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Local Information as a Resource in Distributed Quantum Systems
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A new paradigm for distributed quantum systems where information is a valuable resource is
developed. After finding a unique measure for information, we construct a scheme for its manipulation
in analogy with entanglement theory. In this scheme, instead of maximally entangled states, two
parties distill local states. We show that, surprisingly, the main tools of entanglement theory are general
enough to work in this opposite scheme. Up to plausible assumptions, we show that the amount of
information that must be lost during the protocol of concentration of local information can be expressed
as the relative entropy distance from some special set of states.
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The notion of quantum correlations is more general
than entanglement [1,2]. A formal measure of quantum
correlations in measurements (quantum discord) [2] was
found, based on an entropylike function. Recently, the
first operational approach to quantify quantum correla-
tions was introduced in [3]. Subsequently, a similar ap-
proach was used to justify a physical interpretation of (the
optimized) quantum discord [4]. The results of [3] were
based on the idea that by using a system in a pure state one
can draw work from a single heat bath. This scenario was
used in the case of distributed quantum systems: Alice
and Bob share a state, have local heat baths, and can
use only local operations and classical communication
(LOCC), to concentrate the information contained in the
state, in order to draw work. The amount of work drawn
by LOCC is usually smaller than that extractable if Alice
and Bob can use global operations. The resulting differ-
ence denoted by the deficit A accounts for the part of
correlations that must be lost during classical communi-
cation, thus describing purely quantum correlations. In
the case of A for pure states, it was argued to be exactly
equal to the entanglement while for mixed states it is
supposed to be an independent quantity. In this context, it
is clear that understanding the problem of concentration
of information will provide valuable insight into the
nature of quantum correlations. Yet the early development
of these ideas [3,5] indicated that the proposed scenario is
completely different than anything we had in quantum
information theory so far. In particular, the serious diffi-
culty (which is removed in this Letter) was that one is not
even able to obtain (without additional assumptions) the
value of A in the simplest case of a two-qubit Bell state.

In this context basic questions arise: (i) What is the
connection between the above thermodynamical quanti-
fication of quantum correlations and the main concepts of
quantum information theory? (ii) Can we formulate the
concentration of information within a framework of ma-
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nipulating resources as in entanglement theory? An even
more basic question follows: (iii) Can we give up thermo-
dynamics and formulate the problem solely in terms of
quantum information?

A powerful domain of quantum information theory
which is well formalized is entanglement theory where
the primitive notions are only states of compound systems
and a class of operations. One would like to formalize our
scheme in a similar manner. An important question then
follows: Can we make our scheme similar to entangle-
ment theory? Apart from conceptual benefits, one then
hopes that the powerful tools of entanglement theory can
be borrowed to tackle information manipulations.

These questions, answered in this Letter, are of funda-
mental importance for investigations of quantum corre-
lations of composite states. First, we do not start from an
a priori notion of information, and we do not assume that
we are interested in the usual function for information
I =N — S (N is the number of qubits associated with a
given state [6] and S is its von Neumann entropy), which
we used in [3] based on thermodynamical considerations.
Instead we define a class of global operations over a
quantum system called noisy operations (NO) and define
information as whatever quantity does not increase under
the class. We find that, under certain natural assumptions
N — S is the unique measure of information.

Then we pass to distributed quantum systems. In this
context, a natural class of operations is LOCC [7].
To tackle information, we restrict this class, obtaining
N(oisy)LOCC. It differs from LOCC in that only maxi-
mally mixed local ancillas can be added for free. We show
that the task of concentration of information is a dual
scheme to the entanglement distillation scheme. Instead
of maximally entangled states, Alice and Bob have to
draw local states. In entanglement theory, pure local
states were a free resource; in our scheme, they represent
a useful resource: localized information. The schemes are
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then quite opposite. Surprisingly, however, we show that
the main tools of entanglement theory can be applied to
the problem of concentration of information. This is due
to the fact that both paradigms are based on the general
scheme of state transformations under a given class of
operations. Using the technique of monotones [8,9] and
Rains semidefinite program [10] we obtain rigorously
that for pure states, the amount of localizable information
I; is equal to N — E, where E is the entanglement. This
means that the quantum correlations defined by the deficit
A = (N — S) — I, for pure states are equal to its entan-
glement. Also up to plausible assumptions we obtain that
A is the relative entropy distance from some special set of
states (smaller than the set of separable states; cf. [11]).

Unique measure of information—Let us begin by
looking at the class of allowable operations for a single
system. We use noisy operations [12]. We imagine that the
Universe is mostly filled with qubits in maximally mixed
states. This is reminiscent of the heat bath in thermody-
namics. Then a qubit in a nonmaximally mixed state is
valuable. Such qubits cannot be brought in for free, but
only manipulated. Accordingly we allow (a) unitary op-
erations, (b) adding an ancilla in the maximally mixed
state, and (c) rejecting (tracing out) part of the system.
Operations (a) and (b) are reversible while (c) is not. We
do not consider measurement as a separate operation, as
the latter involves implicitly a device with memory ini-
tially in a pure state. Rather we count the device qubits
explicitly, i.e., treat it as part of the system. The measure-
ment is then a unitary transformation. We can now ask,
under NO, what is the number of pure states which can be
distilled from a state @. It turns out that the number of
pure states which can be distilled from a N-qubit state @
under NO is the information (@) = N — S(@), where
S(0) = —Trelogp is the von Neumann entropy and that
this process is reversible. The details of the proof of this
will be presented in [13], so here, we just sketch an
outline. The method of distilling pure states is essentially
Schumacher compression [14] (cf. [15] and references
therein). In the original compression scheme, the pure
qubits were rejected, while the qubits carrying the com-
pressed state were kept, as the latter was the signal. Here,
we do the converse: keep the pure part (the mixed state is
not interpreted as signal, but as noise, as in [16]).
Therefore it is cooling rather than compression [17].

One can also show that the converse protocol is
possible: i.e., to create n copies of state ¢ one needs
n(N — S(p)) pure qubits and nS(p) qubits of noise.
(This is somewhat similar to the much more advanced
reverse second Shannon theorem problem [18].)

It follows that in the asymptotic regime (many copies),
apart from the maximally mixed state, any state can be
reversibly converted into any other, at a rate fixed by the
entropy of the state. Then, as with the Carnot efficiency
(cf. [19]) there is a unique function that is monotonic
under transitions possible by NO (up to a factor and
additive constant). The function we can call informa-
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tion, as everybody can agree that information, whatever
it is, cannot increase under NO. We fix the free parameters
by requiring that for pure N-qubit states I = N. We have
thus obtained that I is the unique measure of information
contained in quantum systems: Information cannot be
created; it can only be manipulated or lost.

Concentration of information to a local form.—Now
we are in a position to pass to distributed systems shared
between Alice and Bob (for simplicity we deal with
bipartite systems). We now restrict the class of operations
(called NLOCC) allowing (i) local noisy operations
(i) sending qubits down the dephasing channel which is
equivalent to classical communication. The only differ-
ence between LOCC and the present NLOCC class is that
in the former, local ancillas are free while in the latter,
only maximally mixed ancilla are free [20].

In entanglement theory the valuable resource was the
maximally entangled state ¢ = 1//dY %, li)li) and
one asks the following question: How many maximally
entangled states can be distilled from © with help from
LOCC operations? Instead, we propose to care about
local information. Consider a bipartite system with in-
formation contents N — S(0). The main question follows
[3]: How much of the information can be concentrated to
local form by NLOCC?. Since we know that local infor-
mation is equivalent to local pure states, the question can
be converted into how many pure product states can one
distill from the state @ under the NLOCC class? From the
formal point of view this happens to be very similar to
the problem of entanglement distillation. The key differ-
ence is that instead of a maximally entangled state, we
want to distill states that were regarded as useless so far.
(The character of the distilled resource naturally imposes
the use NLOCC instead of LOCC.) Surprisingly, this
allows us to quantify quantum correlations: the amount
of information that cannot be concentrated must be quan-
tum, because it is destroyed by the dephasing channel.
Thus we define the classical (i.e., local) information con-
tents I; of the state ©, as the optimal rate 2m/n, where n is
the number of copies in the state @, m is the number of
two-qubit pairs output into pure product states (we put
the factor 2 since we count local information in bits). The
contents of quantum correlations A are then defined as the
difference: A = I — I;. The task of evaluating I, (hence
also A) turned out to be surprisingly hard. Even for the
state %, we were not able to prove rigorously that I, =
logd [3], which is intuitively obvious.

Below, we find that since I; is some conversion
rate under NLOCC, the following powerful tools of
entanglement theory (with suitable modifications) can
be applied: enlarging the class of operations, Rains ap-
proach [10], and the concept of monotones [8,9].

First of all, NLOCC operations (like LOCC ones)
are hard to deal with from a mathematical point of
view. In entanglement theory, one considers the greater
classes of operations [10,21]: separable operations and
so-called positive partial transpose (PPT) operations
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[10]. To obtain analogous classes, we need only to add a
condition of preserving maximally mixed state (PMM).
Thus we can optimize the rate over PMM versions of the
above classes, which is a great simplification and leads to
useful bounds for /;.

In the Rains approach, one assumes a fixed rate of
conversion from one state to another and evaluates the
fidelity of the conversion. The rate is attainable if the
fidelity can approach 1 in the limit of many input copies.
For simplicity we work with two-qubit states. We fix
the rate r, which means that for n input copies we obtain
m = nr/2 output pairs. The pairs are in a final joint state
o' = A(p®"), where A is the optimal NLOCC operation.
We want to estimate the fidelity between @’ and the m
copies of the two-qubit state; we would like to have (e.g.,
Py, = 100)X00]) for fixed n

F = T P& A(0®")]. (1

To evaluate F one can use techniques developed in
[10]. One rewrites (1) in the form F = Tr[AT(Pg")0®"] =
TrI10®", where AT is the dual map [22].

Let us find constraints for II. One can check that since
A is trace preserving, then 0 =< IT = I. Since A preserves
a maximally mixed state [i.e., A(I/d;,) = I/d.,), one

finds that j‘“ AT is trace preserving; in our case d;, =
out

220 d . = 22":hence Trll = 2727 = K sothat I[1/K is
a state. Since A is NLOCC, so is At. Then, since P§" is
separable, so is II/K. This constrained optimization
problem can be treated using the duality concept in semi-
definite programming as in [10]. We will do so elsewhere.
Here we prove the following bound:

Proposition 1: For any bipartite state 0,5 of N = N, +
Npg qubits, we have

Il = N - SOO(QX)’ X =A,B (2)

[or, equivalently, A = S(0) — S.(0x)], where S, =
— 108 A ax, With An. being the largest eigenvalue of Q.

Remark: Since usually S, < S, this bound is weaker
than the one proven under an assumption in [3]. However
for the maximally entangled state it is tight.

Proof: We prove for two-qubit states (generaliza-
tion to higher dimensions is obvious). We note that
%H is a separable state. Then F =< K sup, Troo®",
where sup is taken over separable o, which can be taken
pure. Consequently, F = K sup,g4(/ ® ¢|0®"|¢) ® ¢) =
K sup,(|0%" 1) = KAp.x. Since we require F — 1 for
large n, we must have r = 2 + logA,,,, which gives the
expected bound.

In [3] we argued that I,(y) = N — Sx(yy) which is
equivalent to A(¢) = Sx(if), where Sy(i) is either of
the reductions of ¢ and is equal to its entanglement
E(/). Here we prove it rigorously. Following propo-
sition 1 one has I,(%) < logd. This bound is attainable
[3]. Since N(%) = logd? the rigorous proof for maxi-
mally entangled states is complete. To extend it to other
pure states, we use a version of the entanglement dilution
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scheme [23], in which out of nS, (1) shared pairs % one
gets n pairs in state i by use of O(y/n) bits of communi-
cation [24]. Because of asymptotically negligible com-
munication cost, entropy production is negligible. Thus,
to create ®" one needs m = nS, copies of % (which
occupy 2m qubits) plus Nn — 2m pure local qubits. Now
if from ¢ one could draw more than N — S, per pair, then
one could draw more local bits than m from the maxi-
mally entangled state, converting them first to ¢ and then
drawing local bits from . On the other hand, there is an
obvious protocol to get N — S, local bits: Alice sends her
half to Bob via the dephasing channel [3]. Thus I;(¢) =
N — S4(¢) or, equivalently, A(y¥) = S,4(«), which con-
cludes the proof, since S,(##) = Sp(). For the tripartite
GHZ (Greenberger-Horne-Zeilinger) state, one can like-
wise show that A = 1. The GHZ state is (J000) +
[111))/3/2.

We now proceed to estimate /; from below. To this
end we need the notion of implementable product basis
(IPB). It is a basis that can be achieved from the stan-
dard basis |i)4|j)5 by means of reversible NLOCC opera-
tions. (Of course, since we want to transfer pure states
into pure ones, local noise is here not needed.) IPB is
always distinguishable by LOCC. Hence the basis given in
[1] is not IPB. Most likely the converse is also true. It is
obvious that a state with an IPB eigenbasis (call it an IPB
state) has A = 0. There is also a natural scheme of in-
formation concentration for other states: one fixes some
IPB (let it be B) and dephases a given state @ in this basis
which, by definition, is possible by NLOCC. The final
state @' has A = 0, so one can draw [,(¢') = N — S(0’)
local pure qubits. However, S(¢') = H(p, B) (Shannon
entropy of @ in basis B). Thus we have the bound
I,(@) = N — infge;pp H(Q, B).

Since one has infge;pp H(Q, B) = S(@) + infS(g|o)
[25], where infimum is taken over IPB states o, and
S(elo) = Trploge — Trologo, and since it may be bet-
ter to operate collectively on 0®" one obtains

Proposition 2: For N qubit bipartite state Q one has

I, =N - S(e) — D*(o) 3)

[or, equivalently, A = D>(0)], where D*(0) is regular-
ized relative entropy distance from the set of IPB states
D = inf,e;pp S(0l0) [26].

Now we make an attempt to show equality by using the
method of monotones. As shown in [27,28] (see also [9])
if a function M(g) is (a) nonincreasing under a class of
operations (b) asymptotically continuous, then its regu-
larization satisfies

M>(o)R(@ — o) = M*(), 4

where R is the optimal transition rate. As M we take N —
S(e) — D(p). S(p) satisfies (b) by Fannes inequal-
ity [29], while by [30] also D satisfies (b) [31]. In
our case o is the two-qubit product state o = Py, so
that M(o) = M*®(o) = 2. Since we intend to count not
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product states, but bits, we have I; = 2R. The inequal-
ity then reads I;(¢) = M*(p). Now if M is monotonic
[satisfies (a)], then combining proposition 2 with the
inequality we would know I; exactly. Let us then check
monotonicity. To this end we use the formula M(g) =
N — infge;pp H(0, B) and consider sending down the
dephasing channel in two stages: (i) local dephasing of
part of the system (ii) sending the dephased part via an
ideal quantum channel. It is easy to see that operation (ii)
as well as local unitary transformations does not change
M (it changes one IPB into other one). From the fact
that a product of an IPB with some local basis is again
an IPB it follows that a partial trace does not increase
M. We are not able to prove the monotonicity of M
under adding noise (i.e., maximally mixed states) and
local dephasing. Concerning noise, it is rather unlikely
that it can increase M, and, moreover, most likely it is not
needed in the concentration task at all (basically noise is
needed when we want to create more mixed states out of
less mixed ones). However, the question of whether de-
phasing can increase M remains elusive. This is very
closely related to the assumption we made in [3]. There
we would obtain some improvement of the bound of
proposition 1. Here if the assumption were true we would
obtain the exact formula for A. The problem can be
formulated as follows: Can Alice in the optimal informa-
tion concentrating protocol partially dephase her system,
and at some later stage, dephase again, so that two de-
phasings do not commute? Since noncommuting mea-
surements destroy information, we believe the answer is
“no.” This justifies the following conjecture:

Conjecture: For N qubit bipartite state, the amount of
concentratable information is

I, =N —S(o) — D>(o). (5)

Thus we would have that A = D*(p); ie., A is the
(regularized) relative entropy distance from IPB states.
The information /; is then given in terms of a Shannon
entropy, an idea which arose naturally in [5].

In conclusion, we have derived the notion of informa-
tion from general principles. Then we have shown that
local information /; can serve as a resource in distributed
systems in an analogous way to entanglement theory. We
were then able to use powerful tools developed in the
latter, with suitable modifications. We obtained bounds for
the amount of information that can be concentrated to
local form (/) and the deficit A. Under some assumption
we argued that the deficit A is the relative entropy dis-
tance from the set of states having A = (. Since the deficit
is a measure of quantum correlations based on thermody-
namics, the present program can be viewed as a bridge
that links quantum correlation theory and quantum ther-
modynamics in a systematic way. In particular, there is
hope to explain nonlocality without entanglement in a
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thermodynamical manner, as nontrivial states diagonal in
the basis of Ref. [1] may have A > 0.
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