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Abstract 

Total hip arthroplasty is a well established treatment modality for the diseased hip. The 

number implanted rises annually on a global scale which is mirrored by increasing 

indications. After aseptic loosening and infection, periprosthetic fracture remains one of the 

commonest complications of this otherwise successful surgery. Management is geared 

towards restoring function through fixation of the fracture. 

 

The general aim of this thesis is to validate the classification of periprosthetic fractures of 

the femur around total hip arthroplasty, provide evidence towards the outcomes of 

methods of fixation of these fractures, and present supplementary biomechanical data 

regarding fixation and implant stress. It is hypothesised that the Vancouver classification will 

be a reliable and reproducible system to use, that strut grafts, cables and long-stemmed 

implants will improve function and outcome when used to manage these injuries, and that 

biomechanical models will provide evidence on why the use of the implants is successful. 

 

Study I 

The purpose of this study was to ensure that the Vancouver Classification of periprosthetic 

fractures which is most widely used classification system of periprosthetic fractures is 

repeatable. It was hypothesised that the system would be reliable amongst for all grades of 

clinician. The inter-rater agreement ranged from 0.61-0.74 and the intra-rater agreement 

ranged from 0.59-0.67. Validity analysis was scored at 77% (κ = 0.67). The Vancouver 

Classification was shown to be reliable and reproducible. 
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Study II 

The purpose of this study was to evaluate the clinical and radiographic outcomes of 40 

periprosthetic femoral fractures around stable hip implants treated with cortical onlay strut 

allografts without revision of the stem. It was hypothesised that this treatment would 

improve function and result in bony union. At a mean follow-up of 28 months, 98% of 

patients had radiological evidence of union with all but one of the surviving patients 

returned to their preoperative functional level within one year. 

 

Study III 

The purpose of this biomechanical cadaveric study was to determine the effect of allograft 

cortical strut length, configuration, cable number, cable tension and the use of wire or cable 

on the fixation of periprosthetic femoral fractures. It was hypothesised that an increasing 

number of struts and the use of cable would improve fracture stability. Fracture stability 

was found to increase with the use of two rather than one strut, and by using cables rather 

than wires. 

 

Study IV 

The purpose of this study was to evaluate the clinical and radiological outcomes of using 

cementless femoral stems in conjunction with cortical struts, cable plating systems, bone 

allograft and demineralised bone matrix in 26 patients with Vancouver B2 or B3 fractures. It 

was hypothesised that this treatment would improve function and lead to radiological 

union. It was found that all fractures were healed clinically and radiologically, and all 

patients were reported to be satisfied with the outcome. 
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Study V 

The purpose of this biomechanical study was to determine the strain exerted by an 

uncemented femoral implant upon a synthetic, composite femur modelling various clinical 

scenarios. It was hypothesised that strain would be reduced when using a grip, strut or 

cables. It was found that these devices did reduce the strain exerted upon the femur and 

may be useful in preventing femoral stem fractures. 

 

Study VI 

The purpose of this study was to evaluate the clinical and radiographic outcomes of treating 

periprosthetic femoral fractures around unstable hip implants treated with revision to an 

uncoated locked Kent Hip prosthesis. It was hypothesised that this method of treatment 

would improve clinical and radiological outcome in the 36 patients included in the study 

group. Harris Hip Scores improved and fracture union was seen in all but one patient; there 

were three patients in whom the implant was subsequently revised. 

 

Study VII 

The purpose of this study was to clinically evaluate interlocking long stem femoral 

prostheses as either temporary functional spacers or as definitive implants in cases of 

infected periprosthetic femoral fractures. It was hypothesised that these devices would 

improve the clinical and radiological outcomes of these patients. The Cannulok uncoated 

stem was used in twelve cases and the Kent Hip Prosthesis in five cases. Patients were asked 

post-operatively they were satisfied with the outcome achieved. All patients were satisfied 

and in eleven cases, revision to a definitive stem was undertaken after successful control of 

the infection and fracture union.  
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Conclusions 

The management of periprosthetic fractures is a complex issue. There are numerous ways 

to manage this injury and treatment must be tailored to the patient and to the specific 

injury sustained. The results of this work demonstrate that classifying periprosthetic 

fractures using the Vancouver system is valid. Furthermore cortical struts are an effective 

adjunct with proven biomechanical advantages in non-infected cases around stable 

implants, whilst long cementless stems lead to excellent outcomes in the presence of a 

loose implant irrespective of infection. 
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Chapter 1 

An Introduction to Periprosthetic Fractures of the Femur 

Rationale for Chapter - Periprosthetic fractures of the femur represent a complex and 

specific issue within orthopaedic hip surgery. It is important to realise the history of primary 

hip arthroplasty to appreciate its evolution as well as be aware of the various causes of 

fracture and implications of treatment. This chapter will explore such issues so that the 

hypotheses outlined in this thesis can be thoroughly evaluated.  
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Chapter 1 

1.1 Introduction 

Total hip arthroplasty (THA) is regarded as one of the most successful advances in modern 

orthopaedic surgery. The clinical success rate is over 90% at 10 years from the time of index 

procedure[1].In the UK, over 50,000 total hip replacements are carried out annually at a cost 

to the NHS of more than £140 million per annum. Although the number of procedures has 

risen by 18% since 1991, it is set to increase further by up to 50% by 2026 [2].This is fuelled by 

an increasing acceptance by surgeons to implant them in both younger and older patients to 

restore and maintain quality of life. Furthermore, there are increasing indications for use 

whilst patients are patients are increasingly comfortable with the thought of prosthetic joint 

surgery. In spite of the success, complications do occur and although overall complication 

rates are low, there is potential for severe morbidity and mortality. This is most apparent in 

periprosthetic fractures or infection. 

 

A fracture is defined as a newly formed defect in cortical bone whilst a periprosthetic fracture 

is specifically one that occurs in proximity to an implant. Femoral fractures occurring around a 

THA provides an even more complex clinical scenario since the implant is linked to another 

component; namely the acetabular component and the implant itself can either help or 

hinder healing by acting as intramedullary splint or as a distracting force and source for 

potential infection respectively. Furthermore, an evolution in management has been 

necessitated with newer implant designs and methods of fixation.  

 

This purpose of this thesis will be to identify whether the strategies used to manage 

periprosthetic fractures after THA improve the clinical and radiological outcomes, and if so, is 
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there biomechanical evidence to support this? Specifically, this thesis investigates the validity 

and reliability of the Vancouver classification since it will be used to classify this injury 

throughout this thesis, the outcomes of cortical strut grafts and how effective interlocking 

implants are in the absence of cement in Type B fractures which are fractures around the 

stem of a hip replacement. 
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1.2 Components of Hip Replacement Systems 

The earliest recorded attempts at replacement of the hip were from Germany in 1891 by 

Gluck, who used ivory to replace the femoral head [3]. Smith-Petersen from Massachusetts 

General Hospital subsequently used a glass cup to cover and reshape an arthritic femoral 

head in 1923. 

 

In 1940 at Johns Hopkins Hospital, USA, Moore was reported to have performed the first 

metallic hip replacement surgery though this was essentially a proximal femoral replacement. 

The prosthesis comprised of a large Cobalt-Chrome alloy head proximally that extended in to 

a shaft that was one foot long. The distal end was bolted to the resected end of the femoral 

shaft and much like the ivory replacement mentioned before, was essentially a hemi-

arthroplasty device with no corresponding acetabular implant. Moore subsequently devised a 

variant prosthesis in 1952, which could be inserted into the medullary canal of the femur. This 

became widely known as the Austin Moore prosthesis (see Figure 1.1) and is still used today 

for the treatment of intra-capsular femoral neck fractures. 

 

Judet and Judet [4] described the used of an acrylic femoral head replacement (see Figure 1.2) 

in 1950. It was similar in design to the mid-head hip resection prosthesis in use today though 

again was a hemiarthroplasty device. 
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Figure 1.1: Austin-Moore prosthesis - The voids seen in the stem allow for bony in-growth 

following insertion 

 

 

Figure 1.2: Judet and Judet’s acrylic hip replacement 
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Baw from Burma [5] pioneered the use of ivory hemiarthroplasty prostheses to replace non-

united fractures of the femoral neck. The prosthesis was implanted in patients ranging from 

the ages of 24 to 87 and the success rate was reported to be88% based upon Judet’s criteria. 

Although biologically compatible, it was thought that it was used in preference to metal by 

Baw for reasons including cost and availability. 

 

Despite the apparent merits of ivory, it was not a material that could be produced in large 

enough quantities to become a viable bearing surface. Furthermore, there was a need to 

develop joint replacement systems that would not only replace the femoral head but also the 

acetabular side since arthritis of the hip was a much more common affliction than femoral 

neck fractures.  

 

Modern total joint arthroplasty of the hip was pioneered by Sir John Charnley from 

Wrightington Hospital, UK. Although reaming of the acetabulum had previously been 

described, insertion of an acetabular component with which an artificial femoral head 

articulates had not. He used a stainless steel monoblock femoral component and a Teflon 

acetabular cup and called it the Low Friction Arthroplasty (LFA) [6] (see Figure 1.3). 

 

Although this coupling failed due to Teflon’s poor wear properties, the change to ultra-high 

molecular weight polyethylene brought about a reduced incidence of osteolysis with 

secondary loosening. Since this time, there has been a trend toward modular components 

which allow for greater intra-operative freedom in recreating and restoring normal 

biomechanics. 
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Figure 1.3: Manufacturer’s advert for the Charnley Prosthesis  

(http://www.aaos75th.org/stories/physician_story.htm?id=12 – no copyright) 

 

These modular components consist of: 

 Femoral side 

o Stem and head 

o Neck may also be modular is some cases 

o Some stems are bi-bodied and others have a sleeve and a stem that goes 

through that sleeve  

 Acetabular side 

o Shell and liner (uncemented) 

o OR Single cup (cemented) 
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1.3 Early Reports of Periprosthetic Fracture 

Periprosthetic fracture of the femur after hip arthroplasty surgery was first described by 

Horwitz and Lenobel in 1954 [7]. It occurred in a female patient who sustained an 

intertrochanteric fracture around the stem of a cemented hemiarthroplasty whilst 

convalescing from the aforementioned operation. A transfixing bolt and wire loop were used 

to reconstruct and stabilise the femur before reinserting the prosthesis into the reduced 

femur. Unfortunately, the patient died one month following surgery. 

 

Parish and Jones reported seven cases 10 years later in 1964 [8]. Their report was divided into 

fractures sustained in the trochanteric area, or in proximal, middle and distal areas of the 

femoral shaft thus giving rise to the earliest classification system of this injury. 

 

Two years later, Sir John Charnley described a periprosthetic femur fracture, again in a female 

patient [9]. She was treated with a cemented Thompson prosthesis following a cervical hip 

fracture but fell seven months later. She consequently sustained an oblique fracture in the 

proximal part of the femur and was treated with balanced traction; the fracture was reported 

to have healed after 3 months.  

 

The next large series of patients was reported by Whittaker et al. in 1974. It comprised of 20 

cases in 19 patients;17 hemiarthroplasties and 3 cemented THAs [10]. Like Parish and Jones’ 

series [8], early mobilisation, traction, long-stem revision or plates were used. 

 

Whilst these surgeons were pioneers of their time, their experience with periprosthetic 

femoral fractures was limited. Today, the reconstructive orthopaedic surgeon deals with 
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periprosthetic fractures frequently. Periprosthetic femoral fracture is a devastating 

complication after total hip arthroplasty that often results in poor clinical outcome [11, 12]. 

They are challenging to treat, as they require both the skills of a revision surgeon and those of 

a trauma specialist. 
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1.4 Epidemiology and Aetiology 

Depending on the source, there is a variation in the reported incidence of periprosthetic 

fracture. According to the Swedish Hip Registry, one of the commonest reasons for 

reoperation after THA is periprosthetic femoral fractures. These constitute the third 

commonest reason (9.5%) after aseptic loosening (60.1%) and recurrent dislocation (13.1%) 

[13, 14]. 

 

The Mayo Clinic Joint Registry has reported a lower cumulative prevalence of periprosthetic 

femoral fractures at 1% in primary total hip replacements and 4% in revision total hip 

replacements [15]. They can be classified as occurring intraoperatively or postoperatively. 

Primary cemented THA was shown to have a lower incidence of intraoperative fracture than 

uncemented THA - 0.3% vs. 5.4% respectively. This is also evident in revision cases where the 

incidence is 3.6% in cemented revision THA and 20.9% in uncemented revision THA. 

 

There is an increasing incidence of late postoperative periprosthetic femoral fracture which is 

attributable to many factors. These appear to be linked to the overall increased usage of THA, 

whereby, the injury occurs in elderly patients [16] who are at risk of falls and in young patients 

who are at risk for high-energy trauma events. The consequence of rising primary procedures 

is a rise in revision procedures and in these instances, fractures [15] can be attributable to 

cementless press-fit fixation or bone impaction allograft techniques which are used to gain 

stability of the stem [15, 17-20]. 

 

The majority of periprosthetic femoral fractures occur postoperatively with low energy 

events; -either after falls or spontaneously during activities of daily living [21]. Indeed, 
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Lewallen et al. reported that half of the patients with periprosthetic femoral fractures present 

with insidious pain, with no history of a fall or of trauma [12]. It should be borne in mind that 

osteolytic lesions often occur in asymptomatic hips [22, 23] and continuous surveillance of 

THA patients (especially younger ones with higher activity levels) may help in timely 

intervention and reduce the incidence of osteolytic related fractures [15, 24]. 

 

With regards to intraoperative fractures, they are most likely to occur during femoral canal 

preparation, during insertion of the prosthesis, dislocation of the existing prosthetic stem and 

cement removal [25-28]. 
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1.5 Rationale for Surgical Management 

The conservative treatment of periprosthetic fractures has become obsolete since these 

methods are fraught with complications. These include: 

 Prosthesis loosening: 19–100% 

 Pseudoarthrosis: 25 – 42% 

 Abnormal varus positioning of the femur: 45% [11, 29, 30] 

 

 Subsequent revision meanwhile is fraught with difficulties due to malunion.  

 

Furthermore non-operative methods such as traction or cast immobilization are overall 

discouraged since they increase the risk of deep vein thrombosis, pulmonary embolism, 

pneumonia, pressure ulceration and knee joint contractures [11, 29, 31]. 

 

The goals of surgical treatment are to achieve: 

 Early union 

 Anatomical alignment and length 

 A stable prosthesis 

 Early mobilisation 

 Return to pre-morbid function 

 Maintenance of bone stock 
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1.6 Classification Systems 

Classification of a fracture is a useful tool within orthopaedic surgery since it helps to define 

the problem using a common language. This allows for surgeons from different continents and 

who speak different languages to understand the nature of an injury without needing to see 

physical radiographic evidence. The best classification systems are those that help to guide 

treatment since they serve more than a simple role in description alone.  

 

The site of the fracture is the simplest way to categorise fractures. Indeed, this was the basis 

of the initial classification systems used. Parrish and Jones [8] have outlined one of the earliest 

classifications used for periprosthetic femoral fractures in 1964.They classified their nine-

patient case series into four groups based on the site of fracture (Table 1.1). 

 

Table 1.1: The Classification System of Parrish and Jones 

Group Fracture Site 

Group 1  Fractures in trochanteric area 

Group 2  Fractures in the proximal part of the shaft 

Group 3 Fractures in the mid-shaft 

Group 4 Fractures in the distal part of the shaft of the femur 

 

Classification systems based on site and pattern of fracture were subsequently published by 

Whittaker et al. [32] in 1974 (Table 1.2), Johansson et al. [30] in 1981(Table 1.3), and Bethea 

et al. [29] in 1982 (Table 1.4).  
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Table 1.2: The Classification System of Whittaker et al. 

Type Details of Fracture 

Type I  

 

Intertrochanteric region with the stem always extending across the fracture site 

in to the distal femur thus providing good stability 

Type II Oblique or spiral fracture around the tip of the stem, which is located within the 

intramedullary canal in both fragments, offering some stability to the fracture 

Type III Fracture located at or below the stem tip and is completely unstable if displaced 

 

Table 1.3: The Classification System of Johansson et al. 

Type Details of Fracture Treatment recommendation 

Type I Fracture proximal to the tip of the prosthesis, 

with the stem of the prosthesis remaining in 

the medullary canal 

Intra-operative: surgical 

stabilisation 

Post-operative : Non-operative 

Type II Fracture line extending from the proximal 

portion of the femoral shaft to beyond the 

distal tip of the prosthesis, with the 

prosthetic stem dislodged from the 

medullary canal of the distal fragment 

Conversion to long stem prosthesis 

supplemented by internal fixation 

with plate or cerclage wires 

Type III Fracture entirely distal to the tip of the 

prosthesis 

Intra-operative: stabilised in order 

to complete the hip replacement 

Post-operative: Surgical fixation 
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Table 1.4: The Classification System of Bethea et al. 

Type  Details of Fracture Treatment recommendation 

Type A  

 

Fractures at tip of the femoral component either 

transversely or with a distal spiral 

No specific recommendation 

Type B  Spiral fractures around the femoral component Non-operative intervention 

Type C Fractures proximal to the tip of the stem with 

comminution around the stem 

Surgical fixation 

 

Table 1.5: The Classification System of Cooke and Newman 

Type Details of Fracture Treatment Recommendation 

Type 1 Comminuted fractures around the stem of the 

prosthesis. The prosthesis is always loose and the 

fracture is inherently unstable 

Primary operative treatment 

Type 2 Oblique or spiral fractures around the shaft of 

the prosthesis, in which stability of the fracture is 

maintained by the presence of the prosthesis 

No specific recommendation 

– either non-operative or 

operative 

Type 3 Transverse fractures at the tip of the prosthesis 

and are unstable though the prosthesis may not 

be loose 

Internal fixation with a rigid 

plate and supplementary 

bone grafting 

Type 4 Fractures entirely distal to the prosthesis and 

include spiral fractures of the femoral shaft 

which extend proximally as far as the tip of the 

prosthesis 

No specific recommendation 

– either non-operative or 

operative 
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Bethea’s classification was modified slightly to include a fourth group by Cooke and Newman 

[33] when they presented their 75-patient series in 1988 (Table 1.5). Following this, there 

have been classification systems published by Mont and Maar [34] in 1994 (Table 1.6) and 

Beals and Tower [11] in 1996 (Table 1.7). Currently, the ‘Vancouver Classification’ published 

by Duncan and Masri [35] in 1995 is the most widely used system since it is the only system 

subjected to validation  (Table 1.8). For this reason, it is also the classification system that will 

be used to describe fracture patterns in the studies that constitute this thesis. It incorporates 

loosening of the prosthesis and poor bone stock in addition to pattern and site of the fracture 

and shall be discussed in Section 1.7. 

 

Table 1.6: The Classification System of Mont and Maar 

Type Details of Fracture Treatment Recommendation 

Type 1 

 

Intertrochanteric fracture Non-operative 

Type 2  

 

Proximal femur Cerclage treatment with bone grafting 

Type 3  

 

Spanning the prosthesis tip Cerclage fixation and revision to a cemented 

long-stem prosthesis 

Type 4  

 

Distal to the prosthesis tip Long stem revision or traction 

Type 5  

 

Comminuted, blow-out Long stem revision with supplementary 

fixation and bone graft 

Type 6  Supracondylar No specific recommendation 
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Table 1.7: The Classification System of Beals and Tower  

Type Details of Fracture Treatment Recommendation 

Type I Fracture in the 

trochanteric region 

Non-operative 

Type II Proximal 

metaphyseal/diaphyseal 

fractures that do not involve the 

stem tip 

Non-operative with traction or operative 

with limited cerclage fixation 

Type IIIA Proximal diaphyseal fractures at 

stem tip with less than 25% 

disruption of the prosthetic 

interface 

Revision to a long-stemmed non cemented 

prosthesis and bone grafting 

Type IIIB Proximal diaphyseal fractures at 

stem tip with greater than 25% 

disruption of the prosthetic 

interface 

Ingrowth revision supplemented by bone 

graft 

Type IIIC Supracondylar fracture at the 

tip of a long femoral stem 

Traction followed by a cast or cast brace. 

Intramedullary devices if the fracture is 

unstable 

Type IV Supracondylar fracture distant 

to the stem tip 

Non-operative, intramedullary nails or plates 
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Table 1.8: The ‘Vancouver Classification’ System of Duncan and Masri 

Type Details of Fracture 

Type AG Fractures of greater trochanter 

Type AL Fractures of lesser trochanter 

Type B1 Fracture around the stem or extending just below it in which the femoral 

component is solidly fixed 

Type B2  Fracture around the stem or extending just below it in which the femoral 

component is loose 

Type B3  

 

Fracture around the stem or extending just below it in which the femoral 

component is loose and there is severe bone stock loss 

Type C  Fractures well below the stem tip 
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1.7The Vancouver Classification 

The Vancouver Classification divides periprosthetic fractures in to three types of which Type A 

fractures are split in to two subtypes and Type B in to three subtypes. There are thus six 

possible types of fracture that exists according to this system and these shall now be 

discussed in more detail. 

 

1.7.1 Type A Fractures 

The Vancouver classification system splits Type A fractures in to either those involving the 

greater trochanter (AG) or lesser trochanter (AL). Fractures involving the greater trochanter 

are recognised as a later complication of wear debris induced osteolysis where by the 

combination of weak bone coupled together with the pull of the tendons attached to the 

greater trochanter predisposes to an avulsion type injury. 

 

Undisplaced or minimally displaced fractures of the greater trochanter can be managed 

without surgical intervention since there is an opposition to the forces acting on this bony 

prominence by the Glutei and Vasti. 

 

The management of displaced fractures is not yet well defined since it is debatable whether 

the restoration in abductor function is more important that the risk of surgery. Nonetheless, 

there are successful reports of fixation using either a claw plate [36] or wire fixation [37]. 

 

Fractures of the lesser trochanter are generally managed non-operatively. This is due to its 

close proximity to the femoral vessels. Furthermore, isolated fractures unrelated to 

metastatic disease tend to regain excellent function. The exception to this is where the 
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fracture of the lesser trochanter extends into the femoral shaft and the fracture is instead a 

Type B injury. In this instance, the extension of the fracture is likely to destabilise the medial 

wall of the femur potentially causing a loose implant.  

 

1.7.2 Type B Fractures 

The Vancouver classification identifies Type B fractures into three different subtypes. 

Common to all subtypes is the presence of the fracture at the level of the femoral implant. 

 

Type B1 fractures occur around stable implants - namely one that is well fixed. Loose implants 

may be observed as changes in position between sequential radiographs or alternatively 

osteolytic loosening will be observed as lucencies at the interfaces between bone and cement 

or cement and bone. Irrespective of normal radiographs, the final confirmation of a loose 

implant will be at surgery whereby a loose implant will toggle in a surgeon’s hands. Exclusion 

of these three findings will allow a fracture around a femoral implant to be labelled a Type B1 

fracture. 

 

Loose implants will automatically lead to a Type B2 or B3 classification and will always require 

replacement to restore function. Differentiation between these two subtypes is dependent 

upon bone stock; there is adequate bone stock in Type B2 fractures and inadequate bone 

stock in Type B3 Fractures. Bone stock is generally lost around implants in patients who have 

had revision arthroplasty (whether it is secondary to aseptic or infective failure), severe 

trauma to the proximal femur or excision of malignant lesions. 
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Loss of bone stock invariably makes reconstruction more difficult since a lack of adequate 

support compromises the stability of the new implant that will be implanted. 

 

This thesis will focus on this group of fractures (Vancouver Type B) since it this group that 

remains the most technically challenging and open for debate with respect to treatment. 

 

1.7.3Type C Fractures 

The Vancouver classification identifies Type C fractures as those occurring within the femoral 

diaphysis well below the tip of the implant and consequently they have no impact upon 

implant stability. 

 

Fixation of the fracture is based around sound AO principles; namely reduction of the fracture 

and stabilisation to facilitate either direct or indirect healing thereby promoting rapid 

restoration of function. The main additional consideration when managing these fractures is 

that the presence of a gap between any stem tip and the fixation plate will create a stress 

riser. 
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1.8 Objectives 

The research aims to complete the following tasks: 

1. To validate the classification of periprosthetic femoral fractures. 

2. To provide clinical and biomechanical evidence towards the use of cortical strut 

grafts in cemented stems. 

3. To provide clinical and biomechanical analysis of the use of revision stems in the 

treatment of periprosthetic fractures. 

 

It is hypothesised that the Vancouver classification will be a reliable and reproducible 

system to use, that strut grafts, cables and long-stemmed implants will improve function 

and outcome when used to manage these injuries, and that biomechanical models will 

provide evidence on why the use of the implants is successful. 
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1.9 Outline 

Chapter 1 of this thesis provides an overview of periprosthetic femoral fractures and need 

for research. 

Chapter 2 validates the Vancouver classification of this injury. This is necessary since 

different patterns of fracture require different treatments. 

Chapter 3 investigates the clinical and radiographic outcomes of fractures around stable hip 

implants treated with cortical onlay strut allografts without revision of the stem. 

Chapter 4 determines the biomechanical effect of cortical strut grafts and cables on fracture 

stability. 

Chapter 5 investigates the clinical and radiographic outcomes of periprosthetic femoral 

fractures treated with cementless revision of the stem in conjunction with cortical struts, 

cables, bone allograft and demineralised bone matrix. 

Chapter 6 uses a biomechanical model to determine the site of stem fracture in 

uncemented implants. 

Chapter 7 outlines the results in periprosthetic fractures using an uncoated interlocking 

stem alone; either as a spacer or definitive implant. 

Chapter 8 describes the results when using an interlocking stem as either a spacer or 

definitive implant in infected periprosthetic fractures. 

Chapter 9 concludes my thesis by stating the unique contribution of the study to research, 

policy and practice. It ends with a reflective account of the conduct and findings of the 

study. 
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Chapter 2 

Independent validation of the Vancouver classification 

Rationale for Chapter – Chapters 3 and onwards will discuss the use of specific medical 

devices when managing periprosthetic fractures of the femur. To ensure that the study 

groups include the same fracture types, a classification system that can be used confidently 

without question is vital. In this chapter, independent validation of the Vancouver 

Classification will be undertaken to ensure that it is a suitable classification tool in a UK 

population. 
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Chapter 2 

2.1 Introduction 

A classification system for periprosthetic fractures has to be reliable and valid if it is to be a 

consistent guide to management. Various systems have been described, some of which 

depend on the site of the fracture, such as that of Parrish and Jones [8] and Johansson et al. 

[30] and others on the pattern of the fracture or the relationship to the stability of the 

implant [8, 30, 38-41]. 

 

The classification system developed in Vancouver [42] is simple and takes account of the 

stability of the femoral component and the state of the surrounding bone stock both of 

which are important in determining treatment. It divides the femur into three zones; A, B 

and C. Zone A is the proximal metaphysis, and fractures in this zone tend to involve the 

greater or lesser trochanter and do not extend into the diaphysis. Zone-B fractures involve 

the diaphyseal region but do not extend into the distal diaphysis. This zone is further 

subdivided into B1: fractures with a stable implant (see Figure2.1), B2: fractures with a loose 

implant (see Figure 2.2) and B3: fractures with a loose implant in the presence of severe loss 

of bone stock. Zone-C fractures occur in the distal diaphysis where the fracture is remote 

from the implant and can be treated relatively independently of the prosthesis. 

 

The reliability of any classification system is dependent on the consistency between 

different users (inter-observer), or the same user on different occasions (intra-observer), 

and the validity which assesses the degree to which the abnormality described in the 

classification actually represents the true abnormality [43]. 
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Figure 2.1: Anteroposterior radiograph of the left proximal femur showing a Vancouver B1 

fracture around an Austin Moore hemiarthroplasty 

 

 

Figure 2.2: Anteroposterior radiograph of the right proximal femur showing a Vancouver B2 

periprosthetic fracture around a cemented total hip replacement 
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The Vancouver Classification is the only system which has been subjected to psychometric 

testing of reliability and validity. An understanding of this system should enable an 

orthopaedic surgeon to construct a plan of management [21]. The purpose of this study is to 

ensure that this repeatable i.e. there is minimal test-retest variability. It is hypothesised that 

the system will be reliable amongst for all grades of clinician with respect to intra-observer 

and inter-observer assessment. This is relevant since further chapters will investigate 

outcomes of different types of fracture. 
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2.2. Methods 

This study has two parts: (1) independent classification of the fractures according to the 

Vancouver system [42-44] using plain pre-operative radiographs and (2) verification with 

intra-operative findings and classification. 

 

A cohort of 30 consecutive patients presenting to University College London Hospital, UK 

who had sustained a proven periprosthetic femoral fracture were retrospectively analysed. 

Only patients with a pre-operative radiological diagnosis and complete operative 

documentation of the type of fracture were included. Two patients had incomplete data and 

could not be included. This left 28 patients in the study (12 men:16 women; mean age 72.34 

years (range: 47.2 - 89.6). 

 

Assessment of the fracture type took on three parts: 

Site of fracture – this involved either of the trochanters, or occurred at the level or just 

below the stem, or distal to the stem. This was assessed both radiographically and verified 

intra-operatively. 

Bone quality – this was assessed from the radiographs using Paprosky’s classification [45] of 

femoral defects. Definitive decisions about the type of reconstruction based on the stability 

of the implant and the degree of bone loss were made per-operatively. The bone was 

considered to be adequate if good diaphyseal fixation could be achieved and poor if it was 

damaged or considered to be too thin to achieve this. 

Implant stability – this was assessed pre-operatively from the radiographs to determine 

whether implants appeared loose or well fixed and was confirmed at operation. If the 
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implant was found to be stable, fixation of the fracture alone was undertaken, but if it was 

unstable the prosthesis was revised. 

 

Other than plain radiographs, no patient underwent additional imaging before surgery. 

 

In order to evaluate if the Vancouver classification is a valid and reliable tool that could be 

used by all grades of medical staff, the following test subjects were recruited: 

 Six consultant orthopaedic surgeons who undertook joint replacement surgery. 

 Six trainee orthopaedic surgeons (Specialist Registrar level). 

 Six medical students who had no specialist orthopaedic training. 

 

All participants in the study were made familiar with the Vancouver classification by means 

of a short lecture that used both oral and visual aids. Once all test subjects felt suitably 

comfortable with the Vancouver classification, they were individually shown radiographs of 

the 28 patients at a single sitting. Each test subject who examined the radiographs then 

classified the fracture according to its type (A, B1, B2, B3 and C). This exercise was repeated 

after an interval of two weeks. 

 

The data were analysed using the weighted kappa statistic to measure the level of 

agreement for two observers, using the Landis and Koch [46] criteria for interpretation 

(Table 2.1). 
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Table 2.1: Interpretation of weighted kappa values 

Weighted kappa (ĸ) Interpretation 

0.00 to 0.20 Slight agreement 

0.21 to 0.40 Fair agreement 

0.41 to 0.60 Moderate agreement 

0.61 to 0.80 Substantial agreement 

0.81 to 1.0 Near perfect agreement 

 

Validity was tested on the radiological and operative findings of the B group of fractures by 

comparing the radiographs with the operative findings. Confirmation of pre-operative 

radiological classification was made at the operation, by the surgeon and documented in the 

operative notes. Information about the quality of the bone and the stability of the implant 

for the B1 subgroup assessment was derived from the pre-operative radiographs.  
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2.3 Results 

The inter-observer agreement for each staffing grade for the first and second reading 

respectively was: 

 Consultant orthopaedic surgeons – 0.72 and 0.74 

 Trainee orthopaedic surgeons – 0.68 and 0.70 

 Medical students – 0.61 and 0.61 

 

 

The intra-observer agreement for each staffing grade for the first and second reading 

respectively was: 

 Consultant orthopaedic surgeons – 0.64 and 0.67 

 Trainee orthopaedic surgeons – 0.61 and 0.64 

 Medical students – 0.59 and 0.60 

 

In the validity analysis derived from the surgical findings and the radiological analysis, the 

observed agreement within the B1, B2 and B3 subgroups was 77% with a kappa value of 

0.67 indicating substantial agreement with the operative findings (Table 2.2). 

 

Table 2.2: Details of diagnoses given for types of periprosthetic fractures 

 B1 B2 B3 

Radiological diagnosis 8 12 2 

Peri-operative diagnosis 6 9 2 
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2.4 Discussion 

Periprosthetic fractures are associated with a high rate of major complications including 

early mortality and considerable morbidity, and are expensive to treat [11, 12]. A 

standardised classification system and accepted treatment algorithms may minimise these 

problems, but the classification system adopted should be both reliable and valid thereby 

enabling selection of the most appropriate treatment for each case [43, 44]. 

 

The Vancouver classification has gained worldwide acceptance with its logical analysis of the 

configuration of the fracture, the stability of the implant and the quality of the bone stock 

[22]. However, its reliability and validity have previously only been tested by the originating 

group [44, 47]. They performed a similar assessment comparing using forty radiographs that 

were evaluated by 6 observers, 3 experts and 3 nonexperts. Each observer read the 

radiographs on 2 separate occasions and classified each case as to its type whilst validity 

was assessed within the B group by looking at the agreement between the radiographic 

classification and the intraoperative findings. Intraobserver agreement ranged from 0.73 to 

0.83 with negligible differences between experts and nonexperts whilst interobserver 

agreement was 0.61 for the first reading and 0.64 for the second reading thus indicating 

substantial agreement between observers. Validity analysis revealed an observed 

agreement kappa value of 0.78, indicating substantial agreement between the radiographic 

classification and the intraoperative findings. 

 

A recent study of the Swedish hip registry demonstrated that the majority (80%) of 

periprosthetic fractures encountered were type B although difficulty was encountered in 

establishing pre-operatively between a diagnosis of type-B1 and type-B2 fractures [14]. The 
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high failure rate of treatment was attributed to the under-diagnosis of loose implants [48]. 

To overcome this limitation, exploration of the joint and testing of the stability of the 

implant were recommended. 

 

The increasing availability and quality of CT may make it a useful adjunct in the categorising 

the disease. Pre-operatively, it can be used to assess bone stock and to identify the pattern 

of the fracture Post-operatively however, the presence of struts and cables can make it 

difficult to evaluate union of fracture and in these circumstances. CT may be helpful in 

confirming the degree of union both for the fracture itself and between allograft and the 

host bone when it has been required [49]. 

 

It may be argued that not using CT for more detailed imaging is a limitation. However, the 

pre-operative diagnosis determined by the classification of the radiographs, rarely changed 

at the time of surgery. This may be a reflection of the clinical practice of the hospital, since 

all the periprosthetic femoral fractures are managed by the hip revision unit and 

consequently, both bone stock and stability are assessed stringently during surgery. If the 

fracture had differed from that anticipated from the radiological assessment, long-stemmed 

revision implants and allograft bone were already available. For this reason, CT was not 

routinely performed. 

 

It can be difficult to determine the stability of prosthesis and the quality of the bone stock 

based solely upon radiographic means. This is reflected by the kappa value for validity which 

was 0.67 for consultants within the B subgroup which, although representing substantial 

agreement, does not achieve the level of near-perfect agreement. For this reason, it may be 
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suggested that all periprosthetic fractures should be managed by surgeons with experience 

in revision surgery so that expertise in either stabilising the fracture or revising the femoral 

component is available at the time of surgery. 

 

Although the exact incidence of periprosthetic fractures is unknown, it is thought to be 

rising and with an increasingly ageing population, this is likely to continue [50]. Spiralling 

health-care costs may force a decrease in the length of follow-up after a THA with the 

results that asymptomatic loosening is not identified at an early stage with an increase in 

risk of subsequent fracture [24]. 

 

The results confirm that the Vancouver classification system is reliable and reproducible. In 

addition, it has been shown that substantial agreement can be found between individuals 

with no specialist training. This allows management to be planned by less experienced 

surgeons, who may instigate early referral of appropriate cases to specialist centres. 

Validation of this classification system has also been proven since there was substantial 

agreement with the operative findings. 

 

Despite this, there will always be cases in which the establishment of a pre-operative 

diagnosis may be difficult. The management of periprosthetic fractures should therefore 

ideally be carried out by experts in the field with the appropriate resources available to 

them. It is preferable to be able to classify a fracture pre-operatively so that the most 

appropriate surgical option can be identified. This is because those fractures with a stable 

pattern tend only to require simple reduction and fixation, whilst those with associated 

loosening of the components will frequently need more extensive surgery [48, 51, 52].  
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Chapter 3 

Use of cortical onlay allografts around Type B1 fractures 

Rationale for Chapter – The use of the Vancouver Classification system has been shown to 

be reliable and valid. When an implant is well fixed, it is preferable to retain the original 

implant. A biological plate such as a cortical strut graft may provide an efficacious adjunct to 

fixation. This chapter will identify whether using such grafts has been effective. 
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Chapter 3 

3.1 Introduction 

The majority of periprosthetic fractures occur around loose implants and necessitate 

revision of the femoral stem. However, when the femoral component is well fixed it often is 

retained, with open reduction and internal fixation of the fracture. A number of alternatives 

are available for such treatment [53-61], some of which are associated with high failure 

rates [34, 62, 63]. Cortical onlay strut allografting, as the primary method of fixation or as 

adjunctive fixation when a plate is used, has emerged as an attractive option for the 

treatment of periprosthetic femoral fractures around stable implants [64-66].  

 

Chandler et al. [31] reviewed the outcomes of treatment of nineteen fractures around well-

fixed femoral hip or knee implants; they reported that seventeen had united by eighteen 

weeks and the patients had returned to their pre-morbid level of activity [31]. The allograft 

struts confer stability to the fracture site, and they can incorporate [67] and ultimately 

increase the femoral bone stock [68-73]. 

 

The primary aim of this study was to determine the clinical and radiographic outcomes of 

periprosthetic femoral fractures around stable hip implants treated with cortical onlay strut 

allografts without revision of the stem. It is hypothesised that this treatment would result in 

bony union and improve function. The primary end point was fracture union, and secondary 

end points included strut-to-host bone union, the final amount of bone stock, and 

postoperative function.  
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3.2 Methods 

A survey of four centres (Vancouver General Hospital, Vancouver, British Columbia, Canada; 

Mayo Clinic, Rochester, Minnesota; Mount Sinai Hospital, University of Toronto, Toronto, 

Ontario, Canada; and Massachusetts General Hospital, Boston, Massachusetts) identified 40 

consecutive patients in whom a fracture around a well-fixed femoral stem had been treated 

with cortical onlay strut allografts without revision of the femoral component. These centres 

were chosen due to their collaborative links and for their ability to provide full and 

necessary data on the patients included in this study whilst the author of this thesis was 

practicing at the principle hospital. Concomitant revision of the stem, whatever the cause, 

led to exclusion from the study. One patient with concomitant revision of an aseptically 

loose acetabular socket was included since this was an independent finding of the 

periprosthetic fracture. All of the patients were followed until fracture union or until a 

reoperation was performed. 

 

There were 14 men and 26 women, with an average age of 69 years (range: 44 - 93). The 

average weight of the patients was 81 kg (range: 46 - 112).  

 

The cause of fracture was either: 

 Major trauma – 4 patients 

 Minor trauma – 32 patients 

 No obvious cause – 4patients 

 

No obvious underlying medical condition that would predispose to fracture was noted. 12 

patients, including one in whom the fixation failed, smoked tobacco. 
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Serial radiographs were reviewed with regard to: 

 Fracture union 

 Union of the allograft to the host 

 Femoral alignment 

 Amount of bone stocks 

 Stem fixation 

 

Fracture union was defined as cortical continuity as seen on both the antero-posterior and 

lateral radiographs. The presence of cortical bridging was required for a diagnosis of union, 

although this could not always be visualised circumferentially because of the presence of 

the plate.  

 

Union of the allograft to the host was evaluated whenever possible to the criteria for 

incorporation described by Emerson et al. [70]. 

 

Femoral alignment was defined as the alignment of the stem relative to the long axis of the 

femur. 

 

Amount of bone stock was evaluated with use of the cortical index, which quantifies the 

ratio of the cortical thickness to the canal diameter at the femoral isthmus. The cortical 

index was determined on antero-posterior and lateral radiographs both preoperatively and 

at the final review for all fractures treated with cortical struts alone. The ratio could not be 

evaluated reliably in patients who had also been treated with a metal plate, as the overlying 

metal obscured part of the bone. The ratio of the final value (with the struts) to the initial 
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value was used as an estimate of the change in cortical bone stock. This measurement 

provides an estimate of the potential bone stock available after fracture union; it does not 

take into account the fact that the cortical composite may continue to remodel. 

 

Stem fixation was evaluated through positional changes and increasing lucencies at the 

bone-cement and cement-implant interfaces in cemented prostheses, and bone-implant in 

uncemented prostheses. 

 

Postoperative pain and mobility were compared with the preoperative status. Whenever 

possible, a Harris hip score [74] was recorded at the time of the clinical review or was 

estimated from questionnaire data. 

 

In 27 patients, the fracture was around a previously revised femoral stem. 23 stems were 

cemented. All of the femoral components appeared to be well fixed radiographically. Nine 

of the fractures were transverse, and the remainder were spiral or oblique. There were 

more than three fracture fragments in three patients. 

 

The type of fracture fixation, the source of the allograft struts, and the use of any additional 

biological augmentation (particulate bone graft or demineralised bone matrix) were 

determined by the treating surgeon and differed among centres. 19 patients were treated 

with cortical onlay strut allografts alone, 12 were treated with a plate and one cortical strut, 

and nine were treated with a plate and two struts. Fresh-frozen femoral allografts were 

used as struts in 29 patients; fresh-frozen tibial allografts, in seven; and freeze-dried fibular 

allografts, in four. Autograft was placed at the fracture site and beneath the cortical strut or 
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struts in eight patients, morselised allograft was used in 29, and demineralised bone matrix 

was used in 15. 

 

The allograft strut and plate were usually placed on the anterior and lateral femoral 

cortices, although nine patients in whom two cortical struts were used had them placed on 

the medial and lateral cortices. When a metal plate was used, it was placed laterally while 

the strut was placed anteriorly or medially (see Figures 3.1 and 3.2). 

 

 

Figure 3.1: Schematic illustration of the fixation of a fracture at the tip of a femoral stem 

with two cortical struts and three cables proximal and distal to the fracture. Either autograft 

or allograft or demineralised bone matrix is used at the fracture site and at the strut-host 

junction as a form of biological augmentation. 
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Figure 3.2: Schematic illustration of the fixation of a fracture at the tip of a femoral stem 

with a lateral plate and an anterior cortical strut. The cortical strut can also be applied 

medially. Morselised allograft is shown at the fracture site. 

 

Cerclage wires were used to stabilise the struts in nine patients, and cerclage cables were 

used in the rest. A minimum of two and a maximum of six fixation points proximal and distal 

to the fracture were used. When cortical struts alone were used, a minimum of three 

fixation points proximal and distal to the fracture site were employed. Two fixation points 

around the struts were accepted distally when adjunctive plate fixation was used; in such 

patients, the plate was typically fixed to the distal fracture fragment with four or five bi-

cortical screws. 
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Postoperatively, the patients were instructed to walk without weight-bearing or with toe-

touch weight-bearing for three months. Progressive weight-bearing was then encouraged, 

with all of the patients encouraged to bear weight fully after a maximum of four months 

from the date of fracture fixation. 
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3.3 Results 

3.3.1 Follow-up period 

Excluding the one patient in whom the repair failed at two months, the patients were 

followed for a mean of 28 months (range: 6 - 78) after the fracture. Four patients died 

during the follow-up period, all after union of the fracture and all deaths were unrelated to 

the surgery or conditions arising thereof. 

 

3.3.2 Fracture Union 

39 (98%) of the 40 fractures united. The one failure of fixation occurred in a 67 year-old, 88-

kg man who tried to return to sporting activity within six weeks of his operation and thus did 

not comply with treatment recommendations. He presented at two months with a failure of 

the cortical strut and the plate. The fracture was restabilised with a strut graft and a plate, 

and ultimately united in good alignment. 

 

19 patients were followed for less than 24 months; nine of them were followed for less than 

12 months, but none were followed for less than six months. All had fracture union by the 

latest follow-up evaluation. 

 

There were four angular malunions, all of which had <10° of malalignment. Two patients 

had varus malalignment; one, varus and recurvatum malalignment; and one, recurvatum 

malalignment. One of these patients had had a transverse fracture; two, an oblique 

fracture; and one, a spiral fracture. Two of these patients had been treated with two cortical 

onlay allograft struts, and two had been treated with a cortical onlay allograft strut and a 

plate. All of the patients with malunion were followed for a minimum of two years. All had 
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fracture union within six months after the injury, and none of the deformities progressed 

after union; the final fracture position and alignment were the same as those seen at six 

months. Using logistic regression analysis, no relationship between the body-mass index of 

the patients and malunion or non-union could be established. 

 

Strut union typically was seen within the first year. It was possible to assess incorporation 

only in the nineteen patients in whom cortical struts alone had been used. In those patients, 

the ratio of the postoperative to the preoperative cortical index averaged 1.41 (range: 1.03 - 

1.67). The ratio was calculated at a mean of 31 months postoperatively and was clearly 

dependent on the amount of remodelling of the femoral shaft that had taken place. 

Although the radiographs were not standardised, and error may have been introduced 

because of difficulties in identifying the same level for measurement on all radiographs, this 

index nevertheless represents a considerable increase in apparent femoral bone stock. The 

available serial radiographs did not allow any other quantitative conclusions with regard to 

the incorporation process. Rounding off one or both ends of the struts and scalloping of <2 

mm on the external surface usually were evident within six months and were always seen 

within a year. Some patients had localised resorption of >2 mm of the onlay allografts at the 

sites of cables or wires, but no other resorption was seen and measured. Evidence of strut-

to-host bridging was seen in all of the patients. So-called cancellisation with the emergence 

of trabeculae within the cortical struts was seen in six patients who were followed for more 

than 36 months. 

 

3.3.3 Additional Surgery 
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The one failure of fixation was re-stabilised with a plate and a cortical strut with the addition 

of demineralised bone matrix at the non-union site. The fracture healed within four months, 

and the patient regained full function. Seven patients complained of some discomfort in the 

lateral aspect of the thigh, which was at the site of a metal plate in six patients and related 

to prominent cables in another. The implants were removed from two patients for this 

reason. The cortical struts were found to be united to the femur in both patients. Two 

months after the strut-grafting procedure, a deep wound infection that required 

débridement and intravenous antibiotic therapy developed in one patient. He was 

subsequently treated with suppressive oral antibiotics. The fracture united, and there was 

no clinical evidence of ongoing infection subsequently. One patient required acetabular 

revision, but there was no clinical or radiographic evidence of femoral loosening in any 

patient. 

 

3.3.4 Functional Outcome 

There was a very broad range of Harris hip scores both before the fracture (range: 21 - 96 

points; mean: 83 points) and at the final review (range: 16 - 97 points; mean: 81 points) 

(p=0.78). In the group of patients who were followed for more than twelve months, there 

was no notable difference between the need for walking aids prior to the fracture and that 

at the final review. All but one of the surviving patients returned to their preoperative 

functional level within one year. The exception was a man with chronic back and thigh pain 

that predated the fracture. The symptoms worsened after the fracture, and despite 

satisfactory union in good alignment and a good range of hip and knee motion, he 

continued to complain of debilitating pain. The hip and femur were explored, infection was 

ruled out, and stability of the implants was confirmed. The fixation devices (a plate, cables, 
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and screws) were removed, and the patient was being treated in a pain clinic at the time of 

the last follow-up. 
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3.4 Discussion 

Stable fixation of fractures around well-fixed implants allows for fracture union in 

satisfactory alignment. Several factors make it more difficult to obtain satisfactory internal 

fixation. Stresses concentrate at the fracture site near the tip of the implant, and these 

stresses can be worse in elderly patients, who cannot always comply perfectly with limited 

weight-bearing protocols. Furthermore, bone quality in these patients often is poor and 

fixation of the proximal fragment is limited by the intramedullary femoral component. In 

this situation, cortical onlay strut allografts can act as biological plates, either alone or in 

combination with other internal fixation devices, to stabilise the fracture [64, 75]. As well as 

conferring mechanical stability, they may enhance fracture-healing and increase bone stock 

[31, 70-72, 76, 77]. If appropriately selected and prepared, allograft struts can be 

customised to fit almost any femur. As the modulus of elasticity of allograft struts is similar 

to that of the host bone, there may be less stress-shielding of the host bone in comparison 

with that associated with other, more rigid forms of internal fixation[63]. 

 

There is a dynamic change in allograft biomechanics during the incorporation and 

remodelling process. The histological and mechanical response to onlay strut allografts has 

been well documented in the canine model [69, 70, 76]. A zone of highly vascularised 

mesenchymal tissue forms at the host-graft junction. Osteoclasts subsequently create 

cutting cones in the graft, which is then invaded by vascular buds. As the graft remodels, it is 

at its weakest and is vulnerable to mechanical failure unless the fracture has already healed. 

Maximal weakness occurs between four and six months [78]. The construct must therefore 

be secure enough during the incorporation period to ensure that the fracture unites before 

the allograft struts weaken. In the present series, this objective was accomplished with the 
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use of either an adjunctive plate or two cortical struts with at least three fixation points 

proximal and distal to the fracture. Ultimately, the graft undergoes adaptive remodelling 

and starts to respond to stress. 

 

One of the limitations of this series is the short duration of follow-up. Although we saw 

evidence of fracture union in all of the patients, and the alignment seen at six months after 

the surgery did not change in the short term, we cannot describe the long-term effects of 

remodelling on this construct. Previous studies have suggested that cortical struts 

predictably unite, remodel, and mature [31, 68-71, 75]. The duration of follow-up of the 

majority of our patients was insufficient for us to see maturation and remodelling in all 

patients, but once graft-host union has occurred, the sequence of events described by Head 

et al. on the basis of animal experiments and radiographic observations of humans would be 

expected to proceed [69-71]. 

 

The ideal length, position, and fixation of cortical struts have not been determined. A 

number of different constructs were used in our study based upon the particular patterns of 

fracture and surgeon preference, with successful clinical and radiographic outcomes. The 

aims of treatment of these fractures are anatomical alignment, fracture union, and rapid 

recovery without limiting the subsequent function of the hip prosthesis. Our study shows 

that these aims can be achieved with the use of cortical onlay strut allografts with or 

without adjunctive plate fixation. However, these patients were all treated in referral 

centres, and a number of technical points should be emphasised. Stable fixation, with as 

many cables or wires as necessary, is required. This is facilitated by good apposition of the 

struts to the native bone. The blood supply of the femur should be preserved as much as 
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possible. In particular, the linea aspera should not be stripped of its soft-tissue attachments. 

Autograft or morselised allograft or demineralised bone matrix may enhance both fracture 

union and strut-to-host bone union. 

 

It is important to state that since the undertaking of this study, the advent of stronger plates 

has become an important tool in periprosthetic fracture management. One disadvantage of 

using them is the soft-tissue stripping that occurs and thus minimally invasive techniques 

have been proposed. Ricci et al. described their practice of indirect open reduction and 

internal fixation with a single extra-periosteal lateral plate, without the use of allograft 

struts, for the treatment of a femoral shaft fracture about a stable intramedullary implant; 

namely a similar cohort to that within this study [79]. Excluding those who died and those 

with inadequate follow-up, there were 41 patients included in the final analysis. At a mean 

of 12 weeks, the rate of union was 100%. One instance of cable fracture and one early and 

two late infections were recorded, each of which resolved. Restoration of functional status 

to pre-fracture levels was seen in 73% of patients and decreased in the remainder. 

 

The subsequent development of locking plate technology with improved biomechanical 

stability [80] excellent outcomes has further strengthened the argument for plate fixation 

around well fixed stems [81]. However this is not universal with Buttaro et al. [82] reporting 

on a consecutive series of 14 B1 fractures treated with a locked compression plate following 

open reduction. Of these, five cases included supplemental fixation with a cortical strut 

allograft and the mean follow-up was 20months. Eight cases united at a mean of 5.4 months 

but the remaining six patients did not; three cases were attributed to plate fracture and 

three to plate pullout. All but one of these failures occurred in the absence of a cortical strut 
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allograft. Of particular concern with this paper was the possible misuse of the term B1 

fracture which all the patients were inferred to have suffered. This is because B1 fractures 

were referred within this paper as inherently unstable which is contrary to the actual 

definition. Thus, it is likely that the cohort included type B2 fractures that were probably 

wrongly classified which would probably account for the high failure rate since treatment 

should include femoral implant revision also. 

 

When a periprosthetic femoral fracture occurs around a well-fixed stem, internal fixation 

with cortical onlay strut allografts affords the dual advantages of providing or augmenting 

the mechanical stability of fracture fixation and of enhancing the likelihood of fracture-

healing. In this series of 40 patients, the use of cortical struts, either alone or in conjunction 

with a plate, led to a very high rate of fracture union in satisfactory alignment. A case 

example can be seen in Figures 3.3 through to 3.6 where the radiographic course of a 

seventy-year-old woman who sustained a fracture at the tip of the total hip stem after 

impaction grafting. On the basis of these findings, it can be concluded that when internal 

fixation of a periprosthetic femoral fracture is undertaken, cortical strut grafts could be used 

to augment fixation and healing. 
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Figure 3.3: Anteroposterior radiograph of the right hip showing a fracture at the tip of the 

total hip stem after impaction grafting 
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Figure 3.4: Anteroposterior radiograph of the right hip taken in the immediate post-

operative period showing that the fracture was stabilised with use of cortical onlay strut 

allografts and cables 
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Figure 3.5: Anteroposterior radiograph of the right proximal femur taken at 28 months 

showing that the fracture had united in good alignment and there was good evidence of 

strut incorporation 
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Figure 3.6: Anteroposterior radiograph of the right mid-shaft femur taken at 28 months 

showing that the fracture had united in good alignment and there was good evidence of 

strut incorporation 
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Chapter 4 

A biomechanical evaluation of cortical onlay allograft struts 

Rationale for Chapter – Fracture union and improved bone stock and functional outcome 

have been demonstrated when using cortical onlay allograft. Chapter 3 was a retrospective 

analysis of patients and although the type of fracture was common, the actual patterns of 

fractures were heterogeneous. Consequently, from a fixation viewpoint it is not possible to 

randomise patients to differing amounts of struts even though it would be useful to know 

what support they provide. This chapter will evaluate the biomechanical properties of 

cortical struts to determine a theoretical optimal construct. 
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Chapter 4 

4.1 Introduction 

There has been a focus on the development and refinement of fixation techniques for 

periprosthetic femoral fractures around stable implants. This has encompassed the use of 

standard plates, screws, wires and bands, as well as a number of specially designed 

implants. Screws, cerclage wires, cables or bands on their own are insufficient [68], and 

conventional plates may fail because of the difficulty in obtaining proximal fixation. 

Moreover, proximal screws may violate the bone prosthesis interface, may lead to cement 

fracture and loosening, and will act as stress risers increasing the risk of later fractures. 

Alternatives have included combinations of plates and cables [53, 60], Partridge bands with 

a variety of plates [55-57], Mennen plates [54, 58] and compression plates [59], all of which 

still arouse debate, and some of which are associated with high failure rates [62, 63, 83]. 

 

Cortical onlay allograft struts are increasingly employed in this situation [64, 65, 68, 75, 84] 

and are effective, which has been confirmed by the first part of this thesis. Allograft struts 

can act as biological plates that stabilise the fracture and ultimately strengthen the bone. 

There is however, no agreed standard practice as to the length and number of struts 

required, the number of fixation points necessary, and the type of allograft that should be 

used. Moreover, to our knowledge, there are limited data evaluating the impact of different 

allograft constructs and characteristics on the stability of fracture fixation [85, 86]. The 

purpose of this study is to identify the allograft cortical strut length and configuration, and 

the wire or cable number and tension that will provide optimal fixation for periprosthetic 

femoral fractures. It is hypothesised that an increasing number of struts and the use of cable 

will improve fracture stability. 
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4.2 Methods 

4.2.1 Specimens 

Sixteen fresh human cadaveric femora from sixteen donors were dissected of soft tissue, 

and stored at -30 C in sealed plastic bags. Radiographs of each femur were taken prior to 

testing in order to exclude any gross abnormalities or pathologic lesions. The mean age of 

the donors was 78.5 years (range: 59 - 90) and mean body mass was 62kg (range: 40 - 74). 

Ten femurs were cut into thirds with an oscillating saw to form cortical struts that were 

twenty centimetres in length. The two best fitting struts for the femur to be tested were 

used. 

 

The other six femora were divided in the supracondylar region and potted individually in 

dental stone (Tru-Stone, HereausKulzer, South Bend, IN, USA) within an aluminium potting 

fixture. Once the dental stone had fully cured, transverse osteotomies were performed with 

an oscillating saw at a distance of ten centimetres from the base of the lesser trochanter. 

The bone preparation was performed by the same surgeon for all the femora. Femoral 

stems were not inserted into any of the femora to avoid the introduction of an unwanted 

variable to my simulation of a fracture. 

 

Ten femur-strut constructs were tested. Each construct included a unique set of struts from 

a single femur. Of the six femurs with transverse osteotomies, four were tested twice and 

two were tested once. We adopted this protocol since the tests were potentially destructive 

to the cortical struts, but were relatively non-destructive to the femur. 
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4.2.2 Experimental Design 

These fixation variables were assessed in the following order: 

1) the number of cables above and below the fracture site (two, three and four); 

2) cable tension (high and low); 

3) cable fixation as compared to wire fixation; 

4) strut number and position: 

i) combined anterior and lateral struts; 

ii) combined medial and lateral struts;  

iii) single anterior strut; 

iv) single lateral strut; 

5) strut length (20 cm, 16 cm and 12 cm) 

 

In order to include a control, a “standard” construct was defined as the use of two twenty 

centimetre struts placed in the anterior and lateral positions, and held by three high tension 

cables above and three high tension cables below the fracture site (see Figure 4.1). This 

construct corresponded most closely to our standard practice in the operating room. The 

standard construct was retested within each group to confirm the reproducibility of our 

fixation technique and to exclude any time dependent effects on the femur or struts during 

any one test by using the most recent “standard” construct as a control. 

 

The order of testing within each group was randomly allocated to avoid bias due to the 

testing order. However, this was not possible for the assessment of strut length which 

always had to be performed starting with the longer twenty centimetre struts and ending 

with the twelve centimetre struts. 
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Figure 4.1: Photograph depicting the loading setup with a custom designed loading jig with a 

20 centimetre cortical struts placed laterally on the femur using three high tension cables 

above and below the fracture site. The anterior strut has not been placed in this example so 

that the site of fracture can be seen. 
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4.2.3 Fracture Fixation 

A transverse osteotomy was used to simulate the fracture as this represented a 

reproducible scenario for a fracture around a well-fixed femoral stem. All fracture fixations 

were performed by the thesis author. The struts were applied to the femur at an equal 

excursion above and below the fracture, and were applied to get the best possible fit. 

However, no strut was burred or re-cut to shape them specifically for the femur to be tested 

in order to prevent the introduction of additional unknowns to the experiment. When the 

various strut configurations were tested, the fracture was routinely destabilised between 

tests. 

 

The two millimetre cables used (Howmedica, Rutherford, New Jersey) were applied with 

calibrated tensioners (Howmedica, Rutherford, New Jersey). Low and high tension were 

defined by those that would routinely be accepted in the operating theatre. The cables were 

retightened to the pre-calibrated levels for every test. Luque wires (Zimmer, Warsaw, 

Indiana) were used to simulate the wire fixation used in the operating room at our 

institution. These were tightened to the point that would be accepted in the operating 

environment.  

 

Preliminary tests in our laboratory were conducted on a wooden model with a load cell to 

quantify the degree of compression imposed on the struts by the low and high cable tension 

and by the tightened wires. Low cable tension yielded 320N compressive force on the struts 

while high cable tension produced 520N and wire tightening 300N. 
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Great care was exercised to ensure that two struts were never in intimate side to side 

contact. This ensured that the compression generated by the wires or cables was 

concentrated at the strut-host interface rather than at the interface between the struts. 

The struts were shortened symmetrically, with two centimetres removed from the proximal 

and distal portion of the strut on two occasions in order to assess sixteen centimetre and 

twelve centimetre struts. 

 

4.2.4 Loading Procedure 

The femur-strut construct was fixed to the base of a biaxial servohydraulic materials testing 

machine (Instron 8874, Canton, MA) at an adduction angle of twelve degrees. Cranial-caudal 

and anterior-posterior loads were applied to the head of the femur using a custom designed 

loading jig affixed to the actuator of the machine. The goal of the loading design was to 

approximate physiological loading of the femoral head for normal gait, as measured in 

patient telemetric studies [87-89]. Bergmann et al. resolved the resultant load into three 

component forces at the femoral head [87]. These comprised a proximal-distal force (Fpd) 

directed along the femoral shaft, a mediolateral force (Fml), and an anteroposterior force 

(Fap). During normal four kilometre per hour gait, Fpd was approximately 2.8-3.0 times 

bodyweight, Fml was 1.3 times bodyweight, and Fap was +/- 0.2 times bodyweight. Both 

Davy et al. and Kotzar et al. measured slightly higher anteroposterior forces, and lower 

mediolateral forces by approximately half the magnitude [88, 89]. The force components 

that we applied to the femora in this study are a good approximation of the force 

proportions recorded in the aforementioned hip telemetry studies for normal gait, but were 

applied at half the magnitude due to the lack of ligamentous and muscular stabilisation seen 

in vivo. 
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The cranial-caudal load (Fcc) was applied by the linear actuator of the servohydraulic 

machine, and the anterior-posterior load (Fap) was applied by the rotary actuator via the 

custom designed loading jig (see Figure 4.2). The femoral head articulated against three 

ultra high molecular weight polyethylene (UHMWPE) platens: one superiorly, one anteriorly 

and one posteriorly. A controlled craniocaudal load was measured using a load cell 

(Sensordata Technologies, model M211-113, Sterling Hgts. MI, USA). The loading jig was 

offset from the axis of the actuator, allowing the angular motion of the actuator to produce 

an anterior-posterior load on the femoral head. The three UHMWPE platens allowed the 

head of the femur to slide freely in the medial-lateral direction to produce pure, 

unconstrained anterior-posterior (AP) loading. The AP load was measured and controlled 

using feedback from a second load cell (Sensotec model 41/0571-07; Columbus, Ohio, USA).  

 

The specimens were loaded sinusoidally in the cranial-caudal (CC) direction for one hundred 

cycles at a frequency of one Hz and simultaneously loaded in the anterior-posterior 

direction at a frequency of one half Hz as described previously [90]. The two loads were 

applied so that the peak AP loads occurred concurrently with the peak compressive CC loads 

(see Figure 4.2). 

 

The femur was loaded in force control with an Fcc of 1.53 times bodyweight, and an Fap of 

+/- 0.15 times bodyweight. Using the angle of adduction of the femur, the Fcc was resolved 

into a Fpd along the diaphysis of the femur of 1.5 times bodyweight, and a Fml that was 

0.32 times bodyweight. 

 



74 | P a g e  

 

During all tests, the specimens were kept moist with physiological saline solution that was 

sprayed onto the bone surfaces. 

 

 

 

Figure 4.2: The biaxial loading cycle used to simulate gait. Two sinusoidal loads were applied 

to the femur, a cranial-caudal (CC) load, and an anterior-posterior (AP) load. The CC load 

was applied in compression from a preload of 50 N to a maximum load of 1.53 times 

bodyweight. The AP load was cycled to plus or minus fifteen percent of bodyweight. When 

the AP load was negative the femur was loaded posteriorly, and when the AP load was 

positive, the femur was loaded anteriorly. 

 

4.2.5 Measurement of Interfragmentary Motion 

A precision optoelectronic three-dimensional camera system (OptoTrak 3020, Northern 

Digital Inc., Waterloo, Canada) was used to measure motion at the site of the transverse 
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osteotomy. This system measures the spatial position of infrared light emitting diodes (i.e. 

markers) with an accuracy of at least 0.1 mm parallel to the camera and 0.15 mm 

perpendicular to the camera. The recordings were made at 50Hz for the duration of the 

tests. Two marker carriers, each with four markers arranged in a rectangular shape, were 

rigidly fixed onto the femur. Both carriers were fixed onto the posterior side of the femur, 

one just proximal to and one just distal to the transverse osteotomy. The positions of the 

marker carriers with respect to the fracture were digitised such that the actual fracture site 

translations were determined. The right-handed coordinate system for the fracture was set 

so that the positive y-axis ran superiorly along the diaphysis of the femur, the positive z-axis 

was oriented in the anterior direction, and the positive x-axis was lateral for the left femur, 

and medial for the right femur. Motion of the proximal fragment relative to the distal was 

characterised by six degrees of freedom: anterior-posterior bending (Rx), axial rotation (Ry), 

medial-lateral bending (Rz), medial-lateral translation (Tx), inferior-superior (axial) 

translation (Ty) and anterior-posterior translation (Tz). Translations were referred to the 

most posterior points of the fracture line. 
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Figure 4.3: A typical one hundred cycle curve showing interfragmentary motion in one 

degree of freedom, for one test. Both total motion and range were measured at the 95th test 

cycle. 

 

For each motion degree of freedom, a curve of one hundred cycles was recorded. From this 

curve a range of motion and a total motion were defined. As illustrated in Figure 4.3, range 

describes the cyclic motion at the 95th cycle, while total motion is the midpoint of the 

motion at the 95th cycle.  

 

4.2.6 Data Analysis 

Statistical analysis was performed on the range and total motion values for the 95th cycle of 

each test sequence. This protocol was followed to allow settling to occur prior to data 

analysis. 
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For each variable under investigation, a Kolmogorov–Smirnov test was used to confirm 

normality of each sample and a paired statistical analysis was performed. This analysis 

consisted of a Student’s t-test for two factor tests such as the comparison of cables and 

wires, or the comparison of high and low tension cables. For three or four factor tests, a 

repeated measures analysis of variance was performed with the post-hoc Student-Newman-

Keuls tests. For each comparison the “standard” construct from that variable group was 

used. The repeatability of the results for this “standard” construct was assessed by 

comparing the identical tests for each specimen tested and calculating a standard deviation 

of those measures as an indicator of the test precision. The average standard deviations of 

the “standard” construct tests were 0.04 mm for translation and 0.10 degrees for rotation. 

For each analysis a 95% level of significance was used. 
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4.3 Results 

The average interfragmentary ranges of motion were small in these tests, being typically 

less than one degree of rotation and one millimetre of translation. The exact magnitude of 

the motion is less important than how the motion changes with respect to each test 

variable, therefore the relative changes in motion will be described. A graphical 

representation of the range of motion in all the six planes assessed is shown for cable 

tension (see Figure 4.4), cable number (see Figure 4.5), cable versus wire fixation (see Figure 

4.6), the various strut configurations tested (see Figure 4.7) and the strut length (see Figure 

4.8). In general, the greatest motion ranges were seen in axial rotation and anterior-

posterior bending. 

 

Although the total motion was also measured for all the tests, there were no clear trends in 

this parameter. Magnitudes of change in motion for these tests were generally small (less 

than 0.2 mm or degrees), however there were several outliers in each test that showed 

much larger changes in motion. 
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4.3.1 Cable Tension 

High cable tension showed a general trend towards less motion in all motion directions (see 

Figure 4.4) with the only significant decrease being in mediolateral translation (p<0.05).  

 

 

Figure 4.4: The effect of cable tension on mean interfragmentary motion (n = 10, mean ± SD) 

in six degrees of freedom. Note that the motion under low tension was always greater than 

motion under high tension, although only significant for mediolateral translation. 
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4.3.2 Cable Number 

The fracture motion decreased as the number of cables increased in all directions except 

anterior-posterior translation and medial-lateral rotation (see Figure 4.5). The changes were 

statistically significant for anteroposterior rotation, mediolateral translation, and axial 

translation. Post-hoc analysis demonstrated statistically significant differences between two 

cables and four cables for anteroposterior rotation, between two cables and three cables as 

well as three cables and four cables for mediolateral rotation, between two cables and four 

cables for mediolateral translation, and between two cables and three cables as well as two 

cables and four cables for axial translation.  

 

 

Figure 4.5: Comparison of the mean interfragmentary motion of struts with 2, 3 and 4 cables 

above and below the osteotomy site (n = 10, mean ± SD). In general, motion was less with 

greater cable numbers. 
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4.3.3 Wires 

There was a clear trend towards increased motion with the use of wires rather than cables 

for all motion degrees of freedom (see Figure 4.6). The differences were significant in axial 

rotation, anteroposterior bending and axial translation (p<0.05). 

 

 

Figure 4.6: Graph comparing the effect of cables versus Luque wires on mean 

interfragmentary motion (n = 9, mean ± SD). One specimen was excluded from the analysis 

because the Luque wire construct failed immediately, leaving no motion data. Note that the 

motions with cables were always less than the motions with wires and that the statistically 

significant differences are identified. 
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4.3.4 Strut Position 

Strut fractures were observed in four cases when a single strut alone was used to stabilise 

the fracture. In three cases the strut was in the anterior position, and in one case it was 

lateral. There was a strongly significant decrease in fracture motion for all degrees of 

freedom if two struts were used rather than one (p<0.01) (see Figure 4.7). There was no 

significant difference between the anterior and lateral single strut configurations. There was 

also no significant difference between the medial and lateral two strut configurations. The 

effect seen was therefore in relation to strut number rather than strut position. 
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Figure 4.7: Graph comparing the effect of four different strut configurations on mean 

interfragmentary motion (mean ± SD). The sample number was 10 for all constructs except 

the anterior strut construct where sample number was eight. Two of the anterior struts 

fractured immediately after the commencement of the test leaving no motion data. Two 

other struts fractured, a lateral strut at ninety-two cycles, and an anterior strut at sixty 

cycles. We used the motion data available for those two fractured struts in our analysis. In 

total three anterior struts and one lateral strut fractured during testing. The differences were 

significant in all directions between the single and double strut constructs, but there were no 

differences within the single strut constructs or the double strut constructs. 
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4.3.5 Strut length 

Decreasing the strut length from 20cm to 12cm led to a significant decrease in axial rotation 

(p<0.05) (see Figure 4.8). Post-hoc testing found the rotation with the 20cm length to be 

significantly greater from the 12cm length. However, there was no clear trend in all the 

other directions of motion. 

 

 

Figure4.8: Comparison of the effect of three different strut lengths on interfragmentary 

motion (n = 10, mean ± SD). There were no clear trends in these data except for the 

decreased axial rotation with shorter strut lengths. 
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4.4 Discussion 

As patient longevity and the number of primary and revision arthroplasty procedures 

continue to increase, so will the prevalence of periprosthetic fractures. The majority of 

these will be around loose implants, and will typically be treated by revision with or without 

adjunctive fixation. Open reduction and internal fixation will nevertheless be required for a 

considerable number of fractures. The use of cortical struts to this end offers a number of 

theoretical advantages that can be optimised if sound stable fixation is obtained. Although 

the allograft struts are not viable, they confer stability at the fracture site, and can 

incorporate [67] and ultimately increase the femoral bone stock [68, 69, 71, 91]. 

 

In order to realise the potential biological advantages of cortical onlay allografting a 

mechanically stable construct is required. There is a dynamic change in allograft 

biomechanics during the incorporation and remodelling process. The construct used must 

therefore be secure enough during the incorporation period to ensure clinical success. In 

other words stability must be maintained until the fracture unites. To this end, the loading 

set up was designed to approximate physiological loading of the femoral head for normal 

gait, as measured in telemetric studies [87-89]. The force components that we applied to 

the femora in this study are a good approximation of the force proportions recorded in 

these telemetry studies for normal gait, but were applied at half the magnitude. These loads 

were nevertheless much higher than those used in previous studies [86]. The high loads 

tested were important in that many of the patients who require periprosthetic fracture 

fixation are elderly and may not be able to comply with limited weight bearing protocols. 

Moreover, they may be confused in the early post-operative period and inadvertently stress 

the fixation construct. Our choice of a transverse osteotomy for fracture simulation was 
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made for repeatability and also clinical relevance. Clearly, one fracture model does not span 

the wide range of clinical fractures but a transverse fracture is relevant and difficult to 

stabilise, particularly with respect to rotation about the femoral axis. 

 

In this study, no attempt was made to study the characteristics of onlay allograft cortical 

struts that are related to their preparation, preservation, storage or sterilisation techniques. 

All these factors influence the biomechanical properties of the allograft struts and may have 

a marked influence on the fixation obtained. For example, frozen allograft is capable of 

resisting larger torsional forces than freeze-dried bone, but freeze-dried allografts have 

been shown to be just as strong under compression loads [92].  

 

The properties of the allograft struts themselves such as their stiffness or their deformation 

during the testing process have also not been addressed. The purpose of the study was to 

concentrate on fracture motion since it is the most relevant endpoint from a clinical point of 

view. Further, overall construct stiffness was not addressed since it is an indirect measure of 

the motion at the fracture site. 

 

The type of allograft is also important, as shape mismatch may prevent anatomical 

alignment of the femur resulting in a malunion. This study tested femoral struts rather than 

tibial or fibular allografts which are also available in clinical practice. The rationale for this is 

based upon Chandler et al.’s recommendation that ipsilateral femoral allografts be used, 

because these provide better apposition than tibial grafts [68, 75, 84]. They also counsel 

against splitting the tibia (or femur) into three struts as they observed one malunion when 

they used such a construct. 



87 | P a g e  

 

The allograft cortical strut length and configuration, and the wire or cable number and 

tension that provided the optimal fixation for periprosthetic femoral fractures around a 

stable implant was attempted to be established. An implant was purposefully not inserted 

into the proximal femur for this study as loading the implant rather than the femoral head 

would have generated additional variables. If an implant had been inserted, the proximal 

femur would have had increased stiffness. The effect of this situation on the fracture site 

motion is not clear, but is not expected to be significant. 

 

The interfragmentary translations reported were often less than 0.5mm, which is in the 

order of the system accuracy of the Optotrak camera. However, since these translations 

were calculated at the fracture site and this is close to the axis of rotation, they were much 

lower in magnitude than the marker motions that were remote from the fracture site (see 

Figure 1). The actual marker motions for the most stable construct averaged 1.6mm, which 

includes all components for eight markers. Other constructs had greater marker motions. 

Since this is one order of magnitude greater than the system accuracy, it can be assumed 

that the reported translations at the fracture site are accurate. 

 

There is controversy regarding the method of strut preparation. Chandler et al. recommend 

the use of two cortical allograft struts [68, 75, 84]. The fresh-frozen allograft is bivalved and 

suitably tailored to closely co-apt the surface of the host femur with an interface of 

morsellised allograft. The allograft struts are rigidly fixed to host femur by cables or large 

diameter cerclage wires. The linea aspera should be left intact to preserve the vascularity of 

the host femur. They also recommend that the struts should extend at least ten centimetres 

proximal and distal to the fracture to allow a minimum of four fixation points either side 



88 | P a g e  

 

with wires or cables [75]. On the other hand, Brady et al. suggest that the placement of strut 

allografts from a bivalved femur necessitates a wide exposure with extensive soft tissue 

stripping [43]. They recommend the application of two cortical struts, each only one third 

the circumference of the host femur, either perpendicular to each other on the anterior and 

lateral surfaces of the femur, or in parallel on the lateral and medial surfaces of the femur. 

In my study, it was decided to make the struts in a manner analogous to that used in our 

operating room. Each femur was therefore divided longitudinally into three struts, one of 

which usually included the linea aspera. This is usually the least useful for fracture fixation, 

and was therefore cut narrower than the other two struts and discarded in favour of those 

that are more likely to fit the anterior, medial or lateral femoral contour. 

 

There are very few mechanical studies of periprosthetic fracture treatment. Mihalko et al. 

presented a two-dimensional finite element model to compare revision to a long stem 

prosthesis with the use of custom plates with proximal Parnham band fixation, and with 

lateral plating with cortical strut allografts and cerclage wires [63]. They were able to predict 

the stresses within the femur, the prosthesis and the allograft struts, but their model is 

difficult to extrapolate to the clinical situation, and does not allow conclusions with regards 

to the effects of repetitive loading, ultimate strength or rotational stability. 

 

Schmotzer et al. used a cadaveric model to study a number of fixation options for femoral 

fractures around total hip replacements [86]. The constructs examined were three 160mm 

allograft onlay struts held either with monofilament cerclage wires or with multifilament 

cables; a plate held with multifilament cables proximally and screws distally; a plate held 

with unicortical screws proximally and bicortical screws distally; revision to a long stem 
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prosthesis; and revision to a long stem prosthesis reinforced with onlay allograft struts held 

with cables. The stability of each of these testing methods was determined under semi-

dynamic loading conditions. Cables gave significantly better stability than wires. When 

fixation was undertaken without revision, lateral plating with cables proximally and the use 

of allograft struts with wires both gave minimal rotational stability. The best fixation was 

obtained with the use of allograft struts with cables, and with the use of a lateral plate with 

unicortical screws proximally. The latter however failed more abruptly by pullout of the 

proximal unicortical screws. The authors hypothesised that the use of cables as well as 

unicortical screws proximally would give the optimal fixation, but they did not provide any 

data to show that this was more stable than cortical allograft struts held with cables. 

Moreover, the use of proximal unicortical screws would jeopardise the bone-cement, or the 

host-prosthesis interface, and may also damage the prosthesis. 

 

 My data strongly favours the use of two struts rather than a single strut alone. We could 

not detect any advantage to the use of a medial strut over an anterior strut in combination 

with a lateral strut. This implies that the extra soft tissue stripping and devascularisation 

inherent in placing a medial strut are not associated with any benefit with regards to 

fracture stability, and should therefore be avoided. Moreover if a cortical strut is to be used 

with a bone plate, then the anterior and lateral positions are likely to also be preferable for 

that combination. 

 

Cables enhance fracture stability compared to wires. This is in accordance with the findings 

of Schmotzer et al., and is presumably due to increased tension and to different surface 

characteristics of the cable [86]. Increasing the cable tension gave greater stability although 
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this may not fully translate to the clinical situation because the cable may garrotte or 

fracture the strut. Cables have the theoretical advantage of providing a more stable 

construct by means of the greater tension generated within the cable, and the 

complications associated with the use of cables to reattach trochanteric osteotomies are 

not typically seen in this setting [93]. 

 

The fit of the strut to the femur clearly has a major impact on fracture stability. Although 

achievement of good strut fit was attempted, the area of contact between the strut and the 

test femur was not quantified nor was the strut modified to fit the femur. As each strut was 

shortened progressively from 20 centimetres to 12 centimetres, it became easier to obtain a 

good strut fit in every test. A contributing factor to the improved strut fit at 12cm may have 

been the closer cable spacing, caused by the fact that the same number of cables were used 

for the 12 and 20cm cases. These factors may explain the significant decrease in axial 

rotation with the shorter struts. There was no clear trend in the other motion degrees of 

freedom as the struts were shortened. This further supports the importance of strut fit 

rather than strut length. The use of shorter struts does, however, bring the cables closer to 

the fracture, and this may make up for any stability lost by reducing the length of the 

fixation. If the use of shorter cortical struts does indeed confer greater or similar stability, 

fixation could be achieved with less soft tissue stripping.  

 

Cortical onlay strut allografting is a very attractive option for periprosthetic femoral 

fractures around stable implants. Ideally, intramedullary fixation offers more rigid fixation 

especially when combine with rotational control. However this is impractical in a well fixed 

implant since exchange of a stable implant may compromise the final construct. In that 
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scenario as has been identified in the previous chapter, extramedullary fixation is preferred. 

An alternative to a cortical onlay graft is a metal plate. Dennis et al. [94]evaluated 5 

periprosthetic femoral shaft fracture fixation techniques; namely a plate with cables, plate 

with proximal cables and distal bicortical screws (Ogden concept), plate with proximal 

unicortical screws and distal bicortical screws, plate with proximal unicortical screws and 

cables and distal bicortical screws, or 2 allograft cortical strut grafts with cables. In their 

biomechanical analysis, the plate constructs with proximal unicortical screws and distal 

bicortical screws or with proximal unicortical screws, proximal cables, and distal bicortical 

screws were significantly more stable in axial compression, lateral bending, and torsional 

loading than the other fixation constructs studied. It can be deduced from their study that 

screws offer greater fixation than cables although placement of proximal unicortical screws 

can be technically difficult, and may cause physical damage to the cement mantle and the 

femoral stem. This can predispose to a theoretical risk of loosening. In addition, distal 

screws can violate a femoral canal that may be used for later revision and are stress risers. 

 

Chandler et al. reviewed the outcome of nineteen fractures around well fixed femoral hip or 

knee implants [84]. They used fresh-frozen allograft struts and typically bivalved the 

ipsilateral femur at the linea aspera. Seventeen of the nineteen (89 per cent) had united by 

eighteen weeks and had returned to their pre morbid level of activity. There was one 

malunion where three tibial struts had been used, and two non-unions both in relation to 

relative devascularisation of the host femur. The remaining 16 patients all healed in 

anatomical alignment. They also noted that the cortical struts healed to the host femur in all 

the successful cases.  
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The cortical struts essentially represent biological bone plates. As well as conferring 

mechanical stability, they may enhance fracture healing and can potentially increase the 

bone stock. If appropriately selected and prepared, cortical struts can be customised to fit 

any femur. As the modulus of elasticity of allograft struts is similar to that of the host bone 

there is less stress shielding of the host bone in comparison to other more rigid forms of 

internal fixation. In conclusion, the results obtained favours the use of two struts held 

against the femur with cables; increasing cable number and decreasing strut length may 

improve fracture stability. 
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Chapter 5 

A pilot evaluation of uncemented implants in Type B2 and 

B3 fractures 

Rationale for Chapter – Type B1 fractures can be effectively managed with cortical onlay 

strut grafts and the optimal biomechanical construct has been shown. However, loose 

implants and fractures occurring below an implant tend to necessitate exchange of the 

femoral stem and consequently represent a different surgical problem. This chapter will 

evaluate whether a variety of second generation uncemented implants are effective devices 

for periprosthetic fractures. 
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Chapter 5 

5.1 Introduction 

Vancouver type B fractures constitute more than 80% of late periprosthetic femoral 

fractures[14]. The mainstay of treatment for B2 and B3 types is revision of the femoral 

component using cemented or uncemented prostheses along with cerclage wires and strut 

grafts where indicated [11, 35, 95, 96]. Revision with a long-stem prosthesis permits 

stabilisation of the fracture similar to that achieved when using an intra-medullary rod. 

However, the proximal femur may be a poor environment for re-cementing or proximal 

porous on-growth if the index procedure was cemented [97]. 

 

Uncemented prostheses cannot only gain axial and rotational control of the distal femoral 

diaphysis which may suffer from bone loss and comminution, but also alleviate the potential 

concerns of cement inhibition or interposition on fracture healing [33, 98]. 

 

Chapter 7 will demonstrate a considerable efficacy in using uncemented stems with the 

Kent Hip system. However, the disadvantages of screw fracture and occasional need for a 

transverse osteotomy has led to the development of second-generation implants which are 

more anatomical and promote osseointegration. 

 

The aim of this study is to prospectively analyse femoral revisions using uncemented 

prostheses in the presence of and treatment of Vancouver type B2 and B3 periprosthetic 

fractures [51, 99-103]. It is hypothesised that this treatment will improve function and lead 

to radiological union.  
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5.2 Methods 

5.2.1 Patients 

26 patients were diagnosed with Vancouver type B2 or B3 periprosthetic fractures between 

1999 and 2005. All of them were treated surgically. The average age was 67 years (range: 36 

- 81). Sixteen of the twenty six fractures were left sided, and ten were right sided. Using the 

Paprosky’s system of femoral defects classification (Table 5.1), there were five type II, 

twelve type IIIA, eight types III B and one type IV femur; further breakdown by type is seen 

in Figure 5.1. 

 

 

Figure 5.1: A total of 26 patients were included in the study group. They were classified 

according to both Vancouver and Paprosky Classifications 

 

The average time from the index procedure to sustaining the periprosthetic fractures was 9 

years (range: 6 months - 15 years). In 22 patients, the index procedure was cemented and in 

the other four the index prosthesis was cementless. 
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Table 5.1: The Paprosky classification of femoral bone defects 

Type Defect 

Type I Defect has minimal loss of metaphyseal cancellous bone and an intact 

diaphysis. 

Type II Defect has extensive loss of metaphyseal cancellous bone and an intact 

diaphysis. 

Type III A Defect is one in which the metaphysis is severely damaged and not 

supportive and there is >4 cm of intact diaphyseal bone available for 

distal fixation. 

Type III B Defect is one in which the metaphysis is severely damaged and not 

supportive and there is <4 cm of diaphyseal bone available for distal 

fixation. 

Type IV Defect has extensive metaphyseal and diaphyseal damage in conjunction 

with a widened femoral canal. The isthmus is not supportive. 

 

A posterior approach was used to gain access to the hip in all cases. The incision was 

lengthened distally as required to allow open reduction and fixation of the fracture. A 

femoral osteotomy which is sometimes used in revision surgery without fracture was not 

required since the fracture itself was used to facilitate removal of the existing implants. 

Cementless stems were used in all cases.  

 

5.2.2 Surgical Approach 

All operations were undertaken by the author of this thesis. The posterior approach was 

employed in all cases and incisions lengthened as required for access and visualisation (see 
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Figure 5.2). This approach is the most commonly used approach in primary and revision hip 

surgery since it is considered to be the easiest to perform technically, requires only one 

assistant and does not requires a traction table. Furthermore, access to the joint is rapid 

thereby minimising operative time, whilst visualisation of the femur and acetabulum is 

arguably the best of all approaches. 

 

 

Figure 5.2: A comparison of approaches to the hip including surrounding nervous structures -

sciatic nerve (1), femoral nerve (2), lateral femoral cutaneous nerve (3), 

and obturator nerve (4) [104] 
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Patients were positioned in the lateral decubitus position between vertical padded rests at 

the sacrum and pubis to secure them. For each patient, the pelvis was orientated in a 

neutral position, in line with the spine. In primary THA, an 8 to 15 cm incision would be 

made, centred over the posterior aspect of the greater trochanter, curved posteriorly across 

the buttock. In this case series, the original incision through which the primary operation 

had occurred was used. No patient had previously had an anterior approach. The 

subcutaneous tissue was incised down to the tensor fascia lata, which envelopes the lateral 

aspect of the thigh muscles. Fascial incisions were lengthened superiorly in line with the skin 

incision, and the fibres of the gluteus maximus gently split. 

 

The sciatic nerve was identified posteriorly in all cases and deep within the wound as it lies 

over the external rotators of the hip. The posterior border of the gluteus medius was 

identified and the piriformis and conjoined tendons divided at their insertion onto the 

greater trochanter. A Kocher clamp was attached to the piriformis, obturator internus and 

gemelli tendons and these tendons were retracted posteriorly, thereby protecting the 

sciatic nerve during the procedure. This manoeuvre exposed the entire posterior capsule of 

the hip which was then incised with longitudinal incision. The femoral head was dislocated 

by internal rotation and flexion of the hip after the capsulotomy. 

 

5.2.3 Implants Used 

Following removal of the primary femoral implant, the femoral hip systems implanted were: 

 Echelon (Smith & Nephew)(see Figure 5.3) – 14 patients 

 Link (Wright Medical)(see Figure 5.4) – 7 patients 

 Cannulok (Orthodynamics UK)(see Figure 5.5) – 2 patients 
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 Solution (DePuy)(see Figure 5.6) – 2 patients 

 Custom prosthesis (Stanmore Implants Worldwide) – 1 patient 

 

The choice of implant was dependent upon both availability of the prosthesis at the 

practicing institution and also upon the suitability of implanting it within the bony anatomy 

presented. Off-the-shelf prostheses were generally used, but the presence of distorted 

normal anatomy necessitated the use of a custom implant in one case.  

 

 

Figure 5.3: The Echelon system has Rough Coat™ porous coating which improves the implant 

stability by increasing friction and provides a surface for bone ingrowth. It can be seen here 

that a standard collar and two calcar platforms are available to match the implant to the 

proximal defect. They are available as both straight and bowed stems and feature a lateral 

proximal flare. The lateral shoulder is rounded to minimise the risk of fracturing the greater 

trochanter during stem insertion. A distal flute increases rotational stability whilst the distal 

slot eases stem insertion, reduces the risk of fracture, and reduces distal stem stiffness. It is 

thought that he bullet tip reduces the stress between the distal implant tip and the bone to 

minimise end of stem thigh pain. 
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Figure 5.4: The Link system is uncemented ,HA coated and modular. It has proximal spacers 

for limb length correction and fixation screws with UHMWPE locked bolts. 

 

 

Figure 5.5: The Cannulok system is a cannulated, modular, distally locked prosthesis which is 

HA coated. 
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Figure 5.6: The Solution system has a Porocoat® porous coating. Its design features are 

similar to the Echelon system already described in Figure 5.3. 

 

All B2 fractures were managed with the extensively coated stems (Echelon or Solution 

implants) which were all 260mm in length. The other stems were all 300 mm or longer and 

were used for B3 fractures. The diameter of the stems used ranged from 14 to 20 mm. 

 

5.2.4 Additional Materials Used 

Cortical struts with inferior placement of morselised bone graft and demineralised bone 

matrix were used in 16 cases; in all cases, a minimum of 6 securing cables were used. Dall-

Miles cable system in 8 cases. The Accord cable system was used in used in 18 cases. 

Concomitant revision of the acetabular was required in 13 cases; 10 of these required filling 

of periarticular defects with morselised bone allograft. 
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5.2.5 Post-operative Rehabilitation and Follow-Up 

All patients were encouraged to touch weight-bear (TWB) for the first 6 weeks following 

surgery and partial weight-bear (PWB) for next 6 weeks. This was supervised by a 

physiotherapist trained in orthopaedic rehabilitation. 

 

All patients were serially followed up. This comprised of a clinical evaluation including a 

Harris Hip Score [74] and radiographic evaluation where an assessment was made of 

fracture union and implant migration (see Figures 5.7 & 5.8). The minimum follow-up time 

was one year up to a maximum of five years. 

 

 

Figure 5.7: Post-operative AP radiographs of the left femur showing fixation of a Type B3 

fracture with a long-stemmed distally locked implant 
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Figure 5.8: AP radiographs of the left femur showing fixation of a Type B2 fracture with a 

long-stemmed extensively coated implant supplemented with three cerclage wires 
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5.3 Results 

5.3.1 Clinical Evaluation 

At a mean follow-up of 37 months (range: 12 - 59), all the fractures had united clinically. The 

mean post-operative Harris Hip Score [74] was 86 (range: 75 - 90). The satisfaction rate of 

surgery was 100% (26 patients). 

 

Leg length inequality was noted in eight patients: 

 Longer operated leg – 5 patients (4 patients with 0-1cm difference, 1 patient with 

2cm difference). 

 Shorter operated leg - 3 patients (2 patients with 1cm difference, 1 patient with 

1.5cm difference). 

 

All patients required either two sticks or a frame to act as a walking aid during the first 6 

weeks. At 12 months, no patient needed more than one stick as a walking aid. 

 

One patient was noted to have a partial sciatic nerve palsy in the immediate post-operative 

period. This occurred in a 68 year-old female patient with a Vancouver Type B2 fracture. She 

was treated with an Echelon stem. The sciatic nerve was protected during surgery and no 

identifiable cause could be ascertained for this complication. This was treated without 

surgical exploration and complete recovery was noted at 12 weeks. 

 

There were no episodes of dislocation or sepsis noted in this series during the follow-up 

period. 
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5.3.2 Radiological Evaluation 

Radiographic assessment demonstrated no episodes of non-union. Although evaluation of 

fracture union was a difficult task due to the presence of struts and cables, bony union was 

thought to be complete within 6 months. Strut to host union occurred between 12 to 18 

months in all cases. 

 

Femoral alignment was maintained in all cases (26 patients). There were no cases of screw 

breakage. 

 

Migration of between 5 and 8 mm was noted in 3 patients with tapered implants. 
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5.4 Discussion 

The management of individual periprosthetic fractures is guided by the severity and type of 

the failed bone-implant entity, such as site of the fracture, available bone stock, stability of 

the implant and type of the implant.  

 

In B2 and B3 fractures the best methodology of treatment is femoral revision for which 

either cemented or uncemented prostheses have been employed. The advantage of revision 

with a long stemmed cemented prosthesis is provision of fracture stability. However, 

cement extrusion into the fracture site and inhibition of fracture healing are noted 

complications. Rates of non-union has been reported as high as 31% in cemented revision 

[34]. 

 

Prosthetic stability is not reliably achieved in proximally coated stems in cases of poor 

proximal bone stock [97].In pursuit of good intramedullary fixation and long term prosthetic 

stability through biological ingrowth, extensively porous coated stems came into vogue. 

They are associated with greater survival rates and lowest incidence of non-union [99-102]. 

The main complications experienced using long-stem femoral revision for periprosthetic 

fractures are aseptic loosening, non-union and deep infection with a 12% to 20% cumulative 

incidence of these complications [97]. Other complications include thigh pain due to a lack 

of osseointegration, osteoporosis and poor bone stock, subsidence and stress shielding[105, 

106]. 

 

This study is limited by having a small cohort and using different stems. Unfortunately, the 

small number of patients prevents a suitable comparison being made between each 
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implant. Indeed the choice of implant used in this series was partly dependent upon which 

revision hip system was available to the author from the University College London Hospital 

NHS Trust. 

 

Nonetheless, all fractures demonstrated evidence of clinical and radiological union. This may 

be attributed to a combination of factors including good stem fixation distally (where the 

decent bone is in order to reconstruct the stem around it) and to the use of cable plate 

systems, morselised allograft, cortical struts and demineralised bone grafts as evidenced by 

other studies [34, 70, 107].  

 

One of the concerns of cementless stems without interlocking fixation is that of implant 

migration. Indeed, this was evidenced in this patient series but was only noted in three 

patients. Of particular concern is that all the patients in who it occurred had tapered 

implants. Although it did not have any adverse complications with respect to clinical 

outcome, there is potential to affect the biomechanical characteristics of the hip. 

 

The management of B2, B3 periprosthetic fractures pose considerable clinical challenge. 

This study demonstrates that planned revision arthroplasty with cementless prostheses 

have a favourable outcome in most cases. Cortical struts, bone allograft, cable plating 

system and demineralised bone matrix may significantly aid reconstruction.  
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Chapter 6 

Femoral stem stress using extensively coated stems 

Rationale for Chapter – ‘The previous chapter illustrates that extensively coated stems are 

associated with clinical improvement. The optimal fixation technique should protect against 

future stem fracture and to that end, this would be expected to relate the stress experienced 

at various points along the femur. This chapter uses an ex-vivo femoral model to determine 

the patterns of stress in different clinical scenarios.’ 
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Chapter 6 

6.1 Introduction 

The previous chapter illustrated favourable radiological and clinical outcomes using 

uncemented femoral stems. The follow-up period though was finite and not to the death 

which would ultimately provide the most useful information regarding the survivorship and 

sequelae of the implant. 

 

In addition to the risk of re-fracture of the femur, there is also a risk of implant fracture; a 

phenomenon for which there is increasing awareness of within cementless revision stems as 

has been used in Chapters 5 and 7. 

 

In general, fractures of femoral stems are reported in cases of proximal bone loss due to 

osteolysis, after fractures, or with extended trochanteric osteotomies. Indeed, there has 

been particular interest in stem failures of modular systems after it was recognised that 

poor proximal bone support contributed to stem fractures on the ZMR™ (Zimmer, Inc.) 

modular implant. Extensively coated porous stems can however also fracture. Busch et al. 

[108]found a 2.3% fracture rate of cementless, cylindrical, porous-coated hip stems in a 

series of 219 revision procedures. They related stem fracture to poor proximal bone 

support, body mass index (BMI) greater the 30, small stem diameter, and the use of an 

extended trochanteric osteotomy (ETO) without the use of struts and cables. These failures 

necessitate methods to mitigate the proximal femoral bone loss and protect the stem from 

fracture. 
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A number of techniques are employed in order to remove the original femoral component 

and cement. One of these is the ETO. This technique gives adequate access to a stem and its 

cement mantle, whether it is intact or broken [109, 110]. Reconstruction of the proximal 

femur is usually undertaken with the aid of cables or wires. An ETO is sometimes also 

required to realign the femur if there has been varus remodelling or if there is retained 

distal hardware. Although excellent results have been published with this technique [111, 

112], it does however leave the proximal femur relatively unsupported. In view of this, it can 

also be used a surrogate model for proximal bone loss.  

 

The aim of this study is to identify the strains that a femur undergoes with an uncemented 

stem so that the potential sites of femoral stem fracture may be ascertained. It is 

hypothesised that when fracture models with co-existing bone loss are simulated, an 

increasing amount of reinforcement is needed to lessen the strain exhibited upon the 

femur.. 
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6.2 Methods 

6.2.1 Specimens 

Three composite femurs made of glass fibre reinforced epoxy and polyurethane foam were 

used. Each femur was prepared and reamed in order to facilitate implantation of an Echelon 

(Smith and Nephew) uncemented femoral stem as would occur in normal clinical scenario. 

An Echelon stem had strain gauges applied at 45mm from the shoulder and then at 15mm 

intervals distally to achieve a total of 5 electrodes (see Figure 6.1). 120 ohm gages with a 

1.74 gage factor (HBM part #213.18-2001) were used. An engraver was used to knock all of 

the beads off the backside of an Echelon stem to allow the gages and wires to sit flush. We 

then applied the urethane coating over them to hold them in place. 

 

 

Figure 6.1: Transducers attached at regular intervals can be seen on the lateral border of the 

femoral stem 

 

A baseline measure of femoral strain was recorded by implanting strain gauges at 45mm 

from the shoulder and then at 15mm intervals distally to achieve a total of 5 electrodes. 

Each femur was then modified sequentially to simulate seven different constructs that 

related to different clinical scenarios. Following each modification, the femoral stem was re-
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implanted and femoral strain was re-measured. The data were collected at a rate of 4 Hz. 

Strain gauge location 1 is the distal electrode with each subsequent electrode placed the 

next most proximal 

 

6.2.2 Models 

Seven different models were used to compare to baseline measures; each to replicate 

different clinical scenarios with different modes of fixation (Table 6.1). These can be seen in 

Figures 6.2 to 6.9. 

 

Table 6.1: Seven models were used to replicate seven clinical fracture scenarios 

Model Clinical Scenario 

Intact femur with good press-fit stem-bone 

interface 

Normal femur (baseline model) 

Overbroached proximal region Poor bone quality 

ETO Proximal bone loss (Vancouver Type B3) 

ETO with 2 cables Proximal bone loss with cable fixation 

ETO with strut and 2 cables First revision case 

ETO with strut and 3 cables Second revision case 

ETO with short trochanteric plate Proximal bone loss with strut and short plate 

ETO with long trochanteric plate Proximal bone loss with strut and long plate 

 

Using the instrumented stem, the peak strain was measured and a multifactor ANOVA was 

used to compare the test results to determine significance at p=0.05. 
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Figures 6.2 – 6.5: Composite femur models of the baseline (6.2), overbroached proximal 

femur (6.3), femur with ETO (6.4) and femur fixed with 2 cables (6.5) 

 

Figure 6.2 Figure 6.3 

Figure 6.4 Figure 6.5 
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Figures 6.6 – 6.9: Composite femur models fixed with 2 cables and a strut(6.6), 3 cables and 

a strut (6.7), short trochanteric grip (6.8) and long trochanteric grip (6.9) 

  

Figure 6.6 Figure 6.7 

Figure 6.8 Figure 6.9 
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6.3 Results 

The mean percentage change in strain at different electrode locations is listed in Table 6.2. 

In these laboratory models, it was found that over- broached femur increased the strains on 

the stem by over 40% when compared to the baseline model though this scenario 

incidentally, provided the least stress of all the situations investigated in this experiment 

(Table 6.2). A 98% increase in average femoral stem stress was found in the case of an 

unsupported stem with an ETO. This was a significantly higher result in stress than all the 

other test conditions, including the over-broached femoral model (p < 0.01). 

 

Two further findings were found. Firstly the use of struts reduced the stem stresses, but was 

more effective when the strut spanned the distal edge of the ETO; see Figures 6.8 and 6.9 

for comparison with the greatest reduction was seen with the long trochanteric grip, which 

reduced the stresses by up to 37% and showed no significant difference to the over-

broached condition. Secondly, the strain in all models in the proximal regions was similar  
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Table 6.2: The percentage change in stem stress from baseline reduces in the more proximal 

sections of the femoral implant 

Model Percentage change in stem stress at each 

Strain Gauge Location 

 1 2 3 4 5 

Overbroached proximal region 58 54 42 36 24 

ETO 98 82 62 44 32 

ETO with 2 cables 76 64 52 41 30 

ETO with strut and 2 cables 70 59 48 36 30 

ETO with strut and 3 cables 74 61 50 37 28 

ETO with short trochanteric plate 70 59 51 39 36 

ETO with long trochanteric plate 61 53 44 34 18 
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6.4 Discussion 

There has been a move towards the use of cementless stems to avoid the failure associated 

with cemented revisions [113, 114]. Paprosky et al. reported a survivorship of more than 

95% of extensively porous-coated uncemented stems in a study of 170 patients with a mean 

follow up of 13.6 years [115]. Such a high survivorship makes a strong case for the use of 

these stems in revision surgery. However, there is a small stem fracture rate which the 

author believed may be related to a lack of proximal bone support. A surrogate model of 

extremely poor bone supports the ETO because even if the surgeon crimps the osteotomy 

down, there is still lack of support proximally. With normal bending the calcar is still intact in 

this model and this would support the stem. 

 

Nonetheless, we know from the Chapter 6 and the literature that extensively coated porous 

stems do very well and have excellent results [116]. Also, the good long term outcome of 

extended trochanteric osteotomies is well documented [109, 117]. The problem arises when 

we are faced with a high risk patient undergoing a revision arthroplasty. Such a risk situation 

would be characterised by a heavy patient, the use of a small stem of less than 14mm 

diameter, a high activity patient, or a patient with poor proximal bone in the femur. In such 

cases, the surgeon must be extremely cautious and think about providing further support to 

the stem and protect from the high stresses proximally. This study was used to identify 

when the largest change in femoral stress occurs. Femoral implant stress increased close to 

double that of the baseline when a model mimicking proximal bone loss was employed. This 

was observed in the most distal electrode transducer suggesting that it is important to 

reinforce the construct at this area.  
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It is in those scenarios that the findings of this study apply and I would recommend using a 

strut graft or a trochanteric plate following the biomechanical advice outlined in this study. 

 

In conclusion, cementless stems are commonly used in revision hip arthroplasty. These may 

be used in conjunction with an extended trochanteric osteotomy. Failure of uncemented 

stems in revision surgery has been described in the distally well fixed stem associated with 

certain risk factors which include obesity, poor proximal bone support, need a small femoral 

stem, or a high activity patient. In these situations one must think of the possibility of 

fatigue fractures of the femoral stem, though this may be minimised by suitable construct 

reinforcement to limit stress risers. 
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Chapter 7 

Use of the Kent hip prosthesis in periprosthetic fractures 

around loose implants 

Rationale for Chapter – Interlocking stems have a theoretical advantage over other designs 

in that they provide greater stability by linking a broken bone and an implant directly. This 

chapter will use data collected to specifically determine the outcomes of a cohort of 

patients treated using the Kent Hip prosthesis. 
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7.1 Introduction 

Whilst cortical struts and plates are effective tools in stable implants, loose femoral implants 

and fractures below the tip frequently necessitate implant exchange to bypass the fracture.  

 

The Kent hip (Biomet Europe, Dordrecht, The Netherlands) was first implanted in 1986, and 

was specifically designed for distal fixation alone. It was made to overcome the difficulties of 

loosening of the femoral component and is indicated in periprosthetic fractures or in 

revision cases with osteolysis. It has a straight stem made from a cobalt-chromium alloy (see 

Figure 7.1). It is available in two sizes, of 12.5 and 14 mm in diameter. The manufacturers 

recommend using the 14-mm diameter implant with the 12.5-mm stem indicated only for 

lighter patients. There are four lengths, 190, 239, 295 and 340 mm, with 6, 9, 13 and 16 

screw holes, respectively. Two offsets are available. 

 

It has a straight stem it and may press against the anterior cortex because of the anterior 

curve of the femur. There is therefore, a risk of penetrating the femur, particularly in 

osteoporotic bone. For this reason, in cases where it is used in patients without a fracture or 

where the fracture still does allow easy passage of the implant, a transverse osteotomy 

should be performed to allow safe insertion of the prosthesis. 36 patients in whom a 

periprosthetic fracture had been treated with revision of the femoral component using the 

Kent Hip prosthesis were investigated. It is hypothesised that using this implant would 

improve the clinical and radiological outcomes of treated patients. 
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Figure 7.1: The Kent Hip System is a long-stemmed and offers options for locking along the 

stem allowing for fixation both above and below a fracture as seen in radiograph 
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7.2 Methods 

7.2.1 Patients 

A survey of two centres (University College London Hospital and Maidstone District General 

Hospital) identified 36 patients in whom a fracture around a loose femoral stem or distal to 

the stem had been treated with revision of the femoral component using the Kent Hip 

prosthesis. Two patients who underwent simultaneous revision of an aseptically loose 

acetabular socket were included. All of the patients were followed until fracture union or 

until a reoperation was performed. 

 

There were 20 men and 16 women, with an average age of 66 years (range: 52 - 79). The 

average weight of the patients was 83 kg (range: 52 - 108).  

 

The cause of fracture was either: 

 Major trauma – 2 patients 

 Minor trauma – 33 patients 

 No obvious cause – 1 patients 

 

Only osteoporosis was identified as a cause for fracture; this occurred in 8 patients. 6 

patients, including two in whom the fixation failed, smoked tobacco. 

 

Serial radiographs were reviewed with regard to: 

 Fracture union 

 Screw breakage 

 Stem migration 
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Postoperative pain and mobility were compared with the preoperative status. Whenever 

possible, a Harris hip score[74] was recorded at the time of the clinical review or was 

estimated from questionnaire data. 

 

In all patients, the fracture was around a loose femoral stem - Type B2 (n = 25), Type B3 (n = 

11). The final classification was based upon both initial radiographic imaging and surgical 

findings regarding mobility of the stem. Ten of the fractures were transverse, and the 

remainder were spiral or oblique. 24 patients had two-part fractures; the remainder had 

three-part fractures. 

 

7.2.2 Surgical Technique 

All patients were placed in the lateral position and all femurs were accessed using the 

posterior approach described in the previous chapter. The operation technique for each 

case will now be outlined. 

 

The first step involved preparation of the femoral canal which included removal of the pre-

existing implant, cement and plug if applicable. An olive tipped guide wire was then inserted 

down to the distal end ensuring apposition of the fracture ends to ensure the guide wire 

went down into the distal part of the canal. It was then inserted until it hit bone in the distal 

end of the femur to be sure it had not gone out through the femoral shaft into the soft 

tissues. Reaming was undertaken using the flexible reamers increasing in size in a sequential 

manner. The proximal trochanteric area was reamed up to 18 mm to accommodate the 

larger proximal diameter of the Kent Hip stem. A proximal rasp designed with a forward 



124 | P a g e  

 

cutting edge was employed to remove any hard bone or residual cement. The appropriate 

length Kent Hip stem was mounted on the introducer and inserted in to the femoral canal. A 

mallet was only used for light pressure; where more pressure was needed, the stem was 

removed and the canal was reamed again. A drill-guide was used to drill through the 

proximal cortex, screw-hole within the implant and distal cortex. Appropriately, sized screws 

were placed with a minimum of three above the fracture and a total of at least 12 cortical 

screw engagements across the length of the femur. 

 

7.2.3 Post-operative Rehabilitation 

All patients were allowed to partial weight bear under the supervision of a trained 

physiotherapist for the first three days progressing to full weight-bearing thereafter. 
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7.3 Results 

7.3.1 Follow-up Period 

All patients were followed up at a mean of 38 months (range: 3 - 82) after the fracture. Two 

patients died during the follow-up period, both after union of the fracture. 

 

7.3.2 Fracture Union 

34 (94%) of the 36 fractures united. The first failure of fixation occurred in a 63 year-old, 71-

kg man who smoked 20 cigarettes per day during the recovery period and had a 60 a day 

?history of smoking. He had a Type B2 fracture and despite good reduction, serial 

radiographs taken in clinic showed minimal cortical union and he described persistent pain 

at the fracture site with a painful limp on mobilising. At 12 months, he was diagnosed with 

non-union. He underwent removal of the Kent Hip implant, implantation of a long-stemmed 

HA coated stem secured with a plate secured and cables. He continued to complain of pain 

at the fracture site at 12 months despite evidence of radiological union. The second failure 

of fixation occurred in a 72 year-old, 90-kg male who presented fell at home 3 weeks after 

the original fixation and sustained breakage of all three screws fracture below the original 

fracture line. This patient had an exchange of the broken screws and had protected weight-

bearing for three weeks in a rehabilitation unit after discharge. 

 

There were no cases of malalignment. 

 

7.3.3Screw Breakages 

Broken screws were observed in four patients. One of the cases has been described above. 

The mean time to screw breakage in the remaining patients was 21 months (range: 7 – 35). 
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There was no history of trauma observed in these patients and were presumed to be related 

to metal fatigue. Two of these three patients required additional surgery; both noted pain at 

the level of the broken screws and requested removal. In both cases the prostheses 

remained in place until the end of the follow up period.  

 

7.3.4 Additional Surgery 

In addition to the cases outlined above for failure to unite, there were three additional cases 

that underwent surgery. Two patients required removal/exchange of symptomatic broken 

screws and one patient required exchange of acetabular shell for asymptomatic progressive 

osteolysis in Gruen zone 1. 

 

7.3.5 Functional Outcome 

A very broad range of Harris hip scores was observed both before the fracture (range: 34 - 

90 points; mean: 82 points) and at the final review (range: 18 - 99 points; mean: 82 points). 

Statistical analysis between the groups did not identify any difference between these groups 

(p = 0.88). All patients returned to their preoperative functional level within one year and 

back to using the same level of walking aids within 18 months. 
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7.4 Discussion 

This study has used a cohort of patients taken from two units to investigate the use of the 

Kent Hip prosthesis in patients with Type B2 and B3. To date, there is only one previously 

published study [118] which outlines the outcomes of this implant. It also included the 

cohort of patients from Maidstone District General Hospital used in this chapter. Whilst the 

present study may therefore be seen as an extension of the work by Sexton et al., it is 

difficult however to directly compare the results since the published data has not 

differentiated patients by indication. 

 

This study is limited by its use of a single treatment arm and thus does not allow comparison 

to another treatment group. Furthermore, overall numbers of patients are small though it is 

worth noting that two units were required to collate the number of patients over a number 

of years. 

 

The Kent hip was designed to address the difficulties in controlling length and rotation, by 

allowing per-operative adjustment. Because the component is locked distally, early full 

weight-bearing and discharge from hospital is also possible comparing favourably with many 

of the other prostheses used in this type of patient [101]. The overall 5- and 10-year 

survivorship has been demonstrated to be 93% and 89% respectively which is comparable to 

other systems. However, it drops to 77% at 15 years [118]. Whilst there are wide confidence 

intervals in many other studies and the indications are not limited to periprosthetic 

fractures alone, it would appear that the survival of this implant after ten years does 

deteriorate when compared with other systems [105, 119, 120]. Although, the numbers in 

this study and length of study duration are too small to confidently determine a survivorship 
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analysis, it would appear that the early results of 32 out of 36 cases (89%) requiring 

additional surgery related directly to the implant (including removal or screw exchange) 

suggests that the presence of a periprosthetic fracture may confer additional barriers to 

survivorship. 

 

Although functional outcomes are not easily compared to other implant groups, the mean 

Harris Hip score did not change from prior to the fracture event to final follow-up in this 

study. This suggests that the Kent Hip is an effective tool in restoring function back to its 

pre-morbid state. 

 

In spite of the favourable outcomes reported in this chapter, it is paramount that surgeons 

are aware that since the implant is a first-generation locking device, it has several 

disadvantages. The first is related to fixation; this only occurs within the distal portion of the 

stem is and provided by screws alone. The lack of proximal fixation and absence of 

osseointegration to any part of the stem may lead to proximal stress shielding and a risk of 

screw fracture. As was mentioned in the Results section of this chapter, this was the finding 

in a few patients. The second is related to the implant’s geometry; namely it is a straight 

stem and does not follow the curvature of the femur. A transverse osteotomy is therefore 

sometimes required to avoid penetrating the anterior cortex of the femur. We now use 

second-generation implants which offer the potential for bone in-growth, a greater range of 

sizes, customisation and better proximal fill at the same as distal locking (for example– The 

Cannulok, Orthodynamics Ltd, Dorset, UK or Reef, DePuy, Leeds, UK, systems). 
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Chapter 8 

Use of distally locked prostheses in infected Type B2 and B3 

fractures 

Rationale for Chapter – Evidence presented in the previous chapters has shown that 

uncemented stems carry favourable outcomes in either loose prostheses or in fractures that 

occur below a prosthesis. The issue of a concurrent infection around a fracture site is very 

much a different problem since both the infection and fracture need treatment. To that end, 

uncoated uncemented stems can be used as a temporary or definitive device after 

debridement. This chapter will evaluate the outcomes of distally locked prostheses in 

infected fracture cases. 
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Chapter 8 

8.1 Introduction 

Infection in the presence of an unstable periprosthetic fracture poses a complex clinical 

challenge. The gross incidence of infection in unstable periprosthetic femur fractures is 

approximately 10% in our series at University College Hospital, London. Fracture stability 

and eradication of infection have to be addressed simultaneously. Conventional 

periprosthetic fracture management techniques alone cannot easily be applied in these 

cases. The processes involve removal of an unstable prosthesis. In addition, surgical 

debridement should be undertaken and antibiotic therapy commenced to eradicate 

infection. The placement of large or multiple metal fixation devices may act as nidus for 

persistent infection. Revision hip surgery in the presence of infection but without a facture 

is customarily managed with an antibiotic cement implant (see Figure 8.1) as a temporary 

spacer. This has the advantage of being a delivery vehicle for antibiotics whilst maintaining 

soft tissue tension in the absence of a functional prosthetic joint. It is not typically used 

when periprosthetic fractures co-exist since the interval spacers do not usually provide 

fracture stability. 

 

Definitive management of the periprosthetic fracture without eradication of infection using 

either (1) an uncemented implant with a porous coating or; (2) an implant that is distally 

fixed with cement, could allow a functional recovery if the fracture unites. However, it risks 

ongoing sepsis by providing a surface on which organisms may thrive and form biofilm. In 

many of these cases the infecting organism is not known and the possibility of a staged 

approach is thus desirable. 
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Figure 8.1: A pre-moulded antibiotic loaded cement spacer 

 

Long-stem distally-locked femoral implants are used for revision hip surgery, in the 

management of periprosthetic fractures [99, 118, 119, 121-124] and have been shown to be 

effective in Chapters 5 and6. 

 

Stems are available with or without HA coated surfaces. They can be used as interim spacers 

until the fracture unites; infection is eradicated and definitive prosthetic options may then 

be considered. Using a non-HA coated femoral stem, it is possible to stabilise a fracture 

without encouraging bone attachment and thus, further revision is relatively 

straightforward if it is required. In elderly patients with co-morbidities, these prostheses 

may also offer a long-term treatment option. 

 

The aim of this chapter is to determine the outcomes when managing unstable 

periprosthetic femoral fractures using non-HA coated, long-stem, distally-locked femoral 

prostheses. It is hypothesised that these devices would restore the clinical function of these 

patients and may provide a definitive prosthetic solution within the elderly.  
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8.2 Methods 

A survey of two units (University College London Hospital and Queen’s in Nottingham) 

identified 17eligible patients from two different units between 2000 and 2008. Eligible 

patients were those with a periprosthetic fracture in the presence of either a previously 

known or subsequently confirmed bacterial infection. Confirmation of the concurrent 

diagnosis of infection was made using a combination of elevated blood inflammatory 

markers and microbiological culture data from aspiration. 

 

Both units followed similar principles for the diagnosis and management of periprosthetic 

infections. These included a very low threshold for diagnostic aspiration and biopsy of the 

local periprosthetic tissue around loose implants. Blood investigations were performed to 

monitor the differential white cell count and the inflammatory markers (Erythrocyte 

sedimentation rate and C-reactive protein). 

 

At operation, empirical antibiotics were commenced once microbiology samples had been 

collected. These were continued until the definitive antibiotic of choice was established 

based on sensitivities of the organisms isolated from cultures. In cases with obvious 

infection as evidenced by raised inflammatory markers, osteomyelitic bone or purulent 

exudates but no identifiable causative organisms on culture, an empirical broad-spectrum 

antibiotic was used. Antibiotics were continued until the inflammatory markers returned to 

their normal range or to a static level for that patient.  

 

Once a radical surgical debridement of all the foreign material, cement and debris had been 

undertaken, patients were re-draped and using clean instruments, the periprosthetic 
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fracture was stabilised using a long-stem, non-HA coated, distally-locked, femoral 

prosthesis.  

 

Two different non-HA coated prostheses were used: 

 Cannulok hip system (Orthodesign UK) – 12 patients 

 Kent hip system (Biomet) – 5 patients 

 

The Cannulok system was used in the management of seven Type B2 fractures and five Type 

B3 fractures. The Kent system was used in two Type B2 fractures and three Type B3 

fractures. Between 3 and 10 cables were used in each case in order to restore proximal 

bone stock and abductor tension. Post operatively patients were allowed to mobilise with 

the help of crutches and weight bearing was permitted as tolerated. 

 

Pre-operatively and intra-operatively, the acetabular components were assessed for 

loosening but revision was only necessary in 4 cases of this series. In these cases a cemented 

acetabular component was loosely cemented in with antibiotic loaded cement and revised 

to a hemispherical porous coated component at the second stage. In the cases were there 

was a well fixed cementless shell, the liners were routinely changed (5 cases). In four cases 

where the index procedure was a hemiarthroplasty, the acetabulum was not revised until 

the definitive second stage procedure was undertaken. In these cases, large modular heads 

were used temporarily. All patients were serially followed up. This comprised a clinical 

evaluation including a Harris Hip Score [74] and radiographic evaluation where an 

assessment was made of fracture union and implant migration. The minimum follow-up 

time was two years up to a maximum of six years.  
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8.3 Results 

8.3.1 General Patient Information 

The average hospital stay was 2 weeks (10 days to 4 weeks). It was anecdotally noted that 

pain control was easily achieved post-operatively. This was attributed to early stabilisation 

of the fracture. No dislocations were noted in this series. All patients had radiographic 

evidence of initial callus formation, whilst union was again seen in all patients’ radiographs 

(Time range: 2.5 – 6 months). There were no incidences of screw breakage at latest follow-

up in this series. 

 

One patient developed a pulmonary embolism, which was diagnosed 4 days postoperatively 

and treated. 

 

All patients in this series returned to their low to moderate pre-morbid functional state 

following discharge from the hospital. All patients could mobilise with the spacers in situ 

and no total or proximal femoral resections had to be undertaken. The mean Harris Hip 

score remained unchanged from the pre-fracture state to latest follow-up (81 (range 47-90) 

vs. 78 (48- 82); p = 0.49). 

 

8.3.2 Cannulok Group 

The mean follow-up in the ‘Cannulok’ series was a minimum of 38 months (range: 24 – 48). 

Ten patients underwent a definitive revision hip replacement procedure within an average 

of 3.8 months (range: 3 - 6). In 6 cases, an extensively porous coated stem was used and in 4 

cases, a tapered distally fixed cementless stem was used. In all these cases, inflammatory 

markers had come down to a stable, level within normal limits before the second definitive 
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procedure was undertaken. No re-infections after the second stage revisions in these 

patients were noted. 

 

The remaining two patients of this group continued to have persistently elevated 

inflammatory markers. Both were offered further staged surgery but declined since they 

were mobile and relatively pain free. They have been managed in the community with long 

term oral antibiotics and regular outpatient clinic review. 

 

8.3.3 Kent Group 

The mean follow-up in the ‘Kent Hip’ series was 53 months (range: 32 – 72). One patient in 

this series was revised to a definitive short femoral stem at 13 months. In the other four 

cases, the long stem locked prosthesis has been accepted as the definitive treatment 

remaining under close clinical supervision on an outpatient basis. 
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8.4 Discussion 

The treatment of unstable periprosthetic femur fractures can be technically challenging due 

to the weak non-supportive bone stock. The management becomes even more difficult in 

the presence of local infection. The primary aim is to ensure both eradication of infection 

and fracture stability. An intra-medullary articulating spacer with distal fixation can add 

stability to the construct. The proximal portion of the prosthesis acts as an internal scaffold 

around which the fracture fragments can be stabilised. This approach avoids the need to 

sacrifice the proximal femur or to use modular oncology prostheses. 

 

Staged revision of infected hip replacements is well described. This requires the interim use 

of antibiotic loaded cement [125, 126] or a spacer [127]. However, this technique requires 

the presence of stable proximal bone stock. Single stage revision of infected hip 

replacements is a safe option. It is important to collect sufficient samples for microbiology 

from the local tissues at the time of the procedure to attempt isolation of the infective 

microorganism. A locally agreed systemic antibiotic is commenced empirically and 

continued until it is changed to the appropriate antibiotic or the infection is controlled 

[128]. 

 

Periprosthetic fractures often occur in elderly patients with compromised physical state and 

high morbidity and mortality is reported in this population [129]. Non-operative 

management of periprosthetic fractures may be associated with medical complications due 

to the need for prolonged bed rest and traction and specifically but in the cases where there 

is infection this treatment cannot resolve local sepsis. Hence, a surgical treatment option 

that provides a microbiological diagnosis allows thorough debridement and provides stable 
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fixation, early weight-bearing and mobilisation is the ideal option for the management of 

this subgroup of patients. 

 

The results outlined in this chapter highlight that long-stemmed, inter-locked prosthesis can 

be used effectively as a temporary spacer as a single stage revision in these patients. This 

affords the opportunity to surgically treat the infection and stabilise the fracture. As the 

components do not have in-growth or adherence potential, they can be: 

 Easily revised to alternate implant if infection persists 

 Or revised to a definitive prosthesis if the patient is deemed physically fit to undergo 

further surgery 

 

The interim use of these spacers converts complex infected periprosthetic fracture revision 

surgery into a simpler procedure and preserves bone stock for use in case of future 

revisions. This series establishes the advantage of early mobilisation with the use of a 

functional locked interim spacer for the management of infected periprosthetic fractures. 

Long-term follow up studies with a larger series of patients are desirable to analyse the 

success of these implants and the outcome of the revision procedures performed after the 

interval spacer procedure. 

 

The use of non-HA coated, distally locked long femoral stems in combination with strict 

adherence to the principles of infection management can facilitate the management of 

infected periprosthetic fractures. 
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Chapter 9 

Conclusions 

Rationale for Chapter – This thesis has drawn together numerous conclusions. Together 

with already published data, this chapter will detail a treatment algorithm for Type B 

periprosthetic fractures of the femur. 
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Chapter 9 

9.1 Introduction 

This chapter completes the thesis by considering the implications for practice and further 

research. It concludes with a reflective account by the researcher. 

 

9.2 Study Aims 

While the key findings of each study were provided in detail in the previous chapters, this 

brief review is presented as a means of focusing both on the contributions of the research 

and reflections on the conduct of the study. 

My thesis sought to address the management of periprosthetic fractures of the femur. The 

guiding rationale was that this would become an increasingly important orthopaedic 

condition as its incidence rises. It is anticipated that the incidence will rise for two reasons. 

Firstly, it is anticipated that there will be an increase in patients suffering from age-related 

disease due to the population increasing globally with a coupled greater life-expectancy. 

These diseases include osteoporosis and osteoarthritis. With respect to osteoporosis, it is 

known that patients with disease who fall are more likely to sustain a fracture of the 

femoral neck than those who have normal bone density. Consequently, there will be more 

patients undergoing arthroplasty interventions for this. The same is true for osteoarthritis 

since arthroplasty is a well established treatment for arthritic hip pain. Whilst elderly 

patients constitute one end of the spectrum, young patients should not be ignored. The 

second reason for the rise is the broadening of indications for THA. Young patients are now 

more likely to undergo THA procedures whether it is due to underlying dysplasia, early 

onset arthritis, or other conditions such as vascular necrosis. 
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9.3 Implications for Practice 

This starting point of the experimental part of this thesis was to ensure a valid and reliable 

classification tool could be used. The Vancouver Classification was demonstrated to be 

amongst a wide mixture of grades of doctors. As a result, it was safely used in the rest of my 

thesis to classify periprosthetic fractures of the femur. Further to this, the use of different 

constructs in different scenarios was employed with good to excellent results. It is clear that 

although periprosthetic fractures represent a difficult surgical problem, there are means of 

salvaging the situation. 

 

With respect to cortical strut grafts, the 3rd chapter in my thesis highlighted the benefit of 

these biological plates around stable implants. This is not to say that this is the only option. 

Indeed, the presence of good bone stock means that compression and locking plates are 

likely to suffice [79, 130, 131] though the lack of randomised controlled trials means that 

direct comparison is difficult. 

 

Further to this, the biomechanical study from Chapter 4 highlighted that two struts 

supplemented with cables offered the best fixation. This at least suggests that surgeons 

employ cortical strut grafts, or potentially struts with plates, to achieve the strongest 

construct. 

 

It is widely accepted that a loose implant requires removal and consequently an implant 

that replaces it should bypass the fracture by at least 2 cortical diameters. This has led to 

the introduction of long-stemmed implants and one example of this, the Kent Hip prosthesis 

was investigated in Chapter 7. Since it is a first-generation design, it was both smooth and 
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not contoured to the femur natural anterior bow. Consequently, trochanteric osteotomies 

were required on occasion, whilst the lack of osseointegration provided stress points around 

the screws resulting in frequent breakages.  

 

The advent of second-generation designs was more successful as evidenced in Chapter 5 

with less incidences of screw breakage. These implants can now be considered the standard 

method of fixation for Type B2 and B3 fractures. The caveat of this being that in the 

presence of revision procedures or bone loss, suitable reinforcement must be employed to 

reduce the likelihood of femoral implant fracture as was biomechanically explored in 

Chapter 6. 

 

Figure 9.1: A simple treatment algorithm for Type B fractures 

 

Classify the fracture 

Type B1 

Adequate Bone Stock 

Locked/Compression 
Implants 

Inadequate Bone 
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Cortical Strut Grafts & 
Cabled 

Type B2 / B3 

Long-stemmed 
Implant 
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Finally, infection in the presence of a fracture remains a complex issue since bacterial 

pathogens can use both necrotic bone and the surface of implants as a breeding surface. 

Consequently, debridement of infected bone and removal of an original implant are 

necessary. The successful use of long-stemmed implants as either a temporary or definitive 

device has been demonstrated in Chapter 8. 

 

Based upon all the findings, an algorithm for Type B fractures can be followed (see Figure 

9.1). 

 

9.4 Future Work 

The work has been compiled over a number of years but ongoing research is required in to 

this area. In the short-term, construct stability is the main concern. To that end, modular 

devices which can be customised for individual patients should be investigated. By offering a 

wide variety of sizes and shapes to make up the final implant, it would be expected that 

more anatomical devices promote better stability and an easier surgical technique. 

 

In the long-term, promotion of fracture healing will be a key issue. Stem cells are cells that 

have the ability to renew themselves through mitotic cell division and can different into a 

diverse range of specialised cell types. Insertion of these cells into fracture sites may lead to 

greater union and consequently less pain and better function. 

 

9.5 Reflective account 

Periprosthetic fractures represent an increasing complex problem. I anticipate there will be 

a rise in the number of patients affected by this condition as the number of primary THA 
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procedures rises and as more uncemented stems are used. The body of work collected in 

this thesis represents my experience of periprosthetic fractures. During that time, I have 

strived to ensure excellent functional outcomes and this has been evidenced by ongoing 

study of my practice in this thesis. It is my hope that the dissemination of the work collected 

will be used to enhance patient care. 
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