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In quantum mechanics, outcomes of measurements on a state have a probabilistic interpretation while the
evolution of the state is treated deterministically. Here we show that one can also treat the evolution as being
probabilistic in nature and one can measure which unitary acted. In further analogy to states, one can also
choose which basis of unitaries to measure. Likewise, one can give an information-theoretic interpretation to
evolutions by defining the entropy of a completely positive map. This entropy gives the rate at which the
informational content of the evolution can be compressed. One cannot compress this information and still have
the evolution act on an unknown state, but we demonstrate a general scheme to do so probabilistically. This
allows one to generalize super-dense coding to the sending of quantum information. One can also define the
“interaction-entanglement” of a unitary, and concentrate this entanglement.
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I. INTRODUCTION

An isolated system is represented in quantum mechanics
by a state vector that conveys statistical predictions for mea-
surement outcomes and manifests phenomena such as super-
positions, and entanglement. In contrast, the temporal evolu-
tion law of the state is determined by the unitary operator
U=exp−iHt /" where the HamiltonianH is dictated either
by external classical potentials and/or universal interactions
between fields or particles. Therefore, while the state vector
manifests the non-deterministic features of quantum mechan-
ics, the temporal evolution law of an isolated system is re-
garded as fully deterministic. This asymmetry between the
properties of states and evolutions is also maintained within
the framework of quantum information theory wherein the
information is carried by the state alone.

Psychologically, the asymmetry may partly result from
thinking of the unitary evolution as being due to some exter-
nal macroscopic device such as a large magnet, while the
state might be a single electron. Thus we think of the state as
being quantum and probabilistic in nature, while the unitary
evolution is treated deterministically. However, we should
remember that the state of the electron is also determined by
some macroscopic device(a Stern-Gerlach machine say),
and thus the asymmetric treatment between states and unitar-
ies does not arise from such considerations.

In this work we examine the consequence of measure-
ments of the evolution law and suggest that the above re-
stricted view of quantum evolutions can be extended even
within the conventional framework of quantum mechanics
and quantum information. We find that features such as su-

perposition of unitary evolutions, collapse to a certain evo-
lution and a corresponding probability law, can in fact be
attributed in a natural fashion to unitary evolutions, as well
as to the more general case of nonunitary evolutions that can
be described by completely positive(CP) trace preserving
linear maps. Particularly, we show that a measurement of
‘which evolution occurred’ during a certain time interval
‘collapses’ the quantum evolution to a particular evolution
with a probability given by a simple extension of the ordi-
nary probability law. Our results provide an operational
meaning to a formal correspondence between states and op-
erations introduced by Jamiołkowski[1] and Choi[2].

Although the present work is aimed at extending concepts
ascribed to states into the domain of evolutions, it also has
applications to quantum computation in that we present
methods which can be used to monitor the interactions of a
quantum device without changing the physical setup of the
device. There are also links between the measurement of
unitaries, and syndrome detection in error correction codes.

Next, we turn to the question of whether operations have
informational content in a manner analogous to quantum
states. We find that one can assign a state independent en-
tropy to an arbitrary completely positive(CP) map, and that
this entropy gives the rate at which the informational con-
tents of the map can be compressed. Here, the information
content refers to the sequence of Kraus operators[3] used to
implement the CP map, although other interpretations are
possible. This can be considered as the equivalent of Schu-
macher’s noiseless coding theorem for operations. A differ-
ent interpretation of compression and storage of unitaries
was given in Ref.[4] where for a specific known ensemble of
phase gates it was shown how to store them efficiently. This
can be thought of as storage of a known ensemble of evolu-
tions [5]. Here, our compression rate is ensemble indepen-
dent and generic, akin to compression of a source emitting
quantum states.
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We invoke a no-go theorem[5,6] for programmable quan-
tum gates, and storage of unitaries to show that one cannot
have a compressed evolution act on an unknown state, and
still preserve its informational content. This is true even if
one only demands approximate fidelity. This is because there
are an infinite number of ways one can implement a given
CP map(there are in a sense, an infinite number ofevolution
ensembles, which are unknown). We show however, a ge-
neric scheme to probabilistically act the evolution on an un-
known state.

We then generalize super-dense coding to the sending of
quantum information contained in unitaries. This has certain
cryptographic implementations which we briefly explore.

Finally, we turn to the notion of entanglement of a unitary.
A number of authors have used the formal correspondence
between states and operations to investigate the entangling
capabilities of unitary operations[7], (e.g., Refs.[4,8–11]).
The present framework suggests the notion ofinteraction
entanglementof a unitary acting on systems, and we show
that this entanglement can be concentrated in a manner
analogous to the concentration of states into pure entangle-
ment. We conclude with some remarks on the interpretational
issues involved with the measurement of evolutions.

II. A PROBABILISTIC INTERPRETATION OF UNITARIES

Let us first provide an operational meaning to the mea-
surement of unitaries. We consider a system with an
N-dimensional Hilbert space whose state evolves in time ac-
cording to

ucst1dl → ucst2dl = Ust2 − t1ducst1dl. s1d

It is know that for anyN there exists a basis ofN2 or-
thogonal unitary operators[12], where orthogonality is de-
fined with respect to the trace inner productU ·V; tr U†V.
Thus the unitary time evolution operator can be decomposed
with respect to an orthogonal basisUa,

U = o
a=0

N2−1

CaUa, s2d

whereUa ·Ub=Ndab and the complex amplitudes are given
by Ca=s1/NdUa ·Ust2− t1d. The converse of the above state-
ment is not true. A superposition of unitary operators with
arbitrary amplitudes generally does not give rise to a unitary.
The operators space contains nonunitary operators which can
be also spanned by a unitary basis.

Can the formal expansion(2) be given a general physical
interpretation? It has been shown that under certain condi-
tions, a superposition of unitary evolutions that gives rise to
another unitary, can be produced by post-selecting an ancil-
lary system that interacts weakly with our system[13]. In the
present work we propose another approach. We shall show
that for any chosen basis, we can measure which unitary
evolutionUa the system evolved under. The outcome of such
a measurement has probability ProbsUad= uCau2. More for-
mally, we have the following.

(1) Observables and eigenvalues: To each orthogonal ba-
sis of unitary operators, we can find an observableAst2,t1d

that assigns to each unitaryUa a distinct real eigenvaluela

through the eigenvalue equation,

T:Ast2;t1dUa = laUa. s3d

The operatorAst2,t1d describes temporal correlations. It is
constructed as a linear combination of bilinear products of
operators at each of the two instancest2 and t1. The symbol
T: denotes temporal ordering. For instance ifAst2; t1d
=bAst2dBst1d+gCst2dDst1d then T:Ast2; t1dUast2− t1d
=bAUaB+gCUaD. Since lm=bAUaBUa

† +gCUaDUa
† is a

constant, the operatorAst2,t1d describes constant of motion
with respect to each of the basis elements. The eigenvalues
are thus state independent.

(2) Probability law and measurements: The outcome of a
measurement ofAst2,t1d is one of eigenvaluesla with a
probability given by

Probslad = uCau2. s4d

(3) Reduction of U (collapse): A measurement with an
outcomela leads to a collapse(effectively or truly depend-
ing to the readers preferred interpretation) of the superposi-
tion (2) according to

Ust2 − t1ducl → Uaucl. s5d

We interpret(1)–(3) as specifying criteria for a measure-
ment that detects which particular transformationUa in the
superposition(2) has been realized on the system witha
priori probability ProbsUad= uCau2.

It should be emphasized that(1)–(3) are independent of
the initial state of the system and hence can be interpreted as
a measurement of a term in the superposition(2). The initial
state of the system is here arbitrary, hence includes the case
of a unitary acting(locally) on a part of an entangled state.
As a consequence, the present measurement of the unitary
transformationdoes not reducethe entanglement of the sys-
tem.

Although here we will show an operational correspon-
dence between the measurement of states and the measure-
ment of unitaries, it must be emphasized that there are im-
portant differences. One interesting result is that one can
perfectly distinguish between two unitaries which are not
orthogonal[14] if one can act each unitary many times on a
state. In contrast, for any finite number of copies of two
nonorthogonal states, there is a probability of error.

We now proceed to prove the above three statements. To
begin with, we consider some simple properties of a general
given basis of orthogonal unitary operatorshUaj of Eq. (2).
Clearly the sethI ,Ui8 ; i =1, . . . ,d−1j whereUi8=U0

†Ui is also
orthogonal under partial trace. SinceUi are traceless or-
thogonal operators(they are orthogonal to I), all sets of uni-
tary orthogonal basis can be expressed as a product of an
arbitrary fixed unitaryU0 with some traceless unitary or-
thogonal basis.

We explicitly consider theN=2 case—generalizing our
results to higher dimensional Hilbert spaces(including the
infinite dimensional case) is straightforward and described in
the Appendix. The general structure of the basis is given to
be
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Ua = U0sa, s6d

wheresa=s1,sid with i =x,y,z the Pauli matrices.
The observables corresponding to the measurement ofUa

can then be chosen as

Aist2,t1d = fU0siU0
†gt2

fsigt1
. s7d

Replacing into(3),

T:Aist2,t1dUa = fU0siU0
†gUafsig = liaUa, s8d

and using(6), we get

lia = fU0siU0
†gUasiUa

† s9d

=U0siU0
†U0sasisaU0

† s10d

= ± 1. s11d

Since we need to resolve between four basis elements, it is
sufficient to consider a pair of operators, say,Aist2; t1d with
i =z,x.

Next demonstrate(2) by explicit construction of a mea-
surement. One possibility is to have the unitary act on half of
a maximally entangled state. Each orthogonal unitary in a
basis of unitaries would then produce an orthogonal maxi-
mally entangled state and one could then perform a measure-
ment on the state to determine which unitary acted. This has
the disadvantage that one cannot use this method for an evo-
lution acting on a particular physical system in an unknown
state. We therefore propose to observe the operatorAst2,t1d
by coupling twice with the system in a manner which pre-
serves the state. A method for measuring sums of operators
assst2d+sst1d has been suggested[15] and used to demon-
strate teleportation[16]. We employ a similar method using a
pair of ancillary two-level particles taken initially in the state

su0l+ u1lds0̃l+ u1̃ld /2. We assume a vanishing free Hamil-
tonian for the ancillary particles.

The ancilla and the system then interact twice, first att
= t1 and then att= t2, and then the ancilla is measured. To
specify the interaction between the system and ancilla we
define the controlled Pauli

Vi = u0lk0u + u1lk1usi , s12d

wheresi acts on the system, and similarly we denote byṼi
the same interaction between the system and the second an-
cilla. We further assume that the interactions are nearly im-

pulsive: the durationDt required to applyViṼi is much
shorter thant2− t1, hence the correction due to the free evo-
lution can be neglected while we apply the interactions.

We now apply the following sequence:

sU0ṼxVzU0
†dUst2 − t1dsṼxVzd. s13d

The measurement interaction acts twice att= t1 and t= t2,
while at intermediate times the system evolves freely. The
resulting total state becomes

1

2o
a

Casu0̃l + lxau1̃ldsu0l + lzau1lUaducl. s14d

Finally, using the notationual=h↑z↑z,↑z↓z,↓z↓z,↓z↑zj where
↑z,↓z=su0l± u1ld /Î2, we can perform a projective measure-
ment in theual basis on the ancilla. The final total state of the
system and the two spins and the effect of the measurement
can be expressed as

o
a=0

3

CaualUaucl → Ua0
ucl, s15d

thus demonstrating the notion of collapse(3) to a0, a particu-
lar a. One could also interpret the above as instead being a
collapse induced by the interaction.

We have used here the standard probability interpretation
with respect to a measurement of the final ancillary basisual.
Since the probability to finda0 is given byuCa0

u2, this dem-
onstrates(3) and (4) for the present two-dimensional case.
One can verify that the above procedure effectively moves
the information contained in the state onto the ancilla, while
having the unitary act on half a maximally entangled state.
The information of the state(with the action of the unitary) is
then transferred back from the ancilla to the original system.
However, the physical particle that is the system is not actu-
ally swapped, allowing one to use such a measurement with-
out changing the particular system. For example, one could
use this to detect the noise in an ion-trap quantum computer
while still preserving the information of the state and the
setup of the experiment. The measurement procedure gives a
generic way to transfer the state of a system onto another
system without performing a physical swap.

An important point is that the measurement of which uni-
tary is independent of the state that the unitary acts on. This
allows one to distinguish between unitaries which when act-
ing on certain initial states would not lead to orthogonal final
states.

To exemplify our result, consider the evolution of a spin
in a magnetic field with U=exps−iBsztd=cossBtd1
− i sinsBtdsz. If we select to measure in the basis
sU ,Usx,Usy,Uszd, we will find ProbsUd=1 and
ProbsUsid=0. Therefore, in this case we verified with cer-
tainty that the evolution isUstd without causing any distur-
bance. On the other hand, if we choose to measure in the
basiss1,sid, we will reduce the evolution to 1uCl with prob-
ability cos2sBtd, or to szucl with probability sin2sBtd. More
generally, in ad-dimensional space, we can distinguish with
certainty betweend2 orthogonal unitary operators.

What is more, we are able to distinguish between unitaries
which do not themselves commute. This is because each el-
ement of the basis gives orthogonal outcomes on maximally
entangled states. There is however an uncertainty principle
between different possible measurements of which unitary
given by the uncertainty between two two-time operators
Ast2,t1d andA8st2,t1d. This uncertainty can be compactly ex-
pressed as an entropic relation[17,18]. Consider two mea-
surements of a basishUaj andhUa8j, which can be described
in terms of the orthogonal traceless sethI ,Uij and a unitary
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U0 andU08 for the a anda8 basis, respectively. Then, for all
outcomes of measurements with probabilitypa andpal8 one
finds the uncertainty relation

Ha + Ha8 ù − 2 ln TrsU0
†U08d, s16d

with Ha and Ha the Shannon entropy of the measurement
outcomes, i.e.,Ha=−pa log pa. The relationship has the ap-
peal that it depends only on the chosen basis of unitaries, and
not on the particular unitary being measured or the state that
the unitary acts on. It can be derived by noting that the mea-
surement procedure for two different basis is identical until
t2 when one essentially makes two different projective mea-
surements in some maximally entangled basis given by I
^ Uac+ or I ^ Ua8c

+. Then, from[19], one has the uncer-
tainty relation

Ha + Ha8 ù − 2lnc s17d

with c=maxa,a8ukc
+I ^ Ua

† u I ^ Ua8c
+lu. The relationship Eq.

(16) then follows.
Finally, we comment that the above measurement proce-

dure can be extended to nonunitary orthogonal operators,
which may be also used as a basis. Such a nonunitary basis
can be obtained by the transformationAm=onKmnUn, where
K is aN23N2 dimensional unitary matrix. The operatorsAm

are generally not unitary, but are orthogonal with respect to
the trace inner product. Thus, we can distinguish between the
elementsAm using the procedure used above.

III. AN INFORMATION THEORETIC INTERPRETATION
OF EVOLUTION

Having shown that the correspondence between unitaries
and states has an operational meaning in terms of probability
amplitudes, we now turn to the question of whether there is
an information theoretic interpretation to unitary operations.
An informational interpretation of quantum states was given
by Schumacher’s noiseless coding theorem[20] (cf. Refs.
[21,22]). We will now see that a similar interpretation can be
given to unitary operations. Instead of considering a pure
unitary, we consider an arbitrary completely positive(CP)
mapEsrd. We will see that one can define an entropy for the
CP map which only depends on the map, and not on how it is
implemented, nor on what state it acts, and that this has an
interpretation of the rate at which the informational contents
of the map can be compressed. It is also equal to the maxi-
mum classical information which the map can transfer. The
entropy production that a CP map produces on particular
states was considered in Ref.[23]. We will further prove two
theorems showing that while the information can be stored
and compressed, it is impossible to later act it on an un-
known state, or even a known state chosen after the informa-
tion has been stored.

We start by showing that the interpretation of unitaries
described in the preceding section, can be extended to other
positive operators. Namely, we can expand an arbitrary CP
map in terms of Kraus operatorsMi [3],

Esrd = o
i

MirMi
†. s18d

One usually thinks of the Kraus representation as being a
formal representation of a CP map. Here, the aim is to find a
physical and informational interpretation. The operator-sum
decomposition is not unique, but it can be shown[3,24] that
all other decompositions have Kraus operatorsNj related by
a unitary transformationNj =UijMi. The operator-sum de-
composition may therefore be thought of as being analogous
to a density matrix. In particular, it can be shown[23] that
for a given stater, there exists a diagonal representation,
such that

tr MmrMn
† = 0 for m Þ n. s19d

If r is taken to be the maximally entangled statec+, with the
Kraus operators acting on half of it, then one sees that the
Mm are orthogonal under the trace inner product as with the
orthogonal unitaries(or the nonunitary setAm) considered in
the preceding section. One therefore has that

uc̃ml = Mmuc+l s20d

are orthogonal states(unnormalized). The normalized states
we call ucml. After the CP map has acted on half thec+, we
are left with a density matrix given by

W= o pmucmlkcmu. s21d

One way to think of how the CP map arises is to consider
a unitary which acts not only onr, but also on the system
plus an ancillau0Cl (so-called Stinespring dilation), namely,

Esrd = trC Usru0Clk0Cu. s22d

After considering such a global unitary, one can take the
ancilla to be with a third party(who we will call Charlie),
who is considered to be the sourceC of the CP map.

We then define theentropy of a CP mapas

SE = − o pm lnspmd s23d

and show that it gives the rate at which one can noiselessly
compress the informational content of the CP map. By infor-
mation, we mean something analogous to the informational
content of a state under compression. In the case of states,
the compression is done without knowing the ensemble, and
after decompression, one can verify that one faithfully ob-
tained some series of states by having the source read out
each state that was sent. One then performs a measurement
on the decompressed states to verify fidelity.

Here, in analogy with ensembles of states, we have
choices of the Kraus representationMi. We can therefore
verify that all the information of the CP map has been faith-
fully stored under the following test: Charlie performs a
measurement on the ancilla in an arbitrary basis. We will see
that choosing the basis is the equivalent of choosing some
Kraus representation(like choosing the ensemble). Charlie’s
result is in one to one correspondence with a particularMi,
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and we can verify that indeed thisMi acted on our state. We
thus have a correspondence between the informational con-
tent of states, and that of operations.

To see this we consider a measurement on the ancillaC in
the basisuiCl after the unitaryU of Eq. (22) has acted on the
ancilla andc+. This then selects theMi via

Miuc+l = kiCuUuc+l ^ u0Cl. s24d

Therefore if given the value ofi from the source, one can
verify that Mi did indeed act. Furthermore, for an ensemble
which is made up of orthogonalMi, we can distinguish them
without being given the value ofi. Note that the particular
form of theMi is dependent on the state acted upon, although
the CP map itself is state independent.

That SE qubits are necessary and sufficient to store this
information is straightforward. The rate can be achieved for
largen, simply by having the source perform each unitary on
a maximally entangled statec+, creating the density matrix
given by

% = o pmucmlkcmu. s25d

From Shannon’s noiseless coding theorem, the state with
density matrix% can be compressed at a rate ofSE+e with e
as small as desired in the limit of largen. The encoding
clearly preserves the informational content as described
above.

That this rate is optimal, can be seen from the fact that the
encoding must work for all ensembles, and in particular we
could choose the ensemble to be the set of orthogonal opera-
tors Mm. A better compression rate would then imply a vio-
lation of the Holevo bound.

A particular example of the above scheme are CP maps
which correspond to unitaries applied probabilistically. We
imagine that a sequence of unitaries are performed by a
sourceC, and that while we do not know what unitaries are
being performed, nor from what ensemble the unitaries are
being drawn from, we do know the CP map that the source
performs. Again, this is in analogy with knowing the density
matrix of a source which emits states. That is, one images a
sequence of unitaries performed on the state, where the uni-
taries are chosen from someunknownensemblez=hpi ,Uij
(the Ui need not be orthogonal), and we wish to compress a
particular sequenceX of n draws from this ensemble. All we
are given is a Kraus representation of the CP map. Using the
method above, the sequence ofUi can be compressed at a
rate SE, and one can indeed verify whether any particular
sequenceX of unitaries was performed.

One might hope that the information concerning the se-
quence of positive operators could be encoded and decoded
in such a way that a recipient can act the map on an unknown
state given after the encoding. We will see that this is impos-
sible for an arbitrary ensemble even if only approximate fi-
delity is demanded.

This result is easily extended to the case of Kraus opera-
tors. Consider an unknown sequence of Kraus operatorsX
=M1M2M3¯Mn and similarlyX8, and a distance measure
DsX,X8d=trsuX−X8ud. A given protocol aims to actX on an

unknown set of statesc, generating the stateC, call the error
rate of a given protocole= ukcuM1uclM2uclM3ucl¯ u2.

Theorem 1:Given X,X8 drawn from any operator-sum
decomposition of the CP mapEs·d, and any encodingA(Es·d)
which maps sequencesX,X8 to statestx,tx8, and decoding
algorithm B(A(Es·d) ,c) which maps tx to uCl close to
M1uclM2uclM3ucl. . . with error ratee. Then if ucl is an ar-
bitrary unknown state chosen after encoding, trutxtx8u
øOsÎed /DsX,X8d.

We can invoke a no-go theorem for programmable unitary
gates[6], extended to the approximate case in Ref.[5]. We
refer the reader to Ref.[5] for the full proof of the used
result, and just give the no-go theorem in the exact case,
using the fact that the encoding must be unitary. The decod-
ing takes as input, a stateucl^n, and the encoding of the map
realizationtx. Let us first taketx to be a pure stateuxl (our
proof will extend to any mixed statetx by the linearity of
quantum mechanics). The decoding then takes this input and
produces the sequenceuYl=M1uclM2uclM3ucl¯ and some
ancilla uxxl. The ancilla cannot depend onc for coherence to
be preserved. We can imagine the encoding being performed
on another sequenceX8, encoded inux8l, and producing a
sequenceuY8l=M18uclM28uclM38ucl¯, and ancillauxx8l. Then,
since the decoding must be unitary it must preserve the inner
product of any two inputs,

kxux8l = kxxuxx8lkYuY8l. s26d

Since neitherkxux8l nor kxxuxx8l can depend onc it follows
that eitherkxux8l=kxxuxx8l=0 or kYuY8l cannot depend onc.
The latter can only occur ifX=X8, therefore, if the encoding/
decoding is to work for different possible inputs we require
kxux8l=0. That is, an orthogonal state must be chosen for
each possible sequence, and the size of the encoded state
must then be as large as the number of possible sequences.
Since there are an arbitrarily large number of possible en-
sembles which implement a given CP map, it follows that the
size of the encoded state must be infinite. In essence, the size
of the program grows with the size of the ensemble.

It is not clear if one can do better if the state is known to
the decoder.

It is perhaps amusing that there is an infinite discontinuity
which occurs if allMi are identical and perfect fidelity is
required. One can imagine a CP map which can be decom-
posed into two orthogonal unitariesU1 andU2 and that one
is applied with probability 1−e, and the other with probabil-
ity e. There is an infinite discontinuity in that the number of
possible Kraus representations goes from infinity to one. The
same discontinuity exists for ensembles of density matrices.
There is therefore potentially something special about pure
states and pure unitaries. This discontinuity only exists if one
demands perfect fidelity of the decoding, therefore it is un-
clear what the interpretation of this observation is. The above
has the flavor of a phase transition(cf. Refs.[25,26]).

One can now ask whether one can perhaps act the com-
pressed evolution on an unknown state probabilistically. In-
deed, for the case of a stored phase gate of the formUsad
=expsiaszd one can act the stored gate on an unknown state
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with probability 1/2[5]. We now generalize this to arbitrary
unitaries and Kraus operators.

Consider an unknown statec and evolutionMi stored in
stateci. We then perform the unitary

V = o
m

PmMm, s27d

wherePm are projectors onto the orthogonal statescm which
are eigenkets of% defined via Eq.(25). The stored evolution
can be expanded in terms of the orthogonal set of Kraus
operators as

Mi = o cimMm. s28d

We then causeV to act on the stored evolution and the un-
known state

Vucil ^ ucl = o cimcm ^ uMmcl. s29d

We then measure the state which was storing the unitary, in a
basic complementary tocm. For example, we can measure
using projectors ontocm8 with kcm8 ucml=±1/Îd. Then, with
probability 1/d we will have succeeded in performing the
correct Kraus operator.

IV. SUPER-DENSE CODING OF UNITARIES

The preceding section therefore gives an informational
interpretation of evolutions. In fact, one can regard the en-
tropy of Eq. (23) as representing the maximum amount of
information that the evolution can transfer from an environ-
ment or source to a state. This leads to a natural generaliza-
tion of super-dense coding where the information that is con-
veyed is not classical bits, but rather, pure quantum
information.

One can imagine that two parties(Alice and Bob) share a
maximally entangled state, and that Alice has access to a
source C of random unitaries which acts on her half of the
singlet. Alternatively, Alice might apply unitaries conditional
on quantum states, or might apply the unitaries herself ac-
cording to some classical probability distribution. The action
of the unitaries will produce a sequence of maximally en-
tangled states shared between Alice and Bob. After Alice
sends her half of the singlet to Bob, he will obtain all the
quantum information about the unitary. Since the basis of
qubit unitaries is 2n larger than the basis for qubit states, this
can therefore be viewed as a “quantum” version of the clas-
sical communication sent in super-dense coding. In the case
of super-dense coding, Alice chooses from four orthogonal
unitaries and applies them to her half singlet and sends.
Here, one allows arbitrary superpositions of the orthogonal
unitaries to be applied. What is more, the information that is
sent can be sent blindly. Alice need not know which unitaries
are being applied by the source C. If she first tried to know
which unitaries were being applied by the source, she would
of course, destroy the quantum state.

An alternative generalization of super-dense coding has
been independently proposed in Ref.[27]. There, it was
shown that in large dimensions, using singlets and shared

randomness, Alice could send known quantum states using
only half as many qubits.

As with super-dense coding, the sending of the arbitrary
unitary is cryptographically secure, in that an eavesdropper,
located between Alice and Bob, obtains no information about
which unitary was applied(neither can Alice learn which
unitary was applied, as long as Bob holds the other half of
the used singlet). One may therefore regard this as a one way
private quantum channel[28,29] which uses a resource of
one ebit per 2 qubits of sent information rather than 2 cbits
for each qubit(although see the key-recycling results of Ref.
[30,31]), or 2 ebits[31] per qubit.

V. ENTANGLEMENT AND CONCENTRATION
OF UNITARIES

Does the notion of entanglement extend to the case of
evolutions? Consider a unitary interaction that acts on a pair
of systems. Clearly, the combined evolution operator can be
expanded in terms of the unitary basis operators of each sys-
tem in the general form

UsI,II d = o CmnUm
sId

^ Vn
sII d, s30d

where Um
sId and Vn

sId are the local orthogonal unitary basis.
Likewise the familiar entanglement bipartite correlations are
recovered for interactions.

In the sense of a passive transformation we can re-express
the general state by performing the transformationAm

=oaKmaUa and Bn=obYnbVb, such thatKCY=D is diago-
nalized in the new orthogonal basis with eigenvaluesdm.
Hence a Schmidt form can be written also for unitary inter-
actions

ŨsI,II d = o dmAm
sId

^ B̃m
sII d. s31d

The operatorsAm
sId and Bm

sII d in the above decomposition are
generally not unitary, however they maintain orthogonality
under the trace inner product. Hence, we can apply the same
procedure, described in Sec. II, to measure which operator
has acted on each side of the bipartite system. The probabil-
ity to find a certain operatorAm (or Bm if the measurement
takes place at side II) is then given byuDmu2. As consequence
of (3) a measurement of say system I, will lead to a collapse
of the sum to a single term in analogy with pure state en-
tanglement of states. There is then a one-to-one correlation
between the results of the measurement of which operator
has acted on system I and II.

We can now quantify the entanglement of the interaction
by computing the entropy of the probabilities,
−oudmu2 logudmu2, in this diagonal basis. To justify this choice
we demonstrate a concentration procedure forn identical
nonmaximal bipartite interactions. We emphasize that we
now consider a concentration process that is independent of
the nature of the statersI , II d, on which the unitaryUsI,II d

acts.
Suppose that we operaten times the same bipartite inter-

action

faI sId
^ I sII d + bsx

sId
^ sx

sII dg^n. s32d
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We would like now to concentrate this “nonmaximal in-
teraction” to a sum of terms with equal coefficients. Recall-
ing that in the state concentration scheme one employs a
collective measurement of the operatorJz

sId=oiszi
I , we shall

now consider a measurement of the temporal collective cor-
relation DJz

sIdst2,t1d=Jz
sIdst2d−Jz

sIdst1d (more generally, when
we have a large number of terms one has to measure more
temporal correlations). The equationT:Jst2,t1dUi =lUi, has
solutions with eigenvaluesl=s−n,−n+2, . . . ,nd. The rel-
evant eigenoperators corresponding toUi have the structure
of a sum of terms, where each of the terms is given by
products of unit operators and Pauli operators. The total
number of Pauli operators is identical in all terms and deter-
mined by the eigenvaluel. The coefficients of the terms
need not be identical henceU above is generally degenerate.
Nevertheless, in our particular case, a straightforward calcu-
lation shows that a measurement of the operatorDJzst2,t1d,
that may be performed on subsystem I or II, collapses(32) to
the operator

CU = fsI1
sId
¯ Ik

sIdsk+1sId ¯ sn
sIddsI1

sII d
¯ sn

sII dd + ¯ g.

s33d

Notice that the terms in the square brackets above are now
all equally weighted, and their number is determined by the
measurement outcome. The probability to collapse into a par-
ticular value of operator is given bya2kb2sN−kd. Therefore, in
complete analogy to the case of pure state concentration, the
expected number of equally weighted terms inCU, peaks in
the limit of largen around 2nSsdmd, whereSsdmd is the Shan-
non entropy. Notice that in general the operatorCU is not
unitary. Nevertheless, its entangling capability power is
equivalent ton controlled-not interactions: it can convertn
nonentangled pairs into a block with 2nS equally weighted
terms which is maximally entangled. However, unlike the
case of state concentration,CU cannot be further factored by
means of local operations to a product of bipartite maximally
entangled unitaries.

The above result suggests a notion of bipartiteinteraction
entanglement, SU, which is a straightforward extension of
ordinary entanglement,

SU = − o
m

udmu2 lnudmu2. s34d

This definition is in complete harmony with the entropy de-
fined previously for a CP map. Therefore, given a bipartite
unitary interaction, the entanglement entropy of the interac-
tion corresponds locally to the entanglement of the locally
generated CP map. This can be seen by noticing that the
operatorsAm sBmd in the Schmidt decomposition(31) are in
fact then the same Kraus operators that appear in the sum
representation of the CP map which act on system I(II ).

The analog of a maximal entangled state is in our case
given by s1/Î2dsI ^ I + isx ^ sxd, which is equivalent to a
controlled-not(up to additional local rotations). We can now
compare the proposed notion of interaction-entanglement
with that of entanglement capability of an interaction[32].
The latter is defined by maximizing the amount of state-
entanglement that an interaction produces by acting on a

particularly chosen state. Clearly the two notions differ. In-
teraction entanglement does not depend on the nature of the
initial state, while the entanglement capability clearly does.
Furthermore, in general the numerical value of entanglement
capability is larger than the interaction entanglement because
one optimizes the entanglement gain over the initial states. In
contrast, the interaction entanglement, as well as the CP map
entropy, are independent of the entanglement content of the
state.

VI. CONCLUSION

The focus of this paper has been on giving an operational
interpretation to the formal correspondence between opera-
tors and states, and enlarging our view of the probabilistic
interpretation of quantum mechanics. We have seen that one
can treat operations in a similar manner as one treats states.
By making a single measurement one is able to say which
operation acted on a state. The probability of the result of
this measurement is given by a simple extension of the usual
probability laws of quantum mechanics, and is independent
of the state that gets acted on. The results follow from the
ordinary laws of quantum mechanics, and yield interesting
interpretational issues. While the probabilistic interpretation
and collapse can be formulated in analogy to that of quantum
states, it remains to be seen to what extent can we truly
interpret the expansion ofU as a sum over unitary evolutions
as a quantum superposition of evolutions. One could object
for instance to this interpretation by arguing that while the
final outcome of the measurement is indeed a collapse to a
single effective evolutionUm, the evolution of the system in
between the two intervention times,t1 and t2, is in fact not
described by the resultingUm. Thus we have not collapsed to
a single unitary but only to an effectively equivalent unitary.
Such questions do not bother us for the case of a single time
measurement, and it is not clear how to interpret such ques-
tions for the two-time measurements considered here. For
clarity we use the phrase “which unitary acted” rather than
“which path the state took.”

It also remains to be studied in what respects the proba-
bilistic interpretation of evolutions differs from the conven-
tional interpretation. One such important difference is that
while nonorthogonal states cannot be distinguished with cer-
tainty, nonorthogonal evolutions can given sufficiently many
instances of the unitary. Understanding how this can be in-
corporated in a rigorous probabilistic formalism is a poten-
tially rich area of research. It has also been advocated[33,34]
that unitaries should have an interpretation similar to states
since the unitary can be controlled by a quantum state(e.g.,
a cnot where the control bit is half a singlet). In the present
work, the probabilistic nature of unitaries arises for macro-
scopic sources of unitaries, thus it may be interesting to un-
derstand the interplay between the two effects and their in-
terpretations.

The information theoretic nature of evolutions has also
been explored, and we have given an information theoretic
interpretation to CP maps, using the idea of compression of
their informational contents. For arbitrary realizations of a
given CP map, we found that it was possible to compress the
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map, and act it probabilistically on an unknown system. It
would be interesting to explore whether one could act it on a
known state given after compression. A generalization of su-
perdense coding was also introduced. With regard to our en-
tanglement concentration scheme, we have not yet touched
on possible analogies for dilution for the case of interaction
entanglement. This leaves open the question whether the pro-
posed measure of interaction entanglement is a reversible
quantity.
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APPENDIX

In this appendix we demonstrate our probabilistic inter-
pretation and measurement scheme for the general
d-dimensional case. Let us denote the orthogonal basis as
Umn where the two indices take the valuesm ,n=0, . . . ,d−1.
Then

Umn = U0smn, sA1d

wheresmn ared2 traceless orthogonal unitary operators. We
will consider first the simple case where

smn = sZdmsXdn, sA2d

where the operators[35]

Z = o
j=0

N−1

z ju jlk j u sA3d

and

X = o
j=0

N−1

us j + 1dmodNlk j u sA4d

are operators satisfyingZN=XN=1 and ZX=zXZ, where z
=exps2pi /Nd. We notice that forN=2, Z→sz, andX→sx

and regain our previous construction using Pauli operators.
ThusZ andX play the role of generalized phase flip and bit
flip operators.

The extension of the eigenoperators is then given by

AXst2;t1d = sU0XU0dt2
sXdt1

+ H.c., sA5d

AZst2;t1d = sU0ZU0dt2
sZdt1

+ H.c., sA6d

As we will shortly see,AX and AZ ascribe the value of the
first and second indexes of a single element of the unitary
basisUmn.

To perform the measurement we employ now a pair of
N-level ancillary systems in the initial stateouãlo ubl. The
interaction operator can be expressed as

VZ = o
a=0

N−1

ualkauZa sA7d

and similarly we defineṼX. The sequence of interaction att1,
free evolution, and interaction att2 then reads

sṼXVZdso CmnsmndsṼXVZd, sA8d

where for the simplicity of presentation we have dropped the
U0 factor. Acting on the total state we obtain

o
mn

CmnFo
a

XasmnX
asmn

† uãlo
b

ZbsmnZ
bsmn

† ublGsmnucl.

sA9d

The main point is that the operatorsXasmnX
asmn

† , and
ZbsmnZ

bsmn
† are constants of motion. Using the commutation

relation ofX andZ we finally get

o
mn

CmnFo
a

zamuãlo
b

zbmublGsmnucl

; o
mn

Cmn
uf̃mlufnlsmnucl, sA10d

where the ancilla statesf̃m and fn are orthogonal, hence a
measurement att= t2 will indeed collapse the sum to a single
term with a probabilityuCmnu2, and leave only the unitary
smn.

More generally, it is known that fordù3 there are differ-
ent inequivalent unitary basis[12]. However there exists a
one-to-one correspondence between the unitary basis and the
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basis of maximally entangled states[36]. Since for the latter
we can always identify an observable which distinguishes
between the basis elements, a corresponding observable can
be constructed for an arbitrary unitary basis.

We finally note, that the generalization of the particular
construction above to the case of a continuous Hilbert space
is straightforward. In this casesmn→sx0p0

=Tx0
Tp0

, where

Tx0
=E dxux + x0lkxu, sA11d

Tp0
=E dx eixp0uxlkxu. sA12d

The general set of orthogonal unitary operators is then
Ux0p0

=U0sx,pdsx0p0
, where x0 and p0 are continuous real

numbers,

Cx0p0
=E dx eixp0kx + x0uUuxl. sA13d

The amplitude of a basis element for a generalU has then a
form similar to the Wigner distribution.
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