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Thermodynamical Approach to Quantifying Quantum Correlations
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We consider the amount of work which can be extracted from a heat bath using a bipartite state �
shared by two parties. In general it is less then the amount of work extractable when one party is in
possession of the entire state. We derive bounds for this ‘‘work deficit’’ and calculate it explicitly for a
number of different cases. In particuar, for pure states the work deficit is exactly equal to the distillable
entanglement of the state. A form of complementarity exists between physical work which can be
extracted and distillable entanglement. The work deficit is a good measure of the quantum correlations
in a state and provides a new paradigm for understanding quantum nonlocality.
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erasure, measurement, error correction, and distillation
have also been explored [15].

the particle is in the right hand side, the bit is in the
1 state.
Strong connections exist between information and
thermodynamics. Work is required to erase a magnetic
tape in an unknown state [1] and bits of information can
be used to draw work from single heat bath [2,3]. The
second law of thermodynamics forbids the drawing of
work from a single heat bath, however, if one has an
engine which contains ‘‘negentropy’’ (bits of informa-
tion) then one can draw work from it. The process does
not violate the second law because the information is
depleted as entropy from the heat bath accumulates in
the engine. Typically, the source of information is par-
ticles in known states, and these states can be thought of
as a type of fuel or resource [4]. In particular, quantum
states can be used as fuel [5], and recently, physically
realizable microengines have been proposed [6].

The field of quantum information theory has also
yielded tantalizing connections between entanglement
and thermodynamics [7]. Bipartite states (jointly held
by two parties) such as the maximally entangled state

�AB �
1���
2
p �j00i � j11i�; (1)

exhibit mysterious nonlocalities which can be exploited
to perform quantum useful logical work [8] such as tele-
porting qubits [9]. For many states, one can distill singlets
in order to perform logical work, but there is also bound
entanglement [10] which cannot be distilled from the
state and it has been proposed that this is analogous to
heat [11]. Pure bipartite states can be reversible trans-
formed into each other in a manner which is reminiscent
of a Carnot cycle [12,13]. Furthermore, the preparation of
certain jointly held states appears to result in a greater
loss of information when the state is prepared by two
separated observers than when the entire state is prepared
by a single party [14]. Connections between Landauer
0031-9007=02=89(18)=180402(4)$20.00 
In this paper we ask how much work can be drawn
from a single heat bath if the information is distributed
between two separated parties Alice and Bob. It turns
out that in general their engines will be more efficient
when information is localized, and that the degree to
which this is the case provides a powerful new para-
digm to understand and quantify nonlocality in quantum
mechanics.

As with the distant labs scenario for entanglement
analysis, we allow Alice and Bob to perform local oper-
ations on their states, and communicate classically with
each other (LOCC). We will quantify the amount of
potential work that cannot be extracted by two separated
parties by introducing the concept of a work deficit �,
defined to be the difference in the amount of work that
can be extracted from a state under LOCC versus the
amount that can be extracted by a party who holds the
entire state. For pure states we find that the work deficit is
exactly equal to the amount of distillable entanglement
ED of the state (i.e., the number of singlets that can be
extracted from the state under LOCC). This also seems to
be the case for so-called maximally correlated states. We
also prove bounds for � and show that it is a good
measure for the amount of quantum correlations present
in a state jointly held by two parties. A more detailed
analysis of the concepts introduced here will be presented
elsewhere [16].

Before proceeding with the quantum case it may be
worthwhile to review the connections between informa-
tion and thermodynamical work for classical states.
Consider a number of classical bits n which are all ini-
tially in the standard state 0. These bits can be used
to draw work from a heat reservoir of temperature T.
To visualize this, one might imagine that a bit is repre-
sented by a box divided by a wall in the center. A particle
placed in the left hand side represents the 0 state, while if
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Now imagine that we know that the bit is in the 0 state.
We can draw work from the heat reservoir by replacing
the central wall with a piston and then allowing the
particle to reversible push it out, drawing kT ln2 of
work from the reservoir [17]. We now no longer know
where the particle is, so the entropy of the bit has been
increased by the same amount. No more work can be
drawn from the bit, since we do not know on which side
to place the piston.

Although we cannot extract work from an unknown
state, we can extract work if we know that classical
correlations exist. Imagine, for example, that we have
two classical bits in unknown states, but we know that
they are in the same unknown state. We can then perform
a control not (cnot) gate on the bits which flips the second
bit if the first bit is a 1. After the cnot gate has been
performed the control bit is still in an unknown state, but
the target bit is now in the 0 state and 1 bit of work can be
extracted from it. In general, for a n-bit random variable
X with Shannon entropy H�X� one can use the first law of
thermodynamics to see that the amount of work WC that
can be extracted is just the change in entropy of the state

WC � n�H�X�: (2)

The same methods can be used to extract work from
quantum bits (qubits) [5]. If we have n qubits in a state �
and entropy S���, then one can extract

Wt � n� S���: (3)

This is the amount of work that can be extracted in total
by someone who has access to the entire system �. As
with the classical case, all correlations can be exploited to
extract work from the state.

We now ask how much work two individuals can ex-
tract under LOCC using a shared state �AB. We imagine
that Alice and Bob each have an engine which can be used
to locally extract work from a common heat bath. Then,
under LOCC they try to extract the largest amount of
local work Wl possible. We then define the work deficit to
be the amount of potential work which cannot be ex-
tracted under LOCC

� 	 Wt �Wl: (4)

Before proving some general results, it may be useful to
give a few simple examples. Consider the classically
correlated state

�AB �
1

2
�j00ih00j � j11ih11j�; (5)

where the first bit is held by Alice, and the second by Bob.
We can see that � is zero for this case, since Alice can
measure her bit, send the result to Bob who can then
extract 1 bit of work by performing a cnot. Alice can
then reset the memory of her measuring apparatus by
using the work extracted from the bit that she held. The
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total amount of work extracted under LOCC is therefore 1
bit, which from Eq. (3) is the same as the amount of work
that can be extracted under all operations. In more detail,
the steps involved in the process are as follows: (a) Alice
uses a measuring device represented by a qubit prepared
in the standard state j0i. She performs a cnot using her
original state as the control qubit, and the measuring
qubit as the target. (b) The measurement qubit is now in
the same state as her original bit and can be dephased (i.e.,
decohered) in the j0i; j1i basis so that the information is
purely ‘‘classical’’ (dephasing simply brings the off-
diagonal elements of the density matrix to zero, destroy-
ing all quantum coherence). For this state, dephasing does
not change the state since the state is already classical.
(c) The measuring qubit can now be sent to Bob who
(d) performs a cnot using the measuring qubit as the
control. His original qubit is now in the standard state
j0i. (e) Bob sends the measuring qubit back to Alice who
(f) resets the measuring device by performing a cnot
using her original bit as the control. Alice’s state is now
in the same state as it was originally, while Bob’s state is
known and can be used to extract 1 bit of work.

We now consider how much work can be extracted from
the maximally entangled qubits of Eq. (1). The same
protocol as above can be used to find � � 1 (later we
will show that this is optimal). Alice and Bob can extract
1 bit of work by following steps (a)–(f). However, unlike
the previous case, the measurement in step (b) is an
irreversible process and the original state and the entan-
glement is destroyed by the dephasing that must occur for
a measurement to be made. On the other hand, someone
with access to the entire state can extract 2 bit of work
since the state is pure and has zero entropy.

Basic questions now arise: How much work can be
drawn from a given state �? For which states is � � 0?
How is � related to entanglement?

To deal with these questions we have to state the
paradigm for drawing work from bipartite states more
precisely. First, we will clarify the class of operations
Alice and Bob are allowed to perform. The crucial point
is that here, unlike in usual LOCC schemes, one must
explicitly account for all entropy transferred to measur-
ing devices or ancillas. So in defining the class of allow-
able operations one must ensure that no information loss
is being hidden when operations are being carried out.
One way to do this is to define elementary allowable
operations as follows: (a) adding separable pure state
ancillas to the system; (b) local unitary operations (i.e.,
UA � IB or IA �UB ); (c) sending qubits through a dephas-
ing channel.

The dephasing operation can be written as
P
i Pi�ABPi

where the Pi are orthogonal local projection operators.
The class of operations (c) are equivalent to local mea-
surements and classical communication but has the ad-
vantage that we do not need to worry about erasing the
memory of measuring devices. Alice or Bob could also
180402-2
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make measurements without sending the information, but
in this scheme it is wasteful. Furthermore, it is equivalent
to Alice sending qubits down the dephasing channel and
having Bob send the qubits back.We therefore do not need
to consider measurement and sending qubits as separate
operations.

We imagine that Alice and Bob share an n qubit state
�AB composed of nA qubits held by Alice and nB by Bob.
The part of the state which Alice holds is given by tracing
out the degrees of freedom associated with Bob’s state,
i.e., �A � TrB��AB� and visa versa. Alice and Bob then
perform combinations of operations (a)–(c) to arrive at a
final state �0AB composed of n0 � n0A � n

0
B qubits. The

difference k � n0 � n is the number of pure state ancillas
which they have added to the state, and therefore we must
subtract k bit of work from the amount of work they can
draw using the n0 bit. Since they must extract the work
from �AB locally, we find that the total amount of local
work that can be extracted is

Wl � n0A � S��
0
A� � n

0
B � S��

0
B� � k

� n� S��0A� � S��
0
B�: (6)

The goal is now clear. Alice and Bob perform their
operations to arrive at a state which has S��0A� � S��

0
B�

as low as possible. They then draw work locally using this
new state �0AB.

Consider now the state of the form

�AB �
X

ij

pijjiAijjBihjBjhiAj; (7)

where jiAi and jjBi are a local orthonormal basis. Such
states can be called classically correlated [18]. The natu-
ral protocol is that Alice sends her part to Bob down the
dephasing channel. This will not change the entropy of
the state. The final state �0 will have S��0A� � 0 (strictly
speaking Alice will now have no system) while S��0B� �
S���. Thus according to Eq. (6) Wl � n� S��� � Wt, so
that � � 0 for the above states. Note that local dephasing
in the eigenbases of �0A, �0B does not change the optimal
Wl (6) but brings the state �0AB to the form (7). This gives
another method to evaluate work: instead of minimizing
S��0A� � S��

0
B� we can minimize S��0� over classically

correlated states �0 that can be achieved from � by the
allowed class of operations. Now we are in position to
prove a general upper bound on the amount of work that
can be drawn using distributed information. Our bound
holds for pure states [16], but for more general states our
proof relies on the following assumption (although we
conjecture that the bound holds in general).

Assumption.—Bits which are sent down the commu-
nication channel are treated as classical in the sense that
they are only dephased once, and not again in a second
basis (which would destroy the encoded information).

Theorem: Under this assumption the maximum
amount of work that can be extracted using LOCC
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operations on an n qubit state �AB is bounded by
Wl 
 n�maxfS��A�; S��B�g.

The proof follows after noting that Alice (or Bob),
rather than directly sending the results of measurements,
can reversibly copy the measurement results by perform-
ing the cnot operation with the measurement bit as the
control bit and an ancilla as the target. Alice can then
send the copy to Bob who can use the information stored
in the copy. At the end of the whole protocol all the copies
can be sent back (this follows from our assumtion) and
erased by performing a second reversible cnot. Alice and
Bob’s protocol will therefore not be more inefficient if
they keep their original measurement bits and send copies
only to each other. Consider now any optimal protocol
transforming �AB into the final state �0AB of the form (7)
with minimal entropy S��0AB�. As we already know the
protocol can be followed by dephasing in the local eigen-
bases. Hence before sending copies back and erasing
them, the entire system can be considered to be in another
state �AB, still in the form (7), so [19] S��AB� �
maxfS��A�; S��B�g. Now, as only copies of bit measure-
ments were sent, and the bits themselves were kept,
production of �AB from �AB could only have increased
local entropies because neither unitary operation nor
dephasing decreases entropy. So one has

S��AB� � maxfS��A�; S��B�g; (8)

where S��A�, S��B� are local entropies of the initial
state �AB. Finally, because resending and erasing copies
preserves the spectrum of the whole state, one has
S��AB� � S��0AB� which gives

S��0AB� � maxfS��A�; S��B�g: (9)

The theorem then follows directly from the fact that
n� S��0AB� is an upper bound on the amount of work that
can be drawn from the state �0AB. The corresponding work
deficit obtained under our assumption will be denoted by
�r. For mixed states it is possible that �< �r, but we
conjecture equality. Also for one way LOCC schemes
(classical communication from Alice to Bob only) �r
coincides with the one way deficit � . From the theorem
we have [20]

�r � maxfS��A�; S��B�g � S���: (10)

This allows one to calculate the extractable work for pure
states by exhibiting protocols that achieve this bound. To
this end write a given pure state in the Schmidt decom-
position  �

P
i aijeiijfii where ei; fi are local bases.

Alice then performs dephasing in her basis. The resulting
state is classically correlated and has entropy equal to
S��A� where �A is the reduction of j ih j. Note that the
latter is the entanglement measure for pure states, which
is unique in the asymptotic regime and is equal to the
distillable entanglement ED and the entanglement cost
(i.e., the number of singlets which are required to create
180402-3
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the state under LOCC) [12]. Thus for pure states the work
deficit is exactly equal to entanglement

�� � � E� �: (11)

We are able to calculate �r for a broader class of states,
the so-called maximally correlated states of the form

�AB �
X

ij

�ijjiiihjjj: (12)

To achieve bound (10) Alice dephases her part in the basis
fjiig. The resulting state is �0 �

P
i �iijiiihiij, and has

entropy equal to S��A�. Thus �r��� � S��A��S���. One
can check that for states (12) local entropies are equal and
no smaller than the total entropy so that �r � 0 as it
should be. Now it turns out that for the above states, we
know ED [21], and it is again equal to �r. An example is
the mixture of state (1) with 1=

���
2
p
�j00i� j11i�: ED � E!D

(the latter being one way distillable entanglement) is
equal to 1�S���. The explicit distillation protocol at-
taining this value was shown in [22]. That one cannot do
better follows from the relative entropy bound [13,21]
which is equal to 1�S��� for those states.

The above result is rather surprising because the state
(12) contains bound entanglement, i.e., the entanglement
cost of the state is greater than the entanglement of
distillation [23]. This result shows that work can be drawn
from the bound entanglement.

Although distillable entanglement cannot be used to
perform physical work, it allows us to perform logical
work (see [8]): each bit of distillable entanglement enables
Alice to teleport one qubit to Bob. For these states, the
total amount of extractable work Wt gets divided between
physical workWl and logical work ED. Entanglement can
therefore be thought of as a source of nonlocal negentropy
which can be used to perform logical work. Just as with
physical negentropy, logical negentropy cannot increase
under LOCC ( ED 
 0). However, if one uses the state to
extract physical work the ability to perform logical work
is lost. Likewise, after performing logical work, the
singlets are left in a maximally entropic state and the
ability to perform physical work is lost. There is thus a
new form of complementarity between the logical and
physical work.

It is also worth investigating the connection between
our approach and the measures of classical and quan-
tum corelations introduced in [24,25]. It would also be
desirable to consider collective actions on many copies of
the given state. In the examples we considered, collective
actions cannot help since the parameter � turns out to
be additive.

In conclusion, we have proposed a paradigm for quan-
tifying quantum correlations motivated by thermody-
namical and operational considerations. This approach
is also fruitful in multipartite settings. The emerging
function � is nonzero for all entangled states, but need
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not vanish for separable states. It quantifies the part of
correlations that must be destroyed during transmission
via a classical channel (this is compatible with the ob-
servation that decoherence causes a Maxwell demon to
be less efficient [26]). If a quantum channel were avail-
able, all information could be localized, and the full work
n� S��� could be drawn from local heat baths. Thus the
work deficit � quantifies truly quantum correlations.
Finally, we hope that the present approach, in particular,
may help discover a ‘‘new face’’ of the so-called thermo-
dynamics of entanglement.
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