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Abstract

Background: Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important
components of modern computational immunovaccinology. Here, we describe the development and deployment of a
reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Methodology/Findings: Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide
binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR)
binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to
design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding
affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-
binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding
peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals
chronically infected with HIV-1.

Conclusions/Significance: A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of
peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is
generally applicable to all T cell epitope identification problems in immunology and vaccinology.
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Introduction

The products of the Major Histocompatibility Complex (MHC)

play a fundamental role in regulating immune responses,

modulating the functional development of lymphocyte subsets,

the acquisition and maintenance of self-tolerance, and the

activation state and responses of host immune defences. MHC

class I molecules expressed on the cell surface report on the

internal status of cells by presenting ligands for surveillance by

CD8+ T cells, natural killer T (NKT) cells and natural Killer (NK)

cells [1]. CD8+ T cells recognise antigen as short peptide

fragments complexed with classical MHC class I molecules [2].

NK cells express a diverse array of receptors that interact with

ligands including classical and non-classical MHC class I

molecules, which exert positive and negative influences on their

functions [3]. Human MHC class I molecules are both polygenic

and highly polymorphic [4]. This increases the chance that every

pathogen will contain many epitopes recognised by individuals
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within the population and places restraints on a pathogen’s ability

to escape immune control.

Characterisation of the peptides that are presented by MHC

molecules is of tremendous utility in basic research studies, and

can also have clinical applications. Identification of the ligands

recognised by T cells and NK cells facilitates analysis and

manipulation of lymphocyte subsets participating in host defence

and in disease processes, and can help mediate the development of

immune-based prophylactic and therapeutic strategies including

vaccines. Immunoinformatics, a newly emergent sub-discipline of

bioinformatics, addresses informatic problems within immunology,

such as the crucial issue of epitope prediction [5]. As high

throughput biology reveals the genomic and proteomic sequences

of pathogenic bacteria, viruses, and parasites, such prediction will

become increasingly important in the post-genomic discovery of

novel vaccines, clinical diagnostics, and laboratory reagents. Direct

laboratory-based analyses of T cell responses to overlapping

peptides drawn from pathogen proteomes are expensive in terms

of time, labour, and resource. The accurate prediction of peptide-

MHC binding provides a useful approach to candidate T cell

epitope selection since it allows the number of experiments needed

for their identification to be minimised. Database-driven models of

peptide binding include multivariate methods such as partial least

squares (PLS) and artificial neural networks [6,7,8,9].

To better understand the sequence-dependence of peptide-

MHC binding, we have taken a novel approach to exploring the

amino acid preferences of various human and mouse MHC alleles

[10]. Our approach to determining epitope-mediated immunoge-

nicity encompasses an integrated system comprising a state-of-the-

art database system known as AntiJen [11,12,13] and the

quantitative structure-activity relationship (QSAR)-based predic-

tion of binding to class I [14] and class II molecules [15], coupled

to integrated experimental validation [10]. We have deployed our

QSAR prediction models via MHCPred [16]; subsequently

supplementing this with sophisticated models of antigen presen-

tation [17]; deployed via EpiJen [18].

At the heart of our work is an immunoinformatic technique for

the prediction of peptide-MHC affinities, commonly known as the

additive method [19]. It is a two-dimensional quantitative

structure-activity relationship (2D-QSAR) technique whereby the

presence or absence of a group is correlated with biological

activity. For a peptide, the binding affinity is thus represented as

the sum of amino acid contributions at each position. Notably,

using cell surface MHC stabilisation assays to experimentally

determine peptide MHC binding affinities, we have used the

additive method to drive validation of our predictions and the

manipulation of peptide specificity for MHC alleles, leading to the

discovery of HLA-A*0201 superbinding peptides and potential

HLA-A*0201-presented epitopes which lack canonical anchors

[10].

Here we use similar methodology to characterise the peptide

binding specificity of the human MHC class I allele HLA-

Cw*0102. Study of the HLA-C alleles and the peptides they

present has received much less attention than work on HLA-A and

-B alleles. This is likely due to the fact that they are expressed at

lower levels on the cell surface than HLA-A and -B alleles [20],

and a higher proportion of CD8+ T cell responses are believed to

be restricted by HLA-B and HLA-A, with HLA-C a poor third

[21,22]. However despite this, HLA-C-restricted CD8+ T cell

responses can still constitute immunodominant components of the

host T cell response, and can exert significant immune pressure on

in vivo pathogen replication [23,24]. Further, in addition to

interacting with antigen-specific receptors on CD8+ T cells, HLA-

C molecules also interact with other activating/inhibitory

receptors that regulate the maturation and functions of lympho-

cyte subsets including NK cells, being more important than HLA-

A alleles and certain HLA-B alleles in this regard [3,25]. The

HLA-C1 group of alleles (to which HLA-Cw*0102 belongs)

interact with killer cell immunoglobulin-like receptors (KIRs),

specifically inhibitory receptors KIR2DL2 and KIR2DL3 and

activating receptor KIR2DS2, while the HLA-C2 group of alleles

interact with the inhibitory receptor KIR2DL1 and the activating

receptor KIR2DS1 [26]. The importance of HLA-C in the host

immune response, which was previously underestimated, is thus

now increasingly appreciated. This was emphasised recently by

results from a genome-wide association study of major determi-

nants of host control of HIV infection, which identified a

polymorphism located near to the HLA-C gene that is thought

to associate with differences in HLA-C expression levels as an

important determinant of set-point plasma viremia [27].

Unlike many HLA-C alleles, peptide binding to HLA-Cw*0102

has been investigated previously [23,28], but not with any great

rigour or precision. Barber et al. [29] combined results from pooled

sequencing of eluted cell-surface peptides and the sequencing of

individual peptides using Edman degradation, as confirmed with

tandem mass spectrometry, to propose a motif for HLA-Cw*0102.

Their reading of the data suggested strong amino acid preferences at

six of the nine peptide positions of the nonameric peptide. Guided

perhaps by a implicit structural understanding and precedents

established by other alleles, the motif presented at SYFPEITHI [30]

is much simplified: Ala and Leu at position P2 and Leu at the C-

terminus (P9) of the epitope peptide.

Sequence motifs are the oldest and currently still the best-known

tools for predicting the peptide-specificity of allele-dependent

MHC-peptide binding. Motifs are characterized by a few

dominant anchor positions with a very restricted set of allowed

amino acids. Such anchors are thought essential for binding. The

best-understood human MHC class I allele is HLA-A*0201 [10].

For a nonameric peptide, it has anchor residues at peptide

positions P2 (accepting Leu and Met) and P9 (accepting Val and

Leu). The motif method is admirably simple: it is easy to

implement either by eye or more systematically by using a

computer to scan through protein sequences. However simple

motif-based approaches are unable to provide complete or very

accurate predictions of the peptides able to bind to a particular

MHC class I molecule. Andersen et al. [28] used a semi-

quantitative cell-surface stabilisation binding assay for HLA-

Cw*0102 to measure the affinity of 20 peptides initially identified

using a motif modified from that of Barber et al. [29]. Of the 20

motif- positive peptides, only 12 exhibited measurable affinity.

Notably, the few HIV-1-derived CD8+ T cell epitopes restricted

by HLA-Cw*0102 that have been identified to date were

determined by screening of overlapping peptides. Using this

approach, Goulder et al [23] identified the octameric HIV-1 Gag

peptide VIPMFSAL as a T cell epitope. More recently, Liu et al.

[31] were able to identify several more HLA-Cw*0102-restricted

HIV epitopes: NSPTRREL, YSPLSLQTL, YCAPAGFAIL, and

HAPWDVNDL.

Due to the paucity of experimental data, peptide-binding

prediction methods for HLA-C including HLA-Cw*0102 have

received little attention, and, until recently, were not generally

available. As methods are developed that aim at extending

prediction beyond the small number of well-characterised MHC

class I alleles, several computational approaches have begun to

explore HLA-C in general and HLA-Cw*0102 in particular

[32,33,34,35]. In this study, rather than take a solely theoretical

approach, we sought to combine computational and experimental

methodologies, developing a hybrid in silico-in vitro algorithm for

Peptide Binding to HLA-Cw*0102
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peptide-HLA-Cw*0102 binding prediction. Using an in-house,

fluorescence-activated cell sorting (FACS) -based MHC stabiliza-

tion assay [36], we determined the binding affinities to the MHC

class I allele HLA-Cw*0102 of a set of 43 nonameric peptides. An

additive QSAR model was developed from this data, which we

used to reassess the preferred amino acids at each position and to

design new HLA-Cw*0102-binding peptides. Moreover, in

addition to undertaking in vitro tests, we used our model to try to

predict HIV-1 T cell epitopes restricted by HLA-Cw*0102.

Reactivity to the most affine of the candidate peptides (CAPAG-

FAIL) was subsequently observed in HIV-infected individuals,

confirming its status as a HIV-1 epitope.

Results

Development of an Additive 2D-QSAR Model for Binding
of Nonameric Peptides to HLA-Cw*0102

To generate data for use in developing a computational model of

peptide binding to HLA-Cw*0102, 43 peptides identified from the

work of Barber et al. [28] and Anderson et al. [23] (Table 1) were

assayed for binding to HLA-Cw*0102 using a FACS-based cell

surface MHC stabilisation assay [10,19]. This identified 25

peptides that bound to HLA-Cw*0102 with different affinities

(peptides 1–25, Table 1). The experimentally-determined pBL50

values ranged from over 7 to 3; peptides with pBL50 values below 3

were considered to be non-binders. From this set of binding

peptides, two models were generated using the PLS-based additive

method [19]: one containing just amino acid contributions and one

with contributions from both amino acids and side chain–side chain

interactions. The two additive models were roughly equivalent in

terms of statistical quality, so we applied the principle of Occam’s

razor and sought the simplest explanation, choosing the amino acid

only model. The amino acid only model was tested using cross-

validation: predicted peptide binding affinities are shown in Table 1.

The non-cross-validated parameters were r2 = 0.920 and standard

error of estimate (SEE) = 0.299. Leave-one-out cross-validation

(LOO-CV) gave q2 = 0.491, standard error of prediction (SEP) =

0.753, number of components (NC) = 2, and no outliers were

removed. These data are consistent with a robust model. Notably,

there was a trend for the experimentally-measured peptide binding

affinities to be slightly higher than the values predicted by the

model; potential reasons for this are discussed below.

The contributions made by different individual amino acids at

each position of a generalised nonameric HLA-Cw*0102-binding

peptide are presented in Figure 1. Favoured and disfavoured

binding residues, as defined by the model (applying a threshold of

.60.1), are shown in Table 2. The amino acids present at each

position in the nonameric peptide were found to impact in a positive

or negative fashion on peptide binding to HLA-Cw*0102. The

positions with the most pronounced effects on peptide-MHC

binding clustered at the N- and C-termini of the peptide sequence,

consistent with the observation that peptides bound to most MHC

class I molecules are typically anchored at or near their termini [37].

Design of Peptides Optimised for Binding to
HLA-Cw*0102

The model described above enumerates the effects of amino acid

residues at all positions of a nonameric peptide on peptide binding

to HLA-Cw*0102 (Table 2). It was used to design a set of peptides

optimised for HLA-Cw*0102 binding, and their MHC binding

affinities were then determined experimentally. The peptides

designed for optimal binding were prepared by combining preferred

amino acids at each position. For certain positions (1, 3, 5, 6) there

were single preferred residues, whilst other positions (2, 4, 7, 8, 9)

Table 1. List corresponding to the initial set of peptides used
in this study and their experimentally-determined and
predicted HLA-Cw*0102 binding affinities.

No. PEPTIDE Ref. pBL50(exp)
a pBL50(pred)

b

1 A A P A Y S R A L 21 5.751 6.010

2 F A P Y N K P S L 21 6.214 6.570

3 I T P T G T H P L 21 6.548 6.290

4 L P E T K F S E L 21 5.196 5.280

5 N A P W A V T S L 21 6.848 6.880

6 N C P E R I I T L 21 7.198 7.120

7 V A P W N S L S L 21 6.153 6.380

8 A Q P Q T T T P L 22 6.915 6.690

9 A T S P I V P S L 22 5.382 5.620

10 E V I P M F S A L 22 6.131 5.780

11 F A P G N Y P A L 22 6.723 6.510

12 I L R R P T S P V 22 5.099 5.110

13 I L S P L T K G I 22 3.061 3.410

14 I L S P R K E S V 22 4.764 4.680

15 I L S P R S E S V 22 5.581 5.050

16 I L S P R S K E S 22 3.534 4.460

17 I L S P S K E S V 22 4.944 4.390

18 L L T S P D V G L 22 4.933 5.140

19 L S P L T K G I L 22 5.421 5.050

20 L S P R S K E S V 22 6.041 6.330

21 L T S P D V G L L 22 4.563 5.180

22 P L S P P K K K D 22 4.996 5.350

23 S L E E C D S E L 22 3.426 3.770

24 V I P M F S A L S 22 5.610 5.440

25 Y A Q P Q T T T P 22 5.225 5.380

26 H L P E T K F S E 21 Non-binderC

27 A D A E K P F Y V 22 Non-binderC

28 A D D S H F V S I 22 Non-binderC

29 A V D A D D S H F 22 Non-binderC

30 D A D D S H F V S 22 Non-binderC

31 D L L T S P D V G 22 Non-binderC

32 G A D A E K P F Y 22 Non-binderC

33 G I P E P A H A Y 22 Non-binderC

34 I L K E P V H G V 22 Non-binderC

35 I L S R S K E S V 22 Non-binderC

36 I P E P A H A Y A 22 Non-binderC

37 K A T S P I V P S 22 Non-binderC

38 L L K L A S P E L 22 Non-binderC

39 L P S Q A M D D L 22 Non-binderC

40 L S P P K K K D L 22 Non-binderC

41 P L P S Q A M D D 22 Non-binderC

42 V D A D D S H F V 22 Non-binderC

43 Y M T P S S R P L 22 Non-binderC

aExperimental pBL50s measured using a FACS-based MHC stabilisation assay.
bCalculated pBL50s generated using the QSAR model described in the text.
CExperimental non-binders were initially predicted to be non- or low binding

peptides, but without useful discriminatory power.
doi:10.1371/journal.pone.0008095.t001

Peptide Binding to HLA-Cw*0102

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e8095



had several acceptable amino acids. We selected favoured amino

acid residues from Table 2, combining all preferred residues to

generate new peptides. We chose Asn for position 1 (P1); Cys and

Gln for P2; Pro for P3; Glu and Gln for P4; Arg for P5; Ile for P6;

Glu, Ile and Thr for P7; Pro, Ser and Thr for P8; and Leu and Val

for P9. Combining preferred amino acids produced 256 peptides.

Peptide binding affinities were predicted, and the affinities of 4

distinct high binders were determined using flow-based MHC

stabilization assays (Table 3a). A good correlation was found

between the experimentally-determined and predicted affinities,

r2
(pred) = 0.919. These peptides all bound strongly to HLA-

Cw*0102. However the binding affinities of these peptides did not

exceed substantially that of NCPERIITL, the most affine peptide

tested in the original peptide set (pBL50(exp) = 7.120). Additional

experiments were thus conducted to gain further insight into the

impact of amino acids at different positions in the sequence on

peptide binding to HLA-Cw*0102.

Use of Alanine Scanning to Explore Systematically the
Roles of Amino Acids at Different Positions in Peptide
Binding to HLA-Cw*0102

To explore systematically the relative contribution made by

amino acids at different positions in a nonameric peptide to HLA-

Cw*0102 binding affinity, a sequential alanine-scan of the peptide

NCPERIITL, which bound with high affinity to HLA-Cw*0102

(pBL50 = 7.12), was undertaken, whereby each of residues 1 to 9

was changed to alanine. The alanine-substituted peptides

(Table 3b) were synthesized and their binding to HLA-Cw*0102

was tested in flow-based MHC stabilisation assays. Interestingly,

although replacement of key MHC-interacting residues in a

peptide with alanine residues typically results in a non-trivial

decrease in the affinity of peptide binding to MHC, the predicted

HLA-Cw*0102-binding affinities of the alanine-substituted ver-

sions of the NCPERIITL peptide were not appreciably different

from that of the index peptide (Table 3b). Further, the

experimentally-determined binding affinities of these peptides

were also not substantially lower than that of the index peptide

(Table 3b). Only the conversion of Cys at position 2 produced a

marked change in peptide binding affinity: but the effect observed

was an increase in peptide binding affinity of 1.2 log units. These

results are consistent with the idea that the affinity of peptide

binding to HLA-Cw*0102 is determined by interactions made by

amino acids at all positions in the peptide sequence, rather than

being solely dependent on a single prominent anchor residue.

Figure 1. Relative contributions of different amino acids at each position to the interaction of a nonameric peptide with the HLA-
Cw*0201 molecule as determined using a QSAR-based additive model. The bar heights indicate the strength of the positive or negative
contribution made by each amino acid residue (denoted using the single letter code) at the indicated position (1–9) in a nonameric peptide to peptide-
MHC interaction. The contribution is equivalent to a position-wise amino acid regression coefficient obtained by PLS regression (as described in the text).
doi:10.1371/journal.pone.0008095.g001

Table 2. Summary of amino acids at each position that
favour or disfavour peptide binding to HLA-Cw*0102, as
defined by the QSAR model.

P1 P2 P3 P4 P5 P6 P7 P8 P9

Favoured
Binding a

N b C, Q P E, Q R I E, I, T P, S, T L, V

Disfavoured
Binding a

I, L L S P L S G, K E, G, L I, S

aAmino acids are included if they exceed a threshold of .60.10 as favoured or
disfavoured residues as shown in Fig. 1.

bAmino acids are highlighted in bold if they exceed a threshold of .60.20 as
favoured or disfavoured residues as shown in Fig. 1.

doi:10.1371/journal.pone.0008095.t002
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Exploration of the Contributions of a Diverse Range of
Amino Acids at Each Position to Peptide Binding to
HLA-Cw*0102

A potential shortcoming of our approach was that not every

amino acid was represented at each of the 9 possible positions in

the set of peptides used to generate the model – hence the positive

or negative influences of certain amino acids at particular positions

may have been overlooked. To gain insight into the extent to

which this may have affected the utility of the model, a set of 20

sequence-diverse peptides exploring different amino acids at

positions 1, 2, 4, 5, 6, 7, and 8 within the peptide were designed

(Table 3c). We chose positions 3 and 9 as pseudo-anchors (on the

basis of data in Table 2), and varied amino acids at all other

positions. A simple genetic algorithm [38] was implemented to

create peptide sequences. The genetic algorithm was constrained

using several criteria, such as the number of acidic and basic

residues in the peptide. Using the protocol outlined in [39], the

resulting large set of possible peptides was filtered using a

discriminant function model that aimed to partition binders from

non-binders. This model was built from the initial set of binders

and non-binders (as defined by their experimentally measured

affinities; see Table 1). The model generated scores for each

peptide which represented the probability that they would bind

rather than their affinity; thus a weak binder would score as well as

a strong binder. Missing values were set to be neutral and peptides

were ranked using their resulting binding score. For the top 250

peptides, diversity selection [40] was used to choose 20 sequence-

diverse peptides for testing (Table 3c). One peptide, with a

pBL50,3.00, was a non-binder; the rest exhibited appreciable

binding to HLA-Cw*0102 (Table 3c). We constructed a revised

affinity model including the new peptides. The non-cross-validated

parameters were r2 = 0.890 and SEE = 0.271. LOO-CV gave

q2 = 0.421, SEP = 0.724, NC = 3. While these results were

encouraging, the new model showed no marked improvement

over the original model. Nonetheless, our approach [39] can draw

strong validation from these findings: a very high proportion of

peptides were found to bind, and the use of multiple cycles of this

strategy should allow large numbers of affine peptides to be

discovered efficiently.

In Silico Discovery of Novel HIV Epitopes
As a test of the utility of our model for prediction of HLA-

Cw*0102-binding peptides in a pathogen sequence that may

constitute T cell epitopes, we sought to identify HLA-Cw*0102-

binding peptides in the sequence of HIV-1 and to determine

whether any of these were recognised by the virus-specific T cell

response in HLA-Cw*0102-positive individuals infected with this

virus. Two full-length HIV-1 proteome sequences were analysed

for peptides with predicted high binding affinity for HLA-

Cw*0102: the 2001 Clade B consensus sequence (a virtual

sequence representing the most frequently observed amino acids

at each position in multiple sequence alignments of HIV isolates)

and the sequence of the clade B virus HXB2 [41]. Twenty-two

unique peptides were predicted to possess predicted pBL50 HLA-

Cw*0102-binding affinities in excess of 5.0, which was deemed

sufficient for them to be potential T cell epitopes [10]; see Table 4.

These twenty-two peptides were evaluated using the flow-based

HLA-Cw*0102 binding assay, and half were found to demonstrate

measurable HLA-Cw*0102 binding (Table 4). We discuss a

number of possible reasons for the lack of demonstrable binding of

the other peptides below.

We then tested whether any of these HLA-Cw*0102-binding

peptides were recognised by virus-specific T cells from HIV-1-

infected individuals. Peripheral Blood Mononuclear cells (PBMCs)

from 5 HLA-Cw*0102-positive individuals chronically-infected

with clade B viruses were screened for reactivity to the 11 peptides

using IFNc ELISPOT T cell assays. To conserve patient PBMCs,

the 11 peptides were initially split into 3 pools (Pool 1: peptides 1–

4; Pool 2: 5–8; Pool 3: 9–11). Two of the five subjects (patients 3

and 4) responded to Pool 1 (Figure 2a); and subsequent testing of T

cell reactivity to the 4 individual peptides within this pool

confirmed peptide 1 as the epitope sequence recognised by both

of these patients (Figure 2b). Peptide 1 was the HIV peptide with

the highest affinity of binding to HLA-Cw*0102 (CAPAGFAIL;

pBL50 = 8.0). In order to assess the avidity of the patient T cell

Table 3. Test sets of newly-designed peptides.

No. Peptide pBL50 (pred)
a pBL50 (exp)

b

(a) Optimized binders

1 NCPEGYTSL 7.159 7.140

2 NEPQRIEPL 7.051 7.017

3 EQPERYESV 6.947 6.879

4 ECPQGITPV 6.954 6.962

(b) Alanine Substitutions

NCPERIITL 7.120

5 ACPERIITL 6.941 6.734

6 NAPERIITL 7.020 8.503

7 NCAERIITL 6.717 6.363

8 NCPARIITL 6.924 6.943

9 NCPEAIITL 7.097 6.714

10 NCPERAITL 6.975 6.613

11 NCPERIATL 6.963 6.696

12 NCPERIIAL 7.097 6.852

13 NCPERIITA 6.907 6.590

(c) Exploring Amino Acid Contributions

14 YMPTASCDL - 7.89

15 WAPHTDTSL - 7.90

16 VAPQLTFGL - 7.79

17 LGPEKLQYL - 6.82

18 MQPSRGKTL - 6.77

19 HMPDVGCIL - 6.75

20 SWPMQFDAL - 6.57

21 CMPDWLDRL - 6.48

22 TDPWFHRSL - 6.47

23 EFPWVFIEL - 6.45

24 CAPREPHVV - 6.42

25 EAPMWDHWL - 6.31

26 HNPGIATPV - 6.18

27 FMPIMKNEV - 6.17

28 VIPMFSAL - 6.07

29 KSPLDIVNL - 5.72

30 WRPDVNMQL - 5.54

31 WGPGIIWAL - 5.44

32 VRPMRQWPL - 5.42

33 QYPKGDAWV - Non-binder

aCalculated pBL50s generated using the QSAR model described in the text.
bExperimental pBL50s measured using a FACS-based MHC stabilisation assay.
doi:10.1371/journal.pone.0008095.t003
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responses to this epitope, we also titrated the epitope peptide in

IFN-c ELISPOT assays using PBMCs from the responding

patients. In both individuals, the response to CAPAGFAIL had

an avidity of approximately 1028 M (Figure 3). Using our QSAR-

based model for prediction of peptide binding to HLA-Cw*0102,

we were thus able to identify a HLA-Cw*0102-restricted T cell

epitope in the human pathogen HIV-1 to which high-avidity

responses could be detected in a subset of individuals chronically-

infected with this virus.

Discussion

In this paper we have used a potent combination of in silico

prediction and in vitro verification to characterise the peptide

binding specificity of the previously poorly- characterised human

MHC molecule HLA-Cw*0102. A 2D-QSAR approach was used

to model binding of nonameric peptides to HLA-Cw*0102 [19].

We defined positive and negative contributions made to HLA-

Cw*0102 binding affinity by amino acids at all positions of the

nonameric peptide sequence. This model was employed to predict

four ‘‘optimised’’ HLA-Cw*0102-binding peptides, all of which

showed a high affinity of binding to HLA-Cw*0102. Alanine-

scanning was used to probe and weight the contributions to affinity

of amino acids at each position of a HLA-Cw*0102-binding

peptide. Furthermore, the importance of amino acids randomly

allocated at each position of the peptide was explored by

evaluating the experimentally-determined binding affinities of a

set of sequence-distinct peptides defined by discrimination of

binding and diversity analysis. Realising that prediction must be

verified both in vitro and ex vivo, we also validated the utility of our

approach by predicting HLA-Cw*0102-binding nonameric pep-

tides in the HIV-1 sequence, one of which was confirmed to be an

epitope recognised by virus-specific T cells in a subset of HIV-

infected HLA-Cw*0102-positive individuals.

MHC class I molecules demonstrate extensive polymorphism

across the human population, even at the HLA-C locus. Four

mechanisms are largely responsible for the creation of new MHC

alleles: point substitution, allele conversion, gene conversion, and

recombination. The size and diversity of the MHC repertoire is

problematic for immunoinformatics. One solution is to identify

supertypes [34,42], another is the development of methods that

directly infer the selectivities of uncharacterised alleles [33,43,44],

and another is the de novo use of molecular dynamics [45,46]. Here,

we used a combination of computational and experimental

approaches to develop a hybrid in silico-in vitro algorithm for

predicting peptide binding to the MHC class I molecule HLA-

Cw*0102. The analysis of poorly-characterised alleles, such as HLA-

Cw*0102, is important in this context as it allows such approaches to

be validated and calibrated. Moreover, the data-driven methods

devised here can yield important results in their own right.

Table 4. HIV-1 peptides predicted to bind to HLA-Cw*0102.

Peptide number a Peptide sequence HIV Position pBL50 (pred)
b pBL50 (exp)

c

Clade B consensus

Peptide 4 EVIPMFSAL Gag 167–175 5.728 6.13116

Peptide 5 VIPMFSALS Gag 168–176 5.44 5.61006

IVRMYSPTS Gag 273–281 5.211 Non-binder

FPISPIETV Pol 155–163 6.05 Non-binder

Peptide 6 LTEEKIKAL Pol 181–189 5.376 5.28447

Peptide 7 FQSSMTKIL Pol 315–323 5.117 6.15401

Peptide 8 LLRWGFTTP Pol 364–372 5.363 5.68929

IVIWGKTPK Pol 535–543 5.004 Non-binder

LVSAGIRKV Pol 706–714 5.344 Non-binder

PQSQGVVES Pol 860–868 5.058 Non-binder

VVPRRKAKI Pol 974–982 5.915 Non-binder

LITPKKIKP Vif 153–161 5.915 Non-binder

Peptide 10 LQILAIVAL Vpu 4–12 5.826 6.11562

Peptide 9 PVPLQLPPL Rev 70–78 5.335 5.50055

Peptide 1 CAPAGFAIL Gp160 218–226 5.116 8.00554

EQFGNKTIV Gp160 350–359 5.044 Non-binder

Peptide 2 RVRQGYSPL Gp160 703–711 5.208 7.06262

Peptide 3 IVTRIVELL Gp160 773–773 5.617 5.94945

HXB2 concensusd

Peptide 11 ELQAIYLAL Pol 633–641 5.529 5.90231

ELIRTVRLI Rev 11–19 5.031 Non-binder

NSTWSTEGS Gp160 397–405 5.46 Non-binder

NYTSLIHSL Gp160 637–645 5.077 Non-binder

aPeptide number used in subsequent ELISPOT experiments.
bCalculated pBL50s generated using the QSAR model described in the text.
cExperimental pBL50s measured using a FACS-based MHC stabilisation assay.
dPeptides listed here were unique to the HXB2 sequence.
doi:10.1371/journal.pone.0008095.t004
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The binding specificity of HLA-Cw*0102 has previously been

characterised by sequence motifs [28,29,30]. However, there are

many problems with the use of such motifs. The most significant of

these is that motifs are, fundamentally, deterministic. A peptide is

either a binder or is not a binder. Generally speaking, the presence

of anchors, frequently located at positions 2 and/or 9 of a

nonameric peptide, is deemed to be necessary, but not sufficient,

for high affinity binding [6]. Prominent roles for other positions,

typically 1, 3, and 7 (so-called secondary anchor residues) are also

commonly observed [47]. It is well-known that matches to motifs

produce many false positive peptides that fail to bind to MHC, and

are, in all probability, producing an equal number of false

negatives, although peptides predicted to be non-binders are

seldom screened. Hence, although motif-based approaches to

prediction of peptide MHC binding specificity have proven useful,

they are increasingly seen as inadequate. An alternative approach

that we have pursued in previous studies is to employ methods that

dissect the contributions of amino acids at all different positions of

the peptide (which tend to weight the positions equally) in order to

predict peptide-MHC interactions [6,7,9]. Likewise here, we

again used a QSAR-based approach to quantify the contribution

to HLA-Cw*0102 binding affinity made, on a position-wise basis,

by amino acids along the whole of a nonameric peptide. We found

that amino acids at all positions in the peptide could exert a

positive or negative influence on peptide binding to MHC, a

finding that highlights the complexity of peptide-MHC interac-

tions. This was further emphasised by our observation that a series

of alanine-scanning mutants of the high-affinity HLA-Cw*0102-

binding peptide NCPERIITL all bound to HLA-Cw*0102 with

affinities equivalent to or higher than those of the index peptide,

again suggesting that peptide binding to HLA-Cw*0102 is not

predominantly dependent on any single residue, but rather is

determined by multiple interactions between the peptide and

MHC molecule. These findings underline the shortcomings of

approaches based on simple motifs for prediction of peptide

binding affinities, and provide a rationale for the use of more

sophisticated and insightful alternative approaches such as the

QSAR-based method employed in this study.

Cross-validation of our 2D-QSAR-based model for peptide

binding to HLA-Cw*0102 indicated that it provided good

predictions of the HLA-Cw*0102-binding affinities of the peptides

in Table 1. As seen previously in our analysis of HLA-A*0201

[10], there was a trend for the experimentally-determined peptide

binding affinities to be somewhat higher than their predicted

binding affinities. Synergies operate between different peptide

positions, and this may help to explain the underestimated

affinities seen here and previously [10,48]. The observation that

many of the peptides had higher binding affinities than suggested

by a summation of amino acid contributions is an example of co-

operative enthalpy-entropy compensation [49]. It is now well

known that the balancing of intermolecular motion and enthalpic

interactions induces a non-linear amplification of binding affinity.

Intermolecular motion weakens the many non-covalent interac-

tions that stabilize a complex. As additional interactions are

introduced, intermolecular motion is damped. As a result, all

Figure 2. Analysis of the recognition of HLA-Cw*0102-binding
HIV-1 peptides by T cells from HLA-Cw*0102-positive HIV-
infected individuals. PBMCs from clade B HIV-infected individuals
were screened for responses to (a) pools of HLA-Cw*0102-binding
peptides (pool 1 = peptides 1–4; pool 2 = peptides 5–8; pool 3 =
peptides 9–11) or (b) individual peptides (1–4) by IFN-c ELISPOT assay.
The number of cells producing IFN-c in response to stimulation with
peptide(s) or medium alone is shown, expressed as the mean (of results
obtained in duplicate test wells) number of spot-forming cells (SFC) per
106 PBMCs. The error bars indicate 1 standard deviation above the
mean.
doi:10.1371/journal.pone.0008095.g002

Figure 3. Dose-response titration of the peptide CAPAGFAIL.
The responsiveness of T cells from two HIV-infected individuals to 10-
fold dilutions of the peptide CAPAGFAIL was assessed by IFN-c ELISPOT
assay. The results shown are the specific response elicited at each
peptide concentration, expressed as a percentage of the maximum
response (that elicited by 1025 M peptide) observed in the individual
concerned.
doi:10.1371/journal.pone.0008095.g003
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interactions are more favorable and the complex is more cohesive.

As an example, peptide 17 (Table 1) is a medium binder, while

peptide 35 is a non-binder, yet the sequence is the same except for

the substitution of an arginine in peptide 35 by a proline in peptide

17 at peptide position P4. Examination of Table 2 and Figure 1

indicates that proline at P4 results in an overall unfavourable

contribution to binding, while arginine makes a contribution

which is overall nearly neutral. On this basis, peptide 17 would be

expected to be a less good binder than peptide 17, whilst the

converse is in fact the case. This apparent albeit minor

inconsistency may be due to a cooperative or enthalpy-entropy

compensation effect.

Unfortunately, intrinsic error in the biological measurements

precludes construction of a predictive method that can effectively

factor-out these co-operative interactions. Instead, the signal is

suppressed within a low signal-to-noise ratio: use of a model with

more variables does not yield better statistics. There are a number

of factors that may limit the accuracy of the method used for

analysis of peptide-MHC binding affinity and prevent use of the

data to probe such subtle effects with confidence. In this context, it

is worth noting that the recognition of class I MHC molecules by

HLA allele-specific antibodies can be influenced by the identity of

bound peptides. It is thus possible that the Cw*0102-specific mAb

VP6G3 used in this study may bind to distinct peptide-MHC

complexes with different affinities in a peptide-dependent manner.

It was beyond the scope of the present study to evaluate such

binding in a fully quantitative manner. On the basis of other

studies such discrepancies are unlikely to be significant; yet we can

not dismiss this phenomenon, which may contribute to the noise

inherent within the biological observations and thus the impreci-

sion of any derived prediction method.

The QSAR-based model was used to predict four ‘‘optimised’’

HLA-Cw*0102-binding peptides. All of these showed a high

affinity of binding to HLA-Cw*0102, although their binding

affinities did not exceed those of the most affine peptide in the

original peptide set. This may have been because the

contributions of all amino acid types at all positions were not

adequately represented in the dataset used to generate the

model. This is a shortcoming common to traditional natural-

peptide-only analyses [6], which leads to highly biased and

restricted distributions of amino acids. Here, we explored the

role of different amino acids at positions throughout the peptide

by generating a set of sequence-diverse peptides and measuring

their binding to the HLA-Cw*0102 molecule. The overall model

comprising all affine peptides did not improve on the initial

model. There are many possible reasons for this. The set of

peptides may, as a consequence of its diversity, actually comprise

several subsets with distinct structure-activity relationships.

Measured binding may contain some element of cross- or non-

specific binding to other cell surface molecules. Nonetheless, the

high proportion of binders observed provides significant

validation for the efficiency of this approach. In future,

discriminant models - as well as affinity models – could generate

diverse peptide sets iteratively leading to more comprehensive

and robust QSAR-based models for peptide binding to HLA-

Cw*0102 or, more generally, for any allele.

To validate the utility of our QSAR-based model for prediction

of HLA-Cw*0102-binding peptides in a pathogen sequence that

may constitute epitopes recognised by the host immune response,

we tested the ability of the model to predict putative nonameric

HLA-Cw*0102-restricted T cell epitopes in the HIV-1 sequence.

There were several reasons for choosing HIV-1 as a test pathogen.

First, there is a strong rationale for identifying HIV-1 peptides

presented by distinct MHC class I molecules that may be

recognised by T cells and/or NK cells in vivo. Identification of

regions of the HIV-1 genome that are targeted by the immune

system is a valuable asset for basic research aimed at characterising

the host immune response plus viral immune evasion strategies

and identifying correlates of immune protection, knowledge that is

urgently needed to inform the development of new prophylactic

and therapeutic vaccination strategies to combat this infection

[50,51]. Second, HIV sequence data is readily available [41],

further, as a virus with a reasonably small (,9.2 kb) genome, it

was feasible to synthesise and test all the predicted HLA-Cw*0102-

binding peptides in the proteome. Given the extent of HIV-1

sequence diversity, we confined our analysis to work on clade B

viruses/virus-infected individuals, and predicted HLA-Cw*0102-

binding peptides in both the clade B concensus virus sequence and

the sequence of a ‘‘reference’’ clade B virus, HXB2. Finally, HIV-

specific T cell frequencies in healthy, viremic individuals are

typically high enough for responses to epitopes of varying

immunodominance to be detected ex vivo by standard immuno-

logical assays, facilitating screening of HLA-Cw*0102-binding

peptides for T cell recognition.

Eleven HLA-Cw*0102-binding nonameric peptides were iden-

tified in the HIV-1 clade B concensus and/or HXB2 sequences,

one of which, CAPAGFAIL, was shown to be recognised by HIV-

specific T cell responses of high avidity in two of the five HLA-

Cw*0102-positive individuals chronically infected with HIV that

we tested. Subsequent to the completion of this study, the same

nonameric sequence was also described as a HLA-Cw*0102-

restricted T cell epitope recognised in other HIV-infected

individuals [52]. It is notable that two of the eleven HLA-

Cw*0102-binding nonameric peptides we identified (peptides 4

and 5 in Table 4) contained an octameric sequence, VIPMFSAL,

that has previously been shown to constitute an epitope recognised

by the T cell response in HIV-infected individuals [23,31]. The

lack of recognition of peptides 4 and 5 by T cells from the HIV-

infected subjects we studied may reflect a lack of reactivity to this

epitope-containing region in these individuals or an inability of

VIPMFSAL-specific T cells to recognise complexes of the longer

peptides bound to HLA-Cw*0102. However, it is most likely to

result from the poor presentation of the VIPMFSAL-containing

nonameric peptides in our assays. Both peptides had moderate to

low HLA-Cw*0102 binding affinities and may have been out-

competed by endogenous peptides for presentation on PBMCs.

Studies in which HIV-specific T cell responses were mapped

empirically [23,31] have identified HLA-Cw*0102-restricted T

cell responses to additional HIV-1 clade B peptides that were not

identified as putative HLA-Cw*0102-restricted HIV T cell

epitopes in this study. Potential explanations are many. First, the

optimal sequences of some of these epitopes are not nonamers (and

our model predicts only nonameric HLA-Cw*0102-binding

peptides). Second, as discussed above, all models, including ours,

provide only moderately successful predictions of all potential

HLA-Cw*0102-binding peptides, hence the binding affinity of

certain peptides may have underestimated. Finally, a subset of

epitopes recognised by virus-specific T cells may bind to MHC

with very low affinity, and hence may not have been characterised

as HLA-Cw*0102-binding peptides by our model.

Had we been able to test more HLA-Cw*0102-positive

patients, we might potentially have identified T cell responses to

more of the HLA-Cw*0102-binding peptides in Table 4. The

epitopes targeted by the HIV-specific T cell response in a given

infected individual are determined by host factors - antigen

processing, the complement of HLA class I molecules expressed,

and the profile of T cell receptors in the repertoire (which will

have been modified by the infection and vaccination history of the

Peptide Binding to HLA-Cw*0102

PLoS ONE | www.plosone.org 8 November 2009 | Volume 4 | Issue 11 | e8095



subject, as well as by their individual genetics) - and also by the

sequence of the in vivo viral quasispecies, which not only varies

markedly from one infected individual to another, but also

undergoes considerable evolution within a given subject over time

[52]. In particular, detection of responses to those HLA-

Cw*0102-binding peptides in poorly conserved regions of the

viral proteome may require screening of a larger number of

subjects, as the test peptide sequences may not be well-conserved

in the viral quasispecies present in all individuals. It was notable

that the CAPAGFAIL peptide to which responses were observed

in two subjects was the HIV peptide that exhibited the highest

affinity of binding to HLA-Cw*0102 (Table 4). Responses to other

lower-affinity peptides may have been rarer and/or less

immunodominant, requiring screening of a large patient cohort

for their detection. The T cell responses we detected to the

CAPAGFAIL epitope were also of high avidity, so may have been

better-able to cross-recognise our test peptide in spite of sequence

differences to the autologous virus sequence than lower avidity

responses to other viral epitopes. The patient samples used to

screen for T cell responses to our HLA-Cw*0102-binding peptides

were derived from individuals chronically-infected with HIV, as

the breadth of epitope recognition in chronic infection is greater

than that in acute infection [54]. However given the increasing

evidence to suggest that there are differences in the epitopes to

which strong responses are detectable in the acute and chronic

phases of infection, with a subset of the initially-immunodominant

responses undergoing a rapid decline in frequency, due in part to

viral mutational escape and loss of the epitope sequence [55,56],

it would also have been of interest to determine whether responses

to additional HLA-Cw*0102-binding peptides were detectable in

acutely-infected individuals: unfortunately, suitable samples were

not available.

Another question of interest is whether any of the HLA-

Cw*0102-binding HIV-1 peptides we identified may form part of

a peptide-MHC complex recognised by NK cell receptors in HIV-

infected individuals. HLA-Cw*0102 is a HLA-C1 serogroup allele

that interacts with the inhibitory KIR2DL2/3 and activating

KIR2DS2 receptors [57]. In addition, HLA-C molecules act as

ligands for other NK receptors including ILT2 and CD160 [58].

Current thinking suggests that the peptide content of MHC class I

molecules may modify their interaction with activating and

inhibitory NK cell receptors, such that predominantly inhibitory

signals are delivered when NK cells interact with MHC molecules

presenting self peptides on normal body cells, but a more

activating balance of signals are delivered when NK cells interact

with MHC molecules presenting viral or stress peptides on

infected/transformed cells [59]. A recent study showed that a

HLA-Cw4-restricted HIV-1 CD8+ T cell epitope could also be

recognised by the NK cell receptor KIR2DL1 [60]; so by analogy,

it is possible that some of the HLA-Cw*0102-binding peptides we

identified in this study may constitute KIR2DL2/3 or KIR2DS2

ligands.

In conclusion, we have used a combination of computational

and in vitro techniques to illuminate the characteristics of peptides

presented by HLA-Cw*0102. We show how the analysis of a

relatively small number of peptides can power a predictive

algorithm capable of scanning a viral genome and identifying

binding peptides from which an epitope emerges. What we really

require are reliable high-throughput screening approaches able to

generate large-scale data sets, such as that recently reported by

Buus and co-workers [61]. However, and despite such caveats, we

have shown clearly that even with a relatively modest low-

throughput approach one can generate models with proven

utilitarian value.

Materials and Methods

Patients and Blood Samples
Individuals chronically infected (.6 months) with HIV-1 (clade

B) were recruited from the Centre for Sexual Health and HIV

Research (London, UK). Ethical approval for these studies was

obtained from the National Health Service Camden and Islington

Community Local Research Ethics Committee, and blood samples

were drawn with written informed consent. Patients were

asymptomatic and typically not receiving anti-retroviral therapy

at the time of sample acquisition. Blood was collected into acid

citrate dextrose or EDTA. PBMCs were separated by centrifuga-

tion over a Histopaque 1.077 density gradient (Sigma-Aldrich,

Poole, UK) and cryopreserved until needed.

HLA Class I Typing
DNA was isolated from patient PBMCs using a QIAamp DNA

Blood Mini Kit (Qiagen Ltd, Crawley, UK). HLA class I fine

typing was largely performed at the Churchill Hospital (Oxford,

UK) using a molecular PCR method employing sequence-specific

primer mixes.

Peptides
43 nonameric peptide sequences used in the study were

abstracted from Barber et al. [28] and Andersen et al. [23]

(Table 1). We tested only nonameric peptides, so overlapping

peptides were obtained where only longer peptides were reported.

All peptides used in this study were ordered either from

Mimotopes (Pensby, UK) or from the in-house peptide synthesis

service at the Institute for Animal Health (Compton, UK).

Peptide Binding Assay
Peptide binding to HLA-Cw*0102 was assessed using a FACS-

based MHC stabilization assay [62] with modifications as described

elsewhere [36]. This assay involves use of the transporter associated

with antigen processing (TAP)-deficient cell line T2, which has very

low levels of surface MHC class I expression due to the poor stability

of non-peptide-loaded MHC class I molecules. Incubation of T2

cells in the presence of peptides able to bind to one or more of the

MHC class I molecules expressed by these cells (HLA-A*0201,

HLA-B5 and HLA-Cw*0102) stabilizes their expression and results

in an increase in surface MHC class I levels that can be measured by

flow cytometry. In this study, a HLA-Cw*0102-specific antibody

was used to measure peptide-induced stabilization of HLA-C

expression on T2 cells, hence allowing evaluation of peptide binding

to HLA-Cw*0102. Briefly, T2 cells were incubated in 96-well flat-

bottom plates at 2x105 cells per well in a 200 ml volume of AIM V

medium (Life Technologies, Paisley, UK) with human b2-micro-

globulin at a final concentration of 100 nM (Scipac, Sittingbourne,

UK) with and without peptides at concentrations between 200 and

0.04 mM for 16 h at 37uC. Cells were then washed and surface

levels of HLA-Cw*0102 were assessed by staining with Cw*0102-

specific mAb VP6G3 [63] and a FITC-conjugated AffiniPure

F(ab’)2 fragment goat anti-human IgM Ab (Jackson Immunore-

search Laboratories, West Grove, PA, USA). Cells were fixed at 4uC
in 4% paraformaldehyde and analyzed on a FACSCalibur (BD

Biosciences, Oxford, UK) using CellQuest software. Results are

expressed as fluorescence index (FI) values. These were calculated as

the test mean fluorescence intensity (MFI) minus the no peptide

isotype control MFI divided by the no peptide HLA-Cw*0102-

stained control MFI minus the no-peptide isotype control MFI. The

half-maximal binding level (BL50), which is the peptide concentra-

tion yielding the half-maximal fluorescence intensity (FI) of the

reference peptide in each assay, was calculated and is presented as
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pBL50 (–logBL50). The peptide VIPMFSAL, which binds with high

affinity to HLA-Cw*0102, was used as a reference peptide [23].

Peptides with a pBL50 above 6.0 were designated as high binders,

between 4.5 and 6.0 as medium binders, between 3.0 and 4.5 as low

binders, and below 3.0 as non-binders.

Additive 2D-QSAR Method
Two models using the additive method were developed: the first

contained only the amino acid contributions (eqn. 1) and the

second contained both amino acid contributions and side chain –

side chain interactions (eqn. 2):

pBL50~constz
X9

i~1

Pi ð1Þ

pBL50~constz
X9

i~1

Piz
X8

i~1

Pi,iz1z
X7

i~1

Pi,iz2 ð2Þ

where the const accounts for the peptide backbone contribution,

P9

i~1

Pi is the sum of amino acid contributions at each position,

P8

i~1

Pi,iz1 the sum of adjacent peptide side-chain interactions, and

P7

i~1

Pi,iz2 the sum of interactions between every second side-chain.

Every peptide sequence was presented as a string of 0s and 1s with

a length of 180 terms (20 aa69 positions) or 6180 terms

(2069+2062068+2062067). A term is equal to 1 when a certain

amino acid or interaction at a certain position exists, and 0 when it is

absent. Columns containing only 0s were omitted. The pBL50 values

(dependent variables) were included in the matrix as a first column.

The partial least squares (PLS) method was used to solve this

matrix. PLS handles data matrices with more variables than

observations by forming new x variables, named principal

components, as linear combinations of the old ones and then uses

them as predictors of the biological activity. We used the PLS

method as implemented in the QSAR module of SYBYL6.9 [64].

pBL50 was put as a dependent variable. The scaling method was

set to ‘‘none’’. The column filtering was switched off. The optimal

number of components was found by leave-one-out cross-

validation. The predictive power of the model was assessed by

the cross-validated coefficient q2 and standard error of prediction:

q2~1{

P
i~1

pBL50 expð Þ{pBL50 predð Þ
� �2

P
i~1

pBL50 expð Þ{pBL50 meanð Þ
� �2

;

SEP~

P
i~1

pBL50 expð Þ{pBL50 predð Þ
� �2

n{NC{1
;

where pBL50(pred) is the predicted pBL50 of the excluded peptide

and n the number of peptides.

The non-cross-validated model was assessed by the explained

variance r2 and standard error of estimate:

r2~1{

P
i~1

pBL50 expð Þ{pBL50 calcð Þ
� �2

P
i~1

pBL50 expð Þ{pBL50 meanð Þ
� �2

;

SEE~

P
i~1

pBL50 expð Þ{pBL50 calcð Þ
� �2

n{NC{1
;

where pBL50(calc) is the calculated pBL50 of the non-excluded

peptide. The non-cross-validated model was used to predict the

binding affinity of newly designed peptides.

IFNc ELISPOT Assay
Multi-Screen plates (MAHAS4510, Millipore Ltd, Watford, UK)

were coated overnight at 4uC with 5 mg/ml anti-human IFNc
capture antibody 1-D1-K (MabTech AB, Nacka, Sweden) in PBS.

Plates were washed 3 times with sterile PBS and blocked with 10%

heat-inactivated pooled human serum (PHS) (Sigma, UK) in RPMI

(sterile filtered) for 1 hr at 37uC in 5% CO2. Patient PBMCs were

thawed and washed 3 times in RPMI supplemented with 15% FCS

(Invitrogen Life Technologies, Paisley, UK), and then resuspended in

RPMI containing 5% PHS and dispensed into plates at 26105 cells/

well in a 100 ml volume. Cells were stimulated in duplicate with

medium only, PHA (Sigma-Aldrich, Gillingham, UK) at 10 mg/ml or

specific peptide at 1025 mM in a final volume of 120 ml for 1 hour at

37uC in 5% CO2. 30 ml of filtered FCS was then added to each well

and the plates were incubated at 37uC in 5% CO2 for 16–20 hours.

Plates were washed 3 times with PBS/0.05%Tween-20 and

incubated for 2 hours at 37uC in 5% CO2 with 1 mg/ml biotinylated

anti-human IFNc detection antibody 7-B6-1 (MabTech AB) in PBS.

Plates were then washed 3 times with PBS/Tween-20 prior to a 1-

2 hour incubation at room temperature with a 1/1000 dilution of

alkaline phosphatase anti-biotin (Vector Laboratories, Peterborough,

UK) in PBS/Tween-20. Following washing, enzyme activity was

detected using an alkaline phosphatase conjugate substrate kit (Bio-

Rad, Hemel Hempstead, UK) following the manufacturer’s protocol

and plates were incubated at room temperature for 30 minutes. The

reaction was stopped by rinsing the plates 3 times in tap water. Plates

were air-dried and spots enumerated using an AID image analysis

system with AID ELISPOT software version 2.5 (Autoimmune

Diagnostika GmbH, Strassberg, Germany). A positive response was

defined as one where the average number of spot forming cells was at

least twice the background number of SFC in medium alone wells

and exceeded 20 spots per 106 PBMC.
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