
Operational Semantics for Declarative
Networking

Juan A. Navarro and Andrey Rybalchenko

Max Planck Institute for Software Systems

Abstract. Declarative Networking has been recently promoted as a
high-level programming paradigm to more conveniently describe and
implement systems that run in a distributed fashion over a computer
network. It has already been used to implement various networked sys-
tems, e.g., network overlays, Byzantine fault tolerance protocols, and
distributed hash tables. Declarative Networking relies upon a rule-based
programming language that resembles Datalog and allows one to declar-
atively specify the flow of networking events. However, the presence of
asynchronous communication, distribution, and imperative modification
of the program state in Declarative Networking applications have been
an obstacle for defining its semantics. Currently, the reference semantics
is determined by the runtime environment only, which hinders further ap-
plication development and makes any efforts to develop program analysis
and verification tools impossible. In this paper, we propose an operational
semantics for Declarative Networking that addresses these problems. The
semantics is parameterized to keep open a design space required at the
current stage of the language development. We also report on our first
experience with an interpreter for Declarative Networking applications
that implements the proposed semantics.

Keywords: Declarative networking, programming language semantics,
distributed systems.

1 Introduction

Design and implementation of distributed systems is a challenging task that re-
quires research efforts from various perspectives. In addition to improvements
achieved by applying more sophisticated communication protocols, novel system
designs, and more efficient algorithms, programming languages can make a sig-
nificant impact on the implementation process by supporting the programmer
with adequate constructs and primitives, e.g., control statements, type systems,
and libraries [1–6]. In this line of research, Declarative Networking stands out
as a high-level programming paradigm to more conveniently describe and imple-
ment distributed applications that run over computer networks [5].

The leading thought behind the Declarative Networking approach is to carry
over declarative programming techniques inspired by Datalog to the domain of
systems and networking applications. It builds upon a rule-based programming
language called P2 that allows the programmer to declaratively specify the flow

of networking events. Compared to the traditional approaches that use general
purpose imperative languages, e.g., C++ [7] and Java [8], the implementations
written in P2 reduce the code base size by several orders of magnitude, while
improving its clarity and succinctness.

The distinctive features offered by Declarative Networking attracted interest
in the networking and distributed systems community, in both academia and
industry. A growing number of implementation efforts have chosen P2 as the
programming language. The main applications are various network protocols,
including sensor networks, Byzantine fault tolerance, and distributed hash tables,
see e.g. [9, 4, 10, 11]. The literature describing the resulting systems attributes
their success, to a large extent, to the Declarative Networking paradigm.

The initial success and increasing adoption of Declarative Networking encour-
ages the development of program analysis and verification tools for applications
written in P2. These tools require a program semantics as a starting point, e.g.,
in order to simulate the execution of P2 programs on symbolic inputs, or to trace
the flow of communication events through a sequence of rule invocations.

Unfortunately, a well-defined semantics for P2 has not been identified yet.
Asynchronous communication, distribution, and presence of imperative modi-
fications of the program state have been an obstacle. An additional source of
complexity comes from its database-oriented setting that uses distributed query
processing machinery as a basic vocabulary to define semantics. The existing
specifications are incomplete and represented in an informal style that allows
contradicting interpretations, as we show by examples in Section 3. Currently,
P2 semantics is implicitly determined by the runtime environment [12], which in
turn deviates from the descriptions in the literature [13, 5]. This state of affairs
hinders further development of Declarative Networking applications and makes
any efforts to provide program analysis and verification tools for P2 impossible.

In this paper, we propose a parameterized operational semantics for Declar-
ative Networking, which addresses the open questions about the semantics of P2
programs. The semantics is given by a state transition system and is represented
by an algorithm that defines the transition relation of a given P2 program. The
algorithm contains a collection of parameters that determine the main character-
istics of P2 computations, e.g., when the effect of rule application is propagated
to the program state. We avoided a presentation of the algorithm with some
fixed valuation of the parameters, since any commitment to a particular set of
design choices might be premature at this stage of the language’s development.

In order to show the applicability of our approach we have also developed
a P2 interpreter which simulates the execution of the parametrized semantics
presented in this paper. This allows one to experiment with different choices of
semantics and have a better understanding on the impact that these parameters
have. This implementation, moreover, is a first stepping stone towards the de-
velopment of verification and symbolic execution tools. Moreover, after coupling
it with a networking back-end, it will also provide a full-fledged P2 interpreter.

In summary, our proposed semantics generalizes and unifies both specifica-
tions as presented in the literature and determined by the runtime environment.

This can be used as a starting point for the development of new interpreters,
verification and analysis tools built on top of a formally defined semantics.

Related work. The challenges of distributed programming are addressed by ac-
tive efforts in development of adequate programming languages and extensions.
The recent developments include Acute [6], Alice [14], Curry [3], Erlang [1], Jo-
Caml [2], Mace [4], and P2 [5]. The recurrent theme is to provide high-level
programming abstractions for dealing with distributed computation and com-
munication. Most of these languages follow functional and logic programming
paradigms and their combinations. Mace is an exception that provides means for
the specification of distributed protocols as transition systems that are compiled
to C++. Statically typed functional languages Acute, Alice, and JoCaml extend
the type discipline to values that are communicated over the network [2, 15, 6].
Curry, which is based on multiple paradigms, strives for a seamless integration
of distribution in the context of logical variables, non-determinism, and search.

Many of the above efforts provide experimental platforms for studying dis-
tributed programming languages. Moreover, the languages Erlang, Mace, and
P2 have been proven successful from the application development perspective.
Erlang is widely used to develop telecommunication software, while Mace and P2
have gained increasing interest in the systems and networking community. The
main applications are network protocols, including overlays, sensor networks,
Byzantine fault tolerance, and distributed hash tables, see e.g. [9, 4, 10, 11].

In comparison with the above languages, P2 stands out due to its simplicity
and declarative foundations, while providing sufficient capabilities to develop
state-of-the-art networking applications. Its increasing adoption by systems and
networking researchers motivates our interest in its semantics, which provides a
foundation for the development of program analysis tools for P2.

We note that besides P2, Datalog has been the basis for the development of
other successful domain specific languages, e.g., for mining software artefacts us-
ing relational queries [16] and pointer alias analysis for imperative programs [17].
Tuples, which are atomic pieces of data in Datalog, are successfully applied as
a communication primitive for distributed programming, as pioneered by the
Linda system [18].

Our work can be seen as a parallel to what SLD resolution does for logic
programming systems such as Prolog. Although any implementation may follow
a particular strategy for the rule evaluation, any such strategy must conform to
SLD resolution, which serves as the reference semantics of Prolog systems. Simi-
larly, we wish to provide such a semantics foundation for declarative networking
programming languages.

2 P2 by example

In this section, we briefly present the P2 language used for Declarative Network-
ing. Our description follows [10].

Program states. P2 programs manipulate tables, i.e., sets of tuples, as in
relational databases. We distinguish between materialized tuples that are stored
in a distributed fashion among nodes in the network, and event tuples that carry
data between nodes and signal the occurrence of a particular event at a node.

A P2 program starts with a declaration of materialized tables. It lists the
materialized tables, and specifies the primary keys for each of them. We consider
as events all tuples in tables that are not declared as materialized. For example,
the declarations

materialize(neighbor, keys(1,2)).

materialize(sequence, keys(1)).

specify that whenever a neighbor or sequence tuple is produced by a node, it
should also be stored in a table with the corresponding name. The keys decla-
ration specifies the fields that define the primary key of each table. At any time
during execution, the runtime system ensures that there is at most one tuple
stored for any valuation of the tuple positions appearing in the key declaration.
In our example, the declaration requires that there is at most one sequence tuple
for each value of the first position.

The declaration of materialization can also constrain the lifetime and quan-
tity of tuples that a table can store [10]. Since these constraints are seldom in the
existing P2 code base and can be simulated within the P2 language, we choose
to omit them for clarity of presentation.

Program rules. Rules are the main component specifying computations of a
P2 program. They are represented by constructs of the form ‘head :− body.’
where body is a list of predicates applied to variables and constants, and head is
a predicate applied to a subset of variables that appear in the body of the rule.
The order of appearance of predicates in the rule, and of rules in the program
text is irrelevant.

For example, we consider the following rule.

refresh(@X) :- periodic(@X, E, 3).

The periodic predicate in the body of the rule is a special built-in event predicate.
It is automatically generated every 3 seconds by the P2 runtime environment
at the node with the address X, and is instantiated with a unique value E.
An optional fourth parameter can be used in the periodic predicate to indicate
how many times should the event be generated. With respect to the declaration
above, both refresh and periodic are events (i.e. they are not materialized). An
intuitively reading of this rule is “generate a refresh event tuple at node X
whenever there is a periodic event tuple at node X with the values E and 3.”
Note a convention that the first field of predicates appearing in the rule denotes
the address of the node where the corresponding tuple resides. It is additionally
marked by the ‘@’ symbol.

As another example, consider the following two rules.

sequence(@X, NewSeq) :- refresh(@X), sequence(@X, CurSeq),

NewSeq := CurSeq + 1.

send_updates(@X) :- refresh(@X).

The first rule specifies that every time that a refresh event is seen at the node X,
the current value stored at the materialized sequence table is read, incremented,
and a tuple with the new value is inserted into the sequence table at the same
node. Since the primary key of the sequence table includes only the address field,
each node can store at most one tuple in this table. The insertion of the new
tuple into the table will implicitly remove the previous tuple with the old value.
The second rule in the example produces a new send updates event tuple every
time there is a refresh event tuple at the node X.

So far, we have only seen rules that are evaluated at a single network node.
The following rule illustrates how distributed computation is performed in P2.

update(@Y, X, S) :- send_updates(@X), neighbor(@X, Y),

sequence(@X, S).

Intuitively, this rule can be read as “every time there is a send updates at a
node X, for every neighbor tuple stored at X with value Y and every sequence
tuple stored at X with value S send an update event tuple to the node Y with
the values X and S.” In a networked system, an execution of this rule at a node
X notifies its neighbors about the current sequence number of X.

Finally, we introduce a few more features of P2.

delete neighbor(@X, Y) :- purge(@X),

last_update(@X, Y, LastTime), f_now(@X) - LastTime > 20.

The keyword delete appears in the head of the rule. It is used in P2 to request
deletion of tuples from a table whenever the body of the rule is satisfied. The
built-in function f now returns the current wall-clock time of a node. In order
to execute this rule, assume that purge is an event that is periodically generated
at the node X and that last update is another materialized table storing the
time stamp of the last update event received from a node Y . Then, this rule will
remove Y from the set of X’s neighbors if it has not received an update from Y
within an interval of 20 seconds.

3 From declaration to execution

The P2 language can greatly simplify network protocol development, however the
ease with which a P2 program can be turned into a working implementation is
often overstated in previous work on Declarative Networking. In many situations,
the existing description of the language is not precise enough to determine how
a P2 should be interpreted. In this section, we illustrate such cases by examples.

Event creation vs. effect. First, we consider the program given in Figure 1. It
consists of the rules presented in the previous section. As described above, every
time that a refresh event is generated the node’s sequence number is incremented
and a send updates event tuple is generated. Then, the update event will forward
the current sequence number to all neighbor nodes. Though, at this point we
need to decide what should be the value of the current sequence number. Should
it be the value before or after executing the increment?

materialize(neighbor, keys(1,2)).

materialize(sequence, keys(1)).

refresh(@X) :- periodic(@X, E, 3).

sequence(@X, NewSeq) :- refresh(@X), sequence(@X, CurSeq),

NewSeq := CurSeq + 1.

send_updates(@X) :- refresh(@X).

update(@Y, X, S) :- send_updates(@X), neighbor(@X, Y),

sequence(@X, S).

Fig. 1. An example P2 program in which a node increments and sends its sequence
number to all of its neighbors. Various event processing schemes are conceivable where
the sequence number value either before or after the increment is sent by the last rule.

There might exist reasons to prefer one choice over the other, or even to
declare that the P2 runtime environment can make an arbitrary choice among
the two options. Unfortunately, the existing work on the P2 language does not
address such corner cases. The documentation of the P2 runtime [12] does not
go beyond an informal introduction to the language, leaving open ambiguities
such as the one presented here. A recent work [5] gives a formal definition of
both the syntax and semantics of a subset of the P2 language that does not deal
with event tuples, i.e. all tables are materialized. Thus, it does not clarify how
interactions between event processing and table updates should be handled.

Algorithms 5.1 and 5.3 in [13] implicitly suggest that updates are immedi-
ately applied after evaluating each individual rule. In our example this means
that the sequence number is incremented before sending the update. An experi-
mental evaluation using the current implementation of P2 exhibits the opposite
semantics in which events that are addressed to the same node that generated
it, so-called internal events, are propagated and evaluated before any updates
are applied to the materialized store.1 This means that we observed an update
event that contains the old sequence number.

Internal vs. external events. Under-specified semantics can lead to other sig-
nificant deviation between possible outcomes. See the example shown in Figure 2.
The presented program maintains three materialized tables that are initialized
after the declaration. Besides a neighbor table, every node contains ten store
tuples and a sequence number that is initialized to zero.

The first rule specifies that a node will increment its sequence number each
time that it receives a ping event. The second rule causes a node, upon receiving
a broadcast event, to send ten ping events to each neighbor node. Finally, the

1 We used runStagedOverlog executable from the P2 distribution that is compiled
from the revision 2114 of the publicly available code from the anonymous SVN
server https://svn.declarativity.net/p2/trunk/.

materialize(neighbor, keys(1,2)).

materialize(store, keys(1,2)).

materialize(sequence, keys(1)).

neighbor(@X, "node1").

neighbor(@X, "node2").

neighbor(@X, "node3").

store(@X, 1).

store(@X, 2).

...

store(@X, 10).

sequence(@X, 0).

sequence(@X, New) :- ping(@X), sequence(@X, Old),

New := Old + 1.

ping(@Y) :- broadcast(@X), neighbor(@X, Y), store(@X, _).

broadcast(@X) :- periodic(@X, E, 5, 1), X = "node1".

Fig. 2. In this example, a node node1 sends ten ping messages to each neighbor. Upon
receiving a ping message, each node increments own sequence number.

last rule causes the node node1 to generate a broadcast event after five seconds
of activity. After all events have been sent, received, and processed by the cor-
responding nodes, one would expect that the program reaches a state in which
every node stores the sequence number ten. However, this is not the case for the
current P2 implementation.

The reason for a different outcome is rooted in the fact that node1 sends ten
ping events to itself, whereas other nodes receive them from node1. At the node
node1, events will be processed simultaneously. They will refer to the current
sequence value zero, and each rule invocation will result in updating it to one.
Meanwhile, all other nodes will receive and process the incoming ping events
one after another, and iteratively increment their respective sequence numbers,
as we would expect, from zero to ten.

We argue that the observed behavior of the P2 program is unexpected, since
the first two rules do not contain any predicates that should be evaluated differ-
ently on different nodes.

4 P2 programs

In this section, we present a definition of P2 programs, which is used to define
their operational semantics in Section 5.

A distributed P2 program P = 〈L,D,K,R, S0〉 consists of

– L : a set of predicate symbols,
– D : a set of data elements,
– K : a keys-declaration,
– R : a set of declarative rules,
– S0 : an initial state.

Predicates and tuples. Each predicate symbol in p ∈ L is associated with an
arity n that is strictly greater than zero. A predicate is an expression of the form
p(v1, . . . , vn), where p ∈ L is a predicate symbol of arity n and v1, . . . , vn are
variables from a set of variables V. We will also often use the notation p(v), where
v is a sequence of variables of the appropriate length. A tuple is obtained by, given
a predicate p(v), applying a substitution σ : V → D to maps all the variables
in the predicate to values from the data domain. The assumption that the arity
of each predicate is strictly greater than zero is due to the convention that the
first argument of a predicate as well as the first position of a corresponding tuple
represent its address. Henceforth, we shall omit the ‘@’ symbol.

The set of predicate symbols is partitioned into two disjoint sets of materi-
alized and event predicate symbols M and E , respectively. We have

L =M] E .

Tuples obtained from materialized predicates are called materialized tuples. Sim-
ilarly, we obtain event tuples by applying substitutions to event predicates.

Key declarations. A keys-declaration is a function K that maps each mate-
rialized predicate symbol p ∈ M of arity n to a subset K(p) ⊆ {1, . . . , n} of
indices of its fields. We assume that 1 ∈ K(p) for all materialized predicates,
i.e., the address of a predicate is always an element of its key. Given a materi-
alized tuple m = p(c1, . . . , cn), we write K↓m to denote the tuple obtained by
removing all fields that are not included into the set K(p). For example, given
m = p(c1, c2, c3, c4) and K(p) = {1, 3}, we obtain K↓m = p(c1, c3).

We say that a set of materialized tuples M is keys-inconsistent if M contains
a pair of tuples m and m′ such that m 6= m′ but K↓m = K↓m′, i.e., it contains
two tuples with the same key but different values. Otherwise, we say that the
set of materialized tuples is keys-consistent.

Rules. In order to avoid some of the concerns with the interpretation of P2
programs discussed in the previous section, we include an action specification
as part of the rule declaration. Formally, an action is a keyword in the set
A = {add, delete, send, exec}. These keywords correspond to adding and deleting
materialized tuples from tables, as well as sending external events and executing
internal events. A rule in a P2 program

α h(v)︸ ︷︷ ︸
head

:−

optional︷ ︸︸ ︷
t(v0) ,m1(v1), . . . ,mn(vn).︸ ︷︷ ︸

body

consists of a head and a body separated by the ‘:−’ symbol such that

– α ∈ A is an action and h(v) is a predicate,
– the body may contain an event predicate t(v0) called trigger,
– the rest of the body consists of materialized predicates mi(vi), for 1 ≤ i ≤ n,
– all variables in the head must appear in the body of the rule.

We require the following correspondence between the action and head predicate:

– if the rule action is add or delete then h(v) must be a materialized predicate,
and otherwise h(v) must be an event predicate,

– if the rule action is exec then all predicates appearing in the rule must have
the same address, i.e., either the same variable or the same constant at the
first position.

If a trigger is present in the rule then we call it a soft-rule. Otherwise we say that
the rule is a materialized-rule. Intuitively, triggers are used to control which rules
have to be evaluated and when, i.e. a soft-rule is not evaluated until an event
that matches its trigger is seen by a node. Materialized rules (without triggers)
are evaluated whenever an update is made to any of the predicates on its body.

Note that a rule can contain predicates referring to different addresses (except
for exec rules). We need to make an additional assumption on the interplay
between addresses appearing in the rule to ensure the possibility of its execution
in a distributed setting, as formalized by the following definitions.

Given a rule r, let x and y be the addresses of two predicates in the body
of r. We say that x is linked to y, denoted x y, if there is a predicate p(x,v) in
the body of r such that y occurs among the set of parameters v. x is connected
to y if x ∗ y, where ∗ is the reflexive and transitive closure of . An address
x is a source in the body of r, if x ∗ y for all addresses y that also appear
in the body of r. Finally, we say that a rule is well-connected if its body has at
least one source. From now on, we shall only consider P2 programs whose rules
are well-connected.

Local and basic rules. Execution in distributed setting requires a further
distinction of P2 rules. We say that a rule is local if all predicates in its body
have the same address and i) either the rule action is send, or ii) the address of
the head is equal to the address of the predicates in the body. In particular, exec

rules are always local. Finally, a basic rule is both soft and local. We say that a
P2 program is local (resp. basic) if it only contains local (resp. basic) rules.

We illustrate different rule kinds on the following example. Here, we assume
materialized predicates m, n, and p together with event predicates e and t.

r1 : send e(x, y) :− m(x, z),m(y, z).
r2 : delete m(w, v) :− e(x, y, v), n(y, v, z),m(z, w).
r3 : send t(y) :− m(x, v), n(x, v, y).
r4 : add m(x,w) :− m(x, u),m(x, v), p(x, u, v, w).
r5 : add m(x,w) :− t(x),m(x, u),m(x, v), n(x, u, v, w).

The rule r1 is invalid since x and y are disconnected in its body. All other rules
are well-connected. Rules r3–r5 are local. Soft rules are r2 and r5, while all
other rules are materialized. The only basic rule r5, i.e., it is soft and local.

States. We define a state of a P2 program to be a pair S = 〈M,E〉 that consists
of a materialized store M and an external event queue E. The store M is a keys-
consistent set of materialized tuple. The queue E is a multi-set of event tuples.
The initial state S0 shall be used to start the program execution, as described
in the next section.

5 Semantics of basic P2

We present the operational semantics for P2 programs, i.e., we show how program
rules are evaluated with respect to the current state of the program and define
the resulting state. In this section, we only consider P2 programs that contain
only basic rules. Section 6 presents a transformation from an arbitrary program
to a basic one. Such incremental approach simplifies the exposition and separates
the rule localization from rule execution.

Figure 3 shows a procedure Evaluate for the execution of basic P2 pro-
grams. It consists of two nested loops. We refer to an iteration of the outer
and inner loops as step and round, respectively. The state of the program under
execution is maintained by the pair S = 〈M,E〉, which contains the material-
ized store and the external event queue. We use an auxiliary function Update
that updates the materialized store. Note that this function is non-deterministic,
since a P2 program can attempt to simultaneously add several tuples that are
not keys-consistent. In such case, the resulting materialized store depends on the
choice of tuples in line 2 of Update.

At each step, some events are selected from the external event queue, and then
several rounds are executed to compute the effects of applying the program rules
triggered by the selected events. We leave several choices open as parameters of
the execution procedure, e.g., how many events are selected for processing at
each step and when updates are actually applied to the materialized store.

It is important to note is that although Evaluate is described from the
global perspective on the state of the program, its adaption to the distributed
perspective is straightforward. In the distributed perspective, each node executes
the same procedure Evaluate. Since rules are basic, they can be executed
locally without requiring any information about the tuples stored at other nodes.
The only change required in the exposition of the procedure is at line 10, where
events may be sent over the network using an appropriate transport mechanism
instead of being added directly to the local event queue E.

The following are the design choices left open in the Evaluate procedure:

– External selection: We do not specify which events and how many of them
are selected at line 3 from the external event queue to be processed at each
step. Two possible choices are: (1) to non-deterministically select one event
from the queue, or (2) to select all current events in the queue.

– Internal selection: Similarly, we do not specify which events to select from
the internal event queue I at line 6. Again, we could select either (1) one
non-deterministically chosen, or (2) all events in the queue.

procedure Evaluate
input

P = 〈L,D,K,R, S0〉 : a basic program
vars

M : materialized store
E : external event queue
4,5 : set of tuples to add and delete
I, J : internal event queues

begin
1: 〈M,E〉 := S0

2: while E 6= ∅ do B step loop
3: I := select and remove elements from E
4: 〈4,5〉 := 〈∅, ∅〉
5: while I 6= ∅ do B round loop
6: J := select and remove elements from I
7: for each rule α h(v) :− t(v0),m1(v1), . . . ,mn(vn) ∈ R
8: and subst. σ such that t(v0)σ ∈ J and mi(vi)σ ∈M

do
9: case a of

10: send : E := E ∪ {h(v)σ}
11: exec : I := I ∪ {h(v)σ}
12: add : 4 := 4∪ {h(v)σ}
13: delete : 5 := 5∪ {h(v)σ}
14: end case
15: if update after each round then
16: M := Update(M,K,4,5)
17: 〈4,5〉 := 〈∅, ∅〉
18: if
19: if use only one cycle then break while
20: done B end round loop
21: E := E ∪ I
22: if update after each step then M := Update(M,K,4,5)
23: done B end step loop

end.

function Update
input

M : a set of materialized tuples
K : a keys-declaration
4,5 : sets of tuples to add and delete

begin
1: M := M \ 5
2: for each m ∈ 4 do
3: M := (M \ {m′ | K↓m = K↓m′}) ∪ {m}

end.

Fig. 3. Parametrized procedure for evaluating basic P2 rules, and its auxiliary function
to update the materialized store.

– Update: As the execution proceeds, the procedure uses the pair of sets of
tuples 〈4,5〉 to record the updates that have to be applied to the materi-
alized store. These updates can be atomically applied either: (1) at the end
of every round in line 15, or (2) at the end of every step in line 22.

– Number of cycles: Evaluate processes events using two cycles, viz., the
round and the step cycles. By breaking the internal loop at line number 19,
we achieve an execution behavior with only one evaluation cycle.

These design choices are independent, although some combinations of parameters
are not viable. For example, if considering only one cycle, then the choice
when to apply the materialized updates becomes irrelevant. Moreover, only the
cumulative effect of both selection functions is important, i.e., if they select in
conjunction either one or all events to process at each iteration.

If the variant with two cycles is used with step updates, then the internal
selection function becomes irrelevant. As no changes to the materialized store are
performed within the evaluation of rounds, the sets E and 4,5 do not depend,
when exiting the inner loop, on the particular choice of internal selection.

Emulating P2 implementation. To the best of our knowledge, the set of
parameters required to emulate the semantics currently implemented in P2 cor-
responds to the version with two evaluation cycles, selecting one external event
for processing each step, fully propagating the internal events in rounds until
fix-point, and updating only after the end of the step.

Recall that the original definition of P2 rules, see [10], does not specify the
actions, except for rules whose action is delete. If the head of the rule contains a
materialized predicate then the rule is implicitly assumed to have a add action.
We observe that in our formalization a basic rule of the form

h(x,v) :− t(y,v0),m1(v1), . . . ,mn(vn).

where h(x,v) is an event predicate corresponds to the pair of rules below.

send h(x,v) :− t(y,v0),m1(v1), . . . ,mn(vn), x 6= y.

exec h(x,v) :− t(y,v0),m1(v1), . . . ,mn(vn), x = y.

The explicit treatment of rule actions makes visible whether the effect of evalu-
ating these rules is different depending on whether x and y are equal addresses.
Furthermore, if we would like a node to send a message to itself, but behave as
if the message was received from the network, we have now the possibility to
write a rule

send h(x,v) :− t(y,v0),m1(v1), . . . ,mn(vn).

This scheme can be used to modify the program given in Figure 2 such that all
nodes exhibit the same behavior, i.e., count up to ten.

6 Reduction to basic rules

The procedure Evaluate for the execution of P2 program, as presented in the
previous section, assumed that the input program consists of basic rules. In this

section, we relax this assumption and show how any program with well-connected
rule can be transformed into a basic one. The transformation proceeds in two
steps by first making the rules local, and then turning materialized rules into
soft rules. Since these transformation can be automatically performed by the P2
runtime environment, they liberate the programmer from the burden of ensuring
the local availability of tuples necessary to rule execution and event handling to
signal updates to the materialized store.

Rule localization. Let r be a well connected rule of the form

α h(v) :− p1(x,v1), . . . , pk−1(x,vk−1), pk(yk,vk), . . . , pn(yn,vn).

such that x 6= yi for each k ≤ i ≤ n, and x yk. Let v′ be a sequence of the
variables that appear in the set {v0, . . . ,vi−1}, and let |v′| denote its length.
In particular, we have that yk occurs in v′, and there is at most one event
predicates among p1, . . . , pk−1 (recall that a rule can have at most one trigger).
If all these predicates are materialized we define β to be add action and q be
a fresh materialized predicate of arity |v′| + 2 with keys-declaration K(q) that
contains all predicate fields, i.e., K(q) = {1, . . . , |v′|+ 2}. Otherwise, we have
β = send and q is a fresh event predicate symbol of arity |v′|+ 2.

Now the original rule r is replaced by the pair of rules

β q(yk, x,v
′) :− p1(x,v1), . . . , pk−1(x,vk−1).

α h(v) :− q(yk, x,v
′), pk(yk,vk), . . . , pn(yn,vn).

Note that the first rule has a local body, and the second rule is a well-connected
rule with exactly one address variable less than the original rule r. By iteratively
applying the above transformation to the non-local rules in the program, we
obtain a P2 program whose rules have local bodies.

After applying this transformation some rules may still not be local, since
the address in the head of a materialized update may not be equal to the address
in the rule body. Such rules have the form

α h(y,v) :− p1(x,v1), . . . , pn(x,vn).

where x 6= y and α is either add or delete action. We replace each of these rules
by the pair below

send u(y,v) :− p1(x,v1), . . . , pn(x,vn).
α h(y,v) :− u(y,v).

where u is a fresh event predicate symbol of arity |v|+1. Now all rules are local.

Rule softening. We replace all materialized rules in the program, after rule
localization procedure was applied, by soft rules as follows. First, for each mate-
rialized predicate m we create a fresh event predicate m̂ of the same arity. Then,
we replace each materialized rule of the form

α h(v) :− m1(v1), . . . ,mn(vn).

by n soft rules such that for each 1 ≤ i ≤ n we insert

α h(v) :− m̂i(vi),m1(v1), . . . ,mn(vn).

where the new update event m̂i serves as the rule trigger.
Finally, we create rules that generate update events whenever a new tuple is

inserted to a table. For this purpose for each add rule of the form

add m(v) :− t(v0),m1(v1), . . . ,mn(vn).

we create a fresh event predicate u of the same arity as m, and replace the rule
by the three basic rules below.

exec u(v) :− t(v0),m1(v1), . . . ,mn(vn).
add m(v) :− u(v).

send m̂(v) :− u(v).

We note that more sophisticated methods can be defined to localize and
soften a set of well connected rules. For example, such methods may seek for
opportunities to distribute the evaluation of the body among different nodes.
We leave the development of optimized localization and softening methods for
future work, since this paper focuses on a definition of semantics for basic rules.
Our localization method can be viewed as a generalization of the rule localization
rewrite procedure defined by Loo et al. [5] for rules containing at most two
different addresses.

Moreover, similar to the treatment of localization in [5] our semantics to-
gether with the transformations is eventually consistent under the bursty update
network model for P2 programs that contains only materialized rules with add

actions. (Such rules define almost-Datalog programs, since they still contain
function symbols.) This kind of consistency means that if after a burst of up-
dates the network eventually quiesces then the models defined by our semantics
correspond to those of the standard semantics of Datalog.

7 Conclusions

We presented a definition and operational semantics for the P2 programming
language, which provides a programming foundation for Declarative Networking.
Our work addresses questions that were left open by the existing literature on
Declarative Networking. The main contribution of our semantics is in its utility
as a starting point for the development of program analysis and verification
tools for Declarative Networking, as well as advancing the evolution of the P2
language, its interpreters and runtime environments.

References

1. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. PhD thesis, KTH (2003)

2. Fournet, C., Fessant, F.L., Maranget, L., Schmitt, A.: JoCaml: A language for con-
current distributed and mobile programming. In: Advanced Func. Prog., Springer
(2002)

3. Hanus, M.: Distributed programming in a multi-paradigm declarative language.
In: PPDP, Springer (1999)

4. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.: Mace: language
support for building distributed systems. In: PLDI, ACM (2007)

5. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking: Language,
execution and optimization. In: SIGMOD, ACM (2006) 97–108

6. Sewell, P., Leifer, J.J., Wansbrough, K., Nardelli, F.Z., Allen-Williams, M.,
Habouzit, P., Vafeiadis, V.: Acute: High-level programming language design for
distributed computation. J. Funct. Program. 17(4–5) (2007) 547–612

7. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Trans. Netw. 11(1) (2003) 17–32

8. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware, Springer (2001)

9. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica,
I.: The design and implementation of a declarative sensor network system. In:
SenSys, ACM (2007)

10. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Im-
plementing declarative overlays. In: SIGOPS, ACM (2005) 75–90

11. Singh, A., Das, T., Maniatis, P., Druschel, P., Roscoe, T.: BFT protocols under
fire. In: NSDI, USENIX (2008)

12. Condie, T., Gay, D.E., Loo, B.T., et al.: P2: Declarative networking website (2008)
13. Loo, B.T.: The Design and Implementation of Declarative Networks. PhD thesis,

UC Berkeley (2006)
14. Rossberg, A., Botlan, D.L., Tack, G., Brunklaus, T., Smolka, G.: Alice through

the looking glass. In: Trends in Func. Prog., Intellect (2004)
15. Rossberg, A., Tack, G., Kornstaedt, L.: Status report: HOT pickles, and how to

serve them. In: Workshop on ML, ACM (2007) 25–36
16. Beyer, D., Noack, A., Lewerentz, C.: Efficient relational calculation for software

analysis. Trans. on Soft. Eng. 31(2) (2005) 137–149
17. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In: PLDI, ACM (2004)
18. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4) (1989)

