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Quantum information is a valuable resource which can be encrypted in order to protect it. We consider the
size of the one-time pad that is needed to protect quantum information in a number of cases. The situation is
dramatically different from the classical case: we prove that one can recycle the one-time pad without com-
promising security. The protocol for recycling relies on detecting whether eavesdropping has occurred, and
further relies on the fact that information contained in the encrypted quantum state cannot be fully accessed.
We prove the security of recycling rates when authentication of quantum states is accepted, and when it is
rejected. We note that recycling schemes respect a general law of cryptography which we introduce relating the
size of private keys, sent qubits, and encrypted messages. We discuss applications for encryption of quantum
information in light of the resources needed for teleportation. Potential uses include the protection of resources
such as entanglement and the memory of quantum computers. We also introduce another application: encrypted
secret sharing and find that one can even reuse the private key that is used to encrypt a classical message. In
a number of cases, one finds that the amount of private key needed for authentication or protection is smaller
than in the general case.
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I. INTRODUCTION

When encrypting classical information, the only method
that gives unconditional security is the Vernam cipher or
one-time pad. Such a private key is a random string of cor-
related bits shared between two parties, who we shall call
Alice and Bob. By XORing �1� a message with the private
key, Alice can send a message to Bob which cannot be read
by an eavesdropper �Eve�. However, this is a rather expen-
sive protocol because classically, Alice and Bob cannot se-
curely increase the size of their private key without meeting.
When they have finished using their private key, they may
therefore be tempted to reuse it. Of course, reusing the pri-
vate key is highly insecure, and Eve will be able to exploit
redundancies in messages to learn the random string of the
key and gain information about the messages. It may be that
no one is actually eavesdropping on Alice and Bob, but be-
cause they have no way of being certain, they should never
reuse the key.

Just as classical information is valuable and may need to
be encrypted, quantum information is also of value, and re-
cently it has been proposed that one may also want to en-
crypt it �2,3�. Protocols have also been introduced to authen-
ticate quantum information �4� �cf. �5� as well as early
attempts �6,7��. The case of encrypting classical data that has
been encoded in quantum states has also been considered �8�.

In �2,3� �cf. also �9��, it was shown that if the source to be
encrypted is a quantum message of m qubits, then the size of
the private key for perfect encryption needs to be twice as
large as in the classical case. That is, a correlated random
string of 2m bits is necessary and sufficient to encrypt the
quantum message. Such a protocol is called a private quan-
tum channel �PQC� and care should be taken to distinguish
between the PQC where quantum information is encrypted

�using classical bits�, and quantum key distribution �10�,
where one uses the properties of quantum states to encrypt
classical data.

An immediate question which arises in the context of the
PQC is what exactly does it mean to encrypt quantum infor-
mation? In classical encryption, one usually has the situation
that Alice knows some message which she wants to send to
Bob, and Eve does not know the message and wants to learn
it. In the encryption of quantum information, the opposite
can be the case: Alice may not know the state being sent, and
Eve may know it, and want it in order to use it. Additionally,
if the state is unknown to Eve, then the quantum information
is in some sense, already encrypted. Eve can get no more
than one classical bit of information from a single unknown
qubit. She cannot access the quantum information. The more
likely use of the PQC is therefore when Eve knows some-
thing about the state, and Alice and Bob want to make sure
that Eve cannot use it. For example, the state may be some
valuable resource such as the memory of a quantum com-
puter or entanglement, and Alice and Bob want to protect
this resource from being used by an adversary.

Perhaps an easier to define scenario exists in the authen-
tication of quantum information. Here, Alice wants to send
Bob a state in such a way that Bob can tell if the state has
been tampered with. The protocols for a quantum authenti-
cation scheme �QAS� are closely related to the PQC, and
therefore much of our discussion will be related to them. In
fact, any QAS is necessarily a PQC �4�.

Notwithstanding the necessity proofs of �2,3�, in light of
the fact that Eve can only extract one classical bit of infor-
mation from a qubit, one might wonder in what sense the
two classical bits are needed. In fact, we will show that one
need not use up this classical key—it can be recycled. When
encrypting or authenticating quantum information, one can
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break the cardinal rule of cryptography and reuse the one-
time pad.

A strong indication that key-recycling of a classical key is
possible was given in �5�. There, shared singlets, rather than
a classical key, were used to encrypt quantum information. It
was then shown that by performing distillation on the sin-
glets, one could reuse them. A qualitative analysis indicated
that this was due to the fact that the encrypted information
was quantum, rather than the fact that the private key was
quantum. It was shown that an attacker’s Shannon informa-
tion about a classical key could be bounded, although it was
unclear the extent to which secure recycling was possible, or
whether correlations in different messages could be learned
even though the key might remain secret.

Key-recycling makes use of one of the fundamental prop-
erties of quantum information—it cannot be copied or cloned
�11�. What this means is that the encryption is such that Eve
cannot make copies of several messages in order to compare
them and deduce the values of the private key. Eve could of
course steal or tamper with the quantum message, but this
will result in a disturbance which can be detected using an
error correcting code. This is in stark contrast to the classical
case where Alice and Bob have no reliable way of knowing
whether someone has successfully eavesdropped. For these
reasons, for an authenticated quantum channel using 2m
+2s bits �where s is a security parameter�, 2m+s of the bits
can be securely recycled when the QAS is accepted. When
the QAS is rejected, just under m+s bits can be securely
recycled. For the PQC one has a similar rate of recycling. In
order to prove such recycling, one needs to show that �i� the
probability that Eve gains information about the private key
can be made arbitrarily small when the protocol succeeds,
and �ii� that Eve cannot exploit correlations in recycled keys
in order to gain information about correlations between
states sent in successive uses of the channel.

The fact that one can recycle the private key may seem
surprising at first, however, a hint that recycling is possible is
given by teleportation. Instead of using a private quantum
channel, Alice could instead teleport �12� her state to Bob. If
the classical channel used in teleportation is authenticated,
then teleportation also provides authentication of the quan-
tum state. Both the PQC and teleportation require similar
communication resources—both require m uses of a quantum
channel to transmit quantum states �either half-singlets in the
case of teleportation or the quantum states themselves in the
case of the PQC�. However, teleportation completely avoids
using any private key at all. Teleportation also has the added
advantage that there is less danger that the message will be
lost in transmission—the quantum state passes directly to
Bob, and there is no way to tamper or destroy it. One can
therefore ask, what it is that the private key buys us—why is
a private key needed at all? In �4� it was noted that the PQC
has the advantage that it is noninteractive, i.e., two rounds of
classical communication are not needed. The private key
therefore buys us a decrease in classical communication.
This seems like a rather expensive trade-off, given that clas-
sical communication is usually considered to be a cheap re-
source, while a private key is usually considered valuable
�although physically, these resources are incomparable in
that neither can be converted into the other�.

One might therefore ask whether there are many situa-
tions where it is advantageous to use the PQC over telepor-
tation. We will therefore in Sec. III A give examples where
the PQC uses as much or less resources than teleportation.
These include secure secret sharing, where we find that the
related teleportation protocol also requires a private key. The
PQC therefore consumes less resources than teleportation
�i.e., uses no classical communication�. Furthermore, we
prove the result that in the case of secure secret sharing using
teleportation, the classical message which needs to be en-
crypted uses a private key which can also be recycled.

We will then discuss other cases where the PQC is useful,
namely for protecting quantum resources. For example, one
can use quantum data encryption to protect entanglement.
We will also analyze protecting the memory of a quantum
computer from being stolen and used. We find that often, the
attacker will almost always have limited abilities which can
be exploited to use a one-time pad which is smaller than the
2m bit bound of �2� and �3�. This ability to beat the 2m
bound in specific cases is in addition to our ability to reuse
the pad �13�. For protecting n bits of entanglement, we will
see that an n bit reusable pad is sufficient, while for protect-
ing the memory of a quantum computer, it might be possible
to use a reusable pad of a size given by the error-correction
threshold �14,15�.

Although some of the examples we give may be of a
practical nature, our primary motivation for studying the
PQC is because it is interesting and raises many questions
considering the nature of encryption and of quantum infor-
mation. In particular, it allows us to gain additional insight
into teleportation by decoupling the sending of qubits from
their encryption. We will also see that even with key-
recycling, the PQC obeys a general rule which we prove,
regarding the maximum increase of a private key �K as a
function of sent qubits �Q and sent private messages �M.
Namely

�K � �Q − �M . �1�

We also discuss the thermodynamical nature of such a law.
We will discuss key-recycling in Sec. II and prove that it

is secure. Next, in Sec. III we discuss applications of the
PQC, including encrypted secret sharing and the protection
of entanglement and other resources. We conclude in Sec. IV
with a brief discussion.

II. PRIVATE KEY RECYCLING

Let us imagine that Alice wants to send to Bob a state �
composed of m qubits, and we consider the possibility that
the potential adversary Eve may have some prior knowledge
of the states that will be sent, or may know from what dis-
tribution they arise. To create a PQC, Alice “q-encrypts” the
state using her 2m bit private key using the method of �2,3�.
Essentially, to each qubit, Alice conditionally applies a bit
flip in the z direction, and then conditionally applies one in
the x direction, using two bits of her private key as the con-
trol bits. The private key is a classical bit string randomly
chosen from the uniform distribution K. The encrypted state
�o is now maximally mixed regardless of what the initial
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state was, and can be sent to Bob. Such a procedure gives the
private quantum channel �PQC�.

Definition 1. A secure private quantum channel �PQC�
with error � is a set of classical keys K and computable
superoperators Ak and Bk for each key k such that:

�1� for any ensemble E= �pi ,�i�, Ak acts on all m-qubit
states of E and outputs an ensemble E�= �pi ,�ik�;

�2� For all �i and keys k�K: Bk(Ak��i�)=�i; and
�3� for all ensembles E and measurements M acting on

E�, H�v : i���, where H�v : i� is the mutual information be-
tween measurement outcomes v and the members of the en-
semble i.
In other words, a PQC is an encryption/decryption scheme,
such that for all ensembles, the probability that an eaves-
dropper learns more than � about which state is being sent is
small. This definition is somewhat different to that of �2,3� in
that we define the PQC with respect to how much informa-
tion can be gained by an eavesdropper �as opposed to just
requiring that PQC produce the maximally mixed state �o�.
Note that the definition, though based on Shannon informa-
tion, does not refer to Eve’s knowledge of the states. Indeed,
in the PQC paradigm, one assumes that Eve may know the
states from the very beginning. Note also that such a scheme
�unlike teleportation� is only one-way, i.e., Alice just sends
the encrypted state to Bob, and no classical communication
need be used.

We will discuss key recycling in such a scenario. How-
ever, before proceeding to this discussion, we will first con-
sider the case of key recycling in quantum authentication
protocols, because there are less subtleties involved.

A. Key recycling in quantum authentication protocols

It usually makes little sense to encrypt quantum informa-
tion without authenticating it in some way, or protecting the
state with some form of error correction. This is because
unlike a classical message, any eavesdropping on the channel
may damage the state. Since the states may be unknown to
Alice, the state cannot be resent. A quantum authentication
scheme �QAS� is some encoding that Alice performs using a
private key shared with Bob, which enables Bob to tell
whether the state has arrived unaltered. Bob will either ac-
cept or reject the state, depending on whether he believes he
received the correct state. Again, like the PQC, the scheme is
one-way.

Definition 2. �4� A one-way quantum authentication
scheme �QAS� is a set of classical keys K and computable
super-operators Ak and Bk for each key k such that:

�1� Ak takes an m-qubit state � and outputs a system �k of
m+s qubits.

�2� Bk takes as input the �possibly altered� state �k� and
outputs an m-qubit state ��, which includes a single qubit
which indicates acceptance or rejection �denoted by �ACC�,
�REJ��.

A two-way QAS allows for communication between Alice
and Bob during the protocol. The scheme is secure if the
probability that the protocol is accepted, and that the state is
not ���, is less than �. That is

Definition 3. �4� A quantum authentications scheme is se-
cure with error � if for all states ��� it satisfies:

Completeness: For all keys k�K: Bk(Ak����	���)
= ���	�� � �ACC�	ACC�

Soundness: Tr�P����1−� where P= ���	�� � �ACC�
�	ACC�+ Im � �REJ�	REJ� and �� is again the output state.

Here, security is defined for pure states, and can be ex-
tended to mixed states by the linearity of quantum mechan-
ics.

We will consider a pessimistic scenario from the point of
view of key recycling. Namely, we imagine that Eve may
know exactly what state is being sent. However, as in �4� we
will assume that Eve has not already managed to acquire part
of the state �16�. We will then see that Eve cannot learn too
much about the private key because she cannot access all the
quantum information.

We will show that almost the entire key can be recycled
when the protocol is accepted. When the authentication pro-
tocol is rejected, we find that half the key can be recycled.
We will show that Alice and Bob can place a sufficient
bound on Eve’s information �regardless of the initial state
and Eve’s prior knowledge�, that they can perform a process
known as privacy amplification �17� to recycle their key.
Essentially, they are able to publicly communicate, to distill
from their 2n bit key, a slightly smaller key of which Eve has
an exponentially small probability of knowing anything
about. We then show that this recycled key can then be used
in another round of the QAS.

To get a true bound we will discuss a general authentica-
tion protocol based on stabilizer purity testing codes �error
correcting codes� used in Ref. �4�. The protocol of this
scheme �SQAS� is as follows.

Protocol 1: Stabilizer-based quantum authentication
scheme (SQAS)

�1� Alice and Bob share a secret key x of length 2m to be
used for q-encryption. For authentication, they additionally
agree on some stabilizer purity testing code �Qz� and two
secret keys z and y of combined length 2s.

�2� Alice uses x to encrypt an m qubit state � as �o.
�3� Alice encodes �o according to Qz for the code Qz and

adds syndrome y to produce �. This requires s additional
qubits. She then sends the total state of n=m+s qubits to
Bob.

�4� Bob receives the n qubits. Denote the received state
by ��. Bob measures the syndrome y� of the code Qz on his
qubits. Bob compares y to y�, and aborts if any error is
detected. Bob decodes his n-qubit word according to Qz, ob-
taining �o�. Bob q-decrypts �o� using x and obtains ��.

Essentially, Alice not only q-encrypts the state � using 2m
bits of classical key, but she also encodes the state using an
error-correction protocol based on a set of stabilizer codes
and determined by some additional private key. Additional s
qubits are used during transmission. The length s is deter-
mined by the degree of channel noise or extent of anticipated
eavesdropping. Such a protocol can protect against an arbi-
trarily large amount of eavesdropping. An example of such a
scheme was shown in �4� using a particular purity testing
code �Qz� which gave a soundness error 2n /s�2s+1� using an
additional key of length s+log2�2s+1�. If the authentication
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scheme passes, we will see that they can recycle the key
because the probability that Eve has any information about
the state or the key can be made arbitrarily small, and Eve is
product with the sent states.

The proof of security of Protocol 1 given in �4� is analo-
gous to the Shor-Preskill security proof of BB84 �18�. One
essentially shows that such a scheme can be converted into a
teleportation protocol without loss of security. Note that the
classical communication is taken to be authenticated, since
the amount of key required for this is logarithmic in the
amount of classical communication, and thus does not con-
tribute to any of the rates of key consumption. We can thus
safely ignore this cost in the remainder of the paper.

We now turn to proving security of key-recycling. By
security, we mean that if one has two secure QAS with two
keys k and l, to authenticate two states, then the scheme is
still secure if one can replace the key l with a key recycled
from k. Denoting the length of a key by 
, we have

Definition 4. A secure key recycling scheme of error � and
efficiency k� /k is a map 	 :K→K� such that if Ek and El� are
secure QAS on Hilbert spaces H and H� then when the QAS
are accepted Ek�

� Ek is a secure QAS on H � H� with error �

when �l�= �k�� with k�=	�k�.
The error � depends not only on the key-recycling scheme

but also on the security of the QAS.
The proof in �4� of security of the QAS assumed that

Alice and Bob are authenticating pure states �or parts of pure
states�. That is, it is assumed that the adversary does not
already hold part of the state being sent. After the arXiv
version of this paper appeared, this condition was removed
in the more general and detailed work of �19�. We will also
make this assumption, and under it, now prove the following.

Theorem 1. For the QAS of Protocol 1 there exists a se-
cure key recycling scheme with efficiency rate �2m
+s� / �2m+2s�.

To prove Theorem 1 we first need the following lemma
saying that sending half of a singlet does not need encryption
by x.

Lemma 1. Consider the maximally entangled state com-
posed of two subsystems ��+�=�i�i�1�i�2 on Hm � Hm, with
dimension 2m�2m and � being the state obtained from trac-
ing out one of the subsystems. Then a secure SQAS using
Protocol 1 for � with a key of length 2m+2s is also secure
using a key of length 2s.

In other words, for half of a maximally entangled state,
the key x is not needed, only the key y and z.

Proof. Alice uses Protocol 1 on subsystem 2 except that
neither step 2, nor the key x is used. We then note that be-
cause

I � U��+� = U*
� I��+� �2�

Alice can replace step 2 by q-encrypting subsystem 1. Then,
due to Eq. �2�, this protocol is completely equivalent to Pro-
tocol 1 and is a secure QAS. Then, since Alice’s actions on
subsystem 1 commute with Eve’s and Bob’s actions on sub-
system 2, it cannot matter whether Alice actually performs
the q-encryption of subsystem 1. �

Now, we prove Theorem 1, using a technique analogous
to that of Shor and Preskill.

Proof. Let us consider a variation of Protocol 1 acting on
a pure state � by assumption �by the linearity of quantum
mechanics, our proof will hold if only part of the state is
being sent. That is, it holds for any � as long as the purifi-
cation is not with Eve�. The modified QAS, Protocol 2, dif-
fers in step 2 and the final step from Protocol 1.

Protocol 2: Modified QAS
�1� Alice prepares the state 1 /�22m�x�x� where the �x� are

22m orthogonal states. For authentication, Alice and Bob ad-
ditionally agree on some stabilizer purity testing code �Qz�
and two secret keys z and y of combined length 2s.

�2� Alice q-encrypts � conditionally on �x� creating the
state 1 /�22m�x�x���x�.

�3� Let us call the subsystem which is the mixture of �x’s
�. Alice encodes � according to Qz for the code Qz with
syndrome y to produce �. This requires s additional qubits.
She then sends the total state of n=m+s qubits to Bob.

�4� Bob receives the n qubits. Denote the received state
by ��. Bob measures the syndrome y� of the code Qz on his
qubits. Bob compares y to y�, and aborts if any error is
detected. Bob decodes his n-qubit word according to Qz, ob-
taining ��.

�5� If Bob accepts, Alice measures �x� to obtain a random
string x.

First we note that because � has essentially been
q-encrypted by the action’s of Alice, � is the maximally
mixed state �o. Therefore the state �x�x���x� is a maximally
entangled state �+ of 2m qubits �actually up to local unitar-
ies, on Alice’s side it is a tensor product of half a singlet and
the initial state�. Therefore, by Lemma 1, if Bob accepts,
then Alice and Bob share a state �AB� that has an overlap with
�+ equal to 1−��. One can now use standard reasoning origi-
nating in �20�: since Alice and Bob share an �almost� pure
state, they are decoupled from Eve.

Alice can then measure x without Eve learning what x is.
From the point of view of Eve, Protocol 2 is completely
equivalent to Protocol 1, and therefore if Bob accepts the
authentication, the probability that Eve has obtained more
than � information about x is small.

It should be pointed out that Protocol 2 is not equivalent
to 1 from the point of view of Bob, since he does not have
the key x. However, this is not relevant, since he decides
whether to accept the authentication before decoding using x.
Therefore neither his actions nor Eve’s depend on the modi-
fications that Alice makes. One can in fact show that the
preceding protocol is in fact equivalent to teleportation.

Let us now prove that Eve is in a product state with x and
the sent state. This will ensure not only reusability of the key
in another QAS, but in any other cryptographic task accord-
ing to �21,22�. This essentially follows from the fact that if
the authentication is accepted, the protocol is equivalent to
teleportation. Let us consider the total state of the system,
before step 5 of Protocol 2. Using the fact that all ancillas
and all actions by the parties can be represented as unitaries
acting on pure states, we can write the total state of the
system in the form
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 =
1

2m2s �
x,y,z

�x�UBUEUA���x��0�E�0�A��y,z�A��y,z�B���y,z�R

= �
i

�pi��i���i� . �3�

Here, the key used in the authentication is encoded in the
states �y ,z�A��y ,z�B� which is labeled by the particular 2s bit
key �y ,z� that is used in the QAS. Since this is a classical
key, we purify it on an imaginary reference system �yz�R to
which none of the parties have access. The first unitary UA is
the further encoding done by Alice, and it acts on the states
�x and the s qubit ancilla �0�A� conditional on the authenti-
cation key �y ,z�A�. The second UE are the actions of the
eavesdropper acting on the m+s qubits sent across the chan-
nel, and UB, the decoding of Bob, acting on the ancilla and
sent state �x �conditioned on �y ,z�B��.

In the second line we have rewritten 
 in terms of the
eigenbasis of maximally entangled states �one of which is the
state �+
�0=�x�x���x��, correlated with states on the ancil-
las �i �which need not be orthogonal�. Now, if the QAS is
accepted, then we have according to Definition 3 of a secure
QAS

Tr„TrA�A�B�RE��
�	
����+�	�+�… � 1 − � , �4�

which implies that with probability p0�1−�, the state of the
system is ��+� � ��0� which implies that with arbitrary high
probability, Eve is product with the key x and the encoded
state �x �even more strongly, all ancillas, as well as the key
�y ,z� are product with x and the sent state ��. From the
composability theorem �21�, this implies that the key x can
be reused in the second QAS �using the same methodology
of �22�, since one can also regard this protocol in terms of
security of key�.

Note that we not only had to prove Eve’s lack of knowl-
edge about x, but also that she was decoupled from the sent
states. This then gives that the recycled key k� can be used in
a secure QAS. The danger is that k� might not be reusable
because it is correlated to the sent states. For example, in
Sec. II C we will see that with respect to the PQC, one must
be concerned with the fact that Eve could learn about corre-
lations between different sent states, even though she learns
nothing about the key. However, reusability of k� in the QAS
follows from the definition of the QAS. Essentially, since the
QAS is not defined in terms of Eve’s knowledge, but in
terms of Bob verifying he got the correct state, one need not
worry whether Eve is correlated with the sent states—we can
assume she already knows them.

Let us now turn to the key �y ,z� which was used in the
purity testing code. It is of length 2s, and we now show that
we can perform privacy amplification to obtain a key of
length s which can also be reused. In an earlier version of
this paper, we showed that the probability that Eve obtains
more than an exponentially small amount of information
about the key is exponentially small, using results of
�23–25�, and further, that this part of the key was in a prod-
uct state with the sent states. Since then, the results of �26�
appeared, and we can use their stronger bounds to show that
Eve is in a product state with the s of the bits which can be

recycled from the 2s key used in the authentication step.
Thus we can formally prove that this part of the key can also
be reused using the stronger security definition of compos-
ability.

Alice and Bob will need to perform privacy amplification
�17� on the key �y ,z� to produce a smaller key of length s,
and in order to prove the security of this privacy amplifica-
tion, we use �26�:

Lemma 2. Given a set of two-universal Hash functions
�27� G from J, a random classical distribution with density
matrix �J, to a distribution T with range �0,1�t and density
matrix �T�G�, joint density matrices �JE ,�TE�G�, and mar-
ginal distribution �E=trJ �JE=trT �TE�G� then EG(tr��TE�G�
−�T�G� � �E�)�21/2�log �max��JE�+log�rank��E��+t�+2� where EG is
the expectation value over G, and �max is the largest eigen-
value.

Intuitively speaking, the above lemma places a bound on
how close the privacy amplified distribution is to being prod-
uct with an eavesdropper.

In the case under consideration, if the protocol is ac-
cepted, then as shown above, with probability p�1−� the
total state of the system is ��+� � ��0� with ��+� with Alice
and Bob, and ��0� on A�A�B�R and E. With high probability,
Eve is completely in a product state with the m qubit singlet,
and the total state is

��+�AB � ��0�A�A�B�ER. �5�

Upon acceptance of the protocol, we can thus simulate the
situation by giving the entire A� to Eve, since this can only
further degrade the security. Then, with probability p�1−�,
Eve’s state �E has maximal rank s, since she is effectively
only acting on the s qubit ancilla. The largest eigenvalue �max
of the density matrix on A�A�B�E is no greater than 1/22s

�since the probability of any y ,z is this large�. Thus by
Lemma 2, EG�tr��TE−�T � �E�� will be small if we choose the
recycled key of length t=s−2. Here, �T�G� is the density
matrix of the privacy amplified key �y ,z�. This is precisely
the condition needed for composability of a key found in
�22�, and ensures that just under half of the 2s bit key used in
the authentication process can be recycled. The total effi-
ciency of the recycling is then a rate of �2m+s� / �2m+2s�.�

Here some remarks concerning our use of composability
are in order. Our primary goal is to prove that the key can be
recycled. In the case of x we had two problems we fought
with: not only �1� Eve should have small knowledge about
the recycled key, but also �2� Eve should not be correlated
with the total system: message plus recycled key. This is
precisely a place where recycling of the classical one-time
pad fails: knowing that the key was used once more, Eve will
get to know information about correlations between subse-
quent messages.

In our case we assume from the very beginning that Eve
knows the message. Then, correlations of Eve with system
“recycled key plus message” would be dangerous because
Eve would then get to know the key, and in some further
round, she would break authentication �i.e., tamper with the
sent state, without causing Bob’s rejection�. Thus both in the
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cases of key x and z ,y we showed that the recycled keys are
not correlated with the states subjected to authentication.

Let us now consider the case that the QAS is rejected.
Typically, Bob will reject the authentication if the noise level
or eavesdropping is higher than anticipated. That is, if Alice
uses an error correction code which is not large enough. In
such a case, we will show

Theorem 2. For the QAS of Protocol 1, if the protocol is
rejected, there exists a recycling scheme with efficiency rate
�m+s��2m+2s�.

In an earlier version of this paper, our recycling scheme in
the case of rejecting the QAS yielded s bits of key. We obtain
a better rate of recycling by simply giving Eve all the m+s
qubits. Then, the maximal rank of Eve’s state is thus m+s,
and the maximum eigenvalue of the total state �authentica-
tion key plus Eve’s state� is bounded by 1/22m+2s. Thus by
use of Lemma 2 we can reuse the key if we hash the total key
to a size just under m+s. �

An important aspect of the key recycling scheme is that it
does not particularly take away from the advantage of the
QAS over teleportation. The QAS has the advantage that it is
noninteractive �only one-way communication is needed, but
at the price of a private key�. Key recycling will require a
small amount of back communication �Bob must tell Eve
whether he accepts or rejects the state�. However, the back-
communication and key recycling can be done at the conve-
nience of the two parties. That is if Alice needs to send states
so that Bob can use them right away, then this can be done,
and later, during a break in the transmission, they can engage
in key recycling. Therefore a QAS plus key recycling still
has an advantage over teleportation in terms of interaction.

B. Slippery slope towards teleportation

Having determined that the key can be recycled in QAS,
one must then wonder if it is needed at all. Indeed, this is the
case. At the end of Protocol 2, Alice after measuring what x
is, can just tell Bob the result publicly. This is no less secure
than Protocol 2 since the stabilizer code ensures that Eve did
not touch the state, and therefore, by the time she learns what
x is, it is too late. In fact, the keys z and y in Protocol 2 can
also be replaced by public communication from Alice to Bob
�as long as the classical public communication channel is
authenticated�. This results in Protocol 3.

Protocol 3: Modified QAS
�1� Alice chooses random strings x, y, and z. Alice and

Bob additionally agree on some set of stabilizer purity test-
ing codes �Qz�.

�2� Alice q-encrypts � conditionally on x creating the
state �x.

�3� Let us call the subsystem which is the mixture of �x’s
�. Alice encodes � according to Qz for the code Qz with
syndrome y to produce �. This requires s additional qubits.
She then sends the total state of n=m+s qubits to Bob.

�4� Bob receives the n qubits. Denote the received state
by ��. He indicates receipt to Alice.

�5� Alice tells Bob z, and Bob measures the syndrome of
Qz on �� obtaining the result y�. Alice and Bob compare y to
y�, and abort if any error is detected. Bob decodes his n-qubit
word according to Qz, obtaining ��.

�6� If the protocol is accepted, Alice tells Bob x and Bob
decrypts �� to obtain ��.

That this protocol is secure can be seen by noting that it is
essentially teleportation �as was Protocol 2�. In teleportation,
Alice sends n half-singlets to Bob, and then they measure the
syndrome y of the random code Qz. If they both get the same
y, they can presume that the singlets are pure, and they begin
teleportation. The preceding protocol differs from teleporta-
tion, only in that it is as if Alice has made the Bell measure-
ment to start teleportation, and measured the syndrome of
Qz, before sending the state to Bob. Since such measure-
ments do not change the density matrix, they clearly cannot
reduce security.

This procedure has the advantage over the QAS in that
less key is needed—not a surprise given that much of it can
be reused in the QAS. Of course, it is interactive, while for
the QAS with recycling, the interaction can be performed at
any time, well after Bob has used his received state. This in
some sense highlights the role of the secret key x used in the
QAS. Its purpose is not as much for encryption �since Alice
could use a random string instead and later tell Bob�, but
rather, it serves a role of communication. In other words, it
allows one to have a noninteractive protocol. In fact, there is
still interaction—the key was distributed at some point in the
past, and might be recycled at some point in the future—but
this interaction can occur at more convenient times. The
price �the secret key�, is of course rather high.

C. Key recycling for the private quantum channel

Having discussed key recycling for the QAS, we now turn
to key-recycling for the PQC. We consider here a PQC such
as that of �2,3�—namely, for each qubit of message, one uses
2 bits of private key, with Alice performing one of four op-
erations on each qubit conditional on the key. We will now
explain why to get key recycling for the PQC, one must
actually use authentication or purity testing. One therefore
must actually do key recycling of the QAS.

At first, it might seem that for the PQC one can easily
recycle half the key, based simply on the Holevo bound, and
the bound of Lemma 2. Eve will be ignorant of half the key,
no matter what states are being sent and how much she
knows about the states that are being sent.

There is, however, a problem with this. Eve may not be
interested in learning the key or the identity of a particular
state, but may instead be interested in learning about corre-
lations between the various quantum states being sent be-
tween Alice and Bob. Let us imagine that Eve does not try to
learn anything about the state � encrypted with k but instead,
just steals it. Then, when Alice and Bob send a new state ��
encrypted with k� she steals that as well. Now she may not
know much about these two states, but she will learn some-
thing by having both of them. The reason is that k�, although
unknown to Eve, is in fact correlated with k. This means that
Eve will be able to learn something about the correlations
between � and ��, even though she has no knowledge about
k and k�.

The amount of information that Eve can learn about the
key depends not only on how much she knows a priori about
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the states being sent, but also on which states being sent. For
example, for mixed states, from the Holevo bound one has
that Eve will learn less than m bits of information about the
key. Even for pure states, Eve will in general learn much
less. Consider, for example, the state

�
/4� = cos�
/8��0� + sin�
/8��1� . �6�

It is easy to verify that this state gets encrypted into one of
four nonorthogonal states �0�, �1�, �0+1�, or �0−1�, condi-
tional on the private key. These are the same states used in
BB84 �10�.

Now, it may be that Eve did not steal the state, or was
unsuccessful in her eavesdropping. It therefore seems a pity
for Alice and Bob to throw out k if this is indeed the case.
Classically, Alice and Bob have no way to determine whether
eavesdropping was successful, but this is not the case for the
encryption of quantum information. Alice and Bob can in-
deed discover whether Eve tampered with their state using a
QAS or a purity-testing protocol to ensure that they still
possess the original state �. Then, because of the no-cloning
theorem �11�, they can be sure that Eve did not steal or
tamper with �.

While an authentication scheme such as that of Protocol 1
will be enough to enable key recycling, one can also have
Alice publicly announce the authentication strings y and z,
exactly as was done for Protocol 3. However, since these
have to be done over an authenticated classical channel, it is
doubtful that this would be less resource-intensive.

In summary, if one wishes to perform key recycling of a
PQC, one needs to augment the PQC with some authentica-
tion. The amount of key recycling is then given by Theorem
1. Since any authentication scheme is also a PQC �4�, the
theorem also guarantees security of the PQC. As was noted
in our proof of Theorem 1, Eve will be virtually product with
the encrypted states �x. It is for this reason that Eve is not
able to gain information about correlations between the vari-
ous states being sent.

D. Basic law of privacy

It might make one uncomfortable that the length K of the
private key need not decrease by 1 for each qubit of en-
crypted message sent. We know that classically, one cannot
increase privacy through communication. However, we
know that due to quantum key distribution, the size of a
private key can increase for each qubit sent. Quantum com-
munication therefore allows one to increase the size of a
private key by 1 per qubit sent. If the number of sent qubits
is �Q, and the size of an encrypted message which gets sent
�whether quantum or classical� is �M, then we note the fol-
lowing general law. For any communication between two
parties

�K � �Q − �M , �7�

where �K is the change in length of the private key. Such a
law, while probably known on some intuitive level, has never
been stated or proven to the best of our knowledge. We note
that our recycling protocol respects such a law, as does tele-
portation.

Proof. Assume for contradiction that the basic law is vio-
lated. Then, in the case where the additional message �M is
classical, we imagine that the message sent is used to create
an additional key of length �M �since the private communi-
cation can always be communication of the private key�.
Thus a violation of the basic law would imply �K��Q. That
the latter inequality cannot be true follows from �28�, where
the theory of privacy was recast in terms of entanglement
theory, and thus it was shown that the relative entropy of
entanglement,

Er��AB� 
 min
�AB�sep

Tr��AB log �AB − �AB log �AB� �8�

�where the minimum is taken over separable states�, is an
upper bound on the key rate. Since Er is less than Ec �the
entanglement cost� of a state �which is by definition Q�, it
follows that �K��Q. This gives the desired contradiction.

If the additional message �M is quantum, then the quan-
tum channel must work for all states �since by definition of a
quantum message the sent states are unknown and decoupled
from the environment�. We could thus send half of a singlet
for each qubit of message, and then use it to create one bit of
key. We would then again have �K��Q. �

It is actually quite surprising that �28� is needed for what
appears to be such a basic and simple result. One imagines
that �K��Q would follow from the Holevo bound, but be-
cause a key is a strictly weaker resource than communica-
tion, and can be distilled using many rounds of public com-
munication, standard techniques appear not to work.

The laws of privacy bear a resemblance to
thermodynamics—not surprising given their information-
theoretic nature. Alice and Bob each possess a random string
of maximal entropy. K therefore, represents a decrease in the
total entropy of Alice and Bob’s string, due to
correlations—it is a negentropy. In the absence of eavesdrop-
ping, both teleportation and our recycling protocol have �K
=0, and are therefore optimal. They are, in a sense, isentro-
pic processes. On the other hand, eavesdropping disturbs the
system and results in an increase of entropy between Alice
and Bob. The size of the private key �or negentropy�, goes
down. This is like the second law of thermodynamics. The
leakage of information to Eve is physically very closely re-
lated to the processes that produce an increase of entropy in
thermodynamics: Indeed, the process that conserves energy
and increases entropy is exactly eavesdropping, i.e., it is pure
decoherence �if we will not consider just coarse graining�. In
the case of no eavesdropping, then the bound of Eq. �7� gets
saturated, and you have a law which looks very similar to the
first law of thermodynamics. In that sense, one should think
of the sent messages as work which is being performed.

III. APPLICATIONS

As noted in the Introduction, if two parties are interested
in sending an unknown state between them, they are likely to
chose teleportation over the PQC. To teleport an unknown
state, Alice sends a number of halves of singlets to Bob, and
then they use distillation to ensure that they are indeed shar-
ing pure singlets �since the sent entanglement may get cor-
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rupted due to noise, or the actions of an eavesdropper�. After
distillation, Alice makes a measurement on her half of the
singlets, and sends the results to Bob, who can then trans-
form his half of the singlets into the state which is to be
transmitted. Since the outcomes of Alice’s measurements are
completely random, Eve gets no information about the state
which is being sent. Teleportation therefore automatically en-
sures encryption. If the classical channel is authenticated,
teleportation also ensures authentication of the quantum in-
formation. Additionally, the unknown state is never held by
Eve, and so it cannot get destroyed or corrupted.

Both teleportation and the PQC therefore need one usage
of the quantum channel for every qubit which is to be sent
and encrypted. The amount of classical communication
needed for teleportation n qubits is one round of O�log n�
classical bits �c-bits� from Bob to Alice, and 2n c-bits from
Alice to Bob. The first round is used in the distillation pro-
cess �Bob needs to tell Alice which singlets he tested for
purity, and how noisy the singlets are�, and the second round
is needed for Alice to tell Bob the result of her measurement.
The PQC does not need these two rounds of classical com-
munication, but it does need the private key. It therefore
seems that this saving in classical communication for the
PQC comes at an expensive price �the private key�.

One might argue that the private key can be recycled, and
therefore, it does not represent much of a cost. However,
some of the private key will be lost in the case of heavy
eavesdropping or noise. Furthermore, recycling the key also
requires interactive communication. Bob must inform Alice
how much noise is in the check-bits and which privacy am-
plification function they will use. This communication can
occur at a more convenient time �after Bob has decrypted the
states�, but it is still needed.

We therefore inquire into situations where one might pre-
fer the PQC over teleportation. One situation where the two
are equivalent is if one wishes to store the quantum informa-
tion in one’s own laboratory, but does not trust other people
in the laboratory. One could then q-encrypt the states and
keep the key somewhere safe. One could also use teleporta-
tion, and keep the results of the measurement locked away,
but preparing singlets to teleport a state to oneself seems
rather silly. Here, we show other applications of the PQC. In
Sec. III A we consider a situation which we call secure secret
sharing which requires either a modified version of the PQC
or of teleportation. In this case, both protocols require the
same amount of resources—namely, a private key and
2 cbits of communication. We also find the interesting result
that in this case, the private key, which is used to encrypt
classical information, can also be recycled. We will present
an asymmetric version of secure secret sharing �one party is
more trusted� in which the teleportation protocol is more
resource intensive. We also explore two other examples
where one would not use teleportation, namely, the protec-
tion of quantum resources such as entanglement or the
memory of a quantum computer. For protecting entangle-
ment, the private key is half the size of the general case.
These examples are discussed in Sec. III B. It is the protec-
tion of quantum information where the PQC may find its
most useful application.

A. Encrypted quantum secret sharing

Let us first consider the following scenario which we will
call encrypted quantum secret sharing. We imagine a sce-
nario similar to original secret sharing �29�: Alice wants to
send a quantum state to Bob and Claire, but she does not
want either one to be able to use the state separately. Alice
desires that they cooperate in order to decrypt the state.
However, we also imagine that both Bob and Claire are ex-
tremely adversarial and may try to eavesdrop on each other’s
communication channels in order to learn the state. Or per-
haps, there is a concern that another party may eavesdrop on
the channel.

Consider the following modification of the QAS �e.g. Pro-
tocol 1�. Alice shares a classical private key X with Bob �to
be used for q-encrypting�, but rather than q-encrypting the
state using this key, she instead q-encrypts the quantum state
using another random string J and then applies the authenti-
cation protocol using key S �shared with Claire�. She then
sends the encrypted quantum state to Claire. Since Bob does
not know J, he will gain nothing by eavesdropping on the
quantum channel between Alice and Claire. Once Claire re-
ceives the quantum state, she checks to see that the state has
arrived intact using S. If the authentication test fails, they
abort. If the test succeeds, Alice classically encrypts the ran-
dom string J using X and sends the encrypted string to Bob.
This prevents Claire from learning the key used to encrypt
the state she has, while Bob can decrypt J using X. Claire
now possesses the encrypted quantum state, while Bob pos-
sess the key, and they will not be able to decrypt it unless
they cooperate. The total protocol has consumed 2n bits of
shared private key and 2m bits of classical communication
between Alice and Bob, and n uses of the quantum channel
from Alice to Claire. The state can only be decrypted if Bob
and Claire get together and cooperate.

The protocol involving teleportation requires the same
amount of resources. Alice sends half-singlets to Claire, and
they use a purification testing protocol over an authenticated
classical channel to ensure that they indeed hold singlets.
Alice then makes the joint measurement on her half-singlets
and the state to be shared. Alice then encrypts the results of
the measurements using the key shared between herself and
Bob, and sends it to him.

Key recycling can be done in both these cases, although it
is a bit more problematic if one is concerned not only about
a party learning the key, but also correlations between differ-
ent states. The transmitted states will need two layers of
authentication. Essentially Claire needs to be sure that either
the singlets or the transmitted state is authentic, and then Bob
would need to test for authenticity when they decrypt. This
would need to be done in Claire’s laboratory and so the
situation may be a bit awkward for this to occur with Claire
hovering over his shoulder �however, one may assume that
they are polite enough to each other in person to allow this to
happen�. Alternatively, Claire could test for authenticity in
the presence of Bob, assuming that Bob is allowed to test
Claire’s apparatus. Key recycling makes more sense in the
case where one is concerned about eavesdropping from some
other party, in which case only one layer of authentication is
needed, since Alice can trust Claire’s acceptance of the au-
thentication.
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This recycling in the case of encrypted quantum secret
sharing is perhaps more surprising than recyclability in the
original PQC protocol, since in this case, the information
being encrypted is classical. In the case of teleportation, it is
the result of Alice’s measurements which, although random,
could be used by Claire to learn what state she has. The
proof of this recyclability is almost identical to Theorem 1.
The only difference is that here, one does not need to show
that Eve must be product with the message �J in the case of
QAS-type protocol, and the result of Bell measurements in
the case of the teleportation protocol�. Indeed, she will not
be, as both strings are classical. However, we do not need
this to be the case because there are no correlations from one
round to another—the messages are completely random
strings.

One can envision situations where the PQC is less re-
source intensive than teleportation. Consider the following:
Alice wants to send a state to Bob, but because quantum
channels and labs are expensive, Bob has neither of these.
The only option then is for Alice to send the state to Claire,
a technician in a large company which owns all the quantum
channels, and which also has storage equipment for keeping
quantum states. Claire is, however, not trusted.

Alice can, however, encrypt the quantum state using the
key shared between her and Bob, and send the state to Claire.
Bob can then go over to Claire’s laboratory any time he
chooses, and decrypt the state �we once again imagine that
he is able to test the equipment first�. The teleportation pro-
tocol, however, uses more resources. The half-singlets are
sent to Claire, and the results of the measurements sent to
Bob. The measurement results that are sent to Bob have to be
encrypted, to ensure that Claire does not eavesdrop on Bob’s
classical channel. Therefore the teleportation protocol also
needs a private key. It is therefore more expensive because it
needs two way communication, while the PQC does not.

B. Protecting entanglement

We now turn to the issue of using PQC to protect various
resources, and we demonstrate a scenario where only n bits
of private key are necessary and sufficient rather than 2n. Let
us imagine the following: there is a teleportation device �12�
set-up between Alice �who is on Earth� and Claire �a robot�
who is on the planet Venus. The more practical reader can
instead imagine a device which can be used to perform quan-
tum key distribution between Earth and a satellite, and we
note that related devices for satellite deployment are already
being tested �30�.1 Now, the teleportation device between
Alice and Claire is essentially made up of many entangled
states shared between Alice and Claire which we take to be
the singlet

�− = �01�AC − �10�AC. �9�

We assume that these singlets have already been authenti-
cated, and so Alice possesses many singlet-halves which

look locally like maximally mixed states. She may decide
that she will not use the device, but instead wants to send her
states to Bob for his use. They may have two concerns: �1� to
ensure that an adversary Eve has no idea what quantum
states are being sent, or �2� they may not care what Eve
knows but want to ensure that Eve will not steal the states for
her own use �since she may want to use the device to also
teleport something to Venus�.

Here, we consider the latter case �which we shall refer to
as quantum data protection�, and assume that Eve is also
located on Earth. One way to ensure that the singlets will
never fall into the wrong hands is to have an authentication
protocol set up between Claire, and the authorized party on
Earth. However, this is only useful if one can be sure that
Claire’s singlets will also never fall into the wrong hands. It
may be that Eve has a friend on Venus who might take con-
trol of the teleporter.

Alice would therefore want to perform some sort of pro-
tection protocol on her half of the singlets, to ensure that if
Eve steals them, they will be of no use. In this case, we do
not need the full encryption scheme of �2,3� which uses 2n
bits of private key, but can instead use a scheme using only
an n bit private key. We now show that n bits are necessary
and sufficient to protect entanglement.

To show sufficiency, consider the following protocol. Al-
ice and Bob share a private key k and Alice divides her states
into large blocks of size n and performs the bit flip operation
��x� on each of her qubits conditional on each bit of the
private key. The total state of each qubit is then

�ABC =
1

2
��00�	00� � ��−�	�−� + �11�	11� � ��+�	�+�� ,

�10�

where �+ is the Bell-state �00�AC+ �11�AC shared between Al-
ice and Claire, and the states �00� and �11� are the classically
correlated private key shared between Alice and Bob. An
adversary who does not have access to the key receives the
state

�CE =
1

2
��−�	�−� +

1

2
��+�	�+� . �11�

It is immediate to find using, e.g., the partial transpose test
that this state is completely unentangled, and is of no use
whatsoever to an adversary wishing to use the singlets.

To show that n bits of private key are necessary, we note
that we would not be able to use less than n bits of random-
ness because any mixture of a singlet with another pure state
is unentangled unless p=1/2. More explicitly, the encryption
amounts to applying some unitaries Ui with probabilities pi
to Alice’s halves of singlets. The amount of used bits is then
given by the entropy H��pi��. To get a bound for the entropy,
we note that Alice wants the state to be separable, while the
separable state satisfies S��AB��S��A� �31�. In our case �AB

is the state obtained from singlets after applying the random
unitaries. We have S��A�=n, where n is the amount of sin-
glets while S��AB��H��pi��. If the state is to be separable,
H��pi�� must be then no smaller than n.

1It is usually simpler to perform quantum key distribution using
sent photons, but one can also use singlets as described in the pro-
tocol of �20�.
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After protecting the singlet, Alice can send her n qubits to
Bob. Bob can then test the received qubits to ensure that Eve
has not stolen any, by simply testing for purity �for example,
by using the stabilizer codes used in Protocol 1�. In the
above scenario, we are not encrypting quantum information
but rather protecting it—we assume that Eve already knows
that Alice is trying to send the half-singlets to Bob.

We can use key-recycling also in this case. If, for ex-
ample, we use the additional layer of authentication, and the
test passes, then Alice and Bob reuse the key. Here, they can
reuse the key, even though it is only n bits long to begin
with. This is because the bound of Lemma 2 ensures that Eve
can learn nothing about the key. The half singlet states are
already maximally mixed, and so there is no measurement
that Eve can make which would allow her to guess the pri-
vate key.

Finally, one can also use quantum data protection even
when not sending data to another party. One might imagine
that Alice is concerned that someone in her laboratory �Eve�
might steal the entanglement and use it for some unautho-
rized purpose. Alice could use quantum authentication,
which would let her know that the entanglement has been
tampered with, however, by then it is too late, and Eve has
possession of the half-singlets. Again, setting up an authen-
tication protocol is no good if Eve has a friend on Venus who
might also steal the other half of the singlets. Alice can there-
fore use the protocol above using her own private key. This
private key can easily be stored somewhere safe, as opposed
to the quantum states which presumably must be stored in a
prominent place in a laboratory, as the states need to con-
stantly be protected against decoherence. Note that in the
case of storage, a teleportation protocol makes little sense.

There are other examples where one can use the PQC to
protect quantum data. For example, one might protect the
memory of a quantum computer, especially if one is running
a long factoring algorithm, and one does not trust other
people in the laboratory In such a case, one might make do
with a key which is only as long as the threshold, beyond
which error correction is impossible �14,15�. That is, one
introduces errors conditional on a key, such that the compu-
tation can no longer be performed. These errors can be un-
done if one has the key, and the computation can proceed,
but without the key, the computer will not run. Whether an
adversary might still be able to get some information by
performing some measurement on the quantum memory in
such a scenario is not clear.

IV. DISCUSSION

From a conceptual point of view, the private quantum
channel and the authenticated quantum channel are interest-
ing because it allows us to decouple the sending of a quan-
tum state, and the encryption/authentication of a quantum
state which are automatically coupled in teleportation. Since
teleportation does not require a private key, we have inquired
into the necessity of the private key used in the QAS. Indeed,
we find that in some sense, the private key is not needed, as
one can keep reusing the same private key, adding only a
small amount of additional private key each time. The role of
the private key was seen to be more significant in terms of
communication—it allows the QAS to be noninteractive. It
would be interesting to better understand the role of the pri-
vate key. If it can be recycled, one wonders the extent to
which it is needed at all.

Encryption of quantum information is different from en-
cryption in the classical case. One can have the exact oppo-
site scenario: Instead of Alice knowing the state, and Eve
trying to learn it, one will likely be concerned about the case
of Alice not knowing the state, and Eve knowing something
about it. We therefore introduced the notion of protecting
quantum resources. Namely, the private quantum channel al-
lows us to ensure that certain resources cannot be used by an
adversary. This is in contrast to the usual role of encryption,
which seeks to prevent an adversary from knowing a mes-
sage. It was found that for protecting some resources �such
as entanglement�, a shorter private key was needed. Other
applications, such as an encrypted version of quantum secret
sharing were also introduced.

We also introduced a basic law of privacy which governs
how the size of the private key changes as a function of sent
qubits and encrypted messages. We believe it would be in-
teresting to explore this law further, as well as the analogy
between eavesdropping and thermodynamics.
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