
Relative Loss Bounds and Polynomial-time
Predictions for the k-lms-net Algorithm

Mark Herbster?

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
M.Herbster@cs.ucl.ac.uk

Abstract. We consider a two-layer network algorithm. The first layer
consists of an uncountable number of linear units. Each linear unit is an
LMS algorithm whose inputs are first “kernelized.” Each unit is indexed
by the value of a parameter corresponding to a parameterized reproduc-
ing kernel. The first-layer outputs are then connected to an exponential
weights algorithm which combines them to produce the final output. We
give loss bounds for this algorithm; and for specific applications to pre-
diction relative to the best convex combination of kernels, and the best
width of a Gaussian kernel. The algorithm’s predictions require the com-
putation of an expectation which is a quotient of integrals as seen in
a variety of Bayesian inference problems. Typically this computational
problem is tackled by mcmc, importance sampling, and other sampling
techniques for which there are few polynomial time guarantees of the
quality of the approximation in general and none for our problem specif-
ically. We develop a novel deterministic polynomial time approximation
scheme for the computations of expectations considered in this paper.

1 Introduction

We give performance guarantees and a tractable method of computation for the
two-layer network algorithm k-lms-net. The performance guarantees measure
online performance in a non-statistical learning framework introduced by Little-
stone [13, 14]. Here, learning proceeds in trials t = 1, 2, . . ., `. In each trial t the
algorithm receives a pattern xt. It then gives a prediction denoted ŷt ∈ R. The
algorithm then receives an outcome yt ∈ R, and incurs a loss L(yt, ŷt) measuring
the discrepancy between yt and ŷt; in this paper L(yt, ŷt) = (yt− ŷt)2. A relative
loss bound performance guarantee bounds the cumulative loss of the algorithm
with the cumulative loss of any member c : X→R of a comparison class C of
predictors plus an additional term. These bounds are of the following form, for
all data sequences S = 〈(x1, y1), (x2, y2), . . . , (x`, y`)〉,∑̀

t=1

L(yt, ŷt) ≤
∑̀
t=1

L(yt, c(xt)) + O(r(S, C, c)) ∀c ∈ C
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where r(S, C, c) is known as the regret, since it measures our “regret” at using
our algorithm versus the “best” predictor c in the comparison class. In the ideal
case the regret is a slowly growing function of the data sequence, the comparison
class, and the particular predictor. Surprisingly, such bounds are possible without
probabilistic assumptions on the sequence of examples.

The architecture of the k-lms-net algorithm is a simple chaining of two well-
known online algorithms. The first layer consists of an uncountable number of
linear units. Each unit is an lms algorithm [4] whose inputs are first “kernelized.”
Each unit is indexed by the value of a parameter (α ∈ [0, 1]) corresponding to
a parameterized reproducing kernel [2], for example a Gaussian kernel and its
width kα(v,w) = e−α‖v−w‖2 . The first-layer outputs are then directed to an
exponential weights algorithm [20, 14, 12] which combines them to produce the
final output (prediction). This topology gives an algorithm whose comparison
class (hypothesis space) is a union of linear spaces of functions.

The results of this research are twofold. First, we give a general bound for
the k-lms-net algorithm. This general bound is then applied to the problem
of predicting almost as well as any function i) from the space defined by the
“best” convex combination of two kernels and ii) from the space defined by the
“best” width of an isotropic Gaussian kernel. Second, though the second layer
combines an uncountable number of outputs from the first layer we show that the
final prediction may be well-approximated in polynomial time. This prediction is
an expectation (5) whose form is a quotient of integrals which does not have an
analytic closed form; thus we resort to a novel sampling scheme. The significance
of our sampler is that it produces a provably polynomial time approximation to
our predictions. The sampler is deterministic, and relies on finding the critical
points of the functions to be integrated; this leads to a limitation on the types
of parameterized kernels for which we can give predictions in polynomial time.
The applications for which we give bounds are among those whose predictions
may be approximated in polynomial time by our sampling scheme.

1.1 Related Work

In [7] Freund applied the exponential weights algorithm to predicting as well as
the best “biased coin” that modeled a data sequence, with an uncountable set of
predictors each corresponding to a probability of “heads.” In [21] an algorithm
similar to ridge regression was given, where the set of predictors corresponded
to each linear function on Rn; these were then combined with an exponential
weights algorithm. For those algorithms exact computation of the prediction
was possible; exact computation, however, is not possible for the k-lms-net
algorithm.

In [4], relative loss bounds are proven for the classical lms algorithm; the
bounds naturally apply to kernel lms. Some recent relative-loss bounds for vari-
ants of kernel lms have appeared in [11, 9]. In contrast, our kernel function has
a free parameter; hence our comparison class (hypothesis space) is not a single
kernel space, but a union of kernel spaces.



The problem of learning the best parameters of a kernel function has been
modeled as a regularized optimization problem in [16, 15, 23]. Methods based on
Gaussian process regression have proven to be practical for learning or predicting
with a mixture of kernel parameterizations, for which we cite only a few of the
many offline [22, 8] and online algorithms [6, 19] developed. The parameterized
kernel function now corresponds to a parameterized covariance function. A key
difference in focus is that our free parameter is a one-dimensional scalar, whereas
in Gaussian process regression the free parameter vector is often in the hundreds
of dimensions. The one-dimensional case we consider is certainly much simpler
than the multidimensional case. However, we make no statistical assumptions
on the data generation process, we give non-asymptotic relative loss bounds and
we observe that even in the “simple” one-dimensional case it is not obvious how
to sample so that predictions of guaranteed accuracy are produced in polynomial
time.

The predictions (5) of k-lms-net algorithm are of the following (simplified)
form,

ŷt =

∫ 1

0
ŷi

t(α) exp(−L[1,t](α))dα∫ 1

0
exp(−L[1,t](α))dα

; (1)

here ŷi
t(α) and L[1,t](α) are the outputs and cumulative losses, respectively,

of each of the kernel lms algorithms at time t. In the applications to be dis-
cussed ŷi

t(α) and L[1,t](α) reduce to either polynomials or to polynomials after a
change in variables. The problem of estimating such expectations is common in
Bayesian statistics. Since we cannot expect to compute ŷt exactly, we consider
that a good polynomial time approximation scheme for ŷt should have the fol-
lowing property: for every ε ∈ (0, 1), an absolute error approximation ȳt, should
satisfy |ȳt − ŷt| ≤ ε and be computable in time polynomial in O( 1

ε ). It is also
natural to extend the previous to a randomized approximations schemes; how-
ever the scheme we produce is fully deterministic. Hoeffding bounds [10] allow
one to produce an absolute error approximation for the Monte-Carlo integration
of

∫
f dµ, with ȳ = 1

n

∑n
i=1f(xi) and where xi is sampled from the probability

measure µ and ε = O( 1√
n
). Hoeffding bounds are not applicable to the approx-

imation of (1) as it is a nontrivial problem in itself to produce samples from
the distribution exp(−L[1,t](α))R 1

0 exp(−L[1,t](α))dα
in polynomial time; nor can we can we apply

Hoeffding bounds individually to the integrals in the numerator and the denom-
inator, as absolute error bounds do not “divide” naturally. A variety of other
bounds have been proven for numeric integration within the information-based
complexity framework [18]; however, as these are absolute error bounds they are
likewise not applicable. Another approach to the approximation of equations of
the form (1) which has proven useful in practice for similar applications is to
use one of the many variants of mcmc sampling [1]. We are not aware of any
bounds for mcmc sampling methods which give a polynomial time guarantee
for randomized approximation to ŷt which are applicable to this research. Our
sampling methodology is discussed in Sect. 3; the key to our method is to pro-
duce a sampler for 1-d integrals with a provable relative error approximation,



which unlike the absolute error approximation, is, loosely speaking, closed under
division.

1.2 Preliminaries
The symbol X denotes an abstract space, for example X could be a set of strings.
Given a vector space 〈V ; +〉, the sum of two subsets F and G of V is defined by
F + G = {f + g : f ∈ F, g ∈ G}. A Hilbert space H denotes a complete inner
product space. The inner product between vectors v and w in H is denoted
by 〈v,w〉 and the norm by ‖v‖. In this paper, we will consider Hilbert spaces
determined by a reproducing kernel k : X ×X→R. The prehilbert space induced
by kernel k is the set Hk = span({k(x, ·)}∀x∈X ) and the inner product of f =∑m

i=1βik(xi, ·) and g =
∑n

j=1β
′
ik(x′j , ·) is 〈f, g〉 =

∑m
i=1

∑n
j=1βiβ

′
jk(xi, x

′
j). The

completion of Hk is denoted Hk. Two kernels k0 : X ×X→R and k1 : X ′×X ′→R
are termed domain compatible if X = X ′. The reproducing property of the kernel
is that given any f ∈ Hk and any x ∈ X then f(x) = 〈f(·), k(x, ·)〉; other useful
properties of reproducing kernels, and introductory material may be found in
[5]. In this paper we are particularly interested in parameterized kernels kα with
an associated Hilbert Space Hα, inner product 〈·, ·〉α, and norm ‖·‖α, for every
α ∈ [0, 1]. We denote the Lebesque measure of a set A by µ(A).

An absolute ε-approximation of y ∈ R by ŷ ∈ R satisfies
|y − ŷ| ≤ ε (2)

denoted by ŷ
a
≈εy. A relative ε-approximation of y ∈ R+ by ŷ ∈ R+ satisfies

(1− ε)y ≤ ŷ ≤ (1 + ε)y, (3)
which is denoted by ŷ

r
≈εy. A polynomial ε-approximation scheme requires for

each ε ∈ (0, 1) that we can compute ŷ s.t. ŷ ≈ε y in time O( 1
ε ). For simplicity,

we describe the time complexity of our algorithms in terms of a naive real-
valued model of computation, where arithmetic operations on real numbers,
e.g., addition, exponentiation, kernel evaluation, etc., all require O(1) “steps.”

2 The k-lms-net Algorithm
The following general bound for the k-lms-net algorithm is applied to predict-
ing as well as the convex combination of two kernels and predicting as well as
the best width of a Gaussian kernel over a discretized domain.

Theorem 1. The k-lms-net algorithm with parameterized kernel function kα

(α ∈ [0, 1]) with any data sequence 〈(x1, y1), (x2, y2), . . . , (x`, y`)〉 ∈ (X , [r1, r2])`

when the algorithm is tuned with constants r1, r2, and η, the total square loss of
the algorithm will satisfy∑̀
t=1

L(yt, ŷt)≤sup
α∈A

[∑̀
t=1

L(yt,hα(xt))

]
+2

√
L̂AĤAX̂A+Ĥ2

AX̂2
A+2(r2−r1)2 ln

1
µ(A)

(8)
for all measurable sets A ⊆ [0, 1] for all tuples of functions (hα)α∈A ∈

∏
α∈AHα

and for all constants L̂A, ĤA, and, X̂A, where for all α ∈ A the following four
conditions must hold:

∑`
t=1L(yt, hα(xt)) ≤ L̂A, ‖hα‖2α ≤ Ĥ2

A, ∀t : kα(xt, xt) ≤

X̂2
A, and η = [1 +

√
L̂A

ĤAX̂A
)X̂2

A]−1.



Parameters: X : a pattern space;
kα :X×X→R: a parameterized kernel function (α∈ [0, 1]);
{Hα} : a set of Hilbert spaces induced by kα;
η : a learning rate; [r1, r2] : an outcome range.

Data: An online sequence 〈(x1, y1), (x2, y2), . . . , (x`, y`)〉 ∈ (X , [r1, r2])
`.

Initialization: r = (r2 − r1), wi
α,1(x) = 0, wii

1 (α) = 1,
Φi(x) = max(r1, min(r2, x)) ; Φii

t (w) = max(exp(− t
2
), w).

for t = 1, . . . , ` do
Predict: receive xt,

ŷi
t(α) = wi

α,t(xt) = η

t−1X
j=1

(yj − ŷi
j(α))kα(xj , xt) (4)

ŷt =

R 1

0
wii

t (α)Φi(ŷi
t(α))dαR 1

0
wii

t (α)dα
(5)

Update: receive yt,

wi
α,t+1(x) = wi

α,t(x) + η(yt − ŷi
t(α))kα(xt, x) (6)

L[1,t](α) = L[1,t−1](α) + (yt − ŷi
t(α))2

wii
t+1(α) = Φii

t (exp(
1

2r2
L[1,t](α))) (7)

end

Algorithm 1: k-lms-net algorithm

The bound is a straightforward chaining of the well known loss bounds [4] of the
lms (GD) algorithm and a variant of the exponential weights algorithm [20, 14,
12] that implements direct clipping of the inputs to guarantee a loss bound and
an amortized clipping of the cumulative loss to enable efficient sampling.

The generic bound given is neither a pure relative loss bound nor does it
give an indication of whether the k-lms-net is polynomially tractable for a
particular parameterized kernel. The bound is not a “pure” relative loss bound
insofar as the regret (the final term of (8)) for any particular predictor is infinite
(since A is then a point set thus 1

µ(A) = ∞). A pure relative loss bound may be
given if we can determine how the loss and the norm of a particular predictor
in Hα′ is related to near comparable predictors in Hα′′ when |α′ − α′′| is small.
In the following we “flesh out” the generic bound of Theorem 1 by giving pure
relative loss bounds for two particular parameterized kernels; then in Sect. 3 we
sketch how the prediction with these kernels is computable by a polynomial-time
approximation scheme.

2.1 Applications to Specific Parameterized Kernels

Relative loss bounds are given in Theorems 4 and 5 for a parameterized kernel
which is a parameterized convex combination of kernels and for a Gaussian
kernel with a parameterized width, respectively. Each of these bounds given are



in terms of adjunct norms C(·) and S(·) on the kernel spaces rather than the
norms inherited from the underlying kernel space. The norms C(·) and S(·) are
tighter and weaker, respectively, than their inherited norm ‖·‖α. The proofs of
the theorems follow directly from Theorem 1 in conjunction with Lemmas 5
and 6 which appear in Appendix A.
Predicting Almost as Well as the Best Convex Combination of Two
Kernels We consider the convex combination of two domain-compatible kernels.
Hence our parameterized kernel function kα = (1 − α)k0 + αk1 where k0 and
k1 are two distinct kernel functions. We further require in this abstract that the
corresponding Hilbert spaces H0 and H1 be disjoint except for the zero function,
i.e., H0

⋂
H1 = {0}. Typical kernel spaces that are disjoint except for the zero,

include spaces derived from polynomial kernels of differing degree and wavelet
kernels at two distinct levels of resolution. The following useful theorem from
Aronszajn [2] gives a basis for our following observations.

Theorem 2 ([2]). If ki are the domain-compatible kernels of Hilbert spaces Hi

with the norms ‖·‖i, then k = k0 +k1 is the kernel of Hilbert space H = H0 +H1

of all functions f = f0 + f1 with fi ∈ Hi, and with the norm defined by

‖f‖2 = inf
[
‖f0‖20 + ‖f1‖21

]
,

which is the infimum taken for all decompositions f = f0 + f1 with fi ∈ Hi.

Therefore given α′, α′′ ∈ (0, 1) the three sets Hα′ , Hα′′ , and
⋃

α∈[0,1]Hα contain
exactly the same functions; however in general ‖f‖α′ 6= ‖f‖α′′ . Observe that
with the assumption H0

⋂
H1 = {0} any function f ∈

⋃
α∈[0,1]Hα has a unique

decomposition f = f0 + f1 with fi ∈ Hi. Given the decomposition we can
compute the norm of f in any particular Hα via

‖f‖2α =
1

1− α
‖f0‖20 +

1
α
‖f1‖21 , α ∈ (0, 1) , (9)

since for a scaled kernel k′ = βk the norm is rescaled as ‖f‖2k′ = 1
β ‖f‖

2
k . We

may define the following norm over H0 +H1.

Definition 1. Given domain-compatible kernels k0 and k1 such that H0

⋂
H1 =

{0} let kα = (1− α)k0 + αk1 then given f ∈ H0 +H1. Define C(f) by

C2(f) = inf
α∈[0,1]

‖f‖2α . (10)

The following theorem gives a canonical form for C(f).
Theorem 3. Given f = f0 + f1 such that fi ∈ Hi and H0

⋂
H1 = {0} then

C2(f) = (‖f0‖0 + ‖f1‖1)
2

. (11)

Proof. The theorem immediately follows from the substitution of the minimizer
α = ‖f1‖

‖f0‖+‖f1‖ into (9). ut

A recent generalization of this canonical form is given in [15, Lemma A.2].



Theorem 4. Given the k-lms-net algorithm tuned with learning rate η, an
outcome range [r1, r2], parameterized kernel kα = (1 − α)k0 + αk1 constructed
from two domain-compatible kernels k0 and k1 such that H0

⋂
H1 = {0}, a data

sequence 〈(x1, y1), (x2, y2), . . . , (x`, y`)〉 ∈ (X , [r1, r2])` then the total loss of the
algorithm satisfies∑̀

t=1

L(yt, ŷt) ≤
∑̀
t=1

L(yt, h(xt)) + 2
√

L̂ĤX̂ + Ĥ2X̂2

+ 2(r2 − r1)2 max(2 ln C(h) + ln
1
c

+ ln
4
3
, ln 4) (12)

for all h ∈ H0 + H1 and all constants L̂, Ĥ, X̂, and c ∈ (0, 1] such that the

following four conditions hold: η = [(1 +
√

L̂

ĤX̂
)]−1, and

C2(h) + c ≤ Ĥ2,
∑̀
t=1

L(yt, hα(xt)) ≤ L̂, and sup
{t∈[1,...,`],α∈[0,1]}

kα(xt, xt) ≤ X̂2.

(13)

Predicting Almost as Well as the Best Width of a Gaussian Kernel
In the following we define the surfeit of a function. In this abstract we avoid
the technicalities of defining the surfeit for the complete Hilbert space Hk; we
consider the definition only on the prehilbert space Hk.

Definition 2. Given a positive kernel (∀x, y ∈ X 2 : k(x, y) ≥ 0), let f ∈ Hk;
then define the surfeit by

S2(f) = inf
[
‖f+‖2 + ‖f−‖2

]
. (14)

The infimum is taken over all decompositions f+ + f− = f , where f+ =∑
i:βi>0 βik(xi, ·) and f− =

∑
i:βi<0 βik(xi, ·) are a positive linear and negative

linear combination of kernel functions, respectively, such that f = f+ + f− =∑m
i=1βik(xi, ·).

The infimum exists since 0 ≤ ‖f‖2 ≤ S2(f).

Theorem 5. Given the k-lms-net algorithm with learning rate η, an outcome
range [r1, r2] with max(|r1|, |r2|) ≥ 1, a parameterized (α ∈ [0, 1]) Gaussian ker-
nel, kα(v1,v2) = exp(−s0α‖v1 − v2‖2) with fixed scale constant s0 ≥ 1 over
the domain [x1, x2]n × [x1, x2]n with associated prehilbert spaces Hα a data se-
quence 〈(x1, y1), (x2, y2), . . . , (x`, y`)〉 ∈ ([x1, x2]n, [r1, r2])`, and the constants

c ∈ (0, 1], s0 ≥ 1, L̂ ≥ 0, Ĥ ≥ 1 + c and with η = [(1 +
√

L̂

Ĥ
)]−1 then the total

loss of the algorithm satisfies

∑̀
t=1

L(yt, ŷt) ≤
∑̀
t=1

L(yt, hα(xt))+2
√

L̂Ĥ +Ĥ2 +c+2(r2−r1)2[ln `+2 lnS(hα)

+ ln s0 + lnn + 2 ln(x2 − x1) + lnmax(|r1|, |r2|) + ln
1
c

+ ln 5] (15)



for all hα ∈
⋃

α∈[0,1] Hα such that ‖hα‖2α + c ≤ Ĥ2,
∑`

t=1L(yt, hα(xt))+ c ≤ L̂,

and α ∈
[
0, 1− c

5s0`max(|r1|, |r2|)n(x2 − x1)2S2(hα)

]
. (16)

The previous bound is given without regard of the computability of the pre-
dictions. If we restrict the data sequence to a discretization of the unit interval
we can then apply the methods of Sect. 3 (in particular see Claim 2) to obtain
polynomially tractable approximate predictions.

3 Computing the Predictions of k-lms-net

In the previous section we gave both a generic bound, and bounds for two specific
applications of the k-lms-net algorithm. Here we consider how the predictions
may be computed. Rather than computing the predictions exactly we give a
polynomial-time absolute ε-approximation scheme to the predictions (see (5))
of the k-lms-net algorithm. The scheme is a deterministic sampling algorithm
that separately approximates the numerator and denominator of the quotient of
integrals that define the predictions of the k-lms-net algorithm.

The sampling methodology builds on the following three ideas. First, by
obtaining a relative ε-approximation on an integral; this automatically gives a
relative ε-approximation for a quotient of integrals (cf. (5)) since relative error
approximations (aka “significant digits”) are closed under division. A good rel-
ative error approximation is also a good absolute error approximation up to a
magnitude scaling constant. Second, to minimize the number of required sam-
ples we must concentrate samples in areas of large magnitude. Third, since the
areas of large magnitude are co-determined by the critical points of the function
to be approximated, the inspection of the analytic form gives both a bound on
the number of the critical points and a method to find the critical points (areas
of large magnitude).

In the following we first consider the cost in terms of relative loss bounds for
using approximate predictions. We then consider the analytic forms of the func-
tions to be integrated, both in general and then for our particular applications.
Finally we give the details of our sampling methodology.

3.1 Additional Regret for Approximate Predictions

Rather than fixing the quality of the absolute ε accuracy of our approximate
predictions, we advocate using a schedule {εt}. In the following we see that a
schedule which gradually increases the accuracy of our approximate predictions
allows the additional cumulative regret incurred to be bounded by an O(1) term.

When an exact prediction of the k-lms-net algorithm is replaced by absolute
εt-approximate prediction on trial t the additional “approximation regret” in-
curred on that trial may be bounded by 2εt|yt− ŷt|+ε2t . Therefore we may bound
the additional cumulative regret for using approximate predictions by ε0 ∈ (0, 1)



with a decreasing schedule for {εt} of εt = ε0
6.5 max([r2−r1],1)(t+1) ln2(t+1)

, recalling
that the outcomes and predictions are contained in [r1, r2]. Thus with the above
schedule of {εt}, and given that the approximate predictions are obtainable in
time polynomial in O( 1

εt
) on trial t, then the additional cumulative regret is

bounded by 0 < ε0 < 1 and the cumulative running time of the algorithm is
polynomial in the number of trials.

3.2 Analytic Forms of the Prediction and Loss Lunctions

We compute the predictions ŷt of the k-lms-net algorithm (cf. (5)) by maintain-
ing explicit symbolic representations of wi

α,t(x), ŷi
t(α) and L[1,t](α); the symbolic

representations may then be exploited to find the critical points.
Below we give an explicit representation of wi

α,t+1(x) (omitting ŷi
t(α) and

L[1,t](α) as they follow directly) by expanding the recurrence (6) giving the 2t−1
terms below

wi
α,t+1(x) =

t∑
k=1

(−1)k+1ηkTt,k(x) where Tt′,k(x) =
∑

{(i1,i2,...,ik)|1≤i1<···<ik≤t′}

S(i1,i2,...,ik)(x),

and S(i1,i2,...,ik)(x) = yi1kα(xi1 , xi2)× · · · × kα(xik−1 , xik
)kα(xik

, x) . (17)

For example, wi
α,4(x) = η

∑3
i=1 yikα(xi, x)+η3y1kα(x1, x2)kα(x2, x3)kα(x3, x)−

η2[y1kα(x1, x2)kα(x2, x)+y1kα(x1, x3)kα(x3, x)+y2kα(x2, x3)kα(x3, x)]. Clearly
we cannot expect to give a polynomial time algorithm if we manipulate this
representation directly, thus the applications we consider are cases where (17)
algebraically collapses to a polynomial-sized representation.

In the following claims we give the representations of the functions needed
to compute the predictions of the k-lms-net algorithm from the applications
of Theorems 4 and 5. The proofs of these claims are straightforward and are
omitted for reasons of brevity.

Claim 1 In the k-lms-net algorithm with a kernel kα = (1− α)k0 + αk1, the
first layer weight function may be expressed as

wi
α,t(x) =

t−1∑
i=1

pt,i(α)k0(xi, x) + qt,i(α)k1(xi, x)

where pt,i(α) and qt,i(α) are polynomials of degree i in α. Therefore, the functions
ŷi

t(α) and L[1,t](α) may be expressed as polynomials in α of degree t−1 and 2t−2
respectively.

We discretize the input data to obtain a tractable method to predict with a
Gaussian kernel. The following claim quantifies the size of the representation of
the functions to be sampled by the degree of discretization of the input data.

Claim 2 In the k-lms-net algorithm with the parameterized Gaussian kernel
kα(v,x) = e−s0α‖v−x‖2 with fixed scale constant s0 ∈ R+ and with the dis-
cretized interval X = {0, 1

m , . . . , m−1
m , 1}n, the first layer weight function may be

expressed as



wi
α,t(x) =

t−1∑
i=1

pt,i(α)e−s0α‖xi−x‖2 where pt,i(α) =
nm2(i−1)∑

j=0

ct,i,j

[
e
−s0α

m2

]j

,

with each ct,i,j ∈ R. Applying the change in variable σ = e
−s0α

m2 to the functions
ŷi

t(α) and L[1,t](α) gives polynomials in σ of degree nm2(t− 1) and 2nm2(t− 1)
respectively.

3.3 Finding Critical Points

We proceed by dividing functions into piecewise monotonic intervals. This means
finding their critical points, or the zeros of the derivative. The problem of finding
zeros of a polynomial has been called the Fundamental Computational Problem
of Algebra [24]. There is a vast literature regarding this problem some general
references are [17, 24, 3]. We do not need to actually find the zeros, we only need
to isolate them as defined below.

Definition 3. The k-isolation of measure δ of the zeros of a function f : [a, b]→R
is a list of j ≤ k intervals {[a1, b1], . . . , [aj , bj ]} such that if f(r) = 0 then there
exists an i s.t. r ∈ [ai, bi], and also the sum total measure of the intervals is δ.

Observe that in the above we do not precisely find roots but isolate them as
some intervals could have multiple roots and others none.

Definition 4. The composition of functions f(σ(·)) is called a σ-polynomial
(polynomial after a change in variable to σ) if f is a polynomial and σ : R→R is
continuously differentiable and ∀x ∈ R : σ′(x) 6= 0 (σ is then strictly monotone
without inflection). The degree of a σ-polynomial f(σ(·)) is the degree of f .

Every polynomial is a σ-polynomial where σ is identity function.

Claim 3 Given a σ-polynomial f(σ(·)) : [0, 1]→R of degree s, there exists an
s-isolation of the zeros of measure 2−p, the isolation is computable in time poly-
nomial in p and in s.

Any algorithm that can efficiently act as a root-existence oracle for an interval
[a, b] of a polynomial which returns TRUE if there exists roots in [a, b] and
FALSE otherwise can be subordinated within a bisection algorithm to compute
an s-isolation. In this abstract, we do not actually give an algorithm to compute
an s-isolation efficiently (see [17, 24, 3] for algorithms where, e.g., the Euclidean
Algorithm may efficiently serve as an oracle), for reasons of brevity.

Corollary 1. Given σ-polynomials f(σ(·)) : [0, 1]→R and g(σ(·)) : [0, 1]→R of
degree s1 and s2 respectively, and letting l = ef(σ) and m = g(σ)ef(σ), then there
exists a s1 − 1 and s2(s1 − 1) isolation of l′ and m′ respectively of measure 2−p

computable in time polynomial in s1, s2 and p.

Proof. Omitted for the sake of brevity.



3.4 Deterministic Piecewise Monotone Sampling

Our sampler functions as follows. The quantity we wish to estimate is a quotient
of integrals. Relative error approximations (i.e., “significant digits”) are closed
under division. Hence we develop a sampler for a single integral for which we
can give a relative ε-approximation scheme. Our intuition from absolute error
approximations may suggest that a quantity to bound is the maximal slope of the
function to be integrated; this quantity is of less use than the relative variation
of a positive function, i.e., maxx f(x)

minx f(x) . For a positive monotone function we will
require a quantity of samples logarithmic in the relative variation. With a bound
for monotone functions we can generalize to piecewise monotone, this requires
that we isolate the critical points of our function. In the previous section, the
applications chosen lead to functions for which it is easy to find the critical
points. This leads to a method that samples exponentially more often in areas
of large volume. We note that the sampler here has been designed to directly
“prove a bound”; using the techniques here it is possible to design a sampler
that also proves the bound, but which is considerable more adaptive (uses fewer
samples), and hence more useful in practice.

In the following three lemmas we give simple algebraic results about ε-
approximations.

Lemma 1. Suppose â
r
≈εa and b̂

r
≈εb then (â + b̂)

r
≈ε(a + b).

Lemma 2. Suppose b̂
r
≈εb and b ≤ B then b̂

a
≈2Bεb.

Lemma 3. Suppose â
r
≈εa and b̂

r
≈εb then â

b̂

r
≈3ε

a
b for all ε ∈ (0, 1

3 ).
The following scale-invariant theorem is the key to our sampling methodology.

Theorem 6. Given a continuous nondecreasing function f : [a, b]→R+, let y =∫ b

a
f(α)dα. Define z = f(b)

f(a) ; then there exists a relative ε-approximation for y

which requires
⌈

1
2

(
1
ε + 1

)
ln z

⌉
+ 2 samples (evaluations) of f .

The proof in Appendix A details how the samples are chosen.
The following lemma demonstrates that a good relative ε-approximation may

be obtained by well-approximating a function on a subset of its domain if the
measure of the non-approximated subset times the function’s relative variation
is sufficiently small.

Lemma 4. Given measurable sets E′ ⊂ E with µ(E) = 1 and a continuous
function f , such that ∀x ∈ E : 0 < a ≤ f(x) ≤ b, define ∆ = µ(E − E′) and
z = b

a . Then if ŷ
r
≈ε′

∫
E′ fdµ it is also case that ŷ

r
≈ε

∫
E

fdµ when ε′ + ∆z ≤ ε.

Proof. Omitted for the sake of brevity.

We now summarize the process for approximating
∫

E
fdµ : i) we divide f into

monotonic regions by isolating the critical points in sufficiently small intervals
(cf. Claim 3 and Corollary 1); ii) the integral of each monotonic regions is



then separately approximated (cf. Theorem 6); and iii) the separate approxi-
mations are then summed without the isolated intervals (cf. Lemma 4) to obtain
a ŷ

r
≈ε

∫
E

fdµ. In Appendix A Lemmas 8 and 9 are given. These detail the sepa-
rate approximation of the denominator and numerator of (5). Their proofs follow
the basic sketch above except that additional points of the functions need to be
isolated in order to properly clip the functions. The following theorem combines
Lemmas 8 and 9 to demonstrate the computation of an absolute ε-approximation
to a prediction of k-lms-net.

Theorem 7. Given a σ-polynomial f(σ(·)) : [0, 1]→[0,∞) of degree s and z ∈
(1,∞), and a σ-polynomial g(σ(·)) : [0, 1]→(−∞,∞) of degree t we may compute
an absolute ε-approximation

ȳ
a
≈ε

∫ 1

0
max(r1,min(g(σ(α)), r2))max(e−f(σ(α)), z−1)dα∫ 1

0
max(e−f(σ(α)), z−1)dα

(18)

in time polynomial in s, t, ln(z(1 + r2 − r1)), and ε−1 .

Acknowledgments: I thank Massimiliano Pontil for valuable discussions and
for pointing out the inspirational kernel sum theorem from Aronszajn [2].
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A Additional Proofs

Lemma 5. Given domain-compatible kernels k0 and k1 such that H0

⋂
H1 =

{0}, let kα = (1 − α)k0 + αk1. Then given f ∈ H0 +H1, we have ∀c ∈ (0, 1] :
∀δ ∈ [0,min(1

4 , 3c
4C2(f) )] that there exists 0 ≤ α′ < α′′ ≤ 1 with α′′ − α′ = δ such

that ∀α ∈ [α′, α′′], it is the case that ‖f‖2α ≤ C2(f) + c.

Proof. Let f0 + f1 with fi ∈ Hi. Without loss of generality assume that ‖f1‖1 ≤
‖f0‖0. Set α′ = ‖f1‖1

‖f1‖1+‖f0‖0
, recalling that ‖f‖2α′ = infα∈[0,1] ‖f‖

2
α = C2(f). Let

x = ‖f‖2α′+δ − ‖f‖2α′ ; by substituting α′ = ‖f1‖1
‖f1‖1+‖f0‖0

into (9) we have that

x = δ(‖f1‖1 + ‖f0‖0)
2

[ ‖f0‖0‖f1‖1
δ + ‖f0‖20 − ‖f1‖21
(‖f0‖0 + ‖f1‖1)2

− δ

]−1

. (19)

As we are upper bounding x let us separately upper bound

p(‖f0‖0, ‖f1‖1, δ) =

[ ‖f0‖0‖f1‖1
δ + ‖f0‖20 − ‖f1‖21
(‖f0‖0 + ‖f1‖1)2

− δ

]−1

. (20)

As a function of ‖f1‖1 through routine calculations it can be shown that p obtains
its maximum (for δ ∈ [0, 1/4]) on either the boundary ‖f1‖1 = 0 or ‖f1‖1 =
‖f0‖0. Thus substituting, p(‖f0‖0, 0, δ) = 1

1−δ and p(‖f0‖0, ‖f0‖0, δ) = 4δ
1−4δ2 .

Therefore, for all δ ∈ [0, 1/4], we have p(‖f0‖0, ‖f0‖0, δ) ≤ p(‖f0‖0, 0, δ) ≤ 4
3 .

By combining the upper bound of 4
3 with (19) we have that for δ ∈ [0, 1/4],

‖f‖2α′+δ ≤ C2(f) + 4
3δC2(f); therefore with α′′ = α′ + δ we are done. ut



Lemma 6. Let kα(v1,v2) = exp(−s0α‖v1 − v2‖2) denote a parameterized (α ∈
[0, 1]) Gaussian kernel with fixed scale constant s0≥1 over the domain [x1, x2]n×
[x1, x2]n with associated prehilbert spaces Hα. Given a function hα′ ∈ Hα′

such that ‖hα′‖α′ ≥ 1 with representation hα′(·) =
∑m

i=1βikα′(vi, ·) then set
hα′+δ(·) =

∑m
i=1βikα′+δ(vi, ·). Then the square loss and squared norm of hα′+δ

may be bounded by those of hα′ plus any constant 0 < c < 1 for all sequences
〈(x1, y1), (x2, y2), . . . , (x`, y`)〉 ∈ ([x1, x2]n, [r1, r2])` where max(|r1|, |r2|) ≥ 1.
Hence

∑`
t=1(yt − hα′+δ(xt))2 ≤

∑`
t=1(yt − hα′(xt))2 + c and ‖hα′+δ‖2α′+δ ≤

‖hα′‖2α′ + c for all δ ∈ [0, c
5s0` max(|r1|,|r2|)n(x2−x1)2S2(hα′ )

].

Proof. Omitted in this abstract; see full version.

Proof (sketches of Theorems 4 and 5). The theorems follow directly from The-
orem 1 with Lemmas 5 and 6 with A chosen so that in each µ(A) = δ.

The following inequality is needed for Theorem 6.

Lemma 7. Suppose r ≥ 1, then r + 1
2 ≥ ln(1 + 1

r )−1.

Proof (of Theorem 6). Let r = 1
2ε and choose n s.t.⌈

(r +
1
2
) ln z

⌉
+ 1 ≤ n (21)

where n + 1 is the total number of function samples. The function is sampled

over n intervals with widths ∆i =
(b−a)( r

r+1 )
i−1

(1+r)(1−( r
r+1 )

n
)
; the samples are denoted

f(a) = f0, f1, . . . , fn = f(b) where fi = f(a +
∑i

j=1 ∆i). We also need the
following inequality relating r, n and z:(

r

r + 1

)n−1

≤ 1
z
. (22)

From (21) and Lemma 7 it follows that, ln z ≤ (n− 1) ln r+1
r which implies (22).

Define M =
∑n−1

i=1 fi∆i; now define lower and upper bounds of y, L and
U by L = f0∆1 + r

r+1M ≤ y ≤ M + fn∆n = U . We proceed to show that
ŷ = 1

2 (L + U) is a relative ε-approximation of y, since U and L are upper and
lower bounds if we can show U(1− ε) ≤ ŷ ≤ L(1 + ε) which is equivalent to the
conjunction of conditions 1

2
U−L

L ≤ ε, and 1
2

U−L
U ≤ ε. This will prove that ŷ is

an ε-approximation of y. However, since L ≤ U we need only show 1
2

U−L
L ≤ ε.

Thus,
1
2

U − L

L
=

1
2

M + fn∆n − f0∆1 − r
r+1M

f0∆1 + r
r+1M

(23)

≤ 1
2

1
r+1

∑n−1
i=1

(
r

r+1

)i

fi

f0 + r
r+1

∑n−1
i=1

(
r

r+1

)i

fi

≤ 1
2

1
r

(24)

where (24) follows from (22). Hence ŷ is an ε-approximation of y with the req-
uisite number of samples. ut



The following two lemmas give a method to obtain relative ε-approximations
of the denominator and the numerator of the predictions (5) k-lms-net.

Lemma 8. Given a σ-polynomial f(σ(·)) : [0, 1]→[0,∞) of degree s and a z ∈
(1,∞), we may compute a relative ε-approximation ŷ

r
≈ε

∫ 1

0
max(e−f(σ(α)), z−1)dα

in time polynomial in s, ln(z) and ε−1 .

Proof. Let l = e−f(σ(α)). By Corollary 1, we may puncture the interval [0, 1]
into no more than r ≤ s regions with the (up to) s − 1 of the critical points l
isolated into a total measure of no more than 2−p. By construction in each of the
r regions min(l, z−1) is monotonic; thus we may apply Theorem 6 to each of the
r regions (with ε = ε′/2) since relative ε-approximations add (cf Lemma 1). The
estimator formed by adding the r estimators is a relative ε′/2-approximation to∫

E′ max(l, z−1)dα where E′ is the interval [0, 1] minus the isolates. However if
we set p = 1 + log(z/ε′) by Lemma 4 we have a relative ε′-approximation to∫ 1

0
max(l, z−1)dα. ut

Lemma 9. Given a σ-polynomial f(σ(·)) : [0,1]→[0,∞) of degree s and z ∈
(1,∞), and σ-polynomial g(σ(·)) : [0, 1]→(−∞,∞) of degree t we may compute a
relative ε-approximation ŷ

r
≈ε

∫ 1

0
max(1,min(g(σ(α)), 1+ r))max(e−f(σ(α)), 1

z )dα
in time polynomial in s, t, ln(z(1 + r)), and ε−1 .

Proof. We sketch the proof for reasons of brevity and the fact that it closely
follows the proof of Lemma 8. The key difference is the need to create additional
isolates since it is subtle to clip g(σ(α)) and e−f(σ(α)) independently. In fact we
need to isolate the critical points of g(σ(α))e−f(σ(α)), g(σ(α)), and e−f(σ(α));
and the zeroes of g(σ(α)) = 1, g(σ(α)) = 1 + r, and e−f(σ(α)) = z−1. Now we
can ensure that we can correctly clip and also for each region between isolates
that the function max(1,min(g(σ(α)), 1 + r))max(e−f(σ(α)), z−1) is monotonic.
We observe that the number of isolates is polynomial in s and t. ut

We compute a shifted version of the quotient (5) so that the predictions and
outcomes may have both positive and negative values.

Proof (of Theorem 7). Apply Lemmas 9 and 8 to give relative ε′-approximations
n̂

r
≈ε′

∫ 1

0
max(1,min(g(σ(α)) + 1 − r1, 1 + r2 − r1))max(e−f(σ(α)), z−1)dα, and

d̂
r
≈ε′

∫ 1

0
max(e−f(σ(α)), z−1)dα with ε′ = ε

6(1+r2−r1)
. Observe that

y′ =

∫ 1

0
max(1,min(g(σ(α)) + 1− r1, 1 + r2 − r1))max(e−f(σ(α)), z−1)dα∫ 1

0
max(e−f(σ(α)), z−1)dα

(25)

is an expectation of a quantity bounded by 1 and 1+r2−r1, hence y′ ≤ 1+r2−r1.
Therefore by Lemmas 2 and 3 n̂

d̂

a
≈εy

′. Since y′ = ȳ + 1 − r1, we conclude that
n̂
d̂
− (1− r1)

a
≈εȳ. ut


