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The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine.
Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the
environment, which makes their dissection into underlying causative factors difficult. An important population
parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response
to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter.
Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and
heritability in populations is based upon the expected proportion of genes shared between different types of relatives,
and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With
genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using
the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent
sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide
identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in
identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood
estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent
with results from independent twin and family studies but using an entirely separate source of information. Our
application shows that it is feasible to estimate genetic variance solely from within-family segregation and provides an
independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the
estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-
genetic factors and will allow partitioning of genetic variation into additive and non-additive components.
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Introduction

The theoretical basis for the resemblance between relatives
due to genetic factors was developed by R.A. Fisher in a now
famous and classic paper that reconciled Mendelian and
biometrical genetics [1]. Following that theoretical basis,
quantitative genetic parameters are estimated from the
resemblance between different types of relatives by equating
the observed phenotypic covariance to the degree of genetic
relationship, which is estimated from pedigree data. The
degree of relationship is usually expressed as the coefficient
of kinship [2] or the additive coefficient of relationship [2,3].
In a non-inbred population, the coefficient of relationship is
the expected proportion of alleles identical-by-descent (IBD)
between relatives and determines the additive genetic
covariance between a pair of relatives. Maximum likelihood
(ML) methods and software have been developed to estimate
genetic (co)variances in simple [4] and large complex
pedigrees [5–7], for univariate and multivariate models. What
all these methods have in common is that they estimate
genetic parameters from observed variation between and
within families, assuming an underlying model for causative
components of variance [3]. For example, in twin studies it is
commonly assumed that the variance between families is due
to common environmental and additive genetic effects, and

that the variance within families reflects individual environ-
mental effects (for monozygotic [MZ] pairs) or both individ-
ual environmental and additive genetic effects (for dizygotic
[DZ] pairs).

In human populations, the interplay of genetic, environ-
mental, and cultural factors that cause family resemblance is
complex; and crucially, the ultimate separation of nature and
nurture effects can generally not be tested empirically
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through controlled experiments. If the true (unknown) effects
causing between-family variance deviate from the assumed
model of family resemblance, then the resulting estimates of
genetic parameters, and their estimated standard errors (SE),
will be biased. This bias could be severe if strong assumptions
are necessary to estimate genetic parameters. In the classical
twin design, only three underlying parameters are estimated,
and strong assumptions regarding the causes of familial
resemblance are necessary. For example, the assumption that
twin resemblance due to common environmental effects is the
same for MZ and DZ pairs is often made. Although some of
these assumptions can and have been tested empirically [8,9],
the use of twin data to estimate heritability, in particular for
traits such as cognitive function, has been controversial [10].

Until now, it has been impossible to exclude a possible
confounding between genetic and non-genetic causes of family

resemblance. We propose an alternative approach to estimate
genetic variance that is based upon the observed proportion of
the genome that is shared by relatives and does not make any
assumptions about the variation between families.
The actual genome-wide relationship, defined as the

proportion of the genome that two relatives share IBD, varies
around its expectation because of Mendelian segregation [11–
14], except for MZ twins and parent-offspring pairs. We use
the term ‘‘actual’’ throughout, but other possibilities are
‘‘realized relationships’’ or ‘‘the proportion of the genome-
shared IBD.’’ It is possible to estimate this relationship with
the use of genetic markers. If these estimates are accurate,
then it is, in principle, feasible to estimate genetic parameters
within families, obviating the need for contentious assump-
tions about the sources of between-family variation.
In this study, we estimated heritability for height in humans

without making any assumptions regarding the causes of
resemblance between relatives. We present the relevant
theory and estimate the heritability of height from collections
of 3,375 full-sib pairs, using genome-wide estimates of actual
additive genetic relationships. Bias and accuracy of our
estimation approach was explored analytically and by
computer simulation. Ours is the first example of an estimate
of heritability in humans for which a possible confounding
between nature and nurture can be excluded.

Results

Simulated Data
We first assessed bias and accuracy of the estimates of

variance components from our method using simulation
studies and analytical predictions (see Materials and Meth-
ods). Table 1 shows the empirical mean and SE of the ML
estimate of the heritability from actual relationships between
sibling pairs and statistical power, and their theoretical
predictions, for a range of population parameters. As
predicted by theory (see Materials and Methods), the SE of
the estimates are large, unless the number of pairs is large

Table 1. Predicted and Empirical Power and Standard Errors of Heritability Estimation from Genome-Wide IBD Sharing between Sib
Pairs

n h2a f 2b Simulations Theory

Mean (h2)c SE(h2) Power Mean (h2) SE(h2) Powerd

2,500 0.4 0.0 0.27 0.17 0.13 0.21 0.28 0.22

0.2 0.41 0.28 0.28 0.40 0.39 0.27

0.6 0.0 0.43 0.22 0.36 0.43 0.26 0.40

0.2 0.60 0.29 0.58 0.60 0.34 0.56

0.8 0.0 0.65 0.21 0.66 0.64 0.23 0.66

0.2 0.70 0.16 0.92 0.80 0.27 0.90

10,000 0.4 0.0 0.31 0.13 0.52 0.31 0.14 0.52

0.2 0.39 0.19 0.64 0.40 0.20 0.65

0.6 0.0 0.52 0.12 0.87 0.51 0.13 0.87

0.2 0.60 0.17 0.97 0.60 0.17 0.97

0.8 0.0 0.73 0.11 1.00 0.72 0.11 0.99

0.2 0.75 0.08 1.00 0.80 0.14 1.00

aProportion of phenotypic variance due to additive genetic effects.
bProportion of phenotypic variance due to non-genetic family effects.
cThe mean and SE of the estimated heritability were calculated using equations given in the Materials and Methods.
dPower was calculated at 0.05 significance, using Purcell et al. [43].
DOI: 10.1371/journal.pgen.0020041.t001
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Synopsis

Quantitative geneticists attempt to understand variation between
individuals within a population for traits such as height in humans
and the number of bristles in fruit flies. This has been traditionally
done by partitioning the variation in underlying sources due to
genetic and environmental factors, using the observed amount of
variation between and within families. A problem with this approach
is that one can never be sure that the estimates are correct, because
nature and nurture can be confounded without one knowing it. The
authors got around this problem by comparing the similarity
between relatives as a function of the exact proportion of genes that
they have in common, looking only within families. Using this
approach, the authors estimated the amount of total variation for
height in humans that is due to genetic factors from 3,375 sibling
pairs. For each pair, the authors estimated the proportion of genes
that they share from DNA markers. It was found that about 80% of
the total variation can be explained by genetic factors, close to
results that are obtained from classical studies. This study provides
the first validation of an estimate of genetic variation by using a
source of information that is free from nature–nurture assumptions.



(10,000), the heritability is large (.0.6), or there is no residual
family effect. For 2,500 sib pairs, the SE of the heritability is
approximately 0.2 when the true value is 0.8. For 10,000 sib
pairs, the range of SE is from 0.08–0.19. The theoretical
predictions are accurate, in particular for the special case
when the proportion of variance due to non-genetic family
effects (f2) is zero. When the proportion of variance due to
non-genetic family effects is zero, the estimate of the
heritability is biased downwards, in particular when the
sample size is small (Table 1). This is because we constrain
variance components to be non-negative in our ML estima-
tion procedure. An analytical prediction of the bias is given
in Materials and Methods. When the heritability is large (0.8),
its estimate is biased downwards, even when the proportion
of variance due to non-genetic family effects was larger than
zero. Again this is the result of ML estimation, because the
sum of the proportion of variance due to genetic and non-
genetic factors cannot be larger than unity.

Data Application
There were a total of 4,401 quasi-independent sibling pairs

with estimates of genome-wide IBD sharing statistics. The
average proportion of the genome-shared IBD between the
sib pairs (the coefficient of additive genetic variance) was
0.498 (SE 0.0005, standard deviation [SD] 0.036), with a range
of 0.374–0.617. The distribution of the genome-wide additive
coefficients is shown in Figure 1. The mean and range of the
proportion of the genome for which a sibling pair shared two
alleles IBD (the coefficient of dominance variance, also
termed IBD2) was 0.248 (SE 0.0006, SD 0.040) and 0.116–
0.401, respectively. Hence, both mean sharing statistics were
slightly lower than the expected values of 0.50 and 0.25,

respectively. When comparing the mean sharing statistics to
their SE, there was evidence for a small but significant
departure from expectation (p ¼ 0.002 and 0.0002, for
genome-wide additive and dominance coefficients, respec-
tively, assuming a normal distribution of the test statistic).
However, the SE is under-estimated because not all pair-wise
sib comparisons are independent, so that the departure from
expectation is less significant than it appears from the
reported p-values. The SD of the mean (additive) IBD and
mean IBD2 (dominance) sharing proportions were 0.036 and
0.040, respectively. One quality control measure of our IBD
calculations is to test for independence of chromosome-
specific additive and dominance relationships. For the
combined dataset, 8/231 and 2/231 Spearman rank correla-
tions of the mean IBD sharing between chromosomes were
significant at the 0.05 and 0.01 level, respectively, when 12
and 2 were expected under the assumption of independent
segregation. For IBD2 sharing the corresponding numbers
were 9/231 and 1/231. The observed numbers are not
significantly different from expectation under the null
hypothesis of independent segregation of chromosomes (the
SD of the number of significant correlations at the 0.05 and
0.01 level under the null hypothesis is 3.3 and 1.5,
respectively).
Figure 2 shows the empirical variance of genome-wide

mean IBD and IBD2 sharing, relative to the expected value
from theoretical considerations (see Materials and Methods).
There is a remarkably good agreement between theory and
data, with a correlation between the theoretical and empirical
SDs across chromosomes of 0.98 for both mean IBD sharing
and mean IBD2 sharing. The correlation between mean IBD
and mean IBD2 sharing for 4,401 pairs was 0.91, close to the
theoretical value of 0.89 (Figure 3). This large correlation
implies a strong sampling correlation between the estimates
of additive and dominance variance.
ML estimators of heritability are shown in Table 2 for the

two datasets separately and for the combined dataset. For
each dataset, two models were fitted: a full model (FAE),
containing a non-genetic family effect (F), a genome-wide
additive effect (A), a residual error effect (E); and a reduced
model containing F and E effects only (FE). In all analyses, the
estimate of the residual family component was zero, and the
estimate of heritability 0.8. For the combined dataset (n ¼
3,375 pairs), the 95% confidence interval (CI) was from 0.46
to 0.85 (a SE of approximately 0.1) with strong statistical
support (p ¼ 0.0003) for a variance associated with genome-
wide IBD. The SE of the estimated proportion of variance due
to additive genetic variance (h2) is large relative to the
estimate. However, because the sampling correlation of the
estimates of the non-genetic and genetic variance is large and
negative, the estimate of the total proportion of variance
explained by genetic and non-genetic effects (i.e., the
predicted MZ correlation) is more accurate. For the
combined dataset, the ML estimate of this proportion is
0.80, with a 95% CI of 0.62–0.85. Hence, we have estimated
the equivalent of an MZ correlation without having such pairs
in our data.
The estimates from the FE model reflect the sibling

correlation of 0.40 and 0.39 for the adolescent and adult
datasets. Estimates of the proportion of variance due to
additive genetic effects from the AE model (not shown in
Table 2) were very close to twice the estimates of the

Figure 1. Empirical Distribution of Actual Additive Genetic Relationships

of 4,401 Quasi-Independent Pairs of Full Sibs

Histogram of the genome-wide additive genetic relationships of full-sib
pairs estimated from genetic markers.
DOI: 10.1371/journal.pgen.0020041.g001
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proportion of variance due to the family effect in the FE
model.

When genome-wide dominance was fitted in addition to F
and A, the log-likelihood did not increase significantly for the
combined dataset (unpublished data). However, there is
unlikely to be sufficient power to distinguish these compo-
nents with our sample size, consistent with our observed
correlation coefficient of 0.89 between the additive genetic
and dominance coefficients (Figure 3).

Discussion

We have shown that it is feasible to estimate genetic
parameters solely from segregation within families, without
making any assumptions regarding an underlying model for
between-family effects. In fact, our only assumption in the

analysis is that the additive genetic covariance between
relatives is proportional to the actual proportion of the
genome that is shared IBD. The resulting estimates of the
heritability for height (0.80, 95% CI, 0.46–0.85) and residual
family effects (0.00, 95% CI, 0.00–0.17) are very close to
estimates from twin studies [15], where the information
comes from the difference in correlation between MZ and DZ
twin pairs. Essentially, we have estimated the same parame-
ters from DZ and full-sib pairs only.
Previously, methods have been proposed to estimate

kinship and genetic parameters from marker data when
pedigree data are not available, for example, in natural
populations [16–18]. Relationship estimation and reconstruc-
tion in these methods are based upon identity-by-state
sharing of marker alleles. These methods have the same
principle as our approach, i.e., first estimating kinship from

Figure 2. Comparison of the Empirical and Theoretical Standard Deviations in Genome-Wide Sharing in 4,401 Quasi-Independent Pairs of Full Sibs

IBD sharing (A) and genome-wide IBD2 sharing (B) from marker data on 22 autosomes. The x- and y- axes are the theoretical and empirical SD,
respectively. Numbers around the regression line indicate chromosomes.
DOI: 10.1371/journal.pgen.0020041.g002
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marker data and subsequently estimating genetic variance
from the association between phenotype similarity and
estimated kinship. However, there are some important
differences between the methods. Firstly, our method is
based upon IBD sharing, i.e., we know the pedigree and
estimated actual relationships from marker data conditional
on the pedigree. The resulting estimates of actual kinship are
unbiased and have lower error variance, provided that the
pedigree is correct. Secondly, we estimate genetic variance
free from possible confounding with environmental factors.
In natural populations, even if the kinship were to be
estimated without error, there can still be a confounding
between genetic and environmental similarities and this
could lead to bias.

We do not suggest that all estimation of genetic (co)va-
riance from classical designs that utilize between-family
comparisons should be abandoned. On the contrary, such
designs, for example, those employing twin families, are in
principle powerful enough to separate genetic and non-
genetic causes of family resemblance if the statistical models
are correct or at least a good approximation of the true

underlying causes of variation. With sufficient data, our
approach allows the testing of hitherto untestable underlying
assumptions in other models and, for large samples, allows
the estimation of non-additive genetic variation for disease
susceptibility and quantitative traits. Therefore, the two
methods should be seen as complementary.
There is a continuum in the estimation of genetic

parameters from genome-wide IBD sharing to quantitative
trait loci (QTL) mapping. In QTL mapping, variation in IBD
sharing is maximal but many estimations/tests are performed.
For sib pairs, the variance of IBD sharing at a single location
is 1/8 [14,19–21], whereas it is only 0.0392 genome-wide.
Hence, relative to the mean there is about 82 times more
variation in IBD sharing between sib pairs at a particular
locus than in the genome-wide average [22]. The disadvantage
of QTL mapping is that a genome-wide search is performed
at many correlated locations, whereas the estimation of
genetic variance from genome-wide IBD sharing is a single
estimate. An intermediate between the two is to estimate the
proportion of additive genetic variance associated with a
chromosome [23–25]. The variance in proportion of a

Figure 3. Correlation between Genome-Wide Mean IBD and Mean IBD2 Sharing

The x- and y- axes are the genome-wide additive and dominance relationships, respectively. Each point represents the genome-wide additive and
dominance relationship for a sibling pair, estimated from genetic markers (n¼ 4,401 pairs).
DOI: 10.1371/journal.pgen.0020041.g003

Table 2. ML Estimates of Heritability of Height from Genome-Wide IBD Sharing between Sib Pairs

Data Model Estimates (95% CI) LRT a p-Valueb

f 2 h 2

Adolescents (n ¼ 931) FAE 0.00 (0.00–0.43) 0.80 (0.00–0.90)

FE 0.40 (0.34–0.45) 1.850 0.0869

Adults (n ¼ 2,444 ) FAE 0.00 (0.00–0.18) 0.80 (0.43–0.86)

FE 0.39 (0.36–0.43) 9.817 0.0009

Combined (n ¼ 3,375) FAE 0.00 (0.00–0.17) 0.80 (0.46–0.85)

FE 0.39 (0.36–0.42) 11.553 0.0003

aLikelihood ratio test statistic for the null hypothesis that h2 ¼ 0, calculated from the difference in log-likelihood between models FAE and FE.
bp-Value calculated assuming that the LRT is distributed as zero with a probability of ½ and v(1)

2 with a probability of ½.
LRT, likelihood ratio test.
DOI: 10.1371/journal.pgen.0020041.t002
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chromosome-shared IBD is intermediate between the sharing
proportion at a single location and genome-wide, as shown in
Table 3. We note that the emphasis in this study is on the
estimation of genetic parameters rather than its detection.
Hence, in contrast to QTL mapping where hypothesis testing
and p-values are important, we have concentrated on the
sampling variance of the estimated parameters, because for
most traits it is usually known that there is genetic variance,
and the scientific question is what proportion of observed
variation is genetic.

Although our estimates of the variation in mean IBD and
IBD2 sharing per chromosome are very similar to the
theoretical values (Figure 2) and consistent with recently
reported genome-wide sharing statistics from a sample of 498
sib pairs [22], a few caveats are required. Firstly, the
theoretical value may be too low for the true variance in
IBD sharing on a chromosome because in reality there may be
more crossovers than modeled [13,14]. Secondly, the empiri-
cal variance of IBD sharing is likely to be an underestimate
because the marker information was not perfect. If we assume
that our genome-wide average multipoint marker informa-
tion content was approximately 80%, then we would expect
to find a regression slope of the empirical on theoretical SD
in IBD sharing of ˛0.80¼ 0.89, close to the observed value of
0.92 (Figure 2A). Nevertheless, the correlations of 0.98
between empirical and theoretical values are extremely high.

We detected a small genome-wide deviation of the
observed IBD sharing statistics from expectation. Genome-
wide transmission distortion, which results in excess allele
sharing between relatives, has been reported previously [26].

Our results were driven by a deficit of the probability of
sharing two alleles IBD, hence we do not replicate the
findings of [26] with our large sample of 4,401 pairs.
Our simulation studies confirmed that a large number of

pairs is needed for accurate estimation, and showed that the
estimates of heritability were biased downwards when there
was no underlying source of non-genetic family resemblance.
This bias is the result of ML estimation because of the usual
constraints that estimated variance components have to be
non-negative and that the sum of the partitioned variance
ratios is bounded by zero and one. The observed bias is not
particular to our method because it applies to any variance
partitioning approach by ML, in particular when sampling
variances are large [27,28].
We have estimated a single additive genetic variance from

genome-wide segregation of marker loci within families, after
adjusting phenotypes for the fixed effects of sex and age at
measurement. However, genetic variances for males and
females and younger and older siblings may be different, and
the genetic correlation across these groups may be smaller
than unity. Although we have ignored these potential sources
of heterogeneity of genetic variance in this study because of
sample size considerations, models that include, for example,
sex-limitation effects are, in principle, straightforward to
implement.
We have ignored the contribution of the sex chromosomes

to genome-wide IBD. In humans, the X chromosome accounts
for 4% of genes and 5% of physical length [29]. If all
chromosomes account for genetic variation in proportion to
the number of genes or physical length, then our estimate of
heritability will be biased downwards by about 4% to 5%.
Although our sample size of 3,375 was sufficient to estimate

the heritability of height with reasonable accuracy, for
phenotypes with smaller heritability (and to distinguish
additive from dominance variance), larger sample sizes are
necessary. Such large datasets are in the process of being
generated, either from large national studies or by combining
samples across countries. For example, the GenomEUtwin
study will accrue over 10,000 sib pairs for linkage studies [30].
Therefore, in the near future we will be able to estimate
unbiased genetic parameters for traits that have been
controversial in the past due to the assumptions regarding
the (non-genetic) resemblance between relatives. If a large
population resource of relatives with measured phenotypes
were to be available, then a selective genotyping strategy in
which only concordant and discordant pairs are genotyped
may be efficient in estimating quantitative genetic parame-
ters accurately, for the same reason that such a design can be
powerful in gene mapping studies [31,32].
Our application was on a single quantitative trait and using

a simple pedigree structure. However, the method is entirely
general and can be applied to disease phenotypes, multiple
traits, and large arbitrary pedigrees. All that is required is
genome-wide estimates of IBD sharing between relatives,
observations on relevant phenotypes, large samples, and
software to estimate components of (co)variance.
There are limitations of the applied method, the main one

being that large sample sizes are required with dense marker
coverage of genotyped individuals. This may be unachievable
for most single labs now, but future large population-based
studies that have a family component, or pooling of sample
resources across studies, will have the desired effect of

Table 3. Theoretical Standard Deviation of IBD Sharing between
Sibs per Chromosome

Chromosome Length

(Mb)a
Length

(Morgan)a
SD(p) Equivalent Number

of Segmentsb

1 245.13 2.865 0.1411 6.28

2 243.16 2.633 0.1466 5.82

3 198.96 2.251 0.1571 5.06

4 191.51 2.122 0.1612 4.81

5 180.32 2.082 0.1625 4.73

6 169.96 1.922 0.1682 4.42

7 158.06 1.89 0.1694 4.36

8 145.7 1.733 0.1757 4.05

9 135.81 1.687 0.1777 3.96

10 134.6 1.735 0.1756 4.05

11 134.08 1.638 0.1798 3.87

12 131.43 1.742 0.1753 4.07

13 94.45 1.289 0.1978 3.19

14 85.13 1.238 0.2009 3.10

15 79.69 1.302 0.1971 3.22

16 89.51 1.342 0.1948 3.29

17 81.18 1.375 0.1929 3.36

18 75.33 1.242 0.2007 3.10

19 62.78 1.122 0.2084 2.88

20 61.38 1.025 0.2153 2.70

21 33.22 0.685 0.2451 2.08

22 33.11 0.861 0.2284 2.40

Total 2,764.5 35.781 84.79

aFrom [41].
bThe number of independent loci for which the mean variance in IBD sharing would be
equivalent to the observed variance for the whole chromosome (¼ 1/[8var(p)]).
DOI: 10.1371/journal.pgen.0020041.t003

PLoS Genetics | www.plosgenetics.org March 2006 | Volume 2 | Issue 3 | e410321

Heritability from Actual Relationships



increasing sample size. A second limitation is that sufficient
markers need to be genotyped to obtain an accurate estimate
of genome-wide sharing statistics. This is less of a problem
because many samples that are suitable for our suggested
analyses are genotyped for linkage studies, and marker
density is likely to increase in the near future because of
the availability of relatively cheap single nucleotide poly-
morphism genotyping. With the advent of high density single
nucleotide polymorphism genotyping platforms, the error in
estimation of genome-wide IBD sharing between relatives is
likely to be small, and we have assumed, in the present study,
that it is negligible. If the estimation of genome-wide IBD
sharing is less than 100% accurate, then the variation in IBD
sharing between pairs is less than the true variation, resulting
in less powerful analysis but still unbiased estimates [33]. With
less complete marker coverage, the estimate of the propor-
tion of alleles shared IBD is unbiased ðEðpjp̂Þ ¼ p̂Þ but has
larger prediction error variance. For a single location in the
genome, we derived the prediction error variance as:
varðpjp̂Þ ¼ 1

4P1ð1� P1Þ þ P2ð1� P2Þ � P1P2, with Pi the prob-
ability of having i alleles IBD; note that this variance could be
used as a weight in gene mapping studies. To a first order
approximation, the sampling variance of the estimate of the
heritability, relative to the situation of perfect marker
information, is increased by the reciprocal of the average
genome-wide information content [34]. A third limitation is
that it is difficult to disentangle additive from non-additive
effects. However, with sufficient data the large correlation
between additive and dominance coefficients is not an issue,
and one could even consider estimating additional non-
additive effects, for example additive-by-additive or additive-
by-dominance effects.

In conclusion, we have shown that it is feasible to estimate
genetic variance entirely within families, by correlating
phenotypes and genome-wide similarity. Our assumption-free
method facilitates a complete separation of genetic and
environmental causes of family resemblance and will allow
the estimation and testing of non-additive sources of variation.

Materials and Methods

Variance of genome-wide IBD sharing. The variance of the
proportion of chromosome segments that are IBD between relatives
has been derived by a number of authors for pairs of full sibs
[13,14,23,33,35], complex pedigrees [12,36,37], for inbred individuals
[38], and for experimental backcross populations [39,40]. In the case
of full sibs we give a derivation for both the additive and dominance
component of covariance, and their correlation, following the
approach of Hill [39].

Additive effects. For a given sib pair, the genome-wide mean IBD
sharing (p) is the sum of the proportion shared from the paternal (p)
and maternal (m) contribution,

p ¼ ½pp þ½pm; and varðpÞ ¼¼varðppÞ þ¼varðpmÞ: ð1Þ

Hence, to calculate the variance it is sufficient to consider the
contribution from a single parent only. For parent k, the sharing of
alleles by progeny depends on the proportion of alleles shared due to
the parent’s paternal or maternal gamete. Let di be an indicator
variable for locus i, which is one if both sibs have inherited the
paternal allele or both sibs have inherited the maternal allele, and
zero otherwise. Then,

EðdiÞ ¼½ and varðdiÞ ¼¼: ð2Þ

The covariance of the indicator variables at two loci (i and j) is:

covðdi; djÞ ¼ EðdidjÞ � EðdiÞEðdjÞ ¼¼½1þ ð1� 2rÞ2� � ð½Þ2

¼¼ð1� 2rÞ2: ð3Þ

Assuming the Haldane mapping function, the covariance can be
written as:

covðdi; djÞ ¼¼expð�4dijÞ; ð4Þ

with dij the distance (in Morgan) between the loci. For n loci, the
variance of chromosome-wide sharing between two sibs is:

varðpkÞ ¼ ð1=n2Þð¼ÞRRexpð�4dijÞ ð5Þ

(following [39]). If n becomes very large this equation can be expressed
as an integral [12,39], varðpkÞ ¼ 1

4

R l
0

R l
0 e�4jx1�x2 jdx1dx2¼ 1

8l 2 ðl� r2l=2Þ
with l the length of the chromosome (in Morgan) and r2l the
recombination fraction for a segment of length 2l. Hence, the total
variance in IBD sharing between two siblings for chromosome i of
length l is:

varðpiÞ ¼ 2ð¼ÞvarðpkÞ ¼ ð16l2Þ�1ðl�½r2lÞ: ð6Þ

Finally, genome-wide p is, pg ¼ (1/L) R(li pi), with L ¼ R(li), and:

varðpgÞ ¼ ð1=L2ÞRl2i ð16liÞ
�1ð1�½r2li=liÞ

¼ ½1=ð16L2Þ�½L�½Rr2li �
’ 1=ð16LÞ�1=ð3L2Þ; ð7Þ

because there are 22 autosomes and r2li ’ ½. These results are the
same as those of Guo [11], whose derivations were based upon Markov
chains. They imply, that to a first order approximation, the variance
in genome-wide IBD sharing is a function of the total genome length
only [12,36,38,39]. For L ¼ 35 Morgan, the SD of genome-wide IBD
sharing is approximately 0.039. Table 3 shows a breakdown in the
variance of IBD sharing per chromosome and the equivalent number
of independent loci. It was constructed using the above equations,
with physical and genetic lengths from [41], and using the sex-
averaged recombination map. For comparison, the SD of the
proportion of alleles shared at a given locus is 0.354.

Dominance. Dominance variance is a function of the probability
that two siblings share both alleles IBD (¼ IBD2). In a non-inbred
population, this probability is also called the coefficient of fraternity
[2]. The prior probability that full sibs share two alleles IBD is ¼, and
the mean and variance of an indicator variable that is one if both
alleles are shared IBD and zero otherwise is ¼ and 3/16, respectively.
Note that the variance of IBD2 sharing at a single locus is 1.5 times
the variance of mean IBD sharing. The probability that the sibs share
two alleles IBD at a linked locus, given that they are IBD2, is (1� r)4þ
2[(1� r)r]2þ r4¼ [(1� r)2þ r2]2. Hence the covariance of the indicator
variable (d) at loci i and j is:

covðdi; djÞ ¼ EðdidjÞ � EðdiÞEðdjÞ ¼¼½ð1� rÞ2 þ r2�2 � 1=16: ð8Þ

After some algebra it can be shown that the variance of the mean
IBD2 sharing (pdi) on a chromosome of length l is:

varðpdiÞ ¼ ½1=ð16l2Þ�½ð5=4Þl�½r2l � ð1=16Þr4l�: ð9Þ

The genome-wide variance in mean IBD2 sharing is:

varðpdÞ ¼ ½1=ð16L2Þ�½ð5=4ÞL�½Rr2li � ð1=16ÞRr4li �
’ 5=ð64LÞ � 99=ð256L2Þ’ 5=ð64LÞ � 1=ð3L2Þ: ð10Þ

Hence, the variance of the genome-wide IBD2 sharing is larger (by
about 30% if L¼35) than the variance of the genome-wide mean IBD
sharing. The correlation between mean genome-wide allele sharing
and mean genome-wide IBD2 sharing is the ratio of the SD,

rðpa;pdÞ ¼ rðpaÞ=rðpdÞ’½1=ð16LÞ=f5=ð64LÞg�0:5 ¼ 0:89: ð11Þ

The actual relationship between full sibs can be estimated with
genetic markers. For fully informative markers and close relatives,
only a few markers are needed per chromosome to capture the
proportion of alleles shared IBD [23,24]. This is because the number
of recombination events per chromosome is small.

Sampling variance of estimators of genetic variance. For n sib pairs,
the simplest estimation procedure is to apply the Haseman-Elston
regression analysis [33] of the squared difference between the
phenotypes (Yi1 and Yi2) of the ith pair of siblings on the estimate
of their genome-wide IBD proportion (pi),

ðYi1 � Yi2Þ2 ¼ aþ bpI: ð12Þ

The parameter b is proportional to the within-family additive
genetic variance, adjusted for inbreeding in the parents,

b ¼ �2r2
A½1�½Fmum �½Fdad� ð13Þ

[2,3,33]. We will assume that parents are not inbred, so that the
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regression slope equals minus twice the additive genetic variance.
Then, an estimate of the narrow sense heritability is simply,

ĥ
2 ¼ �b̂=ð2r̂2

pÞ ð14Þ

with r̂2
p an estimate of the total phenotypic variance. If we ignore the

sampling correlation between the estimate of the regression
coefficient and the total phenotypic variance, then the sampling
variance of the heritability is, using a Taylor series expansion [2]:

varðĥ2Þ’ð¼Þ½b=r2
p �
2½varðb̂Þ=b2 þ varðr̂2

pÞ=r4
p �

¼ h4½varðb̂Þ=ð4r4
ph

4Þ þ 1=n�: ð15Þ

The variance of the regression coefficient is approximately,

varðb̂Þ’ 8ð1� tÞ2=ðnvarðpÞ � 4h4=nÞ
h i

r4
p ; ð16Þ

with t the sib intra-class correlation [20,21]. Hence, the sampling
variance of the estimate of the narrow sense heritability is,
approximately,

varðĥ2Þ’ 2ð1� tÞ2=½nvarðpÞ�: ð17Þ

This is fully analogous to the estimation of the proportion of
variance explained by a single QTL, the only difference being the
variance in genome-wide IBD sharing. The non-centrality-parameter
(NCP) for a test of significance of genome-wide additive genetic
variance is,

NCP ¼ nh4varðpÞ=½2ð1� tÞ2� ð18Þ

which reduces to the form given by Sham and Purcell [20] and
Visscher and Hopper [21] for a single QTL when var(p) ¼ 1/8.
Following the derivations in Sham and Purcell [20] and Visscher and
Hopper [21], the SE of the estimate of the heritability and NCP when
using both the squared difference and squared sum of the sib pairs
are, approximately,

varðĥ2Þ’ð1� t2Þ2=½ð1þ t2ÞfnvarðpÞg� ð19Þ

and

NCP ¼ nh4varðpÞð1þ t2Þ=ð1� t2Þ2: ð20Þ

Hence, power calculations for QTL mapping can be used to assess
the sample size required to ‘‘detect’’ genome-wide additive genetic
variance. For example, to detect a heritability of a given size is
equivalent to detecting aQTL at a fully informative locus explaining q2

of the phenotypic variance when h4 var(p) ¼ (1/8)q
4, i.e., a QTL

explaining about 0.11h2 of the phenotypic variance.
ML estimation uses more information than the difference between

the sib pairs, and the resulting estimate of the heritability is more
accurate. For a single QTL asymptotically (large sample size and a
QTL that explains a small amount of variance), the sampling variance
of the ML estimator is that of the least squares estimator, when both
the squared differences and sums are used in the regression analysis
[20,21]. For genome-wide estimation, the proportion of variance
explained by p is small (; 0.11h2), so it seems reasonable to use the
predictions for the regression analysis. However, the predictions
differ dramatically if there is no other source of family resemblance
than sharing of genetic effects. The following approximate results
were derived assuming the simple equation:

t̂0 ¼ f̂
2 þ 0:5ĥ

2 ð21Þ

with t̂0 the estimate of the intra-class correlation under the null
hypothesis of no genome-wide additive genetic effect, f̂ 2 the estimate
of the proportion of the variance due to residual familial effects
under the alternative hypothesis, and ĥ 2 the estimate of the
heritability under the full model. Equation 21 is a good approx-
imation because the intra-class correlation, which is estimated
relatively precisely under the reduced model, is essentially parti-
tioned into a genetic and non-genetic component in the full model.
The sampling correlation between the estimates of f 2 and h2 is
approximately �1. If there are no constraints imposed on the
estimates, then, using results from [42],

varðt̂0Þ’ð1� t2Þ2=n ð22Þ

varðĥ2Þ’ð1� t2Þ2=½n varðpÞð1þ t2Þ� ð23Þ

(from [20,21]). By difference,

varðf̂ 2 Þ’ varðt̂0Þ þ
1
4
varðĥ2Þ’ 1

4
varðĥ2Þ: ð24Þ

Hence, the SE of the estimate of the non-genetic familial
resemblance is approximately half of the SE of the estimate of the
genome-wide heritability. The above SE of the estimates can be used
to calculate the probability that the ML estimate is zero, using
standard normal distribution truncation theory [3] with truncation
values of �f 2/r( f̂ 2) and �h2/r(ĥ 2), respectively. This was validated
using simulations (unpublished data).

Conditional on f 2¼ 0. When the true residual familial component
is zero, the ML estimate is zero with a probability of ½, and . 0 with a
probability of ½ [27,28]. When the estimate of f 2 ¼ 0 then the
estimate of the heritability is approximately twice the intra-class
correlation of the sibs. Hence, asymptotically,

ĥ
2j f̂ 2 ¼ 0;Nðh2; 4ð1� t2Þ2=nÞ: ð25Þ

When the estimate of f 2 . 0, the mean estimate of the familial
component is, approximately,

Eð f̂ 2j f̂ 2.0Þ ¼ irð f̂ 2Þ ð26Þ

with i the mean value of a truncated standard normal distribution.
For a truncation value of 0, as is the case here, i ¼ 0.798 [3]. The
variance of the truncated distribution is:

varð f̂ 2j f̂ 2.0Þ ¼ ð1� i 2Þvarð f̂ 2Þ: ð27Þ

Taking the whole of the distribution of the estimate of f 2 gives the
mean and variances as:

Eð f̂ 2j f 2 ¼ 0Þ ¼ 0:5irð f̂ 2Þ ¼ 0:4rð f̂ 2Þ; ð28Þ

and

varð f̂ 2j f 2 ¼ 0Þ ¼ 0:5ð1� 0:5i 2Þvarð f̂ 2Þ ¼ 0:34varð f̂ 2Þ ð29Þ

Similarly for the estimate of the heritability,

Eðĥ2j f 2 ¼ 0Þ’ h2 � irð f̂ 2Þ ð30Þ

and

varðĥ2j f 2 ¼ 0Þ’ 0:5ð1� 0:5i 2Þvarðĥ 2Þ ¼ 0:34varðĥ2Þ: ð31Þ

Equations 23, 30, and 31 were used to predict the mean and SE of
the estimate of the heritability and were found to be close to
simulation results for large samples (Table 1). For small samples the
distribution of the estimates of the two variance ratios could be
approximated by a truncated bivariate distribution. This situation is
more complex because the probability that either estimate is zero as
well as the probability that the estimates are constrained at unity
needs to be considered jointly. If there is no residual non-genetic
family resemblance then the SE of the estimate of the heritability is
nearly halved relative to the case where such effects are present. The
case of no residual family resemblance is very unlikely for QTL
mapping (where the effects of genes elsewhere in the genome and
common environmental effects cause resemblance) but realistic for
genome-wide analysis of highly heritable phenotypes. The reduction
in SE is at the expense of a downward bias in the estimate of the
heritability.

Models. The basic additive genetic model, fitted in both the
simulation study and data application, is Yij¼ lþ FiþAijþEij, with l
the fixed effects of the mean and F, A, and E the random effects of
non-genetic family, additive genetic, and residual factors, respec-
tively. The covariance between the phenotypes of two siblings is
modeled as cov(Yi1,Yi2) ¼ var(Fi) þ cov(Ai1,Ai2) ¼ rF

2 þ pa(i)rA
2, and

cov(Yij,Ykl) ¼ 0 if i 6¼ j. Extensions to non-additive models are
straightforward, in principle. For example, the covariance for a
model containing dominance (D) and additive-by-additive (AA)
effects is: cov(Yi1,Yi2) ¼ rF

2 þ pa(i)rA
2 þ pd(i)rD

2 þ pa(i)pa(i)rAA
2.

Simulation. Simulations were performed to validate the predic-
tions of the sampling variance of the heritability and statistical
power. Genome-wide IBD sharing between pairs of sibs and their
phenotypes were simulated from a simple model,

pi ;Nð0:5; 0:042Þ;Yij ¼ lþ Fi þ Aij þ Eij; ð32Þ

with l, F, A, and E defined as before, with distributions

Fi ;Nð0; f 2Þ;Ai1 ;Nð0; h2Þ;Ai2jAi1 ;NðpaðiÞAi1; ð1� p2
aðiÞÞh2Þ and

Eij ;Nð0; 1� f 2 � h2Þ:
ð33Þ
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Regression and ML analyses were performed (for details, see [21]).
The number of pairs (n) in the simulation was either 2,500 or 10,000;
heritability values were 0.4, 0.6, and 0.8; and the proportion of
variance due to non-genetic family effects was either 0.0 or 0.2. For
each set of population parameters, 1,000 replicates were run. Power
was calculated using Web-based software for power of QTL analysis
[43] at a type-I error rate of 0.05, which is appropriate because we
performed a single hypothesis test.

Application to data. We estimated the mean and variance of
genome-wide IBD sharing from 4,401 quasi-independent full-sib
pairs, and applied the ML estimation method to 3,375 quasi-
independent full-sib pairs with both marker data and phenotypic
measurements on height. These data were collected from two cohorts
of Australian twins and their siblings. Phenotypes for the adolescent
cohort were collected in the context of continuing longitudinal
studies examining risk factors for melanoma [44] and cognitive
functioning [45]. For this cohort, height was measured during a
clinical examination using a stadiometer at ages 12, 14, and 16; the
most recent measurement being used in the current analyses. In the
first instance phenotypes for the adult cohort (consisting of twins
registered with the Australian Twin Registry born prior to 1971) were
collected from self-report questionnaires. Through their subsequent
participation in a variety of studies, 58% of the twins included here
attended a clinical examination in which height was measured using a
stadiometer [15,46]; self-reported height was analyzed if no clinical
measurement existed. Correlation between clinically measured and
self-reported height was 0.92 in individuals measured both ways [15].
Age at time of measurement was used as a covariate in both cohorts.

Genotypic information was available for a subset of the adolescent
and adult participants. For the adolescent cohort, genotypic
information was available for 1,201 individuals from 500 families,
yielding 950 quasi-independent full-sib pairs. Genotypic information
was available for up to 791 autosomal markers. The number of
markers per participant in the current study ranged from 211 to 791,
with a mean and SD of 588 and 194, respectively, giving an average
marker spacing of 6 cM per genotyped individual. The genotyping,
error checking, and cleaning of these data have been described in
detail elsewhere [47]. For the adult cohort, genotypic information was
available for 3,804 individuals from 1,512 families, yielding 3,451
quasi-independent full-sib pairs. Genotypic information was available
for up to 1,717 autosomal markers. The number of markers per
participant in the current study ranging from 201 to 1,717, with mean
and SD of 628 and 264, respectively, and the average marker spacing
was 5.6 cM per individual. Details of the genotyping, error checking,
and cleaning strategies of these data are given elsewhere [48].

Phenotypes for height were missing on 481 individuals, eight in the
adolescent cohort and 473 in the adult cohort. The number of sib
pairs for which both individuals had a measured phenotype for the
adolescent cohort, the adult cohort, and the combined cohort was
931, 2,444, and 3,375, respectively.

IBD probabilities at 1 cM intervals were calculated using Merlin
[49], and the estimate of chromosome and genome-wide IBD sharing
was enumerated by averaging the IBD probabilities over the length of
a chromosome and the whole genome, respectively.

Each dataset was first adjusted for fixed effects, using a general
linear model in which sex was fitted as a fixed factor and age at
measurement as a linear covariate. Residuals from this analysis were
standardized by the residual variance for each dataset because there
was some evidence of heterogeneity of variance: the residual SD for
the adolescent and adult dataset was 7.71 cm and 6.89 cm,
respectively.

ML analysis was performed using Mx [4]. The full model, termed
FAE, contained F and A and E. The covariance between the
phenotypes of sibs one and two of pair i was modeled as cov(Yi1,Yi2)
¼ rF

2 þ pa(i)rA
2, with pa(i) the estimate of the genome-wide actual

additive relationship of the sibling pair. Reduced models FE and AE
were subsequently fitted. A likelihood-ratio-test was performed to
test the null hypothesis that A was zero, by comparing the MLs of
models FAE and FE. A p-value was calculated assuming that the test
statistic has an asymptotic distribution that is 0 with a probability of
½ and a one degree of freedom v2 with a probability of ½ [27,28]. CIs
of the variance ratios were calculated by Mx and verified by a profile
likelihood approach, in which one variance component at a time was
changed from its ML value, while maximizing the likelihood for the
remaining parameters, until a drop in twice the log-likelihood of 3.84
was reached. In addition to estimating the ML estimate of the
variance components for F, A, and E, the ML estimate of (FþA) and
its 95% CI were estimated. This was performed because the estimates
of F and A have a large negative sampling correlation, so that the
estimate of their sum is more precise than the estimate of the
individual components.
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