, : : : , p+q/, then Lδ̃RB must be a solution of
U ′

t =0 .t =1, : : : , p+q/.
The bias-corrected estimator defined in equation (10) can be shown also to be equivariant

under linear transformations, using the equivariance of the maximum likelihood estimator and
the fact that b.δ/ depends on δ only through the linear predictors.

7.2. Invariance under reversal of the order of categories
One of the properties of proportional odds models, and generally of cumulative link models
with a symmetric latent distribution G.·/, is their invariance under the reversal of the order
of categories; a reversal of the categories along with a simultaneous change of the sign of β
and change of sign—and hence order—to α1, : : : , αq in model (2) results in the same category
probabilities. Given the usual arbitrariness in the definition of ordinal scales in applications this
is a desirable invariance property for the analysis of ordinal data.

The maximum likelihood estimator respects this invariance property, i.e. if the categories are
reversed then the new fit can be obtained by merely using −β̂ML for the regression parameters
and .−α̂q, : : : , − α̂1/ for the cut points.

The reduced bias estimator respects the same invariance property, also. To see this, assume
that we fit the multinomial model with 1 − γrs = G.αk−s − βTxr/ .r = 1, : : : , n; s = 1, : : : , q/
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with α1 <: : : < αq. Because g.·/ is symmetric about zero, G.η/ = 1 − G.−η/, and so γrs =
G.−αk−s + βTxr/. This is a reparameterization of model (3) to γrs = G.Σp+q

t=1 δ′
tzrst/ where

δ′ = .α′
1, : : : , α′

q, β′
1, : : : , β′

p/T = .−αq, : : : , −α1, −β1, : : : , −βp/T. Hence, δ′ =Lδ with

L=

⎛
⎜⎜⎜⎜⎝

0 : : : 0 −1 0
0 : : : −1 0 0
:::

: : :
:::

:::
:::

−1 : : : 0 0 0
0 : : : 0 0 −1

⎞
⎟⎟⎟⎟⎠,

and, using the results of Section 7.1, δ̃
′
RB =Lδ̃RB (and also δ̃

′
BC =Lδ̃BC).

8. Properties of the reduced bias estimator and associated inferential
procedures: a complete-enumeration study

8.1. Study design
The frequentist properties of the reduced bias estimator are investigated through a complete-
enumeration study of 2 × k contingency tables with fixed row totals. The rows of the tables
correspond to a two-level covariate x with values x1 and x2, and the columns to the levels of
an ordinal response Y with categories 1, : : : , k. The row totals are fixed to m1 for x = x1 and
to m2 for x=x2. Alternative 2 in Table 3 is a special case with k = 4, x1 =− 1

2 , x2 = 1
2 , and row

totals m1 = 15 and m2 = 20. The present complete enumeration involves . m1+q
m1

/. m2+q
m2

/ tables.
We consider a multinomial model with

γ1s =G.αs −βx1/, γ2s =G.αs −βx2/ .s=1, : : : , q/, .14/

where α1, : : : , αq are regarded as nuisance parameters but are essential to be estimated from the
data, because they allow flexibility in the probability configurations within each of the rows of
the table.

For the estimation of β we consider the maximum likelihood estimator β̂, the bias-corrected
estimator β̃BC, the reduced bias estimator β̃RB and the generalized empirical logistic transform
β̂EL which is defined in McCullagh (1980), section 2.3, and is an alternative estimator with
smaller asymptotic bias than the maximum likelihood estimator specifically engineered for the
estimation of β in 2 × k tables with fixed row totals. The estimators β̂, β̃BC and β̃RB are the β-
components of the vectors of estimators δ̂, δ̃BC and δ̃RB respectively, where δ= .α1, : : : , αq, β/T

is the vector of all parameters. The estimators are compared in terms of bias, mean-squared
error and coverage probability of the respective Wald-type asymptotic confidence intervals. The
following theorem is specific to 2×k and cumulative link models and can be used to reduce the
parameter settings that need to be considered in the current study for evaluating the performance
of the estimators.

Theorem 1. Consider a 2 × k contingency table T with fixed row totals m1 and m2, and the
multinomial model that satisfies expression (14). Furthermore, consider an estimator δÅ.T/

of δ, which is equivariant under linear transformations. Then, if m1 =m2, the bias function
and the mean-squared error of βÅ.T/ satisfy

E{βÅ.T/−β;β, α}=−E{βÅ.T/+β;−β, α}

and
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E[{βÅ.T/−β}2;β, α]=E[{βÅ.T/+β}2;−β, α]

respectively.

Proof. Define an operator R which when applied to T results in a new contingency table by
reversing the order of the rows of T. Hence, R{R.T/}=T .

Because δÅ.T/ is equivariant under linear transformations, it suffices to study the behaviour
of βÅ.T/ when x1 =− 1

2 and x2 = 1
2 . Then, any combination of values for x1 and x2 results by

an affine transformation of the vector .− 1
2 , 1

2 /, and equivariance gives that a corresponding
translation of the vector αÅ.T/ and change of scaling of βÅ.T/ results in exactly the same fit.
Hence, the shape properties of βÅ.T/ remain invariant to the choice of .x1, x2/T.

Denote with T the set of all possible 2 × k tables with fixed row totals m1 and m2. By the
definition of the model, P.T ;β, α/ = P{R.T/;−β, α} for every T ∈T . Because m1 = m2 there
is a subset E ⊂ T of tables with .y11, : : : , y1k/ = .y21, : : : , y2k/. The complement of E can be
partitioned into the sets F1 and F2 which have the same cardinality, and where T ∈F1 if and only
if R.T/∈F2. For x1 =− 1

2 and x2 = 1
2 , equivariance under the linear transformation φ.β/=−β

gives that βÅ.T/=−βÅ{R.T/}. Then, for any T ∈E , βÅ.T/=0. Hence,

E{βÅ.T/;β, α}= ∑
T �∈E

βÅ.T/P.T ;β, α/ .15/

= ∑
T �∈E ,T∈F1

βÅ.T/[P.T ;β, α/−P{R.T/;β, α}]

= ∑
T �∈E ,T∈F1

βÅ.T/[P{R.T/;−β, α}−P.T ;−β, α/]

=−E{βÅ.T/;−β, α}:

Adding −β to both sides of this equality gives the identity on the bias. For the identity on the
mean-squared error one merely needs to repeat a corresponding calculation to equation (15)
starting from

E[{βÅ.T/−β}2;β, α]= ∑
T �∈E

{βÅ.T/−β}2 P.T ;β, α/+β2 ∑
T∈E

P.T ;β, α/: �

A similar line of proof can be used to show that if m1 =m2 the coverage probability of Wald-
type asymptotic confidence intervals for β is symmetric about β =0, provided that the estimator
S.T/ of the standard error of βÅ.T/ satisfies S.T/=S{R.T/}.

8.2. Special case: proportional odds model
For demonstration purposes, the values of the competing estimators are obtained for a propor-
tional odds model (G.η/ = exp.η/={1 + exp.η/}) with x1 =− 1

2 and x2 = 1
2 and k = 4, for each

of the 400, 3136 and 81796 possible tables with row totals m = m1 = m2, for m = 3, m = 5 and
m=10 respectively. All estimators considered are equivariant under linear transformations and
hence, according to the proof of theorem 1, the outcome of the complete enumeration for the
comparative performance of the estimators generalizes to any choice of .x1, x2/T.

The estimators β̂ and β̃RB are not available in closed form and we need to rely on iterative
procedures for finding the roots of Ut.δ/ and UÅ

t .δ/ respectively, for every t ∈{1, 2, 3, 4}. Fisher
scoring is used to obtain β̂ and the iterative maximum likelihood approach of Section 5.1 is
used for β̃RB. The maximum likelihood estimate is judged satisfactory if the current value δc

of the iterative algorithm satisfies |Ut.δ
c/| < 10−10 for every t ∈ {1, 2, 3, 4}. For β̃RB, the latter

criterion is used with UÅ
t in place of Ut .
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For evaluating the performance of the estimators, the probability of each of the tables has
been calculated under model (14), for parameter values that are fixed according to the following
scheme. The parameter β takes values on some sufficiently fine equispaced grid in the interval
[−6, 0]. For β in the interval .0, 6] the results can be predicted by the symmetry relations of
theorem 1. For each value of β, the nuisance parameters take values .α1, α2, α3/T =e.−1, 0, 1/T

for e ∈ {1, 2, 3, 5, 7}. Fig. 1 is a pictorial representation of the probability settings for the two
multinomial vectors in the 2 × 4 contingency table with fixed row totals, at each combination
of values for β and .α1, α2, α3/T. (The left-hand side of each plot depicts the multinomial
probabilities for x =− 1

2 and the right-hand side the multinomial probabilities for x = 1
2 . The

eight probabilities (four for each x-value) for each particular combination of values for β and
.α1, α2, α3/ are connected with line segments. Hence each piecewise linear function on each plot
corresponds to a specific probability setting for the 2×4 contingency table with fixed row totals.
The plots correspond to particular settings for the nuisance parameters .α1, α2, α3/ determined
by e.−1, 0, 1/, and each plot contains all possible piecewise linear functions for the values of
β on an equispaced grid of size 50 in the interval [−6, 6].) Under the above scheme for fixing
parameter values, the probability of the end categories tends to 0 as e increases, and hence more
extreme probability settings are being considered as e grows.

The findings of the current complete-enumeration exercise are outlined in the following
subsection. The same complete-enumeration design has been applied to various settings, with
m1 �= m2, with different link functions, with different numbers of categories and/or for differ-
ent non-symmetric specifications for the nuisance parameters (the results are not shown here)
yielding qualitatively the same conclusions; the current set-up merely allows a clear pictorial
representation of the findings on the behaviour of the reduced bias estimator. An R script that
can produce the results of the current complete enumeration for any number of categories, any
link function, any configuration of totals and any combination of parameter settings in 2 × k

contingency tables is available in the on-line supplementary material.

8.3. Remarks on the results

Remark 1 (on the estimates of α1, α2 and α3). According to Section 3, for data sets where a
specific category s∈{1, 2, 3, 4} is observed for neither x=− 1

2 nor x= 1
2 , the maximum likelihood

estimate of α is on the boundary of the parameter space as follows:

s=1, α̂1 =−∞;

s=2, α̂2 = α̂1;

s=3, α̂3 = α̂2;

s=4, α̂3 =∞:

At least for log-concave g.·/, according to the results in Pratt (1981), these equations extend
directly to the case of any number of categories and number of covariate settings and can directly
be used to check what happens when two or more categories are unobserved.

Nevertheless, the maximum likelihood estimator of β is invariant to merging a non-observed
category with either the previous or next category and can be finite even if some of the α-
parameters are on the boundary of the parameter space. Hence, maximum likelihood inferences
on β are possible even if a category is not observed. The same behaviour is observed for the
reduced bias estimators of α1, α2 and α3 with the difference that, if the non-observed category
is s = 1 and/or s = 4, then α̃1,RB and/or α̃3,RB are finite. A special case of this observation has
been encountered in Section 6.1 where reduction of the bias corresponds to adding 1

2 to the
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end categories, guaranteeing the finiteness of the cumulative logits. Hence, there is no need for
non-observed end categories to be merged with the neighbouring categories when the reduced
bias estimator is used. If any of the other categories is empty, then the reduced bias estimator
of β is invariant to merging those with any of the neighbouring categories.

It should be mentioned here that if both the second and the third category are empty then
the reduced bias estimate of β and the generalized empirical logistic transform are identical. To
see that, note that, in the special case of logistic regression, the adjusted scores in Section 4.4
suggest adding half a leverage to each of yr1 and yr2 .r =1, 2/ (this result for logistic regressions
was obtained in Firth (1993)). Furthermore, the model with q = 1 is saturated and hence both
leverages are 1. Hence the reduced bias estimate of β coincides with the generalized empirical
logistic transform, which for k =2 is log{.y11 + 1

2 /=.m1 −y11 + 1
2 /}− log{.y21 + 1

2 /=.m2 −y21 +
1
2 /}.

Remark 2 (on β̂ and β̃BC). As is expected from the discussion in Section 3, the maximum
likelihood estimator of β is infinite for certain configurations of 0s in the table, and for such
configurations the bias-corrected estimator is also undefined owing to its explicit dependence
on the maximum likelihood estimator. Hence, for β̂ and β̃BC, the bias function is undefined and
the mean-squared error is infinite. A possible comparison of the performance of β̂ and β̃BC is
in terms of conditional bias and conditional mean-squared error where the conditioning event
is that β̂ has a finite value.

For detecting parameters with infinite values the diagnostics in Lesaffre and Albert (1989),
section 4, for multinomial logistic regressions are adapted to the current setting. Data sets that
result in infinite estimates for β have been detected by observation of the size of the corresponding
estimated standard error based on the inverse of the Fisher information, and by observation of
the absolute value of the estimates when the convergence criteria were satisfied. If the standard
error was greater than 200 and the estimate was greater than 100, then the estimate was labelled
infinite. A second pass through the data sets has been performed, making the convergence
criterion for the Fisher scoring stricter than |Ut.δ

c/|< 10−10. The estimates that were labelled
infinite by using the aforementioned diagnostics further diverged towards ∞ whereas the rest
of the estimates remained unchanged to high accuracy.

The probability of encountering an infinite β̂ for the different possible parameter settings is
shown in Fig. 2(a). For β ∈ .0, 6/ the probability of encountering an infinite value is simply a
reflection of the probability in .−6, 0/ across β = 0. As is apparent the probability of infinite
estimates increases as e increases and for each value of e it increases as |β| increases. As is natural
as m increases, the probability of encountering infinite estimates is reduced but is always posi-
tive.

Of course, the findings from the current comparison of β̂ with β̃BC should be interpreted
critically, bearing in mind the conditioning on the finiteness of β̂; the comparison suffers from
the fact that the first-order bias term that is required for the calculation of β̃BC is calculated
unconditionally. The comparison is fairer when the probability of infinite estimates is small; this
happens on a region around zero whose size also increases as m increases.

The conditional bias and conditional mean-squared error of β̂ and β̃BC are shown respectively
in Fig. 2(b) and Fig. 2(c). The identities in theorem 1 apply also to the conditional and conditional
mean-squared error; to see this set P to be the conditional probability of each table in the proof
of theorem 1. Hence, for β ∈ .0, 6/, the conditional bias is simply a reflection of the conditional
bias for β ∈ .−6, 0/ across the 45◦ line, and the conditional mean-squared error is a reflection of
the conditional mean-squared error for β ∈ .−6, 0/ across β =0.

The behaviour of the estimators in terms of conditional bias is similar, with the maximum
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Fig. 2. (a) Probability of infinite estimates, (b) conditional biases and (c) conditional mean-squared errors
of β̂ ( ) and β̃BC ( ) for the parameter settings that were considered in the complete-enumeration
study
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likelihood estimator performing slightly better than β̃BC for small m. As m increases the bias-
corrected estimator starts to perform better in terms of bias in a region around zero, where the
probability of infinite estimates is smallest. The same is noted for the conditional mean-squared
error. The estimator β̃BC performs better than β̂ in a region around zero, whose size increases
as m increases. The same behaviour as for e=7 persists for larger values of e (the figures are not
shown here).

Remark 3 (on β̂EL and β̃RB). The estimators β̂EL and β̃RB always have finite value irrespective
of the configuration of 0s in the table. Hence, in contrast with β̂ and β̃BC, a comparison in
terms of their unconditional bias and unconditional mean-squared error is possible. Fig. 3(a)
shows the bias function of the estimator for the parameter settings that were considered in the
complete-enumeration study. For β ∈ .0, 6/, the bias function is simply a reflection of the bias for
β ∈ .−6, 0/ across the 45◦ line, and the mean-squared error is a reflection of the mean-squared
error for β ∈ .−6, 0/ across β =0.
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Fig. 3. (a) Biases and (b) mean-squared errors of β̂EL ( ) and β̃RB ( ) for the parameter settings
that were considered in the complete-enumeration study
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The reduced bias estimator performs better than β̂EL in terms of bias for small values of e
and the differences in the bias functions diminish as e increases. A similar limiting behaviour
holds for their mean-squared errors, though, for small values of e, β̂EL performs slightly better
than β̃BR in terms of mean-squared error in the range .−4, 4/ and worse outside that range. The
mean-squared error of both estimators converges to 0 as m increases, which is what is expected
from consistent estimators (see Kosmidis (2007a), section 6.3, for a proof of the consistency of
the reduced bias estimator).

Remark 4 (on the coverage of 95% Wald confidence intervals). For a table T and an estimator
βÅ.T/, consider the nominally 100.1−a/% Wald-type confidence interval for β

βÅ.T/± z1−a=2 SÅ.T/,

where za is the 100ath quantile of a standard normal distribution and SÅ.T/ is the estimator
of the standard error of βÅ.T/. For β̂, β̃BC and β̃RB, SÅ.T/ is taken to be the square root of
the diagonal element of the inverse of the Fisher information corresponding to β, evaluated
at β̂.T/, β̃BC.T/ and β̃RB.T/ respectively. For the estimation of the standard error for β̂EL,
the variance formula that was given in McCullagh (1980), section 2.3, is used. If the maximum
likelihood estimate is infinite then we make the convention that the confidence intervals based on
β̂ and β̃BC are .−∞, ∞/. Fig. 4 shows the coverage probabilities of the four competing intervals
for α = e.−1, 0, 1/T with e ∈ {1, 2, 3, 5, 7}, and for β ∈ [−10, 0]. The coverage probability for
β ∈ .0, 10/ is simply a reflection of the coverage probability for β ∈ .−10, 0/ across β =0.

Wald-type confidence intervals based on the maximum likelihood estimator demonstrate a
conservative behaviour in terms of coverage, and the coverage probability converges to 1 as
|β|→∞. Furthermore, the coverage probability seems to approach uniformly the nominal level
as m increases. The intervals based on the bias-corrected estimator also demonstrate conservative
behaviour in a neighbourhood around β = 0, then tend to undercover for an interval of large
|β|-values and, as for β̂, when |β|→∞ the coverage probability tends to 1.

A more dramatic undercoverage is present for confidence intervals that are based on β̂EL
when |β| is large. Actually after some value of |β| the confidence intervals that are based on
β̂EL completely lose coverage (the full range of the coverage probability is not shown here).
In contrast, those intervals behave satisfactorily around β = 0. This behaviour relates to the
fact that the variance estimator for β̂EL is obtained under the assumption that β = 0 and can
seriously underestimate the variance of β̂EL when |β| is larger than about 1 (the same obser-
vation was also made in McCullagh (1980), section 2.3). Furthermore, it is worth noting
that the point where coverage is lost completely moves closer to zero as m increases. Hence,
use of Wald-type confidence intervals that are based on β̂EL is not recommended in practical
applications.

Apart from being conservative, confidence intervals based on β̃RB seem to behave better
for a wider range of β around zero, but also completely lose coverage after some value of
|β|. The complete loss of coverage for large effects is due to an interplay of discreteness of
the response and the fact that β̃RB and β̂EL take always finite values. Specifically, for any
finite m there is only a finite number of possible Wald-type confidence intervals because the
response is multinomially distributed, and any of those confidence intervals has finite end points.
Therefore, there will always be a sufficiently large value of |β| which is not contained in any of the
confidence intervals, resulting in a complete loss of coverage. Nevertheless, in contrast with β̂EL,
the coverage properties of the Wald-type confidence intervals based on β̂RB improve quickly
and the value where coverage is lost moves quickly away from 0 as m increases. This is because
the cardinality of the set of the possible confidence intervals increases and the approximation
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Fig. 4. Coverage probabilities of nominally 95% asymptotic Wald-type confidence intervals for β based on
(a) β̂ ( ) and β̃BC ( ) and (b) β̂EL ( ) and β̃RB ( ) and the respective standard errors,
for β 2 [�10, 0/ and αDe.1, 0, 1/T for e2{1, 2, 3, 5, 7}

of the necessarily discrete distribution of the reduced bias estimator by a normal distribution
with variance the inverse of the Fisher information becomes more accurate. This results in the
increasing accuracy of the approximation of the distribution of the Wald pivot by a normal
distribution.

As the current study demonstrates, the Wald-type confidence intervals based on any of the
estimators do not behave satisfactorily for the whole range of β and for small sample sizes.
For this reason current research focuses on alternative confidence intervals that can have one
infinite end point (see Section 12). Until conclusive results are produced, Wald-type confidence
intervals based on the reduced bias estimator can still be used in practice as asymptotically
correct, bearing in mind that they will be generally slightly conservative for moderate effects
(like those based on the maximum likelihood estimator) especially in small samples, and also
that their coverage properties will deteriorate for extremely large effects.



Estimation in Cumulative Link Models 189

9. Shrinkage towards a binomial model for the end categories

Table 4 shows the maximum likelihood estimates, the reduced bias estimates and the corres-
ponding estimated standard errors from fitting a proportional odds model and a proportional
hazards model of the form (14) to the artificial data that were considered in the example in
Section 6.2.

There is apparent shrinkage of the reduced bias estimates towards 0, which implies a shrinkage
of the cumulative probabilities towards G.0/. This implies a shrinkage of the probabilities for
the first and the last category of the ordinal scale towards G.0/ and 1−G.0/ respectively, and
a corresponding shrinkage of the probabilities of the intermediate categories towards 0.

To investigate further the apparent shrinkage effect, the maximum likelihood and reduced bias
estimates of proportional odds and proportional hazards models of the form (14) are obtained
for every possible 2 × 6 table with row totals m1 = m2 = 3. This setting is chosen because it is
one that results in sparse tables, allowing the construction of plots of fitted probabilities that
are not massively overcrowded (under this setting there are 3136 tables to be estimated).

For each category of the ordinal response, Fig. 5 shows the fitted probabilities based on
the reduced bias estimator against the fitted probabilities based on the maximum likelihood
estimator. The grey areas are where the points would all be expected to lie if the shrinkage
relationships were strictly satisfied for each pair of fitted probabilities. Clearly this is not so.

The points on the plots for the first category roughly lie slightly above the 45◦ line for fitted
values less than G.0/, and slightly below it for fitted values greater than G.0/. The points for
the last category exhibit similar behaviour but with G.0/ replaced by 1 −G.0/. The shrinkage
effect appears to be stronger the further the probability is from the shrinkage points G.0/ and
1−G.0/.

The points on the plots for the intermediate categories lie mostly under the 45◦ line, except
in cases where the maximum-likelihood-fitted probability is very close to 0. Hence, the fitted
probabilities for the intermediate categories based on the reduced bias estimator tend to shrink
towards 0. The plots also suggest that the further the probability is from 0 the stronger is the
shrinkage effect.

The shrinkage properties that are observed here are a direct generalization of the shrinkage
that is implied by improving bias in the estimation of binomial logistic regression models (Copas,
1988; Cordeiro and McCullagh, 1991; Firth, 1992) to links other than the logistic and to models
with ordinal responses.

Table 4. Parameter estimates and corresponding estimated standard errors (in paren-
theses) from fitting a proportional odds model and a proportional hazards model of the
form (14) to the artificial data considered in Table 3 in Section 6.2, using maximum
likelihood and bias reduction

Model Parameter Maximum Bias reduction
likelihood

Proportional odds β −1.944 (0.895) −1.761 (0.850)
(G.η/= exp.η/={1+ exp.η/}) α1 1.187 (0.449) 1.084 (0.428)

α2 3.096 (0.787) 2.781 (0.701)
α3 ∞ .∞) 4.457 (1.440)

Proportional hazards β −0.689 (0.401) −0.635 (0.389)
(G.η/=1− exp{− exp.η/}) α1 0.313 (0.220) 0.297 (0.219)

α2 1.097 (0.260) 1.013 (0.246)
α3 ∞ .∞) 1.518 (0.357)
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Corresponding empirical investigations of shrinkage based on both complete enumerations
and simulations under models fitted to real data have also been performed but are not shown
here. The results are qualitatively the same: reduction of bias in cumulative link models shrinks
the multinomial model towards a binomial model that has probability G.0/ for the first category
and probability 1−G.0/ for the last category.

10. Simulation study

To illustrate further the properties of the reduced bias estimator in more complex scenarios than
that in the complete-enumeration study of Section 8, a simulation study was set up based on part
of the data that have been analysed in Jackman (2004). The data are publicly available through
the R package pscl (Jackman, 2012) and seem to agree with the data that are available for rater
F1 in the analysis in Jackman (2004). The data contain the score of rater F1 for 106 applications
to the political science doctoral programme at Stanford University along with corresponding
applicant-specific observations. The rater’s score is on a five-point integer-valued ordinal scale
from 1 to 5, with 1 indicating the lowest rating and 5 indicating the highest rating. Consider that
the cumulative log-odds for rating s for the rth candidate is modelled as

log
(

γrs

1−γrs

)
=αs −β1xr1 −β2xr2 −β3zr1 −β4zr2 −β5gr .r =1, : : : , 106; s=1, : : : , 4/,

.16/

where xr1 and xr2 are the rth applicant’s scores on the quantitative and verbal section of the grad-
uate record examinations respectively (after subtracting the respective mean and dividing by the
respective standard deviation), zr1 and zr2 are dummy variables indicating whether the rth ap-
plicant has an interest in American politics and political theory respectively (with 1 representing
a positive and 0 a negative reply), and gr is the gender of the rth applicant .r =1, : : : , 106/. The
parameters α1, : : : , α5 are the cut points and β1, : : : , β5 describe the effect of the corresponding
applicant-specific covariates on the cumulative log-odds.

Model (16) was fitted by using maximum likelihood and the maximum likelihood estimates
of β1, : : : , β5 are 1.993, 0.892, 2.816, 0.009 and 1.215 respectively, indicating that an increase in
the value of any of the covariates is associated with higher probability for high ratings holding
all else in the model fixed. Then an extensive simulation under the maximum likelihood fit is
performed for estimating the biases, mean-squared errors and coverage probabilities of Wald-
type 95% confidence intervals for β1, : : : , β5 when maximum likelihood, bias correction and
bias reduction are used. There have been instances of simulated data sets where one or more
rating categories were empty. In those cases, empty categories were merged with neighbouring
categories according to the discussion in remark 1 of Section 8. The results are shown in Table 5.
There was only one data set for which the maximum likelihood estimate of β3 was ∞. This data
set was excluded when estimating the bias, mean-squared error and coverage probability for the
maximum likelihood and the bias-corrected estimator and hence the corresponding figures in
Table 5 estimate the conditional respective quantities (i.e. given that the maximum likelihood
estimator has finite value). In contrast, the reduced bias estimates were finite for all data sets
and hence the corresponding figures are estimates of the targeted unconditional quantities. In
this particular setting, the probability of the conditioning event is small and a direct comparison
of the estimated conditional and unconditional quantities can be informative.

Temporarily ignoring the fact that the maximum likelihood estimator can be infinite, both
the bias-corrected and the reduced bias estimators perform equally well in the current study.
Furthermore, the figures in Table 5 demonstrate a significant reduction in terms of both bias and
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Table 5. Estimated biases, mean-squared errors MSE and coverage probabil-
ities of 95% Wald-type confidence intervals from a simulation of size 105 under
the maximum likelihood fit of model (16)†

Method Parameter Bias MSE Coverage bias2/variance
(%)

Maximum β1 0.132 0.142 0.943 13.928
likelihood β2 0.055 0.062 0.943 5.203

β3 0.208 0.722 0.947 6.347
β4 0.004 0.630 0.944 0.003
β5 0.077 0.238 0.944 2.569

Bias correction β1 −0.001 0.106 0.948 0.002
β2 0.001 0.051 0.953 0.001
β3 −0.004 0.577 0.954 0.002
β4 0.003 0.551 0.956 0.001
β5 0.001 0.205 0.954 0.000

Bias reduction β1 0.002 0.107 0.949 0.002
β2 0.002 0.051 0.953 0.007
β3 0.002 0.579 0.954 0.001
β4 0.004 0.553 0.956 0.003
β5 0.003 0.205 0.954 0.003

†The last column shows the estimated relative increase in the mean-squared error
from its absolute minimum (the variance) due to bias. The relative increase of the
mean-squared error is the square of the bias divided by the variance. The estimated
simulation error is less than 0.004 for the bias and the MSE-estimates and less than
0.001 for the coverage estimates.

mean-squared error when either bias correction or bias reduction is used. In the current study
the effect of estimation bias is quite significant; the mean-squared errors of the components
of the maximum likelihood estimator are inflated by as much as 13.9% due to bias from their
minimum values (the variances). The corresponding inflation factors for the bias-corrected and
reduced bias estimators are quite close to 0, which when combined with the observed reduction
in mean-squared error illustrates the benefits that the reduction of bias can have in the estimation
of such models. Lastly, a slight improvement in the coverage properties of Wald-type confidence
intervals is observed when the bias is corrected.

Overall and taking into account that the reduced bias estimator is always finite the current
study illustrates its superior frequentist properties from the alternatives.

11. Wine tasting data

The partial proportional odds model of example 1 is here refitted by using the reduced bias
estimator. The result is shown in Table 6. All estimates and estimated standard errors are finite.
A Wald statistic for testing departures from the assumption of proportional odds via departures
from the hypothesis β1 =β2 =β3 =β4 is

W = .Lβ̃RB/TI.δ̃RB/Lβ̃RB,

where

L=
(1 0 0 −1

0 1 0 −1
0 0 1 −1

)
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Table 6. Reduced bias estimates for the
parameters of model (1), corresponding es-
timated standard errors (in parentheses)
and the values of the Z -statistic for the hy-
pothesis that the corresponding parameter
is 0

Parameter Reduced bias Z-statistic
estimate

α1 −1.19 (0.50) −2.40
α2 1.06 (0.44) 2.42
α3 3.50 (0.74) 4.73
α4 5.20 (1.47) 3.52
β1 2.62 (1.52) 1.72
β2 2.05 (0.58) 3.54
β3 2.65 (0.75) 3.51
β4 2.96 (1.50) 1.98
θ 1.40 (0.46) 3.02

is a matrix of contrasts of β. The matrix

I.δ/={LFββ.δ/LT}−1

is the inverse of the variance–covariance matrix of the asymptotic distribution of Lβ̃RB, where
Fββ.δ/ is the β-block of the inverse of the Fisher information. By the asymptotic normality
of β̃RB, W has an asymptotic χ2-distribution with 3 degrees of freedom. The value of W for
the data in Table 1 is 0.7502, leading to a p-value of 0.861, which provides no evidence against
the proportional odds assumption. This is also apparent from Table 6 where the reduced bias
estimates of β1, β2, β3 and β4 are comparable in value.

It is worth noting that, in contrast with the output reported in example 1, the values of the
Z-statistics for α4, β1 and β4 are far from being exactly 0.

12. Concluding remarks and further work

On the basis of the results of the complete-enumeration study, β̃RB appears to be always finite
in contrast with β̂ML and β̃BC, and also to have comparable behaviour with β̂EL in terms of
bias and mean-squared error. Furthermore, Wald-type asymptotic confidence intervals based
on β̃RB behave satisfactorily, maintaining good coverage properties for a wide range of β-values.
A complete loss of coverage is still present but the point where this happens is far from zero
and diverges as the number of observations increases. The application of the current complete-
enumeration set-up for complementary log–log- and probit link functions, for varying values
of the row totals, and for different numbers of categories, resulted in qualitatively the same
conclusions.

In remark 1 of the complete-enumeration study, the finiteness of the reduced bias estimates for
α1 and/or αq was noted even in cases where the first and/or last category of the ordinal variable is
not observed. This behaviour was encountered also in the simulation study of Section 10 and in
all of the many settings where the reduced bias estimator has been applied and is defensible from
an experimental point of view. When the experimenter sets an ordinal scale, the end categories
of that scale largely determine the possible responses. Hence, one might argue that the end
categories should play a bigger role than the intermediate categories in the analysis, and a
good estimation method should not be as democratic as maximum likelihood is in this respect;
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accepting that the ordinal scale is well defined, if an end category is not observed then it seems
more appropriate to inflate its probability of occurrence slightly, instead of setting it to 0 as the
maximum likelihood estimator would do.

The latter point of view does not only apply to non-observed end categories. It applies to all
analyses of ordinal data through cumulative link models and is reinforced by the fact that an
improvement in the frequentist properties of the maximum likelihood estimator resulted in the
shrinkage of the cumulative link model towards a binomial model for the end categories.

These observations, along with the fact that δ̃RB respects the invariance properties of the
cumulative link model and can be easily obtained by using the procedures in Section 5, provide
a strong case for its routine use in the estimation of cumulative link models.

Laara and Matthews (1985) demonstrated the equivalence of continuation ratio models with
complementary log–log-link and proportional hazards models in discrete time. Hence, the re-
duced bias estimates for the regression parameters of the former can be obtained by using the
results in the current paper for the latter.

The investigation of confidence intervals that maintain good properties without suffering
from a complete loss of coverage for extreme effects is the subject of future work. Current
research focuses on the use of profiles of the asymptotic pivot UÅ.δ/T F−1.δ/UÅ.δ/ which can
be shown to have an asymptotic χ2-distribution, and the combination of the resultant intervals
with the profile likelihood intervals. In this way confidence intervals with one infinite end point
are possible and are suggested to accompany the reduced bias estimator which appears always
to take a finite value. Such intervals seem to reflect uncertainty better when extreme settings are
considered and lead to improved coverage properties without loss of coverage.

As is done in Section 11, a comparison of nested models can be performed by using an
asymptotic Wald-type test based on the reduced bias estimator. Another option is the use of
the adjusted score statistic

UÅ.δ̃−/T F−1.δ̃−/UÅ.δ̃−/,

where δ̃− are the estimates under the hypothesis that results in the smaller model, and UÅ.δ/ and
F.δ/ are the vector of adjusted score functions and the Fisher information of the larger model
respectively. The fact that UÅ.δ/ = U.δ/ + A.δ/ where A.δ/ = O.1/ guarantees an asymptotic
χ2-distribution for that statistic. For the example in Section 11 the value of the adjusted score
statistic is 0.9357 on 3 degrees of freedom, giving a p-value of 0.8168 which leads to qualitatively
the same conclusion as that of the Wald test. When testing departures from the proportional odds
assumption in general, the adjusted score statistic has the same disadvantage as the ordinary
score statistic; the Fisher information matrix for the partial proportional odds model can be
non-invertible when evaluated at the estimates of the corresponding proportional odds model.

13. Supplementary material

The accompanying on-line supplementary material includes an R script (R Development Core
Team, 2012) that can be used to produce the results of the complete-enumeration study for
any number of categories, any link function and any configuration of row totals in contingency
tables. The current version of the R function bpolr is also included. The bpolr function
fits cumulative link models and their extensions with dispersion effects either by maximum
likelihood, or bias reduction or bias correction. An updated version of the function will be part
of the next major release of the R package brglm (Kosmidis, 2007b). Scripts that reproduce the
data analyses that were undertaken in the paper are also available in the on-line supplementary
material.
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