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Quantum cryptography enables one to verify that the state of the quantum system has not been
tampered with and thus one can obtain privacy regardless of the power of the eavesdropper. All previous
protocols relied on the ability to faithfully send quantum states or equivalently to share pure entanglement.
Here we show this need not be the case—one can obtain verifiable privacy even through some channels

which cannot be used to reliably send quantum states.
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Quantum mechanics allows for the distribution of a
private key [1] whose security is assured by the laws of
quantum mechanics. The ability to faithfully send arbitrary
quantum states [2] or equivalently distill maximally en-
tangled states [2—6] appeared to lay at the heart of obtain-
ing privacy. All previous cryptographic schemes are
qualitatively equivalent to each other and equivalent to
distilling pure state entanglement. The first step in showing
that this need not be the case was in [7] in the scenario
where trusted states are given to the parties. There, we
obtained the most general state which can produce a private
key upon measurement. One can then recast all of quantum
cryptography as a protocol which distills these private
states under local operations and classical communication
(LOCC). It was then shown that there exist private states
which are not equivalent to pure entanglement. In fact, they
can be produced from channels which have zero capacity
[8,9]—the channels cannot be used to faithfully send
quantum states, but they can produce states which are
private. However, a key ingredient remained. For quantum
key distribution (QKD) it is not enough for two parties to
share private states; they must be able to verify this privacy.
One imagines a scenario where the eavesdropper Eve
actually gives the two parties the states, or the parties
produce the states through a channel with which Eve can
tamper. One must be able to verify that one indeed holds a
private state and not something else.

Here, we provide a protocol which allows two parties
(Alice and Bob) to verify that they possess private states
using only LOCC. This works for all private states, even
those created from zero-capacity channels, thus allowing
us to obtain security over channels which cannot be used to
send quantum information. The protocol is thus inequiva-
lent to the original schemes. We previously [10] had in-
troduced a protocol which worked over channels which
could have arbitrary small capacity, but the protocol cannot
be extended to the case where the capacity is strictly zero.
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Here, we will simply sketch the proof of security of our
protocol. The technical details are contained in the
Appendix of [11] as well as [12].

Let us recall that there are two scenarios for QKD. In
entanglement based schemes, an adversary gives states to
Alice and Bob and they distill pure entanglement in the
form of the maximally entangled state |®,):= ﬁ X

>S9, li)aliyg, where {|i)} is a computational basis for the
local systems A and B possessed by Alice and Bob, re-
spectively. They then verify that they indeed possess states
very close to this form, and then measure in the computa-
tion basis to produce a secure key. One also has the so-
called “prepare and measure’ protocols, where Alice pre-
pares a quantum state and sends it to Bob, who then
measures it in some basis. They then examine the results
to verify that the sent states were not overly tampered with,
and then perform classical post-processing on the results to
obtain a key. The two schemes are equivalent in the sense
that current prepare-and-measure schemes can be reduced
to protocols which rely on the distillation and verification
of maximally entangled states as shown in [13]. In [7] it
was shown that one could consider more general schemes
based on the distillation of states of the form

vY = U(|PyapXPyal ® parg)UT (1)

d
U= Z lijXijlag ® Uijup (2

ij
and viewing any protocol as the distillation and verification
of such private states. Here p 4/ is an arbitrary ancilla, the
U;jap are arbitrary unitaries on it, and U is called twisting.
We now give the protocol for verifying private states and
prove its security. The protocol is a twisted version of
verification schemes of |®,;), and in the spirit of [13] we
will prove security of our protocol by reducing it to secur-
ity of the protocol due to Lo and Chau [5]. Let us recall that
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the Lo-Chau protocol is as follows: (1) Alice can locally
prepare n systems in the state |®,) and distribute Bob’s
share to him through an untrusted channel where Eve can
attack all of Bob’s share at once before it gets to him. After
this step, they share the state p,. (2) Perform tests (via
public but authenticated discussion) on p, by randomly
selecting m, and m, systems, and measuring o, ® o, and
o, ® o, to estimate the bit €, and phase error rate €,
respectively. Here, the o are the standard Pauli matrices.
The error rates essentially tell us how far p, deviates from
a maximally entangled state. (3) Based on the results of the
test, the parties perform an appropriate entanglement pu-
rification protocol (EPP) to p, and output a state 9 which
will be close to the maximally entangled state with high
probability. One does not need to know the exact form of
po, but only the error rates. (4) Generate a key by measur-
ing ¥ locally. The key can have varying size (depends on
the error rate), and zero key length means ““abort QKD.”

The security of this protocol rests on the fact that the
estimates €,, €, of the two error rates by random sampling
will converge with high probability to their expectation
values over the entire initial state p, thus ensuring that
the final state ¥ is close to maximally entangled. For small
6 and m, < (%)n, we have, for example (see, e.g.,
[5.14]),

Pr(le.p —€.|=6) = De~m:5/16 3)

where €,p is the expectation value of the phase error rate.
This result is from sampling theory and can be found as
Prop. 1 in the Appendix of [11].

We now wish to modify this protocol so that we can use
it to verify private states, which for the moment we take to
be many copies of yéj .In [7,15,16] examples of such states
were given which result from zero-capacity channels, i.e.,
the channels cannot be used to faithfully send quantum
states, but they can be used to share bound entangled states
[17]. Bound entangled states are those which cannot be
distilled into pure state entanglement, and thus cannot be
used for teleportation (and hence have zero capacity).
Since our protocol will work for such bound entangled
states, it will work over such zero-capacity channels.

Since private states are twisted maximally entangled
states, we could achieve verifiable privacy by untwisting
the private state before each step of the protocol, so that we
are just acting the above protocol on the maximally en-
tangled state. We would thus need to modify the protocol
as follows: (2') Apply untwisting U®"t to p, then estimate
€, and €, on the (AB)®" systems as in the original step (2),
and finally reapply U®". (3') Apply untwisting U®", mea-
sure out a “‘raw key” in the computational basis of the
remaining n — m, — m, systems. (4') Perform error cor-
rection and privacy amplification on the raw key via public
discussion.

Such a protocol is unfeasible since U may be a global
unitary and cannot be implemented by LOCC. However, it

is secure, since if we were able to perform the twisting and
untwisting, the only difference between this protocol and
that of the Lo-Chau one is that classical privacy amplifi-
cation [18] and error correction is used instead of an
entanglement purification protocol (EPP). This does not
affect security since it was shown [6,19] that there exist
EPPs such that applying the EPP and measuring out a key
can be securely converted to protocols where a key is first
measured out and then we apply classical error correction
and privacy amplification on the raw key to obtain a secure
one. We now explain how to convert the above unfeasible
protocol to a feasible one performed via LOCC.

First, in step (2'), for the n — m, — m_ which are not
used for testing, the twisting and untwisting cancel and
therefore do not need to be performed. Also, twisting and
untwisting commutes with the measurement of bit errors
via o, ® o, and therefore cancel each other. Similarly, in
step (3'), the measurement commutes with the untwisting,
and therefore this untwisting is also unnecessary. Finally,
for step (2'), untwisting the state, estimating the expected
number of phase errors, and retwisting is equivalent to
estimating the twisted phase error rate via the operator
S.=Uppap(o,®0, ®IA/B/)UXBA,B,. Mercifully, our only
remaining task is to find a way to estimate this error rate via
LOCC, rather than via direct measuring of the global
operator I',.

To do this, we will first decompose 3, in terms of
products of observables which can be locally measured.
We then show that this estimation of the observable in
terms of these product observables is a good estimation.
As will be explained shortly, this involves adapting the
quantum de Finetti theorem [20] and a Chernoff-like
bound. (A possible alternative route could be based on
the results of [21].) We write

t
Ex = Z sjajb OjuAA/ ® OijBI’ (4)
ja'jbzl

where {O j};'=1 is a basis (trace-orthonormal) for Hermitian
operators acting on AA’ and BB’, and t = d’d’, d' the
dimension of A’B’. Alice and Bob can now estimate the
average value of X, by dividing the m. samples into >
groups, and then based on public discussion they estimate
Oj,an' ® Oj, pp on the ith test system. Then they sum these
estimates overi = 1,..., m, / 12 with the coefficients given
by Eq. (4).

The outcome of this LOCC estimation procedure will
result in giving some empirical value for the average of 2, ,
which we call (), .

We want to see if (39),,, is close to the average (X)emp
that would have been obtained via hypothetical direct
global measurement of 3, on the rest of the systems (as
does the measurement on sample performed in the unfea-
sible yet secure modified Lo-Chau protocol).
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Indeed, (3", will be close to (3)ep, if the entire m,
sample systems are in a joint tensor-power state p§”, and if
the number of systems we test is large enough. This follows
from Eq. (4) and the fact that for tensor-power states, we
may regard each measurement as an independent event. We
can then use the Chernoff bound which states that a random
sample of k independent measurements of an operator O
on state p®" will converge exponentially fast in k to its
average value (O) = Tr(Op). More precisely, the proba-
bility that [(O)ey, — (O)| = & decays as ~e Sk for C a
positive constant. In this case we know that the estimate of
each of the 1> local measurements will converge exponen-
tially fast to Tr (pO;) as we increase the number of tested
systems k = m, /1>

However, in our current problem, Alice and Bob share
po which is not a tensor-power state, and each measure-
ment cannot be considered to be an independent event.
Fortunately, there is a sense in which a random sampling of
m, systems is close to tensor power. First, permutation
symmetry can be imposed on the protocol (since we can
choose a random sample in any order), and second, since
the estimation involves only a small portion (m,) of the
entire n systems, the exponential quantum DeFinetti theo-
rem [20] states that the measured (reduced) state is close to
|

a mixture of ‘“‘almost-tensor-power states’’. This is cap-
tured by Theorem 2 of the Appendix of [11]. We can now
apply a Chernoff-like bound to these almost-tensor-power
states. The exact analysis involves many adaptations of the
results in [20] and is given in the Appendix of [11] as
Theorem 1.

The result has consequences beyond the current consid-
erations. Essentially, any realizations of an observable (i.e.,
a decomposition of the operator in terms of others), is a
good one, in the sense that performing a one kind of
measurement on m out of n systems via one realization
will yield average values which are well correlated with the
values obtained by performing another realization of the
measurement on the remaining n — m systems. This is
captured in Theorem 3 of the Appendix of [11]. We can
apply this to the current case to show that the probability
that [{Z"),, — (Z)emp| > 6 can be made small. This says
that the estimated twisted phase errors through measuring a
sample via LOCC is correlated with the result we would
obtain if we made an ideal measurement of twisted phase
errors on the rest of system. Thus in terms of security, the
only difference between the modified protocol, and that of
Lo and Chau, is that instead of Eq. (3) governing the
accuracy of the phase error estimate, we have through
Theorem 3

Pr(|<2ind>(m) _ <2>gln;mz)| > 8) = 2o~ [(n=m)(r+1)/2n]+(1/2)d*d™ In(n—m.)

emp

+ (t2 + 1)27[(52/36120’%1/)*H(rrz/mz)](m\,/tz)er’d2 log[(m./21*)+1] + 267(m262/l44d’d2)’ (5)

where the three expressions in the upper bound come from
the exponential quantum DeFinetti theorem, the Chernoff
bound, and random sampling theory and r is some natural
number we will take to be = d*d'’? Inn. The superscripts for
the empirical values of 3, refer to (39),, ., being mea-
sured using m systems while ()., is measured on the
remaining n — m,.

This then proves security of the scheme, since the only
significant change from the unfeasible protocol is the
method for estimating phase errors. The calculation of
security in terms of composable security parameters for
QKD [22] is given in [12].

We now touch on several issues which arise. The proto-
col we have given, as with all entanglement based proto-
cols, relies on keeping the quantum state p, from
decohering, and is therefore not currently practical.
However, it can be converted to a prepare-and-measure
protocol where Alice prepares a state, sends it down a
channel (which might have zero quantum capacity), and
then Bob measures the state right away. The conversion
adapts well known techniques and is contained in [12]
along with an example.

Here we considered verification of tensor powers of
private states with d = 2. It is straightforward to extend
this to the verification of private states of any dimension,
and states where the twisting is close to tensor power. It is

[
not clear whether one can extend this to private states

which are not tensor power such as a single y,; as of yet
we do not have a no-go theorem. This is quite different
from verification of pure state entanglement where the
maximally entangled state of any dimension can be written
as |®,)®" and we are thus always trying to verify some-
thing close to tensor power.

Here, we considered a twisted version of the Lo-Chau
scheme, but we could have just as well considered twisted
versions of other parameter estimation schemes. Indeed
our protocol is not optimal in its use of resources and it
may be interesting to improve it. Some potential avenues
were noted in [12]. A tomographic verification scheme was
suggested originally in [7], and it may be interesting to
explore its efficiency. It is simpler in the sense that one
could just discard some states, and be left with almost-
tensor-product states as in [20].

Finally, we have demonstrated conceptually that
quantum key distribution is not equivalent to the ability
to send quantum information. However, we only know
of a few channels which have the property of offering
security without allowing quantum communication. It
would be very interesting to find other examples, and
perhaps even more interesting to know whether there are
any bound entangled states which cannot produce a secure
key.
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