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ABSTRACT 

This study investigates the occurrence of road traffic accidents in Great Britain at a national 

scale. STATS 19 data for road accidents, vehicles involved in road accidents and casualties 

occurring over several years were analysed and modelled using various statistical techniques. 

The main aims of this research were to investigate the use of different statistical model 

formulations and to investigate the numbers of road accidents, casualties, and vehicles 

involved that occur on each day. Generalized linear model (GLM), generalized estimation 

equation (GEE), and hierarchical generalized linear model (HGLM) formulations were 

investigated for this purpose. The variables of weekday 3 (weekday, Saturday, Sunday), 

seasons (Spring, Summer, Autumn, Winter), month, time, Public holidays, Christmas 

holidays, new-year holidays, road type and vehicle class, together with certain interactions 

between them, were found to be important in developing models of risk per unit of distance 

travel. Additional variables of distance travelled per vehicle, vehicles per head of population, 

population density, meteorological factors were also investigated, and population, age group 

and gender were used to develop models of casualty rate per person-year.  

 

The GLM model structure with log link function was found to fit data for the occurrence of 

road accidents reasonably well when the negative binomial distribution was adopted to 

accommodate over-dispersion beyond Poisson levels. The GEE with negative binomial error 

together with autoregressive (AR1) structure was preferred over the GLM as it can also 

accommodate serial correlation that was found to be present in the data due to the natural 

order of the observations. The coefficients and significance levels of some variables were 

found to change significantly if the presence of serial correlation is not respected. Finally 

HGLM with Poisson-gamma errors and log link function was used to estimate the number of 

casualties involved in road accidents on each day. The advantage of HGLM over GLM and 

GEE is that it can account for variability within and between clusters using both random 

effects and dispersion modelling: this was found to be substantial. However, unlike GEE, 

HGLM cannot accommodate time series structure so that the coefficients and the associated 

standard errors of some of the variables should be viewed with caution.   

 

From the model results, it is found that distance travelled provided a good measure of 

exposure to risk in most cases, and that each of distance travelled per vehicle, population 

density and rain is associated with greater risk for road accident per unit of travel whereas 
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risk diminishes with increase in each of numbers of vehicles per person and mean minimum 

monthly temperature. The risk per unit of travel was also estimated for each of 5 classes of 

vehicles on each of 5 different kinds of roads. Finally the age and gender specific rate of 

casualty per person-year was estimated for each combination of age group and gender. The 

results obtained from this study will lead to the promotion of safe usage of road and vehicle 

class combinations by raising travellers’ awareness. On the other hand the casualty rates 

estimated for each of the 8 age groups and two gender groups by vehicle class will help to 

identify those that need more attention. These results will help various educational, planning, 

and rescue agencies to identify target groups for education and engineering initiatives to 

improve road safety. 
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GLOSSARY 

 
In the light of the particular usage in this thesis of certain terms, the following glossary is 

provided to clarify this.  

 

Circumstantial variables: These variables represent the characteristics of transport activity 

in a region in a sacle-free way. The variables of population density, number of vehicles per 

head of population, number of vehicles per kilometre of road length, number of vehicles per 

square kilometre of surface area and ratio of each road class to total road length are termed as 

circumstantial variables. 

 

 

Risk: measure of accident involvement per vehicle kilometre of distance travelled. 

 

 

Rate: measure of accident involvement per person-year. 
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1. INTRODUCTION 

1.1   GENERAL BACKGROUND 

 

Every year more than a million people die in road traffic accidents worldwide, and 50 million 

are injured. This is likely to increase by 65 percent over the next 20 years due to rapid 

increase in motor vehicle ownership and usage in large developing countries. For this reason, 

traffic accidents are one of the world’s largest public health problems. The problem is all the 

more acute because the victims are overwhelmingly young and healthy prior to accidents 

(World Health Organization, 2004). According to World Health Organization (WHO) 

projections, by 2020 road traffic accidents will account for 2.3 million deaths worldwide, 

with over 90 percent occurring in low and middle income countries.  

 

Road safety is one of the main issues in transportation. In many higher income countries the 

number of road fatalities has decreased in the last 20-25 years due to the application of 

systematic approach to improve road safety (International Traffic Safety Data and Analysis 

Group, 2008). The Organisation for Economic Co-operation and Development (OECD) 

countries, which include most of the industrialised countries, have achieved considerable 

success in improving road safety by applying proper road accident countermeasures including 

education, engineering and enforcement. In industrialised countries, availability of accurate 

road accident data is regarded as an essential starting point for this work. By using available 

road accident data, suitable remedial measures can be devised and appropriate strategies 

planned by identifying the key target groups for reducing road accidents. The data of the 29 

member countries of OECD, which is available from the International Traffic Safety Data 

and Analysis Group in the form of the International Road Traffic and Accident Database 

(IRTAD), show reduction of about 12 percent in road fatalities in 2008 by comparison to 

2005. The latest data released by IRTAD (2010) shows that in 2008 Spain, Israel, Denmark, 

United Kingdom and Slovenia achieved substantial reductions in the number of road 

fatalities.  

 

In Great Britain substantial reduction from 5,953 road accident deaths in 1980 to 1,850 in 

2010 is observed (Department for Transport, 2011). Successive UK Governments have 

committed substantial efforts and resources to reduce the number of road accidents and 

casualties by increasing awareness among people and by applying safety intervention 
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programmes across the whole country. According to the 2008 OECD data, Great Britain is 

considered to have a good road safety record as it is ranked 3
rd

 in the OECD countries for 

having the lowest number of persons killed per million population in road accidents. There 

were only 4.3 persons killed per 100,000 population and 5 persons killed per billion vehicle 

kilometres of travel. Iceland and Netherlands were found to be safer per head of population 

whilst Iceland has the lowest number of road accident deaths per billion vehicle kilometres. 

The comparison of the deaths per 100,000 population of the OECD countries is shown in 

Figure 1.1, which shows that scope still exists for further effort to reduce the number of road 

accidents in Great Britain. 

 

 

1.2  NEED TO STUDY ROAD SAFETY 

  

Road safety research is the scientific study of road and traffic systems with the main aim of 

finding ways of reducing the number of road accidents and their severity. It is also of 

considerable importance to the economy of the country. In economic terms the cost of road 

traffic injuries is estimated to be 1 percent of the gross national product (GNP) of low income 

countries, 1.5 percent in middle income countries and 2 percent in high income countries. It 

was also estimated that the global cost of road traffic accidents is $518 billion per year 

(Jacobs, 2000). In Great Britain 1,730 fatal accidents, 20,440 serious accidents, and 132,243 

slight accidents were reported in 2010. The total benefit value of prevention of personal 

injury road traffic accidents was estimated to be £10.6 billion. In addition to this, there were 

2.3 million damage-only accidents valued at a further £4.4 billion. Hence the total value of 

the prevention of all road accidents in 2010 was estimated to be £14.9 billion based on 2009 

prices and values (Department for Transport, 2011). 

 

1.3   MATHEMATICAL MODELLING OF ROAD ACCIDENTS 

 

The number of road accidents can be modelled by using various techniques to identify the 

relationship of different variables with number of road accidents so that insights can be 

obtained for improving road safety and suitable safety intervention programmes can be 

developed. This section gives an overview of the techniques that have been used by various 

researchers for modelling the number of road accidents and problems this entails.  
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Figure 1.1: Number of people killed per 100,000 population in OECD countries (2008) 
 

 

                                     Source of data: International road traffic and accident dataset (2010) 

 

1.3.1 Multiple regression, Poisson, and negative binomial regression 

 

In earlier research, relationships between road accidents and other variables have been 

estimated by using the conventional ordinary least square multiple regression techniques. 

This method assumes that the dependent variable is continuously and normally-distributed 

with a constant variance. The conventional multiple linear regression technique lacks the 

distributional property necessary to adequately describe random, discrete, and non-negative 

events such as road traffic accidents. Various authors including Miaou (1993), and Miaou and 

Lum (1993) have shown that the test statistics derived from these models are not always 

reliable. In other studies by Maycock and Hall (1984), Hall (1986), Hadi et al (1995), and 

Anis (1996) significant advances have been made to describe traffic accident count data and 

to produce more accurate and reliable models through the use of Generalized Linear Models 

(GLMs) with log-linear form, and Poisson and negative binomial distributions.  

 

Maher and Summersgill (1996) found that variance of the count data is generally higher than 

the mean. The extra variation is known as over-dispersion. When using Poisson regression in 

the presence of over-dispersion, model parameter estimates will still be close to their true 

values but their variance of estimation will tend to be underestimated and the significance 
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levels of the estimated coefficients will therefore be overstated. In order to overcome the 

over-dispersion problem Abdel-Aty and Radwan (2000), Guevara et al (2004), and McCarthy 

(2005) among many others have adopted the negative binomial distribution which allows the 

variance to exceed the mean. 

 

1.3.2 Problems with count/ panel/ national accident datasets 

 

According to Sittikariya and Shankar  (2005) two important issues that arise in the analysis of 

count data of this kind are serial correlation, which arises because the data are in time series, 

and excessive zeros. Time-series and repeated observations of multiple years of cross-

sectional data on road accident occurrence are often available in the public domain, including 

time-series information on traffic volumes, road accident counts, and roadway geometrics. 

This then conforms to repeated observations of several random variables and hence to the 

concept of panel data. 

 

In modelling the frequency of road traffic accidents, both of these two problems may occur. 

Researchers have adopted various techniques to address them. 

 

1. In the presence of repeated observation effects or serial correlation, the efficiency of 

parameter estimates comes into question. Wang and Abdel-Atey (2006), and Lord and 

Persaud (2000) used Generalized Estimating Equations (GEE) to accommodate serial 

correlation in data for modelling the number of road accidents.   

  

2. The presence of excess zeros in the data may also lead to inaccurate results. This 

problem was solved by zero inflated Poisson and zero inflated negative binomial 

models by Shankar et al (1997). This technique deals with over-dispersion that can 

arise due to excessive zeros from many sites at which no accidents are observed.  

 

1.4   DATA REQUIRED TO STUDY ROAD SAFETY 

 

The availability of accurate and comprehensive data related to road accidents can promote 

improvements in road safety. The interpretation of the data can lead to better identification 

and understanding of problems, and hence will assist in developing and evaluating 

appropriate road safety remedial measures. Road safety professionals require information 
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about large numbers of road accidents to identify hazardous locations or to identify groups of 

people who are at higher risk of being involved in road accidents. This will lead to the 

formulation of plans to improve road safety for target locations and groups.  

 

The need and importance of having road accident data prompts authorities to design road 

accident data collection, management, and retrieval system for road accident data. Transport 

authorities are responsible in most countries to decide which types of data to be collected, 

coded and managed in the database. The following information is typical of that collected by 

authorities to describe road traffic accidents: 

 

 Where the road accident occurred: road name, road classification, type of traffic 

control, location coordinates; 

 When the road accident occurred: Time of day, day of the week,  month, year; 

 Who was involved: vehicles, people, roadside objects; 

 What was the result of the road accident: fatal, personal injury, property damage; 

 How the road accident occurred. 

 

The road accident data can be used by many professionals in various ways. In general, 

potential users of road accident data will include the following: 

 

 Road safety engineers for the purpose of improving elements of the road network and 

developing remedial traffic measures; 

 Groups that have responsibility of improving road safety education;  

 Police in relation to enforcement activities such as the location of officer patrols and 

speed cameras and other priorities;  

 Researchers may need to conduct rigorous investigation to identify target locations, 

activities, and groups; 

 Lawyers for compensation for injuries and other losses; 

 Vehicle and infrastructure manufacturers may wish to assess the safety performance 

of their product. 

 

The most widely available source of road accident data is based upon police report forms. In 

most countries the site of the road accident is attended by a police officer, which results in the 
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production of a road accident report. Road accidents do not always fit standard formats so 

that a road accident report form will not always describe completely every road accident that 

has occurred. The training and motivation as well as experience and skills of the police 

officer are also important in recording the details accurately. Notwithstanding this, police 

reports remain the best source of national road accident data in most countries. Data obtained 

from police reports generally inform us about the where, when, who and what questions but 

tells us little about how and why the road accident occurred. In some countries such as Great 

Britain there is also some additional information available that can lead to an understanding 

of the contributory factors involved in a road accident: since 2005, a choice of up to 6 factors 

from a range of 76 have been recorded for each road accident as part of the British STATS 19 

national data system for road accidents reported at scene by the police. Each factor is 

associated with one of nine groups that are mostly classified according to the three elements: 

road environment, vehicle defects, and user (Department for Transport, 2011). 

 

These road accident recording datasets are available in various countries but their potential 

use in modelling road accidents at national level has rarely been explored. The road accident 

models developed by using these datasets will help to summarise national trends in road 

accident occurrence. National and local authorities can use these models to identify important 

factors that contribute to road accidents and appropriate target groups for attention. Remedial 

policies can then be developed accordingly. The development of road accident prediction 

models from national road accident datasets can lead to better understanding of the road 

accidents. This research opportunity is developed in the present thesis with the ultimate 

intention to help improve road safety policy and practice in Great Britain and with the 

possibility of transferring the resulting methodology to other countries.  

 

1.4.1 Road accident reporting system in Great Britain 

 

In Great Britain, police complete a STATS 19 form (Department for Transport, 2010) for 

each road accident involving personal injury that occurred on a public highway and that 

becomes known to the police within 30 days of its occurrence. Personal injury road accidents 

statistics were first collected in 1909, and the new system of collecting information known as 

STATS 19, was introduced in 1949. Information about the road accident, vehicles involved, 

and casualties is collected. Data is collected each month from police forces throughout the 

year. Road accidents are coded by local authorities and sent to the Department for Transport 
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which compiles and maintains data. The results are published for local authorities, police 

forces, regions, and for Great Britain. These results are used extensively for research to 

influence road safety improvements. STATS 19 data is also extensively used by the following 

organisations: 

 

1. Department for Transport (DfT), Scottish Executive (SE) and National Assembly for 

Wales (NAfW) annual statistics on road accidents and casualties; 

2. In local authorities engineers use STATS 19 data to identify priority sites for remedial 

measures; 

3. Road safety officers develop national and local education and training programmes 

based on evidence gathered from the data; and 

4. The police use these data for tactical deployment of patrols in order to reduce the 

number of casualties. 

 

1.4.2 United Kingdom road safety plans 

 

The UK Department for Transport (DfT) has the responsibility for developing road safety 

policy of the United Kingdom. The UK road safety strategy is comprehensive, covering ten 

priority themes which are: safer for children, safer drivers (training and testing), safer drivers 

(alcohol, drugs and drowsiness), introduce new measures to reduce drink-driving, develop 

more effective ways to tackle drug-driving, safer infrastructure, safer speeds, safer vehicles, 

better enforcement and promoting safer road use (Department for Transport, 2010). 

 

By 2010, the UK government planed to achieve, compared with the average for 1994-98; 

 

 40 percent reduction in number of people killed or seriously injured in road accidents;  

 50 percent reduction in numbers of children killed or seriously injured; and  

 10 percent reduction in slight casualty rate, expressed as the number of people slightly 

injured per 100 million vehicle kilometres; 
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By comparing the 2010 road accident data (DfT, 2011) with the 1994-98 average, it is 

observed that in 2010: 

 

 The number of persons killed was 48 percent lower; 

 The number of children killed or seriously injured was 64 percent lower;  

 The slight casualty rate was 32 percent lower; 

 In contrast the traffic rose by 13 percent over this period. 

 

From this, we see that the 2010 annual data met all of the casualty reduction targets that were 

set for year 2010.  

 

The Department for Transport also evaluates the road safety programme. Routine monitoring 

is carried out annually, and formal programme reviews are planned to be carried out every 

three years. General monitoring indicators are: the number of road accidents and casualties by 

severity and by road user group, drink-driving, use of seatbelts, use of cycle helmets, speed, 

road user attitudes by means of surveys, and other ad hoc surveys. Other indicators that are 

monitored are: traffic volume by vehicle type, travel patterns, modal split, vehicle 

registrations, driving test volumes and pass rates. Cost/benefit studies of various measures are 

an integral part of programme evaluation. 

 

The road accident data systems and road safety improvement plans of several OECD 

countries are described in Appendix A1.1 and A1.2. Figure 1.2 shows the comparison of the 

road safety targets of some of the OECD countries which indicate that most of the countries 

had targets of a 40 percent or higher reduction in the number of fatal and serious injuries. 

From Figure 1.2, it can be seen that Great Britain had target of a 40 percent reduction in the 

number of fatal or serious injuries by 2010 from the base year average of 1994-1998 whereas 

Finland had a target of a 75 percent reduction in fatalities by 2025 from the base year of 

1996. 
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Figure 1.2: Comparison of the road safety targets of some of OECD countries 

 

Source of data: International road traffic and accident dataset (2010) 

 

1.5   AIMS AND OBJECTIVES OF THE RESEARCH 

 

The aim of the present research is to develop road accident prediction models that can 

describe and accurately estimate the number of road accidents, casualties, and vehicles 

involved in road accidents in Great Britain at an aggregate (national) or at a disaggregated 

level, such as police force area, by using the national road accident dataset of STATS 19. 

Statistical models of this kind embody the relationship between number of road accidents and 

other variables such as day of week, month, time, holidays, total distance travelled, number 

of vehicles per head of population, population density, road class, vehicle type, age, gender, 

and various meteorological factors. These relationships can thereby be explored and better 

understood. It is to be noted that the selection of these variables is limited due to the nature of 

the STATS 19 data, although information from other datasets (national travel survey data, 

population and meteorological data) that are available at national scale are also used here. 

 

A methodological aspect of this research is to identify suitable techniques to model the 

number of road accidents occurring on each day by combining the data available in the 

accident, casualty, and vehicle sections of STATS 19 along with other related available data. 

From the results, the risk per unit of exposure can also be estimated which can be used to 

identify target groups for improvements in road safety. By examining the safety record of 

different kinds of vehicle on different kinds of road and the corresponding amount of use, the 

range of risks of different road and mode usage combinations can be estimated. The results of 
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this research will support advice to travellers and will help various planning and rescue 

agencies to develop road safety intervention programmes. This will also enable agencies to 

allocate their resources in a better way by anticipating how many road accidents are likely to 

occur on each day throughout the study area for various road classes, vehicle classes, gender, 

and age groups.  

 

The following specific objectives are identified for the research of this thesis: 

 

1. To investigate the number of road accidents on each day in Great Britain, the casualties 

incurred and vehicles involved. This will involve combined use of the national road 

accident dataset (STATS 19), national travel survey data (NTS), population data, and 

meteorological data of Great Britain.  

 

2. To determine the relationship between number of road accidents and different variables 

available in accident, casualty, and vehicle sections of the STATS 19 dataset.  

 

3. To evaluate the performance of various statistical models developed according to the 

principles of the generalized linear model (GLM), generalized estimation equation (GEE) 

and hierarchical generalized linear model (HGLM), and based on this to identify the 

properties and relative merits of these modelling approaches.  

 

4. To compare the risk per unit of distance travelled for different combinations of vehicle 

class and road type, and casualty rate per person-year for gender and age group.  

 

 

1.6   STRUCTURE OF THE THESIS 

 

In this thesis a range of statistical modelling techniques are considered that are used to 

estimate the numbers of road accidents, vehicles involved and casualties. This entails analysis 

of different outcomes, reported by different response variables giving the number of road 

accidents, vehicles and casualties occurring during various time periods such as day of the 

week or month. In chapters 2 and 3, the number of road accidents is used as the response 

variable whilst data from the national travel survey (NTS), population data, and 

meteorological data are used jointly as explanatory variables. Important information about the 
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road type, vehicles class, age and gender of casualties is included in STATS 19 data, but not 

within the accident section. In order to use this information, vehicles and casualty sections of 

STATS 19 data are combined with information in the accident section. Due to this, the 

number of vehicles involved in road accidents on each day is used as response variable in 

Chapter 4 and the number of casualties in road accidents on each day in Chapter 5.  

 

The modelling techniques used for this start from Generalized Linear Model (GLM) with 

Poisson and negative binomial regression, which is well established. After this, more 

advanced modelling methods are investigated. These are Generalized Estimation Equation 

(GEE) with auto-regressive (AR1) error structure to account for serial correlation, and the 

Hierarchical Generalized Linear Model (HGLM) with Poisson-gamma distribution which 

allows for the joint modelling of mean and dispersion. The purpose of this is to investigate 

the benefits of different methods and identify the scope and reliability of these models. In this 

thesis the datasets used are shown in Table 1.1 and the statistical modelling techniques are 

shown in Table 1.2.  

 

This thesis is organized in six chapters. Tables and figures are presented in the body of the 

text where appropriate. Fully detailed results from the selected models are presented in 

appendices.  

 

This first Chapter has introduced the background, aims and objectives, and provides an 

overview of the study. 

 

Chapter 2 provides a background for modelling the number of road accidents occurring on 

each day in Great Britain at national and police force levels. The STATS 19 National 

accident dataset from 1991 to 2005 is used for this study. In addition to this, various other 

datasets such as population and population density obtained from the UK Statistics Authority, 

total distance travelled, number of vehicles, length of various road classes that were obtained 

from the Department for Transport (DfT) has been used. Variables derived from these were 

included into models to characterise transport activity of a region rather than describe its size. 

Two different datasets are prepared, each representing the road accidents on each day in 

Great Britain and in each of the 51 police force areas, each of which represents a group of 

local authorities. A Generalized Linear Model (GLM) with each of Poisson and negative 

binomial regression, and Generalized Estimation Equation (GEE) having auto-regressive 
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(AR1) negative binomial error structure is used to model these road accidents. Comparison of 

the results estimated by these techniques was carried out to explore which technique is 

appropriate for the data. The explanatory variables used for this are weekday 3 (weekday, 

Saturday, Sunday), season (Spring, Summer, Autumn, Winter), interaction of weekday 3 and 

season, month, time, Public holidays, Christmas holidays, new-year holidays, distance 

travelled per vehicle, population density and vehicles per head of population. The total 

distance travelled on each day is used as an offset variable to represent the exposure to risk. 

 

Chapter 3 analyses the effect of meteorological factors on the occurrence of road accidents. 

The meteorological data obtained from Meteorological Office, UK, is used jointly with the 

STATS 19 accident data for the period 1991 to 2005. The numbers of road accidents 

occurring each month in 17 police force areas is used due to limitations on the availability of 

meteorological data. The Generalized Linear Model (GLM) and Generalized Estimation 

Equation (GEE) having AR1 error structure with negative binomial regressions are used for 

this. The explanatory variables used were month, time, population density, vehicles per head 

of population, mean minimum monthly temperature and amount of monthly rainfall. Total 

distance travelled in a month is used as offset to represent the exposure to risk. 

 

Chapter 4 extends the use of the STATS 19 national accident dataset by linking the accident 

section with the vehicle information section for the years 2001 to 2005 to add road and 

vehicle type information. The numbers of vehicles involved in road accidents each day on 

each road class are extracted from the combined dataset produced for this study. Information 

about vehicle kilometres travelled by each group is obtained from the Department for 

Transport (DfT). The Generalized Linear Model (GLM) and Generalized Estimation 

Equation (GEE) having AR1 error structure with negative binomial regressions are used to 

estimate the number of vehicles involved in road accidents on each day. The variables of road 

class, vehicle class, weekday 4 (with 4 levels), season, interaction of weekday 4 and season, 

month, time, Public holidays, new-year holidays, Christmas holidays, interaction of road type 

and vehicle class, and variable representing the leisure motorcycling (MC-Rural-Sunday) are 

used. The distance travelled on each day was adopted for use as offset in these models to 

represent the exposure to risk. 

 

Chapter 5 further extends the use of STATS 19 by joining the accident section with the 

casualty information section for years 2001 to 2005 to add age and gender information. 
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Casualties of all classes and severities were considered. This combination enables the 

addition of the parameters of gender, age group, and vehicle class to model the number of 

casualties in road accidents on each day across whole of Great Britain. The information about 

the population of each group was obtained from UK Statistics Authority whereas distance 

travelled by each age group by gender and vehicle class was obtained from the DfT. Five 

different datasets are used, each representing casualties by vehicle class. The Generalized 

Estimation Equation (GEE) having AR1 error structure and Hierarchical Generalized Linear 

Model (HGLM) methods are used to estimate the number of road casualties occurring each 

day by gender, age group and vehicle class. The variables of age group, gender, interaction of 

age group and gender, day of week, month, time, Public holidays, new-year holidays and 

Christmas holidays are used. In these models, population is used as an offset. The results 

estimated by GEE-AR1 and HGLM techniques are compared. 

  

Chapter 6 summarises all the findings, draws some conclusions in respect of statistical 

methodology that has been used here and also in respect of road safety in Great Britain, 

discusses the implications for road safety research and policy. This leads to the identification 

of possibilities for future work.  
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Table 1.1: Datasets used in this Thesis 
D

at
as

et
 

C
h
ap

te
r  

Description 

No of 

observations 

Time period 

1 2 Number of road accidents on each day in Great Britain 5,479 1991-2005 

2 2 Number of road accidents on each day in each of 51 

police forces of Great Britain 

279,429 1991-2005 

3 3 Number of road accidents during each month in each 

of 17 police forces of Great Britain 

3,060 1991-2005 

4 4 Number of vehicles involved in road accidents on each 

day by road and vehicle combination 

43,824 2001-2005 

5 5 Number of (Car) casualties involved in road accidents 

on each day by age and gender combination 

29,216 2001-2005 

6 5 Number of (Walking) casualties involved in road 

accidents on each day by age and gender combination 

29,216 2001-2005 

7 5 Number of (Bicyclist) casualties involved in road 

accidents on each day by age and gender combination 

29,216 2001-2005 

8 5 Number of (Motorcyclists) casualties involved in road 

accidents on each day by age and gender combination 

29,216 2001-2005 

9 5 Number of (Bus) casualties involved in road accidents 

on each day by age and gender combination 

29,216 2001-2005 

 

Table 1.2: Models used in this Thesis 
 

Chapter Model 

 

Description 

 

Features 

 

2,3,4 

GLM 

 

GEE 

Log-Linear Poisson 

Log-Linear negative binomial 

GEE with auto regressive AR1 

 

Allows for over-dispersion 

Accommodates serial correlation  

 

5 

GEE 

HGLM 

GEE with auto regressive AR1 

Log-Linear Poisson and Gamma  

random effects 

Accommodate serial correlation 

Includes random effects and models  

variance 

GLM (Generalized Linear Model), GEE (Generalized Estimation Equation), HGLM (Hierarchical Generalized 

Linear Model) 



29 

 

2. MODELLING ROAD ACCIDENTS OCCURRENCE  

2.1  INTRODUCTION 

 

Road accidents are complex events involving the interaction of many factors (RoSPA, 2007). 

These factors include roads, vehicles, drivers, traffic, and environment. A lot of research has 

been done relating the number of road accidents to traffic flow and the geometric condition of 

the road. However, fewer attempts have been made to relate the number of road accidents to 

the day of week and month of year to find their effect on the occurrence of road accidents 

(Fridstrom et al, 1995; Leveine, et al, 1995). 

 

In this chapter, we explore the relationship in the national data between road accidents, 

distance travelled, timing and circumstances of the road accidents as recorded in STATS 19 

data. The Generalized Linear Model (GLM) (Nelder and Wedderburn, 1972) with each of 

Poisson and negative binomial regression and the Generalized Estimation Equation (GEE) 

(Liang and Zeger, 1986) having auto-regressive (AR1) error structure with negative binomial 

are used to model the number of road accidents occurring on each day in Great Britain and 

the results obtained by these are compared.  

 

The Department for Transport, Local Government and Regions report (2001) and analysis of 

the road accidents data in STATS 19 format for Great Britain are shown in Table 2.1. This 

shows that there is no simple relationship between road accident frequencies and amount of 

travel as measured in either number of trips or distance travelled. It is seen that despite 

having highest number of road accidents per day, November does not have the highest 

exposure to risk as represented by either number of trips or distance travelled. In August 

fewer road accidents occur but greater distances are travelled, mainly for holiday and day-trip 

purposes, whereas school holidays at this time mean much less distance is travelled for 

education purposes (DTLR, 2001).  

 

Table 2.1 further shows that weekdays have a greater number of road accidents than weekend 

days, and although they have a greater number of trips per day, they have less distance 

travelled than on weekend days. At weekends, greater distances are travelled for shopping 

and entertainment/public activity or day trip purposes (DTLR, 2001). From this information it 

can be seen that the number of road accidents occurring is not proportional to either the total 
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number of trips made or distance travelled during that time period. From this, we conclude 

that the risk of road accident occurrence varies according to circumstances whether it is 

measured by trip or by distance travelled.  

 

Table 2.1: Trips made, distance travelled, and number of road accidents (1992-2000) 
 

          Source of data: Department for Transport (2001) 

*Figures in brackets show ranking 

 

The variation in number of road accidents occurring on different days of the week and month 

as shown in Table 2.1 and analysis of STATS 19 data emphasizes that detailed research is 

required to develop a model that can accurately describe the number of road accidents 

occurring on each day. With this approach, important variables affecting the number of road 

 

 Average  number of road accidents, average  trips and average  distance travelled  on each 

day by month of the year, 1992-2000 
 

 
Jan Feb Mar April May June July August Sept Oct Nov 

 

Dec 

 

Average 

number  of 

road 

accidents 

/day 

605 

(11) 

608 

(9) 

599 

(12) 

606 

(10) 

625 

(8) 

 

646 

(5) 
 

641 

(6) 

628 

(7) 

664 

(4) 

685 

(2) 

729 

(1) 

670 

(3) 

Trips 

made 

/day 

 

2.65 

(11) 

 

3.07 

(1) 

 

2.84 

(8) 

 

2.83 

 ( 9) 

 

2.90 

(= 5) 

 

3.03 

(2) 

 

2.90 

(= 5) 

 

2.74 

 (10) 

 

3.0 

(3) 

 

2.90 

(= 5) 

 

2.96 

(4) 

 

2.54 

(12) 

Average 

distance 

travelled / 

day 

(km) 

 

 
24.16 

(12) 

 

 
26.65 

(10) 

 

 
27.2

6 (9) 

 

 
30.87   

 (4) 

 

 
29.87 

(6) 

 

 
30.6 

(5) 

 

 
31.58 

(2) 

 

 
33.35 

(1) 

 

 
31.17 

(3) 

 

 
29.29 

(7) 

 

 
27.9 

(8) 

 

 
25.84 

(11) 

 

Average  number of road accidents, average  trips and average  distance travelled on each 

day of the week,  1992-2000 
 

 

Monday 

 

Tuesday 

 

Wednesday Thursday Friday Saturday Sunday 

Average 

number of 

road 

accidents 

/ day 

638 (5) 650 (4) 658 (3) 679 (2) 755 (1) 625 (6) 489 (7) 

Trips 

made 

/ per day 

2.86 (= 5) 3 (= 2) 3 (= 2) 3 (= 2) 3.14 (1) 2.86 (= 5) 2.14 (7) 

Average 

distance 

travelled/ 

day (km) 

27.43  (= 6) 27.43 (= 6) 28.29  (= 4) 28.29  (= 4) 31.57 (2) 32.43  (1) 28.57 (3) 
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accidents can be identified. This will help to establish how the number of road accidents in 

Great Britain can be reduced so that suitable safety intervention programmes can be 

developed accordingly by planning organisations. So an investigation of the occurrence of 

road traffic accidents at the national scale was carried out in the present study to: 

 To identify the relationship between the number of road accidents and variables 

available in the national dataset; 

 To identify those variables associated with the variation in number of road accidents; 

and 

 To evaluate the performance of various statistical modelling formulations. 

This chapter is organized as follows. Section 2.2 reviews the literature about the Generalized 

Linear Model (GLM) and Generalized Estimation Equation (GEE). Section 2.3 briefly 

describes the data used for this study. Section 2.4 briefly analyses the data. Section 2.5 

presents the process of model development and the basic structure of the model. Section 2.6 

shows the model selection process, the results obtained from the developed models, goodness 

of fit and model checks. Finally some concluding remarks are given in Section 2.7. 

 

2.2   LITERATURE REVIEW 

 

There are several techniques available to model the number of road accidents. In earlier 

research, the relationship between road accidents and other variables was found by using a 

conventional multiple regression technique. A standard linear regression model was mostly 

used for modelling road accidents before the widespread availability of the Generalized 

Linear Model (GLM). Linear regression is based upon following assumptions: 

   

 The response variable follows a normal or Gaussian distribution; 

 The variance is constant over the observations in the model; 

 The linear predictor is used directly to calculate the fitted values of the model; and 

 The relationship between dependent variables and explanatory ones is linear. 

 

The standard linear regression model is not appropriate when it is unreasonable to assume 

that data are normally distributed. Thus conventional linear regression models lack the 

distributional properties to describe adequately random, discrete, non-negative vehicle 
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accident events on the road as described by Maycock and Hall (1984), Jovanis and Chang 

(1986), Joshua and Garber (1990), and Miaou and Lum (1993) and many others. 

 

2.2.1 Generalized Linear Model (GLM) 

 

The theory of generalized linear models was first developed by Nelder and Wedderburn 

(1972). In these models the response variable is taken to be distributed according to a 

member of the exponential family of probability distributions. Members of this family 

include the Gaussian or normal, binomial, Poisson, gamma, inverse Gaussian, geometric, and 

negative binomial distributions. These models are based on a linear predictor which is a 

quantity calculated as a weighted linear combination of explanatory variables. It was found 

that by restructuring the relationship between the linear predictor and fitted values, non-linear 

relationships could be modelled. These models are known as generalized linear models 

(GLMs). This facilitates extension of classical linear models in respect of the various 

assumptions that all observations are independent or uncorrelated, the distribution followed is 

normal and the error term has constant variance. Nelder and Wedderburn (1972), Hilbe 

(1993), Francis (1993), and Green and Payne (1993) characterised generalized linear models 

by: 

 

1. a random component for the responses, y, which has a distribution following the 

exponential family; 

2. a systematic component expressed in the form of the linear predictor, 'η x β   and 

calculated from the product of the vector x  of explanatory variables with the 

associated vector  β   of  parameters to be estimated; 

3. a known monotonic, one-to-one, differentiable link function  .g  relating the linear 

predictor to fitted values. 

 

According to this formulation, the generalized linear model can be expressed as:  

μ εi i iy          1,........,i N      (McCullagh and Nelder, 1983, 26-27, ff)                           2-1 

where μ i  
is the expected value of observation i and is related to ηi  by 

 η μ ,i ig  

 g  is the link function and ε i  is the random component. 
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The model describes ηi  in the form of the linear predictor 

'ηi i x β                     (McCullagh and Nelder, 1983, 26-27, ff)                         2-2 

where ix  is the vector of explanatory variables for observation i, and β  is the associated 

vector of parameters.  

 

In this model, the variance of the observations y is related to the mean μ  by: 

 

   ii VyVar       1,........,i N                   2-3 

 

where   is the dispersion parameter and  V  is a differentiable function called the variance 

function. The model follows a distribution from the exponential family such as normal, 

Poisson, binomial, negative binomial, exponential or gamma according to the nature of the 

data. The Poisson regression models possess most of the statistical properties desirable in 

describing road accidents. In Poisson generalised linear models, the log-linear model can be 

adopted for the relationship between explanatory variables and the Poisson mean parameter

i :  

 

   'expi i iE y   x β              (Hilbe, 2007, 32, ff)               2-4 

 

where ix  is the vector of explanatory variables for observation i, and β  is a vector of 

parameters. 

 

The probability P and the likelihood functions are given as: 

 | ( 0)
!

ye
P y y

y

 




  , and          (Hardin and Hilbe, 2001, 127-128, ff)            2-5 

    expy P y   β | | x β   

 

It is convenient to work with the logarithm L of the likelihood, and this is given for the mean

u  by
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When the property of the Poisson distribution that restricts the variance to be equal to mean is 

not supported by the data, they are said to be either under-dispersed    ii yEy var  or as is 

usual for the road accidents data over-dispersed    i ivar y yE . In this case, the standard 

errors of parameters estimated from a Poisson will be underestimated (Maher and 

Summersgill, 1996). The case of over-dispersion can be addressed by adopting the negative 

binomial distribution, which allows for variance to be proportional to the mean with a 

constant of proportionality exceeding unity.  

 

The negative binomial model is derived by rewriting equation 2.4. 

 

   expi i iE y Z   ix β         2-7 

 

where iZ is a gamma-distribution error term with mean 1 and variance 1  . The parameter 

corresponds to the over-dispersion parameter of a negative binomial distribution. The 

inclusion of this term allows variance of y to exceed its mean. Thus 
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         (Hardin and Hilbe, 2001, 144-145, ff)                        2-8 

The negative binomial distribution has the form: 
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          (Hilbe, 2007, 80, ff)                      2-9 

 

where  . is gamma function. The joint likelihood of ,  is given by: 
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   , | ,i

i

P y  μ | y                       (Hardin and Hilbe, 2001, 146, ff)                         

so that the joint log-likelihood of ,  is                            
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μ, y  2-10 

 

When the data is over-dispersed, the estimated variance will be larger than the estimated 

mean. Due to this, the standard errors of the parameter estimates, which will be estimated 

appropriately, will be greater than those estimated from the corresponding Poisson model. 

 

2.2.2 Generalized Estimation Equation (GEE) 

 

GLMs are based on the assumption that the individual observations are mutually 

independent. This assumption is commonly known as iid (independent and identically 

distributed). In the case of repeated observations, correlated longitudinal or clustered data, 

this assumption is violated. In the present study of road accident data within Great Britain, 

the data have a panel structure with repeated observations: i.e. police force corresponds to a 

member of the panel, and each is measured repeatedly with time frames of days, month or 

years. Liang and Zeger (1986) introduced the Generalized Estimation Equation (GEE) to 

allow for correlated responses. GEE provides an extension of GLM in which the matrix of 

correlation between residuals of observations is generalized from its implicit diagonal form in 

GLM: 
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               (Hardin and Hilbe, 2003, 58, ff) 

 

where   iV   is a diagonal matrix and  R   denotes the within-panel correlation matrix. In 

the GLM model form, the within-panel correlation R is represented by the identity matrix. 

 

There are several correlation structures that are commonly used including independent, 

exchangeable and autoregressive error structure. According to Hutchings (2003) the 

independent correlation structure is suitable when the number of observations per member of 
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the panel is small compared to number of members of the panel. The exchangeable 

correlation structure is used when it is assumed that correlation is constant between the 

observations. Autoregressive error structure is preferred when the observations have a natural 

order and as the time between the observations increase the correlation decreases. The details 

of some of the main correlation structures within GEE framework are described by Hardin 

and Hilbe (2003) as follows: 

2.2.2.1  Independent structure 

The independent structure that corresponds to GLM is defined as  

  








 


otherwise

vuif
Ruv

0

1
                        (Hardin and Hilbe, 2003, 59, ff)                              2-12 

2.2.2.2  Exchangeable structure 

Exchangeable structure assumes a common correlation among observations within the panel. 

In this case   is scalar and the working correlation matrix has following structure: 
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 (Hardin and Hilbe, 2003, 59, ff)                             2-13 

The GEE with an exchangeable correlation structure uses estimated Pearson residuals from 

fitting the model to estimate the common correlation parameter. The estimate of   using 

these residuals is 
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where 

 

 is the scale parameter and itr̂
 
is the estimated Pearson residual which is equal to: 

 

   ˆ ˆ ˆ
it it it itr y V                      2-15 



37 

 

2.2.2.3 Autoregressive correlation of order 1 (AR1) 

Autoregressive structure assumes time dependence for the association when observations of 

the members of a panel have a natural order. Autoregressive order 1 (AR1) weighs the 

correlation between two observations by their separation in time: as the difference in time 

between the observations increases the correlation decreases.  In this case ψ  is a vector and 

the correlation is estimated by using the Pearson residuals from fitting the model.  
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ψ                                     2-16 

(Hardin and Hilbe, 2003, 66, ff) 

2.2.2.4 Summary of the statistical methods 

It is found that Generalized Linear Model (GLM) with Poisson distribution is a standard 

method used to model count response data. However, the Poisson distribution has equal  

mean and variance. Data that have greater variance than mean are termed as over-dispersed 

and negative binomial is the standard method used to model data that are over-dispersed 

relative to Poisson. Over-dispersion, which leads to larger residual deviance, can arise for 

several reasons, one of which is because some important explanatory variables have been 

omitted from the model. These may not even be available in the dataset. It can also arise 

because the process being modelled is fundamentally more variable than a Poisson process 

such as arises with the number of casualties when accidents occur according to a Poisson 

process. For a Poisson model, the expected value of residual deviance should approximately 

be equal to the residual degrees of freedom (McConway et al, 1999). In cases where the 

residual deviance of a Poisson model cannot be reduced to a value close to this, we consider 

adopting a negative binomial distribution instead to accommodate over-dispersion.  

Furthermore, GLM structure does not accommodate the serial correlation which arises due to 

time series of data. In time series data the observations follow a natural ordering over time 

due to which successive observations are likely to exhibit correlation. Generalized Estimation 

Equation (GEE) can accommodate serial correlation in the data. In this study, the data used 

was for sequential days (Chapter 2, 4 and 5) and for sequential months (Chapter 3). So, use of 

the correlation structure of autoregressive order 1 (AR1) was investigated. 
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In the analysis of road accident data presented in this thesis, the results of the models using 

Poisson and negative binomial will be compared. GEE with AR1 is also used as it can 

accommodate the presence of serial correlation in the data. The results obtained by GEE and 

GLM will also be compared to identify any differences in the estimated parameter 

coefficients and their significance levels. This comparison will only be informal as both 

models (GLM and GEE) were fitted to the same data so that the estimates of the 

corresponding parameters are not mutually independent.  

Further statistical methodology will be introduced as required in the course of this thesis. 

2.2.3 Previous Studies 

 

Various researchers have used linear regression, GLMs with Poisson and negative binomial 

distributions for modelling the road accident data. It was found from the previous studies that 

appropriate methods were not used in some of the studies to model count data. Bester (2001) 

used ordinary least squares linear regression without justification of its use for count data. 

Due to the unsuitability of this formulation, which admits negative estimates and has 

unsuitable error structure, the estimated coefficients and their significance may not be 

reliable.  

 

Fridstrom et al (1995), Jones, Janssen, and Mannering (1991), and Greibe (2003) used 

generalized linear model (GLM) with log link function and Poisson error structure. However, 

in these studies they made no attempt to account the presence of over-dispersion in the data 

as suggested by Miaou and Lum (1993). Levine, Kim and Nitz (1995), Fridstrom et al (1995), 

and Memon (2006) used log-linear models with negative binomial error structure to 

accommodate over-dispersion in road accidents data for each day and month but did not 

discuss the presence of serial correlation and its effect on the modelling results. Due to this, 

the conclusions drawn from these studies may not be reliable.  

 

Edwards (1996) used monthly number of road accidents and weather information recorded in 

STATS 19 data rather than independent meteorological data to identify some relationships in 

the eight regions of Great Britain. The author used linear regression for modelling the number 

of road accidents for each month. The presence of over-dispersion and serial correlation were 

not taken into account, so the conclusion drawn from this may not be reliable. Some of the 
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studies undertaken by various researchers using linear regression, and GLM with either 

Poisson or negative binomial are summarised as below: 

Bester (2001) in South Africa developed a linear regression model to investigate the 

difference in road fatalities of individual countries. National infrastructure, transportation, 

and socio-economic variables from international databases were considered as explanatory 

variables. The final model included passenger car ownership, human development index 

(HDI), and the percentage of other vehicles as explanatory variables. It was found that 

numbers of fatalities are decreasing over time, which was ascribed to improvement in the 

physical and social infrastructure of those counties. 

Miaou and Lum (1993) developed two conventional linear least-squares regression models 

and two log-linear Poisson regression models to investigate their ability to model vehicle 

accidents and highway geometric design relationships. They concluded that conventional 

linear models lack the distributional property to describe adequately random, discrete, non-

negative, and typically sporadic vehicle accident events on the road. On other hand Poisson 

regression models possess most of the desirable statistical properties. However, if vehicle 

accident data are found to be significantly over-dispersed relative to their mean, then using 

the Poisson regression models may overstate the precision of estimates of vehicle accidents 

on the road. In that case, more general probability distributions have to be considered. This 

has led many authors to use log-linear negative binomial regression, which allows for 

dispersion at least as great as Poisson, with consequent reduction in stated precision of 

estimates (Maher and Summersgill, 1996). 

Fridstrom et al (1995) used generalized linear Poisson regression models for each of the four 

greater Nordic countries. Monthly road accident counts for each county in the countries along 

with other databases which include gasoline sales, weather conditions, duration of daylight, 

changes in legislation and reporting routines, trend variable, variables for different counties 

and months were used. Three different models were estimated one for each of the number of 

injury accidents, number of fatal accidents, and number of users killed. LIMDEP 5.1 

computer software was used with the maximum likelihood estimation method. It was found 

that exposure was the most important variable which explained 50 percent of systematic 

variation in fatal accidents and more than 70 percent in injury accidents. 
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Levine, Kim and Nitz (1995) analysed changes in daily motor vehicle accidents for the city 

and county of Honolulu. They found that road accidents occurring on each day fluctuate 

according to an interaction between traffic volume, weekday travel patterns, holidays, and 

weather. Beyond that, Fridays and particularly Saturdays have more daily accidents. Minor 

holidays generate more daily accidents, but major holidays generate fewer daily accidents 

primarily due to lower traffic volume. The combination of afternoon and rainfall was found 

to be particularly dangerous. High levels of unemployment appeared to reduce road accidents 

on each day. 

Shankar, Mannering, and Barfield (1995) explored the frequency of occurrence of highway 

accidents on the basis of multivariate analysis of roadway geometrics (e.g. horizontal and 

vertical alignments), weather, and seasonal effects. The negative binomial model of accident 

frequencies is estimated. Models were estimated for accidents classified as sideswipes, rear 

end, parked vehicles, fixed objects and overturns. Interactions between weather and 

geometric variables were identified. It was proposed to avoid steep gradients and horizontal 

curves with low design speeds in areas with adverse weather. 

Jones, Janssen, and Mannering (1991) developed a Poisson regression model for accident 

frequency in Seattle, USA. Six models each for one zone were developed to estimate the 

accident frequency and to identify characteristics peculiar to a specific day that might 

increase or decrease the expected number of road accidents. The seasonal effects, weekly 

trends, special events, and environmental factors were used as explanatory variables. Various 

conclusions were made and the results obtained were used for the development of the 

Seattle’s accident management system.  

SALIFU (2004) applied the generalized linear models framework for the development of 

negative binomial models of accident frequency for un-signalized urban junctions in Ghana. 

A total of 91 junctions were considered comprising 57 T-junctions and 34 crossroads with a 

total of 354 and 238 accidents for T and crossroads respectively obtained from the national 

accident database for the period 1996-1998. Traffic flow data was obtained by carrying traffic 

counts and spot speeds. Junction inventories were carried out to collect information about the 

site and geometry. Because of over-dispersion of the count data, negative binomial regression 

was used. The best models were found to be those based exclusively on traffic exposure 

functions (traffic flow) which explained 50 percent more of the systematic variation in 
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accidents at T-junctions than at crossroads. It was also found that T-junctions with yield 

control had a much lower accident rate than those with stop control. 

Greibe (2003) developed a model for road accidents on urban roads in Denmark. He used 

accident, traffic flow, and road design data. Road accident data was collected from the 

official accident statistics database whereas traffic flow counts were collected from the 

municipality and converted to AADT counts. A total of 1,058 police recorded accidents were 

related to 314 road links. The GLM was used and the distribution of road accident counts was 

assumed to follow a Poisson distribution.  Different models were developed for junctions and 

road links in urban areas. It was found that motor vehicle traffic flow was the most powerful 

variable in models for junctions whereas additional explanatory variables describing road 

environment, number of minor side roads, parking facilities, and speed limit proved to be 

significant and important variables for estimating the number of road accidents. 

Abdel-Aty and Radwan (2000) used a negative binomial modelling technique for modelling 

the frequency of road accident occurrence in central Florida. The dataset that they analysed 

consisted of a total of 1,606 road accidents that occurred in the three years 1992-1994. It was 

found that heavy traffic volume, speeding, narrow lane width, larger number of lanes, urban 

roadway sections, narrow shoulder width and reduced mean width, increase the mean 

accident frequency. Different negative binomial models were developed based on the 

demographic characteristics of the drivers. It was also found that female drivers experience 

more road accidents than male drivers on roads that have heavy traffic volume, reduced mean 

width, narrow lane width, and larger number of lanes. Male drivers were found to be most 

involved in traffic accidents while speeding. The models also indicate that young and older 

drivers experience more accidents than intermediate aged drivers in heavy traffic volume, 

reduced shoulder, and reduced widths. Younger drivers have a greater tendency to be 

involved in road accidents while speeding or on roadway curves.  

McCarthy (2002) developed a negative binomial regression models to analyse total, fatal and 

non-fatal injury alcohol-related crashes involving older drivers. He used data from the 58 

counties of California for a period of 18 years (1981-1998) which consist of 1,044 

observations. It was found that for the three categories: alcohol-related fatal crashes, alcohol-

related non-fatal crashes, and alcohol-related total crashes, variance was greater than the 

mean, so that the negative binomial framework was preferred. The results indicated that risk 

exposure is a major determining factor, with the greatest effect on alcohol-related injury 
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crashes. Alcohol prices and income were also important variables. It was also found that 

speed limit policy rather than alcohol policies has the largest impact on alcohol-related 

crashes involving older drivers. 

Lardon de Guevara, Washington, and Oh (2004) used negative binomial regression models to 

develop a planning level road accident prediction model for Tucson, Arizona. Separate 

models were developed for fatal, injury, and damage-only road accidents. It was found that 

population density, proportion of population aged 17 years or younger, and intersection 

density were significant variables for fatal crash models. However for injury and damage-

only road accident models, population density, number of employees, intersection density, 

percentage of miles of principal arterial roads, percentage of miles of minor arterial roads and 

percentage of miles of urban collectors were significant variables. 

Hall (1986) studied the personal injury traffic accidents that occurred at 177 four-arm single 

carriageway traffic signal junctions from urban areas of Great Britain from 1979 to 1982. 

Partial traffic flow data and pedestrian flow data was obtained from the Highway Authority; 

new counts were made at some junctions where this data was not available. The geometric 

data for each arm of the junction and the signal control characteristics were also incorporated 

into the models. The generalized linear modelling technique was used in GenStat software. It 

was assumed that the number of road accidents follows a Poisson distribution. Initial models 

were developed with only vehicle and pedestrian flows to which geometric, control and 

general factors were then added. Various conclusions were drawn about the influence of these 

characteristics on road accident frequencies. 

Maycock and Hall (1984) used a generalized linear model with Poisson distribution to study 

roundabout accidents and to identify relationships between accident frequencies, traffic flow, 

and geometric design variables. The data sample included 84 four-arm roundabouts on main 

roads in the UK including small, conventional and dual carriageway roundabouts in both 30-

40 and 50-70 mph speed limit zones. From the analysis of road accidents by accident type it 

was found that on small roundabouts accidents between entering and circulating vehicles 

were about 70 percent of the total whereas on conventional roundabouts the percentage is 

relatively evenly distributed between the accidents types of entering, circulating, 

approaching, single vehicle, other and pedestrian accidents. Different equations for each 

accident type were formed using GenStat and GLIM. The geometric variables considered for 

the model included entry path curvature, entry width, angle between arms, gradient, sight 
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distance, gradient, and approach curvature. Based on the values of the fitted coefficients, 

various conclusions were drawn about the effect of these variables on frequency of road 

accidents at roundabouts for each accident type. 

Kulmala (1995) investigated factors that affect the road accidents at junctions outside urban 

areas in Finland. The accident data from 1983 to 1987 was used along with estimated traffic 

volumes. A total of 915 three and 847 four-arm junctions were considered. Generalized linear 

models with each of Poisson and negative binomial regression were used to estimate the 

number of casualties and to identify the most common accident class. The most important 

variables were found to be those describing the magnitude and distribution of motor vehicle 

volumes. Slight differences were observed in t values of parameter estimates between 

Poisson and negative binomial model. It was found that these models explained more than 80 

percent of the expected systematic variation.  

The literature review of the previous studies given in section 2.2.3 highlighted the various 

statistical techniques that have been used to model road accidents and casualties, and the 

explanatory variables that have been used for this. It was found that in various studies, linear 

regression and generalized linear models with Poisson regression were used in spite of having 

some shortcomings. Although Maycock and Hall (1984), and Hall (1986) used generalized 

linear models (GLM) with Poisson regression, they were aware of the presence of over-

dispersion in the data. They addressed this by (a) scaling the standard errors of estimation and 

(b) offering procedures to estimate NB model. 

Later, Miaou and Lum (1993), Levine, Kim and Nitz (1995), Fridstrom et al (1995) used 

generalized linear model (GLM) with negative binomial regression to accommodate the 

presence of over-dispersion in the response data.  On consideration of explanatory variables, 

some that had not been used earlier were brought to attention for joint use with road accident 

data. In the studies carried out by Bester (2001), Fridstrom et al (1995), Levine, Kim and Nitz 

(1995), and Guevara, Washington, and Oh (2004) the variables of car ownership, time, 

gasoline sales, traffic flow, weather conditions, day of the week, major and minor holidays, 

proportion of population under 17 years or younger, percentage of the miles of different road 

classes and population density were used to identify their effect on the number of road 

accidents. In the present study an effort was made to use all the available information 

including this by joining the road accident data with other datasets. 
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2.3  DATA  USED  

Road accident statistics in the Great Britain are compiled by the police. For each road 

accident that has caused personal injury, police authorities normally complete a STATS 19 

form which provides details of road accident circumstances, information for each vehicle 

which was involved, and information of each person who was injured in the road accident. 

This whole dataset is maintained by the Department for Transport. For the present study the 

UK archive dataset was used which consists of total 3,417,878 road accidents recorded as 

occurring between 1
st
 January 1991 and 31

st
 December 2005. The required information for 

road accidents occurring on each day was extracted from the archive dataset using SPSS. As 

a result of this a new dataset was developed, containing information about all road accidents 

which occurred on each day from 1
st
 January 1991 to 31

st
 December 2005. Each day was 

given its original day name, month name, and year by using a calendar. Three separate 

variables were also included for each of all Public holidays, New-Year holiday, and 

Christmas holidays. The details of the days which are coded as Public holidays, New-Year 

holiday, and Christmas holidays are given in appendix Table A2.1. Two different datasets 

were prepared, respectively representing the whole of Great Britain and the 51 individual 

police forces, each of which corresponds to one or more local authority areas. Dataset 1 

consists of 5,479 observations, each observation represents the number of road accidents on 

each day in Great Britain from 1991 to 2005. Yearly values of total distance travelled, 

population and number of registered vehicles was obtained from the Office for National 

Statistics and the Department for Transport. These variables were standardised to represent 

the character of transport activity rather than its scale. The details of this are given in section 

2.5.1 

Dataset 1 was further disaggregated to police force level to highlight the differences in 

number of road accidents across various locations. Dataset 2 consisted of 279,429 

observations for the 51 police forces. Information of population, population density, number 

of registered vehicles and road length for each local authority were also obtained from the 

Office for National Statistics and the Department for Transport in addition to the above data. 

The values representing a local authority were then aggregated to police force level. The 

STATS 20 form which describes the instructions for completion of road accidents reports 

was used to aggregate the local authorities to police force level. 
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2.4  DATA  ANALYSIS 

 

The population, annual number of road accidents of Great Britain, and rate of involvement in 

a road traffic accident per 10,000 population is shown in Figure 2.1. It reveals that the 

population of Great Britain is slowly and continuously increasing. The estimated population 

for 2005 was 58.4 million. The figure also indicates that there was a slight change in pattern 

of population growth from 1996 to 1998 and again from 2002 to 2005; the lowest growth in 

population is observed during these two periods. On the other hand the annual number of 

road accidents after having slight fluctuations from 1991 to 1997 then followed a downward 

trend. It can be seen that 198,736 road accidents were recorded during 2005. The largest 

decrease of almost 24,000 accidents was observed during the three-years from 2003 to 2005. 

The risk rate per 10,000 population also decreased since 1997. The lowest rate was found for 

the year 2005 with a rate of 35 road accidents per 10,000 population. 

 

Figure 2.1: Population, annual number of road accidents, and rate per 10,000 population of 

Great Britain (1991-2005) 

 
Source of data: Department for Transport (2011) 

 

The detailed analysis of the dataset used for this study is shown in Figure 2.2. Each box plot 

in this figure consists of a central box which shows the inter-quartile range of data so that 50 

percent of observations lie inside the central box. The horizontal bar within the box marks the 

median, upper and lower line of box represents the quartiles and whiskers indicate the 

minimum and maximum data values, unless outliers are present in the data. The whiskers 

extend to a maximum of 1.5 times of inter quartile range (IQR) from Q1 and Q3 beyond 

which other observations are considered outliers. If the median line with in the box is not in 

the centre than the data is said to be skewed. The circles in the box plot represent the outliers. 
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Figure 2.2: Box plots of road accidents in Dataset 1: 1991-2005 
 

(STATS 19 Data) 

 

 

 
Source of data: Department for Transport (2011) 

 

The analysis of Dataset 1, which consists of road accidents for each day in the whole of Great 

Britain from 1991 to 2005, indicates the clear difference that is observed between weekdays 

and weekends. Comparatively higher number of road accidents occurs on Friday as it is the 

last working day of the week. Each day in the last 3 months of year (October, November and 

December) have more road accidents than others with each day in November having the 

highest road accidents. December and January are found to be more variable in terms of 

number of road accidents for each day than all other months as the IQR is greater for these 
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months which may be due to the number of Christmas and New-Year holidays. Christmas 

holidays have fewer road accidents than all other days, including all other holidays. 

 

2.5  MODEL DEVELOPMENT 

 

Regression models were developed for the number of road accidents occurring on each day 

with various combinations of explanatory variables having log-linear form, and each of 

Poisson and negative binomial error distributions by using the STATA software. In the first 

step, each model was developed with a constant term only and then a stepwise incremental 

approach was used to introduce different variables into the model. An offset variable was also 

used for which the details are given in section 2.5.3.  

 

2.5.1 Variables used 

 

The following variables from 1 to 14 were incorporated in the model for the national dataset 

(Dataset 1): 

 

1. Day of the week (with 7 levels) 

2. Month (12 levels) 

3. Weekday 3 (with 3 levels: Weekday, Saturday and Sunday) 

4. Season (with 4 levels: Spring, Summer, Autumn and Winter) 

5. Day of week. Month interaction (84 levels) 

6. Weekday 3. Season interaction (with 12 levels) 

7. Time as a variate (measured in days, with values from 1 to 5479, corresponding to 1
st
 

January 1991 to 31
st
 December 2005) 

8. Public holidays (all bank holidays including Christmas and New-Year holidays) 

9. Christmas holidays (25
th

 December and associated holidays) 

10. New-Year holidays (1
st
 January and associated holidays) 

11. Total distance travelled during the year (Vehicle kilometres)  

12. Number of vehicles per head of the population 

13. Distance travelled per head of population 

14. Distance travelled per vehicle 
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Here the variable weekday 3 represents the difference between weekdays and two distinct 

weekend days. It has levels corresponding to Weekday, Saturday and Sunday. Similarly 

Season represents the difference between Spring, Summer, Autumn and Winter: Spring is 

from March to May, Summer is June to September, Autumn is October to November and 

Winter is from December to February.  

 

In Dataset 1 annual figures of the total vehicle distance travelled, population and number of 

registered vehicles in Great Britain were used to derive variables 12 to 14, which are 

standardised so they characterise the transport activity rather than describe its scale. These 

circumstantial variables that represent characteristics of transport activity were preferred over 

the use of variables such as total vehicle distance travelled, population and number of 

registered vehicles in the interests of parsimony and to avoid inclusion of several variables in 

addition to the offset that describe the scale of transport activity, which would bring 

multicollinearity into the models. 

 

For Dataset 2, which represents each police force, the same variables from 1 to 10 were used. 

All variables from 15 to 21 were specific to the police force and therefore characterise the 

area. The total number of registered vehicles in a police force that has a larger than average 

population would also be expected consequently to be larger than average, but use of vehicles 

per head of population provides a variable that characterises transport activity separately from 

its scale.   

 

15. Population density (people per square kilometre) 

16. Number of vehicles per head of population 

17. Number of vehicles per kilometre of road length 

18. Number of vehicles per square kilometre of surface area 

19. Logarithm of population 

20. Ratio of each road class to total road length 

a. LenTM (Length of trunk motorway) 

b. LenTR1 (Length of rural trunk road single carriageway) 

c. LenTR2 (Length of rural trunk road dual carriageway) 

d. LenTU1 (Length of urban trunk road single carriageway) 

e. LenTU2 (Length of urban trunk road dual carriageway) 

f. LenPM   (Length of  principal motorway) 
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g. LenPR1  (Length of principal rural single carriageway) 

h. LenPR2  (Length of principal rural dual carriageway) 

i. LenPU1  (Length of principal urban single carriageway) 

j. LenPU2  (Length of principal urban dual carriageway) 

k. LenBR    (Length of rural B roads) 

l. LenBU    (Length of urban B roads) 

m. LenCR    (Length of total rural C roads) 

n. LenCU    (Length of urban C roads) 

o. LenUR    (Length of rural unclassified roads) 

p. LenUU   (Length of  urban unclassified roads) 

21.  Police force as a factor (51 levels)  

 

2.5.2 Coding systems for categorical variables in regression model 

 

Categorical variables can be recorded into a series of variables for use in a regression model. 

There is variety of coding systems which can be used for coding categorical variables. A 

coding system reflects the comparison that is selected before running the regression models. 

Below are the coding structures that can be made in Stata software (UCLA, 2009): 

 

 Simple coding 

 Forward difference coding 

 Backward difference coding 

 Helmert coding 

 Reverse Helmert coding 

 Deviation coding 

 Orthogonal polynomial coding 

 

Deviation coding is preferred over others in this study as it reflects the deviations from the 

grand mean rather than the deviations from the reference category. In Stata, this can be 

achieved by using the DevCon directive which presents coefficients for factors from a 

statistical model in a way that achieves zero mean for their effects. When fitting a model, it is 

usual to set one coefficient to zero to avoid indeterminacy and hence to absorb that 

coefficient in the constant: usually this will lead to a non-zero mean. An adjustment can be 

calculated and applied to all factors (including any set to zero) so that they sum to zero; the 
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same adjustments can be accommodated in the constant so that the whole effect on the model 

is null. However, it was observed that the DevCon command showed reluctance to transform 

the coefficients correctly when interaction terms were added into the models. It is found that 

DevCon was suitable only for the main effects when there is only one reference category. 

Due to this, in Chapters 2, 4 and 5  where interaction variables are used, data was coded as 

combinations of 0,1 and -1 (deviation coding) as suggested by UCLA (2009) which resulted 

in coefficients for factors that had zero mean for their effects. In this case the results were 

verified by comparing the deviation coding (0, 1 and -1) and simple coding (1,0): as both 

produced the same estimated values (number of road accidents on each day) and log-

likelihood results whereas deviation coding transformed the coefficients so that they refer to 

the group mean rather than a reference category. It is to be noted that in the case of unequal 

group sizes the intercept will represent the unweighted group mean rather than the grand 

mean. However, in chapter 3, this could be achieved by use of the DevCon command to 

transform the coefficients to have a zero sum as there were no interaction terms included in 

the model as explanatory variable. 

 

2.5.3 Basic model structure  

In this chapter, for all models that were developed for Dataset 1 and 2 as shown respectively 

in Figure 2.4 and 2.12, an offset variable was introduced. The offset variable represents the 

exposure to risk so that the risk per unit of exposure can be estimated directly from the linear 

predictor model. For this study, several variables were available for use as an offset, 

including vehicle distance travelled as vehicle kilometres, population, road length and 

number of registered vehicles. Road length is not preferred in this case as it cannot capture 

the temporal variations in the use of roads in an area. In the same way for number of 

registered vehicles it is difficult to capture the increased usage of vehicles (more distance 

travel) over time. Although Bird (2006) used road length and Fridstrom (1995) used fuel 

consumption as measures of exposure, it is difficult to determine where fuel is consumed 

which raises difficulties in the location of the exposure. The advantage of population over 

other measures of exposure is that in many cases the numbers are accurate and are available 

for specific groups of users. The vehicle distance travelled is probably the most often used 

exposure measure due to its availability at various levels of disaggregation. This can be 

related directly to the regional and temporal variations in road accident and casualty process.  
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The vehicle distance travelled and population is used as the main measure of exposure by 

IRTAD (2010) for comparison of road safety records in OECD countries.  

In this study (Chapter 2) vehicle distance travelled on each day is used in the offset as a 

measure of exposure. The value of the offset variable is matched as closely as possible to the 

linear predictor for each unit of observation. This ensures that the linear predictor represents 

the risk as well as possible. Thus at the stage in model development when day of week was 

introduced as a factor into the linear predictor, the vehicle distance travelled was profiled 

according to the day of week by applying corresponding correction factors obtained from 

Department for Transport which account for the variations in vehicle distance travelled. 

Similarly at the stage when the month was introduced into the linear predictor the offset was 

profiled accordingly. Same process was repeated when weekday 3 and season were 

introduced into the linear predictor. 

Beyond the offset variable, no others are used that describe the size of the unit of observation: 

to achieve this, other variables were coded in such a way as to characterise the unit of 

observation rather than to describe its scale. 

Dataset 1: 

The model used for Dataset 1 was 

 expi i iu O   x β                                 2-17 

where 
 iu

 
is the estimated mean number of road accidents occurring on day i, and 

iO  is the offset for day i  

In this case  lni iO d  

so that  expi i iu d  x β                                                              2-18 

where id  is total distance travelled (vehicle kilometres) on day i. 

This model structure then provides a direct estimate of risk r per unit of travel on day i as, 
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/i i ir u d = exp ( )
ix β          2-19        

Dataset 2: 

Dataset 2 is a disaggregated form of Dataset 1 which represents the 51 police forces of Great 

Britain. The aim of this disaggregation was to use the available information about these 

geographical areas which will ultimately increase the explanatory power of the model by 

identifying some systematic trends.  

Information about the total distance travelled within each police force area was not available 

so attention was paid to other variables that could be used as measure of exposure as an offset 

in models. The following variables were considered and tested as an offset in Dataset 2 

models.  

1. Ln ( total distance travelled nationally on each day) 

2. Ln 
Number of vehicles in Police force

National veh km
Total number of vehicles nationally

  
   

  
 

Based on the experience obtained with dataset 1, initially national vehicle kilometres 

travelled on each day which was adjusted to take account of variation in distance travelled by 

day of week and month was used as an offset. This variable does not distinguish among 

police forces but it did at least allow for the different levels of usage over the day of week, 

month and years. The details of the modelling results are shown in appendix Tables A2.2. 

After this, an adjustment was made in the vehicle kilometres which assumed that vehicle 

kilometres travelled within a police force area are directly proportional to the number of 

vehicles registered there. This offset variable distinguished among the police forces by taking 

account of variations in distance travelled by police force along with day of week and month 

variations. Based on the better BIC results and importance of these corrections to offset 

variable, it was considered and used as an offset in the models for Dataset 2. After this, the 

following model structure was used for Dataset 2 which will be discussed in later sections.  

The mean number of road accidents occurring on day i  in a police force j is estimated as  

 expi j i j i ju O   x β                  2-20 
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Then     expi j i j i ju d  x β                                                 2-21 

where 
i jd  is estimated total distance travelled (vehicle kilometres) on day i  in police force  j.  

Following statistics were considered for the model preference, the definitions and formulas 

used are given as under; 

2.5.4 Assessment of model performance 

 

There are many ways to assess the performance of a statistical model. Each of these methods 

is informative but none of them is definitive. Rather, they can be used together to gain a 

balanced view of the performance of a model, and hence to guide selection of a preferred 

model.  

 

The broad objectives of model development and selection followed in this study were to 

achieve a model that related variation in accident, number of vehicles involved and casualty 

numbers to explanatory variables in a way that represents a substantial proportion of the 

observed variation whilst respecting the nature of the variability of the data. The explanatory 

variables should have clear interpretation and they should have a good degree of mutual 

independence.  

 

Various statistics including deviance residuals, log-likelihood values, information criteria, 

variance inflation factors and Durbin-Watson values which are described below in detail are 

used to guide the development and selection of a preferred model. During the modelling 

process, at various stages independent judgment and prior views on the importance of some 

explanatory variables was also used alongside the objective criterion. 

 

An incremental approach was used to add variables into the model to observe their 

contribution to the performance of the models. As a starting point, a likelihood based 

objective measure (BIC) was compared for each of the models.  

 

Analysis of temporal effects was also carried out to investigate the presence of any 

substantial systematic temporal effect that is not already represented in the model.  Models in 

which this effect was established were not preferred. In order to identify the presence of 
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multicollinearity among the explanatory variables, variance inflation factors (VIF) were 

calculated. Attention was paid to the models where multicollinearity was observed among 

time and circumstantial variables and if found these models were not preferred as the 

estimated parameters will not necessarily represent their true effect. In cases where a high 

VIF value arose because of the structure of the data (for example, month and season), it was 

not taken as cause of concern.  

 

After analysing these objective criterion, a model was taken forward out of the many 

developed in each case. In order to validate and check the consistency of the estimated 

parameters of the preferred model, split sample tests were carried out by dividing the whole 

dataset randomly in two portions. In order to check the consistency of model parameters the 

estimated coefficients of split sample were interchanged. Log-likelihood and deviance 

residuals values were estimated and compared.  T test was also used to compare the estimated 

coefficients of the model by using these two portions of data to check parameters consistency 

and reliability. 

 

The Durbin-Watson test was used to investigate the presence of serial correlation in the 

residuals. If serial correlation exists in the residuals then the GEE model formulation with 

AR1 error structure was used instead of GLM for the same set of variables. As the GLM and 

GEE models were fitted to the same dataset so the estimates of the corresponding parameters 

were not mutually independent: due to this only informal comparisons could be carried out to 

investigate the estimated parameters and their standard errors. 

 

Apart from this, various other investigations were also undertaken which were used in 

conjunction with the tests mentioned above. These investigations include  the graphs for the 

comparison of number of road accidents observed and estimated, standardised deviance 

residuals, cumulative residuals, deviance residuals against fitted values, normal quantile plot, 

scale location and Cook’s distance plot were used for visual inspection to identify if any 

problem existed in the model. The Park test and Glejser test (Gujarati, 2009) are used to 

detect the presence of heteroscedasticity among the residuals along with some of the graphs 

mentioned above. If heteroscedasticity is found to be present then White’s heteroscedasticity-

robust standard errors are estimated by using the available procedure in STATA.  Figure 2.3 

shows the steps for the selection of the preferred model which are followed in all the 

chapters.  
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Figure 2.3: Steps in model selection procedure  

 

In this section, measures of preference are discussed in detail while the model selection 

procedure, goodness of fit and model checks are disused in next section. 

2.5.4.1 Likelihood and Deviance residual 

The likelihood function presented in section 2.2.1 can be used to assess the goodness of fit of 

a model, and several further measures of model performance are based on it. It is to note that 

this assumes mutual independence of observations. In case the observations are not mutually 

independent, the likelihood will be overestimated. This will have the effect of exaggerating 

differences in log-likelihood and so will tend to favour elaborate models unduly.  

Deviance provides an alternative to likelihood. The deviance is used as a measure of 

discrepancy of a generalized linear model; each unit i of observation contributes an amount 

Likelihood based 

objective measures 

Analysis of temporal 

effects 

 

Model development by using  

incremental approach to add variables 

Split sample analysis  

Durbin-Watson Test 

Use of GEE-AR1 (Preferred model) 

Graphs of Accidents observed VS estimated, Standardized 

deviance residuals and Cumulative residual graphs 
Further diagnostics plots 

Further refinement of the model 

Tests for 

Multicollinearity 

Independent judgement 
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iD
 
as an increment to total deviance. For the Poisson model with observed number iy  and 

corresponding estimated number iu , residual deviance is given by: 

2( )i i i iD sign y d          (Hardin and Hilbe, 2001, 43, ff)             2-22 

where 
2

id is the squared deviance residual which can be obtained according to the 

distribution as follows: 

Poisson regression: 
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 (Hardin and Hilbe, 2001, 230, ff)   2-23 

Negative binomial regression        
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             2-24 

(Hardin and Hilbe, 2001, 230, ff)    

where   is the over-dispersion parameter. 

The standardized residuals were obtained by multiplying the deviance residual 
iD  by the 

factor  
1

21 ih


  where ih  is the leverage, which indicates the influence of observation i.  

The total residual deviance D of the model is given by summation over all units:  

1

n

i

i

D D


                             2-25 
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For Poisson, a properly fitted model the expected value of residual deviance should be 

approximately equal to the residual degrees of freedom (McConway et al, 1999). 

2.5.4.2 Information Criteria 

The maximised log-likelihood of a model will increase as further explanatory variables are 

introduced. This means that greater likelihood alone is not a suitable criterion for model 

selection. To address this, the Akaike Information Criteria (AIC) provides a likelihood-based 

measure of fit for a model that is adjusted according to the number of explanatory variables 

used: 

 

2 2AIC L k                (Hardin and Hilbe, 2001, 45, ff)                            2-26 

 

where L  is the log-likelihood of the model and k is the number of explanatory variables. 

 

This criterion can be used as an aid to model selection, with smaller values resulting in 

preferable models. Thus an elaboration to a model will be preferred if it increases log-

likelihood by at least as much as the number of additional parameters in the model. In the 

case of dataset 2 which has 279,429 observations, use of an additional explanatory variable 

will be justified by an increase in likelihood of greater than 1.  

 

However, larger datasets are more likely to justify the use of more explanatory variables. To 

address this, the Bayesian Information Criterion (BIC), which is also known as Schwarz 

Criterion (Schwarz, 1978), makes further adjustment according to the number of observations 

in the dataset:  

 

)ln(2 nkLBIC      (Hardin and Hilbe, 2001, 45, ff)                                2-27 

 

n shows the total number of observations in the dataset.   

 

When this criterion is used, an elaboration to a model will be preferred if it increases the log-

likelihood by at least .ln( ) / 2m n , where m represents the additional degrees of freedom. In 

the case of dataset 2 which has 279,429 observations, an increase of 6.3 is required in the log-

likelihood for one additional parameter in the model. This provides an alternative to the 
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Akaike Information Criterion that takes into account the number of observations, and so is 

well suited when large datasets are used. For this study the BIC is preferred over the AIC as it 

is more stringent and has a stricter entry requirement than AIC for additional parameters 

when large datasets are used. This helps to resolve over-fitting of models where many 

additional parameters are added to increase the likelihood, so BIC helps to promote a 

parsimonious model (Stata manual, 2001) 

 

The log-likelihood values will not be reliable if the data observations are not mutually 

independent. Dependence in data structure occurs when the data observations are affected by 

common influences that are not represented in the model. In such a case the difference in the 

likelihood values, which is used in likelihood ratio test, will be overestimated. Due to this, 

likelihood values and all test based on them may not be reliable and hence are used cautiously 

in model selection.  

 

Chandler and Bate (2007) proposed the adjusted likelihood ratio test for use when there is  

dependence in the data. However, in this study tests based on unadjusted likelihood values 

were used cautiously as the datasets were large and these tests were used as a guide in the 

model selection process along with other pertinent tests (see section 2.5.4) such as residual 

analysis, split sample test, graphs of observed and estimated values. In this way, model 

selection was carried out cautiously. However, in future it is recommended to adjust the log-

likelihood values due to dependence and to identify the impacts on the likelihood, BIC and 

model selection process. 

2.5.4.3 Likelihood ratio test 

The likelihood ratio test can be used to compare the goodness of fit of two competing models 

that are nested. The model with additional variables was compared with the restricted model. 

The likelihood ratio statistic is: 

   2 2 R uX L L      ,
                         (Chandler and Scott, 2011, 115, ff)               2-28 

where  RL   is the log likelihood of the restricted model and  uL   is the log likelihood of 

the unrestricted model. Under the null hypothesis that the restricted model is adequate, the 
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2X test statistic is 2 distributed with degrees of freedom equal to the difference in number 

of parameters between the restricted and unrestricted models (Washington, 2003). 

2.5.4.4 Variance Inflation Factor  

The variance inflation factor (VIF) is used to quantify multicollinearity among the 

explanatory variables. Stata estimated the values of VIF which can be used to adjust the 

standard errors of the parameter estimates, due to the presence of collinearity. A maximum 

acceptable value of 10 as proposed by Kutner (2004) is adopted in this study. The following 

formula is used in Stata to estimate the value of VIF. 

 

 
 2

1
β

1 j

VIF
R




j       (Chatterji and Hadi, 2006, 236, ff)                                 2-29 

where j =1, 2, 3,………, k and
2

jR is the multiple correlation coefficient of xj on the other 

explanatory variables. 

2.5.4.5 Durbin -Watson statistics 

The Durbin-Watson statistic can be used to test the presence of first-order autocorrelation, 

and hence is used to analyse the residuals of a regression model. The test compares the 

residual for time period t with the residual from time period t-1 and develops a statistic that 

measures the significance of correlation between successive residuals. The formula for the 

statistic is: 
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d                    (Chandler and Scott, 2011, 66, ff)                         2-30 

d = Durbin-Watson statistic 

e = residual  e

tt yY   

t = time period counter 

 

Table 2.2 shows regions of the acceptance and rejections of null hypothesis where dl and du 

indicate the lower and upper critical values. The null hypothesis (H0) is that there is no first 

order serial correlation among the residuals. 
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Table 2.2: Regions of acceptance and rejection of the null hypothesis at the α = 0.05 level for 

the presence of autocorrelation (Kendall and Ord, 1990, p268) 
 

[0, dl ] [dl , du] [du , 4-du ] [4-du,  4-dl] [4-d1, 4] 

Reject Null H0: 

Positive 

Autocorrelation 

Neither 

accept nor 

reject 

Accept the Null 

Hypothesis 

Neither 

accept nor 

reject 

Reject Null H0: 

Negative 

Autocorrelation 

Significance points of d1 and du at 95 percent significance level 

 

n 

K=1 K=2 K=3 K=4 K=5 

d1 du d1 du d1 du d1 du d1 du 

50 1.5 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77 

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 

70 1.58 1.64 1.55 1.67 1.52 1.7 1.49 1.74 1.46 1.77 

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 

100+ 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 

K = number of independent variables in the equation 

n= number of observations in the data 

 

2.6  MODEL SELECTION PROCEDURE, GOODNESS OF FIT AND MODEL CHECKS 

 

The model selection procedure as detailed in section 2.5.4 was applied to prefer the 

appropriate model out of the many available models. The results of all the developed models 

shown in Table 2.4 were compared; details are given in section 2.6.2.1. Section 2.6.2.2 to 

2.6.2.5 shows the details of checks which were used to confirm that the most appropriate 

model has been preferred.  

 

2.6.1 Model Selection Procedure 

The procedure discussed in section 2.5.4 was followed to select the most appropriate model 

to represent the number of road accidents on each day. This can give some insights on the 

variables that are related to the number of road accidents and the nature of this relationship. 

Models were developed using Poisson and negative binomial regression as shown in Figure 

2.4. The available variables were used in different combinations to observe their contribution 

to the performance of the models.   
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Figure 2.4: Lattice of model development for Dataset 1 
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The following section shows the results of the tests carried out for model selection: 

 

1. BIC values were compared for all the models to assess their performance. Details of 

this are given in section 2.6.2.1 

2. The models were analysed primarily with the intention to investigate that there is no 

substantial temporal effect remaining. Details of this are given in section 2.6.2.2 

3. Variance inflation factors were calculated to check for the presence of 

multicollinearity among the explanatory variables. Details of this are given in section 

2.6.2.3 

4. Split sample tests were carried out to validate the performance of the preferred model 

by cross-comparing the coefficients, deviance and log-likelihood values. Details of 

this are given in section 2.6.2.4 

5. The Durbin-Watson test was used to detect the presence of serial correlation in the 

model residuals. Details of this are given in section 2.6.2.5. 

2.6.2 Model selection process, goodness of fit and model checks for Dataset 1 

 

This section shows results of the tests discussed above to select the preferred model. The 

goodness of fit of the preferred model and various other checks as described above were 

applied to validate the model are shown in detail as below:  

2.6.2.1 Poisson and negative binomial regression model for Great Britain (Dataset 1) 

2.6.2.1.1 Poisson regression model 

The model development started with Poisson regression modelling using the log link 

function. The ultimate aim was to establish the relationship between road accident numbers 

occurring on each day and the explanatory variables from 1-14 as shown in section 2.5.1. The 

quality of model fit was assessed according to the Bayesian Information Criteria (BIC). A 

total of 26 models were developed with different combinations of variables as shown in 

Figure 2.4. The logarithm value of the total distance travelled on each day was used as the 

offset with all of these models and this was profiled where possible to correspond to the 

explanatory part of the associated model. In particular, for models in which the day of week 

and month was used, the offset was adjusted to take account of the associated variations in 

distance travelled using the correction factors obtained from the Department for Transport 



63 

 

which are shown in appendix table A2.3 and A2.4. The effect of applying these corrections is 

that the estimated coefficients represent the direct risk per unit of distance travelled.  

 

In the process of model development, the day of week and month corrections to the offset 

were applied only when the corresponding variables were introduced into the model. In 

model 2, the offset was only adjusted for day of week corrections as it has only day of week 

as an explanatory variable. In the same way in model 3, the offset was adjusted by only using 

month correction factors. However in model 6, day of week and month corrections were 

applied together as this model has both (day of week and month) as explanatory variables. 

The cases where simplified categorical variables such as weekday 3 and season were used, as 

in model 4 and 5, the profile of day of week and month of year adjustments to the offset  

were retained. From model 6 onwards, both day of week and month corrections were applied 

together to the offset in all models. Table 2.3 shows the list of models and the corrections 

applied to the offset. 

 

Table 2.3: Details of the correction applied to the offset in models  

 

Corrections factors used with the offset variable 

Model 

No. 

Corrections applied to offset Model 

No. 

Corrections applied to offset 

1 None 4 DoW  

2 DoW 5 Month  

3 Month  6-26 DoW and Month  

DoW represents the Day of week  

 

Model 1 was developed by using constant term only in which no adjustments were applied to 

the offset variable to adjust the distance travelled by day of week. This model gave BIC of 

212,488. A stepwise approach was then used for introducing explanatory variables. An 

improvement in the value of BIC of about 42,000 was observed after introducing the day of 

the week variable with 6 degrees of freedom into the model: this improved the BIC to 

170,516.  

 

In model 2, day of week was introduced and offset adjusted accordingly, it was found that all 

weekdays (Monday-Friday) had similar coefficients, showing that the risk per unit of travel is 
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similar. By contrast, Saturday and Sunday had substantially different values of risk.  This led 

to the introduction of a new variable weekday 3 in model 4 with only three variables 

representing Weekday (i.e. any of Monday-Friday), Saturday and Sunday. The BIC of model 

2 was better by value of 149 than model 4 suggesting that day of week performed better than 

weekday 3 when used individually. Figure 2.5 shows the coefficients of day of week form 

model 2 when the offset was profiled by day of week corrections to take account of variations 

in distance travelled.   

 

Figure 2.5: Coefficients of Day of week from model 2 (Dataset 1) 
 

 
 

 

In model 3, month variable was introduced and offset variable was adjusted only to take 

account of variations in distance travelled by month. This gave BIC value of 217,207 which 

was not better than model 2 where day of week variable was used.  Model 4 with weekday 3 

variable which was simple version of model 2 produced better results than model 3.  

 

In model 5, seasons of year (Spring, Summer, Autumn and Winter) were introduced in the 

explanatory variable. This further led to the development of model 6, 7, 8 and 9 where day of 

week and month, weekday 3 and season, day of week, month and their interaction terms, and 

weekday 3, season and their interaction terms were used respectively. Model 9 was the 

simplified version of model 8 with 72 fewer degrees of freedom. As we understand that the 

number of road accidents also varies by month which is evident from the estimated 

coefficients of model 3, due to which month was included in model 10 along with weekday 3, 

season and their interaction. This model helps to capture the variability in the number of road 

accidents in addition to the season variable already in the model. Further to this, in model 11 
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weekday 3, month and their interaction variables were used to identify the improvement in 

BIC of the model in comparison to model 8 and 10. 

 

By comparing the results of model 8 (day of week, month and their interaction), model 10 

(weekday 3, season, their interaction and month) and model 11 (weekday 3, month and their 

interaction) it was found that model 8 had better BIC values than other two models, but it has 

84 degrees of freedom. Out of these 3 models, model 10 was carried forward based on our 

own judgement and its performance in terms of BIC when using negative binomial regression 

where it performed better than model 8 and 11 (see Table 2.4). Model 10 has 63 fewer 

degrees of freedom than model 8 and explanatory variables of weekday 3, season, interaction 

of weekday 3 and season, and month.  

 

Model 10 has BIC value of 173,599. An improvement of about 39,000 was observed in the 

value of BIC for model 12 in comparison to model 10 when the Time variable was included. 

This established the presence of temporal trend. Gradual improvement in the value of BIC 

was observed as further variables were included in the model. Each of the variables of Public 

holidays, Christmas holidays and New-year holidays in models 13-15 improved the BIC 

value by 9,000, 2,445 and 330 respectively.  

 

In model 16, the logarithm of the annual distance travelled was introduced as an explanatory 

variable to investigate whether it had an effect beyond the linear one that is represented 

through offset. This was evaluated by the change in the BIC value of the model. The addition 

of this variable resulted in improvement in comparison to model 15 of only 373, which is 

small in comparison to the contribution from other variables. This shows that any non-linear 

effect of the distance travelled is not strong. Due to this, it is represented only in the offset.  

 

In model 17-19, the variables of vehicles per person, distance travelled per person and 

distance travelled per vehicles were used individually. The BIC of model 19 with variable of 

distance travelled per vehicle is better by value of 577 and 1,713 than model 17 and 18 where 

vehicles per person and distance travelled per person were used respectively.  

 

After adding all the variables in various combinations, as shown in Figure 2.4 model 26 with 

29 degrees of freedom had better values of BIC than any of the other models. The value of 

BIC for model 26 was 119,029. After including weekday 3, season, interaction of weekday 3 
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and four season, month, time, Public holidays, Christmas holidays, New-Year holidays, total 

annual distance travelled, vehicles per person, distance travelled per person and distance 

travelled per vehicle the mean deviance residual for the final model was still 13.50 which 

showed that the model still leaves a substantial amount of unexplained variability. The results 

of all 26 models are shown in Table 2.4. The graph showing the performance of the models in 

terms of BIC is also shown in the Figure 2.6. 

 

Figure 2.6: Comparison of the BIC values of the models (Dataset 1) 
 

 
 

2.6.2.1.2 Negative binomial regression model  

Due to the substantial amount of variability in the data, negative binomial regression was 

carried out. In Stata software the value of the over-dispersion parameter   is not estimated 

by the glm command so that the nbreg command was used initially to estimate it. Hilbe 

(2007) noted that when   is significantly different from zero, then a negative binomial 

model is preferred to a Poisson one. This estimated value of   is then used with the Stata 

glm command to estimate the remaining model parameters. Although the model parameters 

and standard errors produced by both commands were same, the glm command was used in 

order to take advantage of other statistical diagnostics that are available in Stata software to 

evaluate the model fit (Hilbe, 2001). 
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The same procedure as used in section 2.6.2.1.1 was carried out by making incremental 

changes into the model. All 26 models shown in Figure 2.4 were developed. The BIC values 

were used to compare efficiency and effectiveness of models. The ultimate aim was to 

establish informative models to which the explanatory variables contribute. This was 

achieved by investigating the effects of introducing the explanatory variables and by 

analysing the model residuals. It is found that estimated value of the over-dispersion 

parameter   of the negative binomial distribution is statistically greater than zero in each of 

the models hence justifying the use of negative binomial regression.  

 

The same procedure was applied to adjust the distance travelled by day of week and month as 

explained in section 2.6.2.1.1 and Table 2.3. The first model was developed by using a 

constant term only, which gave the BIC value of 69,514. Better BIC values were obtained 

when the day of the week variable was added into the model as an explanatory variable at the 

same time as day of week correction applied to offset variable to account for the variations in 

distance travelled by day of week. Use of the simplified variable weekday 3 (Weekday, 

Saturday, and Sunday) in model 4 resulted in better BIC than day of week in model 2 which 

suggest that weekday 3 variable (with 3 levels) has performed better than day of week 

variable (with 7 levels) when negative binomial regression is used. On the other hand the use 

of month with 12 levels (model 3) with BIC value 69,765 performed better than Season with 

4 levels (model 5) with BIC value of 69,939 showing that use of month variable is justified.  

 

From model 6 onwards different variables were used in combinations in the linear predictor.  

In model 6, day of week and month variable were used together, while in model 7 the 

simplified variables of weekday 3 and season were used. Model 7 did not perform better than 

model 6. By comparing the BIC values for model 6 and 7 it was found that BIC of model 6 

was better by value of 216. Greater improvements were obtained when the respective 

interaction variables was introduced in model 8 and 9. For model 8 the value of BIC was 

found to be 68,631 with 84 degrees of freedom when the day of week, month and their 

interaction variable were used together while model 9 has slightly better BIC ( by 251) value 

than model 8 and fewer degrees of freedom being associated with the simplified interaction 

variable. The BIC value of model 9 was 68,380, this shows that BIC supports use of the more 

parsimonious model. Month variable was also introduced in model 10 to account for extra 

variation available in data which was evident in model 3 where month variable performed 

better than seasons (Model 5). This further addition of month as explanatory variable 
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improved the BIC of model by 239 in comparison to model 9 which justifies the use of month 

variable in model 10.   

 

In model 8 (day of week, month and their interaction) and in model 10 (weekday 3, season, 

their interaction and month) were introduced. As it was found earlier in this section that 

weekday 3 and month variable performed better individually than day of week and season 

respectively, due to this they were used together in model 11 along with their interaction 

variables and compared to model 8 and 10. It was observed that the BIC value of model 10 

was better by 490 and 115 than model 8 and 11 respectively which justifies the preference for 

model 10 in comparison to model 8 and 11.  Due to this, model 10 was considered further by 

adding other available explanatory variables.  

 

A large improvement of about 1,900 in BIC was observed when the Time variable was added 

in model 12. After this the Public holidays, Christmas holidays and New-year holidays were 

added incrementally which resulted in improvement of 632, 223 and 22 in model 13, 14 and 

15 respectively. The BIC of model 15 was found to be 65,350. 

 

After this the logarithm values of the annual distance travelled were introduced into the 

explanatory part of model 16 to investigate the improvement in model performance. The 

addition of this variable resulted in improvement in BIC of only 27 in comparison to model 

15. So, non linear effect of distance travelled is not strong and this variable will be 

represented only in the offset. After this, circumstantial variables of vehicles per person, 

distance travelled per person and distance travelled per vehicle were used individually in 

model 17-19. It was found that model 19 with distance travelled per vehicle had better BIC 

value of 65,190 than model 17 and 18 where vehicles per person and distance travelled per 

person were used respectively. 

 

From model 20 onwards these circumstantial variables were used in various combinations 

into models which further improved the BIC. After including all variables that were available, 

the values of BIC improved to 65,122 for model 26. This resulted in an improvement of 4,392 

(about 6 percent) in comparison to model 1 by adding weekday 3, season, interaction of 

weekday 3 and season, month, time, public holidays, Christmas holidays, new-year holidays, 

logarithm of annual distance travelled,  vehicle per person, distance travelled per person and 

distance travelled per vehicle.   
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Table 2.4: Results of all models for the whole of Great Britain (Dataset 1) 

 

Results of model for the whole of Great Britain (Dataset 1) 

 

Model    

   

D.F 

Poisson Distribution Negative binomial 

   MD         L.L             BIC                 Likelihood         BIC 

1 1 30.5 -106,240  212,488  0.04816 -34,753  69,514  

2 7 22.9 -85,228  170,516  0.03529 -33,922  67,905  

3 12 31.4 -108,552  217,207  0.04957 -34,831  69,765  

4 3 22.9 -85,319  170,665  0.03535 -33,927  67,879  

5 4 32.8 -112,444  224,922  0.05185 -34,952  69,939  

6 18 23.8 -87,679  175,512  0.03676 -34,031  68,217  

7 6 25.2 -91,605  183,261  0.03904 -34,191  68,433  

8 84 23.5 -86,126  172,975  0.03571 -33,954  68,631  

9 12 24.9 -90,551  181,204  0.03829 -34,139  68,380  

10 21 23.5 -86,709  173,599  0.03606 -33,980  68,141  

11 36 23.5 -86,569  173,448  0.03597 -33,973  68,256  

12 22 16.3 -67,156  134,501  0.02496 -33,019  66,227  

13 23 14.6 -62,496  125,191  0.02204 -32,699  65,595  

14 24 14.2 -61,270  122,746  0.02109 -32,583  65,372  

15 25 14.1 -61,100  122,416  0.02096 -32,567  65,350  

16 26 14.0 -60,910  122,043  0.02082 -32,549  65,323  

17 26 13.8 -60,247  120,718  0.02048 -32,507  65,238  

18 26 14.0 -60,815  121,854  0.02076 -32,542  65,308  

19 26 13.7 -59,959  120,141  0.02028 -32,483  65,190  

20 27 13.7 -59,838  119,908  0.02021 -32,474  65,180  

21 27 13.6 -59,802 119,837 0.02019 -32,471 65,174 

22 27 13.7 -59,944 120,121 0.02028 -32,482 65,197 

23 27 13.7 -59,958 120,149 0.02028 -32,483 65,198 

24 28 13.6 -59,730 119,702 0.02015 -32,466 65,174 

25 28 21.7 -59,450 119,142 0.01997 -32,443 65,127 

26 29 13.5 -59,389 119,029 0.01992 -32,436 65,122 

*D.F = Degrees of freedom, M.D = Mean Deviance, L.L= log-Likelihood values, BIC= Bayesian information 

criterion 

 

The comparison of BIC values of negative binomial and Poisson for all the models is shown 

in Figure 2.6. Detailed results of all the models are shown in Table 2.4. This shows that the 

negative binomial fitted consistently better than the Poisson, due to its accommodation of 

over-dispersion. Improvements in the fit of the negative binomial model were smaller than 

for the Poisson because this corresponded to making explicit dependence of some part of the 
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dispersion. Due to this, we preferred negative binomial in comparison to Poisson regression 

models 

 

From the modelling results shown above it was observed that variations in risk per unit of 

distance travel within week are represented adequately by weekday 3: so it was concluded 

that risk per vehicle kilometres is roughly equal among weekdays, but substantially different 

on each of the Saturday and Sunday. However, the use of month (12 levels) is justified in 

presence of the simplified variable of season (4 level). Systematic variations in risk among 

days of week over the month in the year were found to be represented adequately by the 

interaction of weekday 3 and season. This has the advantage of parsimony over interaction 

between weekday 3 and month because it requires only 6 additional degrees of freedom 

rather than 22 or more for other formulations.  

2.6.2.2 Analysing the temporal effects 

In this section the negative binomial models fitted in section 2.6.2.1.2 were analysed further 

to investigate whether there was any substantial systematic temporal effect that was not 

represented in the model. This was carried out by adding time and the square of time 

variables to the models. The resulting improvement in BIC, coefficients and t values of time 

and square of time, and their variance inflation factors (VIF) were examined. Because models 

1-11 do not include time variable, both time and square of time variables were added to those 

models. From model 12 onwards when time variable was already present only square of time 

was added to investigate the presence of substantial quadratic temporal effect that was not 

represented by other explanatory variables.   

 

From the results shown in appendix Table A2.5, substantial improvements in the value of 

BIC were observed for model 1-11 (except model 1, 2 and 4) when time and square of time
 

variables were added to the models. In each of these models the t values of time was found to 

be non-significant whereas square of time
 
had significant t values.  

 

From model 12 to 15 only square of time variable was added as time was already included in 

the models. This resulted in improvement of BIC which was comparatively smaller than the 

initial models (model 1-11).  
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From model 17 onwards when circumstantial variables were included in different 

combinations, introducing the square of time resulted in smaller improvement in BIC whilst 

VIF increased showing correlation between time and circumstantial variables. In model 19 

(with distance travelled per vehicle) the t value of time and square of time
 
was 2.43 and -8.81. 

However, the BIC improved by only 69 and the estimated value of VIF for these variables 

was 23 and 77, which is high showing that some of the circumstantial variables in the model 

had non-linear temporal trend. The most detailed model 26 which had better BIC value than 

all other models showed there is only improvement of 2 in the BIC value when square of time 

variable is incorporated into the model. This small improvement shows that quadratic 

temporal trend in the data has adequately been represented by other variables in this model.  

2.6.2.3 Checking for presence of multicollinearity 

Multicollinearity can arise in the data due to associations among the explanatory variables. A 

consequence of its presence is that some statistical inferences about the data may not be 

reliable (Washington, 2003). Multicollinearity can cause some of the following problems in 

the results estimated by models: 

 

 The standard errors of parameter estimates are likely to be high; 

 The magnitude and sign of the parameter estimates are unreliable and can change 

from one sample to another. 

 

As a result of this, the validity of inferences drawn from the model will be undermined. In 

this study it is evident from the structure of the data that some explanatory variables such as 

month and season are correlated. Keeping this point in mind, focus was on the circumstantial 

variables that had collinearity with time. In order to investigate the multicollinearity, variance 

inflation factors were estimated using formula 2-29 as used by the Stata software. These 

values of VIF can be used to estimate any consequent increase in the standard errors of the 

coefficient estimates. 

 

Table 2.5 shows the individual VIF of variables used in model 16-26. The VIF of the 

variables used in initial models (1-15) are not presented as it is understood that there will 

correlation due to association among the variables (interaction variables, month and seasons), 

hence it was not considered to be a cause of great concern.  
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From model 16 onwards (except model 19) the VIF for time and circumstantial variables are 

high in most cases. The explanatory variables of time, distance travelled, vehicles per person, 

distance travelled per person and distance travelled per vehicle had high VIF because these 

quantities have established trends in their development over time. As a consequence, the 

partial effects of these circumstantial variables can not be estimated reliably when more than 

one of them appears in the same model. 

 

In model 19 each of time and distance travelled per vehicle had acceptable VIF of 6. This 

suggests that there is no strong trend in distance travelled per vehicle over time. Other 

circumstantial variables when used together produced better BIC results but had 

multicollinearity. Because of this the effects of these variables can not be identified correctly 

as these quantities have established trends over time, due to which they were not preferred. 

As a result we look for a model that has just one of these circumstantial variables. Due to this, 

model 19 and its output values will be further analysed in the following sections. 

 

Table 2.5: Variance inflation factors of variables for Dataset 1 
 

Model Time Ln(D.T) V/P D/P D/V 

16 54.2 53.9 
   

17 42 
 

42.2 
  

18 32.1 
  

31.9 
 

19 6.1 
   

6.1 

20 55.9 
 

43.5 
  

21 65.6 
 

42.6 32.4 
 

22 64.1 
 

114.3 
 

16.6 

23 65.9 
  

42.5 8.1 

24 279.2 6,344 67.1 3678 
 

25 65.99 
 

2,696 1,002 514 

26 549.2 13,682 6,622 4,047 1,108 

Ln(D.T)= logarthim of distance travelled, V/P= vehicles per person, D/P= distance travelled per person, D/V= 

distance travalled per vehicle 

2.6.2.4 Split sample tests 

After analysing the BIC, temporal effects and VIF values according to the criteria discussed 

in section 2.5.4, model 19 was taken forward for further investigation. The detailed reasons of 

perference of model are given in section 2.6.2.6.  
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In order to validate and check the consistency of  this model and its parameters estimates, 

split sample validation tests were carried out by dividing the whole sample randomly into two 

portions. The following procedure was adopted to achieve a 50-50 split. A uniform random 

variate in (0,1) was generated for each record and the whole dataset was then sorted using the 

random number. The first 50 percent of the observations (2,739) were used as Dataset B 

whereas remaining 50 percent of observations were considered as Dataset C. The following 

datasets were used to cross-check and validate the results of model 19. 

 

Full dataset                   = Dataset A 

Dataset first portion      = Dataset B 

Dataset second portion = Dataset C 

 

Stata was used to estimate the parameters of model 19 with negative binomial error 

distribution for each of the Datasets B and C. In order to check the consistency and reliability 

of the model parameters, the coefficients estimated from Dataset B were used with Dataset C 

to estimate the  number of road accidents on each day and after that values of log-likelihood 

and total deviance were estimated using equations 2-10 and 2-22 respectively. The 

corresponding process was repeated using coefficients estimated from Dataset C with Dataset 

B. After this, in order to further check the consistency of the estimated parameters the 

coefficients from dataset B and C were compared by using the T test.  

 

The results in Table 2.6 show that values of the log-likelihood and total devaince are 

consistent and almost same for the Datasets B and C. For Dataset B the log-likelihood value 

estimated was -16,244 whereas for Dataset C it was found to be -16,229. Interchanging 

coefficeints between Datasets B and C produced only a small change in the values of log-

likelihood and total deviance, making these values slightly less perferable than the initial 

values. The coefficients of dataset C when used with dataset B produced the log-likelihood of  

-16,265 which had the difference of only 21 from the value optimised for that dataset. 

Because the model parameters are not optimised in this case, there are 25 more degrees of 

freedom in the residuals: this gives rise to a likelihood ratio test of 42 on 25 degrees of 

freedom, which is less than the critical value of 44.31  at 0.01 significance level. Therefore  

the null hypothesis can not be rejected that parameters fitted to dataset C are as appropriate 

for dataset B as these fitted to that dataset. In the same way when coefficients of dataet B 

were used with dataet C that also produced the difference of 22: this gives rise to a likelihood 
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ratio test of 44, as a result of this null hypothesis can not  be rejected at 0.01 significance 

level that parameters fitted to dataset B are as appropriate for dataset C. In general  it is found 

that values of log-likelihood -32,483 and devaince 5,502 for Dataset A are better than the 

summation of other two models. This further confirms that the parameters of the model are 

consistent and reliable. 

 

After this the coeffiecient of the varaibles obtained from all three models A, B and C are 

comapred to identify that the signs of the coeffiecients are consistent among the three models.  

Table 2.7 shows that the overall coefficients of model estimated with Datasets A, B and C are 

consistent and have the same sign in all three models except for winter that is not in any case 

significantly different from zero. The T test was used to compare the coefficients of Datasets 

B and C,  TBC values were estimated by using following formula: 

2 2

B C

BC

B C

T
S S

  



                                                                                           2-32 

 

where θ and θB C are the estimated coefficients from Dataset B and C and andB CS S are the 

corresponding standarad errors. 

It is found from the TBC test values that the coefficients of model B are not significantly 

different from the coefficients of model C as all the estimated values of TBC are less than 

1.96. The coefficients and their t values are given in Table 2.7 and are shown graphically in 

Figure 2.7. It is to note that the presented coefficients are obtained by using the deviation 

coding as explained in section 2.5.2 due to which the coefficient represents the comparsion 

with reference to the group mean rather than a particular reference category as in the case of 

simple coding. We note here that because deviation coding is used here, the coefficients of 

factors have zero sum. Due to this coding structure, the coefficient of Saturday will be equal 

to the minus sum of all other days (Weekday and Sunday). Similarly the coefficient of Spring 

will be equal to the minus sum of all other seasons (Summer, Autumn and Winter). Same 

procedure is applied to estimate the coefficients of remaining interaction terms.  
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The summary of the comparsion of the estimated coefficients of model A, B and C is as 

follows:  

 

 The coefficient of the weekday and Sunday variables had significant t values and 

consistent  coefficient signs in all three models. 

 The coefficient of summer is negative and significant in all three models. Winter is 

non-significant among the three models while the coefficient of autumn is significant 

in model B and C only.  

 The coefficients of interaction variables of weekday 3 and season were significant and 

had the same sign in all three models.  

 Among the coefficients of month only February and October had non-significant t 

values in model A whereas only May had non-significant t values in model C.  

 The coefficient of time, Public holidays, Christmas holidays, New-year holidays and 

distance travelled per vehicle had significant t values in all three models.  

 

Table 2.6: Split sample validation results for Dataset 1 
 

Split sample validation 

Data  

Model coefficients (k=25) 

 

A B C 

A 
 

A A
x β  

  n 5,479 

  Likelihood -32,483 

  Deviance 5,502 

  

B 
  

B B
x β  B C

x β  

n 

 

2,739 2,739 

Likelihood 

 

-16,244 -16,265 

Deviance 

 

2,751 2,856 

C 
  

C B
x β  C C

x β  

n 

 

2,740 2,740 

Likelihood 

 

-16,251 -16,229 

Deviance 

 

2,793 2,751 

Total 
Likelihood -32,483 -32,495 -32,494 

 Deviance 5,502 5,544 5,607 
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Figure 2.7: Comparison of coefficient of GLM-Model 19-NB for coefficient validation 

(Dataset 1) 
 

 

     

 

 

In graph the coefficients of month represents the combined effect of month and season. 
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Table 2.7: Comparison of coefficients and t values of GLM-Model 19-NB for coefficient 

validation (Dataset 1) 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B            Model C   T test 

Coefficient tA              Coefficient tB Coefficient tC TBC 

Weekday 0.172 56.13 0.176 40.82 0.168 38.55 1.296 

Sunday -0.145 -34.71 -0.141 -23.99 -0.150 -24.98 1.124 

Summer -0.034 -3.55 -0.034 -2.74 -0.037 -3.02 0.185 

Autumn 0.111 1.92 0.127 5.48 0.130 5.85 -0.107 

Winter 0.009 0.19 -0.006 -0.50 -0.005 -0.46 -0.062 

Weekday-Summer -0.041 -8.70 -0.041 -6.09 -0.042 -6.22 0.133 

Sunday-Summer 0.048 7.35 0.046 5.08 0.050 5.34 -0.372 

Weekday-Autumn  0.022 3.67 0.021 2.48 0.023 2.73 -0.162 

Sunday-Autumn  -0.029 -3.53 -0.027 -2.32 -0.030 -2.61 0.195 

Weekday-Winter  0.043 8.17 0.048 6.54 0.038 5.07 0.968 

Sunday-Winter  -0.045 -6.34 -0.042 -4.23 -0.050 -4.84 0.574 

January 0.063 1.46 0.064 4.36 0.088 6.39 -1.183 

February -0.013 -0.30 This variable is dropped from the model in dataset B and C 

 

 

 

 

March 0.047 4.76 0.055 4.08 0.039 2.69 0.828 

May 0.026 2.64 0.040 2.90 0.012 0.86 1.393 

July -0.044 -4.50 -0.048 -3.39 -0.041 -3.01 -0.360 

August -0.123 -12.54 -0.128 -9.28 -0.119 -8.57 -0.436 

September 0.041 4.14 0.040 2.84 0.041 2.97 -0.050 

October -0.101 -1.59 -0.122 -4.81 -0.119 -4.83 -0.087 

December 0.097 2.28 0.108 7.50 0.112 7.95 -0.185 

Time -3.04E-05 -9.71 -2.9E-05 -6.52 -3.1E-05 -7.11 0.318 

Public Holidays -0.240 -15.59 -0.218 -10.03 -0.262 -11.98 1.437 

Christmas Holidays -0.556 -16.94 -0.565 -12.48 -0.551 -11.56 -0.202 

New-year Holidays -0.223 -5.76 -0.310 -5.28 -0.165 -3.20 -1.854 

D.T per veh* 0.00012 13.07 0.00012 9.10 0.00012 9.45 -0.263 

Constant -16.464 -104.34 -16.439 -73.54 -16.507 -73.79 0.215 

*D.T per veh= Distance travelled per vehicle, 

 Italic shows that these variables are not significant at 5 percent level. 
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2.6.2.5 Durbin-Watson test 

 

Because the dataset contains cross-sectional time-series data, the possibility arises that serial 

correlation exists. If this arises, the t values of the GLM coefficient would be affected. The 

Durbin-Watson test was carried out to check whether the autocorrelation exists among the 

residuals. The presence of autocorrelation was tested in both the whole dataset and for the 

observations in each of the years. The formula given in equation 2-30 is used to calculate the 

values of Durbin-Watson statistics. The lower dl and upper du critical values of Durbin-

Watson statistics were obtained from the reference values in Table 2.2 by using the number 

of observations and number of variables in the regression equation. The respective values of 

dl and du were 1.57 and 1.78. The residuals of model 19 with the generalized linear model 

using negative binomial gave the estimated value of Durbin-Watson statistics to be 1.03 

which lies in the first region between 0 and 1.57. This identifies the presence of positive 

autocorrelation in the data so that the null hypothesis for the absence of autocorrelation was 

rejected. The Durbin-Watson statistic was also calculated for each year. Based on the test 

results, the null hypothesis for the absence of autocorrelation among residuals was rejected 

for each of the 15 years. The results given in Table 2.8 show that residuals are autocorrelated 

and serial correlation exists within each year.  

 

Table 2.8: Durbin-Watson test results for Dataset 1 
 

Observation Year DW Observation Year 

 

DW 

 

1 
1991 

 

1.02 9 1999 

 

0.64 

2 
1992 

 

1.24 10 2000 

 

0.93 

3 
1993 

 

0.98 11 2001 

 

0.81 

4 
1994 

 

1.06 12 2002 

 

1.23 

5 
1995 

 

0.99 13 2003 

 

1.18 

6 
1996 

 

1.23 14 2004 

 

0.97 

7 
1997 

 

1.08 15 2005 1.07 

8 
1998 

 

1.03    

     DW represents the Durbin Watson  statistic 
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2.6.2.6 Preferred model  

 

Model 19 was preferred based on the results obtained in section 2.6.2.1-5. In the model 

selection process, BIC values were compared which were used to guide rather than to dictate 

the selection of a model along with other considerations for model selection. The detail of 

model preference was based on the criteria set in section 2.5.4 for assessment of model 

performance.  

 

From section 2.6.2.1.2, model 19 was identified as having good BIC, significant coefficients 

of most of explanatory variables including time and circumstantial variable of distance 

travelled per vehicle. Tests for multicollinearity of the explanatory variables in this model 

using the VIF showed these variables have acceptable value. Other models (model 17 and 18) 

in which circumstantial variables of vehicle per person and distance travelled per person 

respectively were investigated did not have better BIC values and multicollinearity existed 

between the time and these circumstantial variables. It was also observed that when the 

circumstantial variables were used together in different combinations in model 20-26, it 

resulted in improvement of BIC in some cases, but time and circumstantial variables had high 

VIF, as a result those models were not preferred. Analysis of temporal effects in section 

2.6.2.2 also showed that in model 19 no substantial systematic temporal trend remains that 

can be represented by further quadratic temporal terms in the model. Due to this, model 19 

was carried forward for the split sample analysis to validate and check the consistency of the 

model and its parameter estimates. 

 

Split-sample tests reported in Section 2.6.2.4 showed the estimates of parameters for model 

19 to be consistent and reliable. After this, the Durbin-Watson test was used to test for the 

presence of serial correlation in the residuals of the model 19. However, it was found in 

section 2.6.2.5 that serial correlation exists in the residuals of this model (Table 2.8). Due to 

this, the Generalized Estimation Equation (GEE) with autoregressive (AR1) error term for 

model 19 was therefore preferred over the GLM because it can accommodate this serial 

correlation. 

 

In section 2.6.2.6.1 the coefficients of Model 19 with GEE-AR1-negative binomial are 

compared with GLM-negative binomial to identify the extent to which estimates and 

significance level of the coefficients differ among these model forms. Further analysis was 
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carried out in the coming sections on the results obtained from the preferred model (Model 19 

with generalized estimation equation with negative binomial and having AR1 error structure).  

2.6.2.6.1 Comparison of coefficients for Dataset 1 (GEE and GLM) 

Stata software was used to estimate the coefficients of all variables which were found to have 

expected signs. The comparison of the coefficients and t values for model 19 by using GEE 

with negative binomial having autoregressive error structure (AR1) and GLM with negative 

binomial was carried out. Because both models were fitted to the same data, the estimates of 

corresponding parameters are not mutually independent. Because of this, no formal T test 

could be undertaken between the values estimated by the different models, so an informal 

comparison is presented here instead. In all cases the coefficient and their sign remained 

same in both the models. However, a slight change in the t values was observed. It was found 

that the t values of the variables of weekday, Sunday, all the interaction variables and Public 

holidays have increased in GEE while for the month, time, Christmas holidays, New-year 

holidays and distance travelled per vehicle variable their t values have decreased. This might 

be due to presence of serial correlation in the data. 

 

In this model the distance travelled profiled by each day which takes into account the 

variations by day of week and month of year is used in the offset. Due to this, the coefficients 

of weekday 3 and month will directly represent their influence on the risk per unit of travel. 

However, no correction factors for the Public holidays, Christmas holidays and New-year 

holidays were available. Because of this, the coefficients of these variables represent their 

influences on the frequency of road accidents rather than risk per unit of travel.  

 

From the estimated coefficients, strong effects on the risk per unit of travel were identified 

for weekday, Sunday, interaction between seasons and weekday 3, time, month and distance 

travelled per vehicle.  It was found that the coefficients of autumn, winter, January, February 

and October had non-significant t values in both the models whereas summer, May and 

December  which had significant t values in GLM turned to be non-significant in GEE model. 

Generally it is observed that some coefficients may differ in value in GEE and GLM and the 

accuracy of the estimation also differ. The coefficients estimated by GEE-AR1 which are 

shown in Table 2.9 are preferred as it can accommodate the presence of serial correlation. 
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From model results it was observed that weekday had greatest risk per unit of travel, Saturday 

had about 20 percent lower risk and Sunday about 35 percent lower risk than weekdays. The 

combined effect of month and season showed that November had the greatest risk per unit of 

travel (about 11 percent greater) than average whereas August had least risk per unit of travel 

(about 15 percent lower) than the average. The interaction variable of weekday 3 and seasons 

ranged from 0.048 (Sunday-Summer) to -0.050 (Sunday-Winter). These represent 

respectively an increase and decrease of about 5 percent in risk per unit of distance travel. 

The variables of Public holidays, Christmas holidays and New-year holidays had a coefficient 

of -0.216, -0.426 and -0.116 respectively which represents variation in frequencies of road 

accident occurrence on these days rather than risk. The coefficient of time is -3x10
-5

 per day, 

which shows that the risk per unit of distance travelled had decreased at about 1 percent per 

annum. The distance travelled per vehicle variable has a positive coefficient which shows that 

the years in which fewer vehicles were registered there was a greater risk of road accident 

involvement per unit of distance travelled. 

 

After this the estimated coefficients of weekday 3, seasons, interaction of weekday 3 and 

seasons, and month were combined together to give an understanding of the combined effect. 

Figure 2.8 shows the comparison of the risk per unit of distance travel on weekday, Saturday 

and Sunday by month of year. It is observed that risk per unit of travel was greater for 

autumn and winter months. Weekdays had greater risk than Saturday and Sunday when 

compared within each month. For weekdays the risk per unit of distance travel is greater in 

the months of November to January (about 20 percent greater than in months of April-July). 

During the summer month it fluctuates but in September it increases sharply. Sunday had the 

lowest risk per unit of travel of all the days of week: it has least risk in August which is about 

18 percent lower than Sunday in November. Further associations are also observed which 

show that Saturday in winter has greater risk per unit of travel than some of the weekdays in 

spring and summer. Saturdays in November had slightly greater risk per unit of travel than 

weekdays in April and July. 
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Table 2.9: Comparison of coefficients and t values of model 19 (GEE-AR1 and GLM) 

negative binomial for coefficient validation (Dataset 1) 

 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

GEE-AR1-NB            GLM-NB  

Coefficient t value    Coefficient  t  value 

Weekday 0.174 63.58 0.172 56.13  

Sunday -0.146 -50.01 -0.145 -34.71  

Summer -0.024 -1.84 -0.034 -3.55  

Autumn 0.068 1.47 0.111 1.92  

Winter 0.039 1.01 0.009 0.19  

Weekday-Summer -0.043 -10.27 -0.041 -8.70  

Sunday-Summer 0.048 10.71 0.048 7.35  

Weekday-Autumn  0.023 4.37 0.022 3.67  

Sunday-Autumn  -0.028 -4.87 -0.029 -3.53  

Weekday-Winter  0.043 9.22 0.043 8.17  

Sunday-Winter  -0.050 -9.93 -0.045 -6.34  

January 0.028 0.77 0.063 1.46  

February -0.034 -0.96 -0.013 -0.30  

March 0.054 3.47 0.047 4.76  

May 0.023 1.47 0.026 2.64  

July -0.044 -2.87 -0.044 -4.50  

August -0.122 -7.68 -0.123 -12.54  

September 0.041 2.55 0.041 4.14  

October -0.047 -0.92 -0.101 -1.59  

December 0.058 1.66 0.097 2.28  

Time -3.09E-05 -5.75 -3.04E-05 -9.71  

Public Holidays -0.216 -16.85 -0.240 -15.59  

Christmas Holidays -0.426 -14.03 -0.556 -16.94  

New-year Holidays -0.116 -3.51 -0.223 -5.76  

D.T per veh* 0.00012 7.60 0.00012 13.07  

Constant -16.461 -61.01 -16.464 -104.34  

* Distance travelled per vehicle,  

Italic shows that these variables are not significant at 5 percent level. 
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Figure 2.8: Comparison of risk per unit of distance travelled on Weekday, Saturday and 

Sunday by month of year (Dataset 1) 

 

 

2.6.2.6.2 Comparison of number of road accidents observed and estimated, 

Standardized deviance residuals and cumulative percentage graphs:  

Graphs of observed values of road accidents against the estimated value by model 19 with 

GEE negative binomial having AR1 error structure for Dataset 1 (whole of Great Britain) are 

presented in Figure 2.9. The graph of road accidents observed and estimated shows that 

model have generally represented the data well as the line of equality passes through the 

centre. However, the cumulative proportion graph shows that the model estimated slightly 

fewer observations with number of road accidents less than 600 and a greater number of 

observations with number of accidents greater than 600 in comparison to the observed data.  

 

From the graphs and further exploration of data it was found that the two days with the 

highest SDRs were 3
rd

 July 1992 and 1
st
 February 1991, both Fridays (weekdays) which gave 

the standardized residual deviance of 4.65 and 3.74 respectively. The number of road 

accidents observed on these days was 1,290 and 848 whereas the estimated values for these 

days were 699 and 511 respectively.  

 

The standardized deviance residual (SDR) graph showed that the SDR generally remained 

between +4 and -4. The graphs of standardized deviance residuals plotted against month 

showed December and January had highest range of SDR among months, even after 

including Public holidays, Christmas, and New-Year holiday variables in the model. In the 
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same way weekdays, Saturday and Sunday in winter had higher SDR than all other 

combinations of weekday and seasons. Upon investigation it was found that among the 

highest hundred negative SDRs, 60 observations belonged to the December and 17 belonged 

to January mostly relating to the dates between the Christmas and New-year holidays. This 

suggests that the model is not able to precisely estimate the number of road accidents for that 

period. It was also observed that the range of SDR of the months of July and August is 

smaller than other months which reveal that this model can estimate the number of road 

accidents for these months more accurately than other months so that these are less variable 

than other months and thus easier to model as a whole. 

 

Figure 2.9: Number of road accidents observed and estimated, Cumulative proportion and 

Standardized deviance residuals graphs (Dataset 1) 

 

 

     

 

               

       

 

 

 



85 

 

2.6.2.6.3 Final model checking graphs 

 

For model checking the following four diagnostic plots were produced, as shown in Figure 

2.10. 

 

1. Plot of deviance residuals against fitted values 

2. Normal quantile plot 

3. Scale location plot 

4. Cook’s distance plot 

 

In the first graph the deviance residuals produced by model 19 with GEE-AR1 negative 

binomial are plotted against fitted values: this does not show any trend. Attention was paid to 

identify any increase in the deviance with increase in the fitted values, because higher fitted 

values that had higher deviance would have been a cause of concern. This graph shows that 

the model is correct as deviance is scattered evenly around the zero line.  

 

In the second graph the normal quantile plot of standardized deviance residuals is shown. 

This was used as a diagnostic tool to check that the deviance residuals have a distribution 

close to normal. The graph shows that for much of the range the quantile plot follows a 

reference line which verifies the assumptions of normality of the residuals. However, a low 

deviation is observed at the low end of the range, which suggests that the data distribution has 

relatively few observations that fit closely.  In the third graph, the scale location plot which is 

the repeat of first but on a different scale, it shows the square root of the absolute value of 

SDR against the fitted value. This shows that variance does not increase with the increase in 

mean.  

 

In the last graph, Cook’s distance shows the observations which have the most influence 

upon the fitted model and if these observations were excluded, the parameter estimates will 

change a lot. In order to find out the higher peaks the dataset was investigated, it was found 

out that most of the observations that had higher peaks corresponded to December and 

January values (25
th

, 26
th

 December, 1
st
 January). A critical value of 1 (Montgomery, 2010) 

was considered to be a cut off value for  Cook’s distance which would indicate that the 

observation is influential and its removal will result in changing the coefficient value 

considerably. However, in this case the values of observations are in the range (all are less 
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than 0.05) that does not cause problems. Due to this, no observation was removed from the 

dataset.  

 

In order to verify the assumption of homoscedasticity (equal variance) in the residuals of the 

model 19 GEE-AR1, two different tests (Park Test and Glejser Test) as suggested by Gujarati 

(2009) were used to check the presence of heteroscedasticity in the residuals. The details 

about the procedure of these tests are given in Gujarati (2009, page 396). The results of these 

two tests showed that the t values of the estimated number of road accidents was found to be 

non-significant when  regressed against the squared values of residuals for Park test and 

absolute values of residuals by Glejser Test.  These results suggest that heteroscedasticity is 

not present in the residuals of this model which verified the assumption of homoscedasticity. 

The results of the tests are shown in Appendix A2.6. 

 

Figure 2.10: Diagnostic plots for model 19 (Dataset 1) 
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2.6.3 Model selection process, goodness of fit and model checks for Dataset 2 

 

Dataset 1 was found to be over-dispersed in the sense that the variances of the residuals 

exceeded the estimated value, even with respect to the most detailed models. Due to this, the 

negative binomial error structure was preferred to Poisson for regression. However, in order 

to further explore the differences in the number of road accidents in various geographical 

areas another approach was made by disaggregating the dataset to police force level so that 

further information that is available at this level from the Office for National Statistics, 

Department for Transport and from the STATS 19 form could be incorporated into the 

model. Disaggregating the national data in this way is likely to lead to correlation between 

similarly located observations made at the same time due to common regional effects such as 

weather. Due to the effect of spatial autocorrelation, the data from different police forces at 

the same time can not be regarded as mutually independent. In the present study these police 

forces were treated as independent and no adjustment was made for this. However, it is 

understood that this could lead to underestimation of standard errors of model parameters (by 

factor typically in the range of 1.5-2.5), and hence overestimation of their associated t values. 

Due to this, when identifying the effect of an explanatory variable as significant, its t value 

was considered with caution. 

 

There are two main possibilities for area-specific disaggregation levels of STATS 19 data for 

the whole of Great Britain which are either by police force or by local authority. Dataset 1 

was disaggregated to police force level, with 51 values. This was preferred to disaggregation 

to the finer level of local authority level, which would have generated a very large dataset.  

 

A new dataset was created which consisted of number of road accidents on each day recorded 

by each police force from 1
st
 January 1991 to 31

st
 December 2005. Each police force 

represented a single or group of local authorities. This increased the number of observations 

to 279,429 in Dataset 2 in comparison to 5,479 observations in Dataset 1. The information 

about population, length of all roads, length of all classes of road, population density and 

number of registered vehicles was obtained for each local council from the Office for 

National Statistics and the Department for Transport. This data was then aggregated to police 

force level by using STATS 20 ‘Instructions for the completion of road accident reports’ 

which showed all the local councils in the particular police force area. From this information 

circumstantial variables such as vehicles per person, vehicles per road length, vehicles per 
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surface area and length of each road class as a proportion of the total road length in a police 

force area were derived. As with Dataset 1 it was found that negative binomial performed 

better than Poisson regression, indicating that over-dispersion remains, and due to this only 

negative binomial was used for model development for Dataset 2.  

 

2.6.3.1 Negative binomial regression model for 51 police force areas of Great Britain 

(Dataset 2) 

2.6.3.1.1 Negative binomial regression model 

 

For Dataset 2, a total of 33 models were developed with different combinations of variables 

as shown in Figure 2.12. The initial model was developed with only a constant term. The 

incremental procedure was applied for estimating the mean of the number of road accidents 

for each day by police force in Great Britain. An offset variable was also used in each of 

these models. As described in section 2.5.3 two different variables were considered for use as 

the offset variable. Initially the models were developed with the logarithm of the national 

vehicle-kilometres of road travel as an offset. This variable does not distinguish among the 

police force areas but does allow for different usage for the day of week, month and years. 

The log-likelihood and BIC values of these models are shown in appendix Table A2.2.  

 

It is understood that the distance travelled on each day varies by day of week, month and 

police force. As the unit of observation in dataset 2 is number of road accidents on each day 

for each of the police force, due to this an adjustment was made in national vehicle 

kilometres to account for the variations in distance travelled among the police forces. As a 

result, a new variable was derived by using the information of number of registered vehicles 

in each police force area, total national number of vehicles and national vehicle kilometres. It 

was assumed that vehicle kilometres travelled within each police force area is proportional to 

the number of registered vehicles there. The details of this are given in section 2.5.3. After 

this, correction factors for day of week and month were used for the offset variable to account 

for the variation in distance travelled. The use of the profiled distance travelled in offset 

results in direct interpretation of the estimated coefficients as risk per unit of travel. This 

variable when used in offset produced better BIC results than the national vehicle kilometres 

which was unable to account variations in distance travelled among police forces. Due to this, 

it was preferred to be used as an offset. 
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It is to be noted that in the process of model development the corrections to adjust the 

distance travelled by day of week and month were applied to the offset only when the related 

variables were introduced into the model as explanatory variable. Table 2.3 given in section 

2.6.2.1.1 shows the list of models and the corrections applied to offset. 

 

The initial model gave BIC value of 1,654,569. It was observed from the results of model 2 

when the offset variable was adjusted to take account of the variations in distance travelled 

by day of week, the estimated risk per unit of distance travel for each of the weekday was 

found to be quite similar. The comparison of the estimated coefficients from model 2 is 

shown in Figure 2.11. Keeping these results in view a new variable of weekday 3 was 

introduced in model 4 with 3 levels each representing weekday, Saturday, and Sunday. In the 

same way Season (Spring, Summer, Autumn and Winter) were introduced in model 5. Model 

4 and 5 are considered to be simple versions of model 2 and 3 respectively. 

 

Figure 2.11: Comparison of the coefficients of day of week from model 2 (Dataset 2) 

 

 

 

Comparison of the results showed that model 2 with day of week had better BIC (by 56) 

values than model 4 which had weekday 3 as explanatory variable. In the same way, model 3 

with month variable had performed better than model 5 with season. In model 6, day of week 

and month while in model 7, weekday 3 and season variables were used together. This 

showed that model 6 had performed better than model 7 in terms of BIC values. The BIC of 

model 6 was better by value of 2,349 than model 7.   
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In model 8 and 9 interaction terms were introduced. Model 8 had BIC values of 1,642,540 

with 84 degrees of freedom. The BIC of model 8 was better by 1,937 than model 9 which was 

the simple version of model 8 with only 12 degrees of freedom. As it is also evident from the 

results of model 3 that month variable is also important and we understand that number of 

road accidents vary by month because of this it was introduced in model 10 along with 

weekday 3, season and interaction of weekday 3.season variables. Introduction of month 

variable improved the BIC of model 10 in comparison to model 8. Despite having 62 fewer 

degrees of freedom than model 8 the BIC of model 10 was better by 352.  

 

It was observed that the BIC of model 2 with day of week and model 4 with weekday 3 

variable were better than the model 10. This was because day of week and month corrections 

to the offset were applied together (in model 10) when these variables were introduced as 

explanatory variables which results in loss in the value of BIC. Based on our understanding 

that month, Season, their interaction, and monthly adjustments to the offset variable are 

important and necessary hence these were included into the model. Due to these reasons, 

model 10 was carried forward instead of model 2 and 4 despite having slightly less preferable 

BIC values.  

 

In model 11 after including the time variable substantial improvement of 13,934 in BIC was 

achieved. The BIC of model 14 after introducing the Public holidays, Christmas holidays and 

New-year holidays was found to be 1,623,944 which have an improvement of about 4,310 in 

the BIC in comparison to model 11. For model 15, a police force specific factor was 

introduced that subsumes the explanatory function of all area-specific units. For model 15 

significant improvements of about 88,000 in the BIC value was observed in comparison to 

model 14.   

 

Due to the disaggregated nature of the data it was possible to introduce more explanatory 

variables into the model. From model 15 onwards police force specific variables 

(circumstantial variables) were used to account for all differences among the police forces.  

 

In models 16 to 21 the police force specific variables (circumstantial variables) were 

introduced individually into the model, out of which model 17 with vehicles per head of 

population had better BIC value. Model 19 and 21 with the variables of vehicles per surface 

area and ratio of each road class to total road length respectively had also good results. After 
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this, circumstantial variables were incorporated into the models in various combinations. 

From models 22 to 26, model 22 with population density and vehicles per head of population 

produced better BIC values. From model 27 to 29, model 29 with ratio of each road class to 

total road length, population density and vehicle per head of population had better BIC 

values. In model 32 when all the area-specific variables were incorporated into the model, it 

was observed that BIC values were better than model 15 where police variable was used. In 

model 33, the police force variable was introduced along with all area-specific variables 

which had better BIC values among all models because it has police force variable as a factor, 

but it lacks explanatory power. Model 33 produced a better fit than model 15 according to the 

BIC because of the temporal variation in the area-specific circumstantial variables. Detailed 

results for the all models are shown in Table 2.10. 
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Figure 2.12: Lattice of model development Dataset 2 

 

 

1. Constant 

32. Pop density + Veh/Person + Veh/R.Length + Veh/S.Area + R.class/R.Length 

33. Police Force 

27.+ Veh /R. Length 

30.+ Pop density + Veh/Person + Veh/R.Length + Veh/S.Area  

28. + Veh/Person+ Veh/R.Length+ Veh/S.Area 29. + Veh/Person 

31.+ Veh/R. Length 

23.+ Veh /Person 

+ Veh /R.Length 

24. +Veh /S.Area 

+ Veh / Person 
22. +Pop density+ Veh 

/Person 

25. +Veh /S.Area 

+Veh /R.Length 
26. +Pop 

density 

20. ln (Pop) 19. Veh/S.Area 18.Veh /R.Length 17. Veh /Person 16. Pop density 21. 

+R.class/R.Length 

13. + Christmas Holidays 

12.  + Holidays 

11. + Time 

14. + New Year Holidays  15. + Police Force 

4. + Weekday 3 

 8. + Day of the week. 

Month 

2.  + Day of the week 

6. + Day of the week+ 

Month 

3. + Month 

9. + Weekday3.Season 

10. + Month 

7.+ Weekday3+ Season 

5. + Season 
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Table 2.10: Results of all models for the 51 police forces of Great Britain (Dataset 2) 

Model D.F Scale Likelihood BIC 

1 1 0.14777 -827,278  1,654,569  

2 7 0.13548 -820,731  1,641,549  

3 12 0.14915 -827,913  1,655,976  

4 3 0.13555 -820,784  1,641,605  

5 4 0.15150 -829,078  1,658,206  

6 18 0.13696 -821,435  1,643,095  

7 6 0.13933 -822,684  1,645,444  

8 84 0.13585 -820,743  1,642,540  

9 12 0.13852 -822,163  1,644,477  

10 22 0.13621 -820,956  1,642,188  

11 23 0.12156 -813,983  1,628,254  

12 24 0.11895 -812,511  1,625,323  

13 25 0.11810 -811,919  1,624,151  

14 26 0.11796 -811,809  1,623,944  

15 76 0.06948 -767,349  1,535,651  

16 27 0.09529 -800,720  1,601,779  

17 27 0.07029 -777,246  1,554,830  

18 27 0.11423 -811,050  1,622,439  

19 27 0.10238 -805,021  1,610,381  

20 27 0.10068 -806,271  1,612,880  

21 42 0.08495 -785,760  1,572,047  

22 28 0.06195 -772,462  1,545,275  

23 28 0.06292 -773,535  1,547,422  

24 28 0.06333 -773,251  1,546,854  

25 28 0.09504 -799,652  1,599,656  

26 43 0.08458 -785,422  1,571,383  

27 29 0.06190 -772,444  1,545,251  

28 29 0.06289 -773,103  1,546,570  

29 44 0.05725 -758,700 1,517,952 

30 30 0.05953 -771,227 1,542,830 

31 45 0.05657 -758,403 1,517,370 

32 46 0.05653 -758,268 1,517,113 

33 96 0.04487 -744,848 1,490,900 

D.F= degrees of freedom; BIC= Bayesian information criterion   
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2.6.3.2 Analysing the temporal effects 

 

The procedure presented in section 2.6.2.2 was used to investigate for the presence of further 

temporal effects that were not represented in the models. For this, time and square of time 

variables were added to model 1-10 whereas from model 11 onwards only the square of time 

was added as these models already included a time variable. The resulting improvement in 

BIC, coefficients and t values of time and square of time, and their variance inflation factors 

were examined. 

 

It is observed from the results which are shown in appendix Table A2.7 that huge 

improvements in the value of BIC ranging from about 2,000 to 13,000 were achieved when 

temporal trend was added to each of the models 1-10, which indicates that these models did 

not account for temporal effects. In each case the variables of time and square of time 

variables had significant t values but the estimated variance inflation factors were found to be 

high (value of 16) which suggests that the true effects of time and square of time cannot be 

identified through their estimated coefficients and standard errors because of 

multicollinearity. 

 

From model 10 onwards the improvement in BIC on inclusion of the square of time was 

smaller (in range of 26 and 179) which is because these models already include a time 

variable: this suggest that these models already include most of the temporal effects by the 

use of time and other explanatory variables. Model 33 with 96 degrees of freedom, which had 

the better BIC value than other models, showed no improvement in BIC after adding square 

of time (one degree of freedom), though an improvement of 3 was observed in the value of 

log-likelihood which shows that temporal trend has already been represented adequately by 

the model. 

 

These tests show that models 1-10 do not have an adequate representation of time. Model 11-

33 have a good representation through the linear time variable and other explanatory 

variables which vary over time, only a small improvement in model performance can be 

achieved by allowing for further variation over time according to a quadratic term.  
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2.6.3.3 Checking for the presence of multicollinearity  

 

Variance inflation factors were estimated for the models in order to investigate the presence 

of multicollinearity among the explanatory variables. It is expected that due to the nature of 

the data and associations among the explanatory variables some of them will necessarily have 

high VIFs. On the other hand where multicollinearity exists among the variables of time, 

population density, vehicles per person, vehicle per road length, vehicle per surface area, 

population and proportion of road length by road class than it will be difficult to identify the 

true effects of each of these variables individually. Models in which high VIFs (greater than 

10) were estimated for these variables were not preferred because this shows that the 

associated variables added relatively little information. The results in Table 2.11 are 

presented as values of VIFs for some of the circumstantial variables which are used in model 

16-33.  

 

Table 2.11 shows that circumstantial variables such as population density, vehicles per head 

of population, vehicles per kilometre of road length and vehicles per square kilometre of 

surface area when used individually in model 16-19 produced low VIF values showing that 

these variables do not have strong temporal trends. In model 21 the variable of ratio of road 

class to road length (with 16 degrees of freedom) had high VIF. 

 

From model 22 onwards these area-specific and other variables were used jointly.  Models  

26, 29, 31, 32 and 33 included the variable of ratio of road class to road length that had high 

VIF (greater than 40). Models 22-25, 27 and 28 had acceptable values of VIF for individual 

variables. In model 22 population density and vehicles per head of population have low VIF 

of 1.1 and 1.4 respectively. In model 27 where population density, vehicles per person and 

vehicles per road length were used together, these variables had low VIF of 2.1, 1.8 and 2.2 

respectively. From model 29 onwards, where area-specific circumstantial variables were used 

together in different combinations, unacceptable high VIF values were observed which 

indicate that the joint use of these variables will result in multicollinearity.  

 

It was observed from the table 2.11 that the models 22-25, 27 and 28 have acceptable values 

of VIF for the time, population density, vehicles per person, vehicles per road length and 

vehicles per surface area. Among these model 22 and 27 had better BIC values. Model 27 

was not considered further for the reasons that are explained in section 2.6.3.6. From these, 
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model 22 was carried forward for split sample analysis as it has good BIC and acceptable VIF 

values.  

 

Table 2.11: Variance inflation factors VIF of variables for Dataset 2 

P.D=Population density, V/P= vehicles per head of population, V/R= Vehicles per kilometre of road length, 

V/A=Vehicles per square kilometre of surface area, P= Population, R.C/R= Length of road by class by total 

road length 

 

2.6.3.4 Split sample tests 

 

After analysing the BIC, temporal effects and VIF values according to the criteria discussed 

in section 2.5.4, model 22 was taken forward for further investigation. In order to check the 

consistency of the model and its parameters, split sample validation tests were undertaken 

following the same procedure detailed in section 2.6.2.4. The following datasets were used to 

cross-check and validate the results of model 22. 

 

Full dataset                     = Data A 

Dataset first portion       = Data B 

Dataset second portion   = Data C 

 

Model Time P.D V/P V/R V/A Ln(P) 
*Mean 

R.C/R 

16 1.0 1.0  
   

 

17 1.3  1.3 
   

 

18 1.1   1.1 
  

 

19 1.0   
 

1.0 
 

 

20 1.0   
  

1.0  

21 1.2   
   

42.8 

22 1.3 1.1 1.4 
   

 

23 1.3  1.4 1.1 
  

 

24 1.3  1.3 
 

1.0 
 

 

25 1.1   2.0 1.9 
 

 

26 1.2 4.6  
   

43.8 

27 1.3 2.1 1.8 2.2 
  

 

28 1.3  1.6 2.4 2.3 
 

 

29 1.7 2.15 1.8 
   

44.1 

30 1.3 38.8 2.2 2.5 41.2 
 

 

31 1.7 2.5 5.1 15.3 
  

45.1 

32 1.7 54.5 5.2 17.7 56.9 
 

46.0 

33 3.7 984.1 18.7 124.3 228.0 
 

90362 
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The results in Table 2.12 show that values of log-likelihood and total deviance are consistent 

and do not differ widely between Datasets B and C. The maximised log-likelihood for 

Datasets B and C was -385,634 and -386,813 respectively. After this the coefficients that 

were fitted to Datasets B and  C were evaluated using log-likelihood and deviance values 

achieved using the complementary part of the dataset. This produced log-likelihood and 

deviance values that were slightly worse than those achieved using the data-specific 

coefficients. The coefficients of Dataset C when used with Dataset B produced the likelihood 

of -385,653 which differed only by 19 from the value optimised for that dataset. Because the 

model parameters are not optimised in this case, there are 28 more degrees of freedom in the 

residuals: this gives a likelihood ratio test statistic of  38 on 28 degrees of freedom, which is 

less than the critical value of 41.34 at 0.05 significance level. Therefore  the null hypothesis 

cannot be rejected that parameters fitted to Dataset C are as appropriate for Dataset B as these 

fitted to that dataset. In the same way when coefficients of  Dataset B were used with Dataset 

C it produced a difference of 20 in the likelihood value: this gives likelihood ratio statistic of 

40 which is less than critical value of 41.34 at 0.05 level. Table 2.12 shows that the log-

likelihood and total deviance values of Dataset A are only marginally better than the sum of 

the two corresponding values. This confirms that the parameters of model 22 are consistent.  

 

Table 2.12: Split sample validation results for Dataset 2 

 

Split sample validation 

Data  

Model coefficients (k =28) 

 

A B C 

A 
 

A A
x β  

  n 279,429 

  Likelihood -772,462 

  Deviance 319,880 

  

B 
  

B B
x β  B C

x β  

n 

 

139,715 139,715 

Likelihood 

 

-385,634 -385,653 

Deviance 

 

159,473 159,530 

C 
  

C B
x β  C C

x β  

n 

 

139,714 139,714 

Likelihood 

 

-386,833 -386,813 

Deviance 

 

160,461 160,403 

Total 
Likelihood -772,462 -772,467 -772,466 

 Deviance 319,880 319,934 319,933 
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In the second step the coefficients of  Datasets A, B and C are compared which indicates that 

overall the coefficients of dataset  A, B and C are consistent and have the same sign and 

similar values in all three models. The T test was used to compare the coefficients of Datasets 

B and C because they are fitted to distinct datasets, they are mutually independent. TBC values 

were estimated by using the formula 2-32. It is found from T test values that coefficients of 

model B are not significantly different from the coefficients of model C as the estimated 

values of TBC are less than 1.96 except one interaction variable of Sunday-Summer. The 

comparsion of coefficients and t values are shown in Figure 2.13 and Table 2.13. The  

summary of comparsion is shown below. 

 

 The coefficient of the Weekday and Sunday had significant t values and expected 

signs in all three models.  

 

 Among the coefficients of season only Summer and Autumn have significant t value 

in model A.  

 

 All the interaction variables of weekday 3 and season have significant t values in all 

three models. 

 

 Among the coefficients of month Febuary, September and October had non-

significant t values in all three models. 

 

 The coefficient of Time, Public holidays, Christmas holidays, New-Year holidays, 

population denisty and vehicles per head of population had similar signs and had 

significant t values in all three models.  
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Figure 2.13: Comparison of coefficient of GLM-Model 22-NB for coefficient validation 

 

 
 

 

 

 

In graph the coefficients of month represents the combined effect of month and season. 
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Table 2.13: Comparison of coefficient and t values of GLM-Model 22-NB for coefficient 

validation 
 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B Model C T test 

Coefficient tA Coefficient tB Coefficient tC TBC 

Weekday 0.164 135.54 0.166 96.85 0.163 94.86 0.971 

Sunday -0.141 -82.33 -0.140 -58.00 -0.142 -58.44 0.713 

Summer 0.085 2.20 0.085 1.53 0.085 1.59 -0.003 

Autumn 0.049 2.00 0.034 0.97 0.064 1.87 -0.606 

Winter -0.057 -1.67 -0.049 -1.01 -0.065 -1.37 0.239 

Weekday-Summer -0.049 -26.01 -0.046 -17.29 -0.052 -19.47 1.583 

Sunday-Summer 0.053 20.33 0.046 12.33 0.061 16.38 -2.874 

Weekday-Autumn  0.024 10.48 0.026 8.00 0.023 6.79 0.816 

Sunday-Autumn  -0.028 -8.57 -0.030 -6.39 -0.027 -5.72 -0.443 

Weekday-Winter  0.053 25.13 0.050 16.92 0.055 18.63 -1.309 

Sunday-Winter  -0.055 -18.45 -0.051 -12.11 -0.059 -13.97 1.476 

January 0.145 3.91 0.140 2.64 0.151 2.90 -0.148 

February 0.060 1.61 0.053 1.00 0.067 1.29 -0.185 

March 0.050 12.88 0.043 7.78 0.057 10.38 -1.825 

May 0.029 7.52 0.030 5.47 0.028 5.15 0.227 

June -0.100 -2.94 -0.101 -2.05 -0.100 -2.12 -0.003 

July -0.142 -4.16 -0.144 -2.93 -0.140 -2.96 -0.055 

August -0.213 -6.23 -0.218 -4.43 -0.209 -4.40 -0.136 

September -0.059 -1.72 -0.059 -1.20 -0.059 -1.24 -0.009 

October -0.031 -1.09 -0.016 -0.40 -0.045 -1.14 0.504 

December 0.177 4.78 0.172 3.26 0.182 3.51 -0.131 

Time -3.59E-06 -6.35 -3.55E-06 -4.44 3.62E-06 -4.53 0.062 

Public Holidays -0.202 -31.77 -0.198 -21.95 -0.206 -22.97 0.664 

Christmas Holidays -0.618 -41.12 -0.298 -12.46 -0.268 -11.31 -0.897 

New-year Holidays -0.283 -16.80 -0.636 -29.46 -0.601 -28.72 -1.167 

Population density 7.52E-05 97.79 7.5E-05 69.03 7.55E-05 69.26 -0.324 

Veh per person* -2.005 -249.0 -2.015 -176.4 -1.996 -175.8 -1.152 

Constant -13.67 -2270 -13.67 -1582 -13.67 -1628 0.410 

* vehciles per head of population 

Italic shows that these variables are not significant at 5 percent level. 
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2.6.3.5 Durbin-Watson test 

Because the dataset contains cross-sectional time-series data, serial correlation could exist in 

the data: if it does, it would affect the estimates of standard errors and hence the t values of 

GLM. The Durbin-Watson test was carried out to investigate whether autocorrelation exists 

among the residuals. The presence of autocorrelation was tested in both the whole dataset and 

in each of the police force areas. Each police force is considered to be a member of a panel, 

with observations consisting of road accident data for each day from 1991 to 2005 with 5,479 

observations. The formula given in equation 2-30 is used to calculate the Durbin-Watson 

statistics. The lower dl and upper du values of Durbin-Watson statistics were obtained from 

Table 2.2 by using the number of observations and number of variables in the regression 

equation: the respective values for model 22 of dl and du were 1.57 and 1.78 at the 0.05 level. 

The Durbin-Watson statistic was calculated for the whole dataset with an estimated value of 

1.22. Because this value is less than the lower critical value of 1.57, the null hypothesis for 

the absence of autocorrelation among residuals was rejected. The same process was repeated 

for each of the police force area. Based on the obtained results of the test, the null hypothesis 

for the absence of autocorrelation among residuals was rejected for the 20 police forces 

however there were 6 police forces where the null hypothesis for the absence of 

autocorrelation was accepted. There were 25 police forces for which the null hypothesis was 

neither rejected nor accepted. The results are shown in Table 2.14 which is ordered by 

Durbin-Watson statistic so that the results are in bands.  

 

2.6.3.6 Preferred model  

 

Model 22 with negative binomial error structure was preferred over all other models based on 

the assessment of model performance as discussed in section 2.5.4.  Initially the BIC values 

of all the models were compared. From section 2.6.3.1.1, model 22 was identified as having 

good BIC values. Test of the multicollinearity in section 2.6.3.3 also showed that explanatory 

variables used in model 22 had acceptable VIF values. It was observed that when variables of 

population density, vehicles per person, vehicles per road length, vehicles per surface area 

and ratio of road class to total road length were used together in model 29-33, it resulted in 

improvement of BIC, but these circumstantial variables had high VIFs, as a result these 

models were not preferred. Model 15 was also not preferred despite having better BIC values 

than model 22 because it had a Police force specific factor (51 degrees of freedom) which 
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subsumed the explanatory function of all area-specific variables. However, our preference 

was to select a model with circumstantial variables so that the inferences drawn form these 

parameters can be used from policy perspective. Model 27 which also had better BIC values 

was not preferred over model 22 as it resulted in difficulties in interpretation of coefficients 

when population density, vehicle per person and vehicle per road length were used together.  

From the results of the analysis of temporal effects presented in appendix Table A2.7, this 

showed that no substantial systematic temporal trend remains that can be represented by 

further quadratic temporal terms in the model and it has been represented adequately by  

model 22. Split sample analysis carried out on model 22 in section 2.6.3.4 showed that the 

estimated coefficients of model 22 are consistent and reliable.  

 

The Durbin-Watson Test results showed the presence of serial correlation into the residuals 

of model 22 (Table 2.14). Due to this, Generalized Estimation Equation (GEE) with 

autoregressive (AR1) error term for model 22 was preferred over the GLM because it can 

accommodate the presence of serial correlation. 

 

In the next section the coefficients of model 22 with GEE-AR1 and GLM with negative 

binomial are compared informally to identify the extent to which significance levels of the 

coefficients have changed. 
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Table 2.14: Durbin-Watson test results for Dataset 2 
 

S.No Police Force 

 

DW S.No Police Force DW 

1 West Midlands 0.81+ 27 Northumbria 1.63* 

2 Essex 0.82+ 28 Devon and Cornwall 1.66* 

3 Metropolitan Police 0.87+ 29 Durham 1.67* 

4 Fife 0.92+ 30 Suffolk 1.67* 

5 City of London 1.08+ 31 West Mercia 1.67* 

6 Grampian 1.13+ 32 North Yorkshire 1.68* 

7 Gwent 1.24+ 33 Northamptonshire 1.68* 

8 Cambridgeshire 1.30+ 34 Lancashire 1.68* 

9 Strathclyde 1.33+ 35 Warwickshire 1.69* 

10 Avon and Somerset 1.34+ 36 Tayside 1.69* 

11 Sussex 1.36+ 37 Nottinghamshire 1.69* 

12 Greater Manchester 1.42+ 38 Bedfordshire 1.70* 

13 South Wales 1.43+ 39 Humberside 1.72* 

14 Central 1.44+ 40 Leicestershire 1.73* 

15 Cleveland 1.46+ 41 Kent 1.73* 

16 Cheshire 1.48+ 42 Lincolnshire 1.75* 

17 Merseyside 1.49+ 43 North Wales 1.76* 

18 West Yorkshire 1.49+ 44 Dyfed-Powys 1.77* 

19 Staffordshire 1.50+ 45 Dumfries and Galloway 1.77* 

20 South Yorkshire 1.57+ 46 Dorset 1.80** 

21 Thames Valley 1.58* 47 Gloucestershire 1.80** 

22 Surrey 1.59* 48 Lothian and Borders 1.80** 

23 Hertfordshire 1.61* 49 Wiltshire 1.81** 

24 Hampshire 1.61* 50 Derbyshire 1.81** 

25 Norfolk 1.62* 51 Cumbria 1.84** 

26 Northern 1.62*    

+ Positive autocorrelation detected as statistically significant  

*Police Forces where the null hypothesis for the absence of autocorrelation is neither accepted nor rejected 

** Police Forces where the null hypothesis for the absence of autocorrelation is accepted 
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2.6.3.6.1 Comparison of coefficients for Dataset 2 

In addition to all the variables used for dataset 1, a few circumstantial variables describing the 

characteristics of a geographical area were also used to model dataset 2. Finally, model 22 

was preferred which had population density and vehicles per head of population along with 

other variables of weekday 3, season, interaction of weekday 3 and season, month, time, 

Public holidays, Christmas and New-Year holidays. It also had an adjusted distance travelled 

in offset as explained in section 2.5.3 which takes account of the variations in distance 

travelled by day of week, month and police force. A comparison was carried out between the 

coefficients and t values obtained by GEE-AR1 and GLM with negative binomial regression 

as shown in Table 2.15. Because the coefficients of these two models are estimated by using 

the same data, they are not mutually independent so it is not possible to test rigorously for 

differences between them. Due to this informally the signs, magnitude and standard errors of 

variables were compared to identify any changes. It was found that sign for each of the 

coefficients was same in GEE-AR1 and GLM models except for Winter, February and 

September. The estimated coefficients of these variables were found to be non-significant in 

both models so they were not a cause of great concern. The coefficient of Summer became 

non-significant when GEE-AR1 was used. It was also observed that the t values of the 

weekday, Sunday, interaction variables and Public holidays increased in GEE-AR1 whereas 

the t values for the month, time, Christmas holidays, New-year holidays, population density 

and vehicle per person decreased. These changes are due to the presence of serial correlation 

in the data which is represented in the GEE model through the AR1 error structure. 

 

From the coefficients shown in Table 2.15, the coefficient of weekday, Saturday and Sunday 

were 0.168, -0.028 and -0.14 respectively. This indicates greater risk of road accident per unit 

of travel on weekday whereas Sunday had the lowest risk per unit of distance travelled. The 

combined effect of month and season showed that November (0.12) had highest risk whereas 

August (-0.13) has the lowest risk per unit of distance travelled. Among the interaction 

variables, which all had significant t values, the coefficient of Sunday-summer (0.054) had 

greatest increasing effect while Sunday-winter (-0.058) had greatest reduction effect on the 

risk per unit of travel. These represent respectively an increase and decrease in risk of about 5 

percent. The coefficient of time had negative sign and coefficient value of (-0.00000412) 

which indicates that risk per unit of distance travel is decreasing by 1.5 percent annually. The 

coefficient of Public holiday, Christmas holiday and New-year had a value of -0.185, -0.475 
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and -0.047 respectively which represents the variations in frequencies of road accidents 

occurrence on these days rather than risk. Among the other coefficients it was found that 

vehicles per person had a negative sign suggesting that police force areas with higher vehicle 

ownership per person have smaller risk of road accident per unit of travel. Population density 

had positive coefficient which indicates that the risk of having road accident per unit of 

distance travelled is greater in areas that have greater population density. 

 

After this the combined effects of weekday 3, season, interaction of weekday 3 and season, 

and month were identified. Figure 2.14 shows the comparison of the risk per unit of distance 

travel on weekday, Saturday and Sunday by month of year, it revealed the same trend as 

shown in Figure 2.8 and discussed in detail in section 2.6.2.6.1. Briefly it shows that risk per 

unit of travel on weekdays varies substantially through the year. Greatest risk is associated 

with weekdays in winter and autumn. Saturdays in winter have more risk than Saturdays of 

other months particularly they have greater risk than some of the weekdays in spring and 

summer. Sunday carried the lowest risk per unit of travel than all others and this varied 

relatively little through the year.  

 

Figure 2.14: Comparsion of risk per unit of distance travelled on Weekday, Saturday and 

Sunday by month of year (Dataset 2) 
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Table 2.15: Comparison of coefficient and t values of GEE-AR1 and GLM-Model 22-NB for 

coefficient validation (Dataset 2) 
 

Variables 

Comparison of models 

Model 22-GEE-NB(AR1) Model 22-GLM-NB  

Coefficient t value Coefficient t value  

Weekday 0.168 150.16 0.164 135.54  

Sunday -0.140 -112.25 -0.141 -82.33  

Summer 0.019 0.61 0.085 2.20  

Autumn 0.046 2.26 0.049 2.00  

Winter 0.018 0.65 -0.057 -1.67  

Weekday-Summer -0.050 -29.14 -0.049 -26.01  

Sunday-Summer 0.054 28.02 0.053 20.33  

Weekday-Autumn  0.026 12.28 0.024 10.48  

Sunday-Autumn  -0.028 -11.41 -0.028 -8.57  

Weekday-Winter  0.051 26.50 0.053 25.13  

Sunday-Winter  -0.058 -26.53 -0.055 -18.45  

January 0.064 2.06 0.145 3.91  

February -0.017 -0.55 0.060 1.61  

March 0.058 9.78 0.050 12.88  

May 0.027 4.67 0.029 7.52  

June -0.036 -1.25 -0.100 -2.94  

July -0.080 -2.81 -0.142 -4.16  

August -0.150 -5.27 -0.213 -6.23  

September 0.006 0.21 -0.059 -1.72  

October -0.030 -1.25 -0.031 -1.09  

December 0.084 2.74 0.177 4.78  

Time -4.12E-06 -4.43 -3.59E-06 -6.35  

Public Holidays -0.185 -34.02 -0.202 -31.77  

Christmas Holidays -0.475 -34.06 -0.618 -41.12  

New-year Holidays -0.047 -3.58 -0.283 -16.80  

Population density 7.58E-05 60.50 7.52E-05 97.79  

Veh per person -2.004 -145.81 -2.005 -249.0  

Constant -13.669 -1859.40 -13.67 -2270  

Italic shows that these variables are not significant at 5 percent level. 
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2.6.3.6.2 Comparison of number of road accidents observed and estimated, 

standardized deviance residuals and cumulative proportion graphs 

Graphs for the GEE model 22 with negative binomial are shown in Figure 2.15. From the 

graph of road accidents observed and estimated it is observed that there are two groups 

present in the estimated values which are clearly visible to each side of 60. A detailed 

investigation was carried out to identify the characteristics of these two groups. It was 

observed that the Metropolitan Police Force was noticeably different from all other police 

forces which had a high number of road accidents on each day. The total number of 

observations in the dataset was 279,429 out of which 98 percent (273,729) had fewer than 50 

road accidents. From the remaining 5,700 observations which had road accidents for each day 

greater than 50, 95 percent (5,389) belonged to the Metropolitan Police Force. This police 

force has only 90 observations (from 5479 observations) where number of road accidents was 

less than 50. These numbers clearly show that the second group of data in the graph is related 

to the Metropolitan Police Force which had a higher number of road accidents occurring on 

each day. Table A2.8 in the Appendix shows the detailed distribution of the data. 

 

The cumulative proportion graph shows the GEE-AR1 model did not provide a precise 

estimate when the number of road accidents was greater than 135. However, the proportion of 

these observations is very small as shown in appendix Table A2.8. From the graph of 

standardized deviance residuals it is observed that most of the observations’ standardized 

deviance residuals (SDR) lie in the range -5 and +5. The highest positive SDR observed was 

for 30 April (Friday) 1999 which is followed by 16 May (Thursday) 1991, both of the 

observations belonged to the City of London Police Force. Generally the SDRs for all the 

month lies in same range except March-June have few positive outliers. It was also found that 

weekdays in each of the season have higher SDRs than Saturday or Sunday when compared 

with the same season.  
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Figure 2.15: Number of accidents observed and estimated, standardized deviance residuals 

(Dataset 2) 

 
 

     
 

 
 

   

 

2.6.3.6.3 Final model checking 

 

Some graphs were plotted in Figure 2.16 to check visually if any problem existed in the 

model 22 with GEE-AR1 error structure. In the first of these graphs the deviance residuals 

are plotted against fitted values. The plot does not show any trend. Attention was paid to 

identify any increase in the deviance with increase in the predicted values, which would be 

cause of concern. This graph shows that the model is correct as the deviance is scattered 

evenly around the zero line. However, the two groups of data are clearly visible. Most of the 

higher number of road accident predicted values belong to the Metropolitan Police Force, 

which have the same level of residual deviance as other police forces. It is also observed that 

there were some observations with predicted values near zero. Upon further investigation it 

was found that most of those observations belong to the City of London and the Dumfries and 

Galloway police forces. There were a total of 7,213 observations where the number of road 

accidents observed was zero. Of these 2,173 belonged to City of London Police Force while 



109 

 

1,645 belonged to Dumfries and Galloway, together making up just over half of the total such 

observations. The details of this distribution are given in Appendix Table A2.9.   

 

In the second graph, a normal quantile plot of standardized deviance residuals was plotted. 

This was used as a diagnostic tool to check that the deviance residuals have a distribution 

close to normal. From the graph it is shown that the quantile plot follows a straight line up to 

about 2.5, which supports the assumption of normality of the residuals. However beyond 2.5 

the residuals deviate from the reference line which suggests that the data distribution has a 

longer tail at that end.    

 

In the third graph, plotting the square root of SDR against the fitted value also did not show 

any noticeable pattern. The last graph of Cook’s distance shows that most of the observations 

that had a higher peak, took place in January probably due to new-year holiday. However, 

Cook’s distance value for those observations is in a range less than 0.002, which is 

substantially less than the value of 1.0 that would cause concern. 

 

In order to verify the assumption of homoscedasticity (equal variance) in the residuals of the 

model 22 GEE-AR1, two different tests were carried out to identify the presence of 

heteroscedasticity in the residuals. The results of each of the Park and Glejser test showed 

that the regression of the square of the residuals on the estimated number of road accidents on 

each day by police force was found to be significant (Park test) and similarly for the absolute 

values of residuals (Glejser Test). These results shown in appendix A2.10 suggest that 

heteroscedasticity is present in the residuals. According to Gujarati (2009) due to the 

violation of the assumption of constant variance the estimated parameters are not best linear 

unbiased estimators (BLUE). Heteroscedasticity does not affect the unbiasedness and 

consistency properties of the estimators but these estimators are no longer minimum variance 

or efficient and the estimated standard errors are not reliable.  In order to estimate the 

efficient standard errors for this study White’s robust procedure was applied using STATA. 

We note that the hierarchical generalized linear model (HGLM) introduced and used in 

Chapter 5 allows to model variations in dispersion.  

 

The results after applying White’s procedure to model 22 GEE-AR1 with negative binomial 

are given in Table 2.16. This shows that the standard errors of all the variables have increased 

except each of March and May. However, the coefficients of Autumn, January and Time 
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turned to be non-significant after implementing White’s corrections to standard errors. This 

suggests that heteroscedasticity does affect the standard errors of estimates in model 22, 

though it does not have a profound effect on the model structure.  

 

Figure 2.16: Diagnostic plots for model 22 (Dataset 2) 
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Table 2.16: Comparison of coefficient and t values of model 22 GEE-AR1 negative binomial 

after using correction for the presence of heteroscedasticity 

 

 

Variables 

Comparison of results of model 22-GEE-AR1 

 

 

Before applying any 

corrections 

 

 

White’s Robust Standard 

Errors  

 

 

 

Coefficient t value Coefficient t value  

Weekday 0.168 150.16 0.168 28.99  

Sunday -0.140 -112.25 -0.140 -25.18  

Summer 0.019 0.61 0.019 0.48  

Autumn 0.046 2.26 0.046 1.81  

Winter 0.018 0.65 0.018 0.56  

Weekday-Summer -0.050 -29.14 -0.050 -12.74  

Sunday-Summer 0.054 28.02 0.054 13.80  

Weekday-Autumn  0.026 12.28 0.026 9.65  

Sunday-Autumn  -0.028 -11.41 -0.028 -8.33  

Weekday-Winter  0.051 26.50 0.051 12.98  

Sunday-Winter  -0.058 -26.53 -0.058 -12.71  

January 0.064 2.06 0.064 1.75  

February -0.017 -0.55 -0.017 -0.45  

March 0.058 9.78 0.058 12.22  

May 0.027 4.67 0.027 5.73  

June -0.036 -1.25 -0.036 -1.01  

July -0.080 -2.81 -0.080 -2.24  

August -0.150 -5.27 -0.150 -4.18  

September 0.006 0.21 0.006 0.17  

October -0.030 -1.25 -0.030 -1.00  

December 0.084 2.74 0.084 2.35  

Time -4.12E-06 -4.43 -4.12E-06 -0.19  

Public Holidays -0.185 -34.02 -0.185 -10.94  

Christmas Holidays -0.475 -34.06 -0.475 -18.50  

New-year Holidays -0.047 -3.58 -0.047 -2.08  

Population density 7.58E-05 60.50 7.58E-05 3.36  

Veh per person -2.004 -145.81 -2.004 -4.29  

Constant -13.669 -1859.40 -13.669 -72.99  

Italic shows that these variables are not significant at 5 percent level. 
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2.7 CONCLUSION: 

 

The purpose of the analysis presented in this chapter is to formulate models for the number of 

road accidents occurring on each day in Great Britain. The negative binomial regression 

model was selected because the data were found to be over-dispersed relative to a Poisson 

process. A Generalized Estimation Equation (GEE) with autoregressive error terms of order 1 

was preferred, because of the presence of serial correlation in the data. The offset that was 

adopted is the logarithm of the vehicle kilometres travelled on each day. This was based on 

an estimate of annual average daily traffic adjusted to take account of variations in distance 

travelled by each of day of week and month, so that the remainder of the model represents the 

risk per vehicle-kilometre of travel. A further objective was to identify the factors associated 

with variations in the risk of road accident occurrences. In general, the most powerful 

variables were found to be weekday, Saturday and Sunday. Other variables for Season, 

month, interaction of season and month, Public holidays, Christmas holiday, New-Year 

holiday, distance travelled per vehicle, population density and vehicles per person also 

greatly improved the performance of model. 

 

From the estimated coefficients of the model it was found that Weekdays have greater risk 

per distance travelled than other days. Sunday had the lowest risk per unit of distance 

travelled. The interaction variable of Sunday-summer had the greatest increasing impact 

whereas Sunday-winter had the greatest reduction effect on the risk per unit of travel than 

other interaction variables. Among months of year November had the greatest risk while 

August had the lowest risk per unit of distance travelled. It was found that Christmas, New-

Year, and other holidays have coefficients with a negative sign which shows a lower number 

of road accidents occurring on these days, though it was not possible to assess risk on these 

days because no corrections are available for distance travelled. The time variable had a 

negative coefficient which indicates that road accident risk is declining. It was also concluded 

that an increase in the distance travelled per vehicle is associated with an increase in the risk 

per vehicle-kilometre of being involved in road accident. Travel in Police forces areas with a 

higher population density have a greater risk per unit of distance travelled of road accident 

involvement whereas travel in police forces with greater number of vehicles per head of 

population will have smaller risk of road accident involvement.   
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Analysis of the statistical model results revealed further associations which suggest that 

winter and autumn are associated with more risk per unit of distance travelled in comparison 

to spring and summer. The risk per unit of travel on weekdays varies substantially through 

the year. Greatest risk is associated with weekdays in winter and autumn. Saturdays in winter 

have particularly more risk than Saturdays of other seasons and these Saturdays have greater 

risk than some of the weekdays in spring and summer. Sunday carried the lowest risk per unit 

of travel than all others and this varied relatively little through the year. This variation in risk 

per unit of travel is possibly due to change in driving behaviour and weather during these 

periods. 
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3. EFFECTS OF METEOROLOGICAL FACTORS ON ROAD ACCIDENTS  

3.1  INTRODUCTION 

 

It is widely accepted that weather plays an important role in road accidents due to rain, 

temperature, bad visibility, and other adverse conditions. In a recent study conducted by 

Norwich Union (2006), British motor claims and road accident information according to 

weather conditions for 2004 -2005 were examined. It was found that the amount of rainfall 

was a strong predictor for the number of road accidents. On a rainy day 40 percent more road 

accidents occur than on a complete dry day, with increased chance of multiple collisions. The 

research revealed extreme weather conditions of any kind could lead to an increase in the 

number of road accidents.  

  

In Great Britain, a weather conditions category was first included in STATS 19 data in 1969. 

The information concerning weather conditions at the time of a road accident is recorded by 

the police officer according to nine different categories as shown in Table 3.1. From the 

analysis of yearly STATS 19 data (1991-2005) it was found that road accidents which 

occurred in fine weather without any high winds were about 77 to 87 percent of the total 

annual road accidents. The percentage of road accidents when raining without high winds 

varied from 10 to 15 percent, however all other weather conditions made a minor 

contribution to the total number of road accidents. The average percentage of road accidents 

from 1991 to 2005 by the nine weather conditions recorded in STATS 19 data is shown in 

Table 3.1. It should be noted that these weather conditions do not occur with equal frequency 

and that they might affect the traffic flows. However, they show under which weather 

conditions as recorded in STATS 19, more or fewer road accidents occur.  

 

In the statistical analysis presented in Chapter 2, circumstantial variables were used in the 

models to characterise the area. We now hypothesis that the number of road accidents are 

also related to the meteorological conditions. These vary among the regions of Great Britain. 

It was also found in Chapter 2 that some months have more road accidents than others. 

Meteorological factors also vary by month. In order to investigate this variability further, this 

study investigated the effect of meteorological factors on road accidents whilst making 

allowances for different weather conditions existing across both police forces and months of 

the year, which were not considered in Chapter 2 as the meteorological data for all the Police 
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forces was not available. Without the inclusion of weather-related variables in the models, it 

is usually hard to explain the regional differences in safety performance. As noted above, 

these different weather conditions do not occur with the same frequency and may also affect 

traffic flows. 

 

Table 3.1: Average percentage of road accidents occurring in different weather conditions 

(1991-2005) 
 

S.No Weather condition  %  S.No Weather condition % 

1 Fine without high winds 79.8 6 Snowing with high winds 0.13 

2 Raining without high winds 13.8 7 Fog or mist - if a hazard 0.73 

3 Snowing without high winds 0.49 8 Other 1.62 

4 Fine with high winds 1.2 9 Unknown 0.99 

5 Raining with high winds 1.2    

Source of data: Department for Transport (2011) 

 

This study has following objectives: 

 

 To assess the effect of weather conditions on road accident frequency;  

 To investigate the variability in number of road accidents among the months that 

remains even after accounting for the associated variations in weather conditions; and 

 To investigate the performance of models after adding meteorological factors in 

addition to the circumstantial variables used in Chapter 2. 

 

This chapter is organized as follows. Section 3.2 reviews the literature about the effects of 

meteorological variables on number of road accidents. Section 3.3 briefly describes the data 

used for this study. Section 3.4 briefly analyses the data. Section 3.5 presents the process of 

model development and basic structure of the model. Section 3.6 shows the model selection 

process, results of developed models, goodness of fit and model checks. Finally, some 

concluding remarks are given in section 3.7. 

 

3.2  LITERATURE REVIEW 

 

It has been recognized that road accidents are a consequence of the combined effects of 

behavioural, technological, and environmental factors. Various studies have been carried out 
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to determine the effects of weather on accident frequency (Brijis et al, 2008; Andrey and 

Olley, 1990; Codling, 1974; Edwards, 1996; Palutikof, 1991), with the understanding that 

weather may not be the principal cause of road accidents but it is the important environmental 

contributing factor. Bertness (1980) and Smith (1982) suggested that the number of road 

accident increases in wet weather because road users take their cars instead of walking or 

using public transport, thus increasing exposure but it may show a decrease in snow, with 

drivers either taking more care in their driving or cancelling their journeys altogether.  

 

Weather plays a large part in the determination of road accident numbers, as a result of 

variation in surface condition of the road, friction, and visibility. Many theoretical and 

common sense reasons can be offered to explain why rain can be hazardous to traffic. The 

friction between the road surface and the tyres of a vehicle is reduced on a wet surface, which 

requires greater stopping distance. The surface on curves also becomes more slippery. 

Visibility at night may also be reduced due to glare and distraction of wet shining surfaces. 

Therefore, it is easier for a driver to lose control of a vehicle in rainy weather than in bright 

weather (OECD, 1976; Barzelay and Lacy, 1984).  

 

Researchers have reported a range of increases in road accidents in rainy conditions: by 6 

percent (Brotsky and Hakkert 1988), 22 percent (Smith 1982) and 52 percent (Codling 1974). 

Satterthwaite (1976) reported that rainy days experienced double the accident rate of dry days 

and Campbell (1971) showed accident rates on wet versus dry surfaces were 2.2 times higher. 

Brotsky and Hakkert (1988) found that on wet road days, the accident risk was 3 times 

greater than dry road days. Codling (1974) and Smith (1982) respectively found that 31 and 

44 percent of all injury accidents occurred on rainy days. Haghighi-Talab (1973) and 

Bertness (1980) found that the effects of falling rain were greatest in urban areas but that road 

accidents were more serious in less densely settled localities where vehicle speeds are 

generally higher. 

 

The medical literature provides a long well-documented list of physiological functions 

observed to be influenced by various meteorological phenomena. High temperature in 

particular is found to link to irritability and to an increase in fatigue (Boyanowski et al, 1981-

82). Experiments show that in hot conditions mental performance decreases and reaction time 

increases (Wener and Hutchison, 1945). Among these, loss of concentration or alertness 

caused by heat is most likely to increase the probability of road accidents as it increases 
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reaction time. Thus, with increase in temperature, those making long trips along 

unstimulating straight roads become bored and tend to fall asleep. Temperature is the 

modifier of road accidents rather than the root cause (de Freitas, 1975). The seasonal pattern 

of increased road accidents with decreasing temperature in winter can be attributed to snow 

and freezing rain. The reverse in summer is in accordance with aspects of the concept of a 

thermal comfort range. When temperatures are beyond this range, those driving in air-

conditioned vehicles may display less good judgement and hence longer reaction times. 

Despite this rationale, evidence linking high temperatures and road accidents is sparse. In 

Great Britain, Edwards (1993) used the number of road accidents that occurred each month 

together with the meteorological information recorded in the STATS 19 data rather than 

independent meteorological data to identify some relationships. She used linear regression to 

model the number of road accidents for each month of year. Although the conclusion drawn 

from this may not be reliable as the presence of over-dispersion and serial correlation were 

not taken into account, this does provide a starting point to use STATS 19 data for modelling 

road accident occurrence at the national level. Various studies were conducted to relate 

number of road accidents with meteorological data, some of which are summarised as 

follows: 

 

Brijis et al (2008) used a Poisson Integer autoregressive model (INAR) for daily car accident 

data, meteorological data, and traffic flow data from the Netherlands to examine the risk 

effect of weather conditions on number of road accidents. Three cities Utrecht, Dordrecht, 

and Haarlemmermeer in the Netherlands were selected based on their proximity to national 

weather stations. Data for 2001 relating to traffic exposure, wind, temperature, sunshine, 

precipitation, air pressure, and visibility were used. From the results, they found that intensity 

of rain (which is the ratio between the daily precipitation amount and daily precipitation 

duration) and precipitation duration are highly significant variables. A positive relationship 

was found between the number of hours of rainfall per day and number of road crashes. 

Additionally, a negative, highly significant and non-linear relationship was found between 

the temperature and number of road accidents. It was found that lower temperatures relative 

to the base category (temperatures above 20
o
C) resulted in more road accidents, with 

temperatures below zero being most significant. The effects of other variables: sunshine 

hours, air pressure, wind, and visibility were found to be non-significant. 
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Schalkwyk (2006) used the amount of precipitation, number of rainy days, number of wet 

pavement days, and hours of wet pavement in accident frequency prediction models for both 

fatal and serious injury crashes. The Traffic Analysis Zone data for the year 2001 to 2002 

from Michigan, Pima and Maricopa Counties in Arizona USA was used. Linear regression 

with logarithmic transformation of the dependent variable was carried out to estimate the 

number of road accidents. It was found that variables related to rain improved the goodness 

of fit. It was concluded that rain tends to affect and diminish safety in complex ways 

depending on rain frequency and intensity. 

 

Andreescu and Frost (1998) analysed the effects of rain, mean temperature and snow on 

automobile road accidents in Montreal, Canada by using the three-year period 1990 to 1992 

data. Average daily number of road accidents, daily values of temperature, humidity, 

precipitation, cloud cover, and wind speed were used. Regression equations were estimated 

both for entire three-year period and for each year. A strong positive relationship was found 

between the number of road accidents and the amount of snow in late winter and early spring. 

In summer months, the number of road accidents increased with rainfall. In winter, however 

there were large number of road accidents at low rainfall quantities and fewer road accidents 

on days with large rainfall. Temperature displayed a seasonal pattern of positive relationship 

in summer and negative relationship in winter. This study concluded that even though the 

population of Montreal is accustomed to driving in snowy conditions the road accident rate 

continues to be highest on snow days. 

 

Edwards (1996) carried out a study to identify the relationship between road accident severity 

and weather. The information of both the accident severity and weather conditions was 

extracted from the British STATS 19 data from 1980 to 1990. In particular, this study 

examined actual accident severity during adverse weather. The details of accident severity 

and weather conditions at the time of the accident expressed in monthly aggregations were 

used. Severity ratios were estimated to examine the relationship between accident severity 

and weather condition. Initially it was found that 80 percent of road accidents occurred in fine 

weather with rain accounting for further 14 percent. It was found that rain-related road 

accidents show a consistent and significant decrease in severity when compared with road 

accidents in fine weather whereas the frequency of road accidents resulting in slight injury 

increases during rain. No statistically significant relationship between high winds and 

accident severity was found. Evidence for accident severity in fog was also not conclusive.  
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Fridstrom et al (1995) used generalized linear Poisson regression to estimate the contributions 

of various factors including weather to monthly road accidents numbers in provinces of 

Denmark, Finland, Norway and Sweden. It was found that weather conditions have a 

significant effect on road accident numbers although in some cases it seems counterintuitive. 

Rainfall increased the road accident numbers whereas snowfall had opposite effect. The 

results showed that in Denmark the expected monthly number of road injury accidents 

decrease by an estimated 1.2 percent for each additional day of snowfall during the month. 

The corresponding effect for fatal road accidents was even larger. Frost also had a significant 

effect in reducing injury accident numbers. The snow depth variable was also used for the 

three countries other than Denmark. This was shown to be statistically significant in reducing 

the number of road injury accidents in Finland and Sweden but it has a statistically non-

significant value for Norway. The effect of snow depth on fatal road accidents is statistically 

significant in all three countries. It was also found that sudden snowfall occurring during the 

winter may catch drivers sufficiently unaware to cause an increased road accident risk which 

was witnessed by positive but non-significant coefficients of the sudden snowfall variable. 

The variable of daylight also has a favourable effect on the expected number of road 

accidents. It was also concluded that an extra one hour of light between 7 am and 11 pm will 

correspond to an estimated 4 percent decrease in the expected number of road injury 

accidents in Norway.   

 

Andrey and Yagar (1993) used a matched sample approach to examine the data for 169 rain 

events and over 15,000 road accidents in the cities of Calgary and Edmonton, Canada, by 

using 1979 to 1983 data. The study was based on a matched sample approach, in which crash 

frequencies in each city were compared with matched time periods when traffic was exposed 

to rainfall and when precipitation did not occur. It was found that road accident risk during 

rainfall conditions was 70 percent higher than in other conditions. It was also suggested that 

accident risk returns to normal as soon as rainfall has ended, despite the lingering effects of 

wet road conditions. 

 

Stern and Zehavi (1990) examined the relationship between hot weather conditions and road 

accidents in Israel. Seven years’ road accident data from 1979 to 1985 was used along with 

weather details at the time of the accidents. A discomfort index was calculated and translated 

into physiological terms of heat stress. It was found that during medium to high heat stress 

which was for 43.5 percent of the total time, 56.4 percent of the total road accidents occurred. 
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During medium and high levels of stress more road accidents occurred than in less severe 

stress conditions. It was further found that road accidents associated with hot weather were 

mainly labelled as down to the judgement of a single person. It was concluded that road 

accident risk increases with the severity of hot weather, even after accounting for traffic 

volume.  

 

From the literature review presented in this section it was found that meteorological variables 

affect the number of road accidents and their effect varies among geographical regions. 

Generally it was found that rainfall, temperature and snowfall have been used widely to 

model the frequency of road accidents. Various techniques ranging from linear regression, 

generalized linear regression and matched sample approaches have been used. However, the 

effect of meteorological factors is found to be dependent on location and type of road 

accidents considered. Based on the review in this section the meteorological factors shown in 

section 3.3.3 were adopted for this part of study. 

 

3.3  DATA USED 

The road accident and meteorological data which were considered for use in the present study 

are described in the following sections: 

3.3.1 Road accident data 

 

As the meteorological data was only available for some police forces with information for the 

monthly values of the mean maximum temperature, mean minimum temperature, rainfall, sun 

shine hours and number of air frost days. Due to this limitation of the meteorological data, 

road accident data was also transformed into number of road accidents for each month of 

year. The study was limited to 17 police forces because of the availability of associated 

meteorological data at a meteorological station based within its geographical boundaries. The 

selected meteorological station and police forces are shown in Figure 3.1 and 3.2. Dataset 3 

consists of 3,060 observations for road accident data from 1991 to 2005. Each observation 

represents the number of road accidents occurring on each month of year for the whole of a 

police force. 
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3.3.2 Meteorological data 

 

Usually the information about snow, rainfall, and temperature is used in order to assess the 

effect of weather variables on road accident numbers as shown in previous studies 

summarised in section 3.2. The road accident data in this study is at police force level and 

meteorological factors may vary from place to place within each of these, their aggregation 

may reduce the significance of these variables in modelling road accidents at national or 

police force level. Due to this, all the information available from the Meteorological Office 

was considered with the possibility of using weather conditions jointly with the number of 

road accidents for police forces in Great Britain. Various meteorological datasets were made 

available for academic and research purposes from the Meteorological Office which are 

described below. Note that for the reasons explained below only historic station data was 

considered to be suitable for use in the present study.  

 

3.3.2.1 Mean temperature, rainfall and sunshine data: This is a substantial dataset which 

gives monthly values of temperature in degrees Celsius, rain in millimetres and sunshine in 

hours from January 1914 to date. The data is available separately for England and Wales, 

Scotland, and Northern Ireland. It also gives values of temperature, rain and sunshine for 

each season. In this data, winter is assumed to be from December to February, spring is from 

March to May, summer is from June to August, and autumn is from September to November. 

The values of the minimum and maximum observed temperature, rainfall and sunshine for 

each month are also given. This data was not adopted in this study because of the aggregate 

nature of data as a single observation represents the whole of England and Wales. 

 

3.3.2.2 Hadley Centre Central England Temperature (HadCET): These datasets are long-

period historical datasets which contain mean temperature values for each day and month of 

year. These daily and monthly temperatures are representative of a roughly triangular area of 

the United Kingdom enclosed by lines between Preston, London, and Bristol. Mean 

maximum and minimum temperature data are available from beginning of 1878 and are 

currently available free of charge. The HadCET stations are Rothamsted, Pershore, and 

Stonyhurst. This huge dataset was also not used for the current study because it only gave the 

temperature results of central England. Neither does it have any information about rainfall 

and sunshine. 
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Figure 3.1: Map showing weather stations considered for this study 

 

 

Source: Meteorological office, UK (2011) 

 

 

 



123 

 

Figure 3.2: Police forces considered for this study 

 

 
 Source: Meteorological office, UK (2011) 
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3.3.2.3 UK regional precipitation series (HadUKP): The HadUKP dataset of UK regional 

precipitation, which incorporates the long-running England and Wales precipitation (EWP) 

series, begin in 1766. The precipitation values of South East England, South West England 

and Wales, Central England, North West England and Wales, North East England, South 

Scotland, North Scotland, East Scotland, and Northern Ireland were available. The 

information about the values of precipitation in millimetres was available in the form of daily 

totals, monthly totals, and seasonal totals. This dataset was also not used as it was limited 

only to precipitation data and it was also aggregate in nature as a single observation 

represented a big region. 

 

3.3.2.4 British Atmospheric Data Centre data (BADC): This dataset which is available 

from BADC, UK contains land surface observations data from the Meteorological Office 

station network. Data of daily measurements are available for the period from 1900 to 1999. 

The dataset comprises daily and hourly weather measurements, hourly wind observations, 

maximum and minimum air temperatures, soil temperatures, sunshine duration, and hourly 

and daily rainfall measurements. This dataset was not adopted because data were only 

available up to 1999 whereas road accident data were available for the period from 1991 to 

2005. In addition, information was missing for many stations and there was a lack of 

uniformity in the data.  

 

3.3.2.5 Historic station data: This dataset was adopted for use in the current study. It 

contains observations of mean maximum and mean minimum temperature, days of air frost, 

total rainfall, and sunshine hours for each month of year for 25 stations across UK. Three 

stations were closed during the period studied: Greenwich (in 2004), Ringway (in 2004), and 

Southampton (in 2000) so the incomplete data from these stations was not used. The stations 

at Lerwick, Stornoway airport, Tiree, and Armagh were also not considered. The station at 

Newton Rigg which was based in the Cumbria police force area was also excluded as it did 

not record sunshine hours. Thus a total of 17 stations for which the data was available were 

selected each representing meteorological conditions in one police force. These are shown on 

the map in Figure 3.1. The meteorological data for these stations was extracted and used 

jointly with the road accident data.  
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3.3.3 Variables available from historic station data 

 

The following variables from the historic station data were adopted for use in this study. 

 

3.3.3.1 Monthly rainfall: This is the total sum of rainfall for all days of a month. Usually 

measurement of rainfall is made at 0900 GMT which gives the amount of rain that has fallen 

in previous 24 hours. The unit of monthly rainfall is the millimetre (mm). A measurement of 

1 mm of rainfall indicates that if none of the rain that fell in the surrounding area had drained 

or evaporated away, it would have covered the entire surface to depth of 1mm.  

 

3.3.3.2 Mean maximum monthly temperature: This is the mean of the maximum daily 

temperature for all the days of the month. The reading is usually made at 0900 GMT from a 

thermometer that has a bimetallic strip which gives a reading for the previous day. The 

maximum temperature usually occurs at around 1400 GMT. Temperature is measured in 

degrees centigrade. 

 

3.3.3.3 Mean minimum monthly temperature: This is the mean of the minimum daily 

temperature for all the days of the month. The reading is usually made at 0900 GMT, always 

at the same time, from a thermometer that records the values of minimum and maximum 

temperatures. The minimum temperature usually occurs at about dawn. 

 

3.3.3.4. Total sunshine duration: This is the sum of daily bright sunshine hours of the 

month. A Campbell-Stokes sunshine recorder or a Kipp and Zonen sensor are normally used 

to measure the daily amount of sunshine. The sunshine duration is measured in hours. 

 

3.3.3.5. Air frost days: This is the number of days in a month when the air temperature falls 

below freezing. A Stephenson screen is used to measure the temperature. When the 

temperature within this screen reaches 0
0
C there is said to be an air frost. The unit of 

measurement is number of days in a month on which air frost occurred. 

 

 

 

 

 

 

 

 

1 

1 
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3.4  DATA  ANALYSIS 

 

The combined STATS 19 and meteorological data from 1991 to 2005 are examined by using 

graphical plots in Stata software.  

 

Box plot (a) in Figure 3.3 shows that there was a substantial range of typical road accident 

numbers among the police forces as would be expected from their differing sizes and 

populations. This also shows variability from month to month within each police force area. 

The interquartile range of Tayside and Grampian was small in comparison to other police 

forces. Of the three Welsh police forces, South Wales police force had the highest number of 

road accidents whilst in Scotland, Strathclyde had the highest number of road accidents 

occurring on each month of year. From the available data it was found that the South East and 

South West regions of England had a greater number of road accidents than the East of 

England, West Midlands, and East Midland regions. Box plot (b) shows Wales had a higher 

amount of rain than England and Scotland. The police forces of South Wales and Strathclyde 

have highest amount of rainfall followed by Devon & Cornwall. The lowest rainfall was 

found in Cambridgeshire. Box plot (c) shows the median of the mean maximum temperature 

of the English police force areas was about the same for all police forces and ranged between 

13 and 14 
o
C. In general it can be seen that the English police force regions are warmer than 

those in Scotland. 

 

Box plot (d) indicates that effect of winter is not as severe, especially in Sussex and in Devon 

& Cornwall, as in other police forces. Scottish police force areas were found to be less warm 

than others. The Welsh police force areas were found to have higher mean minimum 

temperature than most of the English and Scottish police forces. Box plot (e) reveals that the 

South Wales police force had the highest number of monthly sun hours followed by Sussex 

and Devon & Cornwall while the lowest number of sun hours occurred in West Yorkshire. It 

can also be seen from the graph that the interquartile range of the South Wales force area was 

greater than all police forces, indicating a higher difference in sun hours between summer and 

winter months. Durham police force was found to be least variable. Box plot (f) shows that 

Scotland had a greater number of air frost days than England and Wales. It was also found 

that the interquartile range for the Sussex, Devon & Cornwall, North Wales, and Dyfed-

Powys police force areas was smaller than others indicating that these police forces had few 

air frosts days with less variation in different months of the year. 
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Figure 3.3: Box plot of STATS 19 data (Dataset 3: 1991-2005) 
 

 

 

  

Source of data: Department for Transport (2011) 

 

From Figure 3.3 it is also found that some police forces had warmer afternoons but colder 

mornings as the difference between mean maximum monthly temperature and mean 

minimum monthly temperature varied from 4.8
0
C for Dyfed-Powys to 9.05

0
C for Dorset. It 

was also observed that some police forces that had a higher mean minimum temperature did 

not have a higher mean maximum temperature. For example the Sussex police force had the 

highest median for mean minimum temperature but it had a lower mean maximum 
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c. Mean maximum monthly temperature (degree celsius)
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d. Mean minimum monthly temperture (degree celsius)
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e. Monthly sunhours by police force (hrs)
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f. Number of monthly air frost days by police force
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temperature than many other police forces. Grampian had both these temperatures at lowest 

level. Similarly it was observed that maximum temperature and sunshine hours carry 

different information. July and August were the months in all police forces when the mean of 

the maximum monthly temperature was high. On other hand the mean for sun hours was high 

for the month of May in most of the police forces, however in some police forces it was 

either in June or July.  

 

It is observed that each meteorological factor represents a particular characteristic of a police 

force like some police forces have large difference in temperature between winter and 

summer months. Due to this, all the available meteorological factors were used in models to 

identify their impact on the road accidents occurrence on each month of year. 

 

 

3.5  MODEL DEVELOPMENT 

 

A total of 24 models were developed by using the Generalized Linear Model (GLM) with 

negative binomial regression using the Stata software. In the first step, a model was 

developed with a constant term and an appropriate offset. After this, a stepwise incremental 

approach was followed by adding different variables in the model. The lattice of model 

development is shown in Figure 3.4. 

 

3.5.1. Variables used 

 

The following variables were incorporated into the model to estimate the number of road 

accidents by each month of year within each police force. 

 

1.  Police force (17 levels) 

2.  Month (12 levels) 

3. Season (4 levels: Spring, Summer, Autumn and Winter) 

      4. Time as a variate (measured in months, with values from 1 to 180, January 1991 to 

           December 2005). 

      5. Population density 

      6. Vehicles per head of population  

7. Meteorological variables 
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a. Mean maximum monthly temperature  

b. Mean minimum monthly temperature 

c. Monthly rainfall 

d. Monthly sunshine hours 

e. Monthly number of air frost days 

 

Population density and Vehicles per head of population were used, as from chapter 2 it was 

found that they have significant effect on the number of road accidents. In the models, both 

maximum monthly temperature and minimum monthly temperature were also used together 

to account for the large variation in meteorological conditions between winter and summer 

months. Although the pattern of maximum and minimum temperature remain similar over the 

month, it was observed from the data that omitting one variable or the other may result in not 

considering the particular nature of certain police forces. Due to this, all meteorological 

variables were used in various combinations in the modelling process to represent the 

variation among police forces. Assessment of the model performance was based on the 

criteria that was discussed in section 2.5.4. 

 

3.5.2. Basic structure of the model 

 

In this chapter all models which were developed for Dataset 3 are shown in Figure 3.4. Each 

observation of the dependent variable y represented the number of road accidents occurring 

during each month of the observation period (1991-2005). Data for each month was used 

rather than each day due to the limited availability of the associated meteorological data for 

the police forces. Because the unit of observation in this dataset is month, the adjusted total 

distance travelled (vehicle kilometres) in each police force during each month  was used as 

the offset. This was estimated by adjusting the annual average total distance travelled as 

follows.  

 

First the annual average distance travelled was adjusted according to the calendar month (by 

applying month correction factors obtained from Department for Transport) to give an 

average distance travelled for a day of that month. This was then multiplied by the number of 

days in the month to give a total distance travelled during the month. Finally, this was 

factored according to the number of vehicles registered in each police force area during that 
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year. The result of this is an estimate of the distance travelled in each police force area during 

each month of each year. This is proportional to each of: 

 

 Distance travelled on a typical day of that month 

 Number of days in the month 

 Number of vehicles registered in the police force 

The remainder of the model can then be interpreted in terms of the risk of accidents per 

vehicle-kilometre of distance travelled in a police force area during a month.  

To achieve this, the following model structure was used for Dataset 3.  

 expi j i j i ju O   x β                             3-1   

where i  represents the observation (time in months 1 to 180),  j represents the police force (1 

to 17) 

i ju  is the estimated mean number of road accidents for each month of year. 

i jO  is the offset  calculated as  ln i jd  

Then     expi j i j i ju d  x β                                                            3-2 

where 
i jd  is the adjusted total distance travelled (vehicle kilometres) in month i within the 

police force area j.  

The linear predictor in this model then represents the mean risk of accident involvement per 

unit of travel in police force area j during month i.  

3.6  MODEL SELECTION PROCESS, GOODNESS OF FIT AND MODEL CHECKS  

 

The model selection procedure described in section 2.5.4 was applied to distinguish among 

many available models. The results of all the developed models shown in Figure 3.4 were 

compared. The details of all these models and the various checks that were used to identify 

the appropriate model are given in section 3.6.1.1 to 3.6.1.5.  
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3.6.1 Model Selection Procedure 

The procedure shown in section 2.5.4 was used to identify the most appropriate model out of 

the many developed models which can estimate the number of road accidents on each month 

of the year and can give some insights on the variables used in the modelling. All of the 

models presented here were developed using negative binomial regression. Additional 

meteorological variables were also included in different combinations to investigate their 

effect on road accident occurrence. The following section shows the results of the tests 

carried out for model selection: 

1. In section 3.6.1.1 BIC values of all the models are compared to check their 

performance  

2. In section 3.6.1.2 temporal effects were analysed to investigate any temporal effect 

remaining that is not captured by the models.  

3. In section 3.6.1.3 variance inflation factors were used to check for the presence of 

multicollinearity in the data.  

4. In section 3.6.1.4 split sample tests were carried out to validate the performance of the 

model by comparing the coefficients, deviance and log-likelihood values.  

5. In section 3.6.1.5 the presence of serial correlation in the residuals was tested by using 

Durbin-Watson test.  

3.6.1.1 Negative binomial regression model (Dataset 3) 

 A total of 24 models were developed with different combinations of variables as shown in 

Figure 3.4. The logarithm of the adjusted total distance travelled in each police force area 

during each month was used as the offset. In the process of model development the correction 

to adjust the offset to account for variations in distance travelled for each month of the year 

were applied from model 3 onwards only when the month variable was used as an 

explanatory variable. In model 4, when the simplified categorical variable of Season was 

used, these month adjustments to the offset were retained. The BIC values were calculated 

and used to assess the performance of these models.  

 

Model l used only the constant term and an offset, giving BIC values of 35,400. Variables of 

police force, month and season were added individually in models 2, 3, and 4 respectively. 

Results showed that introducing the police force variable in model 2 improved the BIC by 
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1,186 (3 percent) by using 16 more degrees of freedom in comparison to model 1. In model 3 

and 4, month of year and season were used respectively which showed that month variable 

performed better than season as model 3 had better BIC. Similarly comparison of results of 

models presented in appendix Table A3.1 showed that month constantly performed better 

than season and this preference does not diminish with increasing model complexity. In view 

of this, month was preferred over season and carried forward to model 5.  

 

In model 5, time variable improved the BIC by 911 (2.5 percent) in comparison to model 3. 

Next, population density and vehicles per person variables were added in models 6 and 7. 

These models clearly performed better than model 2. The BIC value of model 6 was 34,092 

showing an improvement of 1,308 (4 percent) in the BIC value in comparison to model 1. 

The vehicle per head of population performed better than population density as its addition in 

model 7 improved the BIC value by 1,195 in comparison to model 6. In model 8, the police 

force variable was used in addition to month, time, population density and vehicles per 

person. The results of model 8 were compared with model 24 to get an understanding of the 

improvement in the model due to the addition of meteorological variables.  

 

The meteorological variables were introduced individually into the models from model 9 to 

model 13. It was found that out of all the introduced meteorological variables mean minimum 

monthly temperature (model 10) improved the model BIC value by 49 in comparison to 

model 7 whereas the other meteorological variables could not improve the BIC when used 

individually. After this, from model 14 onwards the meteorological variables were used in 

different combinations: this showed that model 14 with maximum and minimum temperature 

and model 15 with minimum temperature and rainfall performed better than models 16 to 23 

(except model 18, 22 and 23) in terms of BIC value. In models 18, 22 and 23 maximum and 

minimum temperature, amount of rainfall, hours of sunshine and number of air frost days 

were used in different combinations.  

 

The police force variable was then introduced into the model 24, after adding all 

meteorological variables of maximum and minimum temperature, amount of rainfall, hours 

of sunshine and number of air frost days to investigate whether the police force variable can 

subsume the remaining differences among the various geographical areas. The BIC value for 

model 24 was 31,473 which was found to be better than all other models. Comparison of 

model 2 with model 24 showed an improvement of 2,741 in BIC value for model 24 which is 
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contributed by the inclusion of the variables of month, time, population density, vehicles per 

head of population and meteorological variables. However, it is also observed by comparing 

model 8 with 24, that all meteorological variables contributed an improvement of 131 in the 

BIC value: this shows that meteorological conditions within police force areas contribute to 

model performance. Based on the BIC results model 10, 14, 15, 18, 22 and 23 were 

considered for further analysis. Detailed results of the performance of these models are 

shown in Table 3.2. 

 

Table 3.2: Results of models for the police forces with meteorological variables (Dataset 3) 
 

Model D.F Scale Log-Likelihood BIC 

1 1 0.0630       -17,696  35,400  

2 17 0.0396        -17,039  34,214  

3 12 0.0642        -17,725  35,547  

4 4 0.0660        -17,766  35,564  

5 13 0.0470        -17,266  34,636  

6 14 0.0387        -16,990  34,092  

7 15 0.0242        -16,388  32,897  

8 31 0.0139        -15,677  31,604  

9 16 0.0242        -16,387  32,902  

10 16 0.0237        -16,360  32,848  

11 16 0.0241        -16,385  32,899  

12 16 0.0242        -16,388  32,904  

13 16 0.0242        -16,387  32,903  

14 17 0.0236        -16,354  32,844  

15 17 0.0237        -16,359  32,855  

16 17 0.0241        -16,384  32,905  

17 17 0.0242        -16,387  32,910  

18 18 0.0236        -16,354  32,852  

19 18 0.0237        -16,359  32,863  

20 18 0.0241        -16,384  32,912  

21 19 0.0236        -16,353  32,858  

22 19 0.0235        -16,343  32,838  

23 20 0.0233        -16,338  32,836  

24 36 0.0129        -15,592 31,473 

BIC represents the Bayesian information criterion 
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Figure 3.4: Lattice of model development for Dataset 3 
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3.6.1.2 Analysing the temporal effects  

The procedure presented in section 2.6.2.2 was used to investigate for the presence of further 

temporal effect that was not represented in the models. For this, time and square of time 

variables were added to model 1-4 whereas from model 5 onwards only square of time was 

added as these models already had time variable in the linear predictor. The resulting 

improvement in the BIC, coefficients and t values of time and square of time, and their 

variance inflation factors were then examined.   

 

From the results shown in Appendix Table A3.2, an improvement of at least 800 was 

observed when time and square of time variables were added to each of the model 1-4.  This 

shows that these models did not account for temporal effects. From model 5 onwards only 

square of time was added as an explanatory variable. The results of this show that from 

model 5 onwards there was no improvement in BIC, showing that temporal trend has been 

adequately represented by these models. From model 5 to 24, the square of time
 
variable has 

non-significant t values (except model 24). Model  24 with 36 degrees of freedom which had 

the better BIC value than all other models showed that after adding  square of time variable 

(one degree of freedom)  the value of BIC becomes slightly less preferable which indicates  

that quadratic temporal trend is not required in the model.  

 

3.6.1.3 Checking for the presence of multicollinearity: 

 

As discussed in Chapter 2, section 2.6.2.3, the presence of multicollinearity will cause the 

standard errors to be inflated, the sign and magnitude of the coefficients of variables may also 

vary. Due to this, variation inflation factors (VIF) were estimated in order to measure the 

severity of collinearity and to quantify the increase in the variance of the estimated 

coefficients.  

 

Table 3.3 shows the VIFs of models 9-24 where the variables of time, population density, 

vehicles per person, maximum monthly temperature, minimum monthly temperature, amount 

of rain fall, sunshine hours and number of air frost days in each month were used in different 

combinations. The results show that in models 9-13 in which each meteorological variable 

was used individually with other explanatory variables had acceptable values of VIF whereas 

model 9 had slightly high VIF of 9.05 (for maximum temperature) but it is still under the 
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critical value of 10. Results of the models 14-24 show the models that included both 

maximum temperature and minimum temperature (models 14, 18, 21 and 23) produced high 

VIF for these variables, so we conclude that these two variables are correlated. Provided that 

we apply the model to places where this correlation remains, multicollinearity will not cause 

great difficulty. However, the partial effects of maximum temperature and minimum 

temperature cannot be identified reliably. In model 22 minimum temperature, amount of 

rainfall, sun shine hours and air frost days were used but minimum temperature had high VIF 

of 13.21. Finally, model 24 in which all the explanatory variables are used together had high 

VIF, strongly suggesting the presence of multicollinearity. It is observed from Table 3.3 that 

in model 10 minimum temperature had a VIF of 6.15 whereas in model 15 minimum 

temperature and rainfall had a VIF of only 6.36 and 1.2 respectively. Table 3.3 shows the 

variance inflation factors of the models (9-24) for Dataset 3. 

 

Table 3.3:  Variance inflation factors of all the models (Dataset 3)   
 

Model Time P.D V/P Max t Min t Rain 

Sun 

hrs A.F 

9 1.41 1.08 1.51 9.05 - - - - 

10 1.41 1.06 1.53 - 6.15  - - 

11 1.41 1.04 1.46 - - 1.16 - - 

12 1.41 1.04 1.52 - - - 4.51 - 

13 1.41 1.05 1.45 - - - - 2.03 

14 1.41 1.54 1.54 14.17 9.63 - - - 

15 1.41 1.06 1.57 - 6.36 1.2 - - 

16 1.41 1.04 1.53 - - - 4.15 2.03 

17 1.41 1.05 1.53 - - 1.21 4.32 - 

18 1.42 1.08 1.57 14.8 10.38 1.25 - - 

19 1.41 1.06 1.61 - 6.59 1.27 4.48 - 

20 1.41 1.05 1.54 - - 1.25 4.32 2.1 

21 1.42 1.08 1.61 16.34 10.41 1.29 4.94 - 

22 1.41 1.06 1.62 - 13.21 1.27 4.58 4.21 

23 1.42 1.08 1.62 16.38 16.53 1.29 5.07 4.22 

24 2.07 2885.1 3.09 35.51 33.96 1.49 7.23 4.39 

P.D=Population density, V/P=vehicles per person, Max t=mean maximum monthly temperature, Min t=mean 

minimum monthly temperature, Sun hrs= Monthly sunshine hours, A.F= monthly number of air frost days 
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3.6.1.4 Split sample tests  

After analysing the BIC, temporal effects and VIF values according to the criteria discussed 

in section 2.5.4, model 15 was taken forward for further investigation. In order to check the 

consistency of model and its parameters, split sample validation tests were carried out. To 

this end, the whole dataset was partitioned randomly into two parts as explained in section 

2.6.2.4. Each part contained 1,530 observations. The following datasets were used to cross-

check and validate the results of model 15. 

 

Full dataset                    = Dataset A 

Dataset first portion      = Dataset B 

Dataset second portion = Dataset C 

 

Stata software was used to estimate the model parameters of Dataset B and C which were 

then compared. The results in Table 3.4 show that the estimated value of log-likelihood for 

dataset B and C differed by value of 72. The optimised likelihood for dataset B and C was 

 -8,140 and -8,212 respectively. However, the deviance of dataset B was higher only by value 

of 3. After this, the coefficients of dataset B and C were interchanged to estimate the number 

of road accidents for each month and values of log-likelihood and deviance were estimated.  

 

After interchanging the coefficients, the log-likelihood of dataset B was estimated to be 

-8,152 which differed by only 12 below the optimised value for dataset B. Because the model 

parameters are not optimised in this case, there are 17 more degrees of freedom in the 

residuals: this gives a likelihood ratio test statistic of 24 on 17 degrees of freedom, which is 

less than the critical value of 27.59 at 0.05 significance level. Therefore the null hypothesis 

cannot be rejected that parameters fitted to dataset C are appropriate for dataset B. In the 

same way, after interchanging the coefficients, the log-likelihood of model C was estimated 

to be -8,222 which had a difference of only 10 below the optimised value of model C: this 

gives a likelihood ratio test statistic of 20 on 17 degrees of freedom, which is less than the 

critical value of 27.59 at 0.05 significance level. Therefore the null hypothesis cannot be 

rejected that parameters fitted to dataset B are appropriate for dataset C.  

 

It is also found that the log-likelihood and total deviance values of data A were better than the 

sum of the two corresponding values. The log-likelihood had a difference of about 5 while 
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deviance was found to differ by 23. Table 3.4 shows that the log-likelihood values of all the 

four models were consistent and did not differ with statistical significance ( 0.05)  . These 

results showed that model 15 is stable and the parameter estimates are reliable.  

 

Table 3.4: Split sample validation results for Dataset 3 

 

Split sample validation 

Data  

Model coefficients  (k=17) 

 

A B C 

A 
 

A A
x β  

  n 3,060 

  Likelihood -16,359 

  Deviance 3,139 

  

B 
  

B B
x β  B C

x β  

n 

 

1,530 1,530 

Likelihood 

 

-8,140 -8,152 

Deviance 

 

1,571 1,594 

C 
  

C B
x β  C C

x β  

n 

 

1,530 1,530 

Likelihood 

 

-8,222 -8,212 

Deviance 

 

1,589 1,568 

Total 
Likelihood -16,359 -16,362 -16,364 

 Deviance 3,139 3,160 3,162 
k represents the number of explanatory variables in the model and n represents number of observations  

 

In the second step of the validation process the coefficients fitted to dataset A, B and C are 

compared. It is observed that coefficients of all variables and t values of the explanatory 

variables are consistent and carried the same sign in all three models except March which had 

non-significant t value in all three models. Some variables changed from significant to being 

non-significant variables across different models. October which had significant t value in 

model A turned to be non-significant in model B and C. The T test was used to compare the 

coefficients of dataset B and C. Formula 2-32 was used to estimate the T test values. It is 

found from the T test values that the coefficients of model B are not significantly different 

from the coefficients of model C. For all variables the estimated values of TBC are less than 

1.96 which suggests that coefficients have not changed significantly. The comparison of 

coefficients and t values are shown in Table 3.5 and Figure 3.5.  
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Table 3.5: Comparison of coefficient and t values of GLM-Model 15-NB for coefficient 

validation (Dataset 3) 

 

Variables 

 

Comparison of the coefficients and t values of the models 

Model A Model B            Model C  
 T test 

Coefficient tA Coefficient tB Coefficient tC TBC 

January 0.165 12.44 0.148 7.83 0.181 9.66 -1.263 

February 0.120 9.14 0.103 5.64 0.137 7.22 -1.307 

March -0.010 -0.85 -0.022 -1.36 0.001 0.06 -1.012 

April -0.086 -8.20 -0.090 -6.14 -0.083 -5.52 -0.339 

May -0.084 -8.26 -0.068 -4.97 -0.102 -6.72 1.658 

June -0.096 -7.85 -0.095 -5.60 -0.097 -5.49 0.105 

July -0.152 -10.23 -0.139 -6.63 -0.164 -7.79 0.865 

August -0.208 -14.07 -0.183 -8.85 -0.231 -10.97 1.646 

September -0.047 -3.90 -0.047 -2.93 -0.042 -2.26 -0.213 

October 0.021 2.10 0.026 1.83 0.016 1.13 0.502 

November 0.186 17.13 0.187 12.98 0.184 11.28 0.135 

December 0.190 14.53 0.180 9.83 0.200 10.68 -0.782 

Time -0.001 -15.69 -0.001 -11.29 -0.001 -10.99 0.165 

Pop-density 0.0002 18.74 0.0002 14.28 0.0002 12.33 1.125 

Veh/Person -1.310 -41.00 -1.289 -27.99 -1.328 -29.83 0.614 

Min-temp
 0.014 7.27 0.011 4.12 0.017 6.06 -1.476 

Rain 7.4E-05 0.98 1.1F-04 0.99 3.43E-05 0.31 0.440 

Constant -13.993 -817.19 -13.995 -579.75 -13.990 -573.79 -0.144 

Italic shows that these variables are not significant at 5 percent level. 

 

 

Figure 3.5: Comparison of coefficients of models using GLM-Negative binomial 

(Coefficient validation-Dataset 3) 
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3.6.1.5 Durbin-Watson test  

 

The Durbin-Watson test was used to investigate the presence of serial correlation among the 

residuals. Each police force is considered to be a member of a panel which consists of 180 

observations, each representing the number of road accident during a month from 1991 to 

2005. The formula given in equation 2-30 is used to estimate the value of the Durbin-Watson 

statistic. The lower dl and upper du critical values of the statistic were obtained from Table 2.2 

by using the number of observations and number of variables in the regression equation. The 

respective values of dl and du were 1.57 and 1.78. This table also showed the regions of the 

acceptance and rejection of the null hypothesis for the absence of serial correlation. The 

Durbin-Watson statistic was calculated for whole dataset and for each police force. The 

estimated value of Durbin-Watson statistic for whole dataset was 0.98 which was in the first 

region (less than 1.57) as a result of this, the null hypothesis for the absence of serial 

correlation among residuals was rejected. The same process was repeated for each police 

force. It was found from the results shown in Table 3.6 that null hypothesis for the absence of 

autocorrelation among residuals was rejected for the 16 police forces. However, the 

hypothesis for the absence of autocorrelation for Sussex police force was neither rejected nor 

accepted as the estimated value of the Durbin-Watson statistic lies between 1.57 and 1.78. 

Based on the estimated results shown in Table 3.6, it is concluded that serial correlation 

exists in the residuals as a result of which t values obtained by the GLM may be inflated.  

 

Table 3.6: Durbin-Watson test results for Dataset 3 

S.No Police Force DW S.No Police Force 
DW 

 

1 Durham 1.42 10 Avon and Somerset 0.53 

2 West Yorkshire 1.47 11 Dorset 1.14 

3 South Yorkshire 0.89 12 North Wales 0.98 

4 West Mercia 1.14 13 South Wales 0.69 

5 Nottinghamshire 0.87 14 Dyfed-Powys 1.17 

6 Cambridgeshire 0.29 15 Grampian 0.31 

7 Thames Valley 1.50 16 Tayside 1.49 

8 Sussex 1.63* 17 Strathclyde 1.07 

9 Devon and Cornwall 1.32    

*panel where the null hypothesis for the absence of autocorrelation is neither accepted nor rejected. 
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3.6.1.6 Preferred model:  

 

Model 15 was preferred based on the criteria presented in section 2.5.4. In section 3.6.1.1, 

model 15 had good BIC values and tests for multicollinearity showed that explanatory 

variables in model 15 had acceptable VIF values. Other models in which meteorological 

variables were used in different combinations had high VIFs for these variables, so they were 

not preferred despite having better BIC values as the true effects of these variables can not be 

identified correctly. 

 

Model 15 was preferred over all other models despite some of them (Model 8, 10, 14, 18 and 

22-24) having better BIC values (Table 3.2). It was found that the models in which mean 

minimum monthly tempertaure and mean maximum monthly temperature (model 14, 18 and 

22-24) were used together produced high VIFs suggesting that they are collinear so these 

models were not preferred. Model 8 was not preferred as it had a specific factor for Police 

force (17 degrees of freedom) which subsumed all geographical variations and polulation 

density was strongly collinear with Police force. Model 10 was also not preferred as 

preference was given to models that have a combination of meteorological variables which 

can identify their impact on the number of road accidents. Among the others, model 19 and 

20 had smaller VIF for the meteorological factors but their BIC was not better than model 15, 

so they were not preferred. 

 

Model 15 was also of special interest as the coefficient of rain was found to be non-

significant when GLM was used. It was observed in coming section, when GEE with AR1 

error structure was used to accommodate the presence of serial correlation the coefficient of 

rain became significant. This led to further investigations to identify any further changes in 

the parameters estimates according to this model formulation.  

 

The results of the analysis of temporal effects in section 3.6.1.2 also showed that in model 15 

no substaintial systematic temporal trend remains that can be represented by further quadratic 

temporal terms in the model. Split sample tests also showed that paramters estimated by 

model 15 are reliable and consistent.  

 

However, the Durbin-Watson test results in section 3.6.1.5 showed that serial correlation 

exists in data due to which GEE with AR1 error structure was preferred over the GLM as it 
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can account for the presence of serial correlation in the data. In the coming section the 

coefficients of model 15 with GEE-AR1-Negative binomial are compared informally with 

those of the GLM-Negative binomial in order to investigate whether any significance levels 

of the coefficients have changed. The following section describes the further analysis which 

was carried out on the results obtained from the model 15.  

3.6.1.6.1 Comparison of coefficients for Dataset 3  

The Stata software was used to estimate the coefficients of all variables. As the models were 

fitted to the same data, the estimates of corresponding parameters are not mutually 

independent. Due to this, no formal T test could be undertaken. In this section the estimated 

coefficients and the t values are compared and discussed informally. 

 

It is found that the coefficients and the sign for some of the variables differed between the 

models (GLM and GEE). This has happened as the GEE-AR1 model was able to represent 

some of the meteorological variables through the autoregressive error term. The variables 

which were not related to weather (time, population density, vehicle per head of population) 

had not changed their signs whereas the sign of September and minimum temperature have 

changed. It was observed that some variation in the coefficients of month between GLM and 

GEE-AR1 occurred. Observing the coefficient values of GEE-AR1, it is found that the 

coefficient of month decreased for the winter months whereas it increased for some months 

of Spring and Summer (March, April and September).  The coefficient of March which was 

not significant in GLM turned to be significant in GEE-AR1 model. 

 

From this, it is concluded that in the time series model the partial effect of minimum 

temperature can be represented through the month. A few other models (models 17, 19 and 

23), with various combinations of variables using a GEE-AR1 error structure, were used and 

coefficients of month from these models were compared with Model 15. It was found that the 

pattern of month of year variables remained consistent through various GEE-AR1 models: 

September had the same sign in all the models. This further confirmed that some of the 

meteorological effect is represented adequately by month in the time series models. However, 

once AR1 error structure is allowed, the effect of variations in rainfall over and above mean 

values becomes statistically significant. This will affect both police force areas that generally 
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have rainfall different from the national mean and times when rainfall differs from the 

monthly mean.  

 

From the results of GEE model 15, when AR1 error structure was allowed it was observed 

that November has greatest risk of road accident per unit of distance travelled than other 

months whereas April has the lowest risk. The coefficient of time showed that the road 

accident risk per unit of distance travelled decreased at about 1 percent per annum. 

Population density had a positive coefficient which indicates that police forces having a 

higher population density tended to have greater risk of road accidents per unit of distance 

travelled. The geographical areas where the vehicle per head of population is high will tend to 

have less risk per unit of travel. Rainfall above the monthly mean is associated with more risk 

of having road accident per unit of distance travelled. On the other hand, increase in the mean 

minimum temperature is associated with less risk per unit of travel. Figure 3.6, 3.7 and Table 

3.7 show the comparison of coefficients. 

 

Figure 3.6: Comparison of coefficients of Model 15 with GLM and GEE-AR1 

 

Figure 3.7: Comparison of coefficients of month by Model 15, 17, 19 and 23 (GEE-AR1-NB) 
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Table 3.7: Comparison of coefficient and t values of GEE-AR1 and GLM-Model 15-NB for 

coefficient validation (Dataset 3) 

 

Variables 

Comparison of models 

Model 15-GEE-NB(AR1) Model 15-GLM-NB  

Coefficient t value Coefficient t value  

January 0.061 5.57 0.165 12.44  

February 0.025 2.31 0.120 9.14  

March -0.069 -7.31 -0.010 -0.85  

April -0.122 -14.17 -0.086 -8.20  

May -0.056 -6.80 -0.084 -8.26  

June -0.011 -1.12 -0.096 -7.85  

July -0.022 -1.77 -0.152 -10.23  

August -0.081 -6.61 -0.208 -14.07  

September 0.031 3.09 -0.047 -3.90  

October 0.025 3.06 0.021 2.10  

November 0.131 14.82 0.186 17.13  

December 0.088 8.12 0.190 14.53  

Time -0.001 -6.77 -0.001 -15.69  

Pop density 0.0002 9.05 0.0002 18.74  

Veh/Person -1.290 -20.44 -1.310 -41.00  

Min temp -0.008 -4.79 0.014 7.27  

Rain 0.001 10.54 7.4E-05 0.98  

Constant -13.908 -454.60 -13.993 -817.19  

Italic shows that these variables are not significant at 5 percent level 

3.6.1.6.2 Comparison of the number of road accidents observed and estimated for each 

month, Standardized deviance residuals and cumulative percentage graphs  

Graphs of road accidents observed and estimated for each month within a police force area 

showed good agreement. However, from the graph and subsequent analysis of the results in 

Table 3.8 it was observed that the model was not reliable when the road accidents for a month 

were either less than 100 or greater than 800. The cumulative proportion graph in Figure 3.8 

also confirms this. In the whole dataset there were 130 observations when road accidents 

were observed to be lower than 100. The estimated values gave only 44 such months. In the 

same way there were 45 observations when number of road accidents for a month was higher 

than 800 whereas the estimated values gave only 24 such months. The summary of the 

number of road accidents observed and estimated for each month is shown in Table 3.8. 
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The standardized deviance residual graph in Figure 3.8 showed that Grampian had the most 

negative standardized deviance residuals. It was observed that out of the 100 most negative 

standardized deviance residuals (SDR), 67 belonged to Grampian. The reason for this might 

be that Grampian had the lowest number of road accidents and the model estimated slightly 

higher values for this police force. The highest negative SDR was -3.96 which occurred in 

March 2000 for the Grampian police force, where observed road accidents were 68 while the 

model estimated it to be 153. Another outlier in July 2004 was from the same police force, 

where the numbers of observed and estimated road accidents were 65 and 145 respectively. 

There were a few outliers with the highest positive value which mostly belonged to the 

months of December and January. The highest positive outlier was for Cambridgeshire police 

force in the month of December 2002 where 341 road accidents were observed compared to 

an estimated 175 accidents. Generally, it was observed that SDR lies between -4 and +4.  

 
 

Figure 3.8: Number of monthly road accidents observed and estimated, Standardized 

deviance residual graphs (Dataset 3)         
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Table 3.8: Summary of road accidents observed and estimated (Dataset 3) 

 
 

Group Number of observation in the group 

Numerical Range of monthly road 

accidents (Groups) 

Number of monthly road 

accidents observed 

Number of monthly road 

accidents estimated 

0 to 100 130 44 

100 to 200 686 866 

200 to 300 484 426 

300 to 400 660 497 

400 to 500 450 575 

500 to 600 258 249 

600 to 700 214 239 

700 to 800 133 140 

800 to 900 39 22 

900 to 1000 6 2 

 

3.6.1.6.3 Final model checking graphs: 

 

 Some graphs were plotted in Figure 3.9 to check visually if any problems existed in model 

15 with the GEE-AR1 error structure. The first graph shows the deviance residuals plotted 

against the fitted values. It is observed that plot does show some trend as well as a substantial 

variation in the density of observations over the range of fitted values. The greatest negative 

residuals occur when the number of road accidents estimated is about 150 to 200, which 

correspond to observations from the Grampian police force. The greatest positive residuals 

were found for estimated road accidents ranging in number from 180 to 250, which were 

found mostly to come from the Cambridgeshire police force: other variations appear to stem 

from police force areas.  In order to investigate the nature and strength of this variation in the 

deviance residuals, the averages of the absolute values of these residuals were calculated in 

bands of 50 of the estimated values: the results of this are plotted in Figure 3.10. This shows a 

generally decreasing trend in magnitude of deviance residuals with increasing fitted value. 

 

As a result of higher deviance residuals for police forces of Cambridgeshire and Grampian as 

shown in deviance residuals and fitted values graph further investigation was carried out. It 

was observed as shown in Figure 3.3 that Cambridgeshire had lowest amount of rainfall 

whereas Grampian had lowest minimum temperature among all the police forces considered 

in this study. In light of this, a test was carried out to investigate the effect of adding the two 
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further explanatory variables of rain in Cambridgeshire and minimum monthly temperature in 

Grampian to model 15 with GEE-AR1 error structure.  The deviance residuals estimated from 

this refined model do not show any substantial improvement relative to the plot of deviance 

residuals against predicted values which is shown in Appendix A3.3, hence this refinement 

was not considered further.  

  

The second graph considered was the normal quantile plot of standardized deviance residuals. 

From the graph it is observed that the quantile plot follow the straight line closely, supporting 

the assumption of normality of the residuals. Some minor deviations are observed especially 

at the ends, which suggest the data distribution had a long tail at each end. The scale location 

plot also showed that deviance is slightly decreasing with increase in fitted values, though a 

substantial variation in the density of observations over the range of fitted values was also 

observed.  

 

In the last graph Cook’s distance plot shows most of the observations that had higher peak 

relates to the months of November, December and January. Noticeably, the highest peak was 

observed which represents the observations from the Cambridgeshire police force. However, 

the Cook’s distance for these observations was less than the critical value of 1 that would 

cause concern.  

 

The graphs shown in Figure 3.9 and 3.10 suggest presence of heteroscedasticity in the 

residuals. In order to confirm this, Park and Glejser tests were carried out. The test results 

shown in Appendix A3.4 verify that heteroscedasticity is present in the residuals. Due to this 

an adjustment to the standard errors of  coefficients was made using the White’s procedure as 

implemented in STATA. However, we note that the hierarchical generalized linear model 

(HGLM) introduced and used in Chapter 5 allows to model variations in dispersion.  

 

In Table 3.9 the results of model 15 using GEE-AR1 are compared after adjusting the 

standard errors due to the presence of heteroscedasticity. The results show that t values of all 

the variables have decreased typically by a factor of 2 except October and rain which have 

increased slightly. The coefficient of February turned to be non-significant after 

implementing the corrections. This suggests that if the presence of heteroscedasticity is not 

accounted the coefficients will not be efficient but they will still be unbiased and consistent.  
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Figure 3.9: Diagnostic plots for model 15 (Dataset 3) 

 

 
 

Figure 3.10: Average of the absolute value of deviance residuals and estimated values in 

bands-Dataset 3 
 

 

 

 

 

 



149 

 

Table 3.9: Comparison of coefficient and t values of GEE-AR1 Model 15-NB after using 

correction for the presence of heteroscedasticity 
 

Variables 

Comparison of results of model 15-GEE-AR1 

 

 

Before applying an 

corrections 

 

 

White’s Robust Standard 

Errors  

 

 

 

Coefficient t value Coefficient t value  

January 0.061 5.57 0.061 3.11  

February 0.025 2.31 0.025 1.17  

March -0.069 -7.31 -0.069 -5.98  

April -0.122 -14.17 -0.122 -14.83  

May -0.056 -6.80 -0.056 -5.64  

June -0.011 -1.12 -0.011 -0.75  

July -0.022 -1.77 -0.022 -0.78  

August -0.081 -6.61 -0.081 -2.74  

September 0.031 3.09 0.031 2.41  

October 0.025 3.06 0.025 3.27  

November 0.131 14.82 0.131 8.26  

December 0.088 8.12 0.088 3.84  

Time -0.001 -6.77 -0.001 -3.02  

Pop density 0.0002 9.05 0.0002 3.15  

Veh/Person -1.290 -20.44 -1.290 -11.61  

Min temp -0.008 -4.79 -0.008 -2.04  

Rain 0.001 10.54 0.001 11.33  

Constant -13.908 -454.60 -13.908 -204.38  

Italic shows that these variables are not significant at 5 percent level. 

 

3.7  CONCLUSION  

 

The purpose of this part of the study was to assess the impact of meteorological variables on 

the risk of road accidents per unit of travel. A specific objective was to determine whether 

meteorological variables contribute to the variability in the number of road accidents among 

the months. This was undertaken using road accident data for each police force area during 

each month. The adjusted distance travelled in the month for each police force was used as 

the offset which accounted for the variations in distance travelled during the months of year. 

As a result of this, the linear predictor in this model can be interpreted in terms of an estimate 
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of the risk of road accidents in a police force area during each month per vehicle-kilometre of 

distance travelled there.  

 

The results showed that serial correlation exits in the data due to which the Generalized 

Estimation Equation (GEE) having autoregressive order 1 (AR1) with negative binomial was 

preferred to the Generalized Linear Model (GLM). In this particular case, it was observed 

that coefficients for the variable of Month estimated by GEE-AR1 were substantially 

different from the coefficients estimated by GLM. This change happened as in GEE-AR1 

model it had been represented through the coefficients of the month. Observing the 

coefficient values of GEE-AR1 it was found that coefficient of month reduced in the winter 

months while it increased for some months of Spring and Summer (March, April and 

September). The coefficient of rainfall was also found to be statistically significant in the 

GEE-AR1 model. The amount of rain is associated with greater risk of road accident per unit 

of distance travel whereas the increase in the minimum temperature is associated with less 

risk per unit of travel. 

 

It was also found that November is associated with greater risk of road accidents per unit of 

distance travelled than all other months of year. April had lowest risk after allowing for the 

meteorological effects. This finding differs from that in chapter 2 in which travel during 

August was reckoned to have less risk than April: this difference arises through allowance for 

meteorological effects. The coefficient of time is negative showing that road accident risk per 

unit of travel is becoming progressively less risky. Circumstantial variables that characterise 

the police force showed that higher population density resulted in greater accident risk and 

the police force areas having more vehicles per head of population had lower risk per vehicle-

kilometre of travel than other police forces.  

 

It was generally observed that inclusion of a small number of meteorological variables can 

improve the goodness of fit of a model. The effects of the local climate should therefore be 

considered before designing any systematic safety plans for a region. 
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4. MODELLING THE NUMBER OF VEHICLES INVOLVED IN ROAD 

ACCIDENTS  

4.1  INTRODUCTION 

 

Various safety improvement programmes are designed by the planning and development 

agencies to reduce both the number of road traffic accidents and the severity of those that do 

occur. The numbers of road accidents are estimated by using road accident prediction models. 

These models relate the expected number of road accidents to some available explanatory 

variables. Based on modelling results, appropriate road safety initiatives can be proposed to 

improve road safety. If the initiatives are inappropriate, this can result in reduced road safety 

and waste of resources. The several techniques available for estimating the number of road 

accidents have been described in detail in Chapter 2 and are summarised below. 

 

In earlier research (Andrecscu and Frost, 1998; Bester, 2001) the relationship between road 

accidents and other variables was found by using a conventional multiple regression 

technique. As noted earlier, this approach lacks the distributional properties that are 

appropriate to adequately describe random, discrete, and non-negative events such as traffic 

accidents. Various studies including Miaou and Lum (1993) and Miaou (1994) have shown 

that test statistics derived from these models are questionable because they do not necessarily 

use the appropriate distributions. Maycock and Hall (1984), and Maher and Summersgill 

(1996) have shown that variance of count data is found to be higher than the mean; the extra 

variation is known as over-dispersion. When using Poisson regression in the presence of 

over-dispersion, model parameter estimates will still be close to their true values, but their 

variance of estimation tends to be under-estimated and the significance levels of estimated 

coefficients will therefore be overstated. This has been addressed by Hadi et al (1995) and 

Anis (1996) who have shown significant advances in describing the discrete traffic accident 

count data by producing more accurate and reliable models through the use of generalized 

linear models with Poisson and negative binomial distributions. In order to address the issue 

of over-dispersion, Abdel-Aty and Radwan (2000), Guevara et al (2004), McCarthy (2005) 

used the negative binomial distribution which allows variance to exceed the mean. 

 

Another important issue for the time-series of road accident data arises through the presence 

of serial correlation. In the presence of serial correlation, efficiency of the parameter 
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estimates comes into question. Lord and Persaud (2000) used the generalized estimation 

equation (GEE) methodology which has the additional capability to accommodate temporal 

correlation in the data. Wang and Abdel-Atey (2006) used GEE to accommodate serial 

correlation in data for modelling road accidents at different intersections. Memon (2008) used 

GEE with AR1 error structure for modelling the number of vehicles involved in road 

accidents in Great Britain. Ulfarsson and Shankar (2003) used a negative multinomial (NM) 

model to account for the panel structure of the data that arises from repeated observations at 

each set of sites. 

 

From this literature review we conclude that the generalized linear model (GLM) with 

Poisson error structure and logarithmic link function goes some way to addressing the 

requirements of modelling the numbers of vehicles involved in road accidents. However, this 

approach does not accommodate the over-dispersion that is encountered in these counts, and 

this leads to overstatement of accuracy of parameter estimates. Furthermore, this model 

structure does not accommodate the serial correlation that is also encountered. Use of the 

negative binomial error structure can accommodate over-dispersion, and use of AR1 time 

series error structure can accommodate serial correlation. Together, these extensions to the 

statistical model will lead to improved estimates of parameters and their accuracy. These 

features are provided by the GEE model formulation.   

 

The present research has the following objectives; 

 

 To compare the results of generalized linear models and generalized estimation 

equations in order to develop road accident prediction models which can accurately 

estimate the number of vehicles involved in road accidents on each day disaggregated 

by road class and vehicle class in Great Britain based on the national accident dataset 

of STATS 19.  

 

 To identify the relationship between the numbers of vehicles involved in road 

accidents on each day and other variables such as road class, vehicle class, day of the 

week, month, time and various holidays.  
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 To estimate the risk of involvement in a road accident per unit of travel for different 

road and vehicle combinations. 

 

The investigation presented in this chapter focuses on the combined use of road accident and 

vehicle information from STATS 19 data along with traffic flow data. The presence of serial 

correlation due to the natural order of observations will also be tested and it will be observed 

whether this affects estimates of the parameters of the models and the associated test 

statistics. Models were initially developed using GLM with a negative binomial regression. 

For the preferred model, GEE-AR1 is used to accommodate serial correlation and the results 

are compared with GLM.  

 

This study identifies a suitable technique to model the number of vehicles involved in road 

accident datasets using GEE-AR1. The estimated risk values of being involved in a road 

accident per unit of exposure for all road and vehicle combinations can be used to highlight 

those combinations that need most attention. The results of this research will help various 

planning and emergency rescue agencies to develop road safety intervention programmes for 

targeted road and vehicle combinations and to identify significant variables in an appropriate 

way. This will also enable agencies to allocate the resources and focus on particular road user 

groups in an efficient way by anticipating how many vehicles are likely to be involved in 

road accidents on any day by road class throughout the study area. The results obtained from 

this study may also help to promote education and safer use of road and vehicle 

combinations. 

 

This chapter is organized as follows. Section 4.2 describes the data used for this study, which 

is analysed briefly in Section 4.3. Section 4.4 presents the process of model development and 

basic structure of the model. Section 4.5 shows the model selection process, results of 

developed models, goodness of fit and model checks. Section 4.6 presents the resulting 

estimated risk per unit of travel for various vehicle classes. Finally some concluding remarks 

are given in section 4.7. 

 

 

 

 

 

 



154 

 

4.2  DATA USED 

 

The STATS 19 road accident and vehicle data, and the traffic flow data that are used for this 

study are described below: 

 

4.2.1 Combined road accident and vehicle data (STATS 19 data) 

 

In this part of the study a new dataset, denoted as Dataset 4, was developed which had 

number of vehicles involved in road accidents for each day instead of the earlier dataset used 

in Chapter 2 which had the number of road accidents for each day, for the following reasons: 

 

 Additional information regarding the road and vehicle class combination was to be 

explored through this modelling. Information relating to vehicle and road class is not 

available in the accident section of STATS 19 which was the source of information in 

the earlier dataset. In the present case, data from the accident and vehicle section of 

STATS 19 data were combined and a new dataset was formed to represent the number 

of vehicles involved in road accidents on each day by road and vehicle class rather 

than road accidents on each day. 

 No suitable corresponding traffic flow information was available for Dataset 2 as that 

data related to the number of road accidents occurring on each day for police forces of 

Great Britain. 

 

The road accident statistics in Great Britain are compiled by the police. All road accidents 

involving human death or personal injury occurring on the highway are required to be 

notified to the police within 30 days of occurrence. For each such road accident, police 

authorities complete a STATS 19 form which provides details of road accident 

circumstances, information on each vehicle involved, and information of each person injured 

in the road accident. This whole dataset is maintained by the Department for Transport (DfT). 

In the present chapter, the five years’ road accident data from 2001 to 2005 was used for 

modelling the involvement of vehicle classes in accidents on different road classes.  

 

Before combining the information from the accident and vehicle sections of the STATS 19 

data and the traffic flow data which was obtained from the DfT, the distinct road 
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classifications were reconciled. In order to make joint use of the two different sources of 

information, roads were reclassified in STATS 19 data by using the speed limit information. 

In STATS 19 data, roads are classified as: motorway, A, B, C, and unclassified whereas 

available traffic flow data from the DfT are classified as: motorways, rural A, urban A, rural 

minor, and urban minor roads. Thus MS Access queries were used to reclassify the roads as 

shown in Table 4.1. It was also found that the vehicle classification of STATS 19 does not 

match that is used in the traffic flow data. Due to these limitations, vehicles classes were also 

reclassified as shown in Table 4.2. The vehicle classes of minibus, other motor vehicles, other 

non-motor vehicles, ridden horse, agricultural vehicle and tram were excluded from the 

dataset for this study because of the unavailability of traffic flow data and their involvement 

in only a few road accidents.  

 

After reclassification, extensive work was done to combine the accident and vehicle sections 

of STATS 19 data for each year. It should be noted that for each road accident there were one 

or more vehicles involved. These two sections of road accident data were joined by using the 

accident reference number. For this process MS Access and SPSS were used. These Access 

files were exported to SPSS to develop a new dataset which consisted of the information 

about all vehicles involved in road accidents from 1
st
 January 2001 to 31

st
 December 2005. 

SPSS cross-tabulations were used to extract the information for the number of vehicles 

involved in accidents for each day by road class and vehicle class. All this was done to bring 

the road class and vehicle class variables into the new dataset as the accident section has no 

information about the road class and vehicle class, and the vehicle section on its own could 

not identify when and where the road accident happened. After combining them the 

information of road class, vehicle class, day, month, and year were available in a single 

dataset. A total of 24 different combinations were used. The dataset contains five years’ 

information of vehicles’ involvement in road accidents. It had total of 43,824 observations for 

all 24 different groups. Each group represents a different vehicle class and road class, and has 

1,826 observations each representing the number of vehicles involved in road accidents on 

each day by road type and vehicle class from 2001 to 2005. The group involving pedal cycles 

on motorways was excluded from the dataset because pedal cycles are not allowed on 

motorways and so are rarely if ever involved in road accidents on them. 
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Table 4.1: Criteria for rearranging road classification 
 

S.No Roads reclassified 

 

New classification 

 

Criteria 

STATS 19 data classification Speed limit (mph) 

1 Motorway Motorway - 

2 Rural A A(M) or A > 40 

3 Urban A A(M) or A   40 

4 Rural Minor B or C or Unclassified > 40 

5 Urban Minor B or C or Unclassified   40 

Source of data: Department for Transport (2011) 

 

Table 4.2: Vehicles classes used for the study 
 

S.N Vehicles classified 

 in STATS 19 

New 

classification 

S.N Vehicles classified 

 in STATS 19 

New 

classification 

1 Pedal Cycle 

 

Pedal cycle 9* Other motor vehicles  

2 Moped  

 

 

Motor cycle 

10* Other non-motor 

vehicles 

 

3 Motorcycle 125 cc 11* Ridden horse  

4 Motorcycle > 125 cc  12* Agricultural vehicle (in 

diggers etc) 

 

5 Taxi  

Car 

13* Tram  

6 Car 14 Goods 3.5 tonnes mgw 

or under 

 

 

Goods 

Vehicles 

7* Mini bus ( 8-16 

passenger seats) 

 15 Goods over 3.5 and 

under 7.5 t 

8 Bus or coach ( 17 or 

more passenger seats) 

Bus 16 Goods 7.5 tonnes mgw 

and over 
Source of data: Department for Transport (2011) 

* These vehicle classes were not included in the study 

 

4.2.2 Traffic flow data 

 

Traffic flow data is obtained from the DfT which estimates the flows from the information 

obtained from traffic counts that are conducted at different types of road. Traffic counts are 

carried out manually and automatically as described below: 

 

4.2.2.1. Manual counts: According to the DfT (2005), manual counts operate differently for 

major and minor roads. Roads classified as major are: motorways, trunk roads, and principal 

roads with the latter two divided into urban and rural roads. Roads classified as minor are the 
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three main classes of B, C, and U (unclassified) roads and each is subdivided into urban and 

rural, resulting in a total of six classes. 

 

a. Manual counting for major roads: For major roads (motorways and A-roads) the traffic 

on every link is assessed regularly. Traffic counts are done at a random point on most of the 

links at regular intervals, once every three years in England and Wales, and once every six 

years in Scotland. About 5,100 major road sites were counted in 2005 (DfT, 2005). 

Additional information about the characteristics of each link such as its length and road width 

at the location of the count is also gathered. Trained enumerators count vehicles from 7 am to 

7 pm. All counts take place on weekdays, but not on or near to Public holidays or school 

holidays. The counting is also confined to neutral weeks to minimise the effects of seasonal 

factors; these neutral weeks are mostly in the months of March, April, May, June, September, 

and October. Some major links are unsafe or too short to be worth counting in the usual 

manner. In these cases traffic estimates are made from the judicious use of flow data on 

adjacent links. These are called derived links. Some links are treated as a dependent link and 

defined as ending at the local authority boundary. In these cases it is assumed that the flow is 

the same along the entire link, so a count in one local authority can be used a proxy for the 

flow on the dependent link. In 2003 there were 15,500 normal links, 1,200 derived links and 

1,000 dependent links. 

 

b. Manual counting for minor roads: Minor road traffic estimates are made by grouping 

minor roads into six road classes. The average flow on each of these road types is estimated 

by carrying out the several counts along them. A sample of about 4,500 sites across Great 

Britain is visited each year on neutral weeks. These same sites are counted each year. Apart 

from this, 200 counts per year are carried out in non-neutral weeks and on weekends which 

are known as summer-winter counts. These counts provide extra information about two-

wheeled traffic throughout the year, as pedal cycles and motorcycles are not always 

accurately identified by automatic counters. 

 

4.2.2.2. Automatic counts: There are 190 sites in Great Britain outside London where traffic 

is monitored continuously using automatic sensors which classify the traffic into vehicle type. 

The automatic counting equipment recognises 22 different types of vehicles which are then 

combined to provide estimates for the 11 vehicles types used by the DfT. These counters are 

not fully accurate as they cannot correctly classify traffic moving at 5 mph or less. The 
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automatic counters in London are slightly different to those outside London. In London, there 

are 54 counters and they are volumetric classifiers as they only distinguish between short (up 

to 5.2 metres) and long (greater than 5.2 metres) vehicles. These counters need 24-hour 

manual counts every three months to provide estimates of the breakdown of traffic by vehicle 

type in each hour of the day.  

 

4.2.2.3. Annual average daily flows (AADF): The data for all manual counts in neutral 

months are combined with information from automatic counters on similar roads to provide 

an estimate of the AADF at that site. This is normally done by multiplying the raw count data 

by factors derived from automatic counts in that same year. There are a large number of 

correction factors, for each vehicle type, day of counting, and various other groups. As these 

counts are done in neutral weeks, the expansion factors used do not vary too much from year 

to year except when bad weather has restricted traffic during the winter months.  

 

4.2.2.4. Estimating annual traffic estimates from AADFs: Different procedures are applied 

for major and minor roads in converting AADF data to traffic estimates. For every major road 

link its AADF is multiplied by its length and the number of days in the year to get the value 

in million kilometres per year. As every major road link is counted, so a summation of all the 

links will lead to annual traffic estimates. For each minor road class in each local authority 

area an AADF is estimated based on a sample of traffic counts. These AADFs are then 

multiplied by the total road length for the relevant minor road category to give an estimate of 

traffic in vehicle-km for that road category. 

 

 4.3  DATA  ANALYSIS 

 

STATS 19 data, road length data, and traffic flow data used for this study are analysed as 

follows: 

4.3.1 Analysis of STATS 19 data 

The combined STATS 19 data of accident and vehicle section for 2001 to 2005, which 

represents the number of vehicles involved in road accidents occurring on each day, was 

analysed by using box plots produced by Stata software which are shown in Figure 4.1 and 

explained as follows: 
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It was observed that more vehicles were involved in road accidents on urban roads. A wide 

disparity exists among road classes in terms of highest number of vehicles involved in road 

accidents. The rural minor roads had a lower interquartile range which indicates less 

variability in terms of the number of vehicles involved in road accidents. Figure 4.1 also 

shows the prevalence of cars involved in road accidents. The median for cars involved in road 

accidents was at least nine times higher than the median of all other classes of vehicles. The 

interquartile range for cars indicates that the level of involvement of cars in road accident on 

different roads may also vary a lot. A slight difference is observed between weekdays and 

weekends. Day-to-day variation in terms of numbers of vehicles involved in road accidents 

was not so great but Sunday had a lower median than other days. December and January had 

the lowest median among all the months. It was also observed that the initial four months of 

the year had a lower median than later months, except December, which might be due to 

seasonal differences. 

 

Figure 4.1: Box plots of STATS 19 data (Dataset 4: 2001 to 2005) 
 

 

      

  

Source of data: Department for Transport (2011) 
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4.3.2 Analysis of road length data 

The road length data of all road classes for 2001 to 2005 used in this study was obtained from 

the DfT. The figures showing the yearly length of all road classes are shown in Table 4.3 and 

were incorporated into Dataset 4. It was found that: 

 

 Motorways had the lowest proportion of roads equalling almost 1 percent of the total 

road length. This proportion was in range of 0.88 to 0.91 percent for all the years. 

 A-class roads were 12 percent of the total road length. Rural A roads were three 

times longer than urban A roads. The length of rural A and urban A roads were about 

9 and 2.8 percent respectively out of the total road length. 

 Minor roads were 87 percent of the total road length. Rural minor roads constituted 

about 54 percent whereas urban minor roads were 34 percent of the total road length. 

 

As shown in Table 4.3, the road lengths were similar over the years but it was found that total 

road length for 2004 and 2005 was less than for the initial three years. According to the DfT 

report Transport Statistics for Great Britain, 2007 this is mainly due to amendments made to 

road lengths in Scotland as some of the private roads maintained by the Forestry Commission 

were earlier recorded as public roads.  

 

Table 4.3: Road length of various road classes (2001-2005) 
 

Road class Year 

 

2001 

 

2002 2003 2004 2005 

Motorway 3,476 3,478 3,478 3,524 3,520 

Rural A 35,522 35,532 35,525 35,530 35,550 

Urban A 11,132 11,141 11,127 11,138 11,107 

Rural Minor 210,037 210,343 210,656 207,565 207,646 

Urban Minor 130,802 131,169 131,556 129,917 130,186 

Source of data: Department for Transport (2011) 

*road length in kilometres 
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4.3.3 Analysis of traffic flow data 

Traffic flow data was obtained from the DfT for different road and vehicle combinations 

which were jointly used with STATS 19 data. For the purpose of understanding, data was 

aggregated in this section to determine the share of each road and vehicle class in the total 

yearly distance travelled. The aggregated results showed that over 90 percent of total yearly 

vehicle kilometres are travelled by car or taxi. The proportion of distance travelled using 

pedal cycles, motorcycles, and buses, with slight yearly variations, was about 1 percent each 

out of the total yearly distance travelled. Higher distances were travelled by goods vehicles 

which constituted about 7 percent of the total vehicle kilometres travelled. On the other hand, 

road class aggregation of data revealed that although motorways were 1 percent of the total 

road length in Great Britain, 19 percent of the total distance was travelled on these roads. 

Rural A road which constituted 9 percent of the total road length carried 28 percent of total 

traffic. It was also found that although minor roads (either rural or urban) constituted 87 per 

cent of the total network of Great Britain, only 37 percent of the total yearly distance was 

travelled on them. Table 4.4 gives the percentage of distance travelled for each road class and 

vehicle combination from the total yearly distance travelled for the years 2001 to 2005. This 

table shows that: 

 

 Car and taxis were the dominant form of traffic on motorways and on all roads, with 

shares ranging from 85 percent on the motorway and up to 92 percent on each of 

urban roads and rural minor roads.  

 All vehicles travelled more on urban A roads than on rural A roads and motorways, 

except goods vehicles. The proportion of distance travelled by goods vehicles on 

urban A roads further reduced to about 4 percent. 

 On rural minor roads, pedal cycles and motorcycles travelled slightly more than on A 

roads. Goods vehicles travel about 3 percent of the total distance. The proportion of 

distance travelled by cars stayed nearly same as on urban minor roads. 

 Goods vehicles constituted the second largest form of traffic on all roads except urban 

minor roads. The proportion of traffic constituted by goods vehicles decreased from 

14 percent on motorways to 2 percent on urban minor roads.  
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Table 4.4: Percentage of the distance travelled by road class and vehicle class,  

2001 - 2005 
 

Code Vehicle class Year 

2001 2002 2003 2004 2005 

Motorway 

1 PC - - - - - 

2 MC 0.47 0.47 0.50 0.46 0.47 

3 Cars & Taxis 84.39 84.93 85.0 84.76 84.99 

4 Bus 0.70 0.57 0.56 0.54 0.54 

5 GV 14.44 14.03 13.95 14.24 14.01 

Rural A 

6 PC 0.17 0.16 0.11 0.10 0.11 

7 MC 1.04 1.03 1.11 1.04 0.99 

8 Cars & Taxis 89.29 89.72 89.83 89.90 90.0 

9 Bus 0.78 0.78 0.78 0.70 0.71 

10 GV 8.72 8.31 8.17 8.25 8.19 

Urban A 

11 PC 0.72 0.68 0.84 0.75 0.75 

12 MC 1.29 1.38 1.55 1.34 1.34 

13 Cars & Taxis 92.23 92.32 91.92 92.18 92.20 

14 Bus 1.73 1.69 1.63 1.56 1.60 

15 GV 4.03 3.93 4.04 4.17 4.10 

Rural minor 

16 PC 1.16 1.44 1.54 1.40 1.53 

17 MC 1.62 1.53 1.45 1.37 1.57 

18 Cars & Taxis 92.81 92.19 92.18 92.62 92.29 

19 Bus 0.93 1.42 1.38 1.24 1.09 

20 GV 3.48 3.42 3.46 3.37 3.52 

Urban minor 

21 PC 2.48 2.85 2.84 2.38 2.85 

22 MC 1.33 1.53 1.84 1.69 1.90 

23 Cars & Taxis 92.46 92.12 91.43 92.02 91.46 

24 Bus 1.51 1.72 1.97 2.02 2.02 

25 GV 2.22 1.77 1.91 1.89 1.78 

Source of data: Department for Transport (2011) 

The numbers shown are in percentage 
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4..4 CORRECTIONS APPLIED TO TRAFFIC FLOW DATA TO ADJUST FOR DAILY AND MONTHLY    

 VARIATIONS 

As the traffic flow data varies by the day of the week and month of the year, this variation 

was taken in account to some extent by using day of week and monthly correction factors to 

adjust the traffic flow data for each day. These correction factors for each year from 2001 to 

2005 were obtained from DfT and were derived from continuous automatic counts conducted 

at a small number of fixed sites on major and minor roads as explained in section 4.2.2. Slight 

adjustments as explained below were made to make these correction factors compatible with 

our dataset. 

 

 Road classification: The correction factors were available for four categories of 

roads, these being: motorways, all rural major and minor roads, all urban major and 

minor roads, and all roads. In this case instead of a single correction factor for all 

roads, separate ones were used for rural roads and urban roads. This adjustment was 

based on the assumption that the traffic flow on major and minor roads varied in a 

similar way by day of the week and month of the year which was near to the ideal 

situation when correction factors for all the five classes of road (Motorway, Rural A, 

Urban A, Rural minor and Urban minor) could have been used. 

 Vehicle classification: The correction factors for cars and taxis, goods vehicles, and 

all motor vehicles were available. In this case the correction factors for all motor 

vehicles were applied with the assumption that traffic flow in each vehicle class varies 

in the same way on different roads. This assumption seems far from the ideal of using 

separate correction factors for each of pedal cycles, motorcycles, cars and taxis, buses, 

and goods vehicles.  

 

Due to the limitations on availability of day of week and month correction factors, factors for 

all motor vehicles on motorways, all rural major and minor roads, and all urban major and 

minor roads were used to adjust for variation in the number of vehicles involved in road 

accidents. The correction factors for the year 2005 are shown in Table 4.5, which shows that 

on Fridays a higher distance was travelled on all roads whereas on Sundays the lowest 

distance was travelled. In August the greater distance was travelled on motorways and all 

rural major and minor roads whereas a greater distance was travelled on all urban major and 
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minor roads in March, April, and November. In December, January, February, March usually 

less distance was travelled on all roads in comparison to other months.  

 

Table 4.5: Daily traffic flows by day of the week and month of the year (2005)
1
 

Index: Average daily traffic = 100 

 

 

Day of week 

Road classes 

Motorways All rural major and 

minor roads 

 

All urban major 

and minor roads 

All motor vehicles All motor vehicles All motor vehicles 

Monday 104 103 102 

Tuesday 104 103 105 

Wednesday 105 104 107 

Thursday 108 107 108 

Friday 114 114 110 

Saturday 82 90 92 

Sunday 83 79 75 

Month of year 

January 91 87 96 

February 94 91 97 

March 98 97 102 

April
2 

101 101 102 

May 100 103 101 

June 103 105 101 

July 105 107 101 

August 107 110 98 

September 105 106 101 

October 103 102 101 

November 100 99 102 

December
3 

93 92 97 

Source of data: Department for Transport (2011) 

 

1. Indices are based on average daily traffic and are not affected by the varying number of days in each month. 

2. Figures are affected by Easter 

3. Figures are affected by Christmas 
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4.5  MODEL DEVELOPMENT 

 

The following 17 generalized linear models with negative binomial distribution were 

developed using the Stata software. The results of all models were compared according to the 

assessment of model performance as detailed in section 2.5.4. In the first step, a model was 

developed only with a constant term and an appropriate offset. A stepwise incremental 

approach was followed in successive models by adding different variables. The Durbin-

Watson test was used for the presence of serial correlation in the selected model. After this, a 

generalized estimation equation with AR1 error terms was estimated for the preferred model 

form, augmented by a lagged observation to allow for serial correlation. The coefficients and 

t values of the GLM and GEE-AR1 were then compared. The lattice of model development is 

shown in Figure 4.3. For each model that is fitted all the statistics are shown in Table 4.7. 

 

4.5.1 Variables used 

 

The following variables were used in development of the models: 

1. Road class (five classes of road) 

Motorway │Rural A │Urban A │ Rural minor │Urban minor 

2. Vehicle class (five classes of vehicle) 

Pedal cycle │ Motorcycle │Car │ Bus │Goods vehicle 

3. Time (measured in days, with values from 1 to 1826, 1 January 2001 to 31 December 

2005). 

4. Logarithm (road length) 

5. Day of week (with 7 levels) 

6. Weekday  4 (4 levels: Weekday 1, Weekday 2, Saturday, Sunday) 

7. Season (4 levels: Spring, Summer, Autumn, Winter) 

8. Month of the year (12 levels) 

9. Interaction of Weekday 4 and Season (16 levels) 

10. Public holidays  

11. Christmas holidays  

12. New-Year holidays  

13. Interaction of road class and vehicle class (With 24 levels) 

14. Distance travelled per unit of road length 

15. MC-Rural-Sunday (representing leisure motorcycling) 
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Here the categorical variable weekday 4 has 4 levels:  weekday 1 which represents (Monday 

or Friday), weekday 2 (Tuesday, Wednesday or Thursday), Saturday, and Sunday. The details 

of this are given in section 4.6.1.1. 

 

4.5.2 Basic structure of the model  

In this chapter all models that were developed for Dataset 4 are shown in Figure 4.3. A 

measure of the total distance travelled on each day by road and vehicle class was used as an 

offset to represent the exposure to risk. This measure of distance was profiled by day of week 

and month to adjust the variations in distance travelled. As a result of this, the risk of road 

accident involvement per unit of this measure of distance can be estimated directly from the 

linear predictor.  

In this study the number of vehicles involved in road accidents from each road and vehicle 

class has a panel structure with repeated observations: each road class and vehicle class 

combination (e.g. cars on motorway) corresponds to a member of the panel giving 24 

combinations as shown in Table 4.11, each is measured repeatedly over the 1826 days of the 

study period. Dataset 4 has 43,824 observations and each observation represents the number 

of vehicles involved in road accidents occurring on each day for a member of panel.  

The following forms of distance travelled were considered and tested for use as the basis of 

an offset in Dataset 4 models to represent the exposure to risk: 

 Annual distance travelled 

 Adjusted distance travelled on each day 

The annual distance is available for each combination of vehicle class and road type. The 

distance travelled for each day was adjusted according to the day of week, month, by using 

the factors shown in Table 4.5. These adjustment factors were based on the road and vehicle 

classifications that are discussed in section 4.4. According to this, the distance travelled on 

each day will vary equally between all vehicle types (Pedal cycle, Motorcycle, Car, Bus and 

Goods vehicle) and equally on major and minor roads. The models that used adjusted 

distance travelled for each day as offset did not produce better goodness of fit in comparison 

to those that used annual distance travelled. The results in Table 4.6 show that BIC of model 

A1, in which the annual distance travelled is used as offset, is about 1,030 better than that of 
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model A2, in which adjusted distance travelled for each day is used. The use of annual 

distance travelled as offset for a model of numbers of vehicles involved in road accidents for 

each day overlooks the influence of day to day variation in distance travelled. Investigation of 

the effect of adjusting the distance travelled on each day to account for variation among days 

of the week and month of year led to reduced model performance. Notwithstanding this, 

because it is important to incorporate these variations (in the offset) so that it corresponds as 

closely as possible to the linear predictor for each unit of observation, the adjusted distance 

travelled for each day was adopted for use as offset. This also facilitates the interpretation of 

the coefficients as measures of risk per unit of distance of travelled.  

Because of unobserved variables that affect the occurrence of road accident, we expect that 

there will be positive correlation among the numbers of vehicles of each of the classes that 

are involved in accidents on each day. This means that the single model that combines data 

from all combinations of road and vehicle class will have somewhat overstated likelihood and 

accuracy. Hence any coefficients that have marginal statistical significance are interpreted 

here with caution. 

The following model structure was used for Dataset 4.  

 expi j i j i ju O   x β                       4-1 

where i represents observation (corresponding to time) and j represents the member of the 

panel (combinations of road class and vehicle type), 

i ju  is the estimated number of vehicles involved in road accidents occurring on each day i  in 

road and vehicle combination j. and 

i jO  is the offset:
 

 lnij i jO d  

Then     

 expi j i j i ju d  x β                                                                4-2 
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where 
i jd  is the adjusted distance travelled on each day for observation  i  and  road class 

and vehicle class combination  j  taking into account variation in distance travelled by day of 

week and  month. 

Table 4.6: Comparison of BIC with various measures of distance travelled used as offset 

Model  

 

Annual distance travelled Model  

 

Adjusted daily distance travelled 

Log-likelihood BIC Log-likelihood BIC 

A1 -138,734 278,023 A2 -139,249 279,053 

Variables used in Model A1 and A2 

Road class+ Vehicle type+ Time+ Weekday 4+ Season+  Month+ Weekday 4.Season + 

Public holidays+ Christmas holidays+ New-year holidays+ Road class.Vehicle type  + MC-

Rural-Sunday 

 

4.6   MODEL SELECTION PROCESS, GOODNESS OF FIT AND MODEL CHECKS  

 

The model assessment procedure described in section 2.5.4 was applied to distinguish among 

many available models. The results of all the developed models shown in Figure 4.3 were 

compared. The details of all these models and various checks that were used to identify the 

appropriate model are given in sections 4.6.1.1 to 4.6.1.5.  

4.6.1 Model Selection Procedure 

The procedure outlined in section 2.5.4 was used to identify the preferred model out of the 

many that were developed to estimate the number of vehicles involved in road accidents 

occurring on each day. All of the models presented here were developed using GLM with 

negative binomial regression. The preferred model was then taken forward as the basis of 

investigation using the GEE formulation with autoregressive errors.  The following section 

shows the results of this model selection procedure: 

1. In section 4.6.1.1 the BIC values of the models are presented to compare their 

performance.   

2. In section 4.6.1.2 the results of the analysis of temporal effects remaining in the 

models are presented.  
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3. In section 4.6.1.3 variance inflation factors are presented to check for the presence of 

multicollinearity in the data.  

4. In section 4.6.1.4 split sample tests were carried out to validate the performance of the 

preferred model by comparing the coefficients, deviance and log-likelihood values.  

5. In section 4.6.1.5 the presence of serial correlation in the preferred model was tested 

by using Durbin-Watson test.  

4.6.1.1 Negative binomial regression model (Dataset 4) 

A total of 17 models were developed as shown in Figure 4.3 using an incremental approach. 

An appropriate offset variable was used throughout this procedure, with adjustments 

introduced alongside corresponding explanatory variables.  

 

In the first step a generalized linear model with negative binomial distribution was developed 

with only a constant term and using the logarithm value of distance travelled per day as 

offset. In models 2 and 3 road class and vehicle class variables were used individually. The 

reason for adding these terms into the model was to match the number of vehicles involved in 

road accidents on different road types and vehicle classes. In model 4 road class and vehicle 

type were used together. A continuous time variable was added in model 5. In model 6 the 

logarithm of road length in each class was introduced to investigate its effect on the model 

performance. 

 

During the model development stages when weekday 4 was introduced into the linear 

predictor in model 7, the vehicle distance travelled in offset was profiled according to day of 

week by applying the corresponding correction factors obtained from Department for 

Transport to adjust the variation in vehicle distance travelled. Similarly when seasons in 

model 8 were included individually into linear predictor, the vehicle distance travelled 

(offset) was profiled accordingly. From model 9 onwards, the offset was profiled by day of 

week and month (correction factors of day of week and month were used together) when 

weekday 4 and seasons were used together into the linear predictor.  

 

After this, weekday 4 variable representing each of weekday 1 (Monday, Friday), weekday 2 

(Tuesday, Wednesday, Thursday), Saturday, and Sunday was used. Weekday 4 with 4 levels 

is simplified version of day of week with 7 levels. This variable was introduced instead of 
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day of week because it was observed from the graph shown in Figure 4.2 that when day of 

week variable was used along with the offset profiled only by day of week within model 7, 

the estimated coefficients which represent the risk per unit of travel were similar for Tuesday, 

Wednesday and Thursday. Monday and Friday also had almost same estimated coefficients 

as each other whereas those for each of Saturday and Sunday were substantially different. 

Due to this, weekday 4 variable was introduced instead of day of week in model 7. 

 

Different explanatory variables including season, month, interaction of weekday 4 and 

season, Public holidays, Christmas holidays, New-Year holidays, the interaction variable of 

road class and vehicle class, and distance travelled per road length were used in models (8-

16). Analysis of model 15 showed that observations belonging to motorcycle, Sunday and 

rural roads had particularly high deviance residuals. Motorcycling on rural roads on Sunday 

was considered as leisure activity. For this reason a special variable (MC-Rural-Sunday) was 

introduced in model 17 to separate the leisure motorcycling from other kinds of road use. 

 

Figure 4.2: Comparison of the coefficients of day of week with different offset (Dataset 4) 
 

 

 

For the first model, the BIC was found to be 360,422. It was found that road class (model 2) 

performed better than vehicle class (model 3) with BIC better by 12,926. After this, these two 

variables were used together in model 4 which improved the BIC value substantially, 

resulting in an improvement in BIC of 57,751 from model 1. Introduction of the Time 

variable resulted in an improvement of 861 in the BIC value of model 4 for one degree of 

freedom: model 5 had BIC of 301,810. The logarithm values of road lengths were introduced 
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in model 6. However, it was found that this variable did not improve the BIC in comparison 

to model 5, so this variable was not considered further.  

 

In model 7, weekday 4 with 4 levels was introduced in place of the full 7 level day of week as 

explanatory variable and in model 8 season variable was introduced. It was observed that 

model 7 had better BIC values than model 8 suggesting that weekday 4 had performed better 

than season when used individually. In model 9, both of these variables were used together. 

The joint use of weekday 4 and season in model 9 had improved the BIC by 1,096 and 3,522 

in comparison to model 7 and 8 respectively. Due to this model 9 with explanatory variables 

of road class, vehicle class, road class and vehicle class interaction, time, weekday 4 and 

month was taken forward. 

 

Month variable was included in model 10 which improved the BIC by value of 72. Interaction 

of weekday 4 and season, Public holidays, Christmas holidays and New-Year holidays were 

also used in models 11 to 14 which also improved the performance, giving better BIC values. 

In model 15 interaction variables of road class and vehicle class were added, resulting in an 

improvement of 15,241 in BIC with an additional 15 degrees of freedom in comparison to 

model 14.  Model 15 had a better BIC than all previous models with a value of 280,817.  

 

In model 16 a new variable of distance travelled per unit of road length was introduced which 

reflected the usage of road class by vehicle class. This improved the BIC by 744 with one 

extra degree of freedom. This model was not considered further for the reasons that are 

explained in section 4.6.1.3. In model 17, a variable indicating leisure motorcycling was 

introduced. It was observed that the use of this variable was justified as BIC of the model 

improved by a value of 1,764 in comparison to model 15. Overall model 17 had the best 

results of all with an improvement of 81,369 (22 percent) in the value of BIC in comparison 

to model 1. The results of all 17 models are shown in Table 4.7. 
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Figure 4.3: Lattice of model development: Dataset 4 

 

 

 

 

1. Constant 

4.  + Road class + Vehicle class 

3. + Vehicle class 

5.  + Time 

2. + Road class 

6. + ln (Road length) 

7.  + Weekday (4) 8.  + Season 

9.  + Weekday (4) +Season 

10.  + Month 

11.  + Weekday (4).Season 

12.  + Public holidays 

13.  + Christmas holidays 

14.  + New-year holidays 

17.  +MC-Rural-Sunday 16.  +Distance travelled / road length 

15.  +Road class.Vehicle class 
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Table 4.7: Results of all models for each road and vehicle combination (Dataset 4) 
 

Model D.F Scale Likelihood BIC 

1 1 1.271        -180,205  360,422  

2 5 0.602        -165,269  330,590  

3 5 0.840        -171,731  343,516  

4 9 0.247        -151,287  302,671  

5 10 0.240        -150,852  301,810  

6 11 0.240        -150,851  301,820  

7 13 0.207        -149,147  298,432  

8 13 0.233        -150,360  300,858  

9 16 0.200        -148,583  297,336  

10 24 0.199        -148,504  297,264  

11 33 0.198        -148,359  297,070  

12 34 0.192        -147,998  296,360  

13 35 0.191        -147,910  296,194  

14 36 0.190        -147,837  296,058  

15 51 0.110        -140,136 280,817 

16 52 0.105        -139,759 280,073 

17 52 0.104        -139,249 279,053 

BIC represents the Bayesian information criterion 

 

4.6.1.2 Analysing the temporal effects 

 

The developed models as shown in Figure 4.3 were analysed further to investigate any 

remaining substantial systematic temporal effect that was not represented in the model. For 

this purpose time and square of time variables were added to each of the models. The 

resulting improvement in BIC, coefficients and t values of time and square of time, and their 

variance inflation factors (VIF) were examined.  

 

Here models 1-4 does not include time variable due to which time and square of time 

variables were added to those models. From model 5 onwards in which time variable was 

already present only the square of time was added to investigate the presence of substantial 

quadratic temporal effect.   
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Results presented in Appendix Table A4.1 showed that an improvement of over 290 in the 

value of BIC for models 2-4 (more than 800 in each of model 2 and 4) when time and square 

of time
 
variables were added to the models. Comparatively small improvements in BIC from 

model 5 onwards were observed as time variable was already included into the models and 

had therefore represented most of the temporal trend. The t values of time and square of time
 

were found to be significant in most cases, but the estimated value of VIF for each of time 

and square of time was in range of 16 which shows that these variables are correlated and 

their true effects can not be identified from the estimated parameters. 

 

The most detailed model 17 showed that there is only improvement of 20 in the BIC when 

square of time is included. The t value of time and square of time
 
was -5.76 and -5.53 

respectively. However, high value of VIF shows that these variables are correlated with 

others. The small improvement in BIC of the models (5-17) in comparison to earlier models 

shows that any quadratic temporal trend in the data has been adequately represented by other 

variables in the model and only a small improvement in model performance can be achieved 

by allowing for further variation over time according to a quadratic term.  

 

4.6.1.3 Checking for the presence of multicollinearity 

Variance inflation factors as discussed in Chapter 2, section 2.6.2.3, were estimated for each 

of the models (6-17) to check for the presence of collinearity of the variables. The models 

with high VIF are less preferable.  

 

In Table 4.8 mean values for road class and vehicle class are shown as representative of 

individual variables. Model 6 in which logarithm of road length was used, the VIF of road 

class is particularly high as a consequence of the structural collinearity between the road 

length and the road class variables. In models 7 and 8 where weekday 4 and season were used 

individually and in model 9 when these variables are used together had produced acceptable 

values of VIFs. From model 10, it was observed that season had collinearity with month. The 

VIFs of season arose due to the structural association with month so it was not a cause of 

concern. From models 11 to 14 it was found that VIF for the interaction variables of weekday 

and season, Public holidays, Christmas holidays and New-Year holidays were all within the 

acceptable range with values less than 3 in each model. The interaction variables of road class 
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and vehicle class in model 15 also produced high VIFs due to the structural relationship 

among the variables and so was ignored.  

 

It is only when the variable of distance travelled per road length was used in model 16: the 

road class, interaction of road class and vehicle class, and distance travelled per road length 

had high VIF which showed collinearity between these variables. The VIF of the distance 

travelled per road length was 60.46. As of result of this, the true effects of these variables 

cannot be determined from the estimated coefficient, due to this model 16 was not preferred. 

Model 17 which had the better BIC than all other models and the new introduced variable of 

MC-Rural-Sunday (representing leisure motorcycling) was not correlated with any other 

variables hence this was preferred in comparison to other models and taken forward for 

further investigation. Table 4.8 shows the variance inflation factors of models 6-17 for 

Dataset 4. 
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Table 4.8: Variance Inflation Factors for Dataset 4 
 

 

 

 

Model Mean 

R.C  

Mean 

V.C 

Time R.L Mean 

WD_4 

Mean 

Seas-

ons 

Mean 

Month 

 

Mean 

WD_4.

Season 

Holida-

ys 

Christ-

mas 

New 

year 

Mean 

R.C.V.C 

D/L M_R_S 

6 51,299 1.67 1.04 109,315 - - - - - - - - - - 

7 1.67 1.67 1.00 - 1.25 - - - - - - - - - 

8 1.67 1.67 1.02 - - 1.57 - - - - - - - - 

9 1.67 1.67 1.02 - 1.25 1.57 - - - - - - - - 

10 1.67 1.67 1.04 - 1.25 13.95 5.10 - - - - - - - 

11 1.67 1.67 1.04 - 1.33 14.33 5.10 2.12 - - - - - - 

12 1.67 1.67 1.04 - 1.33 6.05 4.69 2.11 1.06 - - - - - 

13 1.67 1.67 1.04 - 1.34 6.40 3.67 2.11 1.27 1.27 - - - - 

14 1.67 1.67 1.04 - 1.34 6.38 3.67 2.19 1.48 1.3 1.21 - - - 

15 7.79 7.79 1.04 - 1.34 6.14 4.74 2.12 1.48 1.3 1.21 17.84 - - 

16 97.53 9.68 1.04 - 1.37 6.09 4.69 2.11 1.48 1.3 1.21 72.28 60.46 - 

17 7.79 7.79 1.04 - 1.39 6.14 4.74 2.12 1.48 1.3 1.21 17.91 - 1.26 

Empty cells shows that these variables were not included in the corresponding models. 

R.C=road class, V.C=vehicle class, R.L=road length, , WD 4= weekday 4, N-Y= New-Year holidays, D/L=distance travelled per road length, 

M_R_S=Motorcycle_Rural_Sunday 



177 

 

4.6.1.4 Split sample tests 

 

After analysing the BIC, temporal effects and VIF values according to the criteria discussed 

in section 2.5.4, model 17 was taken forward for further investigation. Split sample tests were 

carried out on this model by randomly partitioning the whole of dataset 4 into two. Each part 

had 21,912 observations. The following datasets were used to cross-check and validate the 

results of model 17. 

 

Full dataset                    = Data A 

Dataset first portion      = Data B 

Dataset second portion = Data C 

 

The Stata software was used to estimate the model parameters separately for model 17 using 

each of the Datasets B and C in turn. These were then compared with the coefficients of 

model 17 with the full data (Dataset A). After this, coefficients of model with Data B and C 

were interchanged to calculate the values of log-likelihood and deviance. This produced a 

small change in the original log-likelihood and deviance values. The coefficients of Dataset C 

when used with Dataset B produced likelihood of -69,575 which had a difference of only 31 

from the value optimised for that dataset. Because the model parameters are not optimised in 

this case, there are 52 more degrees of freedom in the residuals; this gives rise to a likelihood 

ratio test statistic of 62 on 52 degrees of freedom, which is less than the critical value of 

69.82 at 0.05 significance level. Therefore the null hypothesis cannot be rejected that the 

parameters fitted to Dataset C are as appropriate for Dataset B as those fitted to that dataset. 

In the same way, when coefficients of Dataset B were used with Dataset C that produced a 

difference of 27. As a result of this, the null hypothesis cannot be rejected that parameters 

fitted to Dataset B are as appropriate for Dataset C.  

 

It was observed that results of the partitioned Datasets B and C do not differ widely. The 

most important finding is that when the coefficients of the partitioned data were exchanged it 

did not produce a large change in the results which indicates the consistency of the model. 

Together, these results presented in Table 4.9 show that the parameters of model 17 are 

consistent and produce approximately corresponding likelihood results.  
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Table 4.9: Split sample validation results for Dataset 4 

 

 

Split sample validation 

Data 
 

Model coefficients (k=52) 

 

A B C 

A 

 

A A
x β  

  
n 43,824 

  
Likelihood -139,249 

  
Deviance 50,070 

  

B 

  

B B
x β  B C

x β  

n 

 

21,912 21,912 

Likelihood 

 

-69,544 -69,575 

Deviance 

 

25,072 25,247 

C 

  

C B
x β  C C

x β  

n 

 

21,912 21,912 

Likelihood 

 

-69,708 -69,681 

Deviance 

 

25,141 24,995 

Total 
Likelihood -139,249 -139,252 -139,256 

 Deviance 50,070 25,213 50,242 

      

 

In the second step of the validation process the coefficients of Datasets A, B and C are 

compared. The T test was used to compare the coefficients of Dataset B and C: TBC values 

were estimated by using the formula 2-32. It is found that from the 52 variables used in 

model 17, only 1 changed significantly as its estimated T test value was greater than 1.96. All 

other variable except Bus did not change significantly. It is observed that coefficients of all 

variables and t values of the explanatory variables are consistent and carried the same sign in 

all three models. The comparison of coefficients and t values are shown in Table 4.10 and 

Figure 4.4. The following points were noted:  

 

 The coefficient of road class and vehicle class had almost same coefficient and 

significant t values in all three models except Bus which was found to be non-

significant in model B. Model A had  more significant t values than model B and C. 
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 The coefficient of time was found to be negative and have a similar value of -0.066/ 

year in all three models. This corresponds to an annual reduction of about 6 percent in 

the number of vehicles involved in road accidents that caused personal injury. 

 

 Each coefficient of weekday 4, season, month and interaction of weekday 4 and 

season was significant in each of the three models.  

 

 The coefficient of public holidays, New-Year holidays, Christmas holidays were 

found to be significant in all three models.  

 

 All the interaction variables of road class and vehicle class fitted were found to be 

significant in all three models except motorcycle on rural minor roads. Motorcycle on 

motorway was found to be non significant in model B only. 

 

In summary, the split sample tests results showed good agreement between the parameter 

values estimated for model 17 based on two distinct subsets of the data. This stability 

supports use of the model, and the available parameter estimates from the model. 

 

In this case deviation coding which is combination of (1, 0 and -1) is used to get the 

coefficients for factors that have zero mean for their effects. Due to this, coding structure the 

coefficient of Urban A will be equal to the minus sum of all other road classes. Same is for 

the coefficient of Car, Saturday, Spring, November and other variables. After this, the results 

were verified by comparing the likelihood values and estimated number of vehicles involved 

in road accidents by using simple coding (1 and 0) to further check that deviation coding has 

produced comparable results. These all coefficients estimated by using deviation coding are 

shown in Figure 4.4 and Table 4.10. 
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Table 4.10: Comparison of coefficient and t values of GLM-Model 17-NB for coefficient validation 

 

Variables 

 

Comparison of the coefficients and t values of the Models  

Model A Model B            Model C  T test 

Coefficient tA Coefficient tB Coefficient tc      TBC 
Motorway -1.092 -146.35 -1.093 -103.94 -1.090 -103.00 -0.15 

Rural A -0.288 -40.96 -0.279 -28.15 -0.296 -29.79 1.21 

Rural Minor -0.160 -22.17 -0.157 -15.39 -0.162 -15.95 0.33 

Urban Minor 0.725 104.76 0.724 73.75 0.725 74.37 -0.03 

Pedal cycle 0.890 105.29 0.880 74.37 0.901 74.54 -1.25 

Motorcycle 0.774 97.20 0.764 65.60 0.782 71.64 -1.13 

Bus -0.042 -4.89 -0.020 -1.64 -0.065 -5.28 2.60 

Goods vehicle -0.485 -59.84 -0.479 -41.69 -0.490 -42.87 0.68 

Time -0.00018 -43.32 -0.00018 -30.13 -0.00018 -31.08 0.48 

Weekday 1 0.156 41.18 0.156 29.13 0.155 29.07 0.20 

Weekday 2 0.107 31.29 0.110 22.68 0.104 21.64 0.84 

Sunday  -0.197 -38.87 -0.202 -27.87 -0.192 -27.11 -0.98 

Summer 0.104 11.89 0.098 7.81 0.111 8.97 -0.73 

Autumn -0.099 -5.88 -0.092 -3.84 -0.105 -4.44 0.38 

Winter 0.035 4.21 0.040 3.39 0.030 2.59 0.62 

January -0.082 -7.80 -0.075 -5.04 -0.091 -6.07 0.74 

February -0.081 -7.64 -0.095 -6.28 -0.067 -4.48 -1.32 

March -0.065 -6.27 -0.065 -4.42 -0.065 -4.45 0.003 

May 0.052 5.07 0.058 3.95 0.048 3.29 0.48 

June -0.050 -4.84 -0.038 -2.61 -0.060 -4.14 1.05 

July -0.066 -6.45 -0.058 -4.04 -0.073 -5.09 0.73 

August  -0.073 -7.12 -0.070 -4.81 -0.075 -5.22 0.25 

October  0.163 8.74 0.155 5.84 0.170 6.49 -0.40 

WD1-Summer -0.046 -8.06 -0.053 -6.48 -0.040 -4.95 -1.07 

WD2-Summer -0.043 -8.19 -0.039 -5.26 -0.046 -6.34 0.73 

Sun-Summer 0.072 9.65 0.081 7.65 0.063 6.01 1.21 

WD1-Autumn 0.033 4.55 0.034 3.28 0.031 3.11 0.15 

WD2-Autumn 0.028 4.33 0.026 2.77 0.031 3.38 -0.39 

Sun-Autumn -0.039 -4.16 -0.042 -3.09 -0.036 -2.80 -0.32 

WD1-Winter  0.033 5.18 0.033 3.62 0.033 3.69 -0.06 

WD2-Winter 0.039 6.70 0.037 4.49 0.040 4.86 -0.24 

Sun-Winter -0.061 -7.30 -0.051 -4.28 -0.070 -5.96 1.12 

Holidays -0.153 -19.59 -0.153 -13.92 -0.154 -13.81 0.06 

New-year -0.329 -17.20 -0.324 -11.94 -0.333 -12.39 0.23 

Christmas -0.316 -14.16 -0.349 -10.38 -0.290 -9.67 -1.31 

MC.Mot -0.092 -3.35 -0.045 -1.17 -0.134 -3.49 1.63 

Bus.Mot -1.068 -19.94 -1.029 -14.06 -1.114 -14.17 0.79 

GV.Mot 0.235 15.07 0.225 10.18 0.244 11.09 -0.63 

PC.RA 0.735 35.07 0.727 24.77 0.742 24.82 -0.35 

MC.RA 0.242 15.62 0.228 10.29 0.258 11.90 -0.98 

Bus.RA -0.645 -26.07 -0.662 -19.15 -0.629 -17.73 -0.65 

GV.RA 0.251 17.52 0.248 12.30 0.254 12.43 -0.22 

PC.RM -1.039 -47.99 -1.036 -34.06 -1.042 -33.80 0.15 

MC.RM -0.002 -0.13 0.005 0.19 -0.007 -0.29 0.34 

Bus.RM -0.759 -27.30 -0.772 -19.92 -0.745 -18.68 -0.49 

GV.RM 0.828 52.30 0.802 36.13 0.854 37.78 -1.64 

PC.UM -0.472 -32.22 -0.458 -22.16 -0.485 -23.39 0.93 

MC.UM 0.140 10.02 0.160 7.98 0.122 6.21 1.34 

Bus.UM 0.074 4.91 0.047 2.22 0.100 4.73 -1.76 

GV.RM 1.081 76.19 1.064 53.17 1.097 54.52 -1.14 
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MC-Rural-Sun 0.950 42.35 0.912 27.73 0.978 31.89 -1.47 

Constant -14.347 -490.64 -14.376 -334.42 -14.326 -357.29 -0.86 

Italic shows that these variables are not significant at 5 percent level. 

 

Figure 4.4: Comparison of coefficients of model 17 using GLM- 

Negative Binomial (Dataset 4) 

       

       

        

Month coefficient in the graph represents the combined effect of month and season 
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4.6.1.5 Durbin-Watson test 

Because the dataset consists of a time series cross-sectional data, it is possible that serial 

correlation exists in the data, which could affect model estimates. The Durbin-Watson test 

was therefore carried out to investigate whether autocorrelation is present in the residuals. 

The presence of autocorrelation was tested in the whole dataset and in each combination of 

road class and vehicle class, which were considered to form a panel with five years’ time-

series data from 1
st
 January 2001 to 31

st
 December 2005. The observations for pedal cycles 

on motorway were excluded from the panel, which left 24 members, each with 1,826 

observations. The formula given in equation 2-30 was used to calculate the Durbin-Watson 

Statistic, which was calculated for the whole dataset and for each panel member. The lower dl 

and upper du critical values of 1.57 and 1.78 were obtained from Table 2.2 by using the 

number of observations and number of variables in the regression equation. If the estimated 

value was less than 1.57 the null hypothesis for the absence of autocorrelation was rejected 

and if the estimated value lay between 1.78 and  2.32 the null hypothesis was accepted. All 

other conditions either to accept, reject or inconclusive results are shown in Table 2.2. Based 

on the results of this test the null hypothesis of the absence of autocorrelation among 

residuals for the whole of dataset was rejected as the overall estimated value of Durbin-

Watson statistic was 0.21 which was substantially less than critical value of 1.57. After this, 

the presence of autocorrelation was tested for each member of the panel. The hypothesis of 

the absence of autocorrelation among the residuals for each member of the panel was also 

rejected as the estimated value of Durbin-Watson statistic was less than dl in each case. The 

overall results are shown in Table 4.11 which suggests that autocorrelation exists in each of 

the panel members so that its presence in the residuals should be considered.  
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Table 4.11: Durbin Watson test results for Dataset 4 

 
 

Panel 

member 

Name  

 

DW Panel 

member 

Name  DW 

2 Motor cycle. Motorway 

 

0.02
 

14 Bus. Urban A 0.25 

3 Car. Motorway 

 

0.48 15 Goods vehicle. Urban A 0.18 

4 Bus. Motorway 

 

0.13 16 Pedal cycle. Rural Minor 0.15 

5 Goods vehicles. Motorway 

 

0.14 17 Motorcycle. Rural Minor 0.17 

6 Pedal cycle. Rural A 

 

0.12 18 Car. Rural Minor 0.29 

7 Motorcycle. Rural A 

 

0.19 19 Bus. Rural Minor 0.09 

8 Car. Rural A 

 

0.33 20 Goods vehicle. Rural Minor 0.15 

9 Bus. Rural A 

 

0.08 21 Pedal cycle. Urban Minor 0.23 

10 Goods vehicle. Rural A 

 

0.41 22 Motorcycle. Urban Minor 0.29 

11 Pedal cycle. Urban A 

 

0.21 23 Car. Urban Minor 0.41 

12 Motorcycle. Urban A 

 

0.29 24 Bus. Urban Minor 0.19 

13 Car. Urban A 

 

0.54 25 Goods vehicle. Urban Minor 0.25 

4.6.1.6 Preferred model 

Model 17 was preferred on the basis of the model assessment criteria discussed in section 

2.5.4. The results showed that model 17 had better BIC values than all other models and the 

estimated values of VIF are also in acceptable range.  

 

Other models were not preferred as their BIC was not better than model 17 or they had high 

VIFs. Model 16 was not preferred as its BIC was less preferable than model 17 (by value of 

1,020) and the variables of road class and distance travelled per road length had high VIF, so 

that the true effect of these variables can not be identified. Model 15 was also not preferred as 

it had less preferable BIC value than model 17 (by value of 1,764). The residual analysis of 

model 15 also showed that this model had particularly high residuals for motorcycle, rural 

roads and Sunday. As a result of this the variable representing the motorcycling was 
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introduced in model 17 which improved the BIC and residual analysis in comparison to 

model 15.   

 

The results of analysis of further temporal effects in section 4.6.1.2 also showed that in model 

17 no substantial systematic temporal effect remains which can be accommodated by further 

quadratic temporal terms in the model. Split sample tests also verified that model 17 and its 

parameter estimates are consistent and reliable. Based on joint consideration of these and 

other model assessment criteria as described in section 2.5.4, model 17 was preferred. 

However, it was found that serial correlation existed in the data, so that GEE with AR1 error 

structure for model 17 was adopted to accommodate this. In the following section the 

coefficients of model 17 with GEE-AR1 and GLM with negative binomial are compared.  

4.6.1.6.1 Comparison of coefficients for Dataset 4 (GEE-AR1 and GLM) 

The GEE-AR1 model was used to estimate the coefficient and t values for model 17 by 

considering the data as a combination of panel and time-series data. The panel consisted of all 

combinations of road class and vehicle class. The correlation structure of autoregressive order 

1 (AR1) for residuals was considered. A comparison was carried out between the coefficients 

and t values obtained by GEE-AR1 and GLM with negative binomial regression as shown in 

Table 4.12. Because the coefficients of these two models are estimated using the same data, 

they are not mutually independent so it is not immediately possible to test the differences 

between them. Instead they were compared informally. It is observed that coefficients of all 

variables are consistent and carried the same sign in both models. After comparing the t 

values estimated by these models it was found that generally the t values of the GEE-AR1 

model were smaller than the GLM in most cases which suggests that the significance levels 

of these variables in the GLM model were inflated. However, the t values of weekday 1, 

Sunday, interaction of weekday 1 and summer, and interaction of weekday 1 and Autumn 

were found to be slightly higher in GEE-AR1 as compared to the GLM model. The 

coefficient of MC.RM (motor cycle on rural minor roads) was found to be non-significant in 

each of the models. 

 

The coefficients of the variables presented here are arranged to have zero sum by deviation 

coding in STATA. Due to this, coding structure the coefficient of Car will be equal to the 

minus sum of all other vehicle classes. Same is for the coefficient of Urban A, Saturday, 
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Spring, November and other variables. In general it is found that Urban A roads had the 

greatest coefficient which shows higher risk per unit of distance travelled on these roads 

whereas motorways had the lowest coefficient indicating the least risk per unit of distance 

travelled. Pedal cycle and motorcycle have greatest risk per unit of travel in comparison to 

other vehicle types whereas Cars have the least risk. Weekday1 (Monday, Friday) had the 

greatest risk per unit of travel in comparison to weekday 2 (Tuesday, Wednesday, Friday) and 

each of Saturday and Sunday. Sunday had the least risk of vehicle involvement in road 

accident per unit of distance travel. Among the months of year September and November 

(combined effect of month and season) had the highest risk per unit of distance travelled 

whereas March had the least risk. The coefficients of Public holidays, Christmas and New-

year holiday had negative sign which shows that fewer vehicles are involved in road 

accidents on these days, though it is not possible to assess risk on these days as no corrections 

are available for distance travelled. 

  

The interaction coefficients which showed the additional effect for particular road and vehicle 

combinations highlighted that car on motorway, pedal cycles on  A roads, bus on urban A 

roads, car on rural minor, goods vehicles on minor roads have higher risk than is suggested 

by the main effects. Similarly the interaction coefficients of Saturday and Sunday in spring 

and summer, weekday 1 and weekday 2 in autumn and winter had greater effects in addition 

to their main effects. The coefficient of leisure motorcycling (MC-Rural-Sunday) was found 

to be significantly positive. Because no specific correction could be made in the offset to 

distance travelled for this case, this coefficient can be taken to indicate a greater frequency of 

road accident involvement. However, in the absence of a suitable correction, no statement can 

be made about difference in risk per unit distance travelled. 

 

In general the t values of coefficients in the GEE-AR1 and GLM with negative binomial were 

not same. This change suggests that if the presence of serial correlation in data is neglected 

then it may lead to incorrect inferences and could result in placing undue emphasis on those 

variables which are actually less significant. The comparison of the coefficients and their t 

values estimated using GEE-AR1 and GLM is given in Table 4.12 and Figure 4.5. 
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Table 4.12: Comparison of coefficients and t values of GEE-AR1 and GLM Model 17-NB 

for coefficient validation (Dataset 4) 

 

Variables 

Comparison of models  

Model 17-GEE_NB Model 17-GLM-NB  

Coefficient tGEE  Coefficient tGLM   

Motorway -1.092 -128.97 -1.092 -146.35  
Rural A -0.288 -35.94 -0.288 -40.96  
Rural Minor -0.160 -19.48 -0.160 -22.17  
Urban Minor 0.725 91.96 0.725 104.76  
Pedal cycle 0.891 92.13 0.890 105.29  
Motorcycle 0.773 84.99 0.774 97.20  
Bus -0.042 -4.21 -0.042 -4.89  
Goods vehicle -0.484 -52.17 -0.485 -59.84  
Time 0.000 -38.14 -0.00018 -43.32  
Weekday 1 0.155 43.68 0.156 41.18  
Weekday 2 0.105 29.02 0.107 31.29  
Sunday  -0.197 -40.10 -0.197 -38.87  
Summer 0.106 10.70 0.104 11.89  
Autumn -0.095 -4.99 -0.099 -5.88  
Winter 0.030 3.20 0.035 4.21  
January -0.079 -6.58 -0.082 -7.80  
February -0.076 -6.23 -0.081 -7.64  
March -0.063 -5.39 -0.065 -6.27  
May 0.053 4.54 0.052 5.07  
June -0.051 -4.41 -0.050 -4.84  
July -0.066 -5.74 -0.066 -6.45  
August  -0.074 -6.42 -0.073 -7.12  
October  0.160 7.58 0.163 8.74  
WD1-Summer -0.047 -8.68 -0.046 -8.06  
WD2-Summer -0.043 -7.79 -0.043 -8.19  
Sun-Summer 0.074 10.35 0.072 9.65  
WD1-Autumn 0.033 4.85 0.033 4.55  
WD2-Autumn 0.028 4.02 0.028 4.33  
Sun-Autumn -0.039 -4.30 -0.039 -4.16  
WD1-Winter  0.034 5.67 0.033 5.18  
WD2-Winter 0.039 6.24 0.039 6.70  
Sun-Winter -0.066 -8.03 -0.061 -7.30  
Holidays -0.146 -18.56 -0.153 -19.59  
New-year -0.300 -14.80 -0.329 -17.20  
Christmas -0.276 -12.16 -0.316 -14.16  
MC.Mot -0.093 -3.00 -0.092 -3.35  
Bus.Mot -1.075 -17.57 -1.068 -19.94  
GV.Mot 0.238 13.36 0.235 15.07  
PC.RA 0.730 30.65 0.735 35.07  
MC.RA 0.248 14.08 0.242 15.62  
Bus.RA -0.644 -22.85 -0.645 -26.07  
GV.RA 0.252 15.39 0.251 17.52  
PC.RM -1.047 -42.42 -1.039 -47.99  
MC.RM 0.004 0.20 -0.002 -0.13  
Bus.RM -0.755 -23.90 -0.759 -27.30  
GV.RM 0.830 45.87 0.828 52.30  
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(It is note that deviation coding is used in this case so the coefficient of the missing category (Example: Car) 

will be equal minus the sum of other vehicles (Pedal cycle, Motorcycle, Bus and Goods vehicle) 

 

Figure 4.5: Comparison of coefficients of model 17 using GEE-AR1 and GLM 

Negative Binomial (Dataset 4) 

         

          

          

Month coefficient in the graph shows the combined effect of month and season. 

PC.UM -0.473 -28.29 -0.472 -32.22  
MC.UM 0.140 8.74 0.140 10.02  
Bus.UM 0.075 4.38 0.074 4.91  
GV.RM 1.080 66.71 1.081 76.19  
MC-Rural-Sun 0.899 41.07 0.950 42.35  
Constant -14.270 -469.19 -14.347 -490.64  
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4.6.1.6.2 Comparison of the number of vehicles involved in road accidents observed and 

estimated, Standardised deviance residuals 

 

Model 17 was preferred over all others based on a joint consideration of BIC results, residuals 

analysis and estimated values of variance inflation factors. It was also found that serial 

correlation existed in the data due to which the GEE-AR1 was preferred over GLM.  

 

The graph in Figure 4.6 shows that model has generally represented the data well as the line 

of equality passes through the centre. The cumulative proportion graph shows no noticeable 

difference among the observed and estimated values.  

 

The standardized deviance residual graph also shows that the highest SDR observation (10.6) 

was for cars on motorways which occurred on 26
th

 December 2004 which was Sunday. About 

116 cars were found to be involved in road accidents on that day whereas the model 

estimated them as only 11. The estimated value for this observation was low because it was 

coded as Sunday, public holiday and Christmas holiday. After observing the data it was also 

found that the 27
th

 and 28
th

 December were also declared Public holidays (Monday and 

Tuesday) and, due to this long weekend travel, there might have been an increase in the 

amount of travel and subsequently an increase in observed road accidents. Upon further 

investigation it was observed that it snowed in many cities of Great Britain on 26
th

 December 

(BBC, 2010).  

 

Another high SDR observation was for pedal cyclist on rural minor roads on 17
th

 June 2001 

which was also Sunday. About 17 pedal cyclists were found to be involved in road accidents 

on rural minor roads but the model estimated only 1. It is generally observed that motorcycles 

on rural roads had a higher standardized deviance than all other groups. Out of the 100 

observations with the highest positive SDR, 29 belonged to motorcycles on rural A roads 

while a further 17 belonged to motorcycles on rural minor roads. It is also found that most of 

these observations (42) related to Sundays. This suggests that the model is not able fully to 

capture this effect for motorcycles involved in a higher number of road accidents on rural 

roads especially on Sundays even after including the variable for the leisure motorcycling in 

model 17. Almost all the standardized deviance residual lies between the values of +5 and -5. 

 



189 

 

Figure 4.6: Number of vehicles involved in road accidents on each day (observed and 

estimated), Standardised deviance residual graphs (Dataset 4) 
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4.6.1.6.3 Final model checking 

 

In this section, we investigate performance of model 17 fitted by GEE with negative binomial 

and AR1 error structure. To do this, some graphs are shown in Figure 4.7 to identify whether 

any problems exist in the model. The first graph shows the deviance residuals plotted against 

fitted values. It is observed that the plot of deviance residuals against fitted values appears to 

show some trend of falling variation with increase in estimated value. It was however found 

that about 67 percent of observations have estimated value (number of vehicles involved in 

road accidents by road type and vehicle class on each day) of less than 25 and that there is 

substantial variation in the density of observations over the range of fitted values. In 

particular, it was observed that the greatest residuals occur when the estimated number of 

vehicles involved in road accidents is under 10. The nature and strength of this variation in 

the deviance residuals was investigated by plotting in figure 4.8 averages of the absolute 

values of these residuals in bands of 50 of the estimated values. This graph reveals little trend 

in magnitude of deviance residuals though does suggest some positive curvature.  

 

After this the Park and Glejser tests were used to investigate the presence of 

heteroscedasticity in the residuals. The test results shown in Appendix A4.2 confirmed the 

presence of heteroscedasticity. After this White’s robust procedure was used to adjust the 

standard errors. We note that the hierarchical generalized linear model (HGLM) introduced 

and used in Chapter 5 allows to model variations in dispersion.   

 

In table 4.13 the results of model 17 using GEE-AR1 are compared after adjusting the 

standard errors by using the White’s procedure due to the presence of heteroscedasticity. The 

results show that t values of all the variables have decreased except for road class, vehicle 

class and their interaction. The coefficient of Winter turned to be non-significant after 

implementing the corrections to standard error whereas the coefficient of motorcycle on rural 

roads remained non significant in each case. This suggests that if the presence of 

heteroscedasticity is not accounted the coefficients will not be efficient but they will still be 

unbiased and consistent. Heteroscedasticity-corrected standard errors obtained by using the 

White’s procedure are shown in Table 4.13. 

 

In the second graph of figure 4.7, a normal quantile plot of standardized deviance residuals is 

shown. The quantile plot appears to follow a reference line except in the upper right portion. 
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This verifies the assumptions of normality of the residuals for most of the range of values. 

Some deviations are observed especially at the high end which suggests the data distribution 

has a long tail at that end.  

 

Cook’s distance plot shows the observations that had greater influence on the results. The 

highest Cook’s distance was observed for 26
th

 December 2004 for cars on motorways. This 

was a Sunday and the number of cars involved in road accidents was 116 against an estimated 

value of only 10. However, the value of Cook’s distance was less than 0.1, showing that this 

observation did not have an undue effect on model estimates. 

 

Figure 4.7: Diagnostic plots for model 17 (Dataset 4) 
 

  

 

.  
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Table 4.13: Comparison of coefficient and t values of GEE-AR1 Model 17-NB after using 

correction for the presence of heteroscedasticity 

Variables 

Comparison of models  

GEE-AR1 Model 17 GEE-AR1 Model 17-Robust  

Coefficient tGEE  Coefficient TGEE  

Motorway -1.092 -128.97 -1.092 -780.04  
Rural A -0.288 -35.94 -0.288 -987.06  
Rural Minor -0.160 -19.48 -0.160 -401.18  
Urban Minor 0.725 91.96 0.725 940.35  
Pedal cycle 0.891 92.13 0.891 679.04  
Motorcycle 0.773 84.99 0.773 6524.29  
Bus -0.042 -4.21 -0.042 -35.51  
Goods vehicle -0.484 -52.17 -0.484 -3394.11  
Time -0.00018 -38.14 -0.00018 -4.47  
Weekday 1 0.155 43.68 0.155 3.94  
Weekday 2 0.105 29.02 0.105 2.24  
Sunday  -0.197 -40.10 -0.197 -2.98  
Summer 0.106 10.70 0.106 3.17  
Autumn -0.095 -4.99 -0.095 -5.14  
Winter 0.030 3.20 0.030 0.67  
January -0.079 -6.58 -0.079 -3.95  
February -0.076 -6.23 -0.076 -3.40  
March -0.063 -5.39 -0.063 -2.76  
May 0.053 4.54 0.053 3.63  
June -0.051 -4.41 -0.051 -3.74  
July -0.066 -5.74 -0.066 -5.09  
August  -0.074 -6.42 -0.074 -5.89  
October  0.160 7.58 0.160 5.76  
WD1-Summer -0.047 -8.68 -0.047 -3.60  
WD2-Summer -0.043 -7.79 -0.043 -3.59  
Sun-Summer 0.074 10.35 0.074 3.76  
WD1-Autumn 0.033 4.85 0.033 3.90  
WD2-Autumn 0.028 4.02 0.028 3.26  
Sun-Autumn -0.039 -4.30 -0.039 -2.65  
WD1-Winter  0.034 5.67 0.034 2.78  
WD2-Winter 0.039 6.24 0.039 3.02  
Sun-Winter -0.066 -8.03 -0.066 -3.41  
Holidays -0.146 -18.56 -0.146 -3.78  
New-year -0.300 -14.80 -0.300 -4.62  
Christmas -0.276 -12.16 -0.276 -4.82  
MC.Mot -0.093 -3.00 -0.093 -59.63  
Bus.Mot -1.075 -17.57 -1.075 -501.54  
GV.Mot 0.238 13.36 0.238 96.31  
PC.RA 0.730 30.65 0.730 195.00  
MC.RA 0.248 14.08 0.248 26.85  
Bus.RA -0.644 -22.85 -0.644 -441.58  
GV.RA 0.252 15.39 0.252 95.69  
PC.RM -1.047 -42.42 -1.047 -588.94  
MC.RM 0.004 0.20 0.004 0.41  
Bus.RM -0.755 -23.90 -0.755 -636.96  
GV.RM 0.830 45.87 0.830 591.26  
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Figure 4.8: Average of the absolute value of deviance residual and estimated values in bands 

(Dataset 4) 
 

 

 
 

 

4.7 ESTIMATION OF RISK PER VEHICLE KILOMETRE OF TRAVEL  

 

The risk of vehicle involvement in road accident per vehicle kilometre of travel is estimated 

by using the procedure shown below. The numbers of vehicles involved in road accidents 

estimated by model 17 and distance travelled adjusted by day of week and month corrections 

was used to estimate the risk per billion kilometres of travel for different road and vehicle 

combinations.  

 

4.7.1 Estimating the number of vehicles involved in road accidents 

 

In the first step, the average number of vehicles involved in road accidents on each day for 

the 24 combinations of road class and vehicle type were estimated from the observed and 

estimated (model 17) data. The results in Table 4.14 shows that the estimated values for the 

average number of vehicles involved in road accidents on typical day for each road and 

vehicle type closely matched with the observed numbers of vehicles.  

PC.UM -0.473 -28.29 -0.473 -118.13  
MC.UM 0.140 8.74 0.140 47.16  
Bus.UM 0.075 4.38 0.075 30.10  
GV.RM 1.080 66.71 1.080 430.66  
MC-Rural-Sunday 0.899 41.07 0.899 9.67  
Constant -14.270 -469.19 -14.270 -108.05  
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It is found from the estimated values that on urban A roads an average of 260 cars were 

involved in road accidents per day whereas on motorways cars were involved in fewer road 

accidents than on all other roads with an average of 41 accidents per day. On urban minor 

roads an average of 340 cars were involved in road accidents. Motorcycles were involved in  

road accidents on each day equally on urban roads with average of 29 on urban minor and 26 

on urban A roads. Comparatively, very few motorcycles were involved in road accidents on 

motorways. Pedal cycles were involved in fewer road accidents on rural roads in comparison 

to urban roads.  

 

The highest incidence of pedal cycles in road accidents was observed on urban minor roads 

with an average of 29 road accidents whereas an average of fewer than three pedal cycles 

were involved in road accidents on rural roads. Buses were also involved on average in very 

few road accidents on motorways and rural roads. The results show that buses will be 

involved in one accident for every six days on motorways. After cars, motorcycles are hugely 

involved in road accidents on urban A roads.  

  

It was found that on each of the urban A and urban minor roads an average of more than 20 

goods vehicles per day were involved in road accidents compared with only 7 on rural minor 

roads, and 10 on motorways. The detailed results of the estimated number of vehicles 

involved in road accidents for all road and vehicle combinations is shown in Table 4.14 

which shows that on average 436 vehicles will be involved in road accidents on urban minor 

roads, of which 77 percent will be cars. In the same way an average of 49 pedal cycles and 72 

motorcycles were involved in road accidents on all roads with the majority of these occur on 

urban roads. 
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Table 4.14: Estimated risk per billion vehicle kilometres of travel and number of vehicles 

involved in road accidents per day estimated by model 17 GEE-AR1 (NB) 
 

 

Vehicle 

class 

Road classification 

Motorway A Roads 

 

Minor Overall 

risk by 

vehicle 

type 
Rural  

 

Urban Rural Urban 

Pedal cycle 

Risk - 4,621 10,760 864 3,771 4,180 

Observed - 2 16 2 28 48 

Estimated  - (2) (16) (2) (29) (49) 

Motorcycle  

Risk 797 2,830 9,517 2,509 6,133 5,026 

Observed 1 10 27 6 28 72 

Estimated  (1) (10)  (26) (6) (29) (72) 

Car  

Risk 211 471 1,414 532 1,303 793 

Observed 40 136 252 70 326 824 

Estimated  (41) (141)  (260) (72) (340) 854 

Bus  

Risk 133 454  4,246 458 2,547 2,070 

Observed 0.18 1 14 1 13 29 

Estimated  (0.18) (1) (14) (1) (13) (29) 

Goods vehicle  

Risk 316 714 2,717 1,436 4,527 1,063 

Observed 10 20 22 7 27 84 

Estimated (10) (20) (22) (7) (25) (84) 

Overall risk by road class 

Risk 228 521 1,696 597 1,534  

Observed 52 169 331 85 422  

Estimated (52) (174) (338) (86) (436)  

           - Risk represents the risk of road accident per billion vehicle kilometres of travel.  
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4.7.2 Estimation of risk of an accident per billion vehicle kilometres of travel 

 

After estimating the number of vehicles involved in road accidents for each road class by 

vehicle type on each day, the risk per unit of travel was estimated by dividing by the 

respective traffic flow. The detailed results of the estimated risk are shown in Table 4.14.  

 

This shows that although cars were involved in huge numbers of road accidents, the risk of 

involvement per billion vehicle kilometres of travel was lowest for cars on all roads except 

for motorways and rural roads where buses are safer. These results suggest that pedal cycles 

were at higher risk on A roads whereas on minor roads the risk for motorcycles was higher 

than all other modes. The risk for pedal cycles on A roads is alarming especially on urban A 

roads with 10,760 pedal cycles involved in road accidents per billion vehicle kilometres of 

travel. Motorcycles, despite having higher involvement in road accidents on urban minor 

roads than urban A roads had a lower risk per unit of travel on urban minor roads. 

 

Cars were found to have lower risk on motorways than other kinds of road. It was also found 

that although the number of buses involved in road accidents was almost same for urban A 

and urban minor roads the risk of a bus being involved in road accident on urban A roads was 

66 percent higher than on urban minor roads. Goods vehicles were also at more risk on urban 

minor roads with 4,527 road accidents per billion vehicle kilometres of travel. On A roads, 

pedal cycles and motorcycles had a higher risk than any other mode on the same kind of road. 

 

The risk of involvement in road accidents for different vehicle classes was compared with 

others, the details of which are given as follows: 

4.7.2.1 Comparison of the risk per billion vehicle kilometres for pedal cycles with other 

vehicle classes   

Table 4.15 shows the comparison of the risk between vehicle classes. It shows that: 

 On rural and urban A roads pedal cycles had at least a seven times higher risk of 

involvement in a road accident than a car. 

 Motorcycles had less risk on minor roads than on major roads. They had about three 

times higher risk than pedal cycles on rural minor roads. 

 On rural A roads pedal cycles had at least ten times higher risk of a road accident than 

buses. 
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 Pedal cycles were at six times more risk than goods vehicles on rural A roads whereas 

on minor roads goods vehicles were at a higher risk than pedal cycles.  

 

4.7.2.2 Comparison of the risk per billion vehicle kilometres of motorcycles with other 

vehicle classes   

 Motorcycles had a low risk per unit of travel on A roads in comparison to pedal cycles 

whereas they had a higher risk than pedal cycles on minor roads. 

 Motorcycles had at least six times higher risk than cars on A roads whereas on minor 

roads the risk was four times higher risk than for cars. 

 On motorways and rural roads, motorcycles had around six times higher risk than 

buses. On urban roads the risk was about two times greater than for buses. 

 On A roads motorcycles had about four times higher risk than goods vehicles. 

 

4.7.2.3 Comparison of the risk per billion vehicle kilometres of cars with other vehicle   

classes 

 Generally cars were safer on all roads than all other modes of transport except buses 

on motorways and rural roads. On motorways the risk of car being involved in 

accidents was 60 percent more than for a bus. 

 On rural A roads cars had about the same risk of road accident than bus.  

 

4.7.2.4 Comparison of the risk per billion vehicle kilometres of buses with other vehicle 

classes  

 Buses had a lower risk than most other vehicles on all types of road. 

 Buses had about 50 percent more risk than goods vehicles on urban A roads. 

 On urban roads buses had about two times higher risk than cars. 
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Table 4.15: Comparison of risk per billion vehicle kilometres 

between vehicle types 

 
Road class PC MC Car Bus 

 

GV 

Motorway 

R
ef

er
en

ce
 

- - - - 

Rural A 1.63 9.81 10.18 6.47 

Urban A 1.13 7.61 2.53 3.96 

Rural Minor 0.34 1.62 1.89 0.60 

Urban Minor 0.61 2.89 1.48 0.83 

 PC MC Car Bus 

 

GV 

Motorway - 

R
ef

er
en

ce
 

3.72 5.99 2.52 

Rural A 0.61 6.01 6.23 3.96 

Urban A 0.88 6.73 2.24 3.50 

Rural Minor 2.90 4.72 5.48 1.75 

Urban Minor 1.63 4.71 2.41 1.35 

Road class PC MC Car Bus 

 

GV 

Motorway - 0.26 
R

ef
er

en
ce

 
1.59 0.67 

Rural A 0.10 0.17 1.04 0.66 

Urban A 0.13 0.15 0.33 0.52 

Rural Minor 0.62 0.21 1.16 0.37 

Urban Minor 0.35 0.21 0.51 0.29 

 PC MC Car Bus 

 

GV 

Motorway - 0.17 0.63 

R
ef

er
en

ce
 

0.42 

Rural A 0.10 0.16 0.96 0.64 

Urban A 0.39 0.45 3.00 1.56 

Rural Minor 0.53 0.18 0.86 0.32 

Urban Minor 0.68 0.42 1.95 0.56 

 PC MC Car Bus 

 

GV 

Motorway - 0.40 1.51 2.38 

R
ef

er
en

ce
 

Rural A 0.15 0.25 1.52 1.57 

Urban A 0.25 0.29 1.92 0.64 

Rural Minor 1.66 0.57 2.70 3.14 

Urban Minor 1.20 0.74 3.47 1.78 

          

4.7.2.5 Comparison of the risk per billion vehicle kilometres of goods vehicles with other 

vehicle classes 

 Goods vehicles had a lower risk than pedal cycles on A roads but a greater risk on 

minor roads. 
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 Goods vehicles had less chance of being involved in accidents than motorcycles on all 

types of road. 

 On each type of road, goods vehicles had a higher risk than cars especially on urban 

minor roads where they had a three times higher risk than cars. 

 Goods vehicles had a lower risk than buses on urban A roads but had a higher risk 

than buses on all other roads especially on rural minor roads where they had a three 

times higher risk than buses.  

 

4.8   CONCLUSION 

 

The purpose of this chapter was to use the road accident dataset in a better way by combining 

the accidents and vehicle sections of the STATS 19 data. A further objective was to formulate 

a model from the national road accident dataset to estimate the number of vehicles involved 

in road accidents occurring on each day by type of road and by vehicle class, which can be 

used by planning and road safety organizations for improving road safety. These results will 

also support advice to travellers and can be used for education and increasing awareness 

about the groups that are at most risk per unit of travel.  

 

It was found that in this case serial correlation exists in the data used in modelling, arising 

from its nature as a time-series. In order to draw inferences from such models for policy or 

road safety improvement purposes a suitable method should be applied which can account for 

the serial correlation, otherwise it may lead to incorrect inferences. In this case better 

performance was achieved by GEE-AR1 than the GLM for the estimated number of vehicles 

involved in road accidents. Difference, especially in levels of significance was found between 

GLM and the preferred GEE-AR1 model.  

 

Several effects have been identified and discussed that would weaken a statistical model of 

numbers of vehicles involved in road accidents based on an independent Poisson error 

structure. These include over-dispersion, serial correlation, day to day variation in distance 

travelled and correlation between the numbers of vehicles in different classes involved on 

each day. Of these, over-dispersion was accommodated using the negative binomial error 

structure, serial correlation was addressed using the GEE model formulation with AR1 error 

structure and day to day variation in distance travelled was incorporated by using the 

corresponding correction factors to the offset. However, lack of allowance for the correlation 
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among members of the panel remains a limitation to the model that will lead to 

overestimation of the significance level of estimated parameters. Due to this, the coefficients 

that are marginally significant are treated with caution. 

 

In this case the distance travelled each day was adjusted to account for variation by day of 

week and month of the year. This was preferred for use as offset in comparison to use of 

annual average distance travelled because the associated model coefficients can be 

interpreted directly in terms of risk per unit of travel. From the modelling results it is also 

observed that use of road class, vehicle type, and the interaction variable of road class with 

vehicle type greatly improved the performance of the model.  

 

From the estimated results it is found that each of Monday and Friday has greater risk of 

vehicle involvement in road accident per unit of distance travelled than other days of the 

week. Weekends days in particular are associated with lower risk. November and September 

had greater risk whereas March had lowest risk among the month of year. Time variable 

showed that the risk of vehicle involvement in road accident per unit of travel is decreasing 

annually by about 6 percent. Fewer vehicles are involved in road accidents on Public 

holidays, Christmas and New-year holiday, though in the absence of appropriate adjustments 

to distance travelled on these days, nothing can be said about risk.  

 

Urban roads had the greater risk of road accident than other roads. Motorways were found to 

have less risk per unit of distance travelled for all user classes. It is concluded that cars are 

involved in more road accidents than any other vehicle class. Despite their huge involvement 

in accidents the risk per billion vehicle kilometres for cars is low on all road classes in 

comparison to other vehicles classes except buses on motorways and rural roads. Motorcycles 

are at more risk than any other vehicle class on motorways and on minor roads, whereas 

pedal cycles are at more risk than any other vehicle class on A roads, whether urban or rural. 

It is also found that leisure motorcycling is associated with greater frequency of involvement 

in road accidents than other forms of motorcycle usage, though it was not possible to assess 

risk as no corrections are available for distance travelled. It is also concluded that cars, 

motorcycles, pedal cycles, and buses are at a higher risk of accident involvement on urban A 

roads in comparison to all other roads whereas goods vehicles are at most risk on urban minor 

roads.  
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5. MODELLING THE NUMBER OF CASUALTIES IN ROAD 

ACCIDENTS 

5.1   INTRODUCTION 

 

It is well known that age group and gender have a high relevance to road safety. In Great 

Britain young drivers aged between 17 and 24 years old are considered to be a high risk 

group in terms of road casualties. Although this group represents only 8 percent of driving 

licence holders nationally, they contribute to 20 percent of all driver casualties. On the other 

hand older motorists bring a wealth of experience, confidence, and tolerance to their driving 

which contributes to making them safer per licence holder on the road than other age groups. 

However with increasing age, ability to interpret the movements and intentions of other 

drivers and reaction time to different situations gradually changes. The physical body 

strength also changes and older age people are less likely to survive the injuries which a 

young person can survive (NCC Road safety, 2006).  

 

The risk per unit of travel of being involved in road accident may vary with age and gender. 

According to the Department for Transport (2004a, 2004b) within adults, the risk of being 

involved in pedestrian accident varies with age and gender, with older adults at greatest risk 

of being seriously injured or killed per distance walked and men at all ages being at greater 

risk of serious injury than women. The UK Government set targets to reduce the number of 

casualties to a certain level by 2010 in comparison to base 1994-1998 average. The DfT 

(2011) revealed that all the targets have been achieved. The key results produced by the DfT 

(2011) are: 

 

 25,845 pedestrian casualties occurred in 2010 which was 44 percent lower than in 

1994-1998 average. 

 17,185 pedal cyclist casualties occurred in 2010 which was 30 percent lower than 

compared to 1994-1998 average. 

 18,686 motorcycle user casualties occurred in 2010 which was 22 percent less than 

1994-1998 average. 

 133,205 car user casualties occurred in 2010 which was 34 percent lower than 1994-

1998 average. 
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 208,648 road casualties occurred in 2010 which was 35 percent lower than 1994-1998 

average. 

 

The aim of this research is to explore further possibilities for the use of national accident data 

in conjunction to other available data. In previous chapters information from the accident and 

vehicle sections of STATS 19 data was used. In this section, combined information from the 

accident and casualty sections of STATS 19 data was used. As the information about the age 

group and gender only appears in the casualty section of the STATS 19 data, the accident and 

casualty sections of STATS 19 data were combined by extensively using MS Access and 

SPSS. This new combined dataset will be used to link the two separate sections of the 

STATS 19 data. The other datasets which were combined with the accident and casualty data 

include National Travel Survey data (NTS) obtained from DfT and population datasets 

produced by Office for National Statistics, United Kingdom.  

 

This research has following objectives; 

 

 investigate the relationships in the casualty data; 

 investigate casualty data using the Hierarchical Generalized Linear Model (HGLM) to 

see what additional structure in the data is revealed; 

 quantify any bias in estimates of coefficients estimated using simpler models such as 

GEE; and 

 estimate the casualty rate of involvement in a road accident per person-years for 

different age and gender groups by vehicle class. 

 

The HGLM is an extension of Generalized Linear Model (GLM) which allows for the fixed 

effects, as does the GLM, but in addition allows for random effects and a structured variance 

model for dispersion. The advantage of HGLM that it can account for variability within and 

between clusters using both random effects and dispersion modelling provided a substantial 

advantage over GLM and GEE. However, HGLM cannot accommodate time series data due 

to which the significance levels of some of the variables may change significantly.  

 

This study will identify a suitable technique for modelling the number of casualties occurring 

on each day from the national accident dataset by highlighting the additional modelling 
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benefits of using HGLM. The number of casualties, disaggregated by day of week, month, 

year, age group, gender, and mode combination for Great Britain from 2001 to 2005 

extracted from the STATS 19 national accident dataset were modelled and compared with the 

casualties which actually occurred. This comparison will enable researchers working in the 

field of road safety to understand the relationship between the number of casualties and other 

variables particularly age group, gender and mode. From the estimated number of casualties 

the rate of being a road casualty per head of population can also be estimated. Models were 

initially developed by using HGLM with a Poisson-gamma distribution and log link. For the 

selected model the Generalized Estimation Equation (GEE-AR1 error structure) with 

negative binomial was used and results are compared with HGLM. The estimated rate values 

per head of population for all age groups, gender, and mode combinations can be utilised to 

create awareness for any target group. The identification of the target group will help various 

planning agencies to have a clear picture of the number of casualties and rate per head of 

population by age group, gender, and mode which may enable the respective authorities to 

focus on a particular group and plan road safety schemes for targeted groups. 

 

This chapter is organized as follows. Section 5.2 reviews the literature about the hierarchical 

generalized linear model and previous research about road accidents by age, gender and mode 

of travel. Section 5.3 briefly describes the data used for this study. Section 5.4 briefly 

analyses the data. Section 5.5 presents the process of model development and the basic 

structure of the model. Section 5.6 shows the model selection process, results of developed 

models, goodness of fit and model checks. Finally some concluding remarks are given in 

Section 5.7. 

 

5.2   LITERATURE REVIEW 

 

In the present study the Hierarchical Generalized Linear Model (HGLM) with Poisson-

gamma distribution and log link, and the Generalized Estimation Equation (GEE) having 

AR1 error structure with negative binomial were used. The description of the GEE is given in 

Chapter 2 whist the HGLM is described below: 
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5.2.1: Fixed and random effects  

There are various applications where it is believed that responses depend on some factors, but 

not all of which are known or measurable. Such unknown variables can be modelled as 

random effects. In case of repeated measurements for a subject, a random effect is an 

unobserved variable for each subject that is responsible for creating the dependence between 

repeated measures. Random effects may be regarded as a sample from a suitably defined 

population (Grafen and Hails, 2002; Lee et al, 2006). This differs from fixed effects, whose 

levels are of interest in their own right. Desired inference and repetition are the two properties 

which are most used to distinguish fixed from random effects. In the case  

 

Y = fixed effects + error                  5-1 

 

the variance in Y is the sum of variance partitioned between that which is explained by the 

fixed effects and that which remains unexplained. On the right hand side of equation 5.1, only 

the error term has random variation which means it is the only term which will vary in 

repetitions of the study. The error term also determines the independence of each observation. 

The main assumption of the Generalized Linear Model (GLM) is that error terms are 

mutually independent. However in the presence of random effects the relevant equation is: 

 

Y = fixed effects + random effects + error                       5-2 

 

In this equation the random effects term also has random variation. If the random effects term 

is unimportant, then estimated parameters of this factor will be close to zero and this term 

vanishes from equation 5-2. However, if the random effect term is important it will lead to 

the conclusion that individuals or subjects are different from each other. In this case, variation 

is divided into parts by separating the variation due to random effects and that due to the error 

term. According to Lee et al (2006) fixed effects describe systematic mean patterns such as 

trend, while random effects may describe either the correlation patterns between repeated 

measures within subjects or heterogeneities between subjects or both. In estimating a random 

effect, the observed deviations are characterised by their variance. 
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5.2.2 Hierarchical generalized linear model (HGLM) 

The HGLM is the extension of the GLM and the Generalized Linear Mixed Model (GLMM). 

Pierce and Sands (1975) introduced the GLMM where the linear predictor of the GLM is 

allowed to have, in addition to usual fixed effects, one or more random components with 

assumed normal distributions. Lee and Nelder (1996) extended GLMM to HGLM, in which 

the distribution of random components is extended to conjugates of arbitrary distributions 

from the exponential family. The HGLM approach provides a unified modelling framework 

for estimating cluster-specific quantities of interest, covariate effects, and components of 

variance. These models make precise estimates of case-specific and cluster-specific 

parameters. They also produce reliable standard error estimates which are more realistic than 

the models in which random effects are not taken into consideration. One of the advantages 

of HGLM is the joint modelling of mean and dispersion. Dispersion parameters are allowed 

to have structures defined by their own set of covariates. It is useful to build a complex model 

by combining component GLM. The complete model is then decomposed into several 

components which provide additional insights into the model (Lee et al, 2006).   

 

In general, the following are the three major benefits of using HGLM: 

 

1. Heterogeneity between clusters, which is associated with unequal variances and arises 

from various sources, can be modelled by introducing a random effect into the mean 

model; 

2. HGLM can be used to account for variability within and between subjects; and 

3. Dispersion can also be modelled and significance of the variables in the dispersion 

model can be tested. 

  

Lee, Nelder and Pawitan (2006, p173) define the HGLM as:  

 

1. Conditional on random effects u , the responses y follow a GLM family, satisfying 

 

)|( uyE     (Lee et al., 2006, 173, ff)      5-3 

 

ar ( | ) ( )V y u V           5-4 
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where  V   is the variance function, for which the kernel of the likelihood is given by  

 

     /by  .
         5-5 

 

The parameter   , which can vary according to u , is known as the canonical parameter. The 

linear estimator takes the form  

 

  ,g     x β vZ     (Lee et al., 2006, 174, ff)                         5-6 

 

where  v v u  for some monotone function ( )v represents the random effects with model 

matrix Z, and β  are the fixed effects. 

 

2. The random component u  follows a distribution conjugate to a GLM family of 

distributions with parameters . 

5.2.3: Basic structure of the HGLM 

In the HGLM model formulation that is adopted here, the distribution of uy |  is Poisson with 

mean  

   | expE y u u   x β                (Lee et al., 2006, 174, ff)              5-7 

The function v ( ) is taken as natural logarithm so that lnv u , and  u  is taken to have a 

gamma distribution. The log link leads to the linear predictor 

 

ijlogij ij iv    x β                                    5-8 

 

The random effects iu  are taken to be independent distributed according to the gamma 

distribution with parameter , so that   1iE u   and  Var i iu  . We adopt a log-linear 

model for the variance of the random effect: 

 

 ijexpi  x ζ                                     5-9 

 

This model is known as the Poisson-gamma HGLM. 
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The log likelihood contribution of the vy |  part comes from Poisson density: 

 

 logij ij ij

ij

y                (Lee et al., 2006, 180, ff)                                           5-10 

 

and log likelihood contribution of v  is 

 

          1; log log / log / logi i

i

l v f v u u   


      .                        5-11 

5.2.4: Hierarchical generalized linear models with structured dispersion  

Heterogeneity is common in many kinds of data and it arises from various sources. It is often 

associated with unequal variances. If heterogeneity is not properly modelled it can ultimately 

cause inefficiency and an invalid analysis. HGLMs with structured dispersion allow the 

dispersion parameters to have structures defined by their own set of covariates. This results in 

the HGLM class of joint modelling of mean and dispersion, which avoids the necessity of 

developing complex statistical methods on a case-by-case basis (Lee et al, 2006).   

 

Two interlinked models for the mean and dispersion based on the observed data y and 

deviance d can have: 

 

       , vari i i i i i iE y g y V       t

ix β,                5-12 

 

      2, , var 2i i i i i iE d h d      t

ig γ                5-13 

(Lee et al, 2006,  85, ff) 

 

where ig  is the model matrix of explanatory variables used in the dispersion model, it is the 

HGLM with a gamma variance function. In the above equation the dispersion parameters are 

no longer constant, but can vary with mean parameters. In the GenStat software system, 

dispersion terms are added to the model by using the DTERMS command. This represents 

the variance associated with different observations that have the same value of the 

explanators. 
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5.2.5 H-likelihood 

Lee and Nelder (1996) introduced the h-likelihood for inferences in HGLM. Each part of the 

model is evaluated by using the h-likelihood for that section. The Table 5.1 shows the 

likelihood which corresponds to fixed, random and dispersion part of models. The details of 

this are given in appendix A5.1.  

 

Table 5.1: Likelihood used in HGLM 
 

Part of model Likelihood 

Fixed part h-likelihood for fixed part 

Random part h-likelihood for random part 

Dispersion part Adjusted profile likelihood (APL) or 

Extended quasi likelihood (EQL) 

 

5.2.6 Previous research about age, gender, and mode of travel 

A number of researchers have carried out various studies to identify risk factors for the age 

and gender groups for various modes, some of which are summarised here.  

 

Zhang et al (2000) carried out a study in Ontario, Canada to examine factors affecting the 

severity of motor vehicle traffic crashes (MVTC) from 1988 to 1993 involving elderly drivers 

aged 65 and above. The crashes in which at least one driver was 65 or older related to 

automobiles or vans/light trucks were used. The dataset included 711 fatal injury crashes, 

3,103 major injury, and 14,329 minor injury crashes. In this study factors of age, gender, and 

various other driver characteristics (normal, medical condition, use of alcohol, fell asleep 

etc), and environment were examined. Multivariate logistic regression was used to calculate 

the estimated relative risk as an odds ratio (OR) while controlling for compounding factors. It 

was observed that crashes involving elderly male drivers were 1.4 times as likely to be fatal 

as those of female elderly drivers. It was also found that failing to yield right of way / 

disobeying traffic signs, non-use of seat belts, intersections without traffic control, roads with 

a high speed limit, head-on collisions, two vehicle turning collisions, and overtaking 

manoeuvres were strongly related to an increased risk of fatal injury in crashes among elderly 

drivers. It was suggested that in order to reduce the severity of crashes involving elderly 

drivers, strategies should target specific factors such as head-on collisions, single vehicle 
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collisions, and traffic control at intersections whereas driving conditions such as medical / 

physical conditions and driver actions such as failing to yield right of way / disobeying traffic 

signs should be examined further. 

 

Keall (1995) estimated the pedestrian risk of road accident injury in New Zealand. The 

estimated risk of a road accident was disaggregated by gender and age. In this study risk was 

estimated by dividing the number of casualties with exposure. The numbers of pedestrian 

casualties were extracted from the Land Transport Safety Authority Traffic Accident Report 

(TAR) system whereas exposure to pedestrian road accident risk was derived from the New 

Zealand Travel Survey. It was found that pedestrians under 10 years old and over 70 years 

old were more likely to be injured in a reported accident, both per road crossed and per hour 

of walking, than other age groups. The risk to the elderly was reconsidered in the light of the 

greater susceptibility to fatal injury related to age. It was found that only those over 79 years 

old were regarded as being at risk (2 percent of the population). It was also found that both 

elderly and young people spend a greater proportion of their travelling time as pedestrians 

than other age groups. Females spend considerably more time walking than do males. 

Pedestrian in their 20s cross roads more frequently per hour of walking than any other age 

group. Road crossing frequency was found to decline with increase in age group. 

 

Madani and Janahi (2006) carried out a study in Bahrain to analyse pedestrian injury 

accidents using relevant exposure risk rates to identify the most vulnerable groups of 

pedestrians in terms of their personal characteristics. The characteristics investigated in this 

study were gender, age, nationality, and educational background. The pedestrian injury 

accident data files for 1995 obtained from Traffic and Licensing Directorate were used. The 

expected number of pedestrian accidents for gender and age groups were estimated by using 

an accident occurrence ratio and the proportion of population of that age group. The chi 

square test method was used to compare the observed accident frequencies for each category 

of pedestrian with the expected accidents according to their relevant proportion in the 

pedestrian population. It was concluded that male pedestrians have more exposure risk to 

accidents than females. In terms of age groups the most vulnerable were children under 12 

years of age and people over 50 years of age. In terms of the nationalities there was indication 

that non-locals had a higher accident risk than locals whereas educated pedestrians are less 

likely to be involved in accidents.   
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Hijar et al (2000) conducted a study to identify the risk factors for motor vehicle accidents 

related to driver, vehicle, and environment in Mexico. The study population consisted of 

drivers of all motor vehicles that drove the Mexico-Cuernavaca highway from July to 

September of 1996. A case and control design was used. For each case driver considered, 

who was involved in an accident, one control driver was selected who had completed the trip 

on the highway without being involved in road accident. The information about the case 

drivers was collected by interviewing the drivers using a structured questionnaire or from 

passengers who were accompanying the driver in accidents where the driver died. Control 

drivers were selected randomly at the end points of the highway. The logistic regression was 

used. It was found that a higher risk was associated with drivers under 25, frequent travel, 

travelling to work, alcohol consumption, travel on a weekday, under adverse conditions, and 

in the direction of travel on the Mexico-Cuernavaca road. It was suggested that identification 

of these factors involved in highway traffic accidents may help in the identification of 

prevention measures for reducing the number of motor vehicle accidents. 

 

Bird et al (2006) carried out a study to establish the association between land use and road 

traffic casualties involving non-motorised traffic. This study was carried out in Newcastle 

upon Tyne, in the north-east of England. The pedestrian and cyclists casualty information 

from 1998 to 2001 was obtained from the local government traffic accident unit while land-

use data was collected using digital maps obtained from Edinburgh University’s Digimap 

service. Log-linear models with negative binomial distribution were developed using non-

motorised casualties as the response variable whilst primary functional land use, population 

density, and junction density were used as explanatory variables. The logarithm of length of 

the roads was used as offset. A total of 16 separate models were developed for each 

combination of cyclist and pedestrian, adults and children, working and non-working hours in 

the city centre and suburban analysis zones. It was concluded that during working hours, 

pedestrian casualties are particularly associated with retail and community land use. Priority 

should be given to reducing pedestrian casualties associated with retail outlets (probably 

shops) during working hours, and with retail outlets (almost certainly clubs and bars in city 

centres) during non-working hours. For cyclists’ greater frequency of casualties during 

working hours in non-pedestrianised areas are associated with greater land-use. 

Umar et al (1996) carried out a study to determine the impact of running headlights on 

conspicuity-related motorcycle accidents in Malaysia. The Generalized linear model with 

Poisson distribution and log link was used to describe the frequency of conspicuity-related 
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motorcycle accidents. The explanatory variables used consisted of: influence of time trends, 

changes in recording system, effect of fasting during month of Ramazan, and Balik Kampong 

which is a religious holiday unique to the multicultural society of Malaysia. In order to 

overcome the over-dispersion of data, the quasi-likelihood technique was used. From the 

modelling results it was concluded that time is a positively significant variable with an 

increase of 0.5 percent conspicuity-related accidents per week. The new recording system 

improved the quality and quantity of data. An increase of 40 percent in conspicuity-related 

motorcycle accidents was observed after the introduction of the new system. It was also 

found that number of accidents increased by 41 percent in the fasting season for which 

changes in travelling and social religious activities were a possible cause. The Balik 

Kampong variable was found to be non-significant. It was also shown that the use of running 

headlights reduced conspicuity-related accidents in Malaysia by 29 percent. 

 

Legge et al (1998) studied age and gender differences in the rates of crash involvement of 

Western Australian drivers. The Road Injury Database of the Road Accident Prevention 

Research Unit from January 1989 to December 1992 was used. The population examined was 

all drivers of cars, station wagons, and related vehicles involved in damage-only, injury and 

fatal crashes. Risk ratios were estimated for various age groups. It was found that drivers 

under 25 years of age were involved in 35 percent of crashes, compared to 3 percent for 

drivers aged 70 years and over. Drivers aged under 25 had the highest rates based on both a 

population and a licence basis, but after taking distance travelled into consideration the crash 

involvement of both groups were almost same. Females had higher rate of crash involvement 

than males in all age groups. It was also found that the youngest groups of drivers had 

proportionately more single vehicle crashes, drivers aged 30 to 59 had more same-direction 

crashes and drivers over 60 years, particularly over 75 years, had more direct and indirect 

right angle crashes. It was concluded that the risk of crashes varies according to ability, 

experience, and psychological function, which are related to age. 

 

Fontaine and Gourlet (1997) examined the reports of fatal pedestrian accidents in France to 

improve the understanding of these accidents and to propose some suitable action. A total of 

1,289 fatal pedestrian accidents which occurred from March 1990 to February 1991 were 

considered. The age, gender, movements, change of mode, and alcohol impairment 

characteristics were analysed. The accidents were classified into four categories. It was found 

that elderly pedestrians crossing the road in an urban area at a junction (often controlled by 
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traffic lights) composed of 42 of all fatally injured pedestrians. These accidents occurred on 

weekdays between 7 a.m. and noon, or between 2 p.m. and 6 p.m. A second category making 

up 34 percent of pedestrian fatalities was those with high alcohol concentrations involved in 

night-time accidents. Most of these accidents took place at night time, on weekends and not 

at a junction. A third category of children running or playing made up 13 percent of all 

fatally-injured pedestrians. A fourth category included secondary accidents, change of 

transport mode and consisted of 11 percent of total fatally-injured pedestrians. It was 

suggested that information campaigns and lifelong safety education programmes for 

pedestrians could be considered to stress the particular dangers faced by them.   

 

The literature review in this section highlights the importance of identifying the high risk 

groups that could be used by planning organisations for improving the road safety. In most of 

these studies the particular emphasis is given on identifying target groups which could be 

used to elevate risk awareness and ultimately to improve road safety. Risk ratios for different 

age and gender groups were highlighted. It was also found that different measures of 

exposure were used by various researchers based on the availability of data. Bird et al (2006) 

used the road length as exposure through offset variable, Madani and Janahi (2006) used 

population, while Keall (1995) used an estimate of pedestrian time spent in walking.  

 

Legge et al (1998) found that drivers aged under 25 years had higher rates of accident 

involvement per person-year than drivers aged 70 years or over, but after taking distance 

travelled into consideration the accident involvement of both the age groups was same. This 

shows that risk ratios will vary depending on the exposure considered (i.e. population, 

distance travelled, number of licence holders). 

 

 In the present study, the main focus is given to identifying the risk values for different age 

group, gender and vehicle type on a national scale, which could be used by various planning 

and road safety agencies to improve road safety.  

 

5.3  DATA USED 

 

Three data sources were used for the present study. The numbers of casualties were extracted 

from STATS 19 data for the years 2001-5. For each of these years the distance travelled by 
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different age groups was extracted from NTS data and population numbers were extracted 

from National Statistics, United Kingdom. All of these are described in detail below. 

 

5.3.1 Combined road accidents and casualty data (STATS 19) 

 

The STATS 19 road accident statistics of Great Britain from 2001 to 2005 are used for the 

present study. The year-wise accident and casualty information of STATS 19 data were 

joined together in MS Access in order to extract the number of casualties disaggregated by 

day of week, month, year, age group, gender, and mode. MS Access queries were used to 

create two new fields of vehicle class and age group, which are shown in Table 5.2 and 5.3; 

this ensured compatibility between the categories used in different datasets. After this, these 

files were exported to SPSS to develop a new dataset consisting the information of all the 

road casualties that occurred from 1
st
 January 2001 to 31

st
 December 2005. Five different 

datasets each representing a single mode of the new classification were developed, each with 

a 29,216 records. Car, walk, bicycle, motorcycle, and bus modes were considered in this 

study. This was mainly done due to the limitations of the GenStat software which was unable 

to accommodate a large amount of data, such as the whole dataset of all records for all 

modes, in estimating the HGLMs.  

 

Table 5.2: Reclassification of the modes considered 
 

 

S.No 

 

Vehicles classified  

in STATS 19 

 

New 

Classification 

 

S.No 

Vehicles 

classified in 

STATS 19 

 

New 

Classification 

1 Pedestrian Pedestrian 6 Taxi  

Car 2 Pedal Cyclist Pedal Cyclists 7 Car 

3 Moped  

Motor Cyclists 

8 Bus or Coach         Bus 

4 Motorcycle (up to 125 cc)    

5 Motorcycle (over 125 cc)    

 

5.3.2 National travel survey data (NTS Data) 

 

The distance travelled per person-year by gender, mode, and age group was obtained from the 

DfT. The distance travelled was given in miles for each age category by walk, bicycle, car 

driver, car passenger, motorcycle, and local bus. The car driver, car passenger, and taxi were 
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added together to obtain the distance travelled by car. This does not include taxis running 

only with drivers because the DfT does not collect such information. The distance travelled 

by bus is the distance travelled in local buses, which excludes intercity buses. The age groups 

considered for distance travelled by the DfT are shown in Table 5.3. The National Travel 

Survey (NTS) provides information about personal travel within Great Britain and it also 

monitors the trends in travel behaviour. The Ministry of Transport commissioned the first 

NTS in 1965/66 which was repeated in 1972/1973, 1975/1976, 1978/1979, and 1985/1986. 

From 1988 the NTS became a continuous survey and fieldwork is conducted on a monthly 

basis. The NTS involved posting contact letters, making initial contact, arranging interviews, 

providing the travel diaries, making a reminder call, mid-week check call, conducting the 

pick-up interview at the end of travel week, and transmission of the data. During the process 

the information about the seven-day travel record, long-distance journeys, fuel and mileage 

chart are recorded. After the collection and brief checking of the seven-day travel diaries, the 

information is entered into the Diary Entry System (DES). The data is then delivered to the 

DfT after making several checks and verification about the cleanness of the data. 

  

5.3.3 Population data (2001-2005) 

 

The population of Great Britain from 2001 to 2005 was obtained from the annual abstracts of 

statistics produced by Office for National Statistics, United Kingdom. The data was available 

separately for England, Scotland, and Wales. The age categories in data available from the 

Office for National Statistics were not the same as in the distance travelled data which was 

provided by the DfT. Consequently, the population age group data was rearranged to match 

the age classification of the distance travelled data. In this rearrangement of the population 

data, it was supposed that total yearly population of males and females was uniform within 

each of the ranges. The age groups considered are shown in Table 5.3.  

 

Table 5.3: Age groups considered for the present study 
 

Age 

Band 

1 2 3 4 5 6 7 8 

Age 

group 

Under 17 17 to 20 21 to 29 30 to 39 40 to 49 50 to 59 60 to 69 70 plus 
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The details of population per year in each age group are shown in Figure 5.1 from which it is 

found that: 

 

 The population of Great Britain was 57.42 million in 2001 which increased to 58.41 

million in 2005. 

 Males made up 49 percent of the total population and females 51 percent. 

 The 30 to 39 age group had a higher population per year than other age groups, 

followed by the 40 to 49 age group. 

 The 60 to 69 and 70 plus age groups had a lower population per year than the other 

age groups. 

 The number of persons per year in the age group under 17 is on decline. 

 

Figure 5.1: Population per year of each age group (in thousands) 
 

 

Source of data: Office for national statistics, UK (2011) 

5.4  DATA ANALYSIS 

 

STATS 19 data and travel data used in this study are analysed below: 

 

5.4.1 STATS 19 data (2001-2005) 

 

Five new datasets were developed by combining the accident and casualty information of 

STATS 19 data from 2001 to 2005, each representing a mode. MS Access and SPSS were 

used to extract the number of casualties’ information disaggregated by age group, gender, and 

mode. The box plot for the casualty data are shown in Figure 5.2 to 5.6 and each dataset is 

analysed as follows: 
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 The age group under 17 have a higher number of casualties for walking and cycling 

modes while the age groups 30 to 39 and 21 to 29 were respectively involved in more 

motorcycle and car casualties than any other age group. 

 Elderly (70 plus) pedestrians and bus users have higher casualties than most age 

groups.  

 The casualties for each of mode decreases with increasing age after a certain age 

group as a result of being mature and experience.  

 A difference in the number of casualties existed between weekdays and weekends 

(especially Sunday) across all modes. Saturday had slightly higher pedestrian and car 

casualties than the first three weekdays.  

 Summer months had higher cyclist and motorcyclist casualties while car users had 

higher casualties in winter months.  

 A comparatively small difference in casualty numbers was observed between male 

and female car users in comparison to other modes where a higher number of 

casualties were male. 

 

Figure 5.2: Box plot of the number of casualties for car users (Dataset 5) 

 

 

Source of data: Department for Transport (2011) 



217 

 

Figure 5.3: Box plot of the number of pedestrian casualties (Dataset 6) 

  

Source of data: Department for Transport (2011) 

 

Figure 5.4: Box plot of the number of bicyclist casualties (Dataset 7) 

      

      

Source of data: Department for Transport (2011) 
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Figure 5.5: Box plot of the number of motorcyclist casualties (Dataset 8) 

  

  

Source of data: Department for Transport (2011) 

 

Figure 5.6: Box plot of the number of casualties for bus users (Dataset 9) 

 

Source of data: Department for Transport (2011) 
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5.4.2 Travel data (2001-2005) 

 

The annual distance travelled per person from 2001 to 2005, disaggregated by age and 

gender, extracted from the NTS data was obtained from the DfT. The data for the years 2001 

to 2005 is shown in Figure 5.7 and is analysed below:  

 

 17 to 20-year olds walked more than all other age groups. Females in the age groups 

21 to 39 walked more than males in the same age groups. Older males walked more 

than females. 

 Males cycle more than females. A singular peak in 2001 was observed for males of 17 

to 20 years of age. The distance travelled by males cyclists between 21 and 49 years 

old increased from 2001 to 2005. Cycling by females aged 21 to 39 years and 70+ 

decreased in 2005 in comparison to 2001 whereas for all other age groups it 

increased. 

 Males of all age groups travel more by motorcycle than do females. A higher distance 

was travelled by 40 to 49 year olds in 2005. Older people travel less by motorcycle, 

with people over 70 travelling less by motorcycle than any other age group. 

 Males travel a greater distance by car than females. The distance travelled per person 

increases with age until 50, after which it decreases. The highest distance per person 

per day was travelled by the 40 to 49 age group. Males from 17 to 59 years of age 

travelled less distance in 2005 than in 2001. Females other than those between 17 and 

29 travelled more in 2005 than in 2001. This was particularly so for females aged 40 

to 49.  

 Young persons of age between 17 to 20 years travelled more by bus than all other age 

groups. A huge difference was observed in comparison to other age groups. Females 

above 40 travel more on buses than do males. The distance travelled by males over 60 

years old was slightly less in 2005. 
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Figure 5.7: Graph showing distance travelled per person (kilometres) for different modes 
 

  

    

 

 

Source of data: Department for Transport (2011) 

 

5.5  MODEL DEVELOPMENT 

 

The first step in the model development was to identify which explanatory variables would be 

considered for use as random effects. The interaction between month and year variables was 

selected to be the random part as theory suggested that it would be an appropriate for this: the 

yearly instance of each month was considered to be a sample of larger population whereas all 

other variables had fixed categories and they could not so readily be viewed as sample of a 

larger population. Because month is also included in the fixed model, this represents the 

concept that number of casualties occurring in each month of the year will follow a general 

trend (the fixed effect) but this will also vary between years (the random effect). After this, 
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the fixed part was identified by stepwise inclusion of variables. Variables of age group, 

gender, interaction of age group and gender, day of week, month, time, holidays, New-Year 

and Christmas holidays were used in the fixed part. The total distance travelled was not 

considered in the full model as an explanatory variable as it was subsumed by age group due 

to its synthesis. The h-likelihood for the fixed part was monitored through the model 

development. After selecting the fixed part, the random part was reviewed. During this, the h-

likelihood for the random part was monitored. After this, dispersion terms were identified and 

were included one by one into the model.  

 

Lee, Nelder and Pawitan (2006, p158) recommend that when dispersion terms are added in 

the model, the adjusted profile likelihood (APL) is an appropriate measure of model 

performance. However, this measure was found to be unreliable in the models developed 

here: in the models of bicycle, motorcycle and bus casualty data the APL did not always 

improve when a further variable was added to the dispersion part. Due to this, the extended 

quasi likelihood (EQL) was adopted instead to compare the performance of dispersion terms 

in the models: this measure was found to be satisfactory. The logarithm value of yearly 

population of age group was preferred for use as an offset, which allowed for the variation in 

population for age group, gender and year. This yields a model of casualty rate per person-

year. Five models, each representing a mode, were developed and variables were removed 

from each model in steps. The h-likelihood was monitored as shown in Table 5.4.  

 

Table 5.4: Model development sequence and likelihood used 
 

 

Step 

 

Model 

 

Model development sequence 

0 Random part Month.Year 

1 Fixed part h-likelihood for fixed part 

2 Random part h-likelihood for random part 

3 Dispersion part Extended quasi likelihood (EQL) 
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5.5.1 Variables used 

 

The following variables were used in the models. 

 

1. Logarithm (Population disaggregated by age and gender) 

2. Age group (in years) ( 8 levels) 

<17 │17-20│21-29│30-39│40-49│50-59│60-69│70 plus 

3. Gender ( 2 levels) 

4. Interaction of age group.gender ( 16 levels) 

5. Day of week (7 levels) 

6. Month ( 12 levels) 

7. Time as variate ( values in days from 1 to 1826; 1
st
 January 2001 to 31

st
 December 

2005) 

8. Public holiday 

9. New-Year holiday 

10. Christmas holiday 

 

5.5.2 Basic Model structure 

 

In this chapter all models were developed as shown below and then each variable was 

removed from the model and its effect on the h-likelihood was monitored. An offset variable 

was also introduced to represent the exposure. Population, total daily distance travelled and 

yearly distance travelled were tested in offset to identify the most suitable one. It was found 

that population performed better than the other two variables in h-likelihood results (see 

appendix Table A5.2): this leads to models that can be interpreted in terms of casualty rate 

per person-year stratified by age group and gender. The hierarchical generalized linear model 

with Poisson-gamma log link and generalized estimation equation (GEE) with autoregressive 

error structure (AR1) is used which is described below: 
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HIERARCHICAL GENERALIZED LINEAR MODEL (HGLM) 

 

Let Y be the number of casualties occurring on each day disaggregated by age, gender, and 

vehicle class. 

 

OFFSET:         Logarithm (Population of age group by gender) 

 

Fixed effect:          Age group + Gender + Age group. gender + Day of week + Month 

                      + Time + Holiday + New-Year + Christmas  

Random effects:    Month.Year 

Dispersion Terms:  Age, Gender, Month, Day of week 

Link:           Logarithm 

 

Errors:                     Poisson-gamma 

 

GENERALIZED ESTIMATION EQUATION (GEE) 

 

A generalized estimation equation model with negative binomial regression having AR1 

errors was also developed consisting of the following variables. The results were then 

compared with the preferred model developed by using HGLM. 

 

OFFSET:         Logarithm (Population of age group by gender) 

 

Fixed effects:         Age group + Gender + Age group. gender + Day of week+ Month 

                      + Time + Holiday + New-Year + Christmas  

 

Link:           Logarithm 

 

Errors:                    Negative binomial with autoregressive (AR1) error structure 

 

The following variables were considered and tested in the offset as measures of exposure in 

the models. 
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1. Logarithm (Population): This variable represented the population of each year 

disaggregated by age group and gender.  

2. Logarithm (Total daily distance travelled): This variable represented the total distance 

travelled each day by all members of the population in the specified age group and 

gender. The daily distance travelled per person was multiplied by the Population of 

age and gender group. 

3. Logarithm (Yearly distance travelled per person): This variable represented the 

distance travelled each year per person by age group and gender. 

 

A full model as shown above with each of these variables as an offset for Dataset 5 (Car 

mode) was developed and its h-likelihood values were compared. From Table A5.2 shown in 

the Appendix it was found that the model with Logarithm of Population as an offset had 

better h-likelihood than the other two models (A2 and A3) so it was preferred. The h-

likelihood of the model with population as an offset (model A1) was better by the value of 

1,097 and 978 from the model A2 and A3 with total daily distance travelled and yearly 

distance travelled per person respectively. The population was preferred as the offset 

according to the goodness of fit: it offers the advantage that the model coefficients can be 

interpreted in terms of the casualty rate per person-year. By contrast, use of distance travelled 

as offset assumes implicitly the uniformity of distance travelled over days of the year because 

no suitable correction factors for different modes, age and gender groups were available. Due 

to these reasons, population was preferred as offset in the model. 

 

5.6  MODEL SELECTION PROCESS, GOODNESS OF FIT AND MODEL CHECKS 

 

Following sections shows the results of the models developed by using each of five datasets 

which represents the modes. 

 

 Car (Dataset 5) 

 Walk (Dataset 6) 

 Bicycle (Dataset 7) 

 Motorcycle (Dataset 8) 

 Bus (Dataset 9)  
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The following model selection procedure was applied to select the most appropriate model to 

estimate the number of casualties occurring on each day for age and gender groups. 

 

5.6.1. Model selection process, goodness of fit and model checks for Dataset 5 (Car) 

 

As in chapter 4 it was found that car is involved in greater number of road accidents than 

other modes, due to which in this chapter the investigation started by identifying the 

relationships of age groups and gender in this case. This section shows results of the models 

developed, goodness of fit of the preferred model and various checks to validate the model. 

5.6.1.1 Hierarchical generalized linear model (HGLM) Car: 

The Hierarchical Generalized Linear Model (HGLM) with Poisson-gamma distribution with 

log link was used. In the first step, the full model as shown in section 5.5.2 was developed. 

The h-likelihood values obtained for the fixed, random and dispersion parts are shown in 

Table 5.5. After this, individual variables were removed from the model to investigate their 

partial effect on the h-likelihood. In the first step variables of age.gender, day of the week, 

month, time, holidays, New-Year holidays and Christmas holidays were removed in turn and 

the h-likelihood of the fixed part was compared. This confirmed that the full model had better 

h-likelihood for the fixed part of the model, and that removal of any variable would result in 

substantially reduced preference. It was found that day of the week had the highest effect 

among the listed variables as its removal from the fixed part reduced the h-likelihood by 

1,840 with only 6 degrees of freedom. Out of all the variables, Christmas holidays have the 

least effect of a change of 62 in h-likelihood, which is statistically significant at the 5 percent 

level according to the likelihood ratio test. 

 

In the second step, the month.year interaction was removed from the random part of the full 

model, keeping the same fixed and dispersion parts. It was observed that removal of 

month.year reduced the h-likelihood of fixed part by 234 with 1 degree of freedom 

(corresponding to the variance of the random effect) confirming that it contributes 

substantially to model performance. In the third step, the variables were removed in turn from 

the dispersion part of the model while keeping the same fixed and random parts. The results 

showed that age group is the most important variable which affected the extended quasi 

likelihood (EQL) by 1,164 with 7 degrees of freedom. The removal of Gender reduced the 



226 

 

EQL by only 3 with 1 degree of freedom. This suggests that Gender is equally variable. This 

is also evident from the coefficient obtained for Gender in the dispersion model which is 

found to be non-significant. The removal of other variables also reduced EQL, details of 

which are shown in Table 5.5. It was concluded that the full model had significantly better h-

likelihood results than simplified models.  

 

In the full model, the different variances are represented by the coefficients of   and . The 

exponential of the coefficient   which represents the variance of the random effects, in the 

present case it is found to be -6.73 (exponential is equal to 0.0011) and is significantly 

different from 0 with a t value of -30.72. On the other hand   represents the variance of 

individual observations as used in regression analysis, though the dispersion model allows for 

this to vary according to the variables. In this case, the random component of the month.year 

compares each month of the year to the usual value for that month. The month in dispersion 

part quantifies the variation present in a particular month: for example observations in 

December were found to be more variable than those in other months. Detailed results of the 

coefficients of fixed, random and dispersion parts are discussed in the next section.  

 

Table 5.5: Results of the h-likelihood (Dataset 5: Car) 
 

Models Variables d.f. H likelihood and change in its value 

Fixed Random Dispersion 

FIXED Full Model  201,681  201,257 201,708 

 - Age. Gender 7 +1,664   

 - Day of week 6 +1,840   

 - Month 11 +111   

 -  Time 

- Holiday 

- New Year 

- Christmas  

1 

1 

1 

1 

+72 

+86 

+151 

+62 

  

RANDOM - Month.Year 1 +234   

DTERMS - Age 7   +1,164 

 - Gender 1   +3 

 - Month 11   +113 

 - Day of week 6   +33 
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5.6.1.2 Analysing the temporal effects 

 

The procedure presented in section 2.6.2.2 was used to investigate for the presence of further 

substantial temporal effect that was not represented in the models. This process was carried 

out for only full model (shown in section 5.5.2).  For this, square of time variable was added 

to the full model as time was already present in the linear predictor. After this improvement 

in the h-likelihood, coefficients and t values of time and square of time, and their variance 

inflation factors were examined.   

 

It is observed from the results shown in appendix Table A5.3 that after adding square of time
 

into the full model, there is no improvement in the h-likelihood. The estimated coefficient of 

the square of time was also found to be non-significant whilst time and square of time 

variables had high variance inflation factors (value of 16). This shows that no substantial 

temporal effect remains in the model that can be represented by the quadratic terms.  

 

5.6.1.3 Split sample tests 

 

In order to check the consistency of the model parameters, split sample validation tests were 

carried out. To do this, the dataset was randomly partitioned into two, each with 14,608 

observations.  The datasets A, B and C were used to check and validate the results of the full 

model by comparing the coefficients of all the three models and observing their h-likelihoods. 

 

GenStat software was used to estimate the model parameters of Datasets B and C which were 

then compared. The results in Table 5.6 show that h-likelihood for Dataset B was slightly 

better than for Dataset C.  The h-likelihood for the fixed part was better by a value of 255, 

random part by a value of 263 and dispersion part by a value of 250. 

  

Table 5.6: h-likelihood results of the split sample (Dataset 5: Car) 
 

Model No of 

observations 

h-likelihood 
 

Fixed Part Random Part Dispersion Part 
 

Dataset A 29,216 201,681 201,257 201,991 

Dataset B 14,608 100,706 100,313 101,000 

Dataset C 14,608 100,961 100,576 101,250 
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After this the coefficients of the fixed part were compared between models A, B and C. The T 

test was used to compare the coefficients of Datasets B and C. TBC values were estimated by 

using the formula 2-32. It was found from T test values that all of the coefficients (except age 

group 30-39, Christmas holidays and constant) of model B are not significantly different from 

the coefficients of model C as the estimated values of TBC are less than 1.96. However, the 

change in the constant was of less concern as it represented the group mean which can vary in 

dataset B and C. It is also to note that out of 37 variables only 3 were found to have changed 

significantly. The comparison of coefficients and t values are shown in Figure 5.8 and Table 

5.7.  In summary:  

 

 The coefficient of age group had significant t values and expected signs in all three 

models. 

 

 The coefficient of Gender was positive and had significant t values in all three 

models. The coefficient of 30 to 39.male had a significant t value in models A and B 

but was non-significant in model C. The coefficient of 60 to 69.male had a significant 

t value in model C only.  

 

 All coefficients of Day of week differed from each other and had significant t values 

in all three models except Thursday which was non-significant in all three models.  

 

 All coefficients of months differed from each other and had significant t values in all 

three models except January, February, July, August, and September. Except August 

all these months had non-significant t values in all three models while August had 

significant t values in model B only. 

 

  The coefficients of time, holidays, New-Year holidays and Christmas holidays had 

similar sign and significant t values in all three models. 
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Figure 5.8: Comparison of coefficients of full model HGLM for coefficient validation (Car) 
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Table 5.7: Comparison of coefficients and t values of full model HGLM (Split sample Data) 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B            Model C  

Coefficient tA Coefficient tB Coefficient          tC TBC 

Under 17 -0.913 -100.18 -0.926 -72.04 -0.900 -69.61 1.425 

17-20 1.003 151.92 1.008 107.56 0.999 107.39 -0.696 

30-39 0.420 79.70 0.432 58.48 0.407 54.18 -2.341 

40-49 0.155 27.59 0.153 19.72 0.156 19.10 0.236 

50-59 -0.123 -20.81 -0.128 -15.59 -0.120 -13.94 0.686 

60-69 -0.467 -66.39 -0.477 -48.33 -0.457 -45.48 1.416 

70 plus -0.834 -115.37 -0.831 -83.3 -0.837 -80.34 -0.388 

Gender 0.023 13.11 0.024 9.63 0.023 9.03 -0.405 

Under 17.Male -0.280 -20.89 -0.273 -14.15 -0.287 -15.44 -0.537 

17-20. Male 0.214 24.46 0.209 16.87 0.218 17.58 0.536 

30-39. Male -0.016 -2.17 -0.026 -2.55 -0.005 -0.48 1.434 

40-49. Male -0.075 -9.43 -0.065 -5.79 -0.085 -7.36 -1.251 

50-59. Male -0.131 -15.37 -0.120 -10.06 -0.142 -11.65 -1.320 

60-69. Male -0.013 -1.34 0.002 0.15 -0.029 -2.05 -1.549 

70 plus. Male 0.240 23.22 0.227 15.68 0.255 17.27 1.351 

Monday -0.038 -9.15 -0.035 -6.05 -0.040 -6.90 -0.649 

Tuesday -0.049 -12.50 -0.048 -8.92 -0.050 -8.80 -0.234 

Wednesday -0.025 -6.34 -0.027 -4.88 -0.022 -4.00 0.570 

Thursday -0.006 -1.66 -0.007 -1.34 -0.006 -1.14 0.113 

Saturday 0.056 14.34 0.052 9.71 0.058 10.47 0.779 

Sunday -0.084 -19.69 -0.083 -13.63 -0.083 -14.03 0.049 

January 0.006 0.40 0.012 0.76 0.000 -0.02 -0.499 

February -0.018 -1.12 -0.014 -0.94 -0.021 -1.18 -0.291 

March -0.108 -6.87 -0.109 -7.24 -0.107 -6.02 0.073 

April -0.079 -4.99 -0.078 -5.14 -0.079 -4.39 -0.021 

May -0.045 -2.84 -0.050 -3.29 -0.040 -2.24 0.438 

June -0.047 -2.97 -0.051 -3.36 -0.044 -2.42 0.314 

July -0.027 -1.70 -0.024 -1.6 -0.029 -1.63 -0.201 

August -0.031 -1.95 -0.048 -3.14 -0.014 -0.76 1.466 

September -0.019 -1.21 -0.015 -1.01 -0.024 -1.35 -0.377 

October 0.082 5.18 0.092 6.06 0.072 4.04 -0.863 

December 0.143 9.02 0.152 9.94 0.135 7.49 -0.753 

Time -0.0001 -10.57 -0.0001 -10.71 -0.00009 -9.73 -0.505 

Holidays -0.057 -9.19 -0.057 -6.54 -0.056 -6.35 0.093 

New-Year -0.142 -7.61 -0.145 -5.58 -0.138 -5.16 0.175 

Christmas -0.196 -11.85 -0.247 -10.38 -0.149 -6.50 2.970 

Constant -12.04 -464.97 -12.09 -343.16 -11.987 -336.17 2.207 

Italic shows that these variables are not significant at 5 percent level. 
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5.6.1.4 Comparison of Coefficients (Car: HGLM and GEE-AR1) 

a. Fixed Part: 

 

The coefficients of HGLM with Poisson-gamma distribution and log link, and GEE-AR1 

with negative binomial were also compared. Because the coefficients of these two models 

(HGLM and GEE) are estimated by using the same data, they are not mutually independent 

so it is not possible to test for differences between them. It is observed that HGLM cannot 

accommodate time series error structure (AR1) and GEE has no feature to take account of 

structured variance. Neither is refinement of the other. Due to this, we will look into the 

similarities in the estimated coefficients (similar signs and values of estimated coefficients) 

and what are differences in the estimated coefficients. 

 

It was found that all coefficients that were significant at the 95 percent level in both models 

had the same sign, though a slight change was observed in the t values of the variables. Age 

group and interaction variables had better t values in HGLM except for males under 17.  All 

month variables had better t values with GEE-AR1 whereas, for day of week, only Sunday 

had better t values in HGLM. The coefficients of February, July, August and September 

which were found to be significant in GEE-AR1 became non-significant in the HGLM 

model. In the same way, the coefficient of the male age group 30 to 39 was not significant in 

GEE-AR1 but was significant with HGLM. Although some variables changed from 

significant to non-significant but no variable changed its sign from one model to the other.  

 

The age group 17 to 20 had a higher coefficient which showed the greatest casualty rate per 

person-year for this age group in car casualties. With increase in age, coefficient of age 

decreases which highlights that the casualty rate per person-year decreases with increase in 

age due to maturity or by getting more experience. Under 17 and 70 plus had the lowest rate 

per person-years in car casualty data. Gender had a positive coefficient showing greater 

casualty rate per person-years for males. However, the interaction of age and gender shows 

that females in all age groups (under 17 and 40 to 69) have greater casualty rate per person-

years than the males of same age groups after allowing for their main effects.  

 

March, April, May, June, October and December had significant t values. December had 

greater coefficient followed by November and October which shows that last three months of 
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year (October, November and December) are associated with greater casualty rate per person 

than other months. Friday has the greatest casualty rate among days of the week whereas 

Sunday had the least rate per person. Saturday had greater casualty rate per person than all 

other days of the week except (Friday). It was also found that rate per person-years for car 

casualties is also decreasing over time at about  3.5 percent each year as coefficient of time 

was found to be (-0.000096) with significant t value. Christmas holidays were found to have 

the most negative coefficient showing lower rate per person than New-Year and other Public 

holidays. The comparison of the coefficients for the fixed part of HGLM and GEE-AR1 are 

shown in Figure 5.9 and Table 5.8. 

 

b. Random Part: 

 

The interaction of month.year was used in the random part of the HGLM model. The 

parameter   represents the variation between corresponding months in different years. It was 

found that   had a coefficient of -6.73 with a significant t value of -30.62. The exponential 

of the   represents the variance of the random component. Only 13 out of the 60 

combinations of month.year interactions had significant t values which showed that these 

months in the mentioned years were significantly different from zero. The interpretation of 

random term can be made that March 2003 was different and had fewer car casualties than a 

usual March. In the same way March 2004 was different but it had higher car casualties than 

a usual March as it has a positive coefficient. The detailed results of significant coefficients 

of the random part are shown in Table 5.9. 

 

c. Dispersion Part: 

 

One of the main advantages of using regression analysis for the dispersion model is to test the 

significance of individual levels. The symbol   represents the variation within each class of 

observations. In this model the age group, gender, month, and day of week variables were 

used in the dispersion part. The coefficients of dispersion models provide additional 

information by quantifying the amount of variation within the corresponding group. 

 

The coefficients obtained from dispersion part of the HGLM are also shown in Figure 5.9. It 

is found that in the case of age groups, greater mean values tended to have greater dispersion 
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except for the age group under 17 where the mean is reduced and dispersion is highest. The 

under 17 age group had the lowest coefficient in the fixed part and had a higher coefficient in 

dispersion part which shows a lower number of casualties but it involves more variation in 

number of casualties. The coefficient of gender was found to be non-significant which is also 

evident from the Table 5.5; when Gender is removed from dispersion part, it decreased the 

EQL by only 3. In the case of day of the week, weekends have greater dispersion than 

weekdays with the exception of Friday and Monday. Monday had a reduced mean but a 

higher dispersion. Sunday had the lowest mean with the highest dispersion. In the case of 

month, there was no general relationship between variation in mean and dispersion. October, 

November and December had elevated mean values out of which November had reduced 

dispersion. All other months except these had reduced values of both mean and dispersion 

with the exception of January and June. November had a substantially elevated mean with 

reduced dispersion and December had substantially elevated values of both mean and 

dispersion. 
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Figure 5.9: Comparison of coefficients by HGLM and GEE-AR1 (Dataset 5: Car) 
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Table 5.8: Comparison of the coefficients and t values of the some variables by HGLM and 

GEE-AR1 (Dataset 5: Car) 

Variable (Car) Coefficient  

HGLM 

t value 

HGLM 

Coefficient  

GEE 

t value 

GEE 
 

Under 17 -0.913 -100.18 -0.907 -105.50  

17-20 1.003 151.92 1.008 130.41  

30-39 0.420 79.70 0.414 57.95  

40-49 0.155 27.59 0.152 20.22  

50-59 -0.123 -20.81 -0.126 -15.71  

60-69 -0.467 -66.39 -0.468 -50.18  

70 plus -0.834 -115.37 -0.833 -89.73  

Gender 0.023 13.11 0.024 10.79  

Under 17.Male -0.280 -20.89 -0.281 -22.60  

17-20. Male 0.214 24.46 0.212 19.87  

30-39. Male -0.016 -2.17 -0.014 -1.35  

40-49. Male -0.075 -9.43 -0.073 -6.85  

50-59. Male -0.131 -15.37 -0.132 -11.51  

60-69. Male -0.013 -1.34 -0.015 -1.10  

70 plus. Male 0.240 23.22 0.239 18.00  

Monday -0.038 -9.15 -0.046 -11.40  

Tuesday -0.049 -12.50 -0.056 -14.21  

Wednesday -0.025 -6.34 -0.030 -7.61  

Thursday -0.006 -1.66 -0.015 -3.80  

Saturday 0.056 14.34 0.071 18.48  

Sunday -0.084 -19.69 -0.066 -16.68  

January 0.006 0.40 -0.002 -0.26  

February -0.018 -1.12 -0.023 -3.23  

March -0.108 -6.87 -0.109 -15.59  

April -0.079 -4.99 -0.075 -10.54  

May -0.045 -2.84 -0.045 -6.50  

June -0.047 -2.97 -0.038 -5.47  

July -0.027 -1.70 -0.021 -3.07  

August -0.031 -1.95 -0.016 -2.29  

September -0.019 -1.21 -0.016 -2.35  

October 0.082 5.18 0.077 11.40  

December 0.143 9.02 0.134 19.43  

Time -9.6E-05 -10.57 -9.4E-05 -23.07  

Holidays -0.057 -9.19 -0.039 -6.44  

New Year -0.142 -7.61 -0.096 -5.94  

Christmas -0.196 -11.85 -0.180 -12.07  

Constant 12.04 -464.97 -11.96 -556.97  
Italics indicate the non-significant t values at the 5 percent level 
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Table 5.9: Significant coefficients of random part (Dataset 5: Car) 
 

Month and 

Year 

Coefficient of 

month.year 

t-value of 

month.year 

Jan-01 0.045 2.34 

Feb-04 -0.069 -3.67 

Mar-03 

Mar-04 

-0.048 

0.040 

-2.55 

2.17 

May-01 -0.043 -2.21 

July-03 -0.044 -2.32 

Aug-03 

Aug-04 

-0.050 

0.047 

-2.67 

2.49 

Sept-02 -0.053 -2.78 

Oct-02 0.059 3.19 

Nov-02 

Nov-04 

0.040 

-0.057 

2.31 

-3.04 

Dec-03 -0.043 -2.28 

 

5.6.1.5 Comparison of the estimated number of casualties by the HGLM and GEE-AR1 

models 

The number of casualties on each day for each group (age and gender combination) were 

estimated using each of the full model with HGLM Poisson-gamma distribution with a log 

link, and the GEE model with negative binomial regression and AR1 errors as shown in 

Section 5.5.2. These estimates were compared with the casualties observed on the 

corresponding days. It was observed that no particular difference was found between the 

number of casualties estimated by the HGLM and GEE models. The root mean square error 

(RMSE) for observed casualties and estimated by HGLM is 8.96 while for casualties 

estimated with GEE the value of RMSE is 9.05. The lowest value of RMSE is preferred.  

 

It was generally observed from Figure 5.10 that the casualties estimated by both models fitted 

the observed data well as the line of equality passes through the centre of the data. However, 

there were some outliers which were not properly estimated by both the models. A few 
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outliers were highlighted. It was observed that the highest number of 143 car casualties 

occurred on Saturday 12
th

 October 2002 which belonged to the male 21 to 29 age group. The 

estimated casualties for this category were 75 by using HGLM and 71 by using GEE. 

Another outlier was for males of same age group on Friday 25
th

 July 2003 with a value of 125 

whereas the casualties estimated by the HGLM model were 69 and GEE predicted 67 car 

casualties. In the same way some observations were estimated with a higher value than the 

observed casualties. Upon detailed analysis of the data it was found that on 2
nd

 January 2001 

(Tuesday) only 17 casualties were observed for females of the age group 17 to 20 but HGLM 

and GEE estimated it to be 138 and 131 respectively. For the same age group, on 1
st
 January 

2001 (Monday) 34 casualties were observed but HGLM and GEE models estimated it to be 

93 and 101 respectively.  

 

From a standardized deviance residual graph, a few outliers with highest positive 

standardised deviance residual were identified which helped to identify those observations on 

which the number of casualties was estimated to be higher than the observed casualties. The 

graph shown below highlights that Monday 30
th

 June 2003 (age group 50 to 59: females) and 

Thursday 1
st
 February (age group 30 to 39: males) had the highest positive residuals of 4.93 

and 4.75 respectively. The number of casualties estimated by the model on these two days 

was lower than the estimated casualties. Upon detailed investigation it was found that 65 

female casualties in the 50 to 59 age group were observed on 30 June 2003 which was 

estimated to be only 23 casualties. Similarly 119 male casualties of age 31-39 years were 

observed on 1
st
 February 2004 which was estimated to be 58 casualties by the HGLM model. 

This shows that HGLM model was not able to estimate high number of casualties that were 

observed during various periods of year. The most negative SDRs were found for 2
nd

 and 1
st
 

January 2001. It was also observed from the graph of standardised deviance residuals that 

most of the SDRs lay between -4 and +4.  

 

The third graph shows that there was less difference in the numbers of observed casualties 

between male and female. This was also evident from the results of the EQL; when gender 

was removed from the model it produced a reduction of only 3 which suggest that male and 

female are equally variable. Above the age of 30 the number of casualties decreases equally 

for male and female. 
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From the cumulative proportion graph it was observed that only 261 (2 percent) of 

observations had a value less than or equal to 6 casualties per day. However, the estimated 

model had only 1 observation in the same group. It can be seen that at values of less than or 

equal to 14 casualties per day both models had the same proportion of observations which is 

about 22 percent of the whole data. This suggests that observations lying on the tail were not 

estimated precisely by either model. Apart from this small change the observed cumulative 

proportion graph matched the estimated cumulative proportion graph.  

 

Figure 5.10: Comparison of casualties observed and estimated, standardised deviance 

residuals produced by HGLM and GEE-AR1 (Dataset 5: Car) 
 

 

       

      

  

5.6.1.6 Final model checking graphs 

 

In order to investigate the extent to which the trends in the data are represented in the HGLM 

model, the deviance residual were analysed. The graph of the deviance residuals against fitted 

values in Figure 5.11 show that deviance is scattered around the zero line. The normal 

quantile plot appears to be close to the line of equality which supports the assumption of 
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normality of residuals. However, beyond 3 the cumulative residual curve deviates slightly 

from the straight line suggesting that a few points are outliers. Scale-Location plot also shows 

that the deviance doesn’t increase with mean. Cook’s diagram shows that there were some 

strongly influential observations in the data: the results were investigated further to identify 

to which group these observations belonged. The 100 observations with highest Cook’s 

distance were investigated. It is found that out of these 100 observations, 40 belonged to 

December, of which 18 were 25
th

 December while the remaining 22 were 26
th

 December. 

Most of observations with the highest Cook’s distance belonged to 25
th

, 26
th

 December which 

is always Christmas holidays. A further 24 observations belonged to January out of which 19 

were 1
st
 January which was a New-Year holiday. This shows that these days of the year vary 

from year to year in a way that is not captured fully by the present model. As the Cook’s 

distance value for each of the observation was less than 1, so all of these observations were 

kept in the original datasets to reflect the actual variation in number of casualties on these 

days. Heteroscedasticity tests were not undertaken here because in these HGLM models, 

unequal variances were accommodated by using the DTERMS.     

 

Figure 5.11: Diagnostic plots: Full model-HGLM (Dataset 5: Car) 
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5.6.1.7 Estimating the car casualty rate per million population: 

The age and gender specific rate of casualty per million population was calculated by 

dividing the estimated number of casualties occurring on each day by population of that age 

and gender group. The ratios presented here represent the annual age and gender specific rate 

of casualty per million person years. It is to note that these rates do not take account of the 

exposure in terms of distance travelled. As noted by Legge et al (1998) if the distance 

travelled were taken into account instead of population, the estimated age and gender profiles 

would be different from those presented in Table 5.10. 

 

The numbers of car casualties shown in Figure 5.10 were estimated by the HGLM model. It 

is observed that Females had higher car casualties in under 17 age group and at ages greater 

than 40 years than males of same age group. The number of car casualties were found to 

decrease with increase in age after 30 years of age. Table 5.10 which also shows the  rates of 

car casualty per million
 
person-years further reveals that; 

 Females had a higher rate per million person-years of being a car casualty than males 

in all age groups except in the 17 to 39 age group and the 60 plus age group. 

 Persons in the 17 to 20 age group had the highest rate per person-year of being a car 

casualty among all age groups. 

 Above the 17 to 20 age group the car casualty rate per person-year decreases with 

increase in age. The Under 17 group have lowest car casualty rate per person-years 

among all age groups. 

 

Table 5.10: Number of car casualties estimated by HGLM and estimated car casualty rate per 

million person-years 

Estimated number of casualties by the model 

Age group Under 17 17-20 21-29 30-39 40-49 50-59 60-69 70+ 

Male 15.4 

(15) 

41.5 

(42) 

60.8 

(61) 

53.0 

(53) 

35.4 

(35) 

23.3 

(23) 

13.0 

(13) 

12.7 

(13) 

Female  18.4 

(19) 

30.4 

(31) 

54.4 

(54) 

52.3 

(52) 

37.1 

(37) 

25.9 

(26) 

13.6 

(14) 

13.8 

(14) 

Rate per million person-years 

Male 24.9 276.6 186.1 122.7 88.7 63.5 50.6 45.2 

Female 31.4 213.0 167.3 119.0 91.3 69.14 49.0 34.0 

( )represents the  observed number of casualties from the data 
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5.6.2. Model selection process, goodness of fit and model checks for Datasets 6-9 (Walk, 

Bicycle, Motorcycle and Bus) 

 

This section shows the results of the models developed, goodness of fit of the preferred 

model and various checks to validate the model for each of the walk, bicycle, motorcycle and 

bus casualty datasets (Datasets 6 to 9). The same procedure of model development as 

described in section 5.5.2 was used for each of these. In this section the results of the each 

dataset are presented together with the aim of achieving any common and distinct features 

among these datasets. 

5.6.2.1 Hierarchical generalized linear model (HGLM) Walk-Bicycle-Motorcycle and 

Bus Datasets 6 to 9: 

The Hierarchical Generalized Linear Model (HGLM) with Poisson-gamma distribution with 

log link was used for data on each of the walk, bicycle, motorcycle and bus casualties 

(Datasets 6 to 9). In the first step, the full model as shown in section 5.5.2 was developed. 

After this, individual variables were removed from the model to investigate their partial effect 

on the model fit as reflected in the h-likelihood values.  

 

From Table 5.11 it was found that: 

 

 Day of the week had the highest effect among all other variables in the fixed part in 

each of the casualty data, although it was found to be less sensitive in the motorcycle 

data.  

 The age.gender variable was found to be more sensitive in the car casualty data in 

comparison to all other casualty datasets.  

 Month had the uniform effect on the model fit in all of the casualty data except for 

bus where it had the least effect.  

 The time variable had the least effect on the bicycle casualty data. 

 Public holiday had the least effect on motorcycle data while new-year holidays had 

the greatest effect on walk casualty data.  

 Christmas holidays had the highest effect on motorcycle data. 
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In the second step, the month.year interaction was removed from the random part of the full 

model, keeping the same fixed and dispersion parts. It is observed that removal of month.year 

reduced the h-likelihood of the fixed part confirming that it contributes substantially to model 

performance. The highest effect of 375 was observed in walk (Dataset 6) while the lowest 

effect of 6 in the h-likelihood was observed in bus (Dataset 9). 

 

In the third step, the variables were removed in turn from the dispersion part of the model 

while keeping the same fixed and random parts. The results showed that age group is the 

most important variable which affected the extended quasi likelihood (EQL) of the models. 

The highest reduction of 1,226 in EQL was observed for motorcycle (Dataset 8) while lowest 

effect of 478 was observed for bicycle (Dataset 7). The removal of Gender had the least 

effect of 3 on the EQL with 1 degree of freedom in the car (Dataset 5). This suggests that 

Gender is equally variable in this dataset. In the same way, day of the week had 

comparatively less effect of only 3 on EQL for bicycle data. This suggests that there is no 

additional structure in the variability in this case which can be represented through day of 

week. 

 

The coefficient   whose exponential value represents the variance of the random effects, in 

the present case, month and year is found to be significantly different from 0 among all 

modes. The value of   ranged from -5 to -7. The h-likelihood values obtained for the fixed, 

random and dispersion parts are shown in Table 5.11. 

 

5.6.2.2 Analysing the temporal effects 

 

In this section the temporal effects were analysed for the dataset 6-9 (Walk, Bicycle, 

Motorcycle and Bus). For this, each of the full models as shown in section 5.6.2.1 was used. 

The same procedure as used in section 5.6.1.2 was used.  

 

From the results shown in Appendix Table A5.4 it was observed that in each case (each 

mode) the addition of square of time variable
 
to the fixed part of the model has not resulted in 

substantial improvement in the h-likelihood. The h-likelihood improved by value of only 1 

when square of time was included to the full model for Walk and Bus data. The estimated t 

value of square of time
 
had non-significant t values whilst it had high VIF (in range of 16) 

showing multicollinearity with other variables present in the model. 
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Similarly, in the dataset of Bicycle and Motorcycle the addition of square of time improved 

the h-likelihood of the model only by value of 7 and 4 respectively. The t values of the square 

of time
 
were found to be significant with value of 3.51 and -2. 38 for Bicycle and Motorcycle 

data respectively. The VIF of the square of time was 16 in each case which was higher than 

the acceptable value which showed the presence of multicollinearity. 

 

Slight improvement in h-likelihood, non-significant t values of time square, and high VIF 

values shows that there is no substantial temporal effect remaining in each of these models 

that can be represented by the quadratic terms. 

 

Table 5.11: Results of h-likelihood (Walk, Bicycle, Motorcycle and Bus: Datasets 6 to 9) 
 

Models Variables d.f.  H likelihood and change in its 

value 

 

Car Walk Bicycle MC Bus 

FIXED Full Model  201,681  134,387 97,079 102,595 82,559 

 - Age. Gender 7 +1,664 +314 +318 +126 +437 

 - Day of week 6 +1,840 +1,823 +2,395 +281 +1,310 

 - Month 11 +111 +144 +107 +133 +48 

 -  Time 

- Holiday 

- New-Year 

- Christmas  

1 

1 

1 

1 

+72 

+86 

+151 

+62 

+95 

+121 

+310 

+96 

+23 

+180 

+56 

+56 

+49 

+5 

+111 

+207 

+44 

+171 

+12 

+51 

RANDOM Full Model  201,257 134,021 96,796 102,264 82,280 

 - Month.Year 1 +234 +375 +162 +135 +6 

DTERMS Full Model  201,708 134,489 98,244 101,264 85,697 

 - Age 7 +1,164 +1,183 +478 +1,226 +855 

 - Gender 1 +3 +49 +166 +613 +42 

 - Month 11 +113 +100 +54 +126 +24 

 - Day of week 6 +33 +93 +3 +40 +119 

Coefficient    -6.73 

(0.001) 

-6.98 

(0.0009) 

-5.17 

(0.005) 

-5.48 

(0.004) 

-5.3 

(0.004) 

t value   -30.7 -26.6 -22.9 -24.4 -21.4 

 ( ) italic represents the variance of the random part of the model 
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5.6.2.3 Split sample tests 

 

In order to check the consistency of the model parameters, split sample validation tests were 

carried out. To do this, the dataset was randomly partitioned into two, each part with 14,608 

observations. GenStat software was used to estimate the model parameters of Datasets B and 

C which were then compared. After this the coefficients of the fixed part were compared 

between models B and C for each of the casualty datasets (Datasets 6 to 9). The T test was 

used to compare the coefficients of Datasets B and C. TBC values were estimated using the 

formula 2-32. It is found from T test values that the coefficients of model B are not 

significantly different from the coefficients of model C with the exception of few variables as 

most of the estimated values of TBC are less than 1.96. The comparison of coefficients, t 

values and estimated T test values TBC for each dataset are shown in Appendix Tables A5.5 to 

A5.8 and Appendix Figures A5.1 to A5.4. From the estimated values of TBC it was found that 

the coefficients of the following variables had changed, it is to note that each model has 37 

coefficients:  

 

 In the walk casualty data, only the coefficient for Thursday had changed. 

 In the bicycle casualty data only the coefficients of gender and public holidays had 

changed. 

 In the motorcycle data the coefficient of age group 70 plus, 70 plus.male and 

Wednesday had changed. 

 

The estimated values of the TBC with the cumulative proportion for each of the casualty data 

modes are shown in Figure 5.12 which clearly shows that there were very few variables for 

which the magnitude of the coefficients had changed (Models B and C) in each of the 

casualty data modes while in most of the cases the estimated value of the TBC was between        

-1.96 and +1.96 which is an indication that the value of the coefficient has not changed.  
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Figure 5.12: Estimated values of TBC with cumulative proportion in Dataset 6 to 9 

(Walk, Bicycle, Motorcycle and Bus casualty data) 

   

   

 

5.6.2.4 Comparison of Coefficients (HGLM and GEE-AR1; Car-Walk-Bicycle-

Motorcycle-Bus) 

a. Fixed Part: 

 

Due to the reasons explained in section 5.6.1.4, we will only look into the similarities in the 

estimated coefficients (similar signs and values of estimated coefficients) and differences in 

the estimated coefficients. The coefficients of HGLM with Poisson-gamma distribution and 

log link, and GEE-AR1 with negative binomial were compared for each of the walk, bicycle, 

motorcycle and bus casualty data.  It was found that the coefficients that were significant at 

the 95 percent level in HGLM and GEE-AR1 models had the same sign, though a slight 

change was observed in the t values of the variables. The individual results of each mode are 

shown in the appendix Tables A5.9 to A5.12 and appendix Figures A5.5 to A5.8. 

 

In this section the coefficients used in the fixed part in each of the casualty data (car, walk, 

bicycle, motorcycle and bus) are compared to identify any similar patterns in the data. It is 

observed from Figure 5.13 that:  
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 The 17 to 20 age group had greatest casualty rate per person-years for car and 

motorcycle casualties. Among bicyclist casualties, the 21 to 29 age group had the 

greatest rate. The Under 17 age group had the highest casualty rate per person-years 

in walking while older people (70 plus) have greatest rate per person-years while 

travelling in bus. 

 

 For all modes except walk and bus the casualty rate per person-years of getting 

injured in road accident decreases after a certain age group. For walk, the casualty rate 

decreases with increase in age but after 50 years it increases again. The rate per 

person-years for getting injured while travelling in bus increases after the age of 40 

years. 

 

 Among car casualties, those under 17 age had least casualty rate per person-years for 

getting injured in road accident. Among bicyclist and motorcyclist, older people have 

the least casualty rate. The age groups 50 to 59 and 30 to 39 had less rate of getting 

injured while walking and travelling in bus respectively. 

 

 Friday is associated with the greatest casualty rate than any other day of the week in 

each of the modes except bicyclists where Wednesday was found to have the highest 

rate. Weekdays have greater casualty rate than weekends but car travellers have 

greater rate on Saturday than weekdays except Friday. 

 

 In summer months (June, July, August and September) bicycle and motorcycle had 

greatest casualty rate whereas in winter months (December, January and February) 

they have lowest rate. 

 

 Car and Walk modes have greater casualty rate per person in November and 

December while car has lowest casualty rate in March and walk has lowest in August.  

 

b. Random Part: 

 

The interaction of month.year was used in the random part of the HGLM model. The 

exponential of the parameter   represents the variation between corresponding months in 

different years. It was found that   had the coefficient ranging from -5 to -7 with a 
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significant t value for each mode. Only 42 out of the 300 observations (each mode had 60 

coefficients) of month.year interactions had significant t values which show that these months 

in the mentioned years were significantly different from zero. The interpretation of the value 

of the random term can be made that January 2002 was different and had fewer walking 

casualties than was usual in January. In the same way August 2002 was different but it had 

higher motorcycle casualties than usual in August as it has a positive coefficient. The detailed 

results of significant coefficients of the random part for each mode are shown in Table 5.12. 

 

c. Dispersion Part: 

 

One of the main advantages of using regression analysis for the dispersion model is to test the 

significance of individual levels. The symbol   represents variation within each class of 

observations. In this model the age group, gender, month, and day of week variables were 

used in the dispersion part. The coefficients of dispersion models provide additional 

information by quantifying the amount of variation within the corresponding group. The 

individual results for each mode are shown in Appendix Figures A5.5 to A5.8. In this section, 

the coefficients used in the dispersion part of the each casualty data (car, walk, bicycle, 

motorcycle and bus) from the full model are compared and are shown in Figure 5.14. The 

results are summarised below: 

 

 The under 17 age group had a greater variation in all modes except motorcycle where 

30 to 39 years had the highest variation. 

 For car the dispersion decreases with increase in age after the 17 to 20 years age 

group whereas for motorcyclists it decreases after 30-39 years of age.  

 For walk and bus modes the elderly group (70+) had a greater variation than all other 

age groups except those under 17.  

 Sunday had the highest variation among all days of the week for all modes except bus 

where it had the least dispersion. Bus casualties had greatest variation on Tuesday.  

 December had the greatest variation among all months for each of the casualty data 

except motorcycle and bus which had greater variation in June.  
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Figure 5.13: Comparison of coefficients from Fixed part of Model (Datasets 5-9) 
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Table 5.12: Comparison of significant coefficients from Random part of Model (Datasets 5-9) 

 

Car Walk Bicycle Motorcycle Bus 

Variable Coefficient t value Coefficient t value Coefficient t value Coefficient t value Coefficient t value 

Jan-01 0.045 2.34 - - 0.137 3.1 - - - - 
Jan-02 - - -0.046 -2.09 - - - - -0.098 -1.96 
Jan-03 - - - - -0.099 -2.1 - - - - 

Feb-04 -0.069 -3.67 - - - - - - 0.100 2.17 

Mar-01 - - - - - - -0.116 -2.93 - - 
Mar-03 -0.048 -2.55 - - 0.089 2.06 0.158 4.36 - - 
Mar-04 0.04 2.17 - - - - - - - - 

Apr-01 - - - - - - -0.117 -3 - - 
Apr-02 - - - - - - 0.092 2.53 - - 

May-01 -0.043 -2.21 - - 0.147 3.44 - - - - 
May-02 - - - - -0.091 -2.09 - - -0.099 -2.09 

May-03 - - -0.055 -2.48 0.162 -3.67 - - - - 
May-04 - - - - 0.091 2.14 - - - - 

Jun-02 - - - - -0.14 -3.19 - - - - 
Jul-03 -0.044 -2.32 - - - - - - - - 

Aug-02 - - - - -0.096 -2.22 0.102 2.94 - - 
Aug-03 -0.05 -2.67 - - - - - - - - 
Aug-04 0.047 2.49 - - - - - - - - 

Sep-01 - - - - -0.103 -2.32 0.085 -2.25 - - 
Sep-02 -0.053 -2.78 - - - - - - 0.164 3.75 

Oct-02 0.059 3.19 - - - - - - - - 
Oct-04 - - 0.048 2.23 - - - - - - 

Nov-02 0.04 2.31 - - - - - - - - 
Nov-04 -0.057 -3.04 - - - - - - - - 

Dec-03 -0.043 -2.28 - - - - - - - - 

 It is to note that only significant random variables are shown in table. Full details of models are shown in Appendix table A5.11 to A5.15 
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Figure 5.14: Comparison of coefficients from dispersion part of Model  

(Datasets 5-9) 
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5.6.2.4 Comparison of the estimated number of casualties by HGLM and GEE-AR1 

model for (Walk, Bicycle, Motorcycle and Bus casualty data) Datasets 6 to 9 

The number of casualties on each day for each group (age and gender combination) were 

estimated using each of the full model with the HGLM Poisson-gamma distribution with a 

log link, and the GEE model with negative binomial regression and AR1 errors as shown in 

Section 5.5.2. These estimates were compared with the casualties observed on the 

corresponding days in each of the casualty data modes. The root mean square error (RMSE) 

was estimated for each of the casualty data which showed in Table 5.13 that there was very 

little difference between the observed casualty numbers and those estimated by HGLM and 

GEE.  

 

It is observed from the graphs in Figures A5.9 to A5.12 shown in appendix that no particular 

difference was found between the number of casualties estimated by HGLM and GEE 

models. Both models (HGLM and GEE) fitted the observed data well in each casualty data 

(Datasets 6 to 9) as the line of equality passed through the centre of the data. However there 

were some outliers which were not properly estimated by both the models. It was also 

observed from the graphs that most of the standardised deviance residuals lay between -4 and 

+4. The cumulative proportion graph for the estimated number of casualties for HGLM and 

GEE were mostly identical whereas the observations lying on the tail were not estimated 

precisely by both models. Except for this small change, the estimated cumulative proportion 

graph matched the observed cumulative proportion graph in each casualty data mode.  

 

 

Table 5.13: Root mean square values of the casualty data (Walk, Bicycle, Motorcycle, Bus-

Dataset 6-9)  
 

  

Casualty data 

Root mean Square 

Observed and HGLM Observed and GEE 

Walk 3.32 3.33 

Bicycle 2.06 2.09 

Motorcycle 2.73 2.76 

Bus 1.65 1.65 
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5.6.2.6 Final Model checking graphs 

 

The deviance residuals were evaluated to investigate the extent to which the trends in each of 

the sets of casualty data (Datasets 6 to 9) are represented in the HGLM model. The graphs are 

shown in Appendix Figures A5.13 to A5.16. The deviance residuals against fitted values and 

scale location plot shows that HGLM in each of these dataset had not absorbed the entire 

trend. The graph does show that deviance is scattered around the zero line. The normal 

quantile plot appears to be on the straight line which supports the assumption of normality of 

residuals. However, in each case the residuals slightly deviated from a straight line near the 

tails suggesting a few points are outliers. Cook’s diagram showed that there were influential 

observations in the data. Most of these observations belonged to December (25
th

 and 26
th

 

December) and 1
st
 January which is a New-Year holiday. However, the Cook’s distance 

value was less than 1 in each case. Due to this, all of these observations were retained in the 

original datasets to reflect the actual variation in number of casualties on these days. 

Heteroscedasticity tests were not undertaken here because in these HGLM models, unequal 

variances were accommodated by using the DTERMS.     

 

5.6.2.7 Estimating the casualty rate per million population (Datasets 6 to 9) 

The age and gender specific rate of casualty per million population was calculated by 

dividing the estimated number of casualties occurring on each day by the national population 

of that age and gender group. The number of casualties for each of the datasets was estimated 

by the HGLM model. This approach was followed in order to account for the relationships 

among the explanatory variables that are present in the dataset, which represents the structure 

of the observations. Table 5.14 shows the estimated casualty rate per million population, the 

number of casualties estimated by HGLM for each age group by gender, and the observed 

casualty data. These ratios represent the annual age and gender-specific casualty rate per 

million person-years in the national population as reflected in the HGLM model. It is to note 

that because these values do not take account of the exposure in terms of distance travelled, 

they can not be interpreted in terms of risk per vehicle-kilometres. From Table 5.14 it is 

found that: 
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 Car users had the highest casualty rate per person-years in comparison to walk, 

bicycle, motorcycle and bus users with the exception of males under 17 years of age, 

who had greatest casualty rate in walking. 

 Persons in the 17 to 20 age group had the highest casualty rate per person-years 

among all age groups except in bus casualties where older people (70+) had the 

highest rate. 

 The casualty rate per person-years decreased with increasing age in each of car, walk, 

bicycle and motorcycle except for elderly people (70+), at which age there is an 

increase in casualty rate  for walking. 

 Males had a higher casualty rate per person-years than females in walk, bicycle and 

motorcycle data.  

 Females had a higher casualty rate per person-years than males for all age groups in 

bus data, and also in the under 17 and 40 to 60 age groups for car users. 

 

 

5.7   CONCLUSION  

 

The purpose of this part of the study was to investigate the use of the Hierarchical 

Generalized Linear Model (HGLM) having Poisson-gamma distribution with logarithmic link 

for the analysis of road accident casualty data. As part of this, comparison was made with a 

generalized estimation equation (GEE) model with negative binomial distribution and AR1 

time-series error structure. A further objective was to explore the possibilities for the 

combined use of accident and casualty information from the national accident data in 

conjunction with population data. It was found that casualty data in this case had some 

structure that could be identified by the HGLM. In order to draw inferences from this, models 

with random effects should be used which can incorporate the heterogeneities among the 

observations. In this application the HGLM model was preferred over the GEE-AR1 model 

due to the additional capability it offered in incorporating random effects and modelling the 

mean and dispersion jointly. Use of these capabilities is justified by the substantial 

improvement in model fit that is achieved. However, unlike the GEE-AR1, HGLM cannot 

accommodate time series error structure, which has affected estimates of coefficients of some 

of the variables. Magnitude and t values of the estimated coefficients differ between HGLM 

and GEE-AR1. The coefficients of age group, gender, interaction of age group and gender 

were similar in both models whereas the coefficients of day of week, month, public holidays, 
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new-year and Christmas holidays differed between the models. Generally in HGLM model, 

age group, gender, and interaction of age group and gender had greater t values whilst day of 

week and  month had greater t values in GEE-AR1 model.  

 

The age and gender-specific estimates of rate per million population-years presented here 

show how the casualty rate varies through the national population. These ratios take account 

of population rather than distance travelled. They therefore represent the rate of casualty for 

each age and gender group in the population. The estimated casualty rates would vary if 

different exposure variables were considered.  

 

From the modelling results it was found that on a day the chance of casualty for a member of 

the population in each mode of travel varies according to the combination of their age and 

gender, the day of the week, the calendar month, and whether or not the day was a holiday or 

part of Christmas or New-Year holidays. The casualty rate on comparable days decreased by 

about 4 percent for each year during the period 2001-2005 for which data were analysed. The 

calendar month effect was found to vary at random from year to year. The dispersion of 

observations around their modelled values was found to vary systematically according to age, 

gender, calendar month and day of the week; this influenced the accuracy of estimates 

accordingly.  From this dispersion modelling it was found that Sunday had more variation in 

the number of casualties than other days of the week. The under 17 age group was found to 

be more variable than other age groups. In the same way the oldest age group (70 plus) had 

more variation than other age groups in all modes except motorcycle where this group has 

least variation.  

 

From the estimated results of number of casualties occurring on each day it was found that 

for each age group, males had higher or equal number of casualties than females in walk, 

bicycle, and motorcycle modes. For bus travel, females had more casualties than males in the 

same age group. The age group 17 to 20 years has the greatest number of casualties.  

 

From these estimates it was found that the greatest casualty rate per million person-years 

among the modes arises in car use. People aged 17 to 20 years had greater rate per million 

person years of being a road casualty in all modes except bus where those aged 70 plus had 

the greatest rate.  Males have a greater casualty rate than do females in all modes except bus, 

where females of all ages have a greater rate, and in car use either aged under 17 or between 
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40 and 59 where again casualty rate is greater for females.  It is also found that the casualty 

rate per million person-years decreases with increase in age in all modes except walking 

where elderly people (70+) for whom the rate  is greater than for those aged 30 to 59.  

 

It is concluded from the estimates of casualty rate results per million population that this 

varies with age and gender for different modes. Suitable remedial policies, such as education 

and enforcement, could be addressed to target groups based on either higher number of 

casualties or on having higher casualty rate per person-year. 

 

Table 5.14: Number of casualties estimated by HGLM and estimated casualty rate per million 

population 

Age 

group 

Modes of travel 

 Car Walk Bicycle MC Bus 

M F M F M F 

 

M F M F 

<17 

 

24.9 

(15.4) 

15 

31.4 

(18.4) 

19 

31.6 

(19.5) 

19 

23.4 

(13.7) 

14 

17.71 

(11.0) 

11 

3.5 

(2.0) 

2 

10.6 

(6.5) 

6 

1.3 

(0.8) 

1 

2.5 

(1.6) 

2 

3.3 

(2.0) 

2 

17-20 276.6 

(41.5) 

42 

213.0 

(30.8) 

31 

32.9 

(4.9) 

5 

23.4 

(3.4) 

3 

20.0 

(3.0) 

3 

4.4 

(0.6) 

1 

80.6 

(12.0) 

12 

9.7 

(1.4) 

1 

2.6 

(0.4) 

0 

5.2 

(0.7) 

1 

21-29 186.1 

(60.8) 

61 

167.3 

(54.4) 

54 

22.3 

(7.3) 

7 

14.5 

(4.4) 

5 

16.9 

(5.5) 

6 

5.6 

(1.8) 

2 

41.9 

(13.7) 

14 

6.3 

(2.1) 

2 

2.6 

(0.8) 

1 

3.5 

(1.1) 

1 

30-39 122.7 

(53.0) 

53 

119 

(52.3) 

52 

15.5 

(6.7) 

(7) 

8.7 

(3.8) 

4 

15.8 

(6.8) 

7 

3.7 

(1.6) 

2 

39.4 

(17.0) 

17 

4.6 

(2.0) 

2 

2.9 

(1.3) 

1 

3.2 

(1.4) 

1 

40-49 88.7 

(35.4) 

35 

91.3 

(37.1) 

37 

11.7 

(4.7) 

5 

7.7 

(3.1) 

3 

11.4 

(4.6) 

5 

2.7 
(1.1) 

1 

25.2 

(10.1) 

10 

2.7 

(1.1) 

1 

2.7 

(1.1) 

1 

3.5 

(1.4) 

1 

50-59 63.5 

(23.3) 

23 

69.1 

(25.9) 

26 

9.2 

(3.4) 

3 

7.0 

(2.6) 

3 

7.3 

(2.7) 

3 

2.2 

(0.8) 

1 

11.5 

(4.2) 

4 

1.4 

(0.5) 

1 

2.5 

(0.9) 

1 

4.3 

(1.6) 

2 

60-69 50.6 

(13.0) 

13 

49 

(13.6) 

14 

9.6 

(2.5) 

2 

8.0 

(2.2) 

2 

4.5 

(1.2) 

1 

1.3 

(0.4) 

0 

4.3 

(1.1) 

1 

0.5 

(0.2) 

0 

2.9 

(0.7) 

1 

7.0 
(2.1) 

2 

70+ 45.2 

(12.7) 

13 

34 

(13.8) 

14 

18.8 

(5.3) 

5 

14.1 

(6.0) 

6 

5.0 

(1.4) 

1 

0.9 

(0.3) 

0 

1.2 

(0.3) 

0 

0.2 

(0.1) 

0 

4.0 

(1.1) 

1 

9.1 

(3.7) 

4 

Bold represents the casualty rate per million person-year 

Values in brackets show the number of casualties estimated by HGLM 

Italics show the number of observed casualties  
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6. SUMMARY AND CONCLUSIONS 

This study has investigated the occurrence of road traffic accidents at a national scale. The 

four different national datasets of STATS 19, national travel survey data (NTS), population, 

and meteorological data for Great Britain over the 15 years (1991-2005) were analysed 

individually and jointly. Various statistical techniques were used including generalized linear 

model (GLM), generalized estimation equation (GEE), and hierarchical generalized (HGLM) 

linear model. The objectives of this investigation were to make joint use of these national 

datasets, determine the relationship between the number of road accidents and different 

variables available in the national datasets, evaluate the performance of GLM, GEE and 

HGLM models for this work, and to estimate and compare the risk of road accident 

involvement for various groups of road users on different kinds of roads. The following 

conclusions were drawn according to the set of objectives: 

 

6.1  JOINT USE OF NATIONAL DATASETS 

 

The national statistical datasets are valuable resources for road safety research, especially 

when used jointly. However, joint use of the four national datasets showed that these datasets 

are not immediately compatible with each other. The process of extracting the information for 

road accidents occurring on each day from the STATS 19 data (Accident section) was 

straightforward. The combined use of different sections of STATS 19 data is challenging as 

the Casualties and Vehicle sections on their own do not include information when and where 

the road accident occurred, whereas Accident section does not have information about road 

class, vehicle type, age and gender. The combined use of  accidents, casualties and vehicle 

data from STATS 19 jointly with other sources such as traffic flow, meteorological and 

population data presents challenges to users because of difficulties in matching in temporal 

and spatial domains. Each of these national datasets had distinct road class, vehicle type and 

age groups which were reconciled with STATS 19 data for this study. A procedure was 

designed to combine the various national datasets including different sections of STATS 19 

data for the modelling of road accidents, vehicles involved in road accidents and number of 

casualties which can be applied generally to national datasets of these kinds. Various datasets 

were developed in this study which linked the various sources of information and can be 

readily used for modelling.  
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6.2  RELATIONSHIP OF DIFFERENT VARIABLES TO NUMBER OF ROAD ACCIDENTS  

 

The second objective was to identify the factors associated with variations in the risk of road 

accident occurrence per unit of distance travelled. Distance travelled on each day was used to 

represent exposure to risk: this was profiled by day of week and month of year by applying 

correction factors obtained from the Department for Transport to account for the day to day 

variation in distance travelled. 

 

From the modelling results a clear difference was observed between the risk estimated for 

weekday and each of the weekend days. Sunday had the least risk whereas Weekdays had the 

greatest risk per unit of distance travelled. Among the months November had a relatively 

greater risk while August had least risk of road accident occurrence per unit of distance 

travelled. Analysis of the statistical model results revealed that winter and autumn months are 

associated with more risk in comparison to spring and summer months. The risk per unit of 

travel on weekdays varies substantially through the year. Greatest risk is associated with 

weekdays in winter and autumn. Saturdays are comparatively safer than weekdays of the 

same month but in winter months they have more risk per unit of travel than do some of the 

weekdays in spring and summer (April and July) months. Sunday carried the lowest risk per 

unit of travel than all other days and this varied relatively little through the year. 

 

The variables of Christmas, New-Year, and other Public holidays are associated with lower 

number of road accidents occurring on these days. However, it was not possible to assess risk 

on these days because no corrections are available for distance travelled on them. The time 

variable had a negative coefficient which indicates that risk per kilometre of travel declined 

during the study period of 1991 to 2005. An increase in the distance travelled per vehicle is 

associated with an increase in the risk of road accident involvement per unit of distance 

travelled. Travel in police force areas with greater distance travelled per vehicle is associated 

with a greater risk of a road accident per kilometre. It was also found that police force areas 

with a greater population density had a greater estimated risk of road accidents per kilometre 

of travel. However, police forces with a greater number of vehicles per head of population 

tended to have smaller risks. 

 

The joint use of road accident and meteorological data revealed that higher rainfall was 

associated with a greater risk of road accidents and police force areas that experienced less 
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rainfall would have a smaller risk if all other variables remained equal whereas increase in 

the mean minimum monthly temperature is associated with reduced risk per unit of travel. 

 

Analysis of road accidents using statistical models with joint use of information on road class 

and vehicle type revealed further associations. Motorways were found to have less risk of 

accidents per unit of distance travelled for each mode that used them than all other road 

classes. Urban roads carried the greatest risk of road accidents. Cars had a lower accident risk 

per kilometre of travel than all other modes. The interaction variables used in the model 

highlighted the greater risk for car on motorway, pedal cycles on A roads, car on rural minor 

roads and goods vehicles on minor roads in addition to their main effects. It was also found 

that for buses the greatest accident risk per unit distance of travel is on urban A roads. 

Generally pedal cycle and motorcycle are associated with greatest risk per unit of distance 

travelled than other modes. Leisure motorcycling is associated with greater frequency of 

involvement in road accidents than other forms of motorcycle usage, though it was not 

possible to assess risk as no corrections are available for distance travelled. It was also 

observed that the risk of vehicle involvement in road accidents per unit of distance travelled 

is high on Monday and Friday in comparison to other days of the week. Similarly September 

and November have the greatest risk among the month of year. 

 

Cars are involved in injury accidents more frequently than any other kind of vehicle. In view 

of this, we investigate car casualties in different age and gender groups further by considering 

their rate of injury in road traffic accidents per million of their population. This can be 

achieved by analysis of the coefficients in a statistical model of age and gender-specific road 

accident casualty that has relevant population as offset. Young persons (under 17) and older 

people (60+) were least likely to be casualties in car accidents. The highest casualty rate per 

million person-years was found to be in the age range 17 to 20. A clear pattern was observed 

of decreasing road casualty rate with increasing age. Males had greater casualty rate per 

million person-years and this was particularly so for young males (aged 17-30).  

 

For transport modes other than the car it was found that pedestrians and motorcyclists 

between the ages of 17 to 20 have a greater rate of casualty per million person-years than any 

other age group. Older people (70+) have a greater rate of bus casualty whilst the age range 

of 21 to 29 had the greatest rate of bicycle casualty. It was also found that, in all cases except 

travel by bus, the rate per million person-years of road casualty decreased with increasing 
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age, which could be because people become more experienced over time and safety of their 

travel behaviour improves. Together, the road accident and casualty data also showed that the 

greatest rate per million person-year for pedestrian and car casualties occurred in the autumn 

and winter months while bicyclists’ and motorcyclists’ greatest rate occurred in the summer 

months, when their travel activity is likely to be greatest. Friday is associated with greater 

casualty rate than any other day of the week in each of the modes except bicyclists where 

Wednesday was found to have the highest rate. Weekdays generally have greater casualty 

rate than weekends but car travellers have greater casualty rate on Saturday than weekdays 

except Friday. 

 

6.3  COMPARISON OF STATISTICAL TECHNIQUES USED IN THIS STUDY 

 

The generalized linear model (GLM), generalized estimation equation (GEE) and hierarchical 

generalized linear models (HGLM) methodologies were all used in this study. It was found 

that the road accident data is over-dispersed relatively to a Poisson process, as a result of 

which a negative binomial regression was preferred. A generalized estimation equation 

(GEE) with autoregressive error terms of order 1 was preferred over the generalized linear 

model (GLM) because of the presence of serial correlation in the data. It was also found that 

if the serial correlation was not accommodated then its presence affected the significance 

levels and in some cases it affected the estimates of the model parameters.  

 

In this particular case it was observed that some of the meteorological effects could be 

represented through the month when the AR1 error structure was allowed. Deviations from 

the mean minimum temperature for a month followed a pattern that is represented through the 

AR1 error term. The HGLM is more computationally demanding than the other techniques 

but it has the advantages over GLM of joint modelling of mean and dispersion, and it 

accommodated both within and between category variance among the observations. In this 

application the HGLM model was preferred over the GEE-AR1 model due to the additional 

capability it has in incorporating random effects, and in modelling the mean and dispersion 

jointly. Use of these capabilities is justified by the substantial improvement in model fit that 

is achieved. Within the HGLM modelling approach, several different variants of likelihood 

are recommended to be used as objective criteria in estimating the components of an HGLM. 

The adjusted profile likelihood (APL), which is offered as a criterion for fitting the dispersion 

model, was found to be unreliable as implemented in GenStat version 12. Consequently the 
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extended quasi likelihood (EQL) was used instead. It is found that HGLM cannot 

accommodate time series data due to which the coefficients of some of the variables 

estimated using it may be unreliable. Due to this, its results need to be interpreted with care 

and suitable verification checks should be applied. 

 

It was also found that the generalized linear model (GLM) is easy to compute and can 

accommodate large datasets. On the other hand GEE and HGLM are harder to compute and 

had difficulty in accommodating large national datasets. The computation time of the GLM 

with 279,429 observations was 2 to 5 minutes, for the GEE-AR1 model this time was 7 to 10 

hours and for the HGLM with 29,216 observations it was 3 to 5 hours, using a Dell Inspiron 

PC with 2GHz Intel Core Duo, 3GB RAM running under the Windows Vista operating 

system. 

 

6.4  RISK ESTIMATED FOR VARIOUS GROUPS  

 

The risk per unit of exposure was estimated for each of the vehicle classes, and road classes, 

whereas casualty rate per million person-years was estimated for each age groups, and gender 

that were used in this study. In Chapter 4 the risk per unit of travel was estimated for each 

road and mode combination. These risk values can be used to highlight those combinations 

that need most attention in reducing road accidents. The results obtained from this study can 

be used to inform education and promote safer use of road and vehicle combinations. The 

range of risk per kilometre of travel as shown in Table 4.14 varies substantially by mode of 

travel and by class of road. It is found that the two groups that have the highest risk per unit 

of travel are pedal cycles and motorcycles on urban A roads. The other groups that also have 

high risk per unit distance of travel are motorcycles and goods vehicles on urban minor roads. 

From the perspective of reducing the number of casualties, the combination of travel by car 

and urban roads could be prioritised because of the high numbers arising from high distance 

of travel despite having a lower risk per unit distance travelled than most other groups.  

 

Among the age and gender group combinations that were explored, it was found that young 

adults (of both genders) aged between 17 and 20 had the greatest road casualty rate per 

million person years in all vehicle types except buses, whereas older people had a greater 

rate. Among all combinations of age, gender and vehicle type, car users aged 17 to 20 had the 

greatest casualty rate per million person years. At all ages, females had a greater casualty rate 
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per person-year than males while travelling on by bus. Those females under 17 and in the 40 

to 59 age group had slightly higher car casualty rate per million person-years than males.  

 

6.5   IMPLICATIONS FOR ROAD SAFETY RESEARCH AND POLICY 

The UK Government set out a broad strategy which includes casualty reduction targets 

mainly by reducing the numbers of casualties up to the year 2010. This was supported by a 

road safety programme with key objectives to explore the scale and nature of road accidents to 

identify high risk groups and to understand the travel behaviour. The Department for Transport 

produces quarterly reports comparing the number of casualties of different groups and by police 

forces and relates them to a base year and estimate the reduction targets. However, they have not 

yet highlighted the risk for different groups especially road and vehicle combinations. The results 

produced by them are widely used by the media, road safety organisations, local authorities and 

planning organisations to create awareness for improving the road safety.  The estimated risk and 

other results produced in this thesis complement and strengthen those already established.  The 

identification groups with high risk of involvement in road accidents will help individuals on 

making choices for their journey, and society as whole can benefit from it. Devising a complete 

road safety policy based on these results is beyond the scope of this thesis but this study 

highlights some of the important facts: 

 There is need to relate the road accident data to the other national data sources. Linking 

the various sections of STAST19 data to the other sources of information on travel 

activity is of high importance. Doing that will bring the relative risks of road and vehicle 

combination, gender and age groups into focus.  

 Identification of Weekday and November with greatest risk per unit of travel emphasise 

the need to focus on travel behaviour during these days. If the high risk in November is 

mainly due to weather then local authorities should be encouraged to plan special 

measures for this. However, for individual persons this should serve as a message to be 

careful while travelling on these days. The high risk per unit of travel on any Weekday 

might be due to change in either travel pattern or travel behaviour. Realising the 

sensitivity of the issue, the Department for Transport has already commissioned some of 

the projects to explore work-related road accidents and contributory factors to them.  

 The greater risk per unit of travel in areas with higher population density complements 

our findings of Chapter 4 that urban roads have greater risk. This research finding lends 
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support to the government argument for 20 mph zones and home zones to reduce the 

speed in urban areas.   

 The decrease in risk per unit of travel with increase in vehicles per head of population in 

Chapter 2 shows that affluent areas will have less risk. This research finding further 

supports the agenda of Department for Transport which led to allocation of the resources 

to investigate the relationship between the child casualties and social deprivation index. 

 The research findings of Chapter 3 show the effect of meteorological factors on the risk 

per unit of travel. This suggests that those local authorities could use preventive measures 

such as special sign posts and other engineering measures like increase visibility on the 

streets to reduce the increased risk due to rain.  

 Research finding of Chapter 4 are new and Department for Transport may investigate  

details of the risk per unit of travel associated with various road and vehicle 

combinations. Until now the focus of Department for Transport was on comparison of 

STATS 19 data and Hospital admission data (Hospital Episode Statistics, HES). This 

research has raised the importance of linking the national datasets. Linking different 

sections of STATS 19 data will highlight new areas of focus to improve road safety. 

 The government is pursuing the policy of modal shift by encouraging people to walking 

and cycling modes from Cars, even though it is found to be the safest mode. Looking at 

the risks per unit of travel associated with walking and cycling it is strongly suggested to 

provide full safety measures on the road before implementing any wide-spread 

programme. 

 The research findings of Chapter 5 also support and strengthen the agenda of 

Department for Transport for reducing the child and old age person’s casualties. 

However, new insights have been gained by combining the casualty information with 

information from accident section of STATS 19 data (when and where they occur). 

The disaggregation of results by gender highlights the importance of focusing on 

specific gender, age groups and mode in any subsequent road safety plans. 

On the methodological development, various statistical techniques were compared. It is found 

that generalized linear model (GLM) is generally adequate to model large datasets, it can 

accommodate over-dispersion but not serial correlation. The coefficients and significance levels 

of some variables were found to change substantially if the presence of serial correlation is 

not respected. Generalized estimation equation (GEE) is computationally demanding but it can 

accommodate the serial correlation that was found to be present in the data, which GLM cannot 

accommodate. Hierarchical generalized linear Model (HGLM), which is relatively new, is more 
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computationally demanding than either GLM or GEE. It has additional benefits of using random 

terms and dispersion modelling. However, HGLM cannot accommodate serial correlation, and 

due to this its results should be interpreted with care and suitable verification checks applied 

before initiating road safety programmes on the basis of results from it.  

6.6   FUTURE WORK 

 

In this study, the research opportunity has been taken to use national road accident datasets to 

model the number of road accidents occurring on each day, number of vehicles involved in 

road accidents on each day, and number of road casualties occurring each day. This work 

could be further developed in four directions: 

 

 The methodology developed to model road accidents from national datasets can be 

used at the national level in other countries, especially in developing countries where 

road accident rates are currently increasing. The road accident datasets will also be 

compared and the lessons learnt from this study will be applied for the improvement 

of road safety. 

 Further research is required to explore suitable statistical modelling methods to 

accommodate the spatial autocorrelation among data from the police forces.  

 The statistical modelling methods, especially HGLM, applied successfully to count 

data are not fully mature. Investigations will be required to determine the reasons for 

their shortcomings with large datasets and to establish appropriate procedures. Further 

development will be required to enable them to accommodate the spatial and temporal 

correlation among the data.  

 The new data from Motorway Incident Detection and Automatic Signalling (MIDAS) 

for the western quadrant of the M25 between the junctions 10 (A3) and 15 (M4) 

includes minute by minute loop detector data about the traffic flow by vehicle class. 

The information about road accidents by time of the day is also available from the 

STATS 19 data. Combined use of STATS 19 data and MIDAS data will lead to 

estimates of the number of vehicles involved in accidents disaggregated by time and 

vehicle class. This will lead to further insights about the risks per unit of travel for 

different types of vehicle at different times of day disaggregated by day of the week. 
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APPENDIX  

 

APPENDIX A1.1 

 

 

1. Road accident reporting system in some of OECD countries: 
 

Road accident statistics are used for evaluating the level of road safety at both national and 

international levels. In addition, data is used for road safety research, identifying accident hot 

spots and estimating road safety risks. In various countries road accidents are mostly reported 

by the police. More industrialised counties often have systematic procedures from recording 

and coding to the management of their road accident databases (Safety support, 2007). The 

procedure adopted by some of OECD countries is given in detail below:  

1.1 Finland 

In Finland, police collect the road accident data as part of their routine police activity. 

Statistics Finland receives data from police that is entered into the PATJA information 

system of police affairs. Statistics Finland is responsible for the maintenance of the database 

and it also controls access to data. Statistics Finland makes further checks and then 

supplements the data by comparing it with other datasets including causes of death, national 

road administration data on accident locations and casualties. Data can also be acquired in 

files from Statistics Finland whereas monthly statistics are made available for users on the 

website of Traffic Safety of Finland. 

1.2 France 

In France the national accident database is derived from police force reports. The road 

accident data is based on BAAC forms (Bulletin d’Analyse des Accidents Corporels de la 

Circulation). These standard electronic forms are filled in for every traffic accident resulting 

in personal injury. The police forces send the BAAC files to the National Inter-Ministerial 

Road Safety Observatory (ONISR). After transmitting these files to ONISR, these are further 

checked by Service d'Etudes Techniques des Routes et Autoroutes (SETRA) which is a 

technical service of the Ministry of Infrastructure. SETRA controls the quality, identifies 

duplicate entries, cross-checks the BAAC against the local road safety figures in order to 

identify any missing data and finally compiles the files on a monthly basis. Database 
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maintenance is responsibility of SETRA. ONSIR controls access to data and publishes 

official road safety statistics based on the BAAC data. 

1.3. Germany 

For every road accident in Germany the police are informed and investigate the accident 

scene. This investigation results in the production of a standardised computer police report. 

The data collected in the report includes information about vehicles,  weather, persons 

involved, accident scene, and circumstances of the accident. Some major cities have a special 

police unit (Verkahsunfalldienst VUD), which deals with traffic accidents. According to law, 

only accidents involving vehicular traffic are recorded therefore accidents involving only 

pedestrians are not included in the federal statistics. Since 1975, accident causes have also 

been registered. From the police stations, data is transmitted to the federal office of statistics, 

Statistisches Bundesamt (StBA) who own and maintain the database. The data is used by the 

federal government for monitoring the development of road traffic and for policy making. 

Aggregated data are made available to members of public and can be accessed over the 

internet. 

1.4. Italy 

In Italy, the national road accident database is maintained by National Institute of Statistics 

(ISTAT). Annual statistics on road accidents are published by ISTAT to inform members of 

the public about road safety issues. The accident database contains information about all 

traffic accidents and injuries. In Italy, data collection is not standardised as police reports are 

drafted according to local protocols but all reports contain data concerning the vehicle, 

environment, weather conditions, and accident description. All the data gathered by the 

police is then used to complete the ISTAT module which is a standardised form. This form is 

then sent to the Provincial Capital Statistical office and thence to ISTAT. Data are used by 

ISTAT for the production of the official statistics. These publications promote the 

development of research activities. Data become available yearly and are free of charge to 

research institutes. 
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1.5.  Netherlands 

In the Netherlands, accident data are collected by the police who complete accident reporting 

forms at the scene. These forms are sent to a central coding agency which incorporates the 

data into a database. Data are coded according to special guidelines and weekly checks are 

made. This data is linked with GIS maps and in some cases it is also linked with licence plate 

registration, and other databases to improve data quality. The data are owned by the Ministry 

of Transportation. Data can usually be purchased but a few research organizations have 

access to the aggregated data. 
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APPENDIX A1.2 

 

Road safety plans of some of OECD countries: 

 

The road safety plans of Denmark, Netherlands, Sweden, Finland, Canada, and United 

Kingdom are as follows: 

1. Danish road safety plans 

The vision and central theme of Danish Road Safety Strategy is embedded in their slogan 

‘Every Accident is One too Many’. The vision was launched in the Danish Government’s 

action plan on road safety. The vision sets a course towards a future road system that is 

without any road accident whatsoever and therefore retains a focus on preventive measures. 

Although the vision is to prevent all road accidents, the road safety policy objective for 2012 

is: 

  

 To reduce the number of fatal and serious injuries by at least 40 percent in 

 2012 compared to the baseline average of 1998. This requires that the total number of 

fatalities and of seriously injured casualties should not exceed 300 and 2,443 

respectively. 

 The main areas of focus for road safety are speeding, alcohol, cyclists, and junctions, 

which together are factors in almost 85 percent of road accidents.  

 

The Danish national commission on road safety is responsible for evaluating the national 

road safety plan. The national plan is monitored three times per year and evaluated after 

every four years. Monitoring indicators for road safety in Denmark are the number of road 

accidents, fatalities and serious injuries, accidents at intersections, accidents involving 

cyclists, speed of vehicles involved in road accidents, and drink-driving. 

2. Netherlands road safety plans 

The Dutch road safety policy relies on the concept of sustainable road safety. In the 1980s, 

the Dutch Ministry of Transport, Public Works and Water Management set road safety targets 

to reduce annual fatalities by 50 percent and to have 40 percent fewer hospital admissions by 

2010 compared to 1986. 
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The Dutch government considers speed enforcement, speed management, and the 

roadworthiness test for vehicles as areas of focus for road safety. As a result of this, many 

infrastructural traffic calming measures have been adopted including chicanes, speed humps, 

and roundabouts. Speed cameras have also been used on motorways, on secondary roads and 

in urban areas. The Dutch Ministry of Transport, Provinces and Municipalities is responsible 

for monitoring and evaluating the road safety plans. At national level, road safety policy 

effect reports are released every year with a comprehensive report every four years. 

Monitoring indicators are the number of accidents, fatalities and casualties at all severity 

levels. Risk exposure and seatbelt use are also monitored. 

3. Swedish road safety plans 

The central theme of the Swedish road safety plan is the Vision Zero concept. Fatalities and 

serious casualties are regarded unacceptable in Sweden. In 1977, the Swedish Parliament 

approved the Vision Zero programme which states that ‘Nobody should be killed or seriously 

injured within the road transport system’. According to this, road transport systems structure 

and function should be brought into line with the demands that this goal entails. The Vision 

Zero principles are: 

 

 The traffic system should be adapted to take better account of the needs, mistakes, and 

vulnerabilities of road users;  

 The level of violence that the human body can tolerate without sustaining fatal or 

seriously injury forms the basic parameter in the design of the road transport system; 

and 

 Vehicle speed is the most important regulating factor for safe road traffic. It should be 

determined by the technical standards of both roads and vehicles so as not to exceed 

the level of violence that human body can tolerate.  

 

The Swedish target for the year 2000 was to reduce fatalities by 25 percent compared with a 

base year of 1996 whereas the target for 2007 was a reduction of fatalities by 50 percent. 

Various priorities including safer traffic in built-up areas, safer vehicles, cable guardrails, 

safer motorways, seatbelt reminders, cycle helmets, and safer commercial vehicles in 

operation were considered. The Swedish Road Administration and the Swedish National 
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Road and Transport Institute are responsible for evaluating road safety plans. Accident, 

fatality and casualty prediction curves are produced and monitored regularly. 

4. Finnish road safety plans 

Finland is one of the top countries in world for road safety due to its high standards 

and performance. The Finnish National Road Safety Plan 2005 was established by the 

Consultative Committee on Road Safety, under the responsibility of the Ministry of Transport 

and Communication. Various specific objectives and activities were defined for 2005. The 

base year used for the number of fatalities is 1989 (with 734 fatalities). The target set for 

2000, was to reduce fatalities by 50 percent (367 fatalities). The actual number of fatalities in 

2000 at 396 exceeded this by 29. The target set for 2005 was to reduce fatalities by 65 

percent to fewer than 250 fatalities. Since the target for 2000 was not met, the Consultative 

Committee on Road Safety presented an updated road safety programme for 2001-2005, 

containing more intensified and more effective road safety measures. The vision of the 

Finnish government about road safety is based on the principle that the road transport system 

should be designed so that nobody should die or be seriously injured on its roads. The aim of 

the 2001-2005 road safety programme was to create the conditions for a continuous 

improvement in the transport system, with the target of no more than 100 traffic fatalities by 

2025. The priority method that has been identified to improve road safety in Finland is to 

curb traffic growth with the aim of reducing the likelihood of accidents by influencing choice 

of mode of transport and effective use of technology. 

5. Canadian road safety plans 

The Canadian government has an ambitious target to achieve a 30 percent decrease in the 

number of people fatally or seriously injured on its roads by 2010 from the 1996 baseline. 

The government’s vision is to have the safest roads in world and it intends to achieve this by 

implementing high quality data collection systems, the dedicated application of problem 

solving, partnership building, enforcement, education, and evaluation of the programme. 

Within the main targets are the following objectives, to: 

 

 achieve a 95 percent minimum seatbelt wearing rate and proper use of child 

restraints; 
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 reduce the number of road users fatally or seriously injured on rural roads by 40 

percent; 

 reduce the number of fatally or seriously injured casualties involving drinking and 

driving by 40 percent; 

 reduce the number of drivers killed or seriously injured in speed and intersection 

related accidents by 20 percent; 

 reduce the number of young drivers/riders (of 16 to 19 years) killed or seriously 

injured in accidents by 20 percent; 

 reduce the number of people killed or seriously injured in accidents involving 

commercial carriers by 20 percent; and 

 reduce the number of vulnerable road users (pedestrians, motorcyclists, and cyclists) 

killed or seriously injured by 30 percent. 
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Appendix Table A2.1: Days coded as public holidays, Christmas holidays and New-year 

holidays 

 
 

H N 

 

C 1991 Day of week Holiday event H N 

 

C 1995 Day of 

week 

Holiday event 

√ √ X 
1st January  Tuesday New Year’s day 

√ 

 

 

√ 

 

X 1st January  Sunday New Year’s day 

√ X X 29th March  Friday Good Friday √ √ X 2nd January Monday New Year’s day holiday 

√ X X 31st March Sunday Easter Sunday √ X X 14th April Friday Good Friday 

√ X X 1st April  Monday Easter Monday √ X X 16th April Sunday Easter Sunday 

√ X X 6th May  Monday Early May bank holiday √ X X 17th April Monday Easter Monday 

√ X X 27th May Monday Bank holiday √ X X 8th May  Monday Early May bank holiday 

√ X X 26th August Monday Summer bank holiday √ X X 29th May Monday Spring bank holiday 

√ X √ 25th December Wednesday Christmas day √ X X 28th August Monday Summer bank holiday 

√ X √ 26th December Thursday Boxing day √ X √ 25th December Monday Christmas day 

     

  

√ X √ 26th December Tuesday Boxing day 

H N 

 

C 1992 Day of week Holiday event H N 

 

C 1996 Day of 

week 

Holiday event 

√ √ X 1st January  Wednesday New Year’s day √ √ X 1st January  Monday New Year’s day 

√ X X 17th April Friday Good Friday √ X X 5th April Friday Good Friday 

√ X X 19th April Sunday Easter Sunday √ X X 7th April Sunday Easter Sunday 

√ X X 20th  April  Monday  Easter Monday √ X X 8th April Monday Easter Monday 

√ X X 4th May  Monday  Early May bank holiday √ X X 6th May  Monday Early May bank holiday 

√ X X 25th May Monday  Spring bank holiday √ X X 27th May Monday Spring bank holiday 

√ X X 31st August Monday  Summer bank holiday √ X X 26th August Monday Summer bank holiday 

√ X √ 25th December Friday Christmas day √ X √ 25th December Wednesday Christmas day 

√ X √ 26th December Saturday Boxing day √ X √ 26th December Thursday Boxing day 

√ X √ 28th December Monday  Bank holiday    

  

  

H N 

 

C 1993 Day of week Holiday event H N 

 

C 1997 Day of 

week 

Holiday event 

√ √ X 1st January  Friday New Year’s day √ √ X 1st January  Wednesday New Year’s day 

√√ X X 9th April Friday Good Friday √ X X 28th March Friday Good Friday 

√ X X 11th April Sunday Easter Sunday √ X X 30th March Sunday Easter Sunday 

√ X X 12th  April  Monday Easter Monday √ X X 5th May  Monday Easter Monday 

√ X X 3rd May  Monday Early May bank holiday √ X X 26th May Monday Spring bank holiday 

√ X X 31st May Monday Spring bank holiday √ X X 25th August Monday Summer bank holiday 

√ X X 30th August Monday Summer bank holiday √ X √ 25th December Thursday Christmas day 

√ X √ 25th December Saturday Christmas day √ X √ 26th December Friday Boxing day 

√ X √ 26th December Sunday Boxing day    

  
  

√ X √ 27th December Monday Bank holiday    

  

  

√ X √ 28th December Tuesday Bank holiday    

  
  

H N 

 

C 1994 Day of week Holiday event H N 

 

C 1998 Day of 

week 

Holiday event 

√ √ X 1st January  Saturday New Year’s day √ √ X 1st January  Thursday New Year’s day 

√ √ X 
3rd January Monday New Year’s day holiday 

√ X X 
10th April Friday Good Friday 

√ X X 1st April Friday Good Friday √ X X 12th April Sunday Easter Sunday 

√ X X 3rd April Sunday Easter Sunday √ X X 13th April Monday Easter Monday 

√ X X 4th April Monday Easter Monday √ X X 4th May  Monday Early May bank holiday 

√ X X 2nd May  Monday Early May bank holiday √ X X 25th May Monday Spring bank holiday 

√ X X 30th May Monday Spring bank holiday √ X X 31st August Monday Summer bank holiday 

√ X √ 25th December Sunday Christmas day √ X √ 25th December Friday Christmas day 

√ X √ 26th December Monday Boxing day √ X √ 26th December Saturday Boxing day 

√ X √ 27th December Tuesday Bank holiday √ X √ 28th December Monday Bank holiday 
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Appendix Table A2.1: Days coded as public holidays, Christmas holidays and New-year 

holidays 

H N 

 

C 1999 Day of 

week 

Holiday event H N 

 

C 2003 Day of 

week 

Holiday event 

√ √ X 1st January  Friday New Year’s day √ √ X 1st January  Wednesday New Year’s day 

√ X X 2nd April Friday Good Friday √ X X 18th April Friday Good Friday 

√ X X 4th April Sunday Easter Sunday √ X X 20th April Sunday Easter Sunday 

√ X X 5thApril Monday Easter Monday √ X X 21st April Monday Easter Monday 

√ X X 3rd May  Monday Early May bank holiday √ X X 5th May Monday Early May bank holiday 

√ X X 31st May Monday Spring bank holiday √ X X 26th May Monday Spring bank holiday 

√ X X 30th August Monday Summer bank holiday √ X X 25th August Monday Summer bank holiday 

√ X √ 25th December Saturday Christmas day √ X √ 25th December Thursday Christmas day 

√ X √ 26th December Sunday Boxing day √ X √ 26th December Friday Boxing day 

√ X √ 27th December Monday Bank holiday    

  

  

√ X √ 28th December Tuesday Bank holiday    

  

  

H N 

 

C 2000 Day of 

week 

Holiday event H N 

 

C 2004 Day of 

week 

Holiday event 

√ √ X 1st January  Saturday New Year’s day √ √ X 1st January  Thursday New Year’s day 

√ X X 3rd January  Monday New Year’s day holiday √ X X 9th April Friday Good Friday 

√ X X 21st  April Friday Good Friday √ X X 11th April Sunday Easter Sunday 

√ X X 23rd April Sunday Easter Sunday √ X X 12th April Monday Easter Monday 

√ X X 24th April Monday Easter Monday √ X X 3rd May Monday Early May bank holiday 

√ X X 1st May Monday Early May bank holiday √ X X 31st May Monday Spring bank holiday 

√ X X 29th May Monday Spring bank holiday √ X X 30th August Monday Summer bank holiday 

√ X X 28th August Monday Summer bank holiday √ X √ 25th December Saturday Christmas day 

√ X √ 25th December Monday Christmas day √√ X √ 26th December Sunday Boxing day 

√ X √ 26th December Tuesday Boxing day √ X √ 27th December Monday Bank holiday 

     

  

√ X √ 28th December Tuesday Bank holiday 

H N 

 

C 2001 Day of 

week 

Holiday event H N 

 

C 2005 Day of 

week 

Holiday event 

√ √ X 1st January  Monday New Year’s day √ √ X 1st January  Saturday New Year’s day 

√ X X 13th April Friday Good Friday √ √ X X 3rd January Monday New Year’s day holiday 

√ X X 15th April Sunday Easter Sunday √ X X 25th March Friday Good Friday 

√ X X 16th April Monday Easter Monday √ X X 27th March Sunday Easter Sunday 

√ X X 7th May Monday Early May bank holiday √ X X 28th March Monday Easter Monday 

√ X X 28th May Monday Spring bank holiday √ X X 2nd May Monday Early May bank holiday 

√ X X 27th August Monday Summer bank holiday √ X X 30th May Monday Spring bank holiday 

√ X √ 25th December Tuesday Christmas day √ X X 29th August Monday Summer bank holiday 

√ X √ 26th December Wednesday Boxing day √ X √ 25th December Sunday Boxing day 

H N 

 

C 2002 Day of 

week 

Holiday event √ X √ 

26th December Monday Bank holiday 

√ √ X 1st January  Tuesday New Year’s day √ X √ 27th December Tuesday Bank holiday 

√ X X 29th March Friday Good Friday    

  

  

√ X X 31st March Sunday Easter Sunday    

  

  

√ X X 1st April Monday Easter Monday    

  

  

√ X X 6th May Monday Early May bank holiday    

  

  

√ X X 3rd June Monday Golden Jubilee holiday    

  

  

√ X X 4th June Tuesday Spring bank holiday    

  

  

√ X X 26th August Monday Summer bank holiday    

  

  

√ X √ 25th December Wednesday Christmas day    

  

  

√ X √ 26th December Thursday Boxing day          
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Appendix Table A2.2: Results of models for the 51 police force areas of Great Britain with 

Ln (Total distance travelled nationally on each day as offset-Dataset 2) 

Model D.F Scale Likelihood BIC 

1 1 0.74232 -987,439 1,974,891 

2 7 0.73186 -985,445 1,970,978 

3 12 0.74645 -988,229 1,976,609 

4 3 0.73346 -985,742 1,971,521 

5 4 0.75254 -989,358 1,978,766 

6 18 0.73636 -986,321 1,972,867 

7 6 0.74391 -987,729 1,975,533 

8 84 0.73539 -986,135 1,973,323 

9 12 0.74321 -987,595 1,975,340 

10 22 0.73723 -986,477 1,973,230 

11 23 0.72661 -984,461 1,969,210 

12 24 0.72422 -984,001 1,968,303 

13 25 0.72331 -983,823 1,967,959 

14 26 0.72319 -983,799 1,967,924 

15 76 0.05901 -886,157 1,773,267 

16 27 0.40507 -915,701 1,831,741 

17 27 0.70358 -980,129 1,960,597 

18 27 0.39802 -911,537 1,823,412 

19 27 0.40335 -914,953 1,830,244 

20 27 0.07353 -995,918 1,992,174 

21 42 0.25380 -863,753 1,728,032 

22 28 0.40368 -915,390 1,831,130 

23 28 0.36379 -902,087 1,804,526 

24 28 0.40304 -914,837 1,830,026 

25 28 0.37117 -906,009 1,812,370 

26 43 0.22768 -855,069 1,710,676 

27 29 0.35419 -900,575 1,801,514 

28 29 0.35731 -901,171 1,802,705 

29 44 0.22756 -855,043 1,710,639 

30 30 0.35217 -899,954 1,800,284 

31 45 0.21961 -852,461 1,705,485 

32 46 0.21924 -852,358 1,705,293 

33 96 0.05753 -755,179 1,511,561 

D.F= degrees of freedom; BIC= Bayesian information criterion   
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Appendix Table A2.3: Distance travelled by day of week (index): Great Britain, 1991-2005 

Source of data: Department for Transport  
Distance travelled by day of  week (Index): Great Britain 

 

Year Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

1991 93 93 93 97 107 118 100 

1992 93 94 95 99 102 118 100 

1993 93 94 97 97 107 113 100 

1994 94 91 96 95 110 114 99 

1995 94 95 94 99 113 103 103 

1996 97 90 96 95 113 112 98 

1997 95 97 99 96 109 107 98 

1998 94 93 98 96 107 115 98 

1999 96 96 99 98 106 110 96 

2000 93 94 101 99 110 108 94 

2001 94 94 97 102 111 106 97 

2002 98 95 96 99 111 107 94 

2003 96 94 97 98 109 109 97 

2004 94 94 99 101 110 106 96 

2005 923 96 97 98 112 107 97 

 

 

 
 

Appendix Table A2.4: Distance travelled by month of year (index): Great Britain, 1991-2005 

Source of data: Department for Transport 

 
Distance travelled by month of year (Index): Great Britain 

 

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

1991 93 64 95 113 100 109 105 132 104 102 88 97 
1992 80 87 98 114 107 100 109 109 111 108 94 83 
1993 89 96 96 109 97 94 116 121 107 97 94 86 
1994 83 85 96 103 110 102 105 124 110 92 90 99 
1995 85 99 88 109 112 102 102 120 93 106 98 87 
1996 81 86 91 96 106 112 109 116 111 100 97 95 
1997 76 88 99 110 106 104 102 121 100 99 93 103 
1998 88 92 96 108 110 97 116 118 109 93 86 90 
1999 94 103 88 86 93 111 125 107 99 115 91 83 
2000 78 97 102 102 101 108 105 110 105 105 106 88 
2001 87 89 90 98 112 113 105 102 91 96 121 94 
2002 81 99 95 108 102 102 104 117 101 103 96 85 
2003 84 92 101 101 97 109 116 111 97 107 97 91 
2004 91 89 97 101 102 101 104 112 100 102 102 100 
2005 87 87 98 96 107 104 101 113 108 107 101 92 

 

 
 

 

 

 

 

 



 

283 

 

Appendix Table A2.5: Results of the addition of time and square of time as explanatory 

variable for analysing the temporal effects (Dataset 1) 

 

Model 

No. 

Improvement 

in BIC 

Time  Square of Time 

Coefficient t value VIF Coefficient t value  VIF 

1 184 8.61x10
-05 

1.15 16 -1.41x10
-08

 -10.65 16 

2 290 9.90x10
-06

 1.55 16 -1.41x10
-08

 -12.56 16 

3 1,489 7.97x10
-06

 1.18 16 -1.40x10
-08

 -11.78 16 

4 292 9.92x10
-06

 1.56 16 -1.42x10
-08

 -12.56 16 

5 1,410 8.23x10
-06

 1.19 16 -1.40x10
-08

 -11.46 16 

6 2,068 9.19x10
-06

 1.66 16 -1.41x10
-08

 -14.43 16 

7 1,925 9.45x10
-06

 1.64 16 -1.41x10
-08

 -13.85 16 

8 2,132 9.09x10
-06

 1.68 16 -1.41x10
-08

 -14.67 16 

9 1,964 9.46x10
-06

 1.66 16 -1.41x10
-08

 -14.02 16 

10 2,122 9.23x10
-06

 1.69 16 -1.41x10
-08

 -14.62 16 

11 2,127 9.23x10
-06

 1.70 16 -1.41x10
-08

 -14.64 16 

12 191 9.23x10
-06

 1.69 16 -1.41x10
-08

 -14.62 16 

13 214 8.68x10
-06

 1.69 16 -1.40x10
-08

 -15.42 16 

14 224 8.71x10
-06

 1.73 16 -1.40x10
-08

 -15.74 16 

15 234 8.66x10
-06

 1.73 16 -1.40x10
-08

 -15.78 16 

16 205 -1.8x10
-05

 -1.57 87 -1.35x10
-08

 -14.80 17 

17 131 -2.2x10
-05

 -2.47 51 -1.99x10
-08

 -11.91 56 

18 190 -1.4x10
-05

 -1.34 67 -1.33x10
-08

 -14.26 17 

19 69 1.45x10
-05

 2.43 23 -1.71x10
-08

 -8.81 77 

20 64 -1.7x10
-05

 -1.44 86 -2.11x10
-08

 -8.56 125 

21 59 -1.7x10
-05

 -1.69 68 -2.17x10
-08

 -8.26 142 

22 82 -1.7x10
-05

 -1.69 64 -2.15x10
-08

 -9.60 103 

23 84 -2x10
-05

 -1.88 68 -1.99x10
-08

 -9.68 87 

24 53 -5.4x10
-05

 -2.34 341 -2.48x10
-08

 -7.90 200 

25 5 -2.2x10
-05

 -2.05 74 -1.66x10
-08

 -3.72 402 

26 2 -1.1x10
-05

 -3.77 580 -1.49x10
-08

 -3.31 408 
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Appendix Table A2.6: Results of the Park and Glejser test-Dataset 1 

 

 

Tests 

Results of Test 

Park Test ui
2
= 10.38+ 0.0035*(Estimated values of Road accidents)

   

         (3.66)    (0.73) 

         R
2
= 0.01 

Glejser Test ABS(ui)= 3.214+ 0.00047*(Estimated values of Road accidents)
   

                (8.35)    (0.72) 

          R
2
= 0.01 

ui represents the deviance residuals, ( ) represents the t values. 

Significant t values of the explanatory variable suggest the presence of heteroscedasticity. 
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Appendix Table A2.7: Results of the addition of time and square of time as explanatory 

variable for analysing the temporal effects (Dataset 2) 

 

Model 

No. 

Improvement 

in BIC 

Time Square of Time 

Coefficient t value VIF Coefficient t value  VIF 

1 2319 -8.54x10
-05

 -35.20 16 3.10x10
-09

 7.20 16 

2 2073 -8.49 x10
-05

 -35.92 16 2.99 x10
-09

 7.12 16 

3 13835 -8.63 x10
-05

 -36.37 16 3.02 x10
-09

 7.17 16 

4 2086 -8.50 x10
-05

 -35.93 16 2.99 x10
-09

 7.13 16 

5 13548 -8.63 x10
-05

 -36.15 16 3.09 x10
-09

 7.29 16 

6 13925 -8.59 x10
-05

 -37.17 16 2.90 x10
-09

 7.07 16 

7 13644 -8.59 x10
-05

 -36.95 16 2.98 x10
-09

 7.21 16 

8 13971 -8.60 x10
-05

 -37.28 16 2.92 x10
-09

 7.13 16 

9 13679 -8.59 x10
-05

 -37.00 16 2.98 x10
-09

 7.23 16 

10 13972 -8.59 x10
-05

 -37.22 16 2.89 x10
-09

 7.06 16 

11 38 -8.59 x10
-05

 -37.22 16 2.89 x10
-09

 7.06 16 

12 28 -8.63 x10
-05

 -37.61 16 2.95 x10
-09

 7.25 16 

13 27 -8.62 x10
-05

 -37.62 16 2.92 x10
-09

 7.20 16 

14 39 -8.62 x10
-05

 -37.63 16 2.92 x10
-09

 7.10 16 

15 44 -8.47 x10
-05

 -41.68 16 2.71 x10
-09

 7.52 16 

16 44 -8.7 x10
-05

 -39.86 16 2.94 x10
-09

 7.56 16 

17 53 1.91 x10
-05

 9.39 17 -2.88 x10
-09

 -8.08 16 

18 54 -9.3 x10
-05

 -40.65 16 3.30 x10
-09

 8.15 16 

19 62 -9.4 x10
-05

 -42.17 16 3.41 x10
-09

 8.63 16 

20 43 -8.8 x10
-05

 -39.39 16 2.94 x10
-09

 7.45 16 

21 49 -8.8 x10
-05

 -39.08 17 3.02 x10
-09

 7.82 18 

22 33 9.24 x10
-06

 4.62 17 -2.34 x10
-09

 -6.69 16 

23 39 1.13 x10
-05

 5.66 17 -2.50 x10
-09

 -7.14 16 

24 29 9.07 x10
-06

 4.51 17 -2.27 x10
-09

 -6.46 16 

25 26 -7.4 x10
-05

 -33.65 16 2.40 x10
-09

 6.21 16 

26 43 -8.6 x10
-05

 -38.18 18 2.85 x10
-09

 7.40 17 

27 32 9.20 x10
-06

 4.60 17 -2.34 x10
-09

 -6.70 16 

28 32 9.35 x10
-06

 4.66 17 -2.32 x10
-09

 -6.63 16 

29 179 4.08 x10
-05

 19.27 19 -4.86 x10
-09

 -13.81 17 

30 50 1.3 x10
-05

 6.52 17 -2.75 x10
-09

 -7.94 16 

31 152 3.77 x10
-05

 17.81 19 -4.50 x10
-09

 -12.83 17 

32 160 3.88 x10
-05

 18.29 19 -4.62 x10
-09

 -13.16 17 

33 -6 1.71 x10
-07

 0.07 26 -8.53 x10
-10

 -2.40 19 
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Appendix Table A2.8: Number of road accidents occurring on each day in different 

bands (Dataset 2) 

 

Range 

Comparison of number of observations 

 

Observed Accidents 

 

Estimated Accidents 

 

Under 50 273,729 273,957 

50 to 100 2,785 3,562 

100 to 150 2,706 1,910 

150 to 200 206 - 

Greater than 

200 
3 - 

Total  279,429 279,429 

 

 

Appendix Table A2.9: Number of zero observations in different police forces 

Dataset 2 

 

Police forces with number of observations with zero values 

Police force Number of observations Police force Number of observations 

3 59 37 30 

7 1 40 50 

10 1 44 1 

11 53 45 1 

12 6 48 2173 

14 2 53 43 

16 3 54 25 

17 95 55 17 

21 1 60 20 

22 2 61 135 

23 30 63 71 

30 3 91 664 

31 3 92 195 

32 15 93 272 

33 3 94 789 

34 33 95 6 

35 9 96 807 

36 9 98 1645 
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Appendix Table A2.10: Results of the Park and Glejser test-Dataset 2 

 

 

Tests 

Results of Test –Dataset 2 

Park Test ui
2
= -0.15+ 0.055*(Estimated values of Road accidents)

   

         (-66.26)    (54.11) 

         R
2
= 0.0104 

Glejser Test ABS(ui)= -0.01 + 0.014*(Estimated values of Road accidents)
   

                (-31.88)    (4.77) 

          R
2
= 0.0001 

ui represents the deviance residuals, ( ) represents the t values. 

Significant t values of the explanatory variable suggest the presence of heteroscedasticity. 
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Appendix Table A2.11: Results of Model 19-GEE-negative binomial with autoregressive 

error terms (Dataset 1) 

 

 

Variable 

 

Negative binomial regression 

Coefficient S.E t value 
Weekday 0.174 0.00274 63.58 
Sunday -0.146 0.00291 -50.01 

Summer -0.024 0.01323 -1.84 
Autumn 0.068 0.04604 1.47 
Winter 0.039 0.03815 1.01 

Weekday-Summer -0.043 0.00422 -10.27 
Sunday-Summer 0.048 0.00451 10.71 
Weekday-Autumn  0.023 0.00530 4.37 
Sunday-Autumn  -0.028 0.00568 -4.87 
Weekday-Winter  0.043 0.00465 9.22 
Sunday-Winter  -0.050 0.00499 -9.93 

January 0.028 0.03586 0.77 
February -0.034 0.03585 -0.96 
March 0.054 0.01551 3.47 
May 0.023 0.01549 1.47 
July -0.044 0.01544 -2.87 
August -0.122 0.01592 -7.68 
September 0.041 0.01603 2.55 
October -0.047 0.05121 -0.92 
December 0.058 0.03498 1.66 

Time -3.09x10
-05

 0.00001 -5.75 
Public Holidays -0.216 0.01282 -16.85 
Christmas Holidays -0.426 0.03037 -14.03 
New-year Holidays -0.116 0.03303 -3.51 
D.T per veh* 0.00012 0.00002 7.60 
Constant -16.461 0.26981 -61.01 
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Appendix Table A2.12: Results of Model 22-GEE-negative binomial with autoregressive 

error terms (Standard errors corrected by using White’s procedure)-Dataset 2 

 

 

Variable 

 

Negative binomial regression 

Coefficient S.E t value 
Weekday 0.168 0.00580 28.99 
Sunday -0.140 0.00557 -25.18 

Summer 0.019 0.04033 0.48 
Autumn 0.046 0.02540 1.81 
Winter 0.018 0.03295 0.56 

Weekday-Summer -0.050 0.00392 -12.74 
Sunday-Summer 0.054 0.00388 13.80 
Weekday-Autumn  0.026 0.00273 9.65 
Sunday-Autumn  -0.028 0.00331 -8.33 
Weekday-Winter  0.051 0.00393 12.98 
Sunday-Winter  -0.058 0.00455 -12.71 

January 0.064 0.03664 1.75 
February -0.017 0.03806 -0.45 
March 0.058 0.00474 12.22 
May 0.027 0.00478 5.73 

June -0.036 0.03523 -1.01 
July -0.080 0.03574 -2.24 
August -0.150 0.03593 -4.18 
September 0.006 0.03610 0.17 
October -0.030 0.02950 -1.00 
December 0.084 0.03588 2.35 

Time -4.12x10
-6

 0.00002 -0.19 
Public Holidays -0.185 0.01689 -10.94 
Christmas Holidays -0.475 0.02566 -18.50 
New-year Holidays -0.047 0.02280 -2.08 
Population density 7.58x10

-5
 0.00002 3.36 

Veh per person -2.004 0.46739 -4.29 
Constant -13.669 0.18727 -72.99 
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Appendix Table 3.1: Results of models for the police forces with meteorological variables 

when season was carried forward from model 5 onwards instead of month (Dataset 3) 
 

 

Model D.F Scale Log-Likelihood BIC Difference in BIC 

when month is used  

1 1 0.0630 -17,696 35,400 0 

2 17 0.0396 -17,039 34,214 0 

3 12 0.0642 -17,725 35,547 0 

4 4 0.0660 -17,766 35,564 0 

5 5 0.0489  -17,324 34,687 -52 

6 6 0.0406  -17,057 34,162 -70 

7 7 0.0261 -16,483 33,023 -126 

8 23 0.0158 -15,826 31,836 -232 

9 8 0.0258 -16,473 33,010 -107 

10 8 0.0261 -16,483 33,030 -182 

11 8 0.0260 -16,480 33,024 -125 

12 8 0.0258 -16,473 33,010 -106 

13 8 0.0261 -16,483 33,031 128 

14 9 0.0254 -16,450 32,971 -127 

15 9 0.0260 -16,480 33,031 -177 

16 9 0.0258 -16,471 33,014 -110 

17 9 0.0258 -16,473 33,018 -108 

18 10 0.0254 -16,449 32,979 -127 

19 10 0.0257 -16,467 33,015 -152 

20 10 0.0258 -16,471 33,022 -110 

21 11 0.0253 -16,448 32,984 -125 

22 11 0.0257 -16,463 33,014 -175 

23 12 0.0252 -16,443 32,982 -146 

24 28 0.0142 -15,701 31,626 -153 

BIC represents the Bayesian information criterion 

Negative sign in the difference in BIC shows that BIC is less preferable compared to same model when month 

was used instead of season in the linear predictor. This also suggests that month performed better than season 

in each model.  
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Appendix Table 3.2: Results of the addition of time and square of time as explanatory 

variable for analysing the temporal effects (Dataset 3) 
 

Model 

No. 

Improvement 

in BIC 

Time Square of Time 

Coefficient t value VIF Coefficient t value  VIF 

1                840  -2.4x10
-03 -7.54 16 -6.0 x10

-07 -0.35 16 

2             1,529  -2.4 x10
-03 -10.72 16 -6.3 x10

-07 -0.52 16 

3                903  -2.4 x10
-03 -7.76 16 -8.3 x10

-07 -0.50 16 

4                869  -2.4 x10
-03 -7.57 16 -8.5 x10

-07 -0.50 16 

5                   -8  -2.4 x10
-03 -7.76 16 -8.3 x10

-07 -0.50 16 

6                  --8  -2.6 x10
-03 -9.03 16 -2.5 x10

-07 -0.16 16 

7                  -6  -1.4 x10
-03 -5.87 16 1.6 x10

-06 1.28 16 

8                  -5  -1.3 x10
-03 -6.73 17 1.8 x10

-06 1.84 16 

9                  -6  -1.4 x10
-03 -5.96 16 1.7 x10

-06 1.35 16 

10                  -5  -1.5 x10
-03 -6.28 16 2.1 x10

-06 1.65 16 

11                  -6  -1.4 x10
-03 -6.06 16 1.8 x10

-06 1.44 16 

12                  -6  -1.4 x10
-03 -5.95 16 1.8 x10

-06 1.39 16 

13                 -6  -1.4 x10
-03 -5.94 16 1.7 x10

-06 1.35 16 

14                  -6  -1.4 x10
-03 -6.17 16 2.0 x10

-06 1.59 16 

15                 -5  -1.5 x10
-03 -6.34 17 2.1 x10

-06 1.71 16 

16                  -5  -1.5 x10
-03 -6.20 17 2.1 x10

-06 1.63 17 

17                  -6  -1.4 x10
-03 -6.02 17 1.9 x10

-06 1.47 16 

18                  -5  -1.4 x10
-03 -6.18 17 2.0 x10

-06 1.61 16 

19                  -5  -1.5 x10
-03 -6.36 17 2.2 x10

-06 1.75 17 

20                  -5  -1.5 x10
-03 -6.23 17 2.1 x10

-06 1.67 17 

21                  -5  -1.5 x10
-03 -6.29 17 2.2 x10

-06
 1.77 17 

22                  -6  -1.4 x10
-03 -6.19 17 2.0 x10

-06 1.57 17 

23                  -5  -1.4 x10
-03 -6.13 17 2.0 x10

-06 1.59 17 

24                  -2  -1.3 x10
-03 -7.14 17 2.4 x10

-06 2.49 17 
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Appendix Table A3.3: Comparison of results of deviance residuals of model 15 with the 

model 15 refinned* (GEE-AR1) -Dataset 3 

 

Model 15 refined is the model in which two more explanatory variables of Rain in Cambridgeshire and 

minimum monthly temperature in Grampian are added. 

 

 

Appendix Table A3.4: Results of the Park and Glejser test-Dataset 3 

Test Results of Test 

Park Test ui
2
= 1.82 -0.002*(Estimated values of Road accidents)

   

         (26.85)    (-12.49) 

         R
2
= 0.05 

Glejser Test ABS(ui)= 1.077 -0.0007*(Estimated values of Road accidents)
   

                (42.79)    (12.65) 

          R
2
= 0.05 

ui represents the deviance residuals, ( ) represents the t values. 

Significant t values of the explanatory variable suggest the presence of heteroscedasticity. 
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Appendix Table A3.5: Results of Model 15-GEE-negative binomial with autoregressive error 

terms (Standard errors corrected by using White’s procedure) 

 

 

Variable 

 

Negative binomial regression 

Coefficient S.E t value 

January 0.061 0.0197 3.11 

February 0.025 0.0214 1.17 

March -0.069 0.0116 -5.98 

April -0.122 0.0082 -14.83 

May -0.056 0.0100 -5.64 

June -0.011 0.0151 -0.75 

July -0.022 0.0281 -0.78 

August -0.081 0.0296 -2.74 

September 0.031 0.0128 2.41 

October 0.025 0.0078 3.27 

November 0.131 0.0159 8.26 

December 0.088 0.0229 3.84 

Time -0.001 0.0003 -3.02 

Population density 0.0002 0.0001 3.15 

Vehicle per person -1.290 0.1111 -11.61 

Mean Min Temperature -0.008 0.0038 -2.04 

Rain 0.001 0.00005 11.33 

Constant -13.908 0.0681 -204.38 
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Appendix Table A4.1: Results of the addition of time and square of time as explanatory 

variable for analysing the temporal effects (Dataset 4) 
 

Model 

No. 

Improvement 

in BIC 

Time Square of Time 

Coefficient t value VIF Coefficient t value  VIF 

1                373  -3.4x10
-05

 -0.79 16 -9.8 x10
-08

 -4.24 16 

2                835  2.8 x10
-05

 0.84 16 -1.4 x10
-07

 -8.23 16 

3                292  -6.7 x10
-05

 -1.92 16 -4.8 x10
-08

 -2.58 16 

4                868  -7.2 x10
-05

 -3.33 16 -4.9 x10
-08

 -4.28 16 

5                    8  -7.2 x10
-05

 -3.33 16 -4.9 x10
-08

 -4.28 16 

6                    6  -7.3 x10
-05

 -3.35 16 -4.9 x10
-08

 -4.14 16 

7                  24  -4.5 x10
-05

 -2.17 16 -6.5 x10
-08

 -5.91 16 

8                    1  -1.1 x10
-04

 -5.18 16 -4.0 x10
-08

 -3.46 16 

9                  14  -8.5 x10
-05

 -4.17 16 -5.4 x10
-08

 -5.01 16 

10                  14  -9.1 x10
-05

 -4.48 16 -5.4 x10
-08

 -5.00 16 

11                  14  -9.1 x10
-05

 -4.50 16 -5.3 x10
-08

 -4.94 16 

12                  14  -9.3 x10
-05

 -4.64 16 -5.2 x10
-08

 -4.93 16 

13                  15  -9.0 x10
-05

 -4.51 16 -5.4 x10
-08

 -5.08 16 

14                  16  -8.8 x10
-05

 -4.43 16 -5.4 x10
-08

 -5.13 16 

15                  22  -8.8 x10
-05

 -5.43 16 -5.0 x10
-08

 -5.75 16 

16                  21  -8.8 x10
-05

 -5.53 16 -4.8 x10
-08

 -5.60 16 

17                  20  -9.2 x10
-05

 -5.76 16 -4.7 x10
-08

 -5.53 16 
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Appendix Table A4.2: Results of the Park and Glejser test-Dataset 4 

 

Tests 

Results of Test 

Park Test ui
2
= 1.27 -0.00287*(Estimated values of number of vehicles involved in 

road accidents)
   

         (128.57)    (-28.25) 

         R
2
= 0.017 

Glejser Test ABS(ui)= 0.900 -0.0012*(Estimated values of number of vehicles 

involved in road accidents)
   

                (257.77)    (-34.77) 

          R
2
= 0.026 

ui represents the deviance residuals, ( ) represents the t values. 

Significant t values of the explanatory variable suggest the presence of heteroscedasticity. 
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Appendix Table A4.3: Results of Model 17-GEE-negative binomial with autoregressive error 

terms (Standard errors corrected by using White’s procedure)-Dataset 4 

 

Variable 

 

GEE-AR1 Negative binomial regression 

Coefficient S.E t value 
Motorway -1.092 0.00140 -780.04 

Rural A -0.288 0.00029 -987.06 

Rural Minor -0.160 0.00040 -401.18 

Urban Minor 0.725 0.00077 940.35 

Pedal cycle 0.891 0.00131 679.04 

Motorcycle 0.773 0.00012 6524.29 

Bus -0.042 0.00117 -35.51 

Goods vehicle -0.484 0.00014 -3394.11 

Time -0.00018 0.00004 -4.47 

Weekday 1 0.155 0.03934 3.94 

Weekday 2 0.105 0.04694 2.24 

Sunday  -0.197 0.06592 -2.98 

Summer 0.106 0.03335 3.17 

Autumn -0.095 0.01839 -5.14 

Winter 0.030 0.04454 0.67 

January -0.079 0.01999 -3.95 

February -0.076 0.02233 -3.40 

March -0.063 0.02292 -2.76 

May 0.053 0.01454 3.63 

June -0.051 0.01369 -3.74 

July -0.066 0.01296 -5.09 

August  -0.074 0.01250 -5.89 

October  0.160 0.02780 5.76 

WD1-Summer -0.047 0.01301 -3.60 

WD2-Summer -0.043 0.01196 -3.59 

Sun-Summer 0.074 0.01970 3.76 

WD1-Autumn 0.033 0.00843 3.90 

WD2-Autumn 0.028 0.00856 3.26 

Sun-Autumn -0.039 0.01487 -2.65 

WD1-Winter  0.034 0.01231 2.78 

WD2-Winter 0.039 0.01275 3.02 

Sun-Winter -0.066 0.01930 -3.41 

Holidays -0.146 0.03845 -3.78 

New-year -0.300 0.06505 -4.62 

Christmas -0.276 0.05718 -4.82 

MC.Mot -0.093 0.00157 -59.63 

Bus.Mot -1.075 0.00214 -501.54 

GV.Mot 0.238 0.00247 96.31 

PC.RA 0.730 0.00375 195.00 

MC.RA 0.248 0.00922 26.85 

Bus.RA -0.644 0.00146 -441.58 

GV.RA 0.252 0.00264 95.69 

PC.RM -1.047 0.00178 -588.94 

MC.RM 0.004 0.00903 0.41 

Bus.RM -0.755 0.00119 -636.96 

GV.RM 0.830 0.00140 591.26 

PC.UM -0.473 0.00400 -118.13 
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MC.UM 0.140 0.00296 47.16 

Bus.UM 0.075 0.00249 30.10 

GV.RM 1.080 0.00251 430.66 

MC-Rural-Sunday 0.899 0.09290 9.67 

Constant -14.270 0.13207 -108.05 
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Appendix A5.1 

 

H-likelihood: 

 

H-likelihood being fundamentally different from classical likelihood has generated some 

controversies. The h-likelihood is a special kind of extended likelihood, where the scale of 

random parameter is specified to certain conditions. For inference in HGLM three likelihoods 

are available, the h-likelihood and two adjusted profile likelihoods namely the marginal 

likelihoods, and the restricted or residual likelihoods. The marginal likelihood is an adjusted 

profile likelihood, eliminating nuisance random effects v from h by integration while 

restricted likelihood for mixed linear models is that which eliminates nuisance fixed effects

 from L by conditioning on the ML estimates of  . H-likelihood is used for inference 

about the v , the marginal likelihood L for   and the adjusted profile likelihood for the 

dispersion parameters. Table 5.1 shows the likelihoods which are used to compare the fixed, 

random, and dispersion parts of the HGLM model. 

 

1. H-likelihood for random part: Lee et al (2006, 188, ff) give the following expression for 

h-likelihood of random part in HGLM with Poisson-gamma distribution and log link; 

 

 

 

Where    and 

 

and they adopted Stirling approximation by log ( )x : 

 

 

In these equations 

        represents the index of the random part in the model, 

       represents the random coefficient produced by the model, 

  iu   represents the exponential of iv coefficient of random part, and 

       represents the variation between random parts. 
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2. H-likelihood for fixed part: Lee et al., (2006, 188, ff) give the following expression for h-

likelihood of the fixed part in HGLM with Poisson-gamma distribution and log link is 

estimated as below: 

 

 

            

 

 

 

 

3. H-likelihood for dispersion part 

 

H-likelihood of dispersion part in HGLM with Poisson-gamma distribution and log link is 

estimated as under (Lee et al., 2006, 188, ff); 

 

                      5-16 
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4. Extended quasi likelihood (EQL):  

Nelder and Pregibon (1987) introduced quasi likelihood function which allows for the 

comparison of various forms of all components of a generalized linear model, i.e. the linear 

predictor, the link function, and the variance function. The contribution of iy  to the EQL 

(Lee et al., 2006, 85, ff)  is:  

      iiiiii ydyVyQ 


 ,
2

1
log

2

1
;,                   

and the total is denoted by 

i

iQq , where  iiyd ,  is the deviance function defined by 

  du
uV

uy
ydd

i

i

y
i

iii 






)(

2,   

                    

EQL forms the basis for the joint modelling of structured mean and dispersion parameters, 

both within the GLM framework.  EQL for the Poisson-gamma, when the uy | is Poisson 

with mean u , and u itself is gamma with density 
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Appendix Table A5.2: h-likelihood results of Full model with different offsets 

 (Dataset 5: Car) 
 

Variables used 

Fixed Part Age group, gender, age group.gender, Day of week , Month, Time ,Public 

holidays, New-year holidays, Christmas holidays 

Random Part Month.Year 

Dispersion 

Part  

 

Age group, gender, Day of week, Month 

H-likelihood with different offsets 

Model   Offset Fixed  Random Dispersion 

A1:       Population 

 

201,681 201,257 201,708 

A2:       Total daily distance   travelled 202,778 202,357 202,784 

A3:       Yearly distance travelled per person  202,659 202,238 202,667 

 

 

 

 

 

Appendix Table A5.3: Results of the addition of square of time as explanatory variable for 

analysing the temporal effects-HGLM Full model (Dataset 5) 
 

Model 

No. 

Improvement 

in h-

likelihood for 

fixed part 

Time Square of Time 

Coefficient t value VIF Coefficient t value  VIF 

Full 

Model 
0 -0.0001122 -3.12 16.05 8.16x10

-09
 0.45 

 

16.08 
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Appendix Table A5.4: Results of the addition of square of time as explanatory variable for 

analysing the temporal effects-HGLM Full models (Dataset 6-9) 
 

 

Model 

No. 

Improvement 

in h-

likelihood 

for fixed part 

Time Square of Time 

Coefficient t value VIF Coefficient t value  VIF 

Walk 1 -0.0001 -3.12 16 8.16x10-
09

 0.45 16 

Bicycle 7 -0.0003 -4.79 16 1.32x10
-07

 3.51 16 

Motorcycle 4 0.00003 0.45 16 -8.48x10
-08

 -2.38 16 

Bus 1 -0.00006 -0.82 16 -4.30x10
-08

 -0.98 16 
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Appendix Table A5.5: Comparison of coefficients and t values of full model HGLM 

(Split sample Data: Walk) 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B            Model C  

Coefficient tA Coefficient tB Coefficient          tC tBC 

Under 17 0.670 65.35 0.677 46.35 0.664 45.93 0.639 

17-29 0.667 50.59 0.670 35.88 0.664 35.72 0.209 

30-39 -0.315 -26.55 -0.318 -19.12 -0.309 -18.27 -0.350 

40-49 -0.445 -34.28 -0.434 -24.02 -0.455 -24.46 0.801 

50-59 -0.531 -38.50 -0.538 -27.38 -0.526 -27.16 -0.445 

60-69 -0.401 -26.04 -0.404 -18.10 -0.399 -18.81 -0.163 

70 plus 0.165 14.20 0.156 9.59 0.173 10.45 -0.716 

Gender 0.176 53.97 0.173 37.32 0.179 38.96 -1.002 

Under 17.Male -0.052 -3.76 -0.057 -2.91 -0.046 -2.38 -0.383 

17-20. Male -0.005 -0.27 -0.002 -0.08 -0.010 -0.40 0.225 

30-39. Male 0.223 14.49 0.218 10.05 0.224 10.24 -0.196 

40-49. Male 0.066 3.80 0.075 3.12 0.061 2.48 0.420 

50-59. Male -0.078 -4.15 -0.100 -3.64 -0.057 -2.19 -1.123 

60-69. Male -0.169 -7.76 -0.148 -4.79 -0.192 -6.23 1.006 

70 plus. Male -0.063 -3.67 -0.076 -3.14 -0.047 -1.96 -0.857 

Monday 0.000 -0.02 -0.008 -0.68 0.008 0.70 -0.977 

Tuesday 0.014 1.91 0.028 2.68 0.000 -0.01 1.879 

Wednesday 0.019 2.50 0.016 1.49 0.021 2.05 -0.355 

Thursday 0.058 7.88 0.041 3.94 0.072 6.99 -2.138 

Saturday 0.049 6.43 0.045 4.17 0.056 5.10 -0.714 

Sunday -0.353 -36.62 -0.342 -25.59 -0.364 -26.17 1.114 

January 0.039 2.32 0.034 1.60 0.044 2.37 -0.353 

February 0.018 1.08 0.010 0.48 0.026 1.46 -0.590 

March -0.032 -1.95 -0.027 -1.29 -0.036 -2.01 0.323 

April -0.061 -3.62 -0.058 -2.74 -0.065 -3.40 0.232 

May -0.028 -1.66 -0.019 -0.90 -0.035 -1.90 0.559 

June -0.064 -3.81 -0.068 -3.25 -0.060 -3.19 -0.268 

July -0.131 -7.73 -0.124 -5.71 -0.139 -7.39 0.526 

August -0.167 -9.89 -0.172 -8.01 -0.165 -8.79 -0.228 

September 0.002 0.12 0.000 -0.01 0.004 0.23 -0.160 

October 0.064 3.89 0.068 3.24 0.061 3.43 0.237 

December 0.173 10.21 0.172 7.99 0.176 9.27 -0.146 

Time 0.000 -12.79 0.000 -10.70 0.000 -10.96 -0.801 

Holidays -0.135 -10.55 -0.124 -7.05 -0.148 -7.95 0.910 

New_Year 0.057 1.79 0.104 2.38 0.010 0.22 1.455 

Christmas -0.356 -8.96 -0.335 -5.95 -0.370 -6.65 0.450 

Constant -13.79 -274.47 -13.75 -195.44 -13.87 -194.28 1.661 
Italics indicate the non-significant t values at the 5 percent   level 
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Appendix Figure A5.1: Comparison of coefficients of full model HGLM for coefficient 

validation: Walk 
 

 

 
 

 
 

 
 

 

 

 

-0.600 

-0.400 

-0.200 

0.000 

0.200 

0.400 

0.600 

0.800 

U
n
d

er
 1

7
 

1
7

 t
o

 2
0

 

2
1

 t
o

 2
9

 

3
0

 t
o

 3
9

 

4
0

 t
o

 4
9

 

5
0

 t
o

 5
9

 

6
0

 t
o

 6
9

 

7
0

 p
lu

s 

C
o
ef

fi
ci

en
t 

Dataset A Dataset B Dataset C 

-0.400 

-0.200 

0.000 

0.200 

0.400 

M
o

n
d

ay
 

T
u
es

d
ay

 

W
ed

n
es

d
ay

 

T
h
u
rs

d
ay

 

F
ri

d
ay

 

S
at

u
rd

ay
 

S
u
n
d

ay
 

C
o
ef

fi
ci

en
t 

Dataset A Dataset B Dataset C 

-0.200 

-0.100 

0.000 

0.100 

0.200 

0.300 

Ja
n
 

F
eb

 

M
ar

 

A
p

r 

M
ay

 

Ju
n
 

Ju
l 

A
u
g
 

S
ep

t 

O
ct

 

N
o

v
 

D
ec

 

C
o
ef

fi
ci

en
t 

Dataset A Dataset B Dataset C 



 

305 

 

Appendix Table A5.6: Comparison of coefficients and t values of full model HGLM (Split 

sample Data: Bicycle) 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B            Model C  

Coefficient tA Coefficient tB Coefficient          tC tBC 

Under 17 0.286 13.28 0.311 9.97 0.260 8.69 1.171 

17-29 0.512 18.89 0.465 12.07 0.559 14.67 -1.732 

30-39 0.359 18.39 0.370 13.34 0.351 12.73 0.481 

40-49 0.044 1.93 0.062 1.9 0.029 0.90 0.723 

50-59 -0.168 -6.67 -0.212 -5.87 -0.124 -3.52 -1.741 

60-69 -0.670 -19.89 -0.666 -13.62 -0.673 -14.48 0.117 

70 plus -1.117 -29.03 -1.106 -20.15 -1.133 -21.04 0.358 

Gender 0.709 122.02 0.724 87.55 0.694 85.00 2.593 

Under 17.Male 0.213 8.85 0.184 5.31 0.241 7.15 -1.176 

17-20. Male 0.109 3.58 0.153 3.53 0.063 1.47 1.468 

30-39. Male 0.025 1.12 0.010 0.3 0.039 1.24 -0.665 

40-49. Male 0.013 0.48 -0.012 -0.33 0.035 0.93 -0.891 

50-59. Male -0.223 -7.55 -0.173 -4.09 -0.276 -6.64 1.742 

60-69. Male -0.192 -4.83 -0.201 -3.51 -0.182 -3.29 -0.234 

70 plus. Male 0.358 8.14 0.375 5.99 0.349 5.66 0.294 

Monday 0.131 12.87 0.131 9.22 0.131 8.98 0.029 

Tuesday 0.197 20.5 0.196 14.58 0.199 14.42 -0.135 

Wednesday 0.204 21.16 0.208 15.08 0.203 14.93 0.248 

Thursday 0.183 18.73 0.192 14.42 0.173 12.02 0.964 

Saturday -0.362 -29.5 -0.383 -21.92 -0.345 -19.90 -1.532 

Sunday -0.476 -36.68 -0.474 -26.08 -0.479 -25.73 0.204 

January -0.162 -4.52 -0.167 -4.46 -0.154 -3.95 -0.239 

February -0.227 -6.31 -0.228 -5.97 -0.224 -5.72 -0.068 

March -0.228 -6.43 -0.217 -5.89 -0.241 -6.30 0.451 

April -0.072 -2.05 -0.073 -1.97 -0.073 -1.93 0.008 

May 0.091 2.61 0.096 2.65 0.088 2.36 0.161 

June 0.206 5.92 0.197 5.44 0.216 5.86 -0.369 

July 0.176 5.06 0.182 5.1 0.169 4.55 0.256 

August 0.157 4.51 0.150 4.16 0.161 4.36 -0.214 

September 0.195 5.63 0.197 5.51 0.193 5.25 0.088 

October 0.078 2.23 0.074 2.05 0.082 2.21 -0.163 

December -0.234 -6.4 -0.227 -5.78 -0.238 -5.95 0.200 

Time 0.000 -4.89 0.000 -4.39 0.000 -4.67 0.283 

Holidays -0.235 -12.86 -0.278 -10.37 -0.193 -7.74 -2.314 

New_Year -0.582 -6.55 -0.567 -4.89 -0.578 -4.19 0.061 

Christmas -0.523 -6.53 -0.406 -3.75 -0.646 -5.44 1.493 

Constant -15.73 -131.15 -15.66 -99.2 -15.80 -87.04 0.593 
Italics indicate the non-significant t values at the 5 percent   level 
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Appendix Figure A5.2: Comparison of coefficients of full model HGLM for coefficient 

validation: Bicycle 
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Appendix Table A5.7: Comparison of coefficients and t values of full model HGLM (Split 

sample Data: Motorcycle) 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B            Model C  

Coefficient tA Coefficient tB Coefficient       tC tBC 

Under 17 -0.328 -12.26 -0.284 -7.59 -0.366 -9.54 1.522 

17-29 1.655 74.96 1.674 53.24 1.642 52.76 0.735 

30-39 0.903 44.06 0.926 31.67 0.885 30.64 1.010 

40-49 0.389 15.77 0.405 11.66 0.381 10.85 0.484 

50-59 -0.294 -9.58 -0.293 -6.7 -0.292 -6.74 -0.007 

60-69 -1.218 -26.76 -1.218 -18.41 -1.217 -19.39 -0.008 

70 plus -2.338 -43.51 -2.471 -30.19 -2.240 -31.30 -2.124 

Gender 1.036 150.91 1.045 105.04 1.031 107.91 1.030 

Under 17.Male 0.000 -0.01 -0.048 -1.18 0.043 1.03 -1.563 

17-20. Male 0.042 1.75 0.025 0.72 0.056 1.65 -0.651 

30-39. Male 0.085 3.78 0.072 2.25 0.095 2.98 -0.497 

40-49. Male 0.151 5.61 0.127 3.37 0.166 4.34 -0.712 

50-59. Male 0.047 1.41 0.048 1 0.046 0.97 0.022 

60-69. Male -0.016 -0.31 -0.021 -0.29 -0.013 -0.19 -0.083 

70 plus. Male -0.127 -2.06 0.020 0.22 -0.244 -2.91 2.125 

Monday -0.014 -1.6 -0.018 -1.46 -0.009 -0.70 -0.538 

Tuesday -0.002 -0.22 0.000 -0.04 -0.002 -0.20 0.118 

Wednesday 0.051 6.15 0.031 2.55 0.071 6.10 -2.421 

Thursday 0.021 2.47 0.031 2.59 0.010 0.78 1.267 

Saturday -0.072 -8.07 -0.068 -5.42 -0.076 -5.99 0.442 

Sunday -0.081 -8.18 -0.080 -5.66 -0.082 -5.91 0.086 

January -0.311 -10.1 -0.278 -9.03 -0.351 -9.80 1.550 

February -0.268 -8.71 -0.282 -9.12 -0.249 -6.98 -0.693 

March -0.139 -4.57 -0.141 -4.67 -0.136 -3.87 -0.099 

April -0.002 -0.07 0.006 0.19 -0.009 -0.27 0.324 

May 0.121 4.05 0.146 5 0.095 2.79 1.129 

June 0.165 5.51 0.156 5.28 0.176 5.11 -0.434 

July 0.141 4.71 0.135 4.62 0.146 4.31 -0.252 

August 0.149 5.01 0.141 4.87 0.156 4.61 -0.335 

September 0.218 7.34 0.219 7.46 0.216 6.44 0.063 

October 0.113 3.79 0.116 3.99 0.111 3.28 0.116 

December -0.232 -7.49 -0.240 -7.66 -0.223 -6.16 -0.355 

Time 0.000 -7.08 0.000 -6.81 0.000 -6.26 0.277 

Holidays 0.030 2.46 0.032 1.92 0.024 1.32 0.353 

New_Year -0.566 -9.47 -0.602 -5.88 -0.527 -7.26 -0.603 

Christmas -0.779 -12.25 -0.704 -7.95 -0.836 -9.17 1.038 

Constant -15.68 -177.42 -15.61 -115.47 -15.71 -134.14 0.323 
Italics indicate the non-significant t values at the 5 percent   level 
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Appendix Figure A5.3: Comparison of coefficients of full model HGLM for coefficient 

validation: Motorcycle 
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Appendix Table A5.8: Comparison of coefficients and t values of full model HGLM (Split 

sample Data): Bus 

 

Variables 

 

Comparison of the coefficients and t values of the Models 

Model A Model B            Model C  

Coefficient tA Coefficient tB Coefficient      tC tBC 

Under 17 -0.323 -12.62 -0.344 -9.77 -0.303 -8.15 -0.795 

17-29 0.115 4.00 0.142 3.57 0.084 2.05 1.014 

30-39 -0.377 -16.86 -0.344 -11.07 -0.411 -12.79 1.499 

40-49 -0.259 -12.01 -0.242 -7.93 -0.269 -8.83 0.607 

50-59 -0.074 -3.60 -0.099 -3.32 -0.049 -1.72 -1.205 

60-69 0.500 26.81 0.480 18.38 0.518 19.42 -1.007 

70 plus 0.687 44.94 0.699 32.41 0.677 31.22 0.732 

Gender -0.490 -36.52 -0.479 -25.52 -0.501 -26.11 0.837 

Under 17.Male 0.208 5.52 0.210 4.03 0.208 3.8 0.023 

17-20. Male -0.199 -4.24 -0.215 -3.32 -0.186 -2.74 -0.309 

30-39. Male 0.417 13.02 0.377 8.39 0.455 9.93 -1.219 

40-49. Male 0.226 7.01 0.199 4.3 0.253 5.6 -0.833 

50-59. Male -0.026 -0.79 0.026 0.56 -0.075 -1.64 1.546 

60-69. Male -0.483 -14.15 -0.468 -9.95 -0.491 -9.95 0.336 

70 plus. Male -0.331 -11.55 -0.324 -8.15 -0.342 -8.3 0.311 

Monday 0.192 13.26 0.180 8.9 0.207 10.05 -0.930 

Tuesday 0.219 15.16 0.216 10.62 0.221 10.72 -0.173 

Wednesday 0.187 12.77 0.185 9.04 0.186 8.88 -0.017 

Thursday 0.184 12.91 0.179 8.69 0.191 9.63 -0.416 

Saturday 0.010 0.68 0.027 1.22 -0.003 -0.16 0.986 

Sunday -1.048 -47.75 -1.054 -33.95 -1.045 -33.7 -0.207 

January -0.203 -5.48 -0.196 -4.47 -0.207 -4.8 0.168 

February -0.049 -1.35 -0.029 -0.68 -0.065 -1.58 0.596 

March -0.058 -1.62 -0.059 -1.39 -0.058 -1.42 -0.014 

April 0.005 0.13 0.005 0.1 0.004 0.1 0.007 

May 0.065 1.82 0.022 0.51 0.104 2.6 -1.401 

June 0.090 2.52 0.102 2.39 0.080 1.99 0.384 

July 0.022 0.63 0.037 0.87 0.007 0.17 0.519 

August -0.044 -1.23 -0.055 -1.29 -0.032 -0.81 -0.396 

September 0.087 2.43 0.101 2.4 0.070 1.75 0.530 

October 0.068 1.90 0.087 2.08 0.049 1.2 0.649 

December -0.048 -1.31 -0.084 -1.93 -0.009 -0.22 -1.243 

Time -0.000 -6.91 -0.000 -6.37 -0.000 -5.48 -0.819 

Holidays -0.384 -12.87 -0.384 -9.26 -0.383 -8.92 -0.030 

New Year -0.446 -3.50 -0.512 -2.82 -0.377 -2.11 -0.532 

Christmas -1.167 -6.25 -1.209 -4.49 -1.144 -4.39 -0.173 

Constant -16.51 -73.37 -16.61 -51.44 -16.42 -52.33 -0.422 
Italics indicate the non-significant t values at the 5 percent   level 
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Appendix Figure A5.4: Comparison of coefficients of full model HGLM for coefficient 

validation: Bus 
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Appendix Table A5.9: Comparison of the coefficients and t values of some variables 

by HGLM and GEE-AR1 (Walk: Dataset 6) 

Variable (Walk) Coefficient  

HGLM 

t value 

HGLM 

Coefficient  

GEE 

t value 

GEE 
 

Under 17 0.670 65.35 0.657 62.13  

17-20 0.667 50.59 0.672 44.71  

30-39 -0.315 -26.55 -0.311 -21.59  

40-49 -0.445 -34.28 -0.444 -28.76  

50-59 -0.531 -38.50 -0.533 -32.48  

60-69 -0.401 -26.04 -0.399 -22.89  

70 plus 0.165 14.20 0.158 12.33  

Gender 0.176 53.97 0.182 48.96  

Under 17.Male -0.052 -3.76 -0.056 -3.9  

17-20. Male -0.005 -0.27 -0.001 -0.03  

30-39. Male 0.223 14.49 0.225 11.99  

40-49. Male 0.066 3.80 0.066 3.25  

50-59. Male -0.078 -4.15 -0.080 -3.62  

60-69. Male -0.169 -7.76 -0.177 -7.37  

70 plus. Male -0.063 -3.67 -0.067 -3.7  

Monday 0.000 -0.02 0.008 1.07  

Tuesday 0.014 1.91 0.026 3.47  

Wednesday 0.019 2.50 0.029 3.89  

Thursday 0.058 7.88 0.064 8.71  

Saturday 0.049 6.43 0.035 4.76  

Sunday -0.353 -36.62 -0.379 -45.18  

January 0.039 2.32 0.028 2.46  

February 0.018 1.08 0.013 1.09  

March -0.032 -1.95 -0.032 -2.78  

April -0.061 -3.62 -0.053 -4.48  

May -0.028 -1.66 -0.016 -1.38  

June -0.064 -3.81 -0.059 -5.02  

July -0.131 -7.73 -0.126 -10.68  

August -0.167 -9.89 -0.170 -14.18  

September 0.002 0.12 0.010 0.83  

October 0.064 3.89 0.066 5.89  

December 0.173 10.21 0.158 14.07  

Time 0.000 -12.79 0.000 -19.02  

Holidays -0.135 -10.55 -0.142 -11.53  

New Year 0.057 1.79 0.073 2.41  

Christmas -0.356 -8.96 -0.348 -10.26  

Constant -13.79 -274.47 -13.77 -310.6  
Italics indicate the non-significant t values at the 5 percent   level 
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Appendix Figure A5.5: Comparison of coefficients by HGLM and GEE-AR1(Walk) 
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Appendix Table A5.10: Comparison of the coefficients and t values of the some variables by 

HGLM and GEE-AR1 (Bicyclists: Dataset 7) 

Variable 

(Bicycle) 

Coefficient  

HGLM 

t value 

HGLM 

Coefficient  

GEE 

t value 

GEE 
 

Under 17 0.286 13.28 0.283 13.73  

17-20 0.512 18.89 0.512 16.27  

30-39 0.359 18.39 0.358 16.25  

40-49 0.044 1.93 0.044 1.74  

50-59 -0.168 -6.67 -0.165 -5.84  

60-69 -0.670 -19.89 -0.666 -16.89  

70 plus -1.117 -29.03 -1.119 -27.48  

Gender 0.709 122.02 0.709 110.76  

Under 17.Male 0.213 8.85 0.215 9.09  

17-20. Male 0.109 3.58 0.106 2.99  

30-39. Male 0.025 1.12 0.024 0.93  

40-49. Male 0.013 0.48 0.016 0.56  

50-59. Male -0.223 -7.55 -0.223 -6.82  

60-69. Male -0.192 -4.83 -0.192 -4.22  

70 plus. Male 0.358 8.14 0.361 7.87  

Monday 0.131 12.87 0.126 12.62  

Tuesday 0.197 20.5 0.187 19.39  

Wednesday 0.204 21.16 0.194 20.1  

Thursday 0.183 18.73 0.173 17.83  

Saturday -0.362 -29.5 -0.344 -30.4  

Sunday -0.476 -36.68 -0.452 -38.42  

January -0.162 -4.52 -0.181 -10.88  

February -0.227 -6.31 -0.247 -14.15  

March -0.228 -6.43 -0.229 -13.72  

April -0.072 -2.05 -0.061 -3.78  

May 0.091 2.61 0.112 7.5  

June 0.206 5.92 0.225 15.46  

July 0.176 5.06 0.193 13.37  

August 0.157 4.51 0.172 11.78  

September 0.195 5.63 0.207 14.09  

October 0.078 2.23 0.074 4.91  

December -0.234 -6.4 -0.264 -15.13  

Time 0.000 -4.89 0.000 -10.39  

Holidays -0.235 -12.86 -0.222 -12.89  

New_Year -0.582 -6.55 -0.497 -7.00  

Christmas -0.523 -6.53 -0.473 -7.25  

Constant -15.73 -131.15 -15.590 -163.67  
Italics indicate the non-significant t values at the 5 percent level  
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Appendix Figure A5.6: Comparison of coefficients by HGLM and GEE-AR1 (Bicyclists) 
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Appendix Table A5.11: Comparison of coefficient and t values of the some variables 

by HGLM and GEE-AR1 (Motorcyclists: Dataset 8) 

Variable (MC) Coefficient  

HGLM 

t value 

HGLM 

Coefficient  

GEE 

t value 

GEE 
 

Under 17 -0.328 -12.26 -0.341 -11.66  

17-20 1.655 74.96 1.646 67.11  

30-39 0.903 44.06 0.908 40.59  

40-49 0.389 15.77 0.404 15.57  

50-59 -0.294 -9.58 -0.282 -8.38  

60-69 -1.218 -26.76 -1.220 -21.49  

70 plus -2.338 -43.51 -2.341 -29.13  

Gender 1.036 150.91 1.035 120.43  

Under 17.Male 0.000 -0.01 0.011 0.34  

17-20. Male 0.042 1.75 0.047 1.77  

30-39. Male 0.085 3.78 0.074 3  

40-49. Male 0.151 5.61 0.136 4.83  

50-59. Male 0.047 1.41 0.042 1.17  

60-69. Male -0.016 -0.31 -0.008 -0.13  

70 plus. Male -0.127 -2.06 -0.121 -1.37  

Monday -0.014 -1.6 -0.011 -1.24  

Tuesday -0.002 -0.22 0.000 -0.03  

Wednesday 0.051 6.15 0.051 6.06  

Thursday 0.021 2.47 0.019 2.21  

Saturday -0.072 -8.07 -0.075 -8.54  

Sunday -0.081 -8.18 -0.077 -8.86  

January -0.311 -10.1 -0.321 -23.71  

February -0.268 -8.71 -0.276 -20.16  

March -0.139 -4.57 -0.138 -11.02  

April -0.002 -0.07 0.006 0.47  

May 0.121 4.05 0.129 11.07  

June 0.165 5.51 0.172 14.78  

July 0.141 4.71 0.149 12.86  

August 0.149 5.01 0.156 13.53  

September 0.218 7.34 0.224 19.4  

October 0.113 3.79 0.111 9.49  

December -0.232 -7.49 -0.246 -18.28  

Time 0.000 -7.08 0.000 -15.06  

Holidays 0.030 2.46 0.023 1.9  

New Year -0.566 -9.47 -0.517 -9.97  

Christmas -0.779 -12.25 -0.750 -14.53  

Constant -15.68 -177.42 -15.63 -214.6  
Italics indicate the non-significant t values with 5 percent level 
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Appendix Figure A5.7: Comparison of coefficients by HGLM and GEE-AR1 (Motorcyclists: 

Dataset 8) 
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Appendix Table A5.12: Comparison of the coefficients and t values of the some variables by 

HGLM and GEE-AR1 (Bus: Dataset 9) 

Variable (Bus) Coefficient  

HGLM 

t value 

HGLM 

Coefficient  

GEE 

t value 

GEE 
 

Under 17 -0.323 -12.62 -0.325 -15.56  

17-20 0.115 4.00 0.116 4.14  

30-39 -0.377 -16.86 -0.377 -16.49  

40-49 -0.259 -12.01 -0.259 -11.44  

50-59 -0.074 -3.60 -0.074 -3.35  

60-69 0.500 26.81 0.500 24.36  

70 plus 0.687 44.94 0.685 37.50  

Gender -0.490 -36.52 -0.491 -36.58  

Under 17.Male 0.208 5.52 0.208 6.72  

17-20. Male -0.199 -4.24 -0.208 -4.51  

30-39. Male 0.417 13.02 0.421 12.64  

40-49. Male 0.226 7.01 0.229 6.73  

50-59. Male -0.026 -0.79 -0.026 -0.74  

60-69. Male -0.483 -14.15 -0.482 -13.64  

70 plus. Male -0.331 -11.55 -0.325 -10.48  

Monday 0.192 13.26 0.201 13.22  

Tuesday 0.219 15.16 0.235 15.98  

Wednesday 0.187 12.77 0.194 13.06  

Thursday 0.184 12.91 0.192 12.90  

Saturday 0.010 0.68 -0.014 -0.91  

Sunday -1.048 -47.75 -1.066 -47.41  

January -0.203 -5.48 -0.194 -8.72  

February -0.049 -1.35 -0.036 -1.65  

March -0.058 -1.62 -0.048 -2.28  

April 0.005 0.13 -0.007 -0.35  

May 0.065 1.82 0.073 3.57  

June 0.090 2.52 0.096 4.72  

July 0.022 0.63 0.009 0.45  

August -0.044 -1.23 -0.067 -3.17  

September 0.087 2.43 0.085 4.14  

October 0.068 1.90 0.073 3.60  

December -0.048 -1.31 -0.049 -2.24  

Time 0.000 -6.91 0.000 -11.93  

Holidays -0.384 -12.87 -0.390 -13.73  

New_Year -0.446 -3.50 -0.448 -3.97  

Christmas -1.167 -6.25 -1.222 -6.36  

Constant -16.51 -73.37 -16.58 -74.91  
Italics indicate the non-significant t values at the 5 percent   level 
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Appendix Figure A5.8: Comparison of coefficients by HGLM and GEE-AR1  

(Bus: Dataset 9) 
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Appendix Figure A5.9: Comparison of casualties observed and estimated by HGLM and 

GEE-AR1, standardised deviance residuals, and cumulative proportion graphs (Walk) 
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Appendix Figure A5.10: Comparison of casualties observed and estimated by HGLM and 

GEE-AR1, standardized deviance residuals and cumulative proportion graphs (Bicycle) 
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Appendix Figure A5.11: Comparison of casualties observed and estimated by HGLM and 

GEE-AR1, standardised deviance residuals and cumulative proportion graphs (Motorcycle) 
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Appendix Figure A5.12: Comparison of casualties observed and estimated by HGLM and 

GEE-AR1, standardised deviance residuals and cumulative proportion graphs (Bus) 
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Appendix Figure A5.13: Diagnostic plot for Full model-HGLM-Walk 

         
 

      
 

 

Appendix Figure A5.14: Diagnostic plot for Full model-HGLM-Bicycle 
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Appendix Figure A5.15: Diagnostic plot for Full model-HGLM-Motorcycle 

   

         

 

  Appendix Figure A5.16: Diagnostic plot for Full model-HGLM-Bus 
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Appendix Table A5.13: Results of Full model HGLM (Dataset 5: Car) 

 

 Fixed part 

 

Random Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Constant -12.043 0.026 -464.97 Jan.2001 0.045 0.019 2.34 

Under 17 -0.913 0.009 -100.18 Jan.2002 -0.028 0.019 -1.47 

17-29 1.003 0.007 151.92 Jan.2003 -0.020 0.019 -1.04 

30-39 0.420 0.005 79.70 Jan.2004 0.003 0.019 0.14 

40-49 0.155 0.006 27.59 Jan.2005 -0.002 0.020 -0.11 

50-59 -0.123 0.006 -20.81 Feb.2001 0.030 0.019 1.56 

60-69 -0.467 0.007 -66.39 Feb.2002 0.032 0.019 1.73 

70 plus -0.834 0.007 -115.37 Feb.2003 0.013 0.019 0.70 

Gender 0.023 0.002 13.11 Feb.2004 -0.070 0.019 -3.67 

Under 17.Male -0.280 0.013 -20.89 Feb.2005 -0.009 0.020 -0.44 

17-20. Male 0.214 0.009 24.46 March.2001 -0.002 0.019 -0.11 

30-39. Male -0.016 0.007 -2.17 March.2002 0.007 0.019 0.37 

40-49. Male -0.075 0.008 -9.43 March.2003 -0.048 0.019 -2.55 

50-59. Male -0.131 0.009 -15.37 March.2004 0.041 0.019 2.17 

60-69. Male -0.013 0.010 -1.34 March.2005 0.001 0.020 0.02 

70 plus. Male 0.240 0.010 23.22 April.2001 0.009 0.020 0.45 

Monday -0.038 0.004 -9.15 April.2002 -0.024 0.019 -1.26 

Tuesday -0.049 0.004 -12.50 April.2003 -0.011 0.019 -0.59 

Wednesday -0.025 0.004 -6.34 April.2004 0.027 0.019 1.45 

Thursday -0.006 0.004 -1.66 April.2005 -0.002 0.020 -0.09 

Saturday 0.056 0.004 14.34 May.2001 -0.043 0.020 -2.21 

Sunday -0.084 0.004 -19.69 May.2002 0.003 0.019 0.18 

January 0.006 0.016 0.40 May.2003 0.022 0.019 1.19 

February -0.018 0.016 -1.12 May.2004 -0.008 0.019 -0.42 

March -0.108 0.016 -6.87 May.2005 0.024 0.020 1.25 

April -0.079 0.016 -4.99 June.2001 -0.026 0.020 -1.33 

May -0.045 0.016 -2.84 June.2002 -0.022 0.019 -1.16 

June -0.047 0.016 -2.97 June.2003 0.007 0.019 0.38 

July -0.027 0.016 -1.70 June.2004 0.020 0.019 1.07 

August -0.031 0.016 -1.95 June.2005 0.020 0.020 1.01 

September -0.019 0.016 -1.21 July.2001 -0.020 0.020 -1.00 

October 0.082 0.016 5.18 July.2002 0.028 0.019 1.50 

December 0.143 0.016 9.02 July.2003 0.023 0.019 1.23 

Time 0.000 0.000 -10.57 July.2004 -0.044 0.019 -2.32 

Holidays -0.057 0.006 -9.19 July.2005 0.011 0.020 0.56 

New Year -0.142 0.019 -7.61 Aug.2001 0.020 0.019 1.06 

Christmas -0.196 0.017 -11.85 Aug.2002 -0.028 0.019 -1.51 

    Aug.2003 -0.050 0.019 -2.67 

    Aug.2004 0.047 0.019 2.49 

    Aug.2005 0.009 0.020 0.44 
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Continued- 

 Random Part 

 

Dispersion Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Sept.2001 0.013 0.019 0.68 Constant 0.802 0.008 96.71 

Sept.2002 -0.053 0.019 -2.78 Under 17 0.428 0.022 19.51 

Sept.2003 0.025 0.019 1.34 17 to 20 0.213 0.022 9.73 

Sept.2004 0.021 0.019 1.09 30-39 0.190 0.022 8.67 

Sept.2005 -0.008 0.020 -0.38 40-49 0.014 0.022 0.64 

Oct.2001 -0.026 0.020 -1.30 50-59 -0.217 0.022 -9.88 

Oct.2002 0.060 0.019 3.19 60-69 -0.455 0.022 -20.77 

Oct.2003 -0.015 0.019 -0.82 70 plus -0.382 0.022 -17.43 

Oct.2004 0.015 0.019 0.78 Male -0.015 0.008 -1.75 

Oct.2005 -0.037 0.020 -1.84 Monday 0.018 0.020 0.91 

Nov.2001 0.006 0.019 0.29 Tuesday -0.057 0.020 -2.81 

Nov.2002 0.042 0.018 2.31 Wednesday -0.031 0.020 -1.54 

Nov.2003 -0.007 0.018 -0.40 Thursday -0.064 0.020 -3.14 

Nov.2004 -0.057 0.019 -3.04 Saturday 0.014 0.020 0.69 

Nov.2005 0.014 0.019 0.71 Sunday 0.089 0.020 4.37 

Dec.2001 0.033 0.019 1.72 Jan 0.078 0.027 2.86 

Dec.2002 0.003 0.019 0.13 Feb -0.126 0.029 -4.44 

Dec.2003 -0.043 0.019 -2.28 Mar -0.091 0.027 -3.33 

Dec.2004 0.011 0.019 0.56 Apr -0.066 0.028 -2.38 

Dec.2005 -0.005 0.020 -0.25 May -0.041 0.027 -1.51 

    Jun 0.057 0.028 2.07 

    Jul -0.015 0.027 -0.56 

    Aug -0.019 0.027 -0.69 

    Sep -0.022 0.028 -0.78 

    Oct 0.131 0.027 4.82 

    Dec 0.176 0.027 6.44 
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Appendix Table A5.14: Results of Full model HGLM (Dataset 6: Walk) 

 

 Fixed part 

 

Random Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Constant -13.790 0.050 -274.47 Jan.2001 0.024 0.022 1.12 

Under 17 0.670 0.010 65.35 Jan.2002 -0.046 0.022 -2.09 

17-29 0.667 0.013 50.59 Jan.2003 0.002 0.022 0.09 

30-39 -0.315 0.012 -26.55 Jan.2004 0.013 0.022 0.58 

40-49 -0.445 0.013 -34.28 Jan.2005 0.006 0.022 0.26 

50-59 -0.531 0.014 -38.50 Feb.2001 -0.001 0.022 -0.04 

60-69 -0.401 0.015 -26.04 Feb.2002 0.027 0.021 1.29 

70 plus 0.165 0.012 14.20 Feb.2003 -0.014 0.021 -0.64 

Gender 0.176 0.003 53.97 Feb.2004 -0.002 0.022 -0.07 

Under 17.Male -0.052 0.014 -3.76 Feb.2005 -0.012 0.022 -0.54 

17-20. Male -0.005 0.018 -0.27 March.2001 -0.007 0.022 -0.34 

30-39. Male 0.223 0.015 14.49 March.2002 0.023 0.021 1.10 

40-49. Male 0.066 0.017 3.80 March.2003 -0.002 0.022 -0.10 

50-59. Male -0.078 0.019 -4.15 March.2004 0.002 0.022 0.10 

60-69. Male -0.169 0.022 -7.76 March.2005 -0.017 0.022 -0.74 

70 plus. Male -0.063 0.017 -3.67 April.2001 -0.009 0.022 -0.42 

Monday 0.000 0.008 -0.02 April.2002 -0.016 0.022 -0.72 

Tuesday 0.014 0.008 1.91 April.2003 -0.027 0.022 -1.20 

Wednesday 0.019 0.007 2.50 April.2004 0.009 0.022 0.40 

Thursday 0.058 0.007 7.88 April.2005 0.042 0.022 1.88 

Saturday 0.049 0.008 6.43 May.2001 0.023 0.022 1.04 

Sunday -0.353 0.010 -36.62 May.2002 -0.015 0.022 -0.67 

January 0.039 0.017 2.32 May.2003 -0.055 0.022 -2.48 

February 0.018 0.016 1.08 May.2004 0.020 0.022 0.93 

March -0.032 0.017 -1.95 May.2005 0.025 0.022 1.10 

April -0.061 0.017 -3.62 June.2001 -0.004 0.022 -0.19 

May -0.028 0.017 -1.66 June.2002 -0.014 0.022 -0.63 

June -0.064 0.017 -3.81 June.2003 0.000 0.022 -0.02 

July -0.131 0.017 -7.73 June.2004 -0.007 0.022 -0.34 

August -0.167 0.017 -9.89 June.2005 0.025 0.022 1.14 

September 0.002 0.017 0.12 July.2001 0.022 0.022 1.01 

October 0.064 0.016 3.89 July.2002 -0.023 0.022 -1.03 

December 0.173 0.017 10.21 July.2003 0.008 0.022 0.37 

Time 0.000 0.000 -12.79 July.2004 -0.025 0.023 -1.11 

Holidays -0.135 0.013 -10.55 July.2005 0.016 0.023 0.72 

New Year 0.057 0.032 1.79 Aug.2001 0.002 0.022 0.08 

Christmas -0.356 0.040 -8.96 Aug.2002 -0.007 0.022 -0.30 

    Aug.2003 -0.003 0.022 -0.12 

    Aug.2004 0.002 0.022 0.08 

    Aug.2005 0.006 0.023 0.25 
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Continued- 

 Random Part 

 

Dispersion Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Sept.2001 0.004 0.022 0.19 Constant 0.361 0.008 43.61 

Sept.2002 0.011 0.021 0.53 Under 17 0.724 0.022 33.02 

Sept.2003 -0.007 0.022 -0.32 17 to 20 -0.079 0.022 -3.61 

Sept.2004 0.017 0.022 0.77 30-39 -0.193 0.022 -8.81 

Sept.2005 -0.026 0.022 -1.15 40-49 -0.190 0.022 -8.67 

Oct.2001 0.008 0.022 0.39 50-59 -0.218 0.022 -9.94 

Oct.2002 -0.006 0.021 -0.30 60-69 -0.143 0.022 -6.53 

Oct.2003 -0.036 0.022 -1.69 70 plus 0.152 0.022 6.91 

Oct.2004 0.048 0.021 2.23 Male 0.060 0.008 7.22 

Oct.2005 -0.015 0.022 -0.67 Monday -0.016 0.020 -0.77 

Nov.2001 0.009 0.021 0.45 Tuesday -0.027 0.020 -1.34 

Nov.2002 0.016 0.021 0.78 Wednesday -0.051 0.020 -2.50 

Nov.2003 -0.017 0.021 -0.82 Thursday -0.052 0.020 -2.58 

Nov.2004 -0.029 0.021 -1.34 Saturday 0.059 0.020 2.91 

Nov.2005 0.019 0.022 0.89 Sunday 0.173 0.020 8.51 

Dec.2001 0.019 0.022 0.85 Jan 0.072 0.027 2.65 

Dec.2002 0.005 0.022 0.22 Feb -0.122 0.028 -4.30 

Dec.2003 0.006 0.022 0.25 Mar -0.055 0.027 -2.01 

Dec.2004 -0.016 0.022 -0.71 Apr 0.011 0.028 0.38 

Dec.2005 -0.014 0.023 -0.61 May 0.049 0.027 1.80 

    Jun -0.033 0.028 -1.20 

    Jul 0.022 0.027 0.80 

    Aug -0.050 0.027 -1.84 

    Sep -0.069 0.028 -2.48 

    Oct 0.000 0.027 -0.01 

    Dec 0.212 0.027 7.77 
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Appendix Table A5.15: Results of Full model HGLM (Dataset 7: Cycle) 

 

 Fixed part 

 

Random Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Constant -15.734 0.120 -131.15 Jan.2001 0.136 0.044 3.10 

Under 17 0.286 0.022 13.28 Jan.2002 0.000 0.044 -0.01 

17-29 0.512 0.027 18.89 Jan.2003 -0.099 0.045 -2.19 

30-39 0.359 0.020 18.39 Jan.2004 -0.031 0.045 -0.69 

40-49 0.044 0.023 1.93 Jan.2005 -0.021 0.047 -0.44 

50-59 -0.168 0.025 -6.67 Feb.2001 0.083 0.045 1.84 

60-69 -0.670 0.034 -19.89 Feb.2002 0.041 0.045 0.93 

70 plus -1.117 0.039 -29.03 Feb.2003 -0.025 0.045 -0.55 

Gender 0.709 0.006 122.02 Feb.2004 -0.034 0.046 -0.74 

Under 17.Male 0.213 0.024 8.85 Feb.2005 -0.073 0.048 -1.52 

17-20. Male 0.109 0.031 3.58 March.2001 -0.047 0.045 -1.04 

30-39. Male 0.025 0.022 1.12 March.2002 -0.005 0.044 -0.11 

40-49. Male 0.013 0.026 0.48 March.2003 0.088 0.043 2.06 

50-59. Male -0.223 0.030 -7.55 March.2004 -0.002 0.044 -0.04 

60-69. Male -0.192 0.040 -4.83 March.2005 -0.040 0.046 -0.87 

70 plus. Male 0.358 0.044 8.14 April.2001 -0.020 0.045 -0.43 

Monday 0.131 0.010 12.87 April.2002 0.002 0.044 0.05 

Tuesday 0.197 0.010 20.50 April.2003 0.009 0.043 0.22 

Wednesday 0.204 0.010 21.16 April.2004 -0.026 0.044 -0.58 

Thursday 0.183 0.010 18.73 April.2005 0.033 0.045 0.73 

Saturday -0.362 0.012 -29.50 May.2001 0.147 0.043 3.44 

Sunday -0.476 0.013 -36.68 May.2002 -0.091 0.044 -2.09 

January -0.162 0.036 -4.52 May.2003 -0.162 0.044 -3.67 

February -0.227 0.036 -6.31 May.2004 0.091 0.042 2.14 

March -0.228 0.035 -6.43 May.2005 -0.017 0.045 -0.38 

April -0.072 0.035 -2.05 June.2001 0.055 0.043 1.26 

May 0.091 0.035 2.61 June.2002 -0.141 0.044 -3.19 

June 0.206 0.035 5.92 June.2003 0.001 0.042 0.02 

July 0.176 0.035 5.06 June.2004 0.038 0.042 0.90 

August 0.157 0.035 4.51 June.2005 0.035 0.044 0.79 

September 0.195 0.035 5.63 July.2001 0.077 0.043 1.79 

October 0.078 0.035 2.23 July.2002 -0.086 0.043 -2.00 

December -0.234 0.037 -6.40 July.2003 0.000 0.042 0.00 

Time 0.000 0.000 -4.89 July.2004 -0.056 0.043 -1.30 

Holidays -0.235 0.018 -12.86 July.2005 0.055 0.044 1.27 

New Year -0.582 0.089 -6.55 Aug.2001 0.032 0.043 0.74 

Christmas -0.523 0.080 -6.53 Aug.2002 -0.096 0.043 -2.22 

    Aug.2003 0.003 0.042 0.07 

    Aug.2004 -0.027 0.043 -0.62 

    Aug.2005 0.079 0.043 1.83 
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Continued- 

 Random Part 

 

Dispersion Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Sept.2001 -0.103 0.045 -2.32 Constant 0.238 0.008 28.7 

Sept.2002 0.027 0.042 0.65 Under 17 0.457 0.022 20.83 

Sept.2003 -0.012 0.042 -0.28 17 to 20 -0.159 0.022 -7.27 

Sept.2004 0.035 0.042 0.84 30-39 -0.015 0.022 -0.67 

Sept.2005 0.045 0.043 1.05 40-49 0.011 0.022 0.49 

Oct.2001 -0.014 0.044 -0.31 50-59 -0.055 0.022 -2.5 

Oct.2002 -0.010 0.042 -0.24 60-69 -0.194 0.022 -8.84 

Oct.2003 -0.004 0.042 -0.09 70 plus 0.030 0.022 1.39 

Oct.2004 -0.024 0.043 -0.55 Male 0.108 0.008 13.02 

Oct.2005 0.050 0.044 1.14 Monday -0.006 0.020 -0.27 

Nov.2001 0.010 0.044 0.23 Tuesday -0.020 0.020 -0.96 

Nov.2002 -0.009 0.043 -0.21 Wednesday 0.001 0.020 0.04 

Nov.2003 -0.036 0.043 -0.82 Thursday 0.008 0.020 0.39 

Nov.2004 -0.040 0.044 -0.91 Saturday 0.013 0.020 0.64 

Nov.2005 0.071 0.044 1.60 Sunday 0.019 0.020 0.93 

Dec.2001 0.017 0.047 0.36 Jan 0.015 0.027 0.54 

Dec.2002 -0.055 0.047 -1.17 Feb -0.015 0.028 -0.54 

Dec.2003 -0.049 0.047 -1.06 Mar -0.126 0.027 -4.63 

Dec.2004 0.025 0.046 0.54 Apr -0.041 0.028 -1.47 

Dec.2005 0.058 0.047 1.23 May 0.030 0.027 1.11 

    Jun 0.057 0.028 2.04 

    Jul 0.043 0.027 1.57 

    Aug 0.005 0.027 0.2 

    Sep -0.014 0.028 -0.49 

    Oct -0.064 0.027 -2.35 

    Dec 0.126 0.027 4.61 
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Appendix Table A5.16: Results of Full model HGLM (Dataset 8: Motorcycle) 

 

 Fixed part 

 

Random Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Constant -15.685 0.088 -177.42 Jan.2001 0.042 0.039 1.07 

Under 17 -0.328 0.027 -12.26 Jan.2002 -0.070 0.039 -1.80 

17-29 1.655 0.022 74.96 Jan.2003 -0.005 0.038 -0.12 

30-39 0.903 0.021 44.06 Jan.2004 -0.046 0.039 -1.18 

40-49 0.389 0.025 15.77 Jan.2005 0.072 0.039 1.84 

50-59 -0.294 0.031 -9.58 Feb.2001 0.035 0.039 0.91 

60-69 -1.218 0.046 -26.76 Feb.2002 0.014 0.038 0.38 

70 plus -2.338 0.054 -43.51 Feb.2003 0.037 0.038 0.97 

Gender 1.036 0.007 150.91 Feb.2004 -0.027 0.039 -0.68 

Under 17.Male 0.000 0.029 -0.01 Feb.2005 -0.064 0.041 -1.56 

17-20. Male 0.042 0.024 1.75 March.2001 -0.116 0.040 -2.93 

30-39. Male 0.085 0.023 3.78 March.2002 0.056 0.037 1.51 

40-49. Male 0.151 0.027 5.61 March.2003 0.157 0.036 4.36 

50-59. Male 0.047 0.034 1.41 March.2004 -0.058 0.039 -1.51 

60-69. Male -0.016 0.050 -0.31 March.2005 -0.064 0.040 -1.61 

70 plus. Male -0.127 0.062 -2.06 April.2001 -0.117 0.039 -3.00 

Monday -0.014 0.009 -1.60 April.2002 0.092 0.036 2.53 

Tuesday -0.002 0.009 -0.22 April.2003 0.028 0.037 0.76 

Wednesday 0.051 0.008 6.15 April.2004 -0.007 0.037 -0.19 

Thursday 0.021 0.009 2.47 April.2005 -0.007 0.039 -0.17 

Saturday -0.072 0.009 -8.07 May.2001 0.042 0.037 1.14 

Sunday -0.081 0.010 -8.18 May.2002 -0.058 0.037 -1.57 

January -0.311 0.031 -10.10 May.2003 -0.067 0.037 -1.83 

February -0.268 0.031 -8.71 May.2004 0.047 0.036 1.28 

March -0.139 0.030 -4.57 May.2005 0.029 0.038 0.78 

April -0.002 0.030 -0.07 June.2001 -0.037 0.038 -0.96 

May 0.121 0.030 4.05 June.2002 -0.050 0.037 -1.34 

June 0.165 0.030 5.51 June.2003 0.061 0.036 1.69 

July 0.141 0.030 4.71 June.2004 -0.002 0.037 -0.05 

August 0.149 0.030 5.01 June.2005 0.023 0.038 0.61 

September 0.218 0.030 7.34 July.2001 -0.005 0.037 -0.13 

October 0.113 0.030 3.79 July.2002 -0.017 0.036 -0.48 

December -0.232 0.031 -7.49 July.2003 0.040 0.036 1.13 

Time 0.000 0.000 -7.08 July.2004 -0.036 0.037 -0.97 

Holidays 0.030 0.012 2.46 July.2005 0.016 0.038 0.42 

New Year -0.566 0.060 -9.47 Aug.2001 -0.049 0.037 -1.30 

Christmas -0.779 0.064 -12.25 Aug.2002 -0.028 0.036 -0.77 

    Aug.2003 0.102 0.035 2.94 

    Aug.2004 -0.028 0.036 -0.78 

    Aug.2005 -0.005 0.038 -0.13 
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Continued- 

 Random Part 

 

Dispersion Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Sept.2001 -0.085 0.038 -2.25 Constant 0.179 0.008 21.59 

Sept.2002 0.052 0.035 1.46 Under 17 0.106 0.022 4.83 

Sept.2003 0.050 0.035 1.41 17 to 20 0.165 0.022 7.53 

Sept.2004 0.003 0.036 0.08 30-39 0.304 0.022 13.84 

Sept.2005 -0.026 0.038 -0.69 40-49 0.244 0.022 11.12 

Oct.2001 -0.024 0.037 -0.63 50-59 0.027 0.022 1.24 

Oct.2002 0.009 0.036 0.26 60-69 -0.310 0.022 -14.15 

Oct.2003 0.071 0.035 2.00 70 plus -0.688 0.022 -31.41 

Oct.2004 -0.062 0.037 -1.68 Male 0.209 0.008 25.18 

Oct.2005 0.001 0.038 0.02 Monday -0.049 0.020 -2.42 

Nov.2001 0.033 0.037 0.88 Tuesday -0.046 0.020 -2.26 

Nov.2002 0.000 0.037 0.01 Wednesday -0.051 0.020 -2.51 

Nov.2003 -0.033 0.037 -0.90 Thursday -0.026 0.020 -1.30 

Nov.2004 0.004 0.037 0.11 Saturday -0.006 0.020 -0.28 

Nov.2005 -0.005 0.038 -0.14 Sunday 0.225 0.020 11.07 

Dec.2001 0.027 0.040 0.68 Jan -0.060 0.027 -2.18 

Dec.2002 0.003 0.039 0.07 Feb -0.079 0.028 -2.78 

Dec.2003 0.004 0.039 0.10 Mar 0.010 0.027 0.37 

Dec.2004 0.026 0.039 0.67 Apr 0.017 0.028 0.60 

Dec.2005 -0.062 0.041 -1.51 May 0.026 0.027 0.96 

    Jun 0.123 0.028 4.46 

    Jul 0.030 0.027 1.08 

    Aug -0.032 0.027 -1.17 

    Sep -0.018 0.028 -0.64 

    Oct -0.038 0.027 -1.38 

    Dec 0.055 0.027 2.03 
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Appendix Table A5.17: Results of Full model HGLM (Dataset 9: Bus) 

 

 Fixed part 

 

Random Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Constant -16.515 0.225 -73.37 Jan.2001 0.007 0.048 0.15 

Under 17 -0.323 0.026 -12.62 Jan.2002 -0.098 0.050 -1.96 

17-29 0.115 0.029 4.00 Jan.2003 -0.044 0.049 -0.89 

30-39 -0.377 0.022 -16.86 Jan.2004 0.099 0.047 2.10 

40-49 -0.259 0.022 -12.01 Jan.2005 0.025 0.050 0.50 

50-59 -0.074 0.021 -3.60 Feb.2001 0.004 0.048 0.09 

60-69 0.500 0.019 26.81 Feb.2002 0.033 0.047 0.71 

70 plus 0.687 0.015 44.94 Feb.2003 -0.072 0.048 -1.48 

Gender -0.490 0.013 -36.52 Feb.2004 0.100 0.046 2.17 

Under 17.Male 0.208 0.038 5.52 Feb.2005 -0.077 0.050 -1.53 

17-20. Male -0.199 0.047 -4.24 March.2001 -0.028 0.048 -0.58 

30-39. Male 0.417 0.032 13.02 March.2002 0.041 0.046 0.89 

40-49. Male 0.226 0.032 7.01 March.2003 -0.056 0.048 -1.17 

50-59. Male -0.026 0.033 -0.79 March.2004 0.065 0.046 1.41 

60-69. Male -0.483 0.034 -14.15 March.2005 -0.028 0.049 -0.56 

70 plus. Male -0.331 0.029 -11.55 April.2001 0.035 0.047 0.75 

Monday 0.192 0.015 13.26 April.2002 -0.067 0.048 -1.40 

Tuesday 0.219 0.015 15.16 April.2003 0.008 0.047 0.17 

Wednesday 0.187 0.015 12.77 April.2004 0.030 0.047 0.64 

Thursday 0.184 0.014 12.91 April.2005 -0.010 0.049 -0.20 

Saturday 0.010 0.015 0.68 May.2001 0.001 0.047 0.02 

Sunday -1.048 0.022 -47.75 May.2002 -0.100 0.048 -2.09 

January -0.203 0.037 -5.48 May.2003 -0.002 0.046 -0.03 

February -0.049 0.036 -1.35 May.2004 0.057 0.046 1.23 

March -0.058 0.036 -1.62 May.2005 0.037 0.048 0.77 

April 0.005 0.036 0.13 June.2001 0.033 0.047 0.70 

May 0.065 0.036 1.82 June.2002 -0.056 0.048 -1.17 

June 0.090 0.036 2.52 June.2003 -0.007 0.047 -0.16 

July 0.022 0.036 0.63 June.2004 0.017 0.047 0.35 

August -0.044 0.036 -1.23 June.2005 0.012 0.048 0.25 

September 0.087 0.036 2.43 July.2001 0.020 0.047 0.43 

October 0.068 0.036 1.90 July.2002 -0.011 0.046 -0.23 

December -0.048 0.037 -1.31 July.2003 0.005 0.046 0.10 

Time 0.000 0.000 -6.91 July.2004 -0.027 0.047 -0.57 

Holidays -0.384 0.030 -12.87 July.2005 0.012 0.048 0.26 

New Year -0.446 0.128 -3.50 Aug.2001 -0.005 0.047 -0.10 

Christmas -1.167 0.187 -6.25 Aug.2002 -0.004 0.046 -0.09 

    Aug.2003 0.010 0.046 0.21 

    Aug.2004 0.020 0.047 0.43 

    Aug.2005 -0.021 0.048 -0.43 
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Continued- 

 Random Part 

 

Dispersion Part 

Variable Coefficient S.E t value Coefficient Coefficient S.E t value 

Sept.2001 -0.020 0.047 -0.43 Constant 0.405 0.012 34.53 

Sept.2002 -0.003 0.046 -0.05 Under 17 0.600 0.022 27.37 

Sept.2003 0.164 0.044 3.75 17 to 20 -0.125 0.022 -5.69 

Sept.2004 -0.070 0.048 -1.46 30-39 -0.062 0.022 -2.84 

Sept.2005 -0.092 0.050 -1.86 40-49 -0.106 0.022 -4.81 

Oct.2001 -0.002 0.047 -0.04 50-59 -0.119 0.022 -5.41 

Oct.2002 0.017 0.046 0.37 60-69 -0.083 0.022 -3.80 

Oct.2003 0.050 0.046 1.10 70 plus -0.051 0.022 -2.34 

Oct.2004 -0.077 0.048 -1.60 Male -0.109 0.017 -6.55 

Oct.2005 0.007 0.048 0.15 Monday -0.011 0.020 -0.53 

Nov.2001 -0.034 0.048 -0.71 Tuesday 0.084 0.020 4.13 

Nov.2002 -0.032 0.047 -0.69 Wednesday 0.073 0.020 3.59 

Nov.2003 -0.016 0.047 -0.34 Thursday 0.011 0.020 0.53 

Nov.2004 0.053 0.046 1.16 Saturday 0.022 0.020 1.10 

Nov.2005 0.025 0.048 0.53 Sunday -0.216 0.020 -10.64 

Dec.2001 0.065 0.047 1.39 Jan -0.009 0.027 -0.34 

Dec.2002 0.042 0.047 0.90 Feb -0.039 0.028 -1.36 

Dec.2003 -0.052 0.048 -1.07 Mar -0.035 0.027 -1.30 

Dec.2004 0.006 0.048 0.13 Apr 0.002 0.028 0.08 

Dec.2005 -0.069 0.050 -1.36 May 0.039 0.027 1.41 

    Jun 0.071 0.028 2.57 

    Jul -0.009 0.027 -0.32 

    Aug -0.080 0.027 -2.95 

    Sep 0.025 0.028 0.91 

    Oct 0.054 0.027 1.97 

    Dec -0.013 0.027 -0.48 

 

 

 

 

 

 


