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Quantum Key Distribution Based on Arbitrarily Weak Distillable Entangled States
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States with private correlations but little or no distillable entanglement were recently reported. Here, we
consider the secure distribution of such states, i.e., the situation when an adversary gives two parties such
states and they have to verify privacy. We present a protocol which enables the parties to extract from such
untrusted states an arbitrarily long and secure key, even though the amount of distillable entanglement of
the untrusted states can be arbitrarily small.
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Suppose Alice and Bob shared a maximally entangled
state, say, an ebit 1��

2
p �j00i � j11i�. Clearly, they can gen-

erate a private key directly by measuring their state in the
Z basis, without any classical post processing. Are there
other types of states with similar key-generating ability?
Surprisingly, the answer is yes. Reference [1] gives a
necessary and sufficient condition for a state to generate
a key by a direct measurement in the computational ba-
sis—it must be some twisted version of a maximally
entangled state called the pbit (private bit).

Now suppose Alice and Bob are unsure what state they
are sharing. A striking feature of entanglement is that it can
be verified and distilled [2]. Thus, Alice and Bob can first
generate near-perfect ebits and then a private key. The best-
known means to achieve quantum key distribution (QKD)
via noisy, untrusted channels or states is distillation of
ebits. It is then natural to try to go beyond this, by asking
whether noisy and untrusted pbits can similarly be distilled
or verified.

The distillation of pbits was consider in Refs. [1,3] when
Alice and Bob know they share identical copies of some
quantum states. However, can we achieve QKD with noisy
or untrusted pbits? In this Letter, we provide a positive
answer by the explicit construction of QKD protocols
based on noisy pbits and by proving their unconditional
security (against the most general attack allowed by quan-
tum mechanics). The protocol essentially involves check-
ing bit and phase errors, with phase errors being checked
using a sublinear number of ebits. In the case when an
adversary claims to give the parties copies of an ideal
private key, which is always distillable, this sublinear
number of ebits can be obtained by applying an initial
distillation protocol on some of the key states. However,
there are also states which approximate pbits, yet contain
no distillable entanglement [1]. For these bound entangeld
states [4], our protocol requires a sublinear amount of ebits
as a resource.
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We will begin with a review of known properties of
pbits. We then introduce the protocol, and prove its secur-
ity. The security proof we present relies on the compos-
ability of distillation protocols, and we provide a proof in
the Ben-Or–Mayers model [5].

Private states, twisting, and their properties. Sup-
pose Alice and Bob share a quantum state �AB and the
eavesdropper Eve has the purification (with her reduced
density matrix denoted by �E). We say that �AB contains
ideal security if and only if there is a local measurement
taking it to some ideal ccq state

�ideal
ccq �

Xd
i

1

d
jiiihiij � �E; (1)

signifying that Alice and Bob each has a copy of the key i
that is uncorrelated with Eve’s quantum state (hence the
term "ccq"). The class of states containing ideal security in
this sense has been fully characterized in the following
way:

Theorem 1.—[1,3] Any state �ABA0B0 of a Hilbert space
H A �H A0 �H B �H B0 with dimensions dA � d,
dB � d, and arbitrary dA0 , dB0 , gives an ideal ccq state after
measurement in the computational basis on the AB sub-
system if and only if

�ABA0B0 �
1

d

Xd�1

i;j�0

jiiihjjjAB �Ui�A0B0U
y
j (2)

where �A0B0 is an arbitrary state of the subsystem A0B0 and
the Ui ’s are arbitrary unitary transformations.

We will refer to a state of the form (2) as a ‘‘private
state’’ or a ‘‘gamma state’’ or a ‘‘pdit’’ (and pbit when d �
2). Following the convention of [3], we will call subsystem
AB the ‘‘key part’’ of the pdit and A0B0 its ‘‘shield’’ (Fig. 1).

Because of Theorem 1, the distillable key KD of a
quantum state � can naturally be defined as the maximum
ratio of the logarithm of the dimension d of the output pdit
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FIG. 1. A private state �ABA0B0 with purifying system E. The
key part (AB) after a complete von Neumann measurement gives
an ideal key, which is secure due to the fact that Alice and Bob
hold the shield part (A0B0).
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to the number of copies of � used, and the ratio is maxi-
mized over asymptotic LOCC protocols [1,3].

Recall that any private state is a ‘‘twisted’’ maximally
entangled state [1,3], with the twisting operation defined as

U�2� �
X
ij

jijihijjAB �U
y
ijA0B0 (3)

where Uii � Ui as defined in (2). Since twisting is revers-
ible, we can see this in reverse: any pdit can be turned into a
maximally entangled state on AB and some (global) ancil-
lary state �A0B0 on A0B0 by a certain twisting operation.
More formally:

Observation 1.—Consider any private state �ABA0B0
of the form (2) and the twisting defined as in (3). U�2� is
called a ‘‘global untwisting’’—it takes �ABA0B0 in (2) into a
state P� � �A0B0 called the basic pdit, where P� �Pd�1
ij�0

1
d jiiihjjj is a maximally entangled state on AB and

�A0B0 is the same as in (2). The same state change can also
result from applying a ‘‘local untwisting’’ defined as

U�1� �
Xd�1

i�0

jiihijB �U
y
iiA0B0 : (4)

Note that if Bob had access to A0 he could transform a
private state into a basic pdit using local untwisting (thus
the name ‘‘local’’). The global and local untwistings are,
respectively, subscripted by (2) and (1) (labeling the num-
ber of control systems). Together with the obvious fact that
exact teleportation of a system can be viewed as an identity
map on it, we have the following observation:

Observation 2.—For any state �ABA0B0 , the composition
of (i) teleportation of A0 to Bob’s side and (ii) local un-
twisting on BB0A0 commutes with measurement in the
computational basis on AB.

A final property of pbits to review is as follows:
Proposition 1.—[6] For any private state �, ED���> 0.
Remark.—This only holds for exact pbits, since one can

approximate pbits with bound entangled states.
This concludes our summary for the known results on

private states in the promise scenario in which Alice and
Bob know that they share multiple copies of a certain state.
We now switch to the general scenario. We will first
describe our main protocol for QKD using noisy pbits,
07050
and then establish its unconditional security against the
most general attack by Eve.

The main protocol, M. There are six major steps in
the main protocol:

State distribution.—Alice and Bob request n copies of a
certain private state �ABA0B0 2 B�Cd � Cd � CdA0 � CdB0 �
given by (2). We consider the most general attack where
the � states are distributed by Eve. Therefore Alice and
Bob may have an arbitrary joint state over all n systems.
Without loss of generality, we take dA0 � dB0 and assume
compression has already been performed on subsystem A0

to reduce its dimension.
Partial distillation.—Alice and Bob randomly choose k

out of n systems and run a distillation protocol that would
return �m� logdA0 � � t [7] ebits if the input were indeed
��k. Alice and Bob estimate the quality of m� logdA0 of
those untrusted ebits using the other t, say, using the Lo-
Chau protocol [8]. Here, t is based on a quality parameter
0< �< 1, such that they abort the protocol with high
probability if the fidelity between the untrusted and ideal
ebits is less than 1� �.

Random sampling, untwisting, phase-error estima-
tion.—Upon passing the test, Alice and Bob will have n�
k systems and m� logdA0 distilled ebits. They pick a
random subset of m out of n� k systems, and Alice tele-
ports the m A0 subsystems to Bob using the m� logdA0
distilled ebits. To each teleported A0 (together with his
local corresponding system BB0) Bob applies the local
untwisting U�1� for �, as in (4), to obtain m ‘‘untwisted’’
systems. On the m untwisted systems Alice and Bob mea-
sure �x on A and B and share the results to effect a
measurement of 	�x � �x
AB � IA0B0 and estimate the
phase-flip error rate ex.

Random sampling and bit-error estimation.—They pick
another random subset of m out of n� k�m systems and
measure �z, share their results, and effectively measure
	�z � �z
AB � IA0B0 . This time, they obtain the bit-flip error
rate ez.

Raw-key generation.—If both ex and ez are reasonably
small, Alice and Bob generate a raw key from the n� k�
2m remaining systems by measuring 	�z � �z
AB � IA0B0
on each of them. Otherwise, they abort the protocol.

Error correction and privacy amplification.—On the
raw key, Alice and Bob perform the two-way Gottesman-
Lo classical error correction and privacy amplification
[9]—repeated concatenation of binary exclusive-OR op-
eration (BXOR) and three-qubit phase code followed by
one-way error correction or privacy amplification (EC or
PA) procedure. �

We comment on some aspects of this protocol. First,
Alice and Bob can perform any distillation protocol, even
those assuming tensor power input state ��k (e.g., the
‘‘hashing’’ protocol of [10]). This is because having per-
formed such protocol Alice and Bob subsequently check
the quality of the distilled states. Second, we do not have to
assume that the specific �ABA0B0 is distillable—instead, it is
1-2
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guaranteed by proposition (1). Third, in the phase-error
estimation, the local untwisting operation can be replaced
by any global untwisting. While these two options are
equivalent for perfect private states, they are generally dif-
ferent outside of the promise scenario. The global untwist-
ing requires the extra teleportation of the A subsystem and
thus the distillation of m� logd additional ebits, but can
give a higher rate than using local untwisting (e.g., as in
case of the mixture of two orthogonal private states [11]).

Proof of unconditional security of main protocol.
Before stating the proof, we discuss the ideas behind it.
The unconditional security of M is by reduction to that of
the Lo-Chau protocol [8] based on entanglement purifica-
tion. This reduction is possible because private states are
twisted maximally entangled states. Thus, the first step is to
realize that, if Alice and Bob could (locally) untwist all n
systems, Alice and Bob share some noisy maximally en-
tangled states on the AB subsystems, and standard tech-
niques [8,9,12] apply so that the scheme is secure. The
second step is to realize that Alice and Bob do not need to
untwist most of the systems, except for those used in
phase-error estimation, and those are indeed untwisted in
the main protocol M. This is because the untwisting is
followed by the entanglement purification schemes and
then measurements [8,9,12], a sequence of operations
that can be replaced by measurements followed by classi-
cal postprocessing. But by observation 2, the measure-
ments can be done before untwisting, which is then
unnecessary. These replacements are security preserving,
so that we obtain the desired security of the main protocol.

For clarity we will first assume Alice and Bob perform
errorless teleportation and local untwisting, and then con-
sider the case when these operations are only performed
with certain fidelity.

(i) The case of ideal quantum operations.
Security of fully untwisted protocolM1 from [9].—Let us

first consider another protocol M1 that differs from the
main protocol only by an additional step of untwisting
(teleporting A0 and local untwisting) the n� k�m sys-
tems before the measurements in bit-error estimation and
raw-key generation. We now show that M1 is uncondition-
ally secure. Since Alice and Bob have performed all un-
twisting operations in M1, they can trace out the A0B0

subsystems, which is equivalent to giving these subsystems
to Eve and can only decrease security. Thus, without loss of
generality, the input to M1 can be taken to be 2-qubit noisy
maximally entangled states, and results based on entangle-
ment purification procedures are directly applicable. In
particular, using Ref. [8], if the bit and phase-error rates
are well estimated, the appropriate entanglement purifica-
tion procedure will give a secure key. The efficient error
estimation of Ref. [13] provides a good estimate of error
rates that would have occurred if the rest of states were
measured along the Bell basis. Thus, after estimating the
error rates, Alice and Bob could apply an appropriate two-
way distillation procedure and obtain a secure key by
measuring in bit basis. Now, Ref. [9] also states that this
07050
can be done by first measuring in bit basis, and then
performing EC or PA, which gives our M1 protocol.
Since the Gottesman-Lo procedure assures a secure key,
we conclude that M1 is unconditionally secure.

Security of main protocol M from that of M1.—Recall
that M and M1 only differ in the additional untwisting on
the systems used in the bit-error estimation and the raw-
key generation steps. We now show that the extra untwist-
ing is unnecessary for the security of M1. Observation 2
tells us that untwisting commutes with measurement in the
computation basis. Hence it cannot change measurement
outcomes obtained in the bit-error estimation step and the
raw-key generation steps, and thus the values of the esti-
mated bit-error rate and the raw key. It follows that un-
twisting of these n� k�m systems does not effect the
value of the final key and it is unnecessary. Thus M differs
fromM1 only by omitting the necessary untwisting, and its
security follows from that of M1. This ends the proof of
unconditional security of the main protocol in case of ideal
operations of teleportation and untwisting.

(ii) The case of imperfect quantum operations.—We
now consider the case when Alice and Bob share the
maximally entangled state and can perform teleportation
and local untwisting only up to some confidence level. In
other word, we assume that

k�� P�ktr < �; (5)

8� k�
noisy
te ��� ��ideal

te ���k � �1; (6)

8� k�
noisy
untw ��� ��ideal

untw���k � �2; (7)

where, as before, P� is the projector onto a maximally
entangled state, � is the state produced by imperfect dis-
tillation, �ideal

te denotes perfect teleportation of A0 and
�noisy

te the actual transformation accomplished by Alice
and Bob. �; �1; �2, are exponential decaying functions in
n. Similar notation holds for the local untwisting operation
in (7). We have assumed negligible errors in other
operations.

Note that the estimate of the bit-error rate is unaffected
by the above errors (5)–(7). Now, we show that if the
erroneous operations have bounded errors as described
above, the probability is small that they observe a phase-
error rate e0x different from what they would have obtained
(ex) using ideal operations. This can be proved directly or
by using a general composability result [5].

In essence, the composability result [5] guarantees the
following in the Ben-Or–Mayers model: Consider a pro-
tocol � that uses a certain ideal resource � and achieves
security quantified by a security parameter �� (this quan-
tifies the level of insecurity, but we will not go into the
definition). Suppose there is a subprotocol �0 providing the
resource � with security parameter ��0 . Then, the protocol
�0 that uses �0 (instead of �) will have security parameter
��0 � �� � ��0 .

Thus, without loss of generality, we can analyze a varia-
tion of the main protocol that uses ideal ebits instead of �
1-3
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obtained from imperfect distillation. If this new protocol is
secure, so is the original one (up to a degradation of � in the
security parameter). In particular, Eve could have jointly
attacked the imperfect distillation procedure and subse-
quent steps in the main protocol, and the composability
result still applies in the Ben-Or–Mayers model. It then
remains to consider imperfect operations (6) and (7).

Let �in be the state of the n systems distributed in the
first step of the main protocol, �out � �noisy

untw ��
noisy
te ��in��,

and U�1� be the ideal local untwisting defined by �. By the
invariance of norm under unitary rotation and by the
triangle inequality we obtain

kU�1��inU�1�y � �outktr � �1 � �2: (8)

The same procedure consisting of measurements and clas-
sical postprocessing is then applied to U�1��inU

�1�y in the
ideal case, and to �out in Alice and Bob’s imperfect proto-
col, leading to the ideal and actual phase-error estimates ex
and e0x. Since the trace norm can only decrease under this
procedure, the trace distance between the distribution of ex
and e0x is at most �1 � �2, as we have set out to prove. This
ends the proof of unconditional security of the most gen-
eral version of the main protocol.

Distilling entanglement versus distilling uncondition-
ally secure key. We will comment now on the distilled or
distillable entanglement in the context of our main proto-
col. We denote Ku;M

D ��� as the amount of key obtained in
main protocol (M) when Alice and Bob demand n copies
of pdit � given that the joint state passes error estimation
step. We consider also the amount of entanglement dis-
tilled in that protocol denoted as EMD ���.

Distilled entanglement versus distilled secure key.—For
the main protocol one has for any pdit �: EMD ��� � 0. This
comes from the sublinear sample size s � o�logd logn�
needed to estimate the phase-error rate in the efficient
protocol of Lo, Chau, and Ardehali [13]. Thus the amount
of distilled entanglement per input copy approaches zero
with increasing n. On the other hand the value of
Ku;M
D ��� � c is nonzero by definition.
Distillable entanglement versus distilled secure key.—

We now compare the distillable entanglement of pdit �
with the distillable unconditionally secure key. Below we
give an example of the states showing Ku;M

D ��� can be
arbitrarily greater than ED���. It is based on the same state
for which one has KD���>ED��� [1,3].

Example.—Consider the pbit �0 2 B�C2 � C2 � Cd �
Cd� of the form [1]:

�0 � pj �ih �j � �s � �1� p�j �ih �j � �a (9)

where p � 1
2 �1�

1
d� and �s=a are normalized projectors

onto symmetric/antisymmetric subspace. One has for this
state ED��0� � log�1� 1

d� [1]. This leads to the conclusion
that there are states for which the gap between distillable
entanglement and distillable unconditionally secure key is
arbitrarily high:
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Ku;M
D ��

� logd
0 � � c logd !

d
1; (10)

ED��
� logd
0 � � logd log

�
1�

1

d

�
!
d

0; (11)

where in the second inequality we have used additivity of
log-negativity measure, which is an upper bound on dis-
tillable entanglement [14].

In summary, we introduce protocols for QKD based on
noisy pbits, which are a generalization of singlets. We have
found that one can still distill a key in the adversary model
even when the distillable entanglement is made arbitrarily
small. Notice that pbits are the most general type of states
that can give a secure key. Therefore, our work generalizes
QKD to the most general type of initial states.

A question which arises is whether a truly prepare-and-
measure scheme exists which does not use the teleportation
step. One could then extract a verifiable secure key from
bound entangled states (which have strictly zero distillable
entanglement). A protocol for doing this using quantum
tomography was given in Ref. [1]; however, a security
proof was not given. Such a proof will be the subject of a
future publication. Finally, we note that in the case of noisy
pbits, the untwisting operation in our protocol is not known
to be optimal (nor proven suboptimal).
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