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The gas-sensing properties of spinel and orthorhombic ferrites (NiFe2O4, CoFe2O4 and LaFeO3 respectively) as
well as cubic nickel–zinc stannates Zn2−xNixSnO4 (with x=0, 0.8) prepared by self-propagating high-
temperature synthesis (SHS) are reported. This is the first report of using an SHS derived powder for gas sens-
ing applications. The gas response of the materials was investigated against a range of gases (ethanol, ammo-
nia, propane, CO, ethane, ethene) at a variety of operating temperatures. Good gas response behavior was
found in the case of the cubic nickel–zinc stannates with excellent selectivity toward ethanol.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

There is a need for newmaterials for chemiresistive gas sensors. Cur-
rent materials suffer from significant cross sensitivity issues [1]. Com-
plex metal oxides such as ferrites have not been extensively explored
[2]. Heterogeneous combustion (or self-propagating high-temperature
synthesis (SHS)) is a relatively new, but widely used synthetic method
for the production of functional oxide ceramics, cermets and compos-
ites [3,4]. An SHS synthesis involves the rapid reaction of the starting
mixture in a combustion wave with the direct formation of the product
occurring almost instantly. Here we report the SHS synthesis of nickel
and cobalt spinel ferrites (NiFe2O4, CoFe2O4), orthorhombic lanthanum
ferrite (LaFeO3) as well as zinc–nickel stannate (Zn2−xNixSnO4 with
x=0 and 0.8). We have fabricated gas sensors from these materials
and have evaluated their resulting gas sensing properties.

2. Experimental

The combustion process was carried out in air with mechanically
ground mixtures of appropriate metal (Fe, Co or Zn), metal oxides
(used as diluents) and NaClO4. All the reagents were obtained from
the Aldrich Chemical Company and used as supplied. Precursor mate-
rials were combined in stoichiometric quantities according to the fol-
lowing reactions:

NiO þ Fe þ 0:5Fe2O3 þ 0:375NaClO4→NiFe2O4 þ 0:375NaCl ð1Þ
l rights reserved.
Co þ Fe2O3 þ 0:25NaClO4→CoFe2O4 þ 0:25NaCl ð2Þ

La2O3 þ 2Fe þ 0:75NaClO4→2LaFeO3 þ 0:75NaCl ð3Þ

Zn þ ZnO þ SnO2 þ 0:5NaClO4→Zn2SnO4 þ 0:5NaCl ð4Þ

0:8NiO þ 1:2Zn þ SnO2 þ 0:3NaClO4→Zn1:2Ni0:8SnO4 þ 0:3NaCl ð5Þ

The SHS reaction was driven by the exothermic oxidation of Fe, Zn
or Co metal. Sodium perchlorate was used as the internal oxidizing
agent in the reaction. Appropriate metal oxides act as a heat sink.
This starting material (~1–2 g) was pressed isostatically with a pres-
sure of 1 t into pellets with diameter of 13 mm and thickness of 2 mm.
A REKROW RK-2060 Micro Torch (UK) was used to ignite the pellets.
This promoted an orange-yellow propagation wave, which traveled at
a velocity between 1.0 and 1.5 mm s−1 and reached a maximum tem-
perature of 1350–1500 K. The products from the reaction were
ground and washed with deionized water to remove sodium chloride
from the product. The resulting powders were sintered at 1420 K–2 h
(1)–(2) and at 1670 K–36 h (3) respectively (4 and 5 were not sin-
tered). The powders were then sieved through a 150 μm sieve and
mixed into an ink using a previously reported method [5]. The as pre-
pared inks were printed directly on gold inter-digitated patterned
electrodes on 3×3 mm alumina chips and calcined in a furnace at
600 °C for 2 h to burn out the organic phase of the ink and fix the
powders to the sensor chip surface. The fired chips had 50 μm plati-
num wire spot-welded onto the gold contacts of the chip, which are
used to suspend the sensor on stainless steel pins in molded polyphe-
nylene sulfide housings.
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Fig. 1. X-ray diffraction patterns of the sensor materials.
Fig. 3. Gas response (Gn or Gp for LaFeO3) of the sensors to ethanol at their optimal
operating temperatures.
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3. Results and discussion

The prepared sensors were then analyzed by X-ray powder dif-
fraction and scanning electron microscopy (SEM). X-ray powder dif-
fraction (Fig. 1) showed that single phase cubic spinel structures
were produced for the sintered ferrites (1)–(2) as well as for pure
and substituted stannates (4)–(5). The lanthanum ferrite (3) was
found to be orthorhombic with the following lattice parameters:
a=5.560, b=5.551, c=7.854 Å. The cubic spinels had the following
lattice parameters: (1) — 8.331 Å; (2) — 8.339 Å; (4) — 8.657 Å and
(5) — 8.608 Å. These lattice parameters were identical to those
reported in the literature within experimental error [6–9].

Scanning electron microscope imaging of the samples (Fig. 2) in-
dicated an open porous morphology with an average particle size of
1 μm for the CoFe2O4, Zn2SnO4 and Zn1.2Ni0.8SnO4 samples (Fig. 2B,
D and E respectively). The NiFe2O4 and LaFeO3 samples (Fig. 2A and
C respectively) had significantly different morphologies and larger
crystallite sizes. The NiFe2O4 morphology consisted of large (several
microns) multifaceted crystals densely packed on top of each other.
The LaFeO3 morphology consisted of large crystals with extended
layer growth, leading to the production of a large number of step
and kink sites (Fig. 2C).
Fig. 2. Scanning electron microscope images of the sensors. A) Ni
Gas sensing experiments on the screen-printed sensors were per-
formed on an in-house test-rig [10] designed to maintain up to six
sensors at constant operating temperature (varied between 300 and
600 °C) via a heater driver circuit connected to each sensor's heater
track. Resistance measurements were taken using a Keithley multi-
meter. The sensors were tested with a range of gases (ethanol, eth-
ane, ethene, propane, propylene, ammonia and carbon monoxide,
all from BOC gases) in environmentally relevant concentrations [11],
all diluted using synthetic air.

Fig. 3 shows the five sensors concentration dependent responses to
ethanol gas at their optimum operating temperatures. All of the sensor
materials gave n-type responses to ethanol (Gas response, Gn=
Resistance in test mixture/Resistance in air) with the exception of the
LaFeO3 sensor, which gave a p-type response (Gas response, Gp=
Resistance in air/Resistance in test mixture). All of the sensors gave
measureable responses to ppm levels of ethanol gas, although in the
case of the Zn2SnO4 and Zn1.2Ni0.8SnO4 sensors this was appreciably
higher inmagnitude than the others; responses of ~9 to 20 ppmethanol
rather than 2 or less. The CoFe2O4, NiFe2O4 and LaFeO3 sensors show
only a limited dynamic range, while the Zn2SnO4 and Zn1.2Ni0.8SnO4

sensors have an extended dynamic range, with gas responses of almost
ten being achieved on exposure to 20 ppm ethanol.
Fe2O4. B) CoFe2O4. C) LaFeO3. D) Zn2SnO4. E) Zn1.2Ni0.8SnO4.
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Fig. 4. Gas responses (Gn or Gp for LaFeO3) of the sensors to a variety of reducing gases
at the sensors optimal operating temperatures.
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Fig. 4 shows the response of the sensors to a variety of gases in en-
vironmentally important concentrations. In all cases the sensors show
some selectivity toward ethanol, in the case of the Zn2SnO4 and Zn1.2-

Ni0.8SnO4 sensors this was especially significant with gas responses at
least double that of 50 ppm ammonia.

The enhanced response of the Zn2SnO4 and Zn1.2Ni0.8SnO4 sensors
can be attributed in part to the open and porous microstructure of the
as prepared sensors (Fig. 2). The responses of the CoFe2O4, NiFe2O4

and LaFeO3 sensors were broadly similar despite the samples having
significantly different microstructures. Interestingly the LaFeO3 sen-
sor gave significant gas responses, particularly to ethanol gas, in
spite of the poor porosity of the sample. The relatively high sensitivity
in this case is attributed to the large number of step and kink sites
that may allow for the preferential adsorption and ionization of oxy-
gen at the material interface.

Only a small amount of gas sensing work on NiFe2O4, LaFeO3 and
Zn2SnO4 has been previously reported [2,12–14]; in all cases a limited
number of gases were examined and poor sensitivity and selectivity
were found [15,16]. Where sensors were found to be selective toward
a particular gas, large concentrations were examined [17,18], far in
excess of what can be reasonably expected as environmental pollut-
ants [11], typically in the region of 200–1000 ppm. The complex
metal oxide sensors prepared here by an SHS route give far greater
sensitivity and selectivity (Fig. 4) than those previously prepared.

4. Conclusion

A novel self-propagating high-temperature synthesis of these
materials has been performed and their application as gas sensors
for environmental monitoring has been demonstrated. SHS gives
good control over phenomena such as particle size and morphology
that allows gas sensor performance and gas selectivity to be greatly
improved. This route shows great promise for the production of com-
plex oxide materials for gas sensing applications that show improved
selectivity and sensitivity.
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