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A classical one-time pad allows two parties to send private messages over a publicclassical channel—an

eavesdropperwho intercepts the communication learnsnothingabout themessage.A quantum one-time pad

isa sharedquantumstatewhichallows two parties to send private messages or private quantum states over a

public quantum channel. If the eavesdropper intercepts the quantum communication she learns nothing

about the message. In the classical case, a one-time pad can be created using shared and partially private

correlations.Hereweconsider thequantumcase in thepresenceofan eavesdropper, and find the single-letter

formula for the rate atwhich the two parties can send messages using a general quantum state as a quantum

one-time pad. Surprisingly, the formula coincides with the distillable entanglement assisted by a symmetric

channel, an important quantity in quantum information theory, butwhich lacked a clear operationalmeaning.

DOI: 10.1103/PhysRevLett.108.040504 PACS numbers: 03.67.Dd, 03.67.Hk

If two parties wish to send private messages over a
public channel, then they need to share a one-time pad or
key—perfectly correlated and private strings which are as
long as the messages they want to send. Often, the strings
they share are not perfectly correlated or not completely
secure, e.g., if produced through a channel subject to wire-
tapping. However, they can perform a protocol over the
public channel to reconcile the errors in their strings, and
amplify the privacy, so that they share a shorter string
which is perfectly correlated and private. Given access to
many independent realizations of some distribution PXYZ

shared between the two parties, Alice (X) and Bob (Y), and
an eavesdropper Eve (Z), the rate CðPXYZÞ at which Alice
can send private messages to Bob was derived in [1], based
on a celebrated result due to Wyner and Csiszar & Korner
[2,3]. It reads [4]

CðPXYZÞ ¼ sup
X!V!U

IðV:YjUÞ � IðV:ZjUÞ; (1)

with the conditional mutual information IðV:YjUÞ :¼
HðVUÞ þHðYUÞ �HðVYUÞ �HðUÞ, the Shannon en-
tropy HðXÞ :¼ �P

xPX¼x logPX¼x and the supremum
taken over the Markov chain X ! V ! U.

As Eq. (1) play such a central role in classical informa-
tion theory, understanding it in the quantum case would be
an important step. Even just defining the quantum version
of this scenario is important conceptually, as there are
several possibilities, and indeed, it was not even clear
that a quantum version existed which would be closely
analogous to the classical case. Given that privacy is such a
key property of shared quantum states, understanding it
from an information-theoretic point of view analogous to
Eqn. (1) has been desirable. Indeed, privacy considerations
have historically laid the foundations of quantum informa-
tion theory—quantum key distribution [5] was one of the
big motivations for the field, and the first entanglement

distillation protocols [6] were inspired by the same classi-
cal privacy amplification protocols which attain Eqn. (1).
Here, we consider the quantum analog of the classical

scenario: three parties, Alice, Bob and Eve, who instead of
sharing a classical distribution, share a quantum state
c ABE. Alice then wishes to send private messages or
private quantum states to Bob over a quantum public
channel, i.e., an insecure quantum channel where the
eavesdropper might intercept the sent states. The question
of how many private messages can be sent using a shared
state was posed and answered by Schumacher and
Westmoreland [7] in the case where initially the eaves-
dropper is uncorrelated with the two parties (c ABE ¼
c AB � c E), and the sent messages are classical.
They proved that the rate of classical private messages
which can be sent is given by the quantum mutual
information IðA:BÞ :¼ SðAÞ þ SðBÞ � SðABÞ, with SðAÞ ¼
�Trð�A log�A) the von Neumann entropy.
Here, we consider the general case where the two parties

want to protect themselves against an eavesdropper who
might be correlated with their state. We also extend the
result to the case where the parties wish to send encrypted
quantum states to each other; i.e., any d-dimensional input
state c K is encrypted so that during transmission it is
indistinguishable from the maximally mixed state (I=d).
This makes the scenario a more fully quantum version of
the classical situation. We show, in surprising analogy with
the classical case, that the rate Q that Alice can send
encrypted messages to Bob using the state c ABE is

Cðc ABEÞ ¼ sup
A!a�

ðIða:Bj�Þ � Iða:Ej�ÞÞ; (2)

with the conditional mutual information Iða:Bj�Þ :¼
Sða�Þ þ SðB�Þ � SðaB�Þ � Sð�Þ and the supremum
taken over channels with input space A and output space
a�. The rate for sending encrypted quantum states, in turn,
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is given by Qðc ABEÞ ¼ Cðc ABEÞ=2. Note that this optimi-
zation is over single copies of the state c ABE making the
result of Eq. (2) single letter. This is rare in quantum
information theory, where usually the solutions are intrac-
table, requiring optimization over arbitrary many copies of
the state [8].

Using simple entropic identities, one sees that the right-
hand side of Eq. (2) (divided by half) is equal to
1
2 ðIða:B�Þ � Iða:E�ÞÞ, a quantity which has made an early

appearance in Ref. [11] as the distillable entanglement
assisted by symmetric-side channels. The identification
of the optimal rates in the quantum one-time pad problem
and in entanglement distillation assisted by a symmetric
channel is not merely coincidental: to prove Eq. (2) we will
show how an insecure quantum channel can, in a precise
sense, simulate the action of a symmetric channel.

Statement of the problem.—The scenario is as follows:
Alice and Bob share many copies of a quantum system in
a (generally mixed) state c AB and since we want to protect
against an arbitrary eavesdropper, we should imagine that
Eve might have any state such that TrEjc iABEhc jABE ¼
c AB; i.e., the eavesdropper might hold a purification of
Alice and Bob’s state. Alice is given a message, either
classical or quantum, which she should communicate to
Bob. She is able to implement arbitrary quantum opera-
tions on her share c �n

A of the state and any local ancillas,
and she then sends a quantum system in state �� to Bob
down an insecure quantum channel, which might be inter-
cepted by Eve. In the case where Eve intercepts ��, she
should learn an arbitrarily small amount of information
about the message. In the case where Bob receives the
state, he should be able to recover the message with
probability converging to one in the limit of large n.
More formally,

Definition 1 (private state transfer): Consider the mes-
sage state �KR shared between the sender Alice and a
reference. Let Alice, Bob, and Eve share the state
jc ABEi�n and have further registers a, � and b for Alice
and Bob, respectively. Consider Alice’s local operation (a
completely positive trace preserving map)MA:AK ! a�
and Bob’s local operation MB:B� ! b. Then a private
state transfer protocol for �KR has error � and security
parameter �, if

k�bR ��KRk1 � �; (3)

and

k~�RE� � ~�R � ~�E�k1 � �; (4)

where

�Ra�BE :¼ MAð�KR � c �n
ABEÞ; (5)

and

~� RabE :¼ MB �MAð�KR � c �n
ABEÞ: (6)

For classical messages we let �KR ¼ 1
d

P
kjkkihkkjKR

and define the optimal rate Cð�ABÞ as the ratio of logðdÞ
per n, for the largest d for which a private state transfer
protocol is possible, with negligible error for asymptotic
large n. For the optimal rate of quantum messages, in turn,
we set j�KRi ¼ 1ffiffi

d
p P

kjk; kiKR and define Qð�ABÞ as the

asymptotic optimal ratio of logðdÞ=n, over all private state
transfer protocols.
Schumacher-Westmoreland scheme.—To prove Eq. (2),

we will make use of the result from [7] for the one-time-
pad in the case where the message is classical and the
state �AB shared by Alice and Bob is not correlated with
Eve. The main point of the argument is the construction of
a set of quantum operations fEk;ng on Alice’s system and

a probability distribution fpk;ng such that in the limit of

large n,

1

n
�ðfpk;n; Ek;n � IBðc �n

ABÞgÞ ! IðA:BÞ�; (7)

and

1

n
�ðfpk;n; Ek;nðc �n

A Þg ! 0; (8)

where �ðfqk; �kgÞ :¼ SðPkqk�kÞ �P
kqkSð�kÞ is the

Holevo information [12]. By the HSW theorem [13]
Alice can then send secret classical messages to Bob at a
rate IðA:BÞ by applying one of the Ek;n operations to her

part of the state and sending it down the insecure channel.
Equation (7) guarantees that Bob is able to decode Alice’s
message in the case the channel is not tampered, while
Eq. (8) ensures that Eve does not learn anything from the
message being sent by intercepting the channel.
Mutual independence.—A natural quantity which will

arise in our discussion is the so-called mutual indepen-
dence I� [14], which we now define. Consider some se-

quence of maps �ðnÞ, from a restricted class of operations
�, applied to subsystem AB with the property that

�ðnÞ
ABE

:¼ �ðnÞ � IEðc �n
ABEÞ (9)

is such that

k�ðnÞ
ABE � �ðnÞ

AB � �ðnÞ
E k1 ! 0: (10)

Then, Definition 2 (mutual independence) Given a state
c AB, consider a protocol from a class of operations � for

extracting mutual independence P ¼ �ðnÞ. Define the rate

RðP ; �ABÞ :¼ liminf
n!1

1

2
IðA:BÞ�nðc �n

AB
Þ: (11)

Then we define the mutual independence rate of c AB as

I�ð�ABÞ :¼ sup
P
RðP ; c ABÞ: (12)

The quantity I� can be thought of as the rate of private
mutual information that can be extracted from a state under
the class of operations�. As an immediate consequence of
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Schumacher-Westmoreland construction and Definition 2,
we find that Cðc ABÞ is lower bounded by ILOðc ABÞ, where
LO is the class of local operations on Alice and Bob
systems. It turns out, perhaps surprisingly, that local op-
erations are not the right class of operations to be consid-
ered here.

As we show, the rate of private messages that can be sent
is given by Issðc ABÞ, the mutual independence when � is
the class of local operations assisted by a symmetric-side
channel. This is a channel given by an isometry followed
by partial trace c A ! TrE�BE such that �BE is unchanged
after interchanging system E with system B. In [15], it is
shown that

Issðc ABÞ ¼ sup
A!a�

1
2ðIða:Bj�Þ � Iða:Ej�ÞÞ; (13)

where the supremum is taken over channels A ! a�.
Main result.— We now show
Theorem 3.—

Qðc ABÞ ¼ Cðc ABÞ=2 ¼ Issðc ABÞ: (14)

Proof.—We begin by considering Cðc ABÞ; i.e., Alice
wishes to send Bob a private classical message, and will
then prove the result for Qðc ABÞ. To see that Issðc ABÞ �
Cðc ABÞ=2, consider an optimal protocol for Cðc ABÞ,
which can always be taken to be as follows: Alice applies
the quantum operation Ek;n � IBE with probability pk;n,

generating the ABE ensemble fpk;n; Ek;nðc ABEÞg, with

�� ¼ Ek;nðc AÞ being sent to Bob, and k the private mes-

sage to be communicated. Then we have

Cðc ABÞ ¼ lim
n!1

1

n
�ðpk;n; Ek;n � IBðc ABÞÞ: (15)

Consider the state after Alice’s optimal local operation

�n
K�BE

:¼ XN

k¼1

pk;njkiKhkj � ðEk;n � IBEÞðc ABEÞ: (16)

Then, from Eq. (13) we get

Issðc ABÞ � 1
2ðIðK:B�Þ� � IðK:E�Þ�Þ: (17)

But IðK:B�Þ�¼�ðpk;n;Ek;n� IBðc ABÞÞ and IðK:E�Þ�n=

n!0 with increasing n, since Ek;n � IEðc AEÞ must satisfy

Condition (4) and be asymptotically independent of k [16].
Therefore, we get Issðc ABÞ � Cðc ABÞ=2.

Next we need to show that Issðc ABÞ � Cðc ABÞ=2. First,
suppose that on top of the insecure ideal quantum channel
Alice and Bob have access to a symmetric-side channel.
Then they could distill Issðc ABÞ of mutual independence,
using the symmetric-side channel. They are now in the
situation considered by Schumacher and Westmoreland,
who showed that in the case where Alice and Bob are
initially product with Eve, Cðc ABÞ ¼ IðA:BÞ. Thus, here
we would get Cðc ABÞ ¼ 2Issðc ABÞ of secure classical
communication.

Of course, in the setting we are considering, they do not
have access to the symmetric-side channel. However, sup-
pose Alice simulates locally the side channel, sends the
part that would go to Bob through the insecure quantum
channel and traces out the part which would go to Eve.
Then, on one hand, if Eve does not intercept the channel,
Bob will get his share of what is send through the
symmetric-side channel and they can distill at least
Issðc ABÞ of weak mutual independence and achieve the
rate C ¼ 2Issðc ABÞ. I.e., if Eve does not get her share of
the output �0 of the symmetric-side channel Alice and Bob
can not be in a worse position than if she did receive it. On
the other hand, if Eve intercepts the state sent through the
insecure channel, then this is the same state she would get
in the case they were connected by a symmetric-side
channel (because what goes to Bob and Eve is symmetric),
so Eve must still be decoupled from Alice’s final state. This
is so because Alice and Eve’s state must be product in the
end of the protocol for distilling mutual independence.
Thus she gets no information about �K.
This proves C ¼ 2Issðc ABÞ. That Qðc ABÞ ¼ Cðc ABÞ=2

comes from the fact that instead of using the quantum
one-time pad to send private messages, Alice and Bob
could just as well use it to share a classical private keyP jkkihkkjAB=d2. This key can then be used to encrypt
quantum states which can then be sent through the insecure
quantum channel.
It is known [17–19] that the amount of key required to

encrypt a state of dimension d is given by 2 logd. In more
detail, The procedure for encrypting a quantum state is for
Alice to perform randomizing unitaries

P
kjkihkj �Uk con-

trolled on the classical key where Uk is a complete set of
unitaries acting on the state she wants to encrypt. Bob can

then decrypt the quantum state by performing Uy
k . E.g. to

encrypt a qubit, Alice acts one of the four Pauli operators I,
�x, �y, �z with the choice of which operator to act decided

by 2 bits of key.
Although we have presented the proof in the case where

Eve has a purification of the state �AB, the formula given by
Eq. (2) holds true even in the general case of mixed
tripartite states �ABE, in which Eve only has part of the
purification of �AB. We refer the reader to [20] for further
details.
Note that when we are using the key to encrypt quantum

states, we can modify the protocol slightly to include an
authentication step [21,22] so that if at some later point,
Bob is allowed at least 1 bit of backwards communication,
the key can be recycled [21,22] and used to encrypt more
quantum states. The bit of back-communication is required
to signal to Alice that the protocol succeeded (i.e. that
Eve did not disturb the sent states too much) and is not
part of the original scenario considered here. However, in
such a case, one can prove that the one-time pad can be
recycled in the case where we are using it to send quantum
states [22].
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A direct protocol.—We can also construct a different
protocol which encrypts quantum states directly using the
one-time pad without first using it to create a classical key.
This results in a saving of logd uses of the public quantum
channel.

Recall that to create a classical key, Alice applies
Ek � IBEðc �n

ABEÞ conditioned on a random classical

variable k. To encrypt a quantum state directly, Alice
applies Ek coherently, controlled on her half K of the
entangled state c KR ¼ P

pkjkiRjkiK; i.e., she performs
the operation

P jkihkjK � Vk, where Vk is an isometric
extension of the operation Ek. This produces the total
state j�i ¼ P

pkjkiRjkiKjc ki��0BE where �k
�0 is the local

environment produced under the action of map Ek and
�� is its output. Alice then sends �� to Bob, who can
then coherently decode �k

�B producing the stateP
pkjkiRjkiKjkiB0 jc 0i��0BE. The protocol is thus far se-

cure, because after tracing out system K, the state �R�E is
exactly the same as in the case of sending a classical
message, and thus satisfies the privacy condition (4).

Since the state
P

pkjkiRjkiKjkiB0 has SðKjB0Þ ¼ 0,
Alice can merge [23] her share (K) of the state to Bob by
performing a complete measurement in a random basis and
communicating the result to Bob. In [23] it was shown that
SðKjB0Þ is the amount of EPR pairs that is needed to send
Alice’s share K of jc iKB0R by performing a measurement
and if SðKjB0Þ ¼ 0, then no additional EPR pairs are
needed. Alice’s merging measurement completely decou-
ples the K system from the reference, with the result that if
Alice sends the remainder of her systems to Bob, the state
must have been transmitted. She could also perform a
measurement in the Fourier basis and communicate the
result. Since the measurement is complete, the number of
measurement outcomes is just nHðKÞ, and because we
wish Eve to learn no information about the state, Alice
needs to use an additional nHðKÞ of the quantum one-time
pad to encrypt the measurement result and send it.

Alice’s measurement result is independent of the final
state (as in teleportation [24]) so we can do the measuring
and sending coherently, which will result in nHðKÞ EPR
pairs being created [25] in the case where Eve does not
interfere with the channel. However, these EPR pairs can
only be used at some later time if Bob verifies that he
received them using an authentication scheme involving at
least 1 bit of back communication [22]. Note that if R is
held by Alice, both protocols for sending quantum states
can also be used to create secure EPR pairs between Alice
and Bob.

The direct protocol for encrypting quantum states uses
logd less uses of the channel than if we first create a
classical key, and then send encrypted quantum states. As
a result, logd less bits of key is left over if we are allowed
back communication at some later point in time to recycle
the key. This is in keeping with a fundamental law of
privacy [22] relating sent qubits (�Q), the change in the

amount of shared key (�K), and messages sent (�M)
(whether they be classical or quantum):

�K � �Q� �M: (18)

It is also worth noting the connection between merging,
and encryption of the quantum states in this case.
Encrypting the quantum state means that Alice’s share of
j�iKR should be decoupled from the reference R before
being sent down the channel. At the same time, this decou-
pling of the reference from Alice’s laboratory is the con-
dition for Alice to succeed in sending her share [23,26].
Approximate encryption with half key.—As we have

noted, the condition for decoupling system K from the
reference R is that 2 logd unitaries are applied. It turns
out there is a weaker form of quantum state encryption,
where only slightly more than logd bits of key are used
[19]. In such a case, the protocol is secure in the sense that
if a measurement were to be performed on the reference
system, then an eavesdropper would learn an arbitrary
small amount about the measurement result. We say that
the level of security we obtain is not composable [28,29],
meaning that if the reference system remains unmeasured,
and the eavesdropper does not measure the parts of the
quantum system she intercepted, then we may lose security
if we use the encrypted state in another protocol.
We can easily construct an encryption scheme of this sort,

by adapting the first protocol we presented, so that instead
of choosing a complete set of 2 logd unitaries Uk which
act on the state we are encrypting, we choose just over logd
unitaries at random from the Haar measure [30]. Such a set
is called randomizing rather than completely randomizing.
It is unclear whether the direct protocol can be adapted in
some way for approximate encryption. This is because the
protocol uses merging, and thus the state to be sent must be
completely decoupled from the reference system.
Discussion.—There are essentially two ways we have

used the quantum one-time pad. One way is to use c AB to
obtain a correlated and private key, and then use this key to
encrypt messages (quantum or classical). The second, is a
generalization of Schumacher and Westmoreland [7]
where the one-time pad is used directly to encrypt the
message. This also holds true in the case of classical
distributions.
Our results can also be applied to channel coding, where

one has an authenticated noisy quantum channel, which
produces the state c ABE, and a public quantum channel.
Here we have just taken c ABE as a static resource, but we
could have just imagined that it was produced by a channel
from Alice to Bob and Eve. This is perhaps closest to a
quantum version of the Csiszar-Korner situation and gives
a physical application to the results of [11,15,31], about
state and channel capacities assisted by a symmetric-side
channel.
We should thus think of a symmetric channel not as an

exotic side channel which can be used in conjunction with
a standard quantum channel. Rather, results which make
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use of a symmetric channel can be applied to the situation
where an eavesdropper might intercept the quantum
systems that are sent down an insecure channel. This gives
further motivation to the notion of the public quantum
channel as emphasized in [15].
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