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The relationship between thermodynamics and statistical physics is valid in the thermodynamic
limit – when the number of particles involved becomes very large. Here we study thermodynamics
in the opposite regime – at both the nano scale, and when quantum effects become important.
Applying results from quantum information theory we construct a theory of thermodynamics in
these extreme limits. In the quantum regime, we find that the standard free energy no longer
determines the amount of work which can be extracted from a resource, nor which state transitions
can occur spontaneously. We derive a criteria for thermodynamical state transitions, and find two
free energies: one which determines the amount of work which can be extracted from a small system
in contact with a heat bath, and the other which quantifies the reverse process. They imply that
generically, there are additional constraints which govern spontaneous thermodynamical processes.
We find that there are fundamental limitations on work extraction from nonequilibrium states, due
to both finite size effects which are present at the nano scale, as well as quantum coherences. This
implies that thermodynamical transitions are generically irreversible at this scale, and we quantify
the degree to which this is so, and the condition for reversibility to hold. There are particular
equilibrium processes which approach the ideal efficiency, provided that certain special conditions
are met.

One of the most basic quantities in thermodynamics is the Helmholtz free energy

F (ρ) = 〈E(ρ)〉 − TS(ρ) (1)

with T the temperature of the ambient heat bath that surrounds the system, S(ρ) the entropy of the system, and
〈E〉 its average energy. It tells us whether a system at constant volume and in contact with a heat bath can make a
spontaneous thermodynamical transition from one state to another. A transition can only happen if the free energy
of the final state is lower than that of the initial state. The difference in free energy between the initial and final state
is also the amount of work which can be extracted from a system in a thermal bath. It is also gives the amount of
work required to perform the reverse process, since thermodynamics at the macroscopic scale is reversible.

However, the free energy is only valid in the thermodynamical limit – when ρ is composed of many particles and is
classical, in the sense that it is in a state which is a probabilistic mixture of different energies. But thermodynamical
effects are not only important in the macroscopic regime – they are becoming increasingly important as we probe and
manipulate small systems from the micro up to the mesoscopic scale. Already, molecular motors and micro-machines[1–
6] have been constructed in the lab[7–10] and thermodynamical effects are increasingly important in quantum devices
and in the construction of quantum computers and memory[11, 12]. Likewise, quantum effects have implications for
thermodynamics [13–15]. Here, we derive two free energies which are valid even when the thermodynamical limit is
not taken, and even when the system is quantum. We also derive a criteria for state to state transitions, and a criteria
for when transitions between two classical states can be made reversible in the micro-regime.

We will first consider a quantum system

ρ =
∑

σ(E,E′, g, g′)|E, g〉〈E′, g′| (2)

with a fixed Hamiltonian H and eigenstates of energy E given by |E, g〉, in contact with a heat bath. We are interested
in the types of state transitions which are allowed, and in particular, our ability to use the system as a resource to
extract work. We will then consider the case where the Hamiltonian of the initial and final state is not the same, so
that the system undergoes a non-cyclic evolution.

Instead of considering macroscopic work (the pushing out of a piston, or the raising of a weight), we consider
microscopic work – for example, the exciting of an atom from its ground state to an excited state (Figure 1). We can
thus use a two level system to store work. Because the amount of extractable work can be small, we require precise
accounting of all sources of energy. We thus consider a paradigm where extraction of work, and other operations
must be done using energy conserving operations[16], so that any energy which is transferred to or from the resource
system and heat bath, is transferred from or to the system which stores work. This casts thermodynamics as a resource
theory[16–21], which allows us to exploit some mathematical machinery from information theory. Thermodynamics
is then viewed as a theory involving state transformations in the presence of a thermal bath. The extraction or
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FIG. 1: A macroscopic heat engine which performs work by lifting a heavy object a certain height (left). In the quantum or
micro-regime, we can think of work as the ability to excite a two-level system from one energy state to a higher one (right).
Having many of these atoms would allow us to perform macroscopic work – for example, we could use the atoms in a laser. An
amount of work W can be used to produce a transition from the state |0〉〈0|, to the state |1〉〈1|, with Hamiltonian Ŵ = W |1〉〈1|
(we call such a two-level system, the work qubit, or wit). We can use such a system as a basic work storage unit, since our
results will not depend on what physical system is used.

expenditure of work can be included in such a paradigm, because it is equivalent to a state transformation – the state
of the work qubit is raised or lowered from one energy eigenstate to another. We call the class of operations that are
allowed Thermal Operations – a fuller discussion of which is contained in Section A of the Appendix.

Having precisely accounted for all sources of energy, we can show in Section D of the Appendix, that the quantity
which replaces the Helmholtz Free Energy for calculating the extractable work in the quantum regime is

Fmin
ǫ (ρ) = −kT inf

ωǫ

ln
∑

h(ωǫ, g, Ei)e
−βEi (3)

where ω =
∑

E PEρǫPE with PE = |E〉〈E| is the state ρ decohered in the energy eigenbasis (i.e. off-diagonal terms
are set to zero), ωǫ is any state such that ||ωǫ − ω||1 ≤ ǫ and h(ωǫ, g, Ei) is 1 if energy level |g, Ei〉 is populated and
0 otherwise. β is the inverse temperature, and k is Boltzmann’s constant. The significance of ǫ is that it takes into
account the situation where we allow a tiny probability ǫ of failing to draw work[22]. In terms of information theoretic
quantities, we can write

Fmin
ǫ (ρ) − Fmin

ǫ (τ) = TDǫ
min(ρ||τ) (4)

, where Dǫ
min(ω||τ) := − infωǫ

ln trΠωǫ
τ is the min-relative entropy[23] with Πωǫ

the projector onto the support of
ωǫ and τ is the Gibbs state τ = Z−1

∑

E,g e
−βE |E, g〉〈E, g| with partition function Z. The min-relative entropy and

single-shot free energy has been independently introduced to quantify work extraction from classical states using a
model of a series of independent interactions with a heat bath[24]

In the thermodynamical limit Dmin(ρ||τ) becomes[25] S(ρ||τ) the relative entropy S(ρ||τ) := − tr ρ log τ + tr ρ log ρ.
Thus, while the maximum amount of work W which can be extracted when a macroscopic system is in contact with
a heat bath, is W (ρ) = F (ρ) − F (τ), more generally it is W = Fmin

ǫ (ρ) − Fmin
ǫ (τ) and only in the thermodynamical

limit do we recover the traditional result.
Although the quantity of Equation (3) looks very different to the Helmholtz Free Energy, it can be compared to it

easily in the situation where the system’s energy fluctuations δE are small compared with the average energy 〈E〉 as
is the case with macroscopic thermodynamical systems. We then find by Taylor expanding Equation (3) and taking
the zeroeth order approximation that

Fmin
ǫ (ρ) ≈ sup

ωǫ

[〈E〉 − kT ln rank(ωǫ)] (5)

In the case where the system is diagonal in the energy eigenbasis i.e.

ρ =
∑

E,g,g′

σE,g,g′ |E, g〉〈E, g′| , (6)

we have that ρ = ω. Then, for extensive systems and the case of many particles n, the quantity ln rank(ωǫ) =
ln rank(ρǫ) ≈ S(ρ) [25] with ǫ going to zero exponentially fast in n. We then have that Equation (5) approaches the
Helmholtz Free Energy.

In general however, infρǫ
rank(ρǫ) is larger than the entropy S(ρ), especially in the case where we just have a single

system in the micro-regime, meaning that Fmin
ǫ is smaller than the free energy. The finite size of the system means

that less work can be extracted.
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There is a second reason why a limitation exists on the amount of extractable work. A quantum system ρ needn’t
be in the form of Equation (6) and in particular can have off-diagonal terms connecting different energy eigenstates.
However, it is not ρ which enters into Equation (3), but rather the state ρ decohered in the energy eigenbasis, namely
ω. Thus, to zeroeth order, rather than the rank of ρǫ replacing the entropy, it is the rank of ρǫ dephased in the energy
eigenbasis that replaces the entropy. This quantity is generally larger than the rank of ρǫ which is why for systems
with quantum coherences of energy, there is a further limitation on how much work can be extracted. As an example,
consider the pure quantum state

|ψ〉 =
∑

E,g

√

e−βE

Z
|E, g〉 . (7)

It has entropy and rank equal to zero. However, when dephased in the energy eigenbasis to produce ω, it becomes the
Gibbs state, and has free energy −kT lnZ; no work can be extracted from it, despite it having zero entropy. However,
as we approach the thermodynamic limit, the coherences matter less and less, and the free energy in the quantum
case approaches the free energy for classical states[21], and again, Fmin approaches the Helmholtz Free Energy.

The fact that at the quantum or nanoscale one can’t extract the work as given by the free energy, implies that there
is an inherent irreversibility in thermodynamic transformations. This can also be seen as follows – the maximum
amount of work which can be extracted from a system ρ in contact with a heat bath is given by Fmin(ρ) − Fmin(τ).
In the process, the system is transformed from state ρ to the Gibbs state τ . But if we wish to use work to perform
the reverse process, namely transform Gibbs states into ρ using work, then we show in D of the Appendix that the
amount of work which is required is Fmax

ǫ (ρ) − Fmax
ǫ (τ) with

Fmax
ǫ (ρ) = kT inf

ρǫ

log min{λ : ρ ≤ λτ} − kT lnZ (8)

in the case where ρ is diagonal in the energy eigenbasis. In general, Fmin
ǫ ≤ Fmax

ǫ , so that at the nanoscale we can gen-
erally extract less work from a resource than is required to create the resource, leading to a fundamental irreversibility
in thermodynamical processes. In terms of information theoretic quantities, Fmax

ǫ (ρ) − Fmax
ǫ (τ) = TDmax(ρ||τ),

where Dmax(ρ||τ) := log min{λ : ρ ≤ λτ} is the max-relative entropy[23]. As we approach the thermodynamic limit
Fmin
ǫ ≈ Fmax

ǫ , and reversibility is restored[25].
More generally, we would like criteria which tells us whether one state can be transformed into another under

some thermodynamical process. As we have seen, because of finite size or quantum effects, the decreasing of the
free energy is not a valid criteria which determines whether a thermodynamic transition can occur. For transitions
between a system ρ and a system σ, both diagonal in the energy eigenbasis, we can derive such criteria, which we call
thermo-majorization. It is based on the majorization condition for state transformations which is a necessary and
sufficient condition for state transformations under permutation maps. It’s construction is given in Section C of the
Appendix, and we state the result in Box 2.

In the case where ρ is not diagonal in the energy eigenbasis, but the final state σ is diagonal, then transformations
are possible if and only if transformations are possible from ω to σ. The reason is simple – dephasing in the energy
eigenbasis commutes with Thermal Operations[21] since the latter must conserve energy. Since we can dephase the
final state without changing it (as it is already diagonal in the energy basis) we can use the fact that dephasing
commutes with our operations to instead dephase the initial state without changing whether the transformation is
possible.

In the case where the final state is also non-diagonal in the energy basis, the criteria for which transformations are
possible depends on the coupling one has with the system, and especially, the degree of control one has of the system.
Thus far, our results have not depended on having fine-grained control of the system and heat bath – the interaction
depends on macroscopic variables such as total energy E, but the mapping between microstates g does not matter[21].
This is not necessarily the case during the formation process of states with off-diagonal terms. Thus, while Equation
(3) for the extractable work holds in general, the same is not true of Equation (8) for the formation process. This
is because for the formation process of transforming Gibb’s states into a state ρ which is not diagonal in the energy
eigenbasis, it is generally not possible to make such a transformation using Thermal Operations without additional
resources. In the case of formation of many copies n of ρ, the additional resource can be two level pure states in a
superposition of energy levels[21], and the number of them required is sublinear in n and hence vanishes as a fraction
of n.

So far we have considered transitions between the states of a system with fixed Hamiltonian. This might suggest that
our approach does not cover the microscopic analogue of thermodynamical processes between equilibrium states with
different initial and final Hamiltonians[3], such as isothermal expansions of a gas in a container. Yet, fundamentally, a
time dependent Hamiltonian is only an effective picture of a fixed Hamiltonian of a larger system, and we shall show
below how to describe such transitions in the microscopic regime.
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FIG. 2: Consider probabilities p(E, g) of the initial system ρ to be in the g’th state of energy E. Now let us put p(E, g)e−βE in
decreasing order p(E1, g1)e

−βE1 ≥ p(E2, g2)e
−βE2 ≥ p(E3, g3)e

−βE3 ... – we say that the eigenvalues are β-ordered. We can do
the same for system σ i.e. e−βE1q(E1, g1) ≥ e−βE2q(E2, g2) ≥ e−βE3q(E3, g3).... Then the condition which determines whether
we can transform ρ into σ is depicted in the above figure. Namely, for any state, we construct a curve with points k given by
{
∑

e−βEi/Z,
∑k

i
pi}. Then a thermodynamical transition from ρ to σ is possible if and only if, the curve of ρ lies above the

curve of σ.

Namely we introduce a qubit on system C which we can act on to switch the Hamiltonian from H to H ′ (we call
this the switching qubit). We can for example take the total Hamiltonian to be

Htot = |0〉〈0|C ⊗H + |1〉〈1|C ⊗H ′ +W |1〉〈1| (9)

and take the initial state of the work qubit, switching qubit and system to be |00〉〈00|CW ⊗ ρ and final state to be
|11〉〈11|CW ⊗ σ, so that we are effectively changing the Hamiltonian acting on ρ, and gaining or losing work in the
work qubit when we make the transition to σ. We now consider a transitions between ρ and τ ′, and want to know
what value (positive or negative) for W allows us to make this transition.

The results, obtained by means of thermo-majorization are depicted in Figure 3. One finds

W = Fmin
ǫ (ω) − Fmin

ǫ (τ ′) (10)

for extracting work, and for the amount of work required to form ρ (provided it is diagonal in energy eigenbasis) from
the thermal state, we obtain

W = Fmax
ǫ (ρ) − Fmax

ǫ (τ ′) (11)

This result does not depend on the form of the Hamiltonian of Equation (9) – we only require that at late times,
there is no interaction between the work qubit and the other systems (since we need to be able to separate out the
work qubit to use in some future process).

To derive Equations (10)-(11), we β-order the pi and qi corresponding to ρ⊗ |00〉〈00|, and σ⊗ |11〉〈11| respectively.

Then the thermo-majorization coordinates k of ρ⊗|00〉〈00| are given by {
∑k

1 e
−βEi ,

∑k
1 pi, }, and those of σ⊗|11〉〈11|

are {
∑k

1 e
−β(E′

i+W ),
∑k

1 qi, }. The thermo-majorization condition for a transition is that for all k, the points associated
with ρ are above that of σ and they take a particularly simple form when either ρ or σ is the thermal state. These
two cases are shown in Figure 3. The case where the final state is thermal for Hamiltonian H ′, σ = τ ′, and the work
qubit is excited corresponds to distillation, since no further work can be drawn for fixed H ′ once the state is thermal,
and a transition to another state can always be followed by a transition to the thermal state. Therefore drawing work
by relaxing the state to a thermal state is completely general, and gives us Equation (10). If ρ has off-diagonal terms,
then the distillable work is given by the decohered version ω in Equation (10), due to the same reasoning as we used
earlier – the final state is simply the work qubit, since everything else can be thrown away, and therefore is diagonal
in the energy eigenbasis. Since decohering the final state doesn’t change the final state, and decohering with respect



5

FIG. 3: Distillable work and work of formation. (a) Graphical representation of two free energies. For Gibbs state
they coincide. (b),(c): The scenario of changing Hamiltonian we can mimic by adding to the system S ancilla C switching
between initial H and final Hamiltonian H ′, with partition functions Z,Z′, respectively. We consider transition ρ → τ ′ and
τ ′ → ρ, and obtainable works denote by Wdist and Wdist respectively. The works can be of either signs. Adding/Subtracting
work to a Gibbs state is graphically represented as changing the its slope. Formation is depicted by arrow going from ρ to
τ ′, distillation by arrow going from τ ′ to ρ. The directions of arrow to the right/left means that the work is positive/negative
in given transition. Positive work, means that we obtain work during the process. We depict two out of possible four cases
of work signs: (b) both works are negative (c) work of formation is negative while work of distillation is positive. (d) The
interconversion of two arbitrary states is depicted.

to the total Hamiltonian commutes with thermal operations, we can do it to the initial state without affecting the
amount of work extractable.

The case where we adjust W so that ρ⊗ |00〉〈00|CW is thermo-majorized by σ⊗ |11〉〈11|CW gives us the formation
process, and free energy of Equation (10). The case where both initial and final states ρ,σ are thermal is also depicted
in Figure 3, and leads to the ideal classical result, namely that a transition is possible if and only if

W = −T lnZ/Z ′ (12)

i.e. the work is given by the difference of standard free energies (1). This is a very different result to Equation (3), where
the work qubit and system have no interaction term as in Equation (9). It shows that for thermal equilibrium states
there can be reversibility in some thermodynamical processes, provided they are between two thermal equilibrium
states and the Hamiltonian changes. In the picture of a fixed Hamiltonian, this required at least one additional system
(the switching qubit), which is effectively not in contact with the heat bath, and we do not draw the maximal amount
of extractable work from the total working body, given by Fmin

ǫ (ρS ⊗ |0〉〈0|C). The final state is thermal only on a
subsystem S and therefore the amount of drawn work is not optimal.

In general, we only get reversibility if there exists a W , such that the thermo-majorization plot of the initial state

{
∑
e−βEi/Z,

∑k
i pi}, can get mapped onto the plot of the final state {

∑
e−β(E′

i+W /Z ′,
∑k

i qi}. Thus reversibility
requires a very special condition. It is this lack of reversibility which requires two free energies. There is a connection
here with other resource theories. Consider the set of states which are preserved under the class of operations – in
entanglement theory, these are separable states, and for Thermal Operations, we show in Section E of the Appendix
that it is the Gibbs state. Now, if the theory is reversible, then under certain conditions, the relative entropy distance
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to the preserved set is the unique measure which governs state transformations[20, 26]. For Thermal Operations, the
relative entropy distance to the Gibbs state is precisely the free energy difference[27]. Here, in the case of finite sized
systems, we see that although we don’t have reversibility, the relative entropy distance to the preserved set again
enters the picture, but it is the min and max relative entropy. These quantities are monotonically decreasing under
the class of Thermal Operations, and provide two measures for state transitions.
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Appendix A: Thermodynamics as a resource theory

In the micro-regime, when the amount of work which can be extracted might be of the order of kT , we need to very
precisely define what we mean by work, and what processes are allowed during the extraction of work from a system.
For our purposes, obtaining work ∆W means to obtain an eigenstate of the Hamiltonian with energy Wout starting
from an eigenstate of energy Win, where Win −Wout = ∆W . In our approach it will turn out, that the amount of
work we can extract from a given system does not depend on the Hamiltonian of the system which stores the work,
and the particular levels we choose. We can thus consider a system of the smallest dimension, which carries work W .
This is a two level system with Hamiltonian Ŵ = W |1〉〈1|. We shall call this a work qubit (in short, a wit), and let
|ψW 〉 denote the excited state |1〉 with energy W . This is the most economical way of storing work.

Since drawing or adding work can be represented as a state transformation, it is natural to consider thermodynamics
as a resource theory. Namely, one considers some class of operations, and then asks how much of some resource
can be obtained. Recent examples of such theories include entanglement theory[20, 29], thermodynamics with no
Hamiltonian[19], thermodynamics of erasure[30] and operations which respect a symmetry[31, 32]. Here, we use the
class of operations which corresponds to thermodynamics[21, 30], and then ask by how much we can excite a system
initially in a pure ground state. It can be shown that there are a number of equivalent ways of describing this class
of operations[21].

Since we are interested in extracting work in the presence of a heat bath, one starts by allowing a free resource of
a heat bath, with Hilbert space HR. The heat bath is in a Gibbs state τ , with arbitrary Hamiltonian and we further
allow the addition of any auxiliary system S′ with Hamiltonian HS′ in a Gibbs state. Without loss of generality, we
can take the initial Hamiltonian to be non-interacting at very early times between the reservoir R and the system of
interest S, as well as any ancillas. We also want that initially (and finally), the work qubit is not interacting with
the rest of the system, since we want to be able to store the work, and use it in some other process. We thus have
initially Htot = HR +HS +HS′ + Ŵ .

We now require that all manipulations conserve energy. This ensures that all sources of work are properly accounted
for, and that external systems are not adding or taking away work. The dynamics can be implemented by an interaction
Hamiltonian, however, if we wish to maintain a precise accounting of all energy, then the interaction term needs to
vanish at the beginning and end of the protocol, otherwise it allows us to pump work into the system at no cost.
Essentially we need to ensure conservation of total energy. This also means that if we wish to model a time-dependent
Hamiltonian, we should do so by means of a time-independent Hamiltonian with a clock included in the system. It is
not difficult to show [21], that all of these paradigms which conserve energy, are equivalent to unitary transformation
commuting with the total Hamiltonian. Essentially, since accounting for all sources of energy requires that the initial
and final Hamiltonian are the same, the dynamics must map eigenstates of the Hamiltonian to eigenstates with the
same energy. This is equivalent to considering a fixed Hamiltonian, and allowing operations which commute with the
Hamiltonian. We also allow discarding subsystems (partial trace). We call this class - Thermal Operations.

Note that this paradigm allows one to include time independent Hamiltonians as in the example discussed in the
Main Section

Htot = |0〉〈0|C ⊗H + |1〉〈1|C ⊗H ′ +W |1〉〈1| (A1)

Via a similar mechanism, one can include interacting terms which vanish at early and late times.
Generally, we are interested in transitions between (ρS , HS) and (σS′ and HS′) (extracting work will be a special

case of such a transition). Since in the described approach, the Hamiltonian is fixed, such a transition means actually
(ρS ⊗ τS′ , HS +HS′) → (τS ⊗ σS′ , HS +HS′). where we have the same initial and final Hamiltonian.



8

1. Assumptions on heat bath, and its relation to the system

We also assume that Hamiltonians of all systems of concern (i.e. heat bath Hamiltonian, auxiliary systems, the
resource system itself) have minimal energy zero. Let ER be energies of reservoir, and ES be energies of the system.
Let Emax

R , and Emax
S be the largest energy of the heat bath and system, respectively (of course a typical heat bath

will have Emax
R = ∞).

Our heat bath will be large, while our resource states will be small. This means that the system Hilbert space will
be fixed, while the energy of the heat bath (and other relevant quantities such as size of degeneracies) will tend to
infinity.

We now make some assumptions concerning the state and Hamiltonian of the heat bath. The heat bath is in a
Gibbs state with inverse temperature β. Moreover there exists set of energies ER such that the state of the heat bath
occupies energies from ER with high probability, i.e. for the projector PER

onto the states with energies ER we have

trPER
ρR ≥ 1 − δ (A2)

and it has the following properties:

(i) The energies E in ER are peaked around some mean value, i.e. they satisfy E ∈ {〈E〉 − O(
√

〈E〉), . . . 〈E〉 +

O(
√

〈E〉)}

(ii) For E ∈ ER the degeneracies gR(E) scale exponentially with E, i.e.

gR(E) ≥ ecE (A3)

where c is a constant.

(iii) For any three energies ER, ES and E′
s such that ER ∈ ER and ES , E′

S are arbitrary energies of the system, there
exist E′

R ∈ ER such that ER + ES = E′
R + E′

S .

(iv) For E ∈ ER the degeneracies gR(E) satisfy gR(E − ES) ≈ gR(E)e−βES , or more precisely:
∣
∣
∣
∣
∣

gR(E)e−βE′

S

gR(E − ES)
− 1

∣
∣
∣
∣
∣
≤ δ (A4)

for all energies ES of the system S.

Discussion of assumptions:

Ad. (i) This is a standard property of a heat bath.

Ad. (ii) Follows from the condition (i) of small fluctuations combined with extensivity of energy.

Ad. (iii) Follows from continuity of the spectrum of the heat bath, which is usually the case.

Ad. (iv) Follows from

g(E + ∆E) = eS(E+∆E)

≈ eS(E)+∆E
∂S(E)
∂E

= g(E)eβ∆E (A5)

with S(E) := ln g(E). and β := ∂S(E)
∂E

.

It is also easy to see that a product τ⊗n of many copies of independent Gibbs states satisfies the above assumptions.

Appendix B: Notation and preliminary facts.

We shall now need a bit of notation. Let us define ηXE as a state of a system X proportional to the projection on
to a subspace of energy E (according to the Hamiltonian HX on this system). In particular, ηE−ES

is given by

ηE−ES
= g(E − ES)−1

∑

g

|E − ES , g〉R〈E − ES , g| (B1)
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where g = 1, .., g(E − ES), i.e. ηE−ES
is the maximally mixed state of the reservoir with support on the subspace of

energy ER = E − ES . We shall also use notation ηK = I/K where the identity acts on a K dimensional space.
Let us note that the total space HR ⊗HS can be decomposed as follows

HR ⊗HS =
⊕

E

(
⊕

ES

HR
E−ES

⊗HS
ES

)

(B2)

(here for E ≤ ES and E ≥ Emax
R + Emax

S the summation over ES is suitably constrained, however we are interested
only in energies ER from ER, hence these cases will not occur).

Consider an arbitrary state ρRS which has support within Emax
S ≤ E ≤ Emax

R . We can rewrite it as follows

ρRS =
∑

E

∑

∆

PEρRSPE+∆ (B3)

Here ∆ = −Emax
S , . . . , Emax

S . The blocks PEρRSPE+∆ we can further divide into sub-blocks

PEρRSPE+∆ =
∑

ES∈I∆

IR ⊗ PES
PEρRSPE+∆IR ⊗ PES+∆ (B4)

where I∆ = {0, . . . , Emax
S − ∆} for ∆ ≥ 0 and I∆ = {−∆, . . . , Emax

S } for ∆ ≤ 0. The sub-blocks map the Hilbert
space HR

E−ES
⊗ (HS

ES+∆ onto HR
E−ES

⊗HS
ES

)
We can then extract the state ρS

ρS =
∑

ES ,E′

S

PES
ρSPE′

S (B5)

as follows:

PES
ρSPE′

S
=
∑

E

trHR
E−ES

(PR
E−ES

⊗ PES
PEρRSPE+E′

S
−ES

PR
E−ES

⊗ PE′

S
) (B6)

We then have the following technical result that will be a basis for most of our derivations:

Theorem 1. We consider set of energies

E = {E : E − ES ∈ ER} (B7)

where ER satisfies assumptions (i), (ii) and (iii) listed above. Then

∀E ∈ E ||
1

pE
PEρR ⊗ ρSPE+∆ −⊕ES

ηE−ES
⊗ PES

ρSPES
|| ≤ 2δ (B8)

and
∑

E∈E

pE ≥ 1 − 2δ (B9)

where pE = tr(PEρR ⊗ ρS).

Proof. Here we sketch the proof for ∆ = 0. For ∆ 6= 0 the proof is similar. Let us fix an energy block E. Let
ER = E − ES . The state τR ⊗ ρS restricted to the energy E block is given by

PEτR ⊗ ρSPE =
1

ZR

∑

ES

e−βE − ESgR(E − ES)IE−ES

R ⊗ PES
ρSPES (B10)

where Z is partition function for system R, and I
E−ES

R is identity on the subspace HE−ES

R , see (B2). Using (iv) we
have gR(E − ES) = gR(E)e−βES we get

PEτR ⊗ ρSPE ≈
1

ZR

e−βEgR(E)
∑

ES

I
E−ES

R

gR(E)e−βES

⊗ PES
ρSPES (B11)

Since
I
E−ES
R

gR(E)e−βES
= ηE−ES

. Moreover, if we drop the prefactor, the state is normalised, hence we obtain the claim.
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Appendix C: Transformations of classical states: condition in terms of majorization

Here we will provide a necessary and sufficient condition for transforming the diagonal part of a density matrix of
one state into the diagonal part of another state acting on the same system. The condition will be in terms of the so
called majorization condition, and it will be necessary and sufficient for state transformations of classical states (i.e.
diagonal in the energy eigenbasis). The result is contained in the theorem 2.

From the expression (B8) it follows that a block of fixed energy E contains only the diagonal part of ρS :

PEρR ⊗ ρSPE ≈ ⊕ES
ηE−ES

⊗ PES
ρSPES (C1)

Note that we can tensor out a maximally mixed state of size independent of both ES and E, and apply unitaries
conditioned on the maximally mixed state. We do that by writing

ηE−ES
=

IK

K
⊗

IK′

ES

K ′
ES

(C2)

where K ′
ES

= g(E − ES)/K. Due to our assumptions about the heat bath, the degeneracy of each energy state is
exponentially large in energy, so we can take such K that both K and K ′ are exponentially large in energy. Thus a
given fixed energy block E can be represented as a tensor product of two systems RE

1 and RE
2 S

E in a state

1

pE
PEρR ⊗ ρSPE ≈

IK

K
⊕ES

IK′

ES

K ′
ES

⊗ PES
ρSPES

(C3)

We know [19] that then any mixture of unitary transformations can be performed on the system RE
2 S

E , provided K
is large with respect to K ′

E , and we shall choose K, and the size of the total system, in such a way, that this is so,
and at the same time K ′

E can be large too, which we will need further. We shall below use notation η′E−ES
to denote

the maximally mixed state acting on system RE
2 .

Twirling The following operation being a mixture of unitaries will prove useful. For each fixed ES we apply a
random unitary to RE

2 , and identity to the part SE . This operation does not change the final state of the system,
but greatly simplifies the form of the total state: namely for any initial state on RE

2 S
E , the final state is of the form

⊕ES
η′E−ES

⊗ σES (C4)

Finally let us note that we cannot perform any other operation, on the state than a mixture of unitaries, because,
for the total state of fixed energy block (C1) we can only apply some fixed unitary. since in the process of tracing our
over the reservoir, we will sum over blocks, which effectively performs some mixture of unitaries. However, the state
with I

K
tensored out does not actually differ much from the state (C1), as we anyway will take the system RE

2 to be

large. Thus the output state coming from a mixture of unitaries performed on the state with and without I

K
being

tensored out have the same effect on the final form of the state of the system S. We should now now recall, that
the possibility of transforming one state into another by a convex combinations of unitary transformations is simply
given by the majorization conditions[33].

The majorization condition reads as follows: we have two sets of eigenvalues put in decreasing order {λi} and {λ′i},
and we say that {λi} majorizes {λ′i} when

l∑

i=1

λi ≥
l∑

i=1

λ′i (C5)

for all l. We say that ρ majorizes σ if the eigenvalues of ρ majorize the eigenvalues of σ.
In this way obtain the following theorem which will be the basis for our further results.

Theorem 2. Consider two states ρS and σS diagonal in energy eigenbasis, on a system with Hamiltonian HS. The
transition (ρS , HS) ⊗ (σS , HS) by means of thermal operations is possible if and only if the state

⊕ES
ηE−ES

⊗ PES
ρSPES (C6)

majorizes

⊕ES
ηE−ES

⊗ σES (C7)

for E large enough. Moreover, if the above majorization relation holds for two states ρS and σS not necessarily
diagonal in energy eigenbasis, then there exists σ′

S such that for all ES PES
σSPES

= PES
σ′
SPES

, and the transition
(ρS , HS) → (σ′

S , HS) is possible.
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Note that in the proof we have used the assumptions (i-iii) about the heat bath but not (iv). The latter will be
used when we will need to get rid of the heat bath in the majorization expressions.

Finally, it is intuitively obvious, that if we add to a heat bath a small system in a Gibbs state, this is again a larger
heat bath, i.e. it still satisfies our assumptions. Indeed, consider a heat bath R which satisfies assumptions (i-iv), and
another system S′, and consider the total Hamiltonian being a sum of Hamiltonians HR +HS′ . The tensor product
of two Gibbs states is a Gibbs state of a total system. Since the original heat bath is large, and our system is small,
then the conditions i, ii and iii are obviously satisfied. Then, writing

gRS′

(E) =
∑

ES′

gR(E − ES′)gS
′

(ES′) (C8)

and using the property iv of gR one gets

gRS′

(E) ≈ gR(E)ZS′ (C9)

where ZS′ is the partition function for S′. This implies, in particular, that gRS′

also satisfies the condition iv.
This proves the following intuitively obvious lemma:

Lemma 3. Transition between ρS ⊗ τS′ → σS ⊗ τS′ is possible if and only if transition ρS → σS is possible.

Thus adding a system in a Gibbs state makes sense only, if we consider transition between systems with different
Hamiltonian. Then we bring in a system in a Gibbs state, only in order to have that Hamiltonian in future processes
e.g. we might then transform the Gibbs state into another state which needed to have that Hamiltonian.

The conditions given thus far for state transformations are all that is needed to draw the full amount of work from
a state, or to form a state from a heat bath. This is done in sections D and E. For the remainder of this section, we
continue with more general state transformations.

1. Thermo-majorization

We shall now provide an efficient method of finding, whether a transition (ρ,H) → (σ,H) is possible, for states
which commute with Hamiltonian H . The condition of transformations of the diagonal part of a density matrix
given by theorem 2 in terms of majorization involves not only the state, but also the heat bath, hence it is not always
directly useful. We shall now express the condition given by majorization in terms of the states of system S themselves
which will result in an efficient algorithm to decide whether a transition between two diagonal states is possible or
not. Essentially, we need to write the eigenvalues of the state and heat bath, in terms of eigenvalues of only the state.
We shall assume that our input state and output states are diagonal in their energy bases, however, even if they are
not, the condition we derive determines possible transformations of the diagonal part of the density matrix, thus the
condition becomes necessary, but ceases to be sufficient.

Let pES,g be eigenvalues of ρ and qES ,g be eigenvalues of σ. Then, due to proposition 2 and the condition (iv), the
state PEρR ⊗ ρSPE after normalisation is close to the state having the following eigenvalues:

eβES
p(ES , g)

gR(E)
(C10)

with multiplicity gR(E)e−βES , where ES runs over all energies of the system, and g runs over degeneracies. Similarly,

PEρR ⊗ σSPE has eigenvalues e−βES q(ES ,g)
gR(E) with the same multiplicity.

The eigenvalues are very small, and they are collected in groups, where they are the same, hence the majorization
amounts to comparing integrals. If one puts eigenvalues into decreasing order, one obtains a stair-case like function,
and majorization in the limit will be to compare the integrated functions (which are then piece-wise linear functions).

To see how it works, we need to put the eigenvalues in nonincreasing order. The ordering is determined by the
ordering of the quantities eβESpES,g. This determines the order of p(ES , g) (which in general will not be decreasing
order anymore). We shall denote such ordered probabilities as pi, and the associated energy of the eigenstate as Ei.
E.g. p1 is equal to the p(ES , g) such that eβESp(ES , g) is the largest. Note that for fixed ES the order is the same as
order of PES ,g, while for different ES it is altered by the Gibbs factor. We do the same for σ, which results in qi.

The eigenvalues are thus ordered by taking into account Gibbs weights:

p1e
βE1

dE
︸ ︷︷ ︸
multiplicity

≈dEeβE1

≥
p2e

βE2

dE
︸ ︷︷ ︸
multiplicity

≈dEeβE2

≥ . . .
(C11)
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FIG. 4: Thermo-majorization. I. Standard majorization: (a) the histograms of probability distributions {pi} and {qi}. (b)

The distribution {pi} majorizes distribution {qi} if for all l
∑l

i=1
pi ≥

∑l

i=1
ql. Graphically,this means that the entire plot

corresponding to {pi} is above the plot corresponding to {qi}. II. Thermo-majorization. (c) Here the histograms consist of
groups of numerous columns of the same height. We set their base to 1/dE where dE = gR(E), which defines a stair-way
looking function defined on interval [1, Z], where Z is partition function. As a result, the plot analogous to that of (b), in
the limit of large E (which implies dE → ∞) becomes integral of that function presented on panel (d). The angles are given
by tan(αi) = pie

βEi hence they are decreasing. (e) checking thermo-majorization conditions amounts to comparing the plots
which are piecewise linear functions. The state ρ1 thermo-majorizes each other state, while the thermal τ is thermo-majorized
by all other states. Thus we can transform ρ1 into ρ2, ρ3 and τ and all states can be transformed into τ . On the other hand,
ρ2 and ρ3 are incomparable, hence neither can be transformed into one another by Thermal Operations.

where dE is a shorthand for gR(E). We shall now ascribe to vector {pi} a function mapping interval [0, Z] into itself.

On the y axis, we put subsequent sums
∑l

i=1 pi, l = 1, . . . , d where d is the number of all probabilities, and on the x

axis, we put sums
∑l

i=1 e
−βEi, with the final point being at x = Z. This gives d + 1 pairs: (0, 0), (p1, e

−βE1), (p1 +
p2, e

−βE1 + e−βE2), . . . , (Z, 1). We join the points, and it will gives us a graph of a function, fp(x). It is easy to see,
that in the limit of large gR(E), the eigenvalues of ρ majorize eigenvalues of σ if and only if fp(x) ≥ fq(x) for all
x ∈ [0, Z]. The described scheme is presented on figure C 1.

Note that the Gibbs state in this picture is represented by a trivial function fβ(x) = Zx hence any state can be
transformed into a Gibbs state. Note that one can generalise our new type of majorization, by replacing Gibbs state
with an arbitrary state, obtaining an interesting mathematical generalisation of standard majorization. Likewise,
although here the relevant conserved quantity is energy, one can generalise to operations which commute with any
conserved quantity.

Appendix D: Transitions involving pure excited states

In preparation for deriving the expression for extracting work from a resource, or forming a state from the thermal
state by adding work, we will derive the condition for transitions involving a pure energy eigenstate. In particular,
we will derive the expression for extracting a pure excited state, and the expression for forming a state from a pure
excited state. Then in Section E, we will use the results in this section to derive our two free energies.

1. Distillation: extracting a pure excited state

In this section we derive the condition for when a given mixed state ρS with Hamiltonian HS can be transformed
into a pure excited state ψW - an eigenstate of the Hamiltonian HS′ with eigenvalue W . Let us first consider the case
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where we wish to extract ψW with no probability of failure, from a state diagonal in the energy basis. We will then
extend our result to arbitrary states.

According to Lemma 3 we need to take an initial state ρS ⊗ τS′ and the final state is an arbitrary state of the
system SS′ of the form σS ⊗ |ψW 〉〈ψW |S′ . Due to Theorem 2, and Eq. (C9) a transition is possible when the state

⊕

ES

ηRS′

E−ES
⊗ PES

ρSPES (D1)

majorizes

⊕

ES

ηRE−ES−W ⊗ PES
σPES

⊗ |ψW 〉S′〈ψW | (D2)

However, since σ is arbitrary, and the target state of S′ is pure, this is equivalent to the condition

rankin ≥ rankout. (D3)

where rankin and rankout are ranks of the state (D1) and (D2), respectively.
The rank of the initial state is equal to

rankin =
∑

ES

gRS′(E − ES)rankES
(ρS) (D4)

where rankES
(ρ) is the rank of PES

ρSPES
, and as in Eq. C9

gRS′(E − ES) = gR(E − ES)ZS′ . (D5)

The maximal rank of the target state is given by

rankout =
∑

ES

gR(E − ES −W )gS(ES) (D6)

Now, using (D5) and gR(E + ∆E) ≈ gR(E)eβ∆E we obtain that eq. D3 implies

∑

ES

e−β(ES)

Z
rankES

(ρS) ≤
∑

ES′

e−β(ES′)

Z ′
rankES′

(ψW ) (D7)

which can be written as

Dmin(ρS ||τS) ≥ Dmin(ψW
S′ ||τS′) (D8)

with Dmin(ρS ||τS) := − ln trΠρτ . In general this quantity is the min-relative entropy[23].
We can now ask about the case when ρ is not diagonal in the energy eigenbasis. In such a case, we simply replace

ρ with ω =
∑

Eg,g′ |E, g〉〈E, g|ρǫ|E, g
′〉〈E, g′| in Equation (D8). The reason, is that Theorem 2 states necessary and

sufficient conditions for transforming the diagonal entries of one density matrix into the diagonal entries of another.
In the case of an initial state with off-diagonal entries, it gives necessary conditions. However the diagonal entries of
a pure excited energy eigenstate determines uniquely that state itself, thus the condition must also be sufficient. An
alternative argument in terms of commuting of the dephasing operation and thermal operations is given in the Main
Section.

Note that the operation which gets implemented to map one state to another is simply a mapping from eigenstates
of the initial state within each energy block E, to mappings of eigenstates of the final state within the same energy
block. However, any such mapping will do, and there are a huge number of them. Thus the experimenter does not
need to know which unitary she is implementing, provided that it conserves energy. She thus needs very little control
over her systems – she simply chooses any unitary which maps the macroscopic variables of one state (in this case,
total energies (ER, ES), to macroscopic variables of the final state (in this case, a pure energy eigenstate with no
degeneracy on some system, and total energy on another (ER +ES −W ). The same is true of the formation process
described in the next section.
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2. Formation of a resource state from a thermal bath and pure excited state

Just as one can draw work from a state which is out of equilibrium from the rest of the thermal bath, it is also
possible to perform the reverse process – create a state from the thermal bath by adding work. Here we provide
conditions for transition from a pure excited state to a given target diagonal state. We will then use it in Section E
to derive the amount of work which is required to create a state.

We thus take the initial state to be of the form

ρin = ψW
S ⊗ τS′ (D9)

and the output state

ρout = ρSS′ (D10)

We shall now use Theorem 2. To this end we have to check the majorization condition between the following states:

ηRS′

E−W ⊗ |ψW 〉S〈ψ
W | (D11)

and

⊕ES′
ηRS
E−ES′

⊗ pES′
ρ
ES′

S′ (D12)

where in (D11) we have used Eq. (C9).
However, the former state has only one eigenvalue 1/gRS′(E −W ) with multiplicity gRS′(E −W ). Therefore, the

majorization condition is that all eigenvalues of the latter state are no greater than this eigenvalue. I.e. we need that

gRS′(E −W )−1 ≥ gRS(E − ES′)−1λmax
ES′

(D13)

holds for all ES′ , where λmax
ES′

is the maximal eigenvalue of PES′
ρS′PES′

i.e. it is the maximal eigenvalue of ρS′ in the

subspace of energy ES′ . Since the Hamiltonian for RSS′ is the sum of HR, HS and HS′ , we obtain that

gRS′(E −W ) =
∑

ES′

gR(E −W − ES′)g′S(ES′)

gRS(E − ES′) =
∑

ES

gR(E − ES′ − ES)gS(ES)

Now we use the fact that R is a heat bath, and we apply our assumption (A4) which says that

gR(E −W − ES′) ≈ gR(E)e−β(W+ES′) (D14)

and

gR(E − ES′ − ES) ≃ gR(E)e−β(ES+ES′) (D15)

we can thus rewrite the majorization condition (D13) as follows

1

ZS′

e−βES′ ≥
1

ZS

e−βWλmax
ES′

(D16)

for all ES′ . On the other hand, one can compute that

Dmax(ψW
S ||τS) = ZSe

βW , Dmax(ρS′ ||τS′) = max
ES′

ZS′eβES′λmax
ES′ (D17)

where Dmax(ρ||τ) := log min{λ : ρ ≤ λτ} is the max-relative entropy[23]. Thus, the transition (ψW
S , HS) → (ρS′ , HS′)

is possible if and only if

Dmax(ψW
S ||τS) ≥ Dmax(ρS′ |τS′). (D18)
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Appendix E: Extractable work, and work of formation

We now use the results of Secs. D 2 and D 1 to discuss the amount of work that can be drawn from a system in
contact with a heat bath of temperature T , and the amount of work that is needed to create one. In thermodynamics,
both quantities are equal and are given by free energy. In our case we obtain two free energies, Fmin governing
extracting work, and the other, Fmax, governing creation of the system. In this section, we derive the expression for
Fmin and Fmax in the case where we wish to extract the full amount of work available, or create a total state out
of thermal states. This corresponds to Equations (3) and (8). The more general result of Equations (10) and (11)
following from thermo-majorization is contained in the Main Section.

We propose to define the process of drawing or spending work as raising or lowering the energy level of an eigenstate
of a Hamiltonian Ŵ of a system. This system is used to store the energy provided by drawing work. Thus we draw
work ∆W if we transform a state |E〉 into |E′〉 such that E′ −E = W HW |E〉 = E and H |E〉 = E. Expending work,
would mean the reverse process. Since our results don’t depend on the system used to store work, we take the most
elementary system than can be used, namely a two level system with energy gap W .

Thus consider a system S in state ρS . We add a work system with Hamiltonian Ŵ in a state |E〉. Our initial state
is thus ρS ⊗ |E〉〈E| and the final state |E′〉〈E′|. Using the results of section D 1 we obtain, that ρS ⊗ |E〉〈E| can be
transformed into |E′〉〈E′| if and only if

Dmin(ρS ⊗ |E〉〈E|) ≥ Dmin(|E′〉〈E′|), (E1)

where we use the shorthand notation Dmin(ρ) ≡ Dmin(ρ|τ). Since Dmin is additive, and for energy eigenstates |E〉 we
have

Dmin(|E〉) = βE − lnZW (E2)

where Z is the partition function of the work system, we can rewrite (E1) as

kTDmin(ρS) ≥W (E3)

This allows us to define the free energy Fmin as follows:

Fmin = Fβ + kTDmin (E4)

where Fβ is the standard free energy of the equilibrium state (we have anyway that for thermal states Fmin = Fβ).
The work that can be drawn from a non-equilibrium state is thus equal to the the free energy difference ∆Fmin:

Wdist(ρ) = Fmin(rho) − Fmin(tau) (E5)

We now wish to allow some probability of failure[22] – namely, we might not produce ψW
S′ exactly, but rather a

state ψW
ǫ ǫ-close to ψW i.e. such that

||ψW
ǫ − ψW || ≤ ǫ. (E6)

Since thermal operations are completely positive trace preserving maps, then if we imagine the same operations were
performed on some initial state ||ρǫ − ρ|| ≤ ǫ then the final state will also satisfy Equation (E6). We can thus replace
Dmin(ρ||τ) with Dǫ

min(ρ||τ) := − supρǫ
− ln trΠρτ . This is known as the smooth-min entropy[23].

Analogously we define work which is needed to create a system, i.e. we consider a transition |E〉〈E| → |E′〉〈E′|⊗ρS,
and in an analogous way obtain that the minimal work W = E′ − E to ensure this transition is given by

Wform(ρ) = Fmax(ρ) − Fmax(τ) (E7)

where Fmax is a max-free energy given by

Fmax = Fβ + kTDmax. (E8)

This comes from simply solving Equation (D18) for the value of W required for the transition, to obtain

W = kT inf
ρǫ

log min{λ : ρ ≤ λτ} (E9)

As in the distillation process, we can consider ǫ-close formation processes, since we will generally want to tolerate
some small error in the creation of a resource, particularly if it can save us needing a large amount of work. We thus
obtain the expression for Fmax

ǫ in the Main Section.



16

FIG. 5: Transitions for two level system with energy levels E = 0 and E = 1. a) There are four possible transitions b) the
number of states of bath corresponding to each level is proportional to the Boltzmann factor.

Appendix F: Characterisation of Thermal Operations

We have provided an algorithm for deciding whether a state can be transformed into another state, given by
thermo-majorization. However the algorithm does not tell us what kind of operations (completely positive maps) we
can perform by means of Thermal Operations. Below we shall show, that all possible processes are precisely those
that preserve the Gibbs state. This implies that if we have reversibility of state transformations (as is the case when
we have many copies of a state[21]), then the unique measure which determines whether a transformation is possible,
is given by the relative entropy distance to the Gibbs state[20]. This quantity is the difference between free energy
of a state of interest and that of Gibbs state [27]. However, here, we do not have reversibility, thus there are at least
two inequivalent functions which are non increasing under thermal operations (Fmin and Fmax).

We start with a state τR ⊗ ρS and write

τR ⊗ ρS ≈
∑

E∈E

pEρ
E
RS (F1)

with

ρERS =
1

PE

PEτR ⊗ ρSPE (F2)

where E consists of very large energies in comparison with system energies, and pE = tr(τR⊗ρSPE). We shall now fix
one energy block, and show, that even when restricting just to permutations of basis vectors within the block (being
products of eigenstates of τR to eigenvalues ER and eigenstates of ρS to eigenvalues ES , such that ER +ES = E) we
can perform arbitrary operation on system S which preserve the Gibbs state. Then, we will argue that the operation
on the system S can be made the same for each energy block (for E ∈ E).

To prove the first claim, for simplicity, let us assume that the Hamiltonian HS is nondegenerate (extension to the
degenerate case is immediate). As follows from Theorem 2, in such a fixed subspace, the eigenvalues of our state

form groups labelled by energy ES . Within each group, we have gR(E)e−βES eigenvalues all equal to p(ES)

gR(E)e−βES
.

Permutations of basis vectors result in transferring some subsets of a given group to other groups. Let us then use
indices i in place of ES , so that pES

→ pi and gR(E)e−βES → di. We shall denote by ki→j the ”transition current”
i.e. the number of eigenstates that have been moved from the i-th group to the j − th group. Clearly ki→j satisfy

∑

j

ki→j = di

∑

i

ki→j = dj (F3)

The transition ”currents” are illustrated on Fig. 5. After an operation given by some fixed set of ki→j satisfying the
above transitions, we obtain a new state, whose probabilities qi are given by

qj =
∑

i

ki→j

pi
di (F4)

Thus, we can define transition probabilities pi→j as

pi→j =
ki→j

di
(F5)
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FIG. 6: Quasi-cycles. a) In quasi cycle for each level there is only one transition to a different level b) quasi-cycle for three
level system. The points represent levels with energies 0, 1 and 2; probability p2→2 of staying in level 2 vanishes. c) Currents
for three-level quasi-cycle: the shaded microstates are subjected to a cycle, while the ones not shaded are left untouched.

Then the condition (F3) means that the pi→j ensure normalisation, so that the only constraint on possible process

is (F3). However, since di

dj
= e

βEj

e
βEj

, the latter condition means simply that the Gibbs state is preserved. This ends

the proof, that for fixed E we can perform all Gibbs preserving operations. Finally, given arbitrary Gibbs preserving
transformation on S we perform for every total energy block permutation that results in this transformation. In
this way the needed transformation is performed on the initial state of system S. Of course, Thermal Operations
obviously do preserve Gibbs state, hence we obtain, that Thermal Operations are arbitrary operations that preserve
Gibbs state.

Let us discuss this result in the context of the detailed balance condition. The latter is the property that
pi→j

pj→i
=

e−β(Ej−Ei). As we will see, Thermal Operations need not satisfy detailed balance; they should merely preserve the
Gibbs state as a whole. To provide an example, let us distinguish a class of Gibbs-preserving processes called quasi-
cycles: we put the energy levels on a circle, and from one level, one can go only to the next neighbouring level, as in
Figure 6

The simplest description of a quasi-cycle is in terms of quantities ki→j . Namely, we choose an order of levels, put
them on a circle, fix a direction, and the process is to take all states from the group of states with the largest energy
ES , and shift them to the states with the energy level in the chosen direction. I.e. the process is determined by
pi→i+1 = e−β(Emax−Ei), where Emax is the maximal energy, and Ei is the energy of i− th level.

For two level systems, the class of Gibbs preserving operations is the same as the class of operations satisfying
the detailed balance condition, and all possible processes are parametrised by a single number r ∈ [0, 1], which is
the probability of mixing two basic processes: the identity operation, and the two-level quasi-cycle. For three level
systems, there are processes that preserve the Gibbs state, but do not satisfy detailed balance, an example being the
three-level quasicycle. It turns out that the class of Gibbs preserving maps is strictly more powerful that the class of
detailed-balance maps. An example is the transition between (0, 12 , frac12) and (12e

−2β , 12 (1−e−β), 12 (e−β−e−2β +1)
with the energy levels given by (0, 1, 2). It turns out that the only Gibbs preserving operation that can transform the
first state into the second one is the quasi-cycle 0 → 1 → 2. This means that such a transition is impossible by means
of weak coupling with the heat-bath [34], as at weak coupling the detailed balance condition is satisfied.
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