
Fast Prediction on a Tree

Mark Herbster, Massimiliano Pontil, Sergio Rojas-Galeano
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, England, UK
{m.herbster, m.pontil,s.rojas}@cs.ucl.ac.uk

Abstract

Given an n-vertex weighted tree with structural diameter S and a subset of m ver-
tices, we present a technique to compute a corresponding m×m Gram matrix of
the pseudoinverse of the graph Laplacian in O(n + m2 + mS) time. We discuss
the application of this technique to fast label prediction on a generic graph. We
approximate the graph with a spanning tree and then we predict with the kernel
perceptron. We address the approximation of the graph with either a minimum
spanning tree or a shortest path tree. The fast computation of the pseudoinverse
enables us to address prediction problems on large graphs. We present experi-
ments on two web-spam classification tasks, one of which includes a graph with
400,000 vertices and more than 10,000,000 edges. The results indicate that the ac-
curacy of our technique is competitive with previous methods using the full graph
information.

1 Introduction
Classification methods which rely upon the graph Laplacian (see [3, 20, 13] and references therein),
have proven to be useful for semi-supervised learning. A key insight of these methods is that unla-
beled data can be used to improve the performance of supervised learners. These methods reduce
to the problem of labeling a graph whose vertices are associated to the data points and the edges to
the similarity between pairs of data points. The labeling of the graph can be achieved either in a
batch [3, 20] or in an online manner [13]. These methods can all be interpreted as different kernel
methods: ridge regression in the case of [3], minimal semi-norm interpolation in [20] or the per-
ceptron algorithm in [13]. This computation scales in the worst case cubically with the quantity of
unlabeled data, which may prevent the use of these methods on large graphs.

In this paper, we propose a method to improve the computational complexity of Laplacian-based
learning algorithms. If an n-vertex tree is given, our method requires an O(n) initialization step and
after that anym×m block of the pseudoinverse of the Laplacian may be computed in O(m2 +mS)
time, where S is the structural diameter of the tree. The pseudoinverse of the Laplacian may then
be used as a kernel for a variety of label prediction methods. If a generic graph is given, we first
approximate it with a tree and then run our method on the tree. The use of a minimum spanning tree
and shortest path tree is discussed.

It is important to note that prediction is also possible using directly the graph Laplacian, without
computing its pseudoinverse. For example, this may be achieved by solving a linear system of
equations [3, 20] involving the Laplacian, and a solution may be computed in O(|E| logO(1) n)
time [18], where E is the edge set. However, computation via the graph kernel allows for multiple
prediction problems on the same graph to be computed more efficiently. The advantage is even more
striking if the data come sequentially and we need to predict in an online fashion.

To illustrate the advantage of our approach consider the case in which we are provided with a small
subset of ` labeled vertices of a large graph and we wish to predict the label of a different subset of
p vertices. Let m = `+ p and assume that m� n (typically we will also have `� p). A practical
application is the problem of detecting “spam” hosts in the internet. Although the number of hosts

in the internet is in the millions we may only need to detect spam hosts from some limited domain.
If the graph is a tree the total time required to predict with the kernel perceptron using our method
will be O(n+m2 +mS). The promise of our technique is that, if m+ S � n and a tree is given,
it requires O(n) time versus O(n3) for standard methods.

To the best of our knowledge this is the first paper which addresses the problem of fast prediction
in semi-supervised learning using tree graphs. Previous work has focused on special prediction
methods and graphs. The work in [5] presents a non-Laplacian-based method for predicting the
labeling of a tree, based on computing the exact probabilities of a Markov random field. The issue
of computation time is not addressed there. In the case of unbalanced bipartite graphs [15] presents
a method which significantly improves the computation time of the pseudoinverse to Θ(k2(n− k)),
where k is the size of a minority partition. Thus, in the case of a binary tree the computation is still
Θ(n3) time.

The paper is organized as follows. In Section 2 we review the notions which are needed in order
to present our technique in Section 3, concerning the fast computation of a tree graph kernel. In
Section 4 we address the issue of tree selection, commenting in particular on a potential advantage
of shortest path trees. In Section 5 we present the experimental results and draw our conclusions in
Section 6.

2 Background
In this paper any graph G is assumed to be connected, to have n vertices, and to have edge weights.
The set of vertices of G is denoted V = {1, . . . , n}. Let A = (Aij)n

i,j=1 be the n × n symmetric
weight matrix of the graph, where Aij ≥ 0, and define the edge set E(G) := {(i, j) : Aij >
0, i < j}. We say that G is a tree if it is connected and has n − 1 edges. The graph Laplacian
is the n × n matrix defined as G = D − A, where D is the diagonal matrix with i-th diagonal
element Dii =

∑n
j=1Aij , the weighted degree of vertex i. Where it is not ambiguous, we will use

the notation G to denote both the graph G and the graph Laplacian and the notation T to denote
both a Laplacian of a tree and the tree itself. The Laplacian is positive semi-definite and induces
the semi-norm ‖w‖2G := w>Gw =

∑
(i,j)∈E(G)Aij(wi − wj)2. The kernel associated with the

above semi-norm is G+, the pseudoinverse of matrix G, see e.g. [14] for a discussion. As the graph
is connected, it follows from the definition of the semi-norm that the null space of G is spanned by
the constant vector 1 only.

The analogy between graphs and networks of resistors plays an important role in this paper. That
is, the weighted graph may be seen as a network of resistors where edge (i, j) is a resistor with
resistance πij = A−1

ij . Then the effective resistance rG(i, j) may be defined as the resistance
measured between vertex i and j in this network and may be calculated using Kirchoff’s circuit laws
or directly from G+ using the formula [16]

rG(i, j) = G+
ii +G+

jj − 2G+
ij . (2.1)

The effective resistance is a metric distance on the graph [16] as well as the geodesic and struc-
tural distances. The structural distance between vertices i, j ∈ V is defined as sG(i, j) :=
min {|P (i, j)| : P (i, j) ∈ P} where P is the set of all paths in G and P (i, j) is the set of edges
in a particular path from i to j. Whereas, the geodesic distance is defined as dG(i, j) :=
min{

∑
(p,q)∈P (i,j) πpq : P (i, j) ∈ P}. The diameter is the maximum distance between any

two points on the graph, hence the resistance, structural, and, geodesic diameter are defined as
RG = maxi,j∈V rG(i, j) SG = maxi,j∈V sG(i, j), and DG = maxi,j∈V dG(i, j), respectively.
Note that, by Kirchoff’s laws, rG(i, j) ≤ dG(i, j) and, so, RG ≤ DG.

3 Computing the Pseudoinverse of a Tree Laplacian Quickly
In this section we describe our method to compute the pseudoinverse of a tree.

3.1 Inverse Connectivity
Let us begin by noting that the effective resistance is a better measure of connectivity than the
geodesic distance, as for example if there are k edge disjoint paths of geodesic distance d between
two vertices, then the effective resistance is no more than d

k . Thus, the more paths, the closer the
vertices.

In the following, we will introduce three more global measures of connectivity built on top of the
effective resistance, which are useful for our computation below. The first quantity is the total
resistance Rtot =

∑
i>j rG(i, j), which is a measure of the inverse connectivity of the graph: the

smaller Rtot the more connected the graph. The second quantity is R(i) =
∑n

j=1 rG(i, j), which is
used as a measure of inverse centrality of vertex i [6, Def. 3] (see also [17]). The third quantity is
G+

ii , which provides an alternate notion of inverse centrality.

Summing both sides of equation (2.1) over j gives

R(i) = nG+
ii +

n∑
j=1

G+
jj , (3.1)

where we used the fact that
∑n

j=1G
+
ij = 0, which is true because the null space of G is spanned by

the constant vector. Summing again over i yields

Rtot = n

n∑
i=1

G+
ii , (3.2)

where we have used
∑n

i=1R(i) = 2Rtot. Combing the last two equations we obtain

G+
ii =

R(i)
n
− Rtot

n2
. (3.3)

3.2 Method
Throughout this section we assume that G is a tree with corresponding Laplacian matrix T. The
principle of the method to compute T+ is that, on a tree there is a unique path between any two
vertices and, so, the effective resistance is simply the sum of resistances along that path, see e.g. [16,
13] (for the same reason, on a tree the geodesic distance is the same as the resistance distance).

We assume that the root vertex is indexed as 1. The parent and the children of vertex i are denoted
by ↑(i) and ↓(i), respectively. The descendants of vertex i are denoted by

↓*(i) :=

{
↓(i)

⋃
j∈↓(i) ↓*(j) ↓(i) 6= ∅

∅ ↓(i) = ∅
.

We also let κ(i) be the number of descendants of vertex i and i itself, that is, κ(i) = 1 + | ↓*(i)|.
The method is outlined as follows. We initially compute R(1), . . . , R(n) in O(n) time. This in turn
gives us Rtot = 1

2

∑n
i=1R(i) and G+

11, . . . , G
+
nn via equation (3.3), also in O(n) time. As we shall

see, with these precomputed values, we may obtain off-diagonal elements G+
ij from equation (2.1)

by computing individually rT(i, j) in O(ST) or an m×m block in O(m2 +mST) time.

Initialization

We split the computation of the inverse centrality R(i) into two terms, namely R(i) = T (i) +
S(i), where T (i) and S(i) are the sum of the resistances of vertex i to each descendant and non-
descendant, respectively. That is,

T (i) =
∑

j∈↓*(i)

rT(i, j) , S(i) =
∑

j 6∈↓*(i)

rT(i, j) .

We compute κ(i) and T (i), i = 1, . . . , n with the following leaves-to-root recursions

κ(i) :=

{
1 +

∑
j∈↓(i) κ(j) ↓(i) 6= ∅

1 ↓(i) = ∅
, T (i) :=

{∑
j∈↓(i)(T (j) + πijκ(j)) ↓(i) 6= ∅

0 ↓(i) = ∅

by computing κ(1) then T (1) and caching the intermediate values. We next descend the tree caching
each calculated S(i) with the root-to-leaves recursion

S(i) :=
{
S(↑(i)) + T (↑(i))− T (i) + (n− 2κ(i))πi ↑(i) i 6= 1
0 i = 1

.

It is clear that the time complexity of the above recursions is O(n).

1. Input: {v1, . . . , vm} ⊆ V
2. Initialization: visited(all) = ∅
3. for i = 1, . . . ,m do
4. p = −1; c = vi; rT(c, c) = 0
5. Repeat
6. for w ∈ visited(c) ∩ {p} ∪ ↓*(p) do
7. rT(vi, w) = rT(w, vi) = rT(vi, c) + rT(c, w)
8. end
9. visited(c) = visited(c) ∪ vi

10. p = c; c = ↑(c)
11. rT(vi, c) = rT(c, vi) = rT(vi, p) + πp,c

12. until (“p is the root”)
13. end

Figure 1: Computing an m×m block of a tree Laplacian pseudoinverse.

Computing an m×m block of the Laplacian pseudoinverse

Our algorithm (see Figure 1) computes the effective resistance matrix of an m × m block which
effectively gives the kernel (via equation (2.1)). The motivating idea is that a single effective re-
sistance rT(i, j) is simply the sum of resistances along the path from i to j. It may be computed
by separately ascending the path from i–to–root and j–to–root in O(ST) time and summing the
resistances along each edge that is either in the i–to–root or j–to–root path but not in both. However
we may amortize the computation of an m × m block to O(m2 + mST) time, saving a factor of
min(m,ST). This is realized by additionally caching the cumulative sums of resistances along the
path to the root during each ascent from a vertex.

We outline in further detail the algorithm as follows: for each vertex vi in the set Vm = {v1, . . . , vm}
we perform an ascent to the root (see line 3 in Figure 1). As we ascend, we cache each cumulative re-
sistance (from the starting vertex vi to the current vertex c) along the path on the way to the root (line
11). If, while ascending from vi we enter a vertex c which has previously been visited during the as-
cent from another vertexw (line 6) then we compute rT(vi, w) as rT(vi, c)+rT(c, w). For example,
during the ascent from vertex vk ∈ Vm to the root we will compute {rT(v1, vk), . . . , rT(vk, vk)}.
The computational complexity is obtained by noting that every ascent to the root requires O(ST)
steps and along each ascent we must compute up to max(m,ST) resistances. Thus, the total com-
plexity is O(m2 + mST), assuming that each step of the algorithm is efficiently implemented. For
this purpose, we give two implementation notes. First, each of the effective resistances computed
by the algorithm should be stored on the tree, preventing creation of an n × n matrix. When the
computation is completed the desired m×m Gram matrix may then be directly computed by gath-
ering the cached values via an additional set of ascents. Second, it should be ensured that the “for
loop” (line 6) is executed in Θ(|visited(c) ∩ {p} ∪ ↓*(p)|) time by a careful but straightforward
implementation of the visited predicate. Finally, this algorithm may be generalized to compute
a p× ` block in O(p`+ (p+ `)ST) time or to operate fully “online.”

Let us return to the practical scenario described in the introduction, in which we wish to predict p
vertices of the tree based on ` labeled vertices. Letm = `+p. By the above discussion, computation
of an m ×m block of the kernel matrix T+ requires O(n + m2 + mST) time. In many practical
applications m � n and SG will typically be no more than logarithmic in n, which leads to an
appealing O(n) time complexity.

4 Tree Construction

In the previous discussion, we have considered that a tree has already been given. In the follow-
ing, we assume that a graph G or a similarity function is given and the aim is to construct an
approximating tree. We will consider both the minimum spanning tree (MST) as a “best” in norm
approximation; and the shortest path tree (SPT) as an approximation which maintains a mistake
bound [13] guarantee.

Given a graph with a “cost” on each edge, an MST is a connected n-vertex subgraph with n − 1
edges such that the total cost is minimized. In our set-up the cost of edge (i, j) is the resistance

πij = 1
Aij

, therefore, a minimum spanning tree of G solves the problem

min

 ∑
(i,j)∈E(T)

πij : T ∈ T (G)

 , (4.1)

where T (G) denotes the set of spanning trees of G. An MST is also a tree whose Laplacian best
approximates the Laplacian of the given graph according to the trace norm, that is, it solves the
problem

min {tr(G−T) : T ∈ T (G)} . (4.2)

Indeed, we have tr(G−T) =
∑n

i,j=1Aij −
∑

(i,j)∈E(T)−π
−1
ij . Then, our claim that the problems

(4.1) and (4.2) have the same solution follows by noting that the edges in a minimum spanning
tree are invariant with respect to any strictly increasing function of the “costs” on the edges in the
original graph [8] and the function −π−1 is increasing in π.

The above observation suggests another approximation criterion which we may consider for finding
a spanning tree. We may use the trace norm between the pseudoinverse of the Laplacians, rather
than the Laplacians themselves as in (4.2). This seems a more natural criterion, since our goal is to
approximate well the kernel (it is the kernel which is directly involved in the prediction problem). It
is interesting to note that the quantity tr(T+−G+) is related to the total resistance. Specifically, we
have by equation (3.2) that tr(T+−G+) = Rtot(T)

n − Rtot(G)
n . As noted in [10], the total resistance

is a convex function of the graph Laplacian. However, we do not know how to minimize Rtot(T)
over the set of spanning trees of G. We thus take a different route, which leads us to the notion of
shortest path trees. We choose a vertex i and look for a spanning tree which minimizes the inverse
centrality R(i) of vertex i, that is we solve the problem

min {R(i) : T ∈ T (G)} . (4.3)

Note that R(i) is the contribution of vertex i to the total resistance of T and that, by equations (3.1)
and (3.2), R(i) = nT+

ii + Rtot
n . The above problem can then be interpreted as minimizing a trade-

off between inverse centrality of vertex i and inverse connectivity of the tree. In other words, (4.3)
encourages trees which are centered at i and, at the same time have a small diameter. It is interesting
to observe that the solution of problem (4.3) is a shortest path tree (SPT) centered at vertex i, namely
a spanning tree for which the geodesic distance in “costs” is minimized from i to every other vertex
in the graph. This is because the geodesic distance is equivalent to the resistance distance on a tree
and any SPT of G is formed from a set of shortest paths connecting the root to any other vertex in
G [8, Ch. 24.1].

Let us observe a fundamental difference between MST and SPT, which provides a justification for
approximating the given graph with an SPT. It relies upon the analysis in [13, Theorem 4.2], where
the cumulative number of mistakes of the kernel perceptron with the kernel K = G+ + 11> was
upper bounded by (‖u‖2G + 1)(RG + 1) for consistent labelings [13] u ∈ {−1, 1}n. To explain
our argument, first we note that when we approximate the graph with a tree T the term ‖u‖2G is
always decreasing, while the term RG is always increasing by Rayleigh’s monotonicity law (see for
example [13, Corollary 3.1]). Now, note that the resistance diameter RT of an SPT of a graph G is
bounded by twice the geodesic diameter of the original graph,

RT ≤ 2DG. (4.4)

Indeed, as an SPT is formed from a set of shortest paths between the root and any other vertex in G,
for any pair of vertices p, q in the graph there is in the SPT a path from p to the root and then to q
which can be no longer than 2DG.

To further discuss, consider the case that G consists of a few dense clusters each uniquely labeled
and with only a few cross-cluster edges. The above mistake bound and the bound (4.4), imply that a
tree built with an SPT would still have a non-vacuous mistake bound. No such bound as (4.4) holds
for an MST subgraph. For example, consider a bicycle wheel graph whose edge set is the union of
n spoke edges {(0, i) : i = 1, . . . , n} and n rim edges {(i, i+ 1 mod n) : i = 1, . . . , n} with costs
on the spoke edges of 2 and on the rim edges of 1. The MST diameter is then n+ 1 while any SPT
diameter is ≤ 8.

At last, let us comment on the time and space complexity of constructing such trees. The MST and
SPT trees may be constructed with Prim and Dijkstra algorithms [8] respectively inO(n log n+ |E|)
time. Prim’ algorithm may be further speeded up to O(n + |E|) time in the case of small integer
weights [12]. In the general case of a non-sparse graph or similarity function the time complexity is
Θ(n2), however as both Prim and Dijkstra are “greedy” algorithms their space complexity is O(n)
which may be a dominant consideration in a large graph.

5 Web-spam Detection Experiments
In this section, we present an experimental study of the feasibility of our method on large graphs
(400,000 vertices). The motivation for our methodology is that on graphs with already 10,000 ver-
tices it is computationally challenging to use standard graph labeling methods such as [3, 20, 13], as
they require the computation of the full graph Laplacian kernel. This computational burden makes
the use of such methods prohibitive when the number of vertices is in the millions. On the other
hand, in the practical scenario described in the introduction the computational time of our method
scales linearly in the number of vertices in the graph and can be run comfortably on large graphs
(see Figure 2 below) and at worst quadratically if the full graph needs to be labeled.

The aims of the experiments are: (i) to see whether there is a significant performance loss when using
a tree sub-graph rather than the original graph, (ii) to compare tree construction methods, specifically
the MST and the SPT and (iii) to exploit the possibility of improving performance through ensembles
of trees. The initial results are promising in that the performance of the predictor with a single SPT or
MST is competitive with that of the existing methods, some of which use the full graph information.
We shall also comment on the computational time of the method.

5.1 Datasets and previous methods

We applied the Fast Prediction on a Tree (FPT) method to the 2007 web-spam challenge developed
at the University of Paris VI1. Two graphs are provided. The first one is formed by 9,072 vertices
and 464,959 edges, which represent computer hosts – we call this the host-graph. In this graph,
one host is “connected” to another host if there is at least one link from a web-page in the first host
to a web-page in the other host. The second graph consists of 400,000 vertices (corresponding to
web-pages) and 10,455,545 edges – we call this the web-graph. Again, a web-page is “connected”
to another web-page if there is at least one hyperlink from the former to the latter. Note that both
graphs are directed. In our experiments we discarded directional information and assigned a weight
of either 1 to unidirectional edges and of w ∈ {1, 2} to the bidirectional edges. Each vertex is
either labeled as spam or as non-spam. In both graphs there are about 80% of non-spam vertices and
20% of spam ones. Additional tf-idf feature vectors (determined by the web-pages’ html content)
are provided for each vertex in the graph, but we have discarded this information for simplicity.
Following the web-spam protocol, for both graphs we used 10% of labeled vertices for training and
90% for testing.

We briefly discuss some previous methods which participated in the web-spam challenge. Abernathy
et al. [1] used an SVM variant on the tf-idf features with an additional graph-based regularization
term, which penalizes predictions with links between non-spam to spam vertices. Tang et al. (see
[7]) used a linear and Gaussian SVM combined with Random Forests on the feature vectors, plus
new features obtained from link information. The method of Witschel and Biemann [4] consisted of
iteratively selecting vertices and classifying them with the predominant class in their neighborhood
(hence this is very similar to label propagation method of [20]). Benczúr et al. (see [7]) used Naive
Bayes, C4.5 and SVM’s with a combination of content and/or graph-based features. Finally, Filoche
et al. (see [7]) applied html preprocessing to obtain web-page fingerprints, which were used to
obtain clusters; these clusters along with link and content-based features were then fed to a modified
Naive Bayes classifier.

5.2 Results

Experimental results are shown in Table 1. We report the following performance measures: (i)
average accuracy when predicting with a single tree, (ii) average accuracy when each predictor
is optimized over a threshold in the range of [−1, 1], (iii) area under the curve (AUC) and (iv)

1See http://webspam.lip6.fr/wiki/pmwiki.php for more information.

Method Agg. Agg.-Best AUC Single Single-Best AUC
Host-graph

MST 0.907 0.907 0.950 0.857±0.022 0.865±0.017 0.841±0.045
SPT 0.889 0.890 0.952 0.850±0.026 0.857±0.018 0.804±0.063

MST (bidir) 0.912 0.915 0.944 0.878±0.033 0.887±0.027 0.851±0.100
SPT (bidir) 0.913 0.913 0.960 0.873±0.028 0.877±0.026 0.846±0.065

Abernathy et al. 0.896 0.906 0.952
Tang et al. 0.906 0.907 0.951

Filoche et al. 0.889 0.890 0.927
Benczúr et al. 0.829 0.847 0.877

Web-graph
MST (bidir) 0.991 0.992 1.000 0.976±0.011 0.980±0.009 0.993±0.005
SPT (bidir) 0.994 0.994 0.999 0.985±0.002 0.985±0.002 0.992±0.003

Witschel et al. 0.995 0.996 0.998
Filoche et al. 0.973 0.974 0.991
Benczúr et al. 0.942 0.942 0.973

Tang et al. 0.296 0.965 0.989

Table 1: Results of our FPT method and other competing methods.

5 11 21 41 81
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Num.of trees

A
U

C

Host−graph

unweighted_MST
unweighted_SPT
biweighted_MST
biweighted_SPT

5 11 21 41 81
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Num.of trees

A
cc

ur
ac

y

Host−graph

unweighted_MST
unweighted_SPT
biweighted_MST
biweighted_SPT

20 100 200 400
4

4.5

5

5.5

6

6.5

7

7.5

8

Labeled nodes

R
un

tim
e

(s
ec

s)

Web−graph

Initialization
Init+Prediction

Figure 2: AUC and Accuracy vs. number of trees (left and middle) and Runtime vs. number of
labeled vertices (right).
aggregate predictive value given by each tree. In the case of the host-graph, predictions for the
aggregate method were made using 81 trees. MST and SPT were obtained for the weighted graphs
with Prim and Dijkstra algorithms, respectively. For the unweighted graphs, every tree is an MST,
so we simply used trees generated by a randomized unweighted depth-first traversal of the graph and
SPT’s may be generated by using the breadth-first-search algorithm, all in O(|E|) time. In the table,
the tag “Agg.” stands for aggregate and the “bidir” tag indicates that the original graph was modified
by setting w = 2 for bidirectional edges. In the case of the larger web-graph, we used 21 trees and
the modified graph with bidirectional weights. In all experiments we used a kernel perceptron which
was trained for three epochs (e.g. [13]).

It is interesting to note that some of the previous methods [1, 4] take the full graph information into
account. Thus, the above results indicate that our method is statistically competitive (in fact better
than most of the other methods) even though the full graph structure is discarded. Remarkably, in the
case of the large web-graph, using just a single tree gives a very good accuracy, particularly in the
case of SPT. On this graph SPT is also more stable in terms of variance than MST. In the case of the
smaller host-graph, just using one tree leads to a decrease in performance. However, by aggregating
a few trees our result improves over the state of the art results.

In order to better understand the role of the number of trees on the aggregate prediction, we also ran
additional experiments on the host-graph with t = 5, 11, 21, 41, 81 randomly chosen MST or SPT
trees. We averaged the accuracy and AUC over 100 trials each. Results are shown in Figure 2. As it
can be seen, using as few as 11 trees already gives competitive performance. SPT works better than
MST in term of AUC (left plot), whereas the result is less clear in the case of accuracy (middle plot).

Finally, we report on an experiment evaluating the running time of our method. We choose the web-
graph (n = 400, 000). We then fixed p = 1000 predictive vertices and let the number of labeled
vertices ` vary in the set {20, 40, 60, 80, 100, 200, 400}. Initialization time (tree construction plus
computation of the diagonal elements of the kernel) and initialization plus prediction times were
measured in seconds on a dual core 1.8GHz machine with 8Gb memory. As expected, the solid
curve, corresponding to initialization time, is the dominant contribution to the computation time.

6 Conclusions
We have presented a fast method for labeling of a tree. The method is simple to implement and, in
the practical regime of small labeled and testing sets and diameters, scales linearly in the number
of vertices in the tree. When we are presented with a generic undirected weighted graph, we first
extract a spanning tree from it and then run the method. We have studied minimum spanning trees
and shortest path trees, both of which can be computed efficiently with standard algorithms. We
have tested the method on a web-spam classification problem involving a graph of 400,000 vertices.
Our results indicate that the method is competitive with the state of the art. We have also shown
how performance may be improved by averaging the predictors obtained by a few spanning trees.
Further improvement may involve learning combinations of different trees. This may be obtained
following ideas in [2]. At the same time it would be valuble to study connections between our work
and other approximation methods such as those in in the context of kernel-methods [9], Gaussian
processes [19] and Bayesian learning [11].

Acknowledgments. We wish to thank A. Argyriou and J.-L. Balcázar for valuable discussions, D.
Athanasakis and S. Shankar Raman for useful preliminary experimentation, D. Fernandez-Reyes
for both useful discussions and computing facility support, and the anonymous reviewers for useful
comments. This work was supported in part by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778, by EPSRC Grant EP/D071542/1 and
by the DHPA Research Councils UK Scheme.

References
[1] J. Abernethy, O. Chapelle and C. Castillo. Webspam Identification Through Content and Hyperlinks.

Proc. Adversarial Information Retrieval on Web, 2008.
[2] A. Argyriou, M. Herbster, and M. Pontil. Combining graph Laplacians for semi-supervised learning.

Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.
[3] M. Belkin, I. Matveeva, P. Niyogi. Regularization and Semi-supervised Learning on Large Graphs.

Proceedings of the 17-th Conference on Learning Theory (COLT’ 04), pages 624–638, 2004.
[4] C. Biemann. Chinese Whispers – an Efficient Graph Clustering Algorithm and its Application to Natural

Language Processing Problems. Proc. HLT-NAACL-06 Workshop on Textgraphs-06, 2006.
[5] A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learning using randomized

mincuts. Proc. 21-st International Conference on Machine Learning, page 13, 2004.
[6] U. Brandes and D. Fleischer. Centrality measures based on current flow. Proc. 22-nd Annual Symposium

on Theoretical Aspects of Computer Science, pages 533–544, 2005.
[7] C. Castillo, B. D. Davison, L. Denoyer and P. Gallinari. Proc. of the Graph Labelling Workshop and

Web-spam Challenge (ECML Workshop), 2007.
[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1990.
[9] P. Drineas and M. W. Mahoney, On the Nyström Method for Approximating a Gram Matrix for Improved

Kernel-Based Learning. J. Mach. Learn. Res., 6:2153–2175, 2005.
[10] A. Ghosh, S. Boyd and A. Saberi. Minimizing Effective Resistance of a Graph. SIAM Review, problems

and techniques section, 50(1):37-66, 2008.
[11] T. Jebara. Bayesian Out-Trees. Proc. Uncertainty in Artifical Intelligence, 2008.
[12] R. E. Haymond, J. Jarvis and D. R. Shier. Algorithm 613: Minimum Spanning Tree for Moderate Integer

Weights. ACM Trans. Math. Softw., 10(1):108–111, 1984.
[13] M. Herbster and M. Pontil. Prediction on a graph with a perceptron. Advances in Neural Information

Processing Systems 19, pages 577–584. MIT Press, 2007.
[14] M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In ICML ’05: Proceedings of the

22nd international conference on Machine learning, pages 305–312, 2005.
[15] N.-D. Ho and P. V. Dooren. On the pseudo-inverse of the Laplacian of a bipartite graph. Appl. Math.

Lett., 18(8):917–922, 2005.
[16] D. Klein and M. Randić. Resistance distance. J. of Mathematical Chemistry, 12(1):81–95, 1993.
[17] M. E. J. Newman. A measure of betweenness centrality based on random walks. Soc. Networks, 27:39–

54, 2005.
[18] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,

and solving linear systems. Proc. 36-th Annual ACM Symposium Theory of Computing, 2004.
[19] C.K.I. Williams and M. Seeger. Using the Nyström Method to Speed Up Kernel Machines. Neural

Information Processing Systems 13, pages 682–688, MIT Press, 2001
[20] X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-Supervised Learning Using Gaussian Fields and Harmonic

Functions. Proc of the the 20-th International Conference on Machine Learning, pages 912–919, 2003.

