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Abstract

Radiologists often need to localise corresponding findingdifferent images of the breast, such as
Magnetic Resonance Images and X-ray mammograms. Howénerista difficult task, as one is a
volume and the other a projection image. In addition, theeapgnce of breast tissue structure can vary
significantly between them. Some breast regions are oftsnurbd in an X-ray, due to its projective
nature and the superimposition of normal glandular tissugomatically determining correspondences
between the two modalities could assist radiologists irdétection, diagnosis and surgical planning of
breast cancer.

This thesis addresses the problems associated with thematitoalignment of 3D and 2D breast
images and presents a generic framework for registratianuses the structures within the breast for
alignment, rather than surrogates based on the breasi®otiinipple position. The proposed algorithm
can adapt to incorporate different types of transformatimuels, in order to capture the breast defor-
mation between modalities. The framework was validatedlimical MRI and X-ray mammography
cases using both simple geometrical models, such as the,adfivd also more complex ones that are
based on biomechanical simulations. The results showedhaagroposed framework with the affine
transformation model can provide clinically useful acoyrél 3.1mm when tested on 113 registration
tasks). The biomechanical transformation models provitether improvement when applied on a
smaller dataset. Our technique was also tested on detagrinrresponding findings in multiple X-ray
images (i.e. temporal or CC to MLO) for a given subject ushg3D information provided by the MRI.
Quantitative results showed that this approach outpeddbntransformation models that are typically
used for this task. The results indicate that this pipeliag the potential to provide a clinically useful

tool for radiologists.
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Chapter 1

Introduction

Breast cancer is the most common type of cancer worldéahe is rated fifth in the list of the most
common causes of cancer déatim 2008 it was reported to be the most common type of cancengst
women in the UK. Almost one third (31%) of all new cancer cadiegnosed in women are breast
cancet.

Although there is increasing awareness that current dgtgnimols can lead to over-diagnosis and
over-treatment of benign findings that might never requiréaal treatment, it is generally accepted that
early detection and accurate diagnosis are crucial for gfieqt's prognosis. This is supported by the
fact that malignant disease is more likely to be treatecteffely when detected at an early stage. In that
regard, a number of different imaging modalities are usegdimical practice (section 1.2). Radiologists
often need to localise corresponding findings in each ofrireges, to fully exploit the complementary
information provided by the different modalities. Howevdris is a difficult task, due to the highly
deformable nature of the breast, the different appearahtteedreast structures across modalities and
their often different dimensionality (2D or 3D).

The goal of multimodal breast image registration techrsgs¢o identify correspondences between
the different modalities automatically, in order to aidicddgists in the detection, diagnosis and man-
agement of breast cancer. More specifically, the work desdrin this thesis is focused on determining
corresponding findings between Magnetic Resonance ImadiiRj) and X-ray mammography. We
also explore the benefit of using the MRI as an intermediatéatity for establishing correspondences
between different X-ray mammograms.

In the following sections we first describe the breast angtamd the use of different imaging
modalities in clinical practice. Then we introduce our gsé problem and the challenges associated
with it.

1.1 Breast Anatomy

The anatomy of the female breast is mainly based on the stul# were carried out on cadavers
[Cooper, 1840]. A later study used ultrasound to furtheegtigate the structures of the ducts and their

IWorld Health Organization International Agency for Restasn Cancer (2008).“World Cancer Report”.
2World Health Organization (February 2006). “Fact sheet 28¥: Cancer”.
3Cancer Research UK, UK Breast Cancer incidence statisiies.2
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characteristics [Ramsay et al., 2005].

A commonly accepted diagram of the breast anatomy is destiib[Ramsay et al., 2005], where
some aspects (for example the number of ducts) may vary batdiferent studies and subjects. The
breast consists mainly of fat and fibroglandular tissue arsldovered by skin. Breast cancer develops
within the cells of the fibroglandular structures. This fillsmetwork consists of milk ducts, lobes, blood
vessels and is supported by Cooper’s ligaments.

The appearance of the fibroglandular structures variesfisi@amtly across patients. The propor-
tion of fibroglandular tissue with respect to the total bteadume is known as breast density. It

has been shown that increased breast density is strongltedeto higher risk of developing cancer

[Oza and Boyd, 1993]. The appearance of the two tissue tyipesdlandular and fat) varies also across

time for a single subject. For example, the amount of fat ¢eamge, and more importantly the glandular
tissue can also vary as it is affected by hormonal changeh,asichildbirth and use of post-menopausal

hormone replacement therapy. In general, breast densitgases after menopause.

1.2 Breast imaging modalities in clinical practice

X-ray mammography is widely used for screening. Women awésad to obtain a mammogram after
the age of 50 in the UK on a regular basis, that is currentlgehyears. The only cases where an
alternative modality is used, are those of younger womeh witamily history or high genetic risk of

breast cancer. Then, Dynamic Contrast Enhanced-MRI (DGH}M used instead, as it has been shown

to increase sensitivity [Leach et al., 2005]. DCE-MRI isremtly recommended for annual screening of

high risk women, aged between 30 and 49, by the Nationakimstior Health and Clinical Excellence
[NICE, 2006]. The advantages are that it provides a 3D imdgeeobreast and functional information,
as it indicates the areas in the breast with increased bloed The 3D image can be used to avoid any
ambiguity caused by the projective nature of mammography.

After a suspicious region is detected in a screening mamamega woman is usually advised to
have a new mammogram taken for diagnosis. The imaging ntiedalised at this stage vary according
to the needs of each individual case. X-ray mammography eamreated, with a scope this time to
focus on a certain region of the breast. 2D ultrasound islyideed in clinics, as when combined with
an X-ray image it can help distinguish between cysts, beaighmalignant lesions. Moreover, it is easy
to acquire, low-cost and it does not pose any risk to the pites there is no exposure to radiation. DCE-
MRI is also frequently used to detect and diagnose lesiaaisatte not visible in X-ray mammography,
or further investigate mammographically detected lesions

After a woman is diagnosed with breast cancer, new imageacapgred to monitor the staging and
facilitate the treatment planning and follow-up. In theases, the modalities that are most commonly
used are DCE-MRI and X-ray mammaography.

Finally, it is worth mentioning some additional breast inmggmodalities that are used mainly
for research purposes and they are also being introducectlinical practice. These provide certain
advantages compared to previous techniques. Digital Tpntlossis obtains a series of X-ray images

from different angles and thus gives coarse 3D informaticth@tissue structures. Another modality is
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Automated Whole Breast 3D ultrasound, which provides 3Drmgttion of the breast, in two different
views. This is different to using a 2D or 3D ultrasound prodethe breast is held stable between four
planes and the breast movement is minimised using a membtameain advantages are the 3D view of
the breast, the suitability for use on dense breasts, cadbiith the fact that it is easy and inexpensive
in contrast with MRI. Lastly, as the breast consists of sigfute, Optical Tomography is an imaging
modality that is currently used in research. The images evduyzed as a result of the light that is
transmitted and scattered inside the breast volume. Adfhdlie image resolution is very poor, we can
extract useful information on blood volume and tumour oxya®n. Magnetic Resonance Spectroscopy
(MRS) is another modality that is mainly focused on diags@sid staging and it provides biochemical
information of a lesion, rather than structural. Positrani€sion Mammography (PEM) is a nuclear
medicine imaging technique that provides information ef tetabolism of the tumour and is typically
used for monitoring only advanced or recurrent tumours.

Given this overview of the different modalities used in @ai practice we can see that X-ray mam-
mography and DCE-MRI are used commonly to investigate tgh-hisk population and symptomatic
patients. More specifically MRI is used as complementary afitydto mammography to investigate
lesions that are not clearly visible in X-ray mammograms ttuthe superimposition of fibroglandular
structures and also the increased breast density of sonemigatAnother clinical scenario where MRI
is used in addition to X-ray imaging is for further investiga of lesions that are mammographically
detected. In these cases MRI is used to further charactéesiesion from the functional information
provided regarding the blood flow concentration and alsetp treatment and surgical planning. There-
fore establishing correspondences between these two itieslalutomatically could aid radiologists in
the detection, diagnosis and management of breast cancer.

Due to the different nature of the two modalities and the flaat the breast is a highly deformable
organ, determining correspondences is a difficult taskddialogists. For the clinical scenarios men-
tioned above, the clinical advisory board of the HAMAM prctigHAMAM, 2012] has indicated that
an accuracy in the order ddmm would provide valuable information, as the mapping of theIMR
enhanced area onto the X-ray mammogram would provide a setatin of interest inside which the
radiologist would identify the corresponding location hretX-ray image. Higher accuracy would be
required if the applications included image-guided intetions. To have a better understanding of the
images involved in the MRI to X-ray registration, we deserib more detail the image acquisition of an

X-ray mammogram and an MRI in the next two sections.

1.2.1 X-ray mammogram acquisition

As mentioned above, X-ray mammography is the breast imaguignique that is most commonly used.
During this process, the woman'’s breast is exposed to a lew dbX-rays. According to Beer-Lambert’s
law for a single X-ray wavelength, the attenuated endrgansmitted through the breast, when consid-

ering N different tissue types, is given by equation:

N
*Z(#z‘ “ %)

I=1Iy-e i=1 (1.1)
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@ (b) (© (d)

Figure 1.1: Example MLO view mammograms of breasts withéasmg breast density from left (a) to
right (d).

wherel, is the incident photon energy, is the X-ray attenuation coefficient of the tissue typsnd
z; the corresponding tissue thickness. Therefore, the csirtietween different tissue types in an X-ray
mammogram is a result of both the difference in the thickrmessthe X-ray attenuation coefficients

between the fat, the fibroglandular and the tumorous tissue.

Experimental results [Johns and Yaffe, 1987] conducteckterchine the X-ray attenuation coeffi-
cients of the three tissue types across different energfiesyed that fat has the lowest attenuation at all
energies. The other two tissue types gave very similar tgswith tumorous tissue having a slightly
higher attenuation coefficient than the normal fibroglaadtissue, especially for lower energies. The
difficulty in X-ray mammography is the ability to distinghidvetween the normal fibroglandular and
tumorous structures. This is the reason why images fromedbresasts are more difficult to interpret.
Ducts, lobes and tumours appear brighter in the mammogryngihattenuation), while adipose or fatty
tissue is darker (lower attenuation). Consequently, tidrast between tumour and fibroglandular tissue
is less than between tumour and fat. The difference in debsitween breasts can be seen clearly in
Figurd 1.1.

Apart from the difference between the X-ray attenuatiorffa@ents of the soft tissue types imaged
in mammography, there are additional factors that influgheecontrast and the image quality of an
X-ray mammogram. One of these is the X-ray beam spectrunistiged. On the one hand, beams with
low photon energy are required for increased contrast,eagifference in X-ray attenuation between the
two tissue types is higher at low energies. On the other Haribis case the radiation dose to the breast
tissue is higher, posing an increased risk to the patieneréfbre, the optimal X-ray beam spectrum
used in mammography is a compromise between high imageasbmaind low radiation dose.

The image quality of an X-ray image is further affected by Xaeay quantum noise and the scat-
tered radiation, which is partially reduced in mammograpkiyusing an anti-scatter grid. Moreover,
the quality is limited by the final image spatial resolutiordat is affected by the intensity variation of
the X-ray beam. As rays are emitted from a point source in acabshape, their intensity reaching
the detector varies (via the inverse-square law), produamX-ray image with varying spatial density.

Furthermore, due to the geometry of the anode target in theyXube that is angled, the intensity of the



1.2. Breast imaging modalities in clinical practice 20

X-rays emitted is greater towards the cathode and lowerrgiswhe anode, as the X-rays travel through
more material in that direction before being emitted. Thiknown as the anode heel effect.

In conventional film mammography, the final images are gaadras a result of the exiting X-rays
that are absorbed by the X-ray film. The use of this analogoegss is currently being replaced by Full
Field Digital Mammography (FFDM). In July 2011, 85% of the Wikeast screening units had at least
one digital mammography imaging scarthand this is expected to fully replace film mammography
in the future. FFDM uses an electronic digital detectoraastof film, which facilitates the transfer of
images and enables their storage without degrading imaajéyqu

During image acquisition and in order to increase imageityuahd avoid motion and scatter arti-
facts, the breast is extended, compressed and immobilesaebn two planes. In the UK, there are two

images acquired, one of the Cranio-Caudal view (CC) and btteedMedio-Lateral Oblique (MLO).

1.2.2 DCE-MRI acquisition

Another frequently used modality for breast screening amter diagnosis is DCE-MRI. The nature of
MR images differs significantly from that of X-rays. MR imagare produced as a result of the nuclear
magnetic resonance properties of the hydrogen atoms irutiveth body. Hydrogen atoms can be found
in water and fat, which account for a large percentage of timeam body composition.

The nucleus of the hydrogen atoms consists of a single prattren the subject is inside the MR
scanner, the average magnetic moment of all protons iseigiith the static magnetic field,. During
MRI, a sequence of several radio-frequency (RF) pulsespbep These are described by the angle of
the net magnetisation with respect to the main magnetic dietgttion, which is called flip angle. When
the RF pulses are introduced, the protons absorb some oétisnitted energy, which then flips the spin
direction of the hydrogen atoms. The frequency of the RFgsutég which the spin direction changes is

known as the resonance or the Larmor frequency and it is diyehe equation:
WO = 'y . BO (1.2)

where~ is the gyromagnetic ratio that is specific for each type olews

After the RF pulses are turned off, this energy is releaséiffatent rates and the protons return to
their equilibrium state. The difference between thesexeglan times produces the contrast amongst the
different tissue types. The MR signal produced by the trassion of this energy is finally transformed
from the original spatial frequency space (calkegpacg to the image space using a Fourier Transform.

There are three types of MR images that can be generateddaugto the relaxation processes that
occur. T1-weighted images reflect the difference in reiaraimes and the recovery of the equilibrium
magnetisation along the longitudinal axis. This relaxatime is also known as spin-lattice. Similarly,
T2-weighted images reflect the relaxation times within ttamdverse plane, which is caused by the
varying magnetic fields of the moving protons around theigimigours. T2 is also known as spin-spin
relaxation time. Finally, proton density or spin echo imnggee not influenced by the T1-, T2-relaxation

times and the magnetic field inhomogeneities. The imageduged reflect only the amount of spins in

4NHS Breast Cancer Screening Programme http://www.caneensitig.nhs.uk/breastscreen/digital-mammography.html



1.2. Breast imaging modalities in clinical practice 21

(@) (b)

Figure 1.2: An example of a transverse slice coming from (@eacontrast MRI and (b) the subtraction
image of the pre-contrast from the post-contrast imageysigpan enhancing lesion (Invasive Ductal

Carcinoma).

the tissue, therefore the number of hydrogen atoms fourtteilntiman body.

One factor that influences the imaging quality of an MRI isdifeerence between the MR signals
of fat and water. This difference is known as chemical shifi & can introduce image artifacts that
obscure interesting soft tissue structures. This is padity relevant for breast imaging, as breast is
largely composed of fat tissue. These artifacts can be eztlog several different algorithms known as
fat suppression techniques. More details regarding the e acquisition can be found in the books
[Dendy and Heaton, 1999] and [McRobbie et al., 2003].

It has been shown that for the breast case, the contrastqaddy the T1 and T2 signals is not
sufficient to differentiate between healthy and malign&sue [Kopans, 1998]. DCE-MRI uses an in-
travenous contrast agent (usually gadolinium) that isctejé into the patient and additional images are
acquired. Contrast agents pass through the patient’s lzaissystem to the breast and their presence
there changes the relaxation time of the vascular strugturethe areas where tumours develop, there
are new abnormal blood vessels generated (angiogenedia)sanieakage of vessels into the extracellu-
lar space of the tissue. Consequently the gadolinium cdratén is higher there than in normal blood
vessels. As a result, the images that are acquired aftenjeéxeion of the agent can be subtracted from
the pre-contrast MRI and the subtraction images highlig@tidcation of the neo-vasculature associated
with tumours.

Additional information that can be extracted from the DCRMequence, apart from the subtrac-
tion images, is the washout pattern of the contrast ageatsiffficient number of post-contrast images
are acquired, then by plotting the MR signal of a region oiraet we can distinguish between healthy
and malignant tissue. Normal breast tissue enhances diradnd to a lesser degree, while tumours
enhance a lot and rapidly.

During MRI, the woman is lying prone and the breasts are peudwnder gravity inside two breast
coils. An example of a slice coming from a pre-contrast MRuna is shown in Figure 1.2(a) and the
corresponding slice of the subtraction volume, betweerptheand the post-contrast image, is given in
Figure 1.2(b).

It is clear from the above that the images produced using MRl X-ray mammography differ

significantly in various aspects. Firstly, they are imadaifeerent dimensionality and they are produced
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as a result of inherently different processes (X-ray at@ion versus magnetic resonance). Moreover,
the position and compression of the breast in those two groes are also different. This combined with
the highly deformable nature of the breast tissue, furtbenplicates the registration process. Finally,
the image resolution differs too, as MRI exhibits coarseohgtion. For a typical mammogram this is in
the range of(0.05 — 0.1) x (0.05 — 0.1)]mm?, while for the MRI it is[(0.6 — 1.0) x (0.6 — 1.0) x

(1.0 — 3.0)]Jmm3.

1.3 Problem statement

The problem that is addressed in this study is the difficudk tdnat the radiologists encounter when
attempting to determine corresponding positions in MR arm@yXimages of the breast. The goal of this
work is to develop a framework for the alignment of MRI to X¥tnmammography images. This could
aid radiologists in determining corresponding regionghasis a challenging task and these modalities
are frequently used in the management of breast cancerpdhe fact that they provide complementary
information. Having built such a framework, we also invgate its use for the alignment of different
X-ray mammograms from a given patient, by making use of them3&yge of breast structure provided

by the MR volume.

1.4 Contributions

The contributions of this work are:

» Development of a generic framework for the alignment of MiRtl X-ray breast images based on
their intensities, or in other words the internal breasidtires, rather than only the breast outline,

the distance from the chest wall or the nipple position.

* Investigation and comparison of three different transfation models, that attempt to capture
the large breast deformation, with increasing complexitym a simple geometrical model, such
as the affine, through an ellipsoidal model and to a patipatific biomechanical model of the

breast.

« Validation of the developed framework with a large numbkclmical datasets, using cases with
identified lesions in both modalities, annotated by expensl MR and X-ray visible clips that

have been inserted at the position of mammographicallyctirldesions.

Integration of a FEM-based transformation model insidertdyistration framework, using simul-

taneous optimisation of both the pose and the biomechasiivallation parameters.

» Use of the same registration framework to determine cpordences between X-ray mammo-
grams of the same patient via the 3D information of the MR w@u This task was previously

approached as a one-to-one correspondence task, althasigime-to-many.
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1.5 Report structure

Chaptef 2 contains the literature review of relevant saidi/e present the different intra- and inter-
modality registration techniques, with a particular fooasbreast image registration.

Chapterf 3 presents the X-ray image simulation techniguegubie MRI, which is an essential part
of the registration process.

The following chapters describe the three different trammftion models used and the results when
applied to clinical datasets.

In chapter 4 we use a volume-preserving affine transformatiodel to approximate the mammo-
graphic breast compression. The main motivation for udirgygeometrical model is the low number of
degrees of freedom and the ease with which it can be incagabiato clinical practice.

To achieve better accuracy and model more accurately tlastdeformation, we propose learning
the space of possible breast deformations by using an @lligsshape of an average size and applying
biomechanically simulated compressions (chdpter 5). Taim modes of variation are then extracted
using Principal Component Analysis (PCA). The main advgataf using an ellipsoidal as opposed to a
patient-specific deformation model, or an incorporatiothef biomechanical model inside the iterative
registration scheme, is that a single generic model is edeaice for all patients, eliminating the need
for model creation on a patient by patient basis.

As a third transformation model, we investigate the use dditgept-specific biomechanical model
of the breast, created from the MRI of the patient (chdpteiT8)s is enabled through a transformation
model that uses a fast explicit Finite Element solver, whiiats on the graphics card. The iteratively
updated parameters include both parameters of the biomieahanodel and the boundary conditions,
and also rigid transformation parameters of the breast gggrmodel.

Finally, in chaptel 7 we investigate the use of the sametragjisn framework for a different appli-
cation, that of establishing correspondences between 28/ Xrammograms, using the 3D information
provided by the MRI.

Chapter 8 includes the conclusions and potential exteasiofuture work.



Chapter 2

Literature Review

This chapter contains a review of the different methodshibae been introduced in the literature and are
related to the research of this study, which is focused on t{dXlray mammography registration and its
applications. The review is structured as follows: Sedfdnhintroduces the image registration problem
and the classification of existing algorithms, accordinth&r methodology. Section 2.2 refers briefly to
the algorithms introduced to solve the intra-modality Btéaage registration problem, such as between
X-ray mammograms of the same patient. Then, se¢tion 2.3itmnthe different multimodal breast
registration approaches; the methods that were introdtaeMR| — X-ray registration are analysed
in more detail, as this is the topic of our study. Since bré&astdeformable organ, it is important to
review how the same problem is approached for other defdem@bans, apart from the breast. These
are included in sectidn 2.4. In the next part (sedtion 2.%) review some techniques that are linked to
multimodal registration of deformable organs, such as kidmnics and statistical deformation models.
Finally, as the problem we aim to solve is a 2D-3D registratiwoblem, the last part (section 2.6)
contains the different approaches that solve the sameaaskréictures that are not deformable, such as

blood vessels, bones etc.

2.1 Image registration

If we consider two different images of the same scene, olged¢tuman organ, that are captured at
different times, from different views or using a differentaging modality, then these images will have
different coordinate systems. Consequently, integratisgnformation about the object that is captured
and determining corresponding locations is difficult. Témrt “image registration” refers to the process
of aligning these two images, or in other words bringing theto the same coordinate system.

Figure 2.1 illustrates the problem of a simple image regiitn task. The problem that registration
attempts to solve is to find a spatial transformation thatsiiap coordinates of one of the images to the
other, so that the intensities of corresponding structcaasbe directly compared. Images are a discrete
representation of a continuous scene. In other words, thasities at the pixel positions form a grid of
the continuous space. Therefore when we apply a transfamata point in one of the images, the new
transformed position does not necessarily coincide witixel gentre in the other image. To solve this

problem, we need to use interpolation to find the intensity sppecific non-grid position. Consequently,
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T(x,Y)

target source

Figure 2.1: lllustration of the image registration problefrhe goal is to calculate the transformation
T(x), in order to align the two images. The image on the lefyststable during registration (fixed/target),

while the image on the right is being resampled (moving/seur

one of the images during registration needs to be resamplad.image is called thenovingor source
image, while the other one remains unchanged and it is ctidedor target

To re-state now the problem in mathematical terms and |lgpkigain at Figure 2.1, an image
registration algorithm is looking for the transformatidh For a 2D problem, the coordinates at the

position(2’,y") are given by:

(2',y') = T(z,y) = (z,9) +u(z,y) (2.1)

whereu(z, y) is the displacement vector. The transformafidcan vary in terms of complexity. Regis-
tration algorithms can be classified into different catéggaccording to the type of the transformation
that they use to align the images. Below are given some exacniasses with ascending complex-

ity/degrees of freedom:;

 Rigid Registration: In this registration problem the two images are aligneagisi rigid-body
transformation, that incorporates a rotation plus a tedisi. This is alternatively known as Eu-

clidean transformation and when applied on a 2D point the cmovdinates are given by:

a! cos(0) —sin(0) x ty
= . + , (2.2)
y sin(0)  cos(9) y ty
whered is the rotation angle and,, t, ) the translation components. In 2D the degrees of freedom

are 3 and in 3D they are 6 (three for rotations about each axishaee for translations).

 Affine Registration: An affine transformation can be seen as a rigid-body pluingcalong
the different directions and shearing. The main charaatteris that it preserves parallelism; so
parallel lines are transformed to parallel lines. The éfferen applied on a 2D point is given by:

l'/ Qoo Qo1 x tx

= . + , (2.3)
Yy’ 10 011 Yy ty
whereaqg...a11 incorporate the rotation as in equation|2.2, the scalingHertwo different axes
(in app andarp1) and the shearing (ing; andagg). In 2D, the degrees of freedom are 6 (four for

the matrix coefficientsy...cc1; and and two for the translations) and in 3D they are 12.
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» Deformable Registration This transformation allows complex deformation of obgehd it can
incorporate ten to millions of degrees of freedom. This tgpeegistration is widely used in
medical imaging, as human organs can be highly deformalbleing for the transformation of a
highly deformable object is not a computationally tractafasisk, as in the previous cases. There

are several techniques in the literature that approachegistration problem.

One of the most widely used transformations are the FremBm®formations (FFD) based on B-

splines, that was introduced by Rueckert et al. [Rueckeat £1999]. The authors propose a novel
method for registration, where they apply a mesh on one ointlagies and the points that form
this grid act as control points of a cubic B-splines equatBysimply then moving those control
points, the pixels of the images follow the same deformati®a B-spline curve. The equation of
this deformation in 3D, given a volunt®{(x,y,2)[0 < z < X,0 <y < Y,0 < z < Z} and an

ng X ny X n, mesh of control points, is given by:

3 3
Z Z Z Bl(U)Bm(U)Bn(w)¢i+l,j+m,k’+na (24)

wherei = |z/n,| — 1,7 = |y/ny] — 1L,k = [2/n.] — 1, v = z/n, — |z/ng|,v =

y/ny — ly/ny|, w = z/n, — |z/n.| and B is thel-th basis function of the B-splines. The
main advantage of the FFD method is that B-splines are lpacalhtrolled and thus can cap-
ture complex, local non-rigid deformations. For this regsmne has to use a global transforma-

tion (such as rigid, or affine) before applying the FFD. Othen-rigid registration methods in-

clude the use of thin-plate splines [Meyer et al., 1997]icapflow [Kumar et al., 1996], demons
[Thirion, 1998], a poly-affine transformation [Arsigny dt,&005] or a curvature-based scheme
[Fischer and Modersitzki, 2004].

Another method that is widely used is the fluid registratioritroduced by Christensen et al.

[Christensen et al., 1996]. The object in this case is tckate a fluid, whose new position
is calculated as a result of an image-derived force. Moreipally, in parts of the im-

age where the similarity measure is low, the force is high sodhe the pixels in the im-
age are displaced following a fluid deformation. In contradh the B-splines FFD, this
method follows a physics law to deform the object, treatings fluid. The main disadvan-
tage is that it makes use of the Navier-Stokes equation, wiBicomputationally expensive to
solve. Christensen et al. use the Successive Over Relaxat#thod to solve it. Other ef-
ficient ways to compute it involve using a Full multi-Grid appch ([Crum et al., 2005] and
[Freeborough and Fox, 1998]), the Minimum Residual alganifWollny and Kruggel, 2002], a
Convolution filter ([Bro-Nielsen and Gramkow, 1996] and fgjostino et al., 2003]) and finally a

method similar to the Fast Fourier Transform [Cahill et2007].

Fluid registration belongs to a class of techniques calidaimorphic registration approaches,
that have the advantage of providing transformations thesgyve the topology of the image.
In other words they generate a one-to-one mapping betweeimthges, without discontinu-

ities in the displacement fields. Recent advances in nad-riggistration techniques propose
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the use of other diffeomorphic approaches, such as thossllmasa log-Euclidean framework
([Arsigny et al., 2006], [Ashburner, 2007], [Arsigny et,&009], [Vercauteren et al., 2009]). One
of the most popular ones is using the demons registrationoapp [Thirion, 1998] inside the

log-Euclidean framework [Vercauteren et al., 2009]. Théhars have also extended this work

to provide a computationally efficient inverse-consistesmsformation [Vercauteren et al., 2008].

Finally, Klein et al. [Klein et al., 2009] recently condudtan evaluation study of non-linear de-
formation algorithms applied to human brain MRI registati

In all the above cases, we assume that the registrationithligois used to align images of the
same dimension (either 2D or 3D). Another category of ima&ggstration techniques is the one that is
applied on 4D images. In this case, the fourth dimensionsidered to be time and these algorithms
are applied in order to register image sequences that ateradgluring some process that changes in
time (such as heart images that follow the cardiac cycleyrmg images that follow the breathing cycle).
Finally, another category is the one used to register imaf@iferent dimensions (2D/3D registration).
This type of registration is the topic of this research wankl & is further analysed in the next sections
of the literature review as well as in the following chaptivat describe our methodology in detail.

Another categorisation of image registration techniq@eshe performed according to which char-

acteristic of the images is used for alignment.

» Feature-based Registration This type of registration is based on the detection andaetitm of
corresponding points in the two images. These points aekalswn asfeaturesor landmarks
The concept is that the registration algorithm uses onlyaextd points from the two images in
order to align them and the rest of the image information sealided. The most important and
difficult step in this kind of registration is the feature esgtion. This can be done by various
ways: automatically by extracting highly distinctive features in each scenanuallyby selecting
corresponding points, or finally (especially in medical gimay) by usindiiducial markersattached
to the patient. The selection of the most appropriate lamkiset from the images is crucial for the
success of the registration and it is not a trivial task. Adtic algorithms do not always perform
well for all the different cases, manual extraction is labes and subjective, while the use of
fiducial markers is not always possible and is not used inrgéireclinical practice. On the other
hand, these algorithms are generally quicker than thesittebased alternative, as they make use
of only a limited number of points for registration. A spddige of feature-based registration
technique involves registering only tiseirfaceof a certain object/organ, excluding any internal
structures. This category is applied for example for regigin of images of the prostate and also

brain or tumour images, assuming that the region of intésasistricted to the surface only.

* Intensity-based Registration The registration methods in this category use the intgrmks#tri-
butions in the images for alignment. They use an appropsiatdarity measure to compute the
similarity between the two images and the goal is to maxiritibg iteratively updating the pa-
rameters of the transformation. The similarity measurehizsen according to the nature of the

images involved. More details about this type of registratind its components are given in the
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remainder of the thesis, as this is the approach that is msedristudy. The main advantage of
this approach is that by using the whole images there is nd feeesegmentation or extraction of
landmarks, which usually are a source of error. As a resde algorithms are generally more
robust than feature-based techniques but they can be slsinee they process all the pixels in
both images and not only a specific set of points. Neverthetesent technology advances now
allow implementation of programs on Graphics ProcessingsWy&PUs) and thus rapidly perform
computationally expensive tasks in parallel offering wgedented speed-up. Intensity-based reg-
istration can benefit from this technology and thereforeciraputational cost associated with it

might not be an issue in the near future.

Finally, regardless of which type of all the above registratlgorithms is used, a very important
part of any study izalidation. The purpose of validation is to provide a quantitative assent of how
well the algorithm performed. In other words, we want to @ssi numerical value to the registration’s
performance, other than the visual estimation. If the gdamnth transformation between the two images
is known, then th&arget Registration Errocan be simply calculated at every poinin the target image
as the difference:

d=||Tr(z) — Tar(z)l|, (2.5)

whereTr(x) is the transformation as a result of the registration atboriand7 () is the ground
truth transformation. The main problem is that in most cdkestransformation is not known. One
method of acquiring these ground truth transformationy igdnerating simulated data.

Another way to validate the results is done by computing te&dce between corresponding points
in the target image and points in the transformed source émafer applying the transformation that

was acquired as a result of the registration algorithm:
d=[|Tr(xs) — x|, (2.6)

wherez, is a point in the source image amga corresponding point in the target. The set of correspond-
ing points is defined before registration and they can beimddzeither by fiducial markers attached on
the imaging object/organ or by an expert (radiologist)vitadly manual annotations of images, include
themselves an error even when performed by experts, asdhierglly difficult to achieve high accuracy

of corresponding point locations. An estimate of this ecamm be obtained by using annotations made by
several different observers. This error is known as inteseover variability. Even when annotations are
performed by one expert, at different time-points, these aiclude an error, which is known as intra-
observer variability. Due to the uncertainty introducedianual annotations, these correspondences are
commonly refered to agold standardrather than ground truth correspondences.

Apart from the two above methods, it is also common in meditalging to use gold standard
transformations for validation. This case is similar to fingt one, but instead of using the ground truth
transformation, it uses the result of a registration athamithat is known to give high accuracy. This is
named gold standard transformation and is considered tetyeclose to the ground truth.

All above validation metrics are computing a target registn error based on a distance metric.
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For certain applications in medical imaging, such as imaggnentation, it is common to use overlap
metrics instead. The most popular overlap metric is the @oefficient (DC). For two overlaping

regionsA andB, the DC is given by:
_ 2[ANB|

DC=———.
Al +|B|

2.7)

For a perfect agreement between the two regions, the metsia lalue of 1, while a value of O indicates
no overlap betweei and B. Apart from the use of these metrics for the evaluation ofrsagation
algorithms, they can also be used to evaluate registrationniques, for example when radiologists
provide gold standard corresponding regions, rather tbangpbetween the images. In this case the two
regionsA andB need to have the same size, in order for equation 2.7 to gialde results. This issue
is discussed also later, when we first use radiologists’ @tions for the validation of our registration
algorithm (section 4.312). Also, as overlap metrics areagtmzero when there is no overlap, these do
not provide a measure of misregistration in these cases.ig particularly important when the annotated

regions are small, as their overlap after registration ¢emdoe zero.

2.2 Intra-modality breast image registration

2.2.1 Registration of X-ray mammograms

X-ray mammogram registration tasks can be divided intostihmain categories according to the problem
that they attempt to solvepsilateral registration that aims to register CC and MLO views of the sam
breasthilateral registration that approaches the registration betweengheand left breast of the same
view mammograms, from the same patient, srdporalor longitudinalregistration that registers mam-
mograms of the same view and the same breast, acquiredexediftime points. The latter registration
task is particularly important in medical imaging, as whadiologists examine an X-ray mammogram
for breast cancer they routinely compare it with previoussoand look for changes in the tissue struc-
tures. There are various methods in the literature thatosoprthese tasks in different ways. Here, we
briefly refer to the most representative ones.

In terms of feature-based techniques and bilateral regjistr, authors have mainly extracted control
points automatically at locations such as the nipple pmsiéind the breast boundary ([Yin et al., 1991],
[Yin et al., 1994], [Mendez et al., 1998]).

For temporal registration, various feature-based teclasichave been proposed, where distinc-

tive features have been extracted manually or automati¢adim the internal structures of the tis-

sue ([Sallam and Bowyer, 1994], [Vujovic and Brzakovic, IP9 For the automatic feature extrac-
tion authors have proposed a curvature measure [Marti,&G02], wavelets| [Marias et al., 2005]

or the Moravec interest operator [Kumar et al., 2001]. Isigrbased methods have also been pro-

posed for temporal alignment; for example elastic redistna[Periaswamy and Farid, 2003] and

free boundary conditions for region matching [Richard antiéh, 2003]. Also, hybrid meth-

ods have been introduced that combine aspects of both éeatnd intensity based methods

([wirth et al., 2002],|[Bakic et al., 2004]). Finally, a panatric model was proposed by Snoeren et al.

[Snoeren and Karssemeijer, 2007] in order to register filfauid-Field Digital Mammograms (FFDM).
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An evaluation of temporal X-ray mammogram registratiorntéques has been done by van Enge-

land et al. [van Engeland et al., 2003], where the authorspemed four different temporal registration
methods and concluded that an intensity-based 2D affinstraion outperforms simple feature-based

techniques and also a thin-plate splines intensity-bapptbach. The same conclusion was also made

in a later study [Pereira et al., 2010] that compared a 2De#fimd a B-spline transformation with the
annotations made by radiologists expert in mammograplépretation. Nevertheless a more recent
validation of intensity-based methods [Diez et al., 20Hdvged that a B-spline transformation used in

a multi-resolution scheme outperforms other transforomatnodels, including the affine.

The problem of ipsilateral registration, between the CC ki@ view mammograms, has been
mainly approached using various distance transformatiores locate the corresponding position of

a finding in one of the mammographic views to the other, agthmve used the distance from

the nipple position and then texture information extradiedn that region ([Paquerault et al., 2002],

[van Engeland et al., 2006]). Zheng et al. compared thrderdiit distance metrics for the same task

and found that a straight strip area that is perpendiculdhedine connecting the nipple to the pec-
toral muscle performed best [Zheng et al., 2009]. Thesenigales are widely used in Computer Aided

Detection (CAD) systems.

Kita et al. [Kita et al., 2001] proposed the use of the exgdaurved epipolar lines to match find-
ings between the two views, in a similar way that epipolaedimre extracted from two cameras that
capture the same scene in Computer Vision applications.cGouat for the different breast compres-
sion between the two views, the authors proposed using asgcation of a simplified breast model.
Although the breast compression model is only an approxamaif the real breast deformation, the
novelty of this technique, compared to other algorithm#has it attempts to capture the 3D deformation

of the breast, rather than use a 2D approximation that ipiagpiate for this task.

Another approach that models the CC to MLO breast deformatias recently proposed

[van Schie et al., 2011] for a different application, theis&gtion of ipsilateral tomosynthesis views.
The authors used a simplified semi-spherical model to sitedlee breast deformation and predict the

corresponding locations in the images.

In terms of validation, the results were most commonly asesisually or by the accurate match-

ing of a restricted region in the image that included a lesidnnovel approach was introduced by

Hipwell et al. [Hipwell et al., 2007], where instead of usifane-to-one” correspondences of points in

the 2D mammograms (as the evaluation in all the above teghs)gthe authors take into account that
these are actually “one-to-many” correspondences, dugetprojective nature of the images. The au-
thors used biomechanical simulations as known 3D defoomain order to validate 2D mammography
registration algorithms. In a related approach, Qiu et@iulfet al., 2008] proposed the use of a FEM-
based framework to map a lesion from the two views X-ray magnaos to the MRI of the patient and
thus use the 3D position of the lesion in the MRI to estimatreespondences between temporal mam-

mograms. Finally, the effect of the breast thickness viariah mammography registration was studied

on phantom experiments [Richard et al., 2006].
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Reviews about X-ray mammogram registration and in geneealdt image registration can be found
by Guo et al. [Guo et al., 2006] and in the book of Suri and Rgyaa [Suri and Rangayyan, 2006].

2.2.2 Registration of DCE-MRI breast images
As we have seen in the description of the DCE-MRI acquisigmttion 1.2.2), there is initially one MR

image acquired before the injection of the contrast agedttla@n additional acquisitions take place to
obtain the post-contrast images. In theory, the breasnveduin all cases remain in the same position.
In practice, there is usually either a slight or a greateratian that causes artifacts in the subtraction
images, due to patient motion or breathing.

There are several methods in the literature that attempoli@ ghis registration problem. One

of the most popular is non-rigid registration using B-spfifRueckert et al., 1999], as was discussed
in more detail in section 2.1. A modification of this approasbluded a volume conservation con-

straint, which was proven to give better results in the negibthe tumour, when registering DCE-MR

images [Rohlfing et al., 2003]. Another popular registratiechnique applied to DCE-MRI is fluid reg-
istration ([Christensen et al., 1996], [Crum et al., 20¢6Jhill et al., 2007]). Other non-rigid registra-

tion techniques used for DCE-MRI registration were alseubsed in sectidn 2.1 ([Meyer et al., 1997],
[Thirion, 1998], [Kumar et al., 1996]).

Hayton et al. [Hayton et al., 1997] used a pharmacokinetidehfor registration. This refers to an

intensity transformation approach, rather than spatiaé @ffect of MRI motion correction on the phar-

macokinetic parameter estimation was recently studied blpdurne et al. [Melbourne et al., 2011].

In terms of validation, breast biomechanical modellingypthan important role in the DCE-MRI
registration task. By simulating displacements of the si®asing the pre-contrast images, the authors
have generated simulated volumes, for which the real dispt@nts were known and thus they could be

used for validation of the registration algorithms ([Sdbeleet al., 2003], [Tanner et al., 2007]).

2.3 Multimodal breast image registration

The different modalities that are used for breast imagingewiéscussed above in section]1.2. Here, we
present in more detail the algorithms that attempt to sdleeMRI — X-ray mammography registration

problem, followed by the ones that were introduced to registeast images from other modalities.

2.3.1 MRI/X-ray mammography registration
This is a difficult registration task, due to the nature ofithages acquired (two 2D views with high con-
trast versus one 3D volume of low resolution). Also, the fhat the breast is a highly deformable organ
increases the level of difficulty, given that it is signifitlgrcompressed during mammogram acquisition,
while it is left uncompressed in a prone position during MRierefore, a tool that would automatically
provide correspondence between the two modalities codldadiologists in breast cancer diagnosis and
management, and provide the enabling technology for reutinlti-modal Computer-Aided Diagnosis
[Yuan et al., 2010].

There are three main methods introduced in the literatuaeapproach this problem in different
ways ([Marti et al., 2004], [Behrenbruch et al., 2003], [fRuiet al., 2006]). These are explained in de-
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tail below.

Marti et al. 2004, “2D-3D correspondence in mammography”

Marti et al. introduced one of the first techniques to regidteéay mammograms with MR volumes
[Marti et al., 2004]. Their method includes a 2D-2D regittna of the images (by using a projection of
the MR volume) and also a method to find correspondences betagrtain Regions Of Interest (ROI)
in the 2D mammogram and the 3D MRI.

Regarding the 2D-2D registration, the authors first creé&t® amage of the breast from the unde-
formed MR volume, by parallel projection. Initially theyughly align the two images using a 2D simi-
larity transformation (rotation, translation and scaledl awutual information (MI). Then, they achieve a
more accurate registration result, by using a non-linear diperator to detect the linear structures in the
two images. The goal is to match those linear structuregcais a measure of their maximal curvature.

After the 2D-2D registration task is complete and as far a2-3D registration is concerned, this
is achieved by using the same linear structures matching. difference is that this time, the second
2D image is each individual MRI slice, rather than the prijggtimage of the MR volume. If corre-
spondences are found on the slice of the MRI (by minimisingsgadce metric), then the 3D position is
automatically known.

The method was tested on a single patient. The evaluatiomeofesults was based on similarity
measures of the detected matched features, taking intaiaictteeir position, width, orientation and the
projection angle of the volume.

As explained before, this technique is based on finding featorrespondences of linear structures.
Feature-based registration algorithms have the limitettiat a mismatched feature could resultin a very
large error. Therefore these techniques are generallyrddsst and are less suitable for clinical use.
Other limitations of this study are the size of the datasdttae evaluation method used, which did not

include the use of ground truth or gold standard correspuocete

Behrenbruch et al. 2003, “Fusion of contrast-enhanced bkéasand mammographic
imaging data”

Behrenbruch et al. introduced in 2003 a method to map findimtige X-ray mammograms to the DCE-
MR images [Behrenbruch et al., 2003]. As discussed in thedhoiction, MRI provides a 3D volume

of the breast, but the spatial resolution is not as high as-irayximages. Therefore we cannot iden-
tify the precise 3D position of small structures, such asratialcifications, which would be valuable
for identifying the 3D location of Ductal Carcinoma in SitDCIS). This method attempts to solve this
localisation problem, as it aims to find the MRI correspogdiocation of a point in the X-ray mam-
mogram and in this way define the 3D location of microcalcifaras that are visible only in an X-ray
image. Therefore this technique is designed to map the Xweaydinates into the MR volume.

The registration technique that is followed is featuredoband it contains two steps that are sum-
marised in Figurg 212. Initially, the authors use the twoa¥-mammograms (CC and MLO views) and
two parallel projections of the MR-volume in the same dil@tis the X-ray images. Then, at the first

stage of the registration, they use a curvature measuretelai® the boundary points of the film mam-
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Registration stage 1 Registration stage 2

CC and MLO
mammograms

Partial registration
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Final registration
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Contrast-Enhanced |—»
CC and MLO
projections

Figure 2.2: Registration framework followed by Behrenlireat al.

mogram with those of the projections from the MRI volume. sTburvature measure depends on an
accurate segmentation of the breast boundary, which ige®thiusing an intensity-based search along
the image, a set of morphological operations for smoothiyfanally a spline interpolation. By using
this technique, the extremities that are usually preseanhiX-ray mammogram are deformed in order
to match the shape of the boundary that is produced from thjeqiion of the MR volume. This step

provides a rough alignment of the two images.

At the second and final stage of the registration method, l\etbased feature detection is used, to
identify correspondences between the two different mtdaliThe extracted features are matched using
various criteria, such as scale localisation, orientatieature area, relative motion and neighbourhood
localisation. Finally, the registration is done using a bamation of internal and boundary landmarks
which are matched using a thin-plate spline warping teamid\fter registration and to specify the 3D
location of a region of interest from the two 2D views, they as3D reconstruction method that takes

into account the breast compression.

This technigue was tested on 14 patients, who were diagnaisiedifferent types of breast cancer.
The registration error varied betwe@mm for the best cases to arouidmm for the worst. The
validation was straight-forward for the cases where thiefegosition was clear in both modalities, but

it was poor when in one of the images the lesion could not be.see

The proposed method of Behrenbruch et al. has the advantageviding a promising solution to
the very important problem of 3D location of the microcatmfions, by registering X-ray mammograms
and DCE-MR images. Since the microcalcifications are ndbhkasn the MRI and thus their location in
the 3D space is unknown, a fusion of an X-ray image and the MRime using registration can provide
this information. On the other hand, it also incorporatessd limitations. Firstly, a prerequisite for
this feature-based registration method is that the cooredipg features should be present in both the
modalities. This requirement makes questionable the tiatarse of the algorithm as a clinical tool.
This would be mostly valuable in cases where there are noobegespondences between the modalities,
such as for women with dense breasts, where findings are afftecured. Moreover the possibility of

mis-matched features remains, as in all feature-baseditpods.



2.3. Multimodal breast image registration 34
Ruiter et al. 2006, “Model-Based registration of X-ray Mammasgs and MR Images
of the Female Breast”

The last of the three registration methods was proposed byeRet al. ([Ruiter, 2003],

[Ruiter et al., 2006]). The main innovation that the authiatsoduce in their work is that they take

into account the deformation of the breast during image iattagpn of the X-ray mammogram, by using
a biomechanical model of the breast and compression siimsat In all the previous approaches,
the MR volume is projected undeformed to produce a 2D imagedan later be registered with the
2D mammogram. In this method, a new step is added into theepsocBefore the projection of the
MR-volume, the authors simulate the compression of thesbrdaring X-ray mammography, using a
biomechanical Finite Element (FE) model. This way, instebdieforming the 2D projection images, to
recover the 3D breast compression, the biomechanical firgglallows the 3D FE mesh to be deformed

instead.

In this approach, the first step is to discretise the MR volumerder to generate a 3D FE mesh of
the breast. This is done based on a segmentation of the MiRdlifierent tissue types. There are three
different categories used: the skin, the fat and the glardidsue. The next step is to assign material
properties to them, that define the behaviour of the bread¢rucompression. There are also other
parameters that need to be set at this stage, such as théneterslstem and the boundary conditions
that will be applied in order to create a deformation. Thedefrmation of the FE mesh is simulated,
in a similar way to the one that occurs during X-ray mammolgyajecompression of the breast between
two plates). The resulting parallel projection of the dafed volume can then be directly compared with
the mammogram. The amount of compression is updated uatithibst wall to nipple distance of the
simulated projection matches the one in the real mammogfanachieve an accurate matching of the
boundaries in the 2D images, the authors apply additiosplatements on the surface nodes that force

the 3D mesh to stretch in the medial-lateral direction.

Once the deformation of the breast is recovered in registrathis can be used both for mapping
MR coordinates to the X-ray mammogram and vice versa. Fontleese process, the 3D position of a
lesion that appears in the mammogram can be determined bgditite corresponding position in the

simulated deformed image and then applying the inverssfivbemation to go back to 3D coordinates.

This framework was tested on six patients. The mean displanctof the lesion centre when this
was projected from the MRI on the mammogram was 4.3mra 1mm). When this was mapped from

the two mammographic views within the MRI the mean regigireérror was 3.9mnjc = 1.7mm).

The results indicate that this method outperforms all thevipus approaches. Moreover the
methodology provides a tool for simulating realistic mangmaons from MR volumes, as the breast
mammographic compression is taken into account for thetifingt, although the projection is performed
using parallel rather than perspective projection. Theofiphysically realistic compression simulations
is a significant contribution in the literature of multimédaeast imaging registration. However in a more
recent semi-automated implementation of this approaehatthors reported values df.8 + 6.5mm

and a mean overlap @3 + 40% for 11 subjects (CC view only) [Hopp et al., 2012], which icalies
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possibly the effect that manual interaction has on the tesmd also possibly the variability depending
on the datasets used.

Although patient-specific biomechanical modelling candore more realistic deformations, the
manual steps involved in building a different model for eaelient and the variability in the results
depending on the material properties, the meshing anditi@daion techniques used, make this frame-
work less suitable for clinical use.

Finally, recently there has also been another study [Lek,e&G 1] that used a similar approach to
Ruiter et al., but was further improved in order to drive thgistration based on the image intensities
rather than the breast outline and the nipple position. Heumhore, in this work the material proper-
ties, the amount of compression and the pose of the breasptineised inside the iterative framework
according to the matching of the structures in the two imagdeslowing this approach increases the
possibilities of an accurate matching between the two niibelal Nevertheless, in these preliminary
results, it is not clear which are the parameters that ariengged and whether these include the initial
positioning of the patient before compression. Finallg, vhlidation was performed using only a breast
phantom. The registration error was5 + 0.06mm.

As we can see from all the previous techniques, althougle thas been some significant progress
in solving the MRI/X-ray registration problem, the need éoraccurate, reproducible and well validated

technique still remains.

2.3.2 Other breast imaging modalities

The references in the literature that attempt to registdtimodal breast images are very limited. In-
stead of registering multimodal images that are acquireliffarent times, there are various techniques
that propose the simultaneous acquisition of the two imagemsequently the images are already co-
registered. Although these methods are not applied inrreutlinical practice, they provide valuable
information about how the breast tissue and its structyspsar in different modalities.

Such devices for simultaneous acquisition were introduoedhe combinations of digital to-

mosynthesis with ultrasound data [Kapur et al., 2002] aniétfeld Digital Mammography with 3D

ultrasound [Kapur et al., 2004]. Co-registration of breasiges can also be used for biopsy guidance,

as the use of information from a second modality could imeragcuracy [Piron et al., 2003]. In the
same concept, a similar device was used to acquire a PEM idiegly after an X-ray mammogram
[Murthy et al., 2000].

For the registration of PEM to MRI, Krol et al. used a FEM-tthapproach [Krol et al., 2004]. The

main limitation of this method is that it requires fiducial rkers visible in both modalities to be attached

to the breast; these are inconvenient in routine clinicatice.

2.4 Multimodal registration of other deformable organs

As we have seen so far, multimodal registration of breasgenas a research field that has developed
only in the last few years and therefore there are not martyntques proposed in this area. Never-

theless, multimodal registration of other human organshieas an active research field for longer and
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several different approaches have been proposed. Thédsgdees are usually organ specific (such as
brain, carotid artery, forearm, kidney, prostate, colod &ver) and also application specific (biopsy,
radiotherapy, image guided surgery etc). In this sectioprgsent only some representative techniques
that are mostly related to the registration of soft tissiggans and in particular the liver. There are plenty
of registration techniques that are applied also to orgatisngid structure (such as brain, bones, neck).

We will review those that refer specifically to the 2D/3D gation problem in sectidn 2.6.

For the registration of liver images, several authors psegechniques that mainly rely on parts of
the liver that have a more rigid structure, such as the vessel the surface. For example, we refer to
three different techniques that register MR to CT data. t#?at al., 2001] and [Aylward et al., 2002]

find a transformation between the different modalities lynsenting the blood vessels and optimising

their correspondences. [Voirin et al., 2002] develop aueabased method, using features on the liver
surface. These approaches are not expected to performonéiief breast case, since the fibroglandular
structures and vessels are not always visible in both migetaiind also it is not sufficient to register the

images based only on information about the surface/skiheobteast.

Boundaries are also used for registration between CT anditéSofithe kidney [Leroy et al., 2004].
It is worth mentioning that in this technique, the authorglg preprocessing step to the data, in order
to increase the similarity between them. In that regard,Gfieimages are blurred, while speckle is

removed from the US data. The similarity measure used is thee@tion Ratio (CR).

In another method that registers US and MR images of the [Renney et al., 2004], the authors
use a tracking device to capture the motion of the ultrasquobe and thus the conditions under which
the images are acquired are known. Of interest for our agipdic is the use of a pre-processing step
they apply to the images before registration. They conberiritensity images to “probability images”,
where each pixel represents the probability of existenamoksponding vessel structures between the
images at that point. In this way, the “probability imageahde used directly for registration, as both

their values now represent similar quantities.

Finally, one multimodal registration method that concetresliver and could be useful for other
soft tissue organs like the breast, was proposed for ragistr between CT and 3D ultrasound data
[Wein et al., 2008], which is related to the work previousisdribed [Penney et al., 2004]. The main

concept is that the authors use CT data to simulate ultrakstkemimages and then use them for regis-

tration with the original ultrasound. Then, for registeatj they use the slice of the ultrasound that has
the highest entropy, to ensure that it incorporates higlwlasty in order to be more similar to a CT
image. Their main contribution to the literature is the uka aovel similarity measure, naméghear
Correlation of Linear CombinatiodZC?). This new measure has two desired properties; it is indepen-
dent of brightness and contrast changes in the US image sodhaknsitive to how much the two main
physical effects that produce the US image contribute tantteasity, which is important for the specific

application.
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2.5 Learning soft tissue deformations

As the breast is a highly deformable organ, it would be vakiédr registration to acquire some prior

knowledge about how the breast deforms. There are genénallynain techniques that enable us to do
that; the use of biomechanical simulations (sedtion 2 &ntl)the use of Statistical Deformation Models
(SDM), discussed in section 2.5.2.

2.5.1 Breast biomechanical modelling

As we have seen previously and in terms of registration,dbigiamechanical modelling has been used
to simulate the mammographic compression that occurs éovitRl — X-ray mammography registration
([Ruiter et al., 2006], [Hopp et al., 2012], [Lee et al., 2DIdnd for validation of both DCE-MRI regis-
tration ([Schnabel et al., 2003], [Tanner et al., 2

007]) 2achy mammography registration algorithms

[Hipwell et al., 2007]. Regarding multimodal breast regiibn, Rajagopal et al. used biomechani-

cal modelling and proposed a new reference state of the thjiRagmgopal et al., 2008], to which all
other modalities can be registered, in order to establistespondences between them. Biomechanical
modelling was also used in combination with an FFD regigtnatechnique in order to register prone
to supine MR images and map pre-operative information atimutocation of the lesion to the intra-
operative MR image ([Lee et al., 2010], [Han et al., 2011]).

Biomechanical models have also been used previously tdaieniarge mammographic compres-
sions but were not tested for MRI/X-ray correspondencean@i et al., 2001], [Pathmanathan et al., 2004],

[Chung et al., 2008]). In all these approaches the matedrdrpeters of the breast tissue were taken

from the literature, from studies ax-vivotissue samples. Han et al. proposed a methodnfeivo
parameter estimation, using a framework that incorpom@BU implementation of the FEM modelling
[Han et al., 2012]. This work can be further extended to FEAded registration tasks, which were so
far computationally expensive. This did not allow their urselinical practice.

Other applications of breast biomechanics include imaggegisurgery or biopsy ([Azar et al., 2000],
[Azar et al., 2002], [Carter et al., 2008], [Carter et al.09[) and breast elastography ([Sinkus et al., 2000],
[Samani et al., 2007]

, [Washington and Miga, 2004]). An eatibn study of FEM-based large compres-

sion simulations [Tanner et al., 2011] showed an average ierthe range of.1 — 6.7mm according to

the material properties used. Finally, an analysis of thofa that influence the accuracy of the various

breast biomechanical models can be found in [Tanner etG0§]2

2.5.2 Statistical Deformation Models

Statistics have been widely used in image registrationrdercto provide some prior information of the
shape or the appearance of the object/organ in the imagesisTdone by using a population of training
images, from which we can acquire some prior knowledge oér@tion between them and use that
later, with the goal of parametrising the deformation spacé assisting the registration algorithm to
converge faster and more accurately. There are two maigaréds of statistical deformation models in

the literature; those that are basedegistrationand those that are basedlmomechanical simulations

The ones that are based on registration [Rueckert et al3]20€e the same principle as the Active
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Shape Models [Cootes et al., 1995] that are widely used iCtivaputer Vision community. The main
difference is that instead of using manually selected la#tsto describe the shape of interest, they
use the control points of the grid that controls the B-sgideformation. By registering the organs
(in this case: brains) using an FFD registration algoriting authors automatically establish point
correspondences. This technique can be used to acquireramuekel of the object of interest and use it
later as a starting point for registration. However thismetcannot be applied to the breast, due to the
high variation of the breast anatomy across the population.

An alternative method is the use of a Statistical Defornmatodel that is created using biome-
chanical simulations. This can be population-based, whencobmpressions are applied on a pop-
ulation of real breast images, or patient-specific, when dbmpressions are applied on one im-

age of a specific patient. A population-based approach wad s the breast for multimodal reg-

istration [Tanner et al., 2008] and is based on a similar otimtroduced for prostate registration

[Mohamed et al., 2002]. Patient specific biomechanical iodeof the prostate deformations was also
proposed more recently [Hu et al., 2008]. The advantageslmsadvantages of population and patient-

specific Statistical Deformation Models are further diseadslater in chaptér 5, as one of our proposed

transformation models uses a deformation model that istdam biomechanical simulations.

2.6 2D/3D registration of non-deformable organs

As we have seen so far, there is a limited number of approactties literature that refer to 2D/3D multi-
modal registration of breasts or other deformable organthi$ section, we present some representative
methods that attempt to solve the 2D/3D registration proldigr organs that are not deformable, such
as the spine, the vessels etc. The reason for reviewing theeiques is that an initial step of align-
ment could be achieved using those methods for applicadidinet breast. The review of the similarity
measures and the optimisation schemes used is also relevant

From all the registration techniques, we exclude thoseatafeature-based as the type of the fea-
tures extracted in every case is application- and orgaoHspeFor breast images, extracting automati-
cally 2D and 3D features is an open research field and theo arestablished method available. Apart
from the feature-based and the intensity-based technifa¢sre explained below, 2D/3D registration
can also be done based on reconstruction and gradientsgfemic et al., 2003], [Markelj et al., 2008],

[Mitrovic et al., 2011]). The last two techniques are notlgsed any further here, as they are not suitable

for our research topic. These have been mainly used fortratitn of rigid structures such as bones,
where the gradient information is stronger in projectiom@®s and also a partial reconstruction based
on a small number of projection images, depending on thécgtian, is possible. In mammography, the
breast is compressed in different ways for the two views, @M. O, and also the contrast is produced
from soft tissue structures and is often weak or obscureds€&quently, these methods are not discussed
further in this review.

Intensity based techniques use the volume from the 3D ingagiodality (MRI or CT) in order to
produce a 2D projection image, callBigital Reconstructed RadiogragibRR). The method followed

to create this DRR aims to create an image that resembles @s asupossible the image from the
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2D image modality (usually X-ray or fluoroscopy). The regitibn is then performed by optimising a
similarity measure between the DRR and the 2D image. The ap®bpriate similarity measure for
this registration task varies according to the application

Weese et al. used 2D-3D registration in order to align preraive CT scans with intra-operative

fluoroscopy images of the spine [Weese et al., 1997]. As dagiityi measure they usquattern inten-

sity, due to its robustness in the presence of new objects in othe @hages, such as the catheter during

surgery. A similarity measure comparison study for the sgype of images [Penney et al., 1998] shortly

after showed that the most appropriate and robust sinyilax@asures are pattern intensity agreldient

difference An intensity-based technique applied to the registraib8D Magnetic Resonance An-

giograms with 2D X-ray Digital Subtraction Angiograms [Mipll et al., 2003] has shown that pattern

intensity, gradient difference argtadient correlationare the similarity measures that are most appro-
priate for this task. A correlation-based measure and nmueeifically cross correlationhas been also
used for the registration of 3D CT scans of the cranium, withX2ray images [Murphy, 1997]. Gra-

dient and correlation based similarity measures were atspgsed by [Lemieux et al., 1994]. Another

clinical application of 2D-3D registration has been usedadiotherapy, for the alignment of portal

images with CT volumes. Such approaches were followed blyu@dl et al., using alistancemetric

[Gilhuijs et al., 1996], and Khamene et al., usingrmalised local correlatiofKhamene et al., 2006].

The most recent reviews in this area concern 2D/3D registrabethods proposed for image-guided

interventions| [Markelj et al., 2012] and also a comparisbthe optimisation techniques used for the

same application [van der Bom et al., 2011].

The main advantage of intensity-based techniques is tegtdh not require any segmentation or
extraction of points from the images and as a result are géypenore automated and potentially more
robust. On the other hand, the computational time is qu@l bind in cases of image guided surgery or
radiotherapy this can be crucial. The production of DRRdde a computationally expensive step and

in order to accelerate it, authors have used various teabgrjguch as a restricted region of interest for

projection or a different rendering algorithm [Weese et#99]. Perspective projection algorithms are
further discussed in chapter 3, where we describe in déihtethodology that we follow to simulate

X-ray images from the MRIs.

2.7 Our approach

The subject of this study is the development of a frameworle&tablishing correspondences between
2D and 3D images of the breast. More specifically, we propasgiatration pipeline for MRI to X-ray
mammography registration and we also investigate its epipdin for finding correspondences between
2D X-ray mammograms, using the 3D information provided keyMRI.

We approach the MRI to X-ray mammography registration mwblusing an intensity-based
method. There are two main reasons for not following a feabased technique. Firstly, the robust-
ness in comparison to intensity-based approaches is pparnasregistered set of points can result in
a high registration error. Therefore such techniques dabaasily integrated into clinical practice.

Secondly, the 2D/3D feature selection from breast imagksesnains an open research field, mainly
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due to the large variation of the fibroglandular structuretheir appearance across modalities, time and
individuals. The selected features should be distinctreas of normal structures in the breast, as the
algorithm should not rely only on the presence of lesions.

The 3D-2D matching process is a poorly constrained, illgplgsroblem and thus the optimisation
is prone to terminate in local, rather than global, minimaeping the number of degrees of freedom of
the transformation model to a minimum is therefore essktatiprovide robustness. Subsequently, our
strategy is motivated by keeping a low number of degreeseefdom for the transformation model used
and also developing a framework that can be easily incotediato clinical practice.

We propose an MRI to X-ray mammography registration franrewioat can adapt to incorporate
different types of transformation models. We investigdiee¢ different transformation models with
increased complexity and we validate their performancdiaital cases. All our transformation models
are integrated in the Insight Segmentation and Registrafaolkit [ITK, 2003], making the pipeline
flexible to adapt different similarity measures and optatin schemes. In the next chapter we describe

a key component of our registration framework, which is the}{ image simulation from the MRI.



Chapter 3

X-ray simulations from an MR volume

As the MRI is a 3D volume image, while the X-ray is a 2D projentiwe facilitate the registration task
by simulating an X-ray image using the MRI. The simulated giage can then be directly compared
with the real X-ray mammogram inside the iterative regigtraprocess.

There are two main steps involved in the simulation procEsgstly, the MR intensities are trans-
formed to X-ray attenuation. This is needed because thasiites in the two modalities represent
different physical properties of the breast tissue. Thdreshin an X-ray image is a result of the differ-
ence in the attenuation coefficients between the fatty amfiliboglandular tissue, as discussed in section
[1.2.1. Therefore, prior to the intensity transformatide MR voxels are classified into these two tissue
categories (sectidn 3.1). After transforming the MRI to ama attenuation volume, the second part of
the simulation process is the perspective projection ofsfhesolume to a 2D image (section 3.2). An
illustration of the simulation process is given in Figuré.3Section 3.3 contains the results of the X-ray

simulation process at each step and a comparison of ouifidasen method with other techniques.

3.1 Breast tissue classification

3.1.1 Literature

Tissue classification and segmentation has been an actgarch field in medical imaging during the
past years. There are many different approaches in thatliter, especially for the classification of
brain tissue into white, grey matter and Cerebro-Spinald~|[GSF). There are two main categories of
algorithms, non-parametric and parametric, that are éurtliscussed below. It is worth mentioning that
there is also a class of algorithms that uses prior shapemafiton of the structure to be segmented; we
will not refer further to these, as for the breast case thedjlandular tissue structures vary significantly
across different subjects.

Non-parametric methods classify the image voxels baseti@nintensity and without assuming
any model of the intensity distribution of each class. Wedlet{Wei et al., 2004] used manual thresh-
olding to obtain a density estimation from the breast MRI anthpare this with that conventionally
computed from X-ray mammography. For the same applicali@met al. [Nie et al., 2008] used a fuzzy
c-means technique. This is similar to tkeneansclustering that classifies the voxels intoclusters

by assigning them to their nearest mean and iteratively tigléhe mean of each cluster with its new
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Figure 3.1: X-ray simulation process.
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(b) ()

Figure 3.2: (a) An example of a pre-contrast breast MRI andapincreasing magnification views
around the red cross that illustrate the partial volumeceff®ue to the limited resolution of the MR
scanner, one voxel can belong to more than one differentetigges; in this case both fibroglandular

and fat.

centroid. The advantage of incorporating fuzzy logic ifite k-means algorithm [Chen and Giger, 2004]

is that it allows voxels to belong to more than one tissue {gpdor example a voxel can 88% fibrog-
landular an@®0% fat). This is a phenomenon that is observed in all MRIs (paldirly of the breast), it

is caused by the limited resolution of the MR scanner and @wknas thepartial volume effect This

is illustrated in Figure 3.2. Hipwell et al. [Hipwell et a2007] used manual thresholding to obtain the

histograms of the segmented tissue types and then appligss@a smoothing on them to account for

the partial volume effect.

Parametric methods assume that the intensity histograraabf #ssue class follows a probability
distribution and the image voxels are classified to diffecdgsses by fitting the underlying distributions
(usually Gaussians) to the data. This is done by followinggpectation-Maximisation (EM) algorithm,
explained in further detail in sectibn 3.1.2, that iteralyvupdates the parameters of the probability dis-
tribution. This update can be based on the current estinfagéher the Maximum Likelihood (ML)

[van Leemput et al., 1999] or the Maximum A Posteriory (MARYya@meters, if a spatial prior is avail-
able. Using the spatial prior in the same framework is anaidge of these techniques, especially for the
brain tissue classification, for which anatomical priore ba extracted from atlases. Other advantages
are the ability to incorporate into the model a bias field ection and a regularisation according to the
classification of the neighbouring voxels. Our approachuihes both features and is explained in more
detail in the next section 3.1.2. It has been observed tleaintensity histograms do not always follow
a Gaussian distribution. To take into account this vanmgteuthors have proposed using mixtures of
Gaussians [Ashburner and Friston, 2005] or power-trangfdrmixtures/ [Lee et al., 2009] instead. The

parametric approaches provide a probability that each\lm{engs to one of the classes/tissue types.

Therefore, the final classification takes into account thigdaszolume effect, as voxels can belong to

more than one tissue type.
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3.1.2 Our approach

As in [van Leemput et al., 1999], our method integrates amnisity model, a spatial regularisation

scheme and bias field inhomogeneity correction in the saamadwork. The incorporation of spatial
information has been shown to improve classification resunithe past as it provides robustness to noise
and it allows the use of anatomical information. Specificédr breast tissue classification, MRF reg-
ularisation is considered an appropriate choice due to rlatoany of the fibroglandular tissue. Since
this is connected in a tree-like structure inside the breast hypothesis is that the voxels containing
glandular tissue are more likely to appear connected ta glhedular voxels rather than isolated inside
the fat (and similarly for fat voxels).

The intensity model assumes three classes (for glandalatisue and background) and the bias
field is modelled using a third order polynomial basis fumicti Instead of considering Gaussian dis-
tributed intensities corrupted by a multiplicative biasdjéog-transformed intensities are used to make
the bias field additive. FoK classes lef, = {u, o} denote the normal probability distribution with
meany, and variancer; of a voxel belonging to class and letz; = e, be the tissue type of voxe)
wheree;, is the unit vector with thé-th component equal to 1 and the others equal to zeroJH&sis
functions¢;(x), C' = {ci...c;} denotes the bias field parameters. The probability densitydxels,

with intensityy;, given it belongs to classis:
Flyilzi = ex, @y) = Go (yi — i — > ¢;05(22)), 3.1)
J

where®, = {04,...,0,,C} are the intensity model parameters a#igl() is a normal distribution with
mean zero and standard deviationThe model parameters are optimised using an EM algorithoerun
a Maximum Likelihood formulation. Due to the large variatiof glandular structures in the breast
across the population, there are no anatomical priorsablail Ifm is the iteration number, then the ML

estimation gives:
n m+1 J m
u(m+1) o Zi=1 Pﬁkl )(yi - Zj:l CS L)¢(»Lz))
5 =

~ . (3.2)
Dic PEZLH)
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(0, )t = o) , (3.3)
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where )
Z(_Z"Hrl) _ f(y1|z7 = €k, (I)y )f(zz = ek) (34)

S S ilz = e, )z = j)
The intensity model alone can only give accurate resultswthe different distributions are well
separated. This is not the case for the glandular and faktidge to many voxels containing both tissue
types (partial volume effect). The use of an MRF regulaiasescheme improves the overall robustness
of the model parameter estimation and provides spatialistemey. Voxels are thus classified based also
on the current classification of the neighbouring voxelsthia case, equations 3.2 dnd 3.3 remain the

same, whil¢ 3/4 is now given by:

(m+1) f(y1|zl = €k, (I)glm))f(zl = 6k’|p5\7;)a (I)»(ZM))
ik - K m m m)y’
S fwilzi = e, 0 f(z = e oy, @8™)

(3.5)
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where
e_ﬁUmrf (ek |P§\7;':)‘I>(zm))

Flzi = enlply) @) = (3.6)

m m Y
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with @, = {G, H} being the MRF model parameters aligl, ¢ (z|®.) the energy function that depends
ond,. G andH are K x K matrices that define the transition energy between clasagther details

of the bias field parameter estimation and detailed explamaof the other equations can be found in

[van Leemput et al., 1999].

The above regularisation makes the classification morestdbunoise and to isolated misclassified

voxels (e.g. isolated voxels classified as fat and surradibgeglandular tissue). Instead of estimating

the MRF parameters from the image as in [van Leemput et @9]1%ve use a two-level MRF with its

parameters derived from the anatomical properties of thadbfCardoso et al., 2011]. In the first level,
the interclass MRF energy is the same for all classes, tleusIBRF only adds global spatial consistency
and robustness in the parameter estimation. In the secane,safter the EM converges, the MRF
energy matrices({ and H) are altered in order to include more anatomical knowledgg. (the cost
of having glandular tissue next to the background is highan thaving fat next to the background) and
the classification is restarted again until convergencés irodification allows an unbiased and robust
parameter estimation in the first step followed by a secogpltstat enforces more anatomical knowledge
and topological constraints.

The values of the MRF energy matrix are chosen empiricaillgrder to produce realistic X-ray
mammogram simulations. More specifically, in our impleragioh we have used as matiixthe3 x 3

matrix:

Fat Gland Back
Fat 0 be 0
Gland | be 0 ba
Back | O ba 0

At the first stage of the EM-MRF classificationa = ba = 0.15. For the second stage, the paraméter
is altered toha = 6, to increase the cost of having glandular tissue (Gland) teelsackground (Back).
G is used as the energy matrix for the regularisation withentthnsverse plane of the volume. For MR
volumes with isotropic voxel$/ = G. OtherwiseH = r - G, wherer is the ratio of the slice thickness
over the voxel size within the transverse plane.

The implementation of this algorithm was done by M-Jorged@ao, working on brain MRI tissue

classification [Cardoso et al., 2011]. It was adapted folieafion to breast MRI (initialisation of the
two tissue type distributions and set of the costs betweam}tby the author.

The only requirement of the classification algorithm is tthegt pectoral muscle is pre-segmented
from the MRI. This is needed because automated intensigebaegmentation methods are prone to
error for this task. This boundary is not well-defined in thajonity of the cases, especially when the
glandular tissue is very close to the chest wall, or whenrsgdth intensities similar to fat (such as the

liver) are adjacent to the rib cage. We use for this task a-sert@mated pre-processing method, where
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the user defines landmarks on the boundary between the aletioscle and the breast through which a
parametric B-spline surface is subsequently fitted.
After classifying the voxels into fibroglandular and fatigsue, we then calculate the X-ray

attenuation volume intensities. In our first implementatiwe follow the method proposed in

[Hipwell et al., 2007], where these classes are weighted different factors in order to simulate the

difference in X-ray attenuation. The intensity of voxéh the X-ray attenuation volume is given by:
wg - Pl +wp - Pl (3.7)

wherew.;,ss (wg andwg) are the weights of each tissue type d?[gm is the classification result for

voxel i, for each one of the classes € P! < 1). The choice of the most appropriate weights was

lass
performed empirically. The goal was to produce simulatiafith similar contrast to X-ray mammo-
grams. In our later implementation the X-ray attenuatiolume is calculated using the methodology

described in appendix|B, removing the need for the empin@iyhtswg andwz. Our experiments

in sections 4.2]1, 4.2.2 anhd 4.8.1 use equation 3.7. All ileimgexperiments follow the methodology
described in appendix/B.

3.2 Perspective projection of the 3D volume

There are two different methods for projecting a 3D volumemy the parallel and theperspective
projection. As the name indicates, the parallel projectissumes parallel rays. Therefore if we assume
that the direction of projection is, then the intensity at each 2D position of the imdgge can be
calculated as the integral of the intensities of 3D image along thez direction:

Nz—1
k=0

wherei andj are the indices along theandy directions respectively anll; is the size of the 3D image
along thez direction.

Parallel projection was used by all previous MRI/X-ray maogmaphy registration techniques, but
this provides only an approximation of the real process. Askmow, the rays in X-ray mammography
are emitted from a point-like X-ray source (the anode) and thre not parallel. Perspective projec-
tion techniques assume that rays are emitted from a poimtsod he geometry and related work are

described below.

3.2.1 Literature

Several different perspective projection algorithms wera@posed in the literature, mainly applied to
rigid 2D/3D registration tasks, as the ones reviewed inise@.6. Ray-casting is a technique that is
widely used. To generate the projection image, rays areficasteach pixel in the 2D image through
the 3D volume to the X-ray source. The pixel value is thenudated as the integral of the ray in-
tersections with the 3D grid. This technique is explainedniore detail in the next section 3.2.2, as
we have also incorporated it in our framework. Ray-castgiganerally accepted as a methodology

that produces high-quality projections and is frequentigduas the reference to which other methods
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are compared. Nevertheless, its main disadvantage isttisatdmputationally expensive and this can
be critical especially in applications such as image-giiidéerventions and radiotherapy. Several ac-
celeration technigues have been proposed with a scope tooowe this limitation. These include the

use of data that are calculated from pre-computed projestiefore registration, as in graphics ren-

dering ([LaRose et al., 2000], [Russakoff et al., 2003])a@ updated progressively during registration
[Rohlfing et al., 2005].

An alternative to ray-casting is the shear-warp factoigsgf_acroute and Levoy, 1994] that avoids
calculating the integrals along each ray by warping the 3Dme to a sheared space, where parallel

projection gives the same DRR as the perspective projeatidhe original space. The method was

applied on 2D/3D registration by Weese et al. [Weese et@@9]L This technique is mainly used for
applications where the image quality of the projection im&gnot of great importance, as the resampling
steps involved in warping the 3D volume can lead to loss dditliet finer structures.

Another alternative to ray-casting is the direct projettiaf each voxel in the 3D image on
the 2D plane and the computation of the final DRR by interpmabn the projection plane. This
methodology is called splatting [Westover, 1990]; it wasdign medical 2D/3D registration by Birk-

fellner et al. [Birkfellner et al., 2005] and was later fugthaccelerated by a GPU implementation

[Spoerk et al., 2007]. The main disadvantage of this metisatie possibility of obtaining a 2D im-

age with spatially varying intensities, as the interpalatis only performed on the 2D space.

3.2.2 Our approach

The registration of MR volumes to X-ray mammograms is a pged¢bat can be performed off-line. The
registration result (ie. the transformation parameteag)tben be stored in the workstation and used by
the radiologist when assessing the image findings. Thergétthough the registration time is important
for any clinical application, it is not as critical as in ineguided procedures. At the same time, the
image quality of the simulated projection image should lghas the similarity between this projection
and the real mammogram drives the registration. For thesedéasons, we use in our framework a
ray-casting algorithm for the perspective projection & 8D volume.

The geometry of a ray-casting projection is shown in FiguBe Jo simulate a mammogram, the
X-ray attenuation volumé&” is positioned above the projection plane. The distance dmtvthe plane
and the X-ray sourc§ is calledfocal lengthand is typically around® = 660mm. This information is
recorded in the digital DICOM images. For each grid positarthe 2D plane®; ; we define the ray by
the pointP; ; and the direction:

d=5- P, =P8 (3.9)

We then calculate the coordinates..r,, of the ray at regular intervals along the ray’s path through t
volumeV. These are shown in Figure 3.3 as red crosses. As the raysghssegh the 3D volume, these

ray coordinates occur at non-grid positions. We theref@ednto use interpolation at each location.

Lemieux et al. [Lemieux et al., 1994] used tri-linear int&@agion. In this case, the value at each location

point is calculated from the nearest eight neighbourind gasitions. To accelerate this computationally

expensive process, Penney et al. [Penney, 2000] usedabilinrpolation at each intersection of the
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Figure 3.3: Perspective projection geometry.

ray with the slices of the 3D volume (so four neighbouringifiass are used for interpolation). Our
implementation uses the same principle, as this is moraegfficomputationally, without affecting sig-
nificantly the image quality. Finally, the intensity at theed position 7; ; is given by the integral of the
intensities at the above intersections:

n

Lp(i,5) =Y V() (3.10)

k=1

3.3 Experiments

In our initial registration experiments with data from fivatignts [Mertzanidou et al., 2010b] we have
used manual thresholding for the breast tissue classiitgtis Hipwell et al. [Hipwell et al., 2007]).
In [Mertzanidou et al., 2010a] we then proposed the mettomyotiescribed in sectidn 3.1.2. Figlre 3.4

shows a visual comparison between the two classificatiomadston two patients. The data used in
these experiments are described in seétion A.1.

In the figure we can see that the main advantage of the profdedRF method is that the final
simulated mammogram contains more details of the glandigtaue. It is also fully automated. Other
advantages over manual thresholding are the fact that ihés geproducible results, it takes less than
one minute to process each breast volume and it requiresn@lipire-processing interaction: the only
requirement is that the pectoral muscle is pre-segmentad tihe MRI, as discussed above.

Here we investigate further the benefits of the proposed ERFNhethod, by showing results in
comparison with th&-meanslgorithm and the use of the intensity model of secdtion 3aloge, without
the MRF regularisation. Figure 3.5 shows the pre-contraBi BF a patient and the corresponding
histogram. This is an example histogram which illustrates difficulty in segmenting the two tissue

types, as these do not appear clearly separated in the ingtggriam. In this instance, using intensity
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Figure 3.4: (a) Pre-contrast MRI, (b) X-ray attenuatiorwvoé using manual thresholding and histogram-based ctag#ifi, (c) using the EM-MRF algorithm, (d) Simulated
X-ray mammogram from the undeformed volume using manuestiolding, (e) using EM-MRF. The two rows correspond to tatigmts. The red cross indicates the position

of a corresponding coordinate in each image.
I\
©
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@ (b)

Figure 3.5: (a) Pre-contrast MRI of a patient and (b) theesponding histogram of the intensities.

information only (as in thé&-meansalgorithm or the fitting of Gaussian distributions) does piaduce

accurate results, as illustrated below.

Figure[ 3.6 shows the classification results of the threenigcles tested. Thik-meansalgorithm
gives binary segmentations of the fat and the glandulardisand as we can see in Figurel 3.6(a) the clas-
sification is clearly affected by the bias field in the MRI. Tdenefit of including the MRF regularisation
to incorporate neighbouring voxel information is also evitlfrom the images of Figufe 3.6. We can
see that the MRF provides smoother areas across the imagaesying erroneous voxel classifications
as glandular tissue, when these are all surrounded by féas. aBsumption is particularly useful for the
breast case, as glandular tissue appears mostly as akiestrlicture (and therefore connected) inside
the breast. Moreover, smoothing reduces the effect of ramiseresults in increased contrast between
the glandular and the fat tissue, which is desirable whenlgiting a mammogram, as the glandular
structures are then more visible. Figure 3.7 shows the simdilX-ray attenuation volumes and the sim-
ulated mammograms that both methods produce. More exampsasiulated mammograms using the
EM-MRF method are given in the next chapters, as resultseofMRI/X-ray registration process.

Finally, it is worth mentioning that although the bias fielshi@ction works reasonably well in our
framework, there are certain cases, where the bias fieldrjssteong, which results in failure of the
classification in certain areas. An example is shown is Ei@u8. In breast MRI the coils are very close
to the breast surface and therefore the intensity inhon&tyecan be significant. Future work could
investigate the use of alternative bias-field correctiothmés for those cases. A comparison of existing
algorithms specifically for breast MRI was performed by Makget al. [Makarau et al., 2010], where

themean-shifalgorithm was shown to outperform other techniques.

3.4 Discussion

In this chapter we have presented the X-ray simulation m®redetail and the intermediate steps that are
involved. Regarding the breast tissue classification, ppr@ach produces automatically segmentations

that are visually realistic, while performing bias-field@ztion. Moreover, the simulated X-rays contain
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(d) k-means Fat (e) EM only Fat (f) EM-MRF Fat

Figure 3.6: Breast tissue classification results for theepavolume displayed in Figufe 3.5, using the

k-means algorithm, the EM algorithm without and with the MRBularisation.
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(a) pre-contrast MRI (b) EM only X-ray atten. (c) EM-MRF X-ray atten.

(d) real mammogram (e) EM only sim.mammo (f) EM-MRF sim.mammo

Figure 3.7: The X-ray attenuation volumes and the simulatedhmograms produced using the EM
algorithm only and the EM-MRF. The pre-contrast MRI and #s& mammogram are given for compar-
ison. Note that at this stage there is no registration orrd&dtion of the volume before projection. The

simulated mammograms come from the original undeformed BIRme.

(b)

Figure 3.8: (a) Pre-contrast MRI with strong bias field anyitfie X-ray attenuation volume. The

inhomogeneity correction was not successful for this case.
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more fibroglandular structures than manual thresholding.

Quantitative validation of this algorithm is problematigedto the lack of a ground truth classifica-
tion of the breast tissue. The fine nature of the ductal né¢waomd relatively coarse resolution of the
MRI in comparison, mean that the partial volume effect isssaibtial. For this reason manual delineation
of the ductal network to produce such a ground truth datassetpractical. The choice of the EM-MRF
approach for this application therefore, was made basedsomdvantages over manual thresholding
discussed above, and also because it has been succesphligdeand validated for the classification

of different tissue types visible in MR images (albeit brégsue classification) by van Leemput et al.

[van Leemput et al., 1999]. We believe the use of physica)Xreference data in the simulation process
creates images with intensity characteristics close toohr@al X-ray mammograms. However given the
lack of an appropriate validation strategy, this assummptioist be evaluated, alongside our choice of the
other registration components, with reference to the fiegilstration error obtained by the experiments
described in the following chapters. An alternative autdanethod targeted for this task was recently
proposed by Gubern-Merida et al. [Gubern-Merida et al. 1201

Regarding the perspective projection methodology, ragitg produces high quality images, with
a higher computational cost in comparison to other techesquin the next two chapters, where we
combine the volume transformation with the ray-casting vileraview techniques that accelerate this
process.

Using the methodology described in this chapter we can wlsiaiulated X-ray images that can
be directly compared with the real mammograms. Neverthetbgre are several difficulties that still
remain and are associated with this comparison. Firstignef/we assume that we know the exact
deformation of the breast that occurs during mammograpimgpeession, the fibroglandular structures
in the simulated X-ray image will not have the same appea@asdn the real mammogram. The main
reason for this is that the image is generated from the MRasighthe tissue, which is a different
physical property than the X-ray attenuation and therefioeeexact relationship between them is not
known. Other aspects that differ between the two imagesharspatial resolution and the factors that
contribute to the degrading of the image in real X-ray adtjois such as the quantum noise of the X-
ray source and the scatter. These factors were reviewedfiosd.2.1, where the X-ray mammogram
acquisition was described in detail. Despite the remaiuiiffgrences between the images, the X-ray
simulation process facilitates the MRI to X-ray registatitask, providing images that can drive the
registration, when using an appropriate similarity meadatween them. This is evident both in the

visual and in the quantitative results of the registratiopeziments described in the next chapters.



Chapter 4

MRI to X-ray registration using an affine

transformation

In this chapter we describe in detail our 2D/3D registrafiamework and the experiments carried out
for the alignment of MR volumes to X-ray mammograms. In adigh experiments we use an affine
transformation model to approximate the breast deformdteiween the prone position in the MR scan-
ner and the compression between two plates during X-ray nagraphy acquisition. As described in
section 2.1, the affine transformation consists of a rigidybtransformation plus scaling and shearing.
Our hypothesis is that the rigid-body transformation cagoaat for the initial positioning of the breast
between the X-ray source and the detector, while the scatidgshearing can approximate the deforma-
tion caused by the plates’ compression. Although the resddirdeformation is more complex, the goal
of these first experiments is to investigate whether a gladgastration with a simple geometrical model
can give useful clinical accuracy. The main advantage ofaffiee transformation is the low number
of degrees of freedom (twelve) which is expected to add roless to the ill-posed 2D/3D matching
problem.

The chapter is structured as follows. Section 4.1 desctheegeneral 2D/3D registration frame-
work and its components. The next two sections (4.2 and 4€8jribe the experiments carried out on
simulated and real mammograms respectively. Finally, mtéeges and limitations of this approach are
discussed in section 4.4.

4.1 Registration Framework

An overview of the registration framework is given in Figi#el. The main registration components
are further described in the next sections. The inputs teodgistration pipeline are the fixed, or target
image (the real X-ray mammogram) and the moving, or sour@g@(the X-ray attenuation volume
estimated from the MRI). Prior to registration, the userc#fjes ametric (similarity measure), to be
used to assess the similarity between the two images. Dtheggistration the value calculated by the
metric is used by theptimiser which iteratively updates theansformationparameters. In this chapter,
we confine our investigations to the affine transformatidmeri; thenterpolatoris used to compute the

values of the moving image at the pixel positions of the fixadge, by projecting the 3D volume into
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Figure 4.1: Overview of the 2D/3D registration frameworkeélprocesses are illustrated in blue and the

data in red. The output of the registration is used for mappigtween the MRI and the X-ray image.

2D. The resulting image is used again for comparison withahget, where a new iteration begins. The
projection from 3D to 2D is performed by the interpolator. €Tjprocess is repeated until the stopping

criteria are satisfied (for example the similarity measar@ maximum).

The main difference of the 2D/3D process in comparison to@eational intensity-based registra-
tion pipeline is that the interpolator component has beedified in order to incorporate the ray-casting
from the X-ray source to the 2D detector. In a registratiak taetween two images of the same dimen-
sionality, every grid position of the fixed image is beingisormed and the intensity at that point is
given by the interpolation of the intensities at the neigihibtg pixel or voxel positions in the moving
image. In the 2D/3D case, the interpolation occurs as th&aagverses the moving volume grid, in the
way described in section 3.2.2. Consequently, the targatmagram is compared with a 2D projection

of the X-ray attenuation volume at each iteration.

There are different options for combining the transfororatnd the projection of the 3D volume.
One would be to resample the 3D grid into a new, transforméghve and then perform the ray-casting
through the new grid. The main drawback of this method is figh ktkomputational cost associated
with an extra 3D interpolation followed by ray-casting. Mover, the transformed 3D volume is not
needed, since we only use the simulated projection to caripaith the real mammogram. A different
method makes use of the fact that the affine transformatiesepves parallelism. In other words, the
ray that passes through the affine-transformed volume resvaastraight line. For this reason, instead

of transforming the 3D grid, we can transform instead the (fay the projection plane and the X-

ray source). The same approach was used previously fornegidtration tasks ([Penney et al., 1998],
[Hipwell et al., 2003]).

We have seen the effect of an affine transformation on a volunsection 2.1. The 3D affine
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transformation has twelve parameters; these includelaigmss (¢, ¢,, t.), rotations(r,, r,, ), scal-
iNg (ss,sy,s.) and shealshy,, shy., sh,.). We create an individual matrix for each one of these

parameters and concatenate them into one matrix

T = Ttranslation . (Trotation : (Tscaling . Tshearing))- (41)

Instead of optimising the matrix coefficients’Bf we optimise the affine parameters defined above. This
allows us to easily include the volume preservation coimgtes explained below.

The source volume of the registration framework is the MR ik acquired in the prone position.
From this point onwards we refer to the MRI breast shape asitideformedoreast. Our first exper-

iments, that are described in section 4.2.1, have shownaiitlabut any constraints the breast volume

can increase during registration [Mertzanidou et al., 2)1This happens due to the fact that the 2D/3D
alignment is an ill-posed problem, and thus during optitiigathe scaling in the direction of the pro-
jection, if it is not constrained, can be trapped in localimiz or lead to physically unrealistic expansion
or contraction of the breast. To avoid such non-physicalva variations, for example an expansion
for CC views in the superior-inferior and also in the postednterior direction, we include a volume-
preservation constraint, by ensuring that the productlodcaling factors across the three dimensions
is unity (s, - s, - s, = 1). This is done by constraining the scaling on the directiothefprojection

(superior-inferior for a CC view) to be
1

Sy Sy

This constraint removes one degree of freedom from the dgdiion process, reducing the size of the

4.2)

S, =

search space and potentially enhancing the robustness oédfstration [Mertzanidou et al., 2010al].

A good initial position of the volume before registrationimsportant as it can lead to fast con-
vergence and it also reduces the likelihood of the optinusagetting trapped in local minima. The
projection geometry used is shown in Figlre/ 4.2. The digtdmetween the X-ray source and the de-
tector can be extracted from the DICOM header of the FulldFizgital Mammograms (FFDM). The
initial translation of the volume in the direction of the ction (z axis) ensures that the volume is po-
sitioned on top of the detector. The volume is also trandlat¢he perpendicular planey plane) such
that the centre of mass of the volume is projected onto thereeeh mass of the real mammogram. Let
Oy = [0, 0, 0] be the origin of the volum& andO p the origin of the projection plane. Thenffis the

distance between the X-ray sourg@nd the projection plane, the X-ray source is positionet siat:

where My = [My,, My, My .| is the centre of mass of the volume aiid. is the size of the:

dimension of the volum&” in mm. The origin of the projection plan@p is:
Op = [Mys — Mpy, My, — Mry, dy:], (4.4)

whereMy = [My,, Mr,, Mr.] is the centre of mass of the target image (real mammogram).
Regarding the initial orientation of the volume before ségition, this is illustrated for the CC view

in Figure 4.2(b). The initial rotation, scaling and sheaiapaeters are set to zero. For the MLO view, the
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Figure 4.2: (a) Projection geometry used in the registnagbowing the X-ray source, the breast volume
V" and the projection plane. Before registration the volurmie positioned such that = 660mm. This
is extracted from the DICOM header of the real mammogramlli{istration of the initial position of

the breast volume in V prior to registration for a CC view.

volume is rotated about the y axis,£45°), to account for the positioning of the X-ray source &mel
detector and also about the z axis to account for the in-plata¢ion of the breast that usually occurs in
the MLO view mammograms. We experimentally determined anahitialisation ofr,=30°produces a
good initial position for the registration. An example oétBRRs generated for one case at iteration O,
for CC and MLO view registrations, is given in Figlire 4.3.

In the next two sections we describe in detail the differemilarity measures and optimisation

techniques that we tested in our framework, as part of thé& described in [Mertzanidou et al., 2010b].

4.1.1 Similarity measures

As the name of this registration component indicates, thelaiity measure provides a quantitative
measure of the similarity between the fixed image and themgksal moving volume, after it has been
transformed (and in our case projected). There are sevéfatemt similarity measures that can be
used, such asleanor Sum Squared Differencg®Normalised) Cross CorrelatiqrGradient Difference
Gradient Correlation (Normalised) Mutual Informatioetc. The similarity measures that were used in
our experiments are further explained later in this secfidre choice of the most appropriate similarity
measure is application-specific. Each one of them has itsolaracteristics that make it most suitable
for a certain registration problem. For example, some perfoetter in cases where the images have
similar intensity ranges or others when the image integssidire not related with a linear relationship
(like in multimodal registration).

We have seen in the literature review (section 2.6) thataasthave used various similarity mea-
sures for 2D/3D registration. Between these, it has beewrslibat gradient and correlation based

measures perform best. A comparison of different metrieg tlas been done by Penney et al.

[Penney et al., 1998], showed that apart from Gradient Bffee, another metric that performs well
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(a) CC view

(b) MLO view

Figure 4.3: lllustration of the initial position before istyation for the (a) CC and (b) MLO view of one
case. Left: Target mammogram in the registration spaceight overlaid with the DRR outline shown

in green, created at iteration 0 of the registration pracess

is Pattern Intensity Nevertheless, this was due to the application of that fipeegistration task, where
in one of the image there was an interventional instrumeesgnt that did not appear in the second
image. Pattern intensity has been proven to be robust te ttiesnges. As in our case there are no
additional objects present in one of the images, the slitabf this similarity measure is not examined.
Instead, since the intensity ranges between the two imagesirailar for the first set of experiments
(section 4.2.1), apart from the Normalised Cross Corm@basind Gradient Difference metrics, we also
tested the performance of Mean Squared Differences. Mereae used Mutual Information, which is
a popular measure in multimodal registration. In this casedo not need to simulate an X-ray at each
iteration of our algorithm, as the relationship betweenithages that are compared does not have to be
linear. Instead we use directly a perspective projectiah®segmented MR volume.

In our first set of experiments, that are further describeseiction 4.2.1, we have tested the per-
formance of the similarity measures that are most suitaivléhis 2D/3D registration task, as discussed.

The description of these similarity measures is given below

Mean Squared Differences (MSD)lhis similarity measure computes the pixel-wise diffeesnof the
intensities between the two images and returns the mearesé thquared differences across the whole
image or the region of interest that is specified. In mathemlaterms, for two images! and B, this
similarity measure is given by:

N
MSD(A,B) = %Z(A,; — By)?, (4.5)

1=1
where4; is the intensity at the-th pixel in imageA, B; is thei-th pixel’s intensity in image3 and NV

is the number of pixels in the region of the two images thabisstdered for registration. For a perfect
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registration result, this measure gives a zero value ifritensities in the two images are identical.

This metric is very sensitive to differences in images aratient and subsequently is only used for
registration of images that come from the same modalityliaed using identical imaging parameters,
and assumes that there is no tissue change between the gniagénpoints. The purpose of testing the
performance of this metric in our case is that for the firstofesixperiments, in section 4.2.1, we only
use simulated X-ray images and thus this metric should betaldirive correctly the registration. For
the experiments on real X-ray mammograms this similaritasoee is not expected to perform as well.
Normalised Cross Correlation (NCC)This metric assesses the similarity between two images oy co
puting the pixel-wise cross-correlation between them aodnalising the result by dividing by the

square-root of the auto-correlation of the two images. Theton for imagest and B is:

> (A4 —A4)- (B = B))
NCC(A,B) = = — —. (4.6)
VEN (A - A2 YN (B - By

where A and B are the mean values of the intensities in imagand B respectively. Higher values in

correlation indicate greater similarity and since the itdsunormalised, a perfect registration result gives
NCC(A,B)=1

Normalised cross-correlation is a similarity measure ihatiitable for images that come both from
the same and also from different modalities with a lineagnstty relationship, due to the normalisation
done when dividing with the autocorrelations of the imag&khough this measure is sensitive to the
presence of additional structures in one of the two imadws, dase does not appear in any of our
experiments and so this similarity measure is considerbe @ppropriate for our task.
Gradient Difference (GD) Gradient-based measures use the gradient instead oféinsiitytinformation
of the two images. The gradient images on thand they direction are computed using the Sobel
operator. More specifically, gradient difference operatethe differences of those gradient images, that

are given from the equations below:

.. 0A 0B
Taifpm (i, j) = 5 Y 4.7)
0A 0B
Lyigyv (i, j) = N aa—j, (4.8)

where A and B are the original images andis a scaling factor. The gradient difference is then given

from:

4.9
Z Ap + IdzfjH i, 7)) Z Ay + Idszv(l iN? (4.9)

whereA, andA4,;, are constants and are equal to the variances of the gradiagesl; s v andly;f o
respectively. As we can see from the above equation, thertib# registration of the images, the higher
the value of the similarity measure.

Gradient Difference minimises the effect of the lower sgafiequencies of the images, as the
filtering enables the alignment based on the edges of thetstas. This is a desirable property for the
registration of breast images, as we are interested iniatigihe fibroglandular structures that create

edges when projected from the 3D volume to 2D.



4.1. Registration Framework 60

Mutual Information (MI) Mutual information estimates the similarity between twagas by calcu-
lating their entropy. For a random variable(that in our case is the image intensity of the image A), the
entropy is given by:

ZPA )log pala), (4.10)

wherep 4 (a) is the probability distribution of the intensities in imagelf the intensities of two images
A andB are independent, then their joint entrofif A, B) is equal to the sum of their entropié5 A)
and H(B). Otherwise, the difference between those values can giwemseasure of the dependency

between the two images. This measure is called mutual irgfoom and it is given by the following

equation:
MI(A,B) = H(A) + H(B) — H(A, B) (4.11)
or alternatively:
pap(a,b)
MI(A,B) = a,b)log ———"——. 4.12
( aijpAB Jlog = (412)

The higher the mutual information is, the greater the depeayl between the two images. The main
characteristic of this measure is that the type of dependeetween the two variables does not have to

be specified and that makes it a widely used similarity meafrmultimodal registration.

This metric was introduced for image registration by ViotadanNells ([Viola and Wells, 1997],

[Wells et al., 1996]) and [Collignon et al., 1995]. Similgsmoaches were also proposed at the same

time ([Studholme et al., 1996], [Studholme et al., 1999]heTmarginal and joint probability densities

are estimated by drawing a random sample of elemgatsd using the following equation:
. 1
pa(a) = P*(a) ZFS'ZK(G—Sj) (4.13)

where K is a window function that integrates to 1 (usually the Gasslensity function) an@vys is
the number of the samples useH? (a) is known as the Parzen window density estimate. Finally, the
entropy of variabled is computed using a second intensity samplend is given by:

H(a) = NR - > P*(rj) - log P*(r)) Z log P* (), (4.14)
ri€R r;ER

whereNg is the number of samples iR.

Mutual information does not assume a linear relationshipvéen the two images. Therefore, when
using this similarity measure we do not need to simulate aayXat each iteration of the registration
(by segmenting the MRI and computing an X-ray attenuatiolurme), as the two images that will
be compared do not need to have intensities in the same rangiead, we use a simple perspective

projection of the original MR intensities.

4.1.2 Optimisation

Generally speaking, optimisation is the process of seagctur the best element, between a number of
alternatives. In mathematical terms, optimisation teghes aim to maximise or minimise a function

by determining its maximum or minimum value respectivelgr Every optimisation problem, we need
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to define thefunction whose extremum we want to locate, thariablesor parametershat we vary
during this search and thange of the search space. Optimisation is an iterative procestsntax-
imises/minimises the defined function by varying the pattansein a specified range and finding the
optimum values.

In the image registration problem, the function is the smiy measure (as discussed in sec-
tion[4.1.1) and the variables are the parameters of theftianation that we use (as described in sec-
tion[2.1). At each iteration of the registration the paraamefire updated to give a new instance of the
moving image. This is then compared with the target imagettaadesult of the similarity measure (cost
function) is passed to the optimiser, where a new iterategirts.

There is a wide range of different optimisation algorithmisch as th&radient DescentConju-
gate Gradient Evolutionary Optimiser&nd Powell Optimiser They all have several advantages and
drawbacks and the choice is application specific. When thetifumdoes not have a “noisy” behaviour
(rapid changes in certain directions, for small changes®fvariables) and the initial position is close
to the total minimum/maximum, then the most commonly usdihoper is the Gradient Descent. The

behaviour of this optimiser is explained in more detail belo

Gradient Descent optimiserThe Gradient Descent optimiser (also known as steepestiidés search-
ing for a function’s minimum (maximum) by moving towards thegative (positive) direction of its gra-
dient. We assume that we have an one-dimensional fungtiohthat is defined in a specified range of
2 and also its gradient can be calculated (or approximatetiieisame area. Then, the gradient descent
method is based on the fact th&tr) decreases faster if one moves from a certain pBit the direc-
tion of the negative gradient of the function at that pointcérding to this, the optimiser starts from an
initial estimate of the function’s minimum at point, and iteratively updates this position with a new

estimationzy, zo, x3..., Wherez; is given from the equation:
= xi-1 — &V f(xiz1), (4.15)

ande; is a small positive value that defines the step of the optinvigéch can change in each iteration.
As f(x) decreases in the direction of its gradient, then for a sexpiefpointse,,: f(z¢) > f(x1) >
f(z2)... etc, corresponding to a number of iterations, the optirusatill converge to a minimum.

In image registration, the function to be minimised/masied is the similarity measure and the
variables are the transformation parameters. The gradestent method is widely used, especially for
metrics that give smoothly variable values for small charigehe parameters of the transformation. In
our experiments, we are using a variation of this optimisatechnique, that follows an update scheme
based on a user-definettp-size. For a set ok parameters to be optimised, each parameteupdated

according to:

X (Vf(k’l71) )2
= vk

whereV f(z) is the magnitude of the gradient of the similarity measurthweéspect to parameter

andw(z) is a scalar weight factor that controls the relative magigtof the step sizetep for each
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parameter. Thetep size decreases during optimisation if the direction changalicating that the
similarity measure is close to the minimum value. The optation terminates when the magnitude of
the gradient, for all parameters, is smaller than a pre-edfinlerance value.

The gradient descent optimiser does not perform well foricgethat have either a noisy behaviour,
various local minima or a long narrow valley that leads toghebal minimum. In these cases we can
use other alternatives, such as an evolutionary optimsdeacribed below.

Evolutionary Optimiser Evolutionary optimisers approach an optimisation probiemway that is in-
spired by biological evolution, as their name indicateseéch iteration, this optimiser selects randomly
a new position for the variables inside the parameter spabis choice is controlled by a probability
function that is centred at the current value of the variglled it either grows or shrinks, according to

the following update rule:
T =T +ag T (4.17)

At - Cgrows Iff(l’ )<f(ﬁ)
ai =4 o " (4.18)

Gt * Cshrink, otherwise

— T, 0 f(@em) < f@opt) (4.19)

Topt, Otherwise
where ¢y 0w, Csnrink, ao andzy are given as inputs angy = N (0, 1) is a random vector with
isotropic normal distribution of zero mean and one variantieere are several different variations of

the above notation in the literature. In our experiments,uae the modified version of Styner et al.

[Styner et al., 2000], where the normal density functiongdated by using a matriA that relates to the

covariance matrit = A - A7, instead of a simple scala.
Evolutionary optimisers are well-suited for optimisatiohfunctions with noisy and random be-
haviour. In our experiments, we are using this optimiserdmbination with the mutual information

(MI) similarity measure, as the gradient descent optimisémnot perform well with the MI.

4.2 Experiments on simulated mammograms

As a first step of our MRI to X-ray mammography registrationdst and in order to ensure that the
proposed framework performs reasonably in a simple registr task, we used only simulated X-rays,
rather than real mammograms, as the target images for tlwviog experiments. These simulated
images were created using the method described in cHapt&hi3. way, the similarity between the

generated DRR at each iteration of the algorithm and thestangage is high if the transformation is

recovered correctly. The only difference in the way thattdrget image is created in comparison with
the DRR at each iteration, is that it contains Poisson nagseaccount for the the quantum noise that
occurs when photons are emitted from any X-ray source, @asigied in the previous chapter (section
3.4).

In the experiments described below, we used the reprojedtivor ([Masutani et al., 1997],

[Hipwell et al., 2003]) for evaluation. The main conceptlisstrated in Figure 4.4. All the points;
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Figure 4.4: lllustration of the reprojection error used byddtani et al. [Masutani et al., 1997] and

Hipwell et al. [Hipwell et al., 2003] for the evaluation of 2ED registration tasks.

in the volume are projected on the 2D plane to give the paintby using the ground truth affine matrix
G. Then, those points are reprojected back into 3D spaceppiiegl a lineL;, using the affine matrix
T resulting from the registration process. For each voxetdioate in the volume®;, the reprojection
distanceD; is equal to the minimum distance of the poiftto the lineL;. For a perfect registration the

line L; passes through; and thus the distance is zero. For the whole volume, the jesgiion error is

N 2
D =] 722'7\} bi (4.20)

where N is the number of voxels in the volume. The use of this metrimastly suited for vascular

given by the equation:

imaging applications, where the imaging object is poséapproximately in the middle of the distance
between the X-ray source and the detector. In mammograghlréast is close to the detector, so the
reprojection error gives almost identical results to thedance of the points (lesions or landmarks) in
the plane of the detector. Consequently, we later use thes2Bnde as the error metric.

In the experiments described in section 4.2.1, the goal wdsest different similarity measures
to identify the one that performs best, while we recover ankm@D affine transformation. Then, in
section 4.2.2, we use simulated mammograms generated éarbneast compressions, to evaluate how

accurately an affine transformation can approximate thesbimpression in a 2D/3D registration task.

4.2.1 Recovering a known affine transformation

The goal of this set of experiments was to examine the pedoom of several similarity measures (and
optimisers where necessary) in a 2D/3D registration, ireotd recover a known 3D affine transfor-
mation of the breast volume. In all the experiments we haeel sgmulated CC view X-rays from the

MR volume. Initially, we applied a known affine transfornmatito the MRI. This deformed volume

was used to to simulate an X-ray image that would be the targege of the registration. The original,

undeformed MRI was used as the source image. These expésimere part of the work described in

[Mertzanidou et al., 2010b].

In these experiments we have used MR images of five patieatgribed in section All. The
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Affine parameter || Distribution

translation in X, along plate position Normal,;x = 0, 0 = 18mm

Vs

translation in Y, direction of the rayg Normal,;u = 0, 0 = 5mm

translation in Z, closeness Uniform, min = —15mm, max = 15mm

rotation in Y, in-plane|| Uniform, min = —15°, max = 15°

rotation in Z, rolling || Uniform, min = —11°, max = 11°

scaling in X, expansion| Uniform, min = 0.5, max = 0.9

scaling in Y, compression Uniform, min = 1.1, maxz = 1.5

shear between X and Y axis Normal,;u = 0,0 = 0.25

Table 4.1: Distributions from which we have randomly chogenparameters of the affine transforma-
tion, in order to deform the MR volume and create the targetges. The coordinate system that we

refer to is shown in Figure 4.5.

MR volumes have voxel dimensior}$.33 x 1.33 x 2.5lmm? and a coronal slice orientation. The
simulated mammograms have a pixel sizélok 1]mm?. Although real mammograms have typically
finer resolution, the simulated ones are limited by the MRVe@ that the MR voxels are not smaller that
1mm at each direction, we have usfidx 1]mm? for the 2D pixel dimensions. This way we ensure that
the accuracy is not affected, while at the same time the ctatipnal cost of the ray casting algorithm
is reduced, as rays are cast from each pixel position to they)source for the mammogram simulation.

The choice of the appropriate affine transformation pararsetias done based on the parameters

that were used by Tanner et al. [Tanner et al., 2008] for thetcoction of breast Statistical Deformation

Models. To approximate the compression of the breast, we ssaing along the two in-plane axes. To
approximate the volume conservation constraint when asbie@ompressed, the choice of the scaling
parameters ensured that expansion on one direction leatsrtpression by the same amount on the
other direction. The distributions from which we randomhose the affine parameters are shown in
Tablg 4.1. These include rolling, in-plane rotation, ttatisn in 3 directions, scaling and shearing. The
coordinate system that these parameters refer to, israast in Figuré 4.5.

We have performed in total 40 experimeriisc2 x 4), for which we have used 5 patients, 2 random
affine transformations per patient from the distributiom§able 4.1 and the 4 similarity measures that
were discussed in sectipn 4.1.1. The choice of two affinesteaimations was made in order to perform a
certain number of registration tasks that would indicagestiimilarity measures that are most appropriate
for this task. As the number of available MRIs is five, we cdesithat 40 registration tasks are adequate
for this first set of experiments. The optimiser used waswianiary for the Mutual Information and
Gradient Descent for the other metrics. Some represeatasults for all patients are shown in Figure
[4.6. The detailed reprojection error results are given ld4d.2 for all four similarity measures.

The results on the first set of data indicate that simulatimgaay image performs better than a

direct projection of the MR intensities and the use of Mutiddbrmation. Both visual and numerical
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Figure 4.5: lllustration of the coordinate system used édkperiments with simulated mammograms
(CC views). The parameters of the affine transformation inlél@.1 were chosen according to this

coordinate system.

Table 4.2: Reprojection error results (in) of the experiments on simulated X-ray data using all four
similarity measures. The experiments were carried ougu$ia MRIs of 5 patients. For every patient,

there were two known affine transformations applied (affnd aff. 2), as explained in section 4.1.

patient 1 patient 2 patient 3 patient 4 patient 5
aff. 1 | aff. 2 | aff. 1 | aff. 2 | aff. 1 | aff. 2 | aff. 1 | aff. 2 | aff. 1 | aff. 2
before reg. 11.14| 11.60| 10.14| 15.9 | 24.73| 12.39| 8.93 | 15.95| 21.77| 15.22

after reg.(GD) 154 | 655 | 403 | 198 | 591 | 11.09| 0.61 | 5.76 | 13.73| 1.60
afterreg.(NCC)| 3.42 | 1.07 | 357 | 231 | 6.78 | 869 | 091 | 573 | 624 | 6.0

afterreqg.(MSD)| 16.54| 2.78 | 16.95| 20.3 | 29.53| 13.52| 13.73 | 24.13| 17.78| 7.34
after reg.(MI) 20.82 | 40.82 | 45.94 | 36.40 | 50.82| 11.26 | 29.87 | 29.00 | 82.25| 72.56
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results show that the registration using Ml has failed. Bemthe rest of the three similarity measures,
Normalised Cross Correlation and Gradient Differenceqraréd best. In these two cases, the mean
reprojection error across all 5 patients was reduced frémm before registration td.34mm for the

GD and4.27mm for the NCC. We can see in Table 4.2 that for both metrics, ther elecreased after
registration for all cases, apart from one (patient 5, affihe Looking closely at this case in Figure
[4.6 (row 5), we can see that this patient has a breast thamissalentirely composed of fatty tissue.
As a result, the registration algorithm is expected to teat@ in local minima, since there are few
fibroglandular structures to contribute to the image siritjlaand so the registration is only affected
by the alignment of the breast boundaries. This case wasdeatlfrom the calculation of the mean

reprojection error.

The results in Figure 4.6 demonstrate that GD and NCC peddrhest. Ml is the only metric
that failed to register the images in most of the cases. MSDnloa performed as well in general and
the images were in most cases aligned only on the breast boaad This is a metric that will not be
useful when using real X-ray mammograms, due to its seitgitvscaling or offset intensity differences
between the images. In terms of performance, NCC convergleds iterations than the other similarity
measures. The experiments indicate similar performarweeahé tested similarity measures, as the ones
reported for other 2D/3D registration tasks in the literat{section 2.6).

4.2.2 Recovering a real breast deformation

The goal of this second set of experiments was to evaluatenw®lithe affine transformation performs
when registering the undeformed MR volume to a simulate@ythat was created using an MR image

of areal breast compression. In these experiments we usgika sf real MR compressions of the breast

from 8 volunteers, described in [Tanner et al., 2011] and@e@.2, in the lateral to medial direction.

Figure 4.7 illustrates the images acquired for one voluntaeur experiments we used the undeformed
MRIs (for the source images) and those that correspond tondeémum amount of compression (to

simulate the target X-ray images). Figure]4.8 shows exasrgflthe MR compression images (volume
sizes: 1lmm x 1mm x 2.5mm?). The gold standard correspondences in this case wereatstirby

manually picking 3D landmarks between the undeformed aaaddmpressed MRI. These experiments

were part of our work described in [Mertzanidou et al., 2Q®0al [Mertzanidou et al., 2012a] and they

included the volume preservation constraint.

The mean reprojection error [Hipwell et al., 2003] for thesperiments was reduced 383mm
(with a standard deviation df.59mm) after registration, from an initial 1.58mm (std 6.65mm) mis-
alignment. All results are shown in Table 4.3. The resulédate that the affine transformation can give
a clinically useful accuracy when registering 3D volumeXimys that have been generated using real
compression images. These are promising results, althitbegtrror is expected to be higher when using
real X-ray mammograms, as the similarity between the sitedl®RR at each iteration and the target

mammogram will change significantly.
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Patient 1

before MSD NCC GD MI
Patient 2

before MSD NCC GD MI
Patient 3

before MSD NCC GD MI
Patient 4

before MSD NCC GD Ml
Patient 5

before MSD NCC GD MI

Figure 4.6: Results of the simulated X-ray mammogram erpents for all patients (1 case per patient).
The images show the intensity differences between thettargege and the projection of the source,
before and after registration for all the similarity measurested (MSD, NCC, GD and Ml). For Ml the
results are shown using a chequerboard, as the MRI projeistioot a simulation of an X-ray and thus
the intensities cannot be directly subtracted from theetairgage. Each square alternates the intensities

between the two images: the target mammogram and the poojexftthe source after registration.
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Figure 4.7: lllustration of the real compression MR imageguired for one of the volunteers. The
volume on the left corresponds to the uncompressed breastrebt of the volumes from left to right

have increased amount of compression applied from thealdtethe medial direction.

Figure 4.8: Coronal slices of the data used for evaluatior8feolunteers (a)-(c). From left to right in

each image: MRI slice before and after compression.

Table 4.3: Reprojection error (in mm) for the eight volumselgefore and after registration.

vl V2 v3 v4 vb V6 V7 v8 mean | std
before reg. 587 | 20.1 | 17.69| 19.85| 4.01 | 8.6 5.97 | 10.56 || 11.58 | 6.65
after reg. 267 | 6.24 | 596 | 3.83 | 152 | 4.0 2.98 | 3.49 3.83 | 1.59

afterreg. (std) | 1.9 2.4 3.2 1.1 0.6 1.9 1.4 1.8 - -
after reg. (max)| 6.6 9.9 12.1 | 5.2 2.6 7.6 5.3 7.2 - -
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4.3 Experiments on real mammograms

In the following sections we present the results of the vapreserving affine transformation model on
the registration between real MR and X-ray images. Detdngigold standard correspondences in real
cases is not a trivial task and therefore requires the egparton of radiologists. The following sections
describe in detail the experiments carried out on two difiedatasets. There is also a clinical validation
experiment that was carried out as part of the HAMAM projétAMAM, 2012] in collaboration with
other partners. This is described in appendix C.

4.3.1 Validation using visual assessment on digitised manograms

Our algorithm was initially tested on MR images and digifisém mammograms (CC views) of a
dataset of five subjects from a high-risk population (sec#iol). As gold standard correspondences
were not available for this dataset, the results were etedudsually. Figuré 4.9 shows the registration
results. Although we cannot obtain a quantitative valmative can see that the similarity between the
real mammogram and the projection of the source volume adtgstration has greatly improved, with

the breast volume expanding to the medial and lateral dwectThese experiments were part of the

work described in [Mertzanidou et al., 2010a].

4.3.2 Validation using radiologists’ annotations on FFDM

In these experiments we used clinical datasets of MRIs amaM&(section A.3), both CC and MLO
views, that were acquired approximately at the same timathoiThe voxel resolution of the MRIs
varied, as the images were acquired from three differentrera. The majority had a resolution of
either[0.9 x 0.9 x 1.0]mm? or [0.6 x 0.6 x 1.3]mm?; whilst one had a resolution §.7 x 0.7 x 2Jmm3.
The original resolution of the X-ray mammograms i@g x 0.1]mm? for all of the cases apart from
one that wag0.085 x 0.085)mm?; they were subsampled by a factor of 10 for registration technthe
MRI resolution and reduce the computational cost assatiaith the ray-casting.

The patients had a range of different pathologies. One opdtients had an MR and X-ray com-
patible clip inserted after breast biopsy (section A.4This was used as ground truth correspondence.
The rest of the patients had clearly visible findings in bothdalities. These were annotated and the
annotations were used as gold standard correspondencediftation. For the annotated data, the MR
findings were marked using one or multiple spheres, whilexthay images using either a disk, or more
frequently a free-form shape defining the outline of the figdi

As it is generally harder to annotate the 3D images accyrdlel spheres did not always represent
the finding’s actual volume, but were rather centred arotndAs a result we consider as the most
appropriate error metric the distance between the cenfréscannotated regions. In all the results
shown below, the registration error is the 2D Euclidearagist between the centres of mass of the X-ray
annotation and the projection of the MR annotation, afténgpdeformed with an affine transformation.

For validation we have performed in total 113 registratiasks, including both CCn(= 55) and

MLO (n = 58) view mammograms. These came from 49 patients, some of wiaidimultiple studies

1in most of the cases these were acquired the same day, ovetrafi wimonth.
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Figure 4.9: Registration results on real data (5 cases, enp). From left to right: projection of the
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source volume before registration, after registrationraadl X-ray mammogram. The red cross indicates

the position of a corresponding coordinate in each image.
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Figure 4.10: Histogram of the registration errors cal@ddrom 113 registration tasks. In red is shown

the median valuel@.1mm) and in green the outliers.

of MRI and X-ray mammogram pairs acquired at different tinTese total histogram of the registration
errors is given in Figure 4.10. The median registrationreimoluding all cases i3.1mm. As it can
also be seen in the histogram, for a limited number of cases 3), the registration was not successful
for reasons that are further discussed below. We consideetbases as outliers. The percentage of the
registrations that had an error larger timnm is 2%. Using the median instead of the mean value
is more informative of the registration error’s centraldency, as it represents better the value around
which the majority of the registration errors are clusterdthe outliers affect the computation of the
mean error value, while the median is less sensitive to iresence.

Figurel 4.11 shows the distributions of the registratiomrrfor the CC and MLO view mammo-
grams separately. The histograms and the median valuegdila that overall the algorithm is slightly
less accurate for the MLO view, although the difference leefwthe two median values is negligible
(12.9mm for the CC and.3.5mm for the MLO view).

Figures 4.12 and 4.13 illustrate the results for 3 patiehtegistrations), for which the registration
was considered to perform well. In the first two cases it iarctrat the appearance of the lesion shape in
the two modalities varies significantly. We can also seedlah in cases where the errorinn seems
rather high (Figuré 4.12(a)4.43mm and Figure 4.139.96mm), there is still an overlap between the
two annotations and the registration result can give a godidation about the location of the lesion on
the X-ray.

The results of two cases for which the registration did nofque well are shown in Figure 4.14.
Figure/ 4.15 shows the two corresponding MR volumes to ilastthe difficulty in registering these
lesions.

As we can see in the figures illustrating the results, the tation of the projected MR lesion is

generally larger than the corresponding annotation in treyXmammogram. Overall, the mean radius
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Figure 4.11: Histograms of the registration errors of Fegir10, displayed individually for the CC and
MLO views. Whilst the median error for MLO mammograms is maadly higher than for CC view
mammograms1@.5mm versusl2.9mm as indicated in red) the distribution of these errors is dipa

similar.

(a) Patient 1 (b) Patient 2

Figure 4.12: CC (on the left) and MLO (on the right) mammograitpatients 1 and 2. The X-ray
mammogram annotation is shown in red and the projectione@MR annotation in green. (a) Patient
1 was diagnosed with an Invasive Ductal Carcinoma,; the tradiisn error is8.12mm for the CC and
14.43mm for the MLO view. (b) Patient 2 diagnosed with Ductal CarcimlIn Situ; the registration

error is6.85mm for the CC and.63mm for the MLO view.
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(@) (b)

Figure 4.13: Registration result for CC (on the left) and M{dd the right) mammograms of patient 3.
(a) illustrates the raw mammograms and (b) the registerdd€DR magnification view is given for both
views on the bottom right corner of the raw mammograms. Tlauation in this case was done using
the clip location. The clip i@mm long as displayed in the magnification view; the locatiorhia X-ray
mammogram is illustrated by the high intensity region (redwa) and the projection of the clip location
in the MR is shown in green (green arrow). The registratiooras 9.9mm for the CC andr.7mm for

the MLO view.

Figure 4.14: Two cases for which the registration error wigh.hCC view of patient 4 (errd28.45mm)
and MLO view of patient 5 (erro20.24mm), both diagnosed with Invasive Ductal Carcinoma. The

corresponding MR volumes and annotations are shown in &igu5.
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Figure 4.15: Corresponding MRIs and annotations of theepttiillustrated in Figurle 4.14. Patient 4
(left) and patient 5 (right).

of the MR lesions il 1.7mm, while that of the X-ray annotations &89mm. This small difference in
size can be caused by the difficulty in annotating the 3D vekias discussed above, and the different
contrast mechanisms in MRI and X-ray. When the MR lesions @njegted into 2D after transformation,
the mean radius of these areaslis9mm. This increase in size is expected from the global affine
transformation model, since the lesions are not modellpdrs¢ely as rigid objects. Therefore, although
their volume is preserved, an expansion of the breast in théiahlateral direction (for a CC view)

would result in an expansion of the mean radius of the lesioanithis is projected into 2D.

Overall, the main characteristic of the cases where thetragjion did not perform well are patients
with large fatty breasts and cases with large, irregulapsid lesions. In our experiments, the results did
not show any correlation between the breast density or siddtee registration error. Nevertheless, the
analysis of the cases that had errors larger &tianm showed that seven out of nine cases were large
breasts. Their mean volume size was 46% larger than the nieastlsize of all cases.65 - 106mm3
againstl.06 - 10mm3). Moreover, five of these cases were also fatty breasts,amthverage of 76%

by volume of fatty tissue; the range for all the breast volainethe dataset is 58%-78% (mean: 71%).

For the case of very fatty breasts, there is not enough irdtiam (ie. glandular tissue) to drive the
registration and subsequently the optimisation is morglyiko terminate in local minima. The regis-
tration of these cases is of less clinical importance, agi®radiologists establishing correspondences
between the images is more challenging in cases of densr thtm fatty breasts. We also expect the
affine transformation assumption to be less accurate fdatge-size breasts, as in these cases the breast
undergoes large anisotropic deformations that cannot pegimated accurately by our affine transfor-
mation model. Finally, we consider that the cases with |arggular-shaped lesions are not suitable for
validation, since the contrast mechanisms are differetwtden the two modalities and hence the lesion
appearance differs significantly between them; as a retbelit, centres of mass would not necessarily

correspond.

Although not suitable for validation, if accurate alignmehlarge lesions is possible, then we can

extract useful information regarding tumour heterogemtbiat could be useful for therapy planning and
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Figure 4.16: Two MLO view mammograms that were excluded fratidation, because the lesion

annotation was too large.

response to treatment.

One of the main issues that arises from the validation ofahgmment task on clinical cases, is
how the gold standard correspondences between the two snamgedetermined. Although in clinics
the registration would only be useful to the radiologists@ses where lesions are not easily identified
in both modalities, clearly visible lesion cases are usethis study to provide quantitative results.
Nevertheless, due to the different nature of the imagedvadothe appearance of alesion in a projection
X-ray mammogram differs significantly from the enhanced 8&aan the MRI. Moreover it is not always
straightforward to identify the lesion boundaries. Consagly, the 2D Euclidean distance could give
results that are not representative of the actual correlpme. We believe that the cases that would be
best suited for validation are the ones with small lesiondiprdata, as the one displayed in Figure 4.13.

The total number of clinical cases that we originally hadessdo was 76 patients. From these, we
excluded from validation the ones that had artifacts. Fange, we excluded those that had annotation
problems (8 cases), either because of lesions that werenatished between the MRI and the X-ray
mammogram, or because of very large lesion annotationstHi&eones shown in Figure 4/16, as the
Euclidean distance is not meaningful for these patientsr& ivere also 4 cases excluded for which our
breast segmentation carried out before registrationdadeproduce reasonable results around the chest
wall, due to non-clearly defined boundaries between theopaanuscle and the breast tissue.

The rest of the patients that were excluded from validatiempatients with breast folding artifacts
in the MRI. Two examples of these cases are shown in Figura 4\ found that for a large number
of cases the breast was significantly deformed in the MRI. @ason why folding was so frequent in
our dataset is that, according to the protocol of the cliniognen were advised to wear t-shirts during
MRI acquisition to limit subtraction artifacts coming fromotion of the breast before and after the
injection of the contrast agent. Furthermore, a light kreampression was also sometimes applied, to
reduce motion. As a result, this can cause folding artifexctise MRI, particularly for large breasts. Our
algorithm cannot compensate for folding of the breast antelieve these cases will also be problematic
for previously published methods which attempt to deforen lbheast volume from the prone position

to the compression between two plates. Subsequently tlasss gvere excluded from validation. An



4.4. Discussion 76

Figure 4.17: The MRIs of two patients with large folding fatits. These cases were excluded from

validation.

alternative option for reducing breast motion artifactsheut introducing folding would be volume

registration between the pre- and the post-contrast infagedkert et al., 1999].

As our algorithm does not require significant manual inteéoac we ran the registrations for all the
above cases. The histogram of the registration errors isrsho Figure 4.18. We also display in the
same figure the histogram of the cases used for validatiorirentbtal histogram for comparison. We
can see from the plots that the errors for the cases thatinedtartifacts are spread equally throughout

the total error range and account for all the errors thatangel thamt5mm. These experiments were

part of the work described in [Mertzanidou et al., 2012a].

4.4 Discussion

In this chapter we have described in detail our registrafiiamework and the experiments carried out
using the volume-preserving affine transformation modelgproximate the breast deformation when
compressed by two plates. This is the first method propossdutes the structures within the breast
for alignment, rather than surrogates based on breasheubli nipple position, and that has been
tested on a meaningfully large number of datasets. Its méwardages are the ability to be easily
integrated in clinics and also to provide reproducible ltaswith minimal pre-processing interaction.

The only interactive step is selecting landmarks on thequatimuscle boundary. With an alterna-

tive automated method incorporated for pectoral muscleeiiion, such as that recently proposed by

[Gubern-Merida et al., 2011], the pipeline would be fullt@mated. For each registration, the algo-

rithm requires around 20 minutes, on a single cére- bit machine, with &.8G H = processor. We
believe that this can be further improved with a GPU-basgétesting algorithm, as this part is the most
computationally expensive component.

The experiments on simulated data indicate that a simpleeaifansformation model can approxi-
mate a real breast compression in a 2D/3D registration té¢klkammean error 03.83mm, when tested on
eight cases. These results are promising for demonstrinspitability of the affine transformation for

this task, however these cases contain limited rotatiosarsand more complex non-rigid deformations
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Figure 4.18: Total histogram of the registration errorsrdd are shown the cases that were excluded
from validation due to artifacts. The histogram in greenregponds to the cases used for validation and

is the same as in Figure 4.10. The total histogram of all casgsown in blue.

which we expect from many real mammographic compressions.

The results of 113 registration tasks on clinical cases dihatvour algorithm can be applied in
clinical practice giving useful accuracy (medig® 1mm). The results show a comparable accuracy to
patient-specific biomechanical modelling ([Hopp et al12) meanl1.8mm). Nevertheless we cannot
directly compare the two statistics as the two technique® wested on different data sets. In future
work it would be beneficial to compare our method with patigpecific biomechanical modelling on the
same dataset for a more rigorous comparison, as the acotaacyary with breast shape, size and the
pathology or other features used for validation. In chaptee present experimental results on a smaller
dataset, where the affine transformation is compared dgaipsrsonalised FEM-based transformation
model.

The experiments in this chapter give us an indication of ttedblems associated with the 2D/3D
registration process and the limitations of affine transfations. These are caused by the fact that
registration is driven by the similarity measure that i<a#dted in 2D and thus any displacements in the
direction of the projection cannot be recovered (there auttiple 3D deformations that will generate
identical projections/DRRs). This difference in dimemsibity when using a 2D cost function to optimise
a 3D transformation, is also the reason why the registrasigumone to terminate in local minima. The
low number of degrees of freedom make this algorithm less\liko be trapped in local minima and
this is a principle that we take into account in our next apphy when using a different transformation
model.

The next two chapters explain in detail how we incorporatergmowledge about the breast de-
formation inside the transformation model. The new modedsexpected to achieve better registration

accuracy, by constraining the transformation to the setaafgible deformations.



Chapter 5

MRI to X-ray registration using an ellipsoidal

breast model

The main difficulty associated with the MRI to X-ray mammagg registration task is the large defor-
mation of the breast between the two different image adipisi. Women are lying prone in the MR
scanner, while they are standing, with their breast conspiebetween two plates, to obtain an X-ray
mammogram. This complex deformation was approximatedragsfag an affine transformation. In this
chapter we present a new approach that uses biomechanidellimg to simulate breast compressions
and then incorporate them into a new transformation modeldan be used for registration.

We propose the use of an ellipsoidal breast model to appairithe average breast shape and we
use biomechanically simulated compressions to learn tfa@mations that occur during mammogram
acquisition. By varying the parameters of the simulatioms,simulate a wide range of compressions
and then use Principal Component Analysis (PCA) to extdagtrhain modes of variation. During
registration, we optimise the coefficients of these moddstamparameters that define the initial position
of the breast before compression. The proposed transfiam@drametrises the deformation into a lower
dimensional space and captures the complex mammograte gdmpression in only eleven degrees
of freedom. This method has the advantage of using a tranaf@n model with a low number of
parameters, that is learnt using physically realistic &irdaformations, instead of a geometrical model.

Firstly, we discuss the types of Statistical Deformationddis proposed in the literature (section
[5.1) and then we describe the use of the proposed mean alibhsoeast model (section 5.2). The mam-
mographic compression simulations are discussed in s&stBand the extraction of the main modes of
variation in section 5/4. The modified, non-rigid registatframework is presented in section 5.5 and

the experiments used for validation in section 5.6. Finakytion 5.7 contains the discussion.

5.1 Breast Statistical Deformation Models

The goal of our work in this chapter is to create a large nundbgausible deformations that occur
during mammographic compression and then use these taettieamain modes of variation. In our
approach the deformations are generated from biomechignstmulated compressions. To generate

these simulations we need to use a breast model (for the gggrard a series of model parameters that
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(b) (c)

Figure 5.1: (a) MRI of patient p1; this is chosen as the spdoerevall deformations are mapped for
the SDM. (b) MRI of another patient p2 used for the constarctif the SDM. Initially compressions
are applied to all patients and then these are mapped to EtevVACA will be used to extract the main
modes of variation. (c) Deformed MRI of p1, after applying tisplacement field of p2, mapped into
the space of pl using an affine registration. The anomaloaysestf the breast in (c) is caused by the
large difference in breast shape between pl and p2 (pantigulbvious in the coronal view) which is

not compensated for by the affine registration.

define the boundary conditions and the mechanical progeastissues.

Regarding the breast model, there are different approatia¢san be used. Tanner et al. have
followed a population-based approach [Tanner et al., 2008¢re the breast compressions are applied
to the MR volumes of 20 different patients. The deformati@idf are then mapped into a common
space of a patient’s breast that is selected as refereneeasBumption is that this breast has an average
size and shape. The mapping into a common space is essaatied, aim to extract the main modes of
variation of the deformation resulting from the simulatedpression, rather than the breast shape vari-
ation across subjects. In the original Active Shape [Coetes., 1995] and Active Appearance Models
[Cootes et al., 2001] this mapping is done using a set of paidt represent corresponding anatomical
locations, which are used to warp the images. For breast MRtscome from different patients, there
are no anatomical features, other than the nipple positi@i,can be used as corresponding locations.
Tanner et al. have proposed an affine intensity-based ratiist of the breast MR binary masks for this
mapping. Our experiments showed some issues associatethigiimethod. These arise from the fact
that breast shape variation across patients is large. Tifeecgs occur when the displacement fields cor-
responding to one patient are mapped onto another. An exampglige illustrating this effect is shown
in Figure 5.1.

As an alternative to the population-based approach, tresbreodel can be extracted from the MR
volume of a specific patient. This means that a new breast Inmegels to be created for each one of
the MRI/X-ray registration tasks. In this case, all the Btemmpressions are applied in the same space
of this particular patient. This is clearly illustrated ingBre[5.2, which summarises the differences
between population- and patient-based approaches. Tleapsapecific approach has the advantage of
using the exact geometry of the subject of interest for theukitions, while avoiding the mapping of

the deformation fields both before and after performing PR&vertheless, the need of repeating this
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Figure 5.2: To create an SDM model, the population-basedoaph uses the two mapping processes
illustrated. M, is used to map the deformation fields from the individualg@s in the training set to
the common space of one selected patient. PCA analysisfarmed in space B of this selected patient.
M, is used to map the extracted components to the new patiece.sphae patient-specific methods do
not use any mapping process, as spaces A, B and C are the sdrtteeprcthange for each individual
case. The ellipsoidal method proposed in this chapter usgsid,, as space A and B are the space of

the mean ellipsoid.

process in a patient-by-patient basis is the main drawbttkisotechnique.

5.2 An ellipsoidal breast model

In the approach followed in this chapter the breast geonmatgtel is created from an ellipsoidal shape
that approximates the average breast size and shape. Maniécgily, we are using half of an ellipsoid,
whose dimensions are calculated from a population of 20 M#dirimages. This approach has the
advantage of using the same space for all the simulated @ssipns. Therefore, artifacts such as those
created by the population-based model and illustratedjuargi5.1 are avoided. Moreover, the modelling
and PCA analysis are only performed once for all patientspgssed to being repeated for each subject
in the patient-specific approach. However both in poputabiased and in our approach, the extracted
modes of variation still need to be mapped onto each pagisptice for the MRI to X-ray registration
(Figure 5.2). Although this can cause problems for patiesitts breasts asymmetries, these artifacts will
only occur for this subset of patients, while in the populatbased approach these are applied to all
patients, because they are incorporated in the modes atiear as they occur before the PCA analysis.
Below we describe in detail the process of creating a gegnmedidel for the ellipsoidal case. The

geometry of an ellipsoidal shape is given by:

22y 22
Stmtg=1 (5.1)

wherea andb are the equatorial radii andis the polar radius, shown in Figure 5.3(a). The radii
are extracted from a population of 20 breast MR images (afipeh 1), using the the mean values.
The computed values are= b = 60mm andc = 160mm. The image is sampled at a resolution of
[1x 1 x 1]Jmm3, which is similar to a typical resolution of an MR scannettisaised for mammography.

The next step in the modelling process is meshing. To extngcsurface mesh, we are using the

VTK? implementation of the marching cubes algorithm [Lorenseh@line, 1987]. The tetrahedral

Thttp://www.vtk.org/
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(@) (b)

Figure 5.3: (a) Image of the ellipsoid used for modelling éndts extracted mesh showing the ellipsoid

between two plates, before compression.

elements are extracted using the open-source softwaragadfetGeh The final model consists of

3,535 nodes and 2, 056 elements. Figurie 5.3(b) shows the extracted mesh.

5.3 Mammographic compression simulation

For the biomechanical compression simulations, we use ageneous transversely isotropic hypere-
lastic material [Han et al., 2012]. As we use one geometnalel that is applied to all patients, we only
consider one material and do not assign different materageaties to the fibroglandular and the fatty
tissue. We also include anisotropy to account for the reggiment of biomechanical properties from
fiber-like connective tissues in preferred directions flaret al., 2011]. We therefore allow the breast
to expand more in the Medial-Lateral (ML) direction, tharihie Anterior-Posterior (AP), for a CC view
compression. This approach can be further justified by tbietfiat the breast is already extended more
in the AP direction due to gravity, as the MRI is acquired ie fione position.

To create a range of different compression configuratioesyavy the amount of compression, the
ratio of tissue enhancement coefficient (anisotropy) aed™thisson’s ratio, that controls the amount of
breast volume change. For each compression the paramegefsasen randomly from the distributions
shown in Tablé 5.1 that are taken from the literature ([Tamtal., 2009], [Tanner et al., 2011]). The
amount of compression refers to the displacement of thepldtiring compression. Therefore, this
is 0% before compression and it would be 100% for a maximumpeession, if there was no breast
between them and the position of the two plates coincided.

At this stage, we do not vary the parameters that define tiggnatiposition of the breast before
compression. The pose that is defined from possible romtml translations of the volume will be
optimised inside the iterative registration process.

For the boundary conditions, we constrain the nodes thatlase to the chest wall along the

Anterior-Posterior (AP) direction, but allow unconstéhmovement of the nodes in the other two di-

2http://tetgen.berlios.de/
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Table 5.1: Parameters that vary between the different cesspns and their distributions.

Parameter Distribution
Amount of compression Normal (@ = 55%, std = 4%)
Poisson’s ratio Uniform [0.45, 0.498]
Ratio of tissue enhancement coefficient Uniform [1, 512]

(a) (b)

Figure 5.4: (a) The ellipsoid image superimposed with tispldcement field extracted from a compres-

sion simulation and (b) the corresponding mesh under cosajue.

rections. As we use half an ellipsoid it is straight-forwaodextract the nodes that are close to the
chest wall, as they lie on a plane. To simulate the compressige apply displacements on two contact
plates and use a GPU implementafiai an explicit Finite Element (FE) solver [Taylor et al., Z)0

The contact model avoids artifacts on the breast surfadecirabe caused when applying individual
displacements on the surface nodes [Ruiter, 2003]. Fuetkanations of the different techniques that
model plate compression are given in the next chapter,0s&6til.3, where breast biomechanical mod-
elling is discussed in more detail. Figlire 5.4 shows an el@ofia compression applied on the ellipsoid

to simulate a mammographic CC view compression.

5.4 Building a deformation model using PCA

After simulating a range of compressions on the ellipsoidlehdwe have used = 100), the next
step is learning the ellipsoid breast deformations using.FEach deformation vectdd; consists of the
concatenation of the displacemednti the X, Y andZ directions on a regular grid across the volume.
We are using a regular spacingdfim across all three directions. Subsampling the deformatelddi
has a significant benefit in the computational cost of thergigalysis that follows. For a total number
of m points in the grid:

D; = (di, ..., dsm) (5.2)

Shttp://niftysim.sourceforge.net/
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(c) meant3o2, second mode (d) meant303, third mode

Figure 5.5: lllustration of the ellipsoidal image when viagythe first three principal components. For
each one of the four squares the top row corresponds to tlaaloview and the bottom to the axial.
A superimposed pattern is used for each view for better ligateoon of the deformations. The first
component (b) shows the effect of varying the amount of cesgion, the second (c) the anisotropy
ratio (notice change in extension in the axial view) and thelt(d) the breast shape under compression

(notice the breast shape in the coronal view).

In a similar way to [Cootes et al., 2001], PCA is used to extiiae main modes of variation and approx-

imate any deformation fiel® by:
D=D+P-b (5.3)

whereD is the mean deformation fiel®,is the matrix of the first principal components (eigenvectors)
andb is a vector of weights for each one of thesigenvectors used. The eigenvectersand their

corresponding eigenvalues are extracted from the covariance matrix:

1 — o~ o~
S=— ;mi - D)(D; - D)" (5.4)

Figure 5.5 shows the the effect of varying the first 3 princgmnponents of the learnt deformations.
The resulting displacement fields that represent the mdfamdation and the deviations from it can
then be mapped onto the MRI of a new patient. The mapping ie dsing a registration that includes

scaling and translation between the binary masks of thesellil model and the patient's MRI. As we
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Table 5.2: Overview of the proposed framework that uses lggseidal breast model and biomechani-

cally simulated compressions.

Once for 1. Extract the mean dimensions of an ellipsoid, from a
all patients || population of breast MRIs
before 2. Simulate compressions on the ellipsoidal model

registration|| 3. Extract the mean deformation and the main modes of vaniati

using PCA
Once 1. Map the PCA components to the new patient
for each 2. Segment the pre-contrast MR to fibroglandular tissue & fat
patient 3. Simulate a volume corresponding to X-ray attenuation
Iterative X-ray mammogramtarget, X-ray attenuation volumemoving

registration|| 1. Cast rays through the transformmdvingimage

process 2. Calculate the similarity measure in 2D between

the real and the simulated mammogram

3. Update the 3D transformation parameters, accordingetdéhivative of

the similarity

4. Go to step (1) until convergence

saw in Figuré 5.2, an advantage of using the ellipsoidal nisdbat this mapping process is only done
once, after performing the PCA and extracting the main corepts. When using a population model,
all breast shapes need to be mapped to the same space anthgivdarge variability and the lack of

anatomical correspondences, the registrations of therdef@mn fields can cause significant artifacts.

As a result, these artifacts then cannot be excluded andathyggar in the main PCA components.

5.5 Non-rigid registration framework

In this section we use the deformations that were learntid®paur transformation model. The general
registration framework remains the same as illustratedreeh Figureé 4.1. The only differences, as
opposed to the processes described in chapter 4, are théotraation used and the way the transforma-
tion is combined with the ray-casting. These are furthelyasea below. Table 512 gives an overview of
all the steps involved in the registration framework. Itigeg here in order to combine the information
of all the methods described so far and summarise the coenpitetess. Apart from the main regis-
tration process that is updated iteratively, the framewsansists of two more parts that are performed
in advance, off-line. The first is the PCA analysis, expldinesection 5.4 that needs to be done only
once. The second part, also performed before registrateeds to be repeated for each patient and is
explained further below.
Before registration, we simulate the X-ray attenuatioruwze from the pre-contrast MRI, with

the method discussed in chaptér 3. Another step that is noeefb off-line is the mapping of the PCA
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@ (b)

Figure 5.6: (a) An example of an X-ray attenuation volumeesimpposed with the displacement field of

the mean PCA component and (b) the same volume after the neéamhtion.

components to the new patient space, as the analysis wasdoaut in the ellipsoidal model space. The
mapping is done using a registration between the binary snasthe ellipsoid and the patient's MRI.
The updated parameters are translations and anisotradiog€actors along the three axes.

Scaling the deformation fields assumes a linear relatiprnsétiween the deformations of the ellip-
soidal shape and the ones of the real patient. However, itas/k that the breast undergoes non-linear
deformations when it is being compressed. As a result,regalily gives an approximation for the map-
ping between the ellipsoid and the patients’ space. Nesledh, as the dimensions of the ellipsoid are
extracted from real MR images, our hypothesis is that theedsions represent the average population
and that the error introduced by this simplification is ngndicant for the majority of cases, apart from
very small and particularly very large breasts.

Figure/ 5.6 shows an example of a patient’s X-ray attenuat@ume after being deformed with
the mean component of the PCA analysis. Note that the defanmfeld is defined even outside the
breast volume. All the principal components were extraggolaising B-splines, so that the displacement
fields vary smoothly outside the breast shape. We followedtdthnique because the mapping from
the ellipsoidal model to the patient’s breast did not alwarysure that all the breast volume is inside the
boundaries of the ellipsoid. With this approach we avoidnigsnformation around the breast surface
from any breast voxels that are not included inside thessligal shape.

We propose a transformation model that consists of two peagil and non-rigid. The rigid-
body transformation determines the initial position of tieast on the detector, before compression. It
includes three translations in all directions and two iotet; one for the rotation about the Anterior-
Posterior axis of the breast (rolling) and one for the rotadbout the Superior-Inferior axis (in-plane).

The total number of degrees of freedom introduced by theigidy transformation is five:
dofrigid = dofrotations + doftranslations =2+3=5 (55)

For the non-rigid part of the transformation, we use the PG/Agonents that are extracted from



5.5. Non-rigid registration framework 86

the ellipsoid deformations in the previous section. As weehalready seen, each one of the defor-
mation componentB; is mapped onto the new patient space. In other words, the @oempD; is a
three-dimensional image, of the same size as the X-raywtiem volume, that contains for each voxel
positionz; a vector with the learnt displacements along the three axes andZ. The parameters of
the non-rigid transformation that are optimised insideréggstration framework are the scalar weights
b; of each one of then components used in the transformation. As we have seenebafol given that
|bj| < £30;, a new deformation instance can be expressed as a lineairatioh of the deformation
components. Consequently, the non-rigid transformatfoa moint z; is given by the positiorr; plus

the deformation defined by the mean and the weighted defmmedmponents:
Tron—rigia(i) = i + D? + by - Di 4 by - Db + ... + by, - DY, (5.6)

As we can see in the above equation, the non-rigid transttwmanodel containsn degrees of

freedom:
dofnon—rigid == {bla b2a ceey bm} =m (57)

The choice of the optimal number of deformation componenis usually performed according to the
percentage of the variation captured by that number of comipis. For example, as the variance of each
component is given by the corresponding eigenvalue, themy us components means that the model

has the flexibility to capture the following percentage & ttata:

m

>N
=L % 100%, (5.8)

t

>N

i=1

wheret is the total number of components.
Our proposed transformation model (with both the rigid amelrton-rigid components) has a total

number of degrees of freedom that is:
doftotal = dofnonfrigid + dofrigid + dofmapping =m+5+3=m+38 (59)

wheredo fapping refers to the three degrees of freedom of the scaling fathatsare applied to the
displacement fields, when these are mapped from the eltipgdhe new patient space.

To combine efficiently the two types of transformation wilte tray-casting algorithm we use the
following technique. As we have discussed before for thaaffiansformation model, it is not compu-
tationally efficient to resample the 3D volume into the tfan®ied position and then run the ray-casting
algorithm on the new volume grid. Instead, the transforamaits performed as the ray transverses the
3D grid of the undeformed, moving volume. More specificadlyring the registration process, we use
ray-casting from the 2D target space through the 3D grid efntloving image and integrate the inten-
sities of each transformed intersection of the ray with theg8d. In other words, we first compute the
intersections of the ray with the 3D grid of the moving volyrtteen transform them using the combi-
nation of rigid and non-rigid transformations and finallyeigrate the intensities that correspond to the
transformed intersections. This way we avoid an extra 3Brpalation of the transformed 3D volume

that would add computational cost and introduce additisaaipling errors.
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Table 5.3: Registration error (in mm) of this method (Eltijus Statistical Deformation Model, E-SDM)

and comparison with the volume-preserving affine transéion.

pl | p2 p3 p4 p5 p6 p7 p8 p9 | pl0 || mean
E-SDMCC | 7.8| 14.0| 9.7 | 57 | 9.3 | 13.7| 6.2 | 12.3| 24.4| 243 || 9.8
AffineCC | 19| 14.2| 126| 12.0| 28.3| 15.1| 28.5| 14.6 | 39.1 | 28.3|| 15.9

To combine the rigid and non-rigid transformation partgsitmportant to respect the order that
the different transformations occur, in order to avoidfactis. As the transformation is defined from the
compressetb theuncompressetreast space, the transformation of each point is descbhpeduation

[5.10. For a point; the transformation is given by:

T(zi) = Torigia(Thon—rigid(Thrigia(:))) (5.10)
whereT,,,,,—rigiq IS given by equation 56 and:

Tlm'gid(l"i) = Ttmnslanon(Rmfplane(%)) (5-11)

TQm’gid((Ei) = Rrolling (xz) (512)

The initial position of the X-ray attenuation volume befoegistration ensures that the centres of
mass of the X-ray mammogram and the simulated DRR coincileyeasaw in the previous chapter
for the affine transformation model. Furthermore, the @tigation of the rotations for a CC and MLO
view registration is the same. At iteration zero of the regiton the mean component is applied to the

volume, while the weights of the other components are dikiliged to zero.

5.6 Experiments

For validation we used MRIs and CC view X-ray mammograms gddtents that were acquired approx-
imately at the same time point (a subset of those describsekiion A.3). The patient group was differ-
ent to that used to extract the mean ellipsoid dimensiomsi¢seA.1). As before, the registration error is
the 2D Euclidean distance between the centres of the X-nagtation and the projection of the MR an-

notation, after being deformed, first with our method and flelowing an affine transformation (chapter

[4) for comparison. These experiments were part of the woskritged in/[Mertzanidou et al., 2011].

In these experiments we used 3 PCA components, so the tatddarwof degrees of freedom was
11. This choice was done experimentally and as a trade-bffden the percentage of the deformations
explained by the components and the computational time egperiments showed that the use of more
components has a negligible effect in the final registragiosition and the quantitative results did not
improve. More specifically, three components explain 52%hefdata, while for example the use of ten
components, that explains 63% of the data, provides veriaitwreast deformations compared to the
three components but it significantly increases the contiput@ cost. These values are illustrated in

Figureg 5.7.
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Figure 5.7: lllustration of the percentage of the variatbaptured byN number of PCA components.

Three components (red) explain 52% of the data, while terpoorants (green) explain 63%.

A summary of the results is given in Table 5.3. Overall, ancluking the two last cases where the
registration failed, our method outperformed the affinegfarmation by severahm in all cases, apart
from one (p1). Figurds 5.8 anhd 5.9 illustrate the results oasks. We can see that the projection of the
MR finding was close to the X-ray annotation and even in casesevthe distance was rather high (eg.
p2 = 14mm), the projection was still inside the annotated X-ray asbawn in green. In all eight cases
the projected MR annotation mask overlapped with that oiiay and the mean registration error was

9.8mm, as opposed tdv5.9mm for the affine.

The two cases that gave very high errors are shown in Figd@tbgether with the MRI annota-
tions, to illustrate the difficulty in registering these fings. As we can see, p9 has a finding that is very
close to the pectoral muscle. Our ellipsoidal model is etqubto perform less well for lesions that are

so close to the chest wall.

The main characteristic of the second failure case (p10xvik illustrated in Figure 5.10(b) is that
this is a large breast. Our ellipsoidal model is expectedettebs accurate for very large breasts, since
the deformations they undergo are highly complex and nogali. The approximation that we use when
scaling the deformation fields in order to map them on the natiept is more likely to cause larger

errors for larger breasts.

For the MLO view registrations, our ellipsoidal SDM apprbdailed to produce reasonable results
for this dataset. However, in our later work with the patispécific biomechanical modelling, described
in the next chapter, we have investigated alternative dgéition schemes. Registration results for the
MLO view are presented in the next chapter for all three fiansation models (affine, E-SDM, patient-

specific FEM) using the new optimiser for the E-SDM approach.
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Figure 5.8: Registration results on 2 patients. For each, ¢he left image shows the real mammogram
with the centre of mass of the MR annotation after alignmesd €ross). The right image in each pair
shows again the real mammogram, but as well as the projecR@mhotation, the mask of the X-ray

annotation is also shown in green.(a) p1 (erfog&mm) and (b) p2 (errorldmm).

Figure 5.9: Registration results on 2 patients. For each, ¢he left image shows the real mammogram

with the centre of mass of the MR annotation after alignmead Cross). The right image in each
pair shows again the real mammogram, with the projected Midtation and the mask of the X-ray

annotation, shown in green. (c) p3 (errérimm) and (d) p4 (error5.7mm).
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(a) p9 @4.4mm)

(b) p10 @4.3mm)

Figure 5.10: Cases for which the registration error was.h@h the left are shown the X-ray mammo-

grams and on the right the MRIs of (a) p9 and (b) p10.
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5.7 Discussion

In this chapter we saw in detail the steps involved in theliegrprocess of the mammographic compres-
sions. The extracted mean deformation and the modes ofieari@re then used in our transformation

model for registration. The proposed ellipsoidal breastiehdnas the advantage of avoiding artifacts
that can be created in the population-based models. Alsmeis not require repeating the modelling
process for each patient, as in the patient-specific methbkis makes our method more suitable for
use in clinical practice, as there are usually manual stegsvied in the modelling process, explained
in more detail in the next chapter. Moreover, in comparisopdtient-specific biomechanical modelling

that does not perform any statistical analysis [Ruiter €28l06], this method provides the benefit that
results are less dependent on the modelling and the FE shbtesire used.

Our motivation for using this transformation model was ity to avoid the problems associated
with patient-specific modelling, while providing clinitaluseful registration accuracy. The experiments
on a clinical dataset show an improved accurdcg/um) in comparison to the affine transformation
model that can be clinically useful. However, the initiabu#ts indicate a wide range of registration
errors.

Finally, a potential limitation of this approach concermmsvhwell an ellipsoidal shape and a single
tissue type can approximate the shape and deformation dail dreast. To answer this question the
next chapter includes testing against a biomechanicapasipecific simulation model that updates the

modelling parameters inside the iterative registratiacpss.



Chapter 6

MRI to X-ray registration using a

patient-specific biomechanical model

In chapters 4 and 5 we saw two different transformation nothelt can be used for an intensity-based
MRI to X-ray mammography registration. Both models haveatieantage of being applicable to an ex-
tensive population of breast shapes, without requiringuabinmteraction. Nevertheless, both incorporate
simplifications of the actual deformation that the breastargoes during mammographic compression.
In this chapter we are considering a patient-specific tansition model that is based on biome-
chanical simulations and we compare its performance totheother transformations. The new trans-
formation model is built individually for each patient, ngithe MR volume. The novelty compared
[Hopp et al., 2012],
[Lee et al., 2011)) is the integration of the simulation desithe iterative intensity-based registration

to other patient-specific methods proposed for the same(fBsiiter et al., 2006],

framework, as opposed to registration based on surrogatds as the breast outline and the nipple

position. This is enabled by the use of an integrated tramsfion module that runs on the graphics

processing unit [Taylor et al., 2009], providing shorteeextion times than commercial packages.
Section 6.1 describes the details of the patient-specifimbchanical modelling and its challenges.

Section 6.2 summarises the integration of the biomechhgioailations into the registration frame-

work. Finally, sections 6.3 and 6.4 contain the experimaesults on clinical cases and the discussion

respectively.

6.1 Patient-specific biomechanical simulations

Biomechanical modelling is a powerful tool that can provalgsically realistic breast deformations,
as opposed to geometrical models. Nevertheless, thereeeeat challenges that are associated with
the patient-specific biomechanical modelling of a highljod@able organ with a complex anatomical
structure, such as the breast. Firstly we address thesteprsland we briefly review how these were

tackled in the literature. We then present our approach anttibution.

6.1.1 Meshing

As we saw in chaptér 5, the first step in biomechanical mautgltionsists in extracting the surface and

and the volumetric mesh from the MRI. In our previous SDM apgh the MRI is a binary ellipsoidal
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Figure 6.1: Example of a patient's mesh showing folding & #kin that can cause problems in the

topology of elements when the breast undergoes a large essipn.

mask. This simplification which uses an average breast shapéhe advantage of providing a smooth
mesh. However, real breast shapes often have irregutariier example, the surface can have areas
where the skin is folded, especially in parts where the lbrigesttached to the chest wall, such as that
illustrated in Figuré 6.1. This can be problematic if we i to apply large breast compressions, as the
topology of the elements could break down. Subsequentitbuld necessitate re-meshing our model
after applying smaller amounts of compression in order toect the node and element topology. Re-
meshing the breast model adds computational cost to thdatiomprocess and could require manual

interaction.

Another factor that can cause problems in meshing is thesbfelaing that is a result of the breast
touching the bottom of the coil, or the patients wearingittsiduring scanning, as we saw in Figure 4.17.
Moreover, this type of folding violates the assumption ttegt breast is pendulous under gravity, and
since these deformations cannot be recovered with tootsmily available, all cases that include breast
folding are excluded from this study.

The choice of an optimal number of nodes and elements is alspan research problem when
generating surface and volumetric meshes. This choiceéla-bff between accuracy and robustness or
simplicity of the model. Very fine meshes have the advantégepresenting the real breast shape more
accurately, but mean that the FE solver requires longer atatipnal time. Also, large deformations,
such as the mammographic compression, can cause topolalgigms when applied to very fine meshes,
as discussed above.

In the literature authors have proposed a wide range of salolemeshing, from very fine to
very coarse meshes, but there is no experimental study #mbmwstrates the optimal values. When
modelling breast plate compressions, the number of eleamasad varied from an order of one or
two hundred ([Ruiter et al., 2006], [Chung et al., 2008]) émg of thousands ([Samani et al., 2001],
[Tanner et al., 2011], [Han et al., 2012)).

In our approach, before extracting the surface mesh, wallgisegment the volume from the back-

ground using a simple region-growing algorithm, and theplaaussian smoothing and downsample

the extracted binary mask to an isotropic volumé@f.m, as in [Tanner et al., 2011]. This way, we can
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Figure 6.2: (a) Example of a surface mesh extracted from dribeoclinical cases. (b) The same
mesh, showing also a slice of the corresponding MRI. (c)dpéiht view of image (b), illustrating the

approximation of the pectoral muscle as a plane.

avoid small irregularities of the breast shape that mighsegroblems to the FE solver, such as those

in Figure/6.1. The surface mesh is extracted using the Vifiplementation of the marching cubes

algorithm [Lorensen and Cline, 1987] and the tetrahedeahehts are extracted using the open-source
software package TetGg&ras in the ellipsoidal case. An example of an extracted mseshdwn in Fig-
urel6.2. This consists @f 529 elements an@77 nodes. The numbers lie in the mid-range of breast mesh
sizes proposed in the literature, as described above. Theltiimy of the pectoral muscle illustrated in
the same figure is discussed in section 6.1.3.

6.1.2 Material properties

After meshing, the next step in modelling consists in assiyrither one or multiple material properties
to the different breast tissue types. These describe théanaml properties of the breast and hence
model the relationship between the applied stress andtirggstrain. One option is to assume that the
breast consists of one single tissue type, as a simplifitalicthis case, the elements of the breast model
have the same behaviour whether they belong to fibroglandute fatty tissue, as in the ellipsoidal case.
Alternatively, we can segment the breast tissue from the MtRIthese two classes and assign different
material properties to each of them. Moreover, there arerdibsue types that can be considered. For
example, the skin can be modelled either as a membrane ohaslayter over the surface of the breast,
tumours can be assigned specific material properties if gresence and locations are known. Finally,
the pectoral muscle can also be modelled as another clasougjh it is not visible in a CC view X-
ray mammogram, it affects the breast tissue behaviour watapression, especially for the part that is
closer to the chest wall.

Assigning different material properties to the extractéireents is not a trivial task, due to the

partial volume effect and also the dependence on the sizBeoélements used, as these are usually

http://www.vtk.org/
2http://tetgen.berlios.de/
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larger than the voxel size. Thus one element can corresgomibtte than one tissue type. One further
complication is the fact that the difference in materialp@dies between the different tissue types is not
known. Although there are several material parameterstiegproposed in the literature, their variation
and range is high and there is no experimental study thatstwmvoptimal values. In our experiments,
sampling randomly from the distributions of the proposelli@a can cause convergence problems for
the FE solver used and can introduce the need for re-medBath.issues involve manual interaction to
overcome them and therefore do not allow the modelling m®te be automated.
When modelling large breast compressions authors propos@dymmon-linear material models,

as linear elastic models are considered less accuraterfm tieformations. More specifically, a hy-

perelastic, (nearly) incompressible material was propdselSamani et al., 2001], [Ruiter et al., 2006],
[Chung et al., 2008], [Han et al., 2012], [Lee et al., 20114 fidopp et al., 2012]. [Tanner et al., 2011]

used a linear elastic model, although in the experimentsrites!, the displacements of all the surface
nodes were known and constrained. Therefore for this pdati@pplication the effect of the material

model is expected to have less influence on the results.

Regarding the material classes used, [Samani et al., 2[Rdiler et al., 2006], [Han et al., 2012]

and [Tanner et al., 2011] used three different clasibsglandular, fat andskin [Chung et al., 2008]
and [Hopp et al., 2012] proposed one homogeneous tissue ibgbead. |[Ruiter et al., 2006] and

[Tanner et al., 2011] reported an anisotropic behavioun@fbreast when applying mammographic com-
pressions, with a reduced elongation in the Anterior-Rastdirection and an increased expansion in the
Medial-Lateral direction, as discussed previously inise¢b.3. This was incorporated in the modelling
by [Tanner et al., 2011] and [Han et al., 2012].

In our implementation, we are using a nearly incompressihthyperelastic neo-Hookean mate-
rial model [Han et al., 2012] which is transversely isotmpd incorporate the anisotropic behaviour that
was previously observed and account for the reinforcemenibponechanical properties from fiber-like
connective tissues in a preferred direction. The use of alinear instead of a linear model and the
incorporation of an anisotropic behaviour are consideoelet crucial for our application, as the com-

pression is simulated using a contact model (discusseevpalud not constrained displacements of the

surface nodes as in [Tanner et al., 2011]. The material pateamof this model are optimised during the

registration framework as we will see in section/6.2.

Regarding the different tissue types, our approach assanh@sogeneous tissue type as a sim-
plification. The advantage of this implementation is thaavbids convergence problems of the FE
solver, as shown by experimental results, due to the largatian in the material properties used in
the literature. In relevant previous work other authorsehalso proposed homogeneous tissue types
([Chung et al., 2008], [Hopp et al., 2012]). ExperimentakkvfRuiter, 2003] showed no significant ef-

fect on the results when different tissue models are useedds

6.1.3 Compression simulation and boundary conditions

The choice of boundary conditions and the technique useidnaate the mammographic compression

also have an effect on the simulation results. As there ioibsgiandard available, a range of approaches
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have been adopted which produce different solutions. Akerptevious points, the choice of boundary

conditions and compression simulation may introduce tteel d intermediate re-meshing steps.

Plate compression

The plate compression that occurs in mammography has bedallea in the literature using mainly
two different techniques. The first involves applying désmments to the surface nodes of the breast
[Hipwell et al., 2007]). The

mesh in the direction perpendicular to the two plates ([&wet al., 2006],

compression plates and their interaction with the breasnat explicitly modelled in this case, but it
is assumed that the displacements applied on the surfa@s ihade the same effect. In was reported
[Ruiter, 2003] that this technique leads to artifacts onliheast surface (breast swelling) around the
nodes which are adjacent to the ones that the displacenrengppglied to. An alternative method is to
explicitly model the interaction between the contact gadad the breast tissue using either a friction
[Lee etal., 2011] or a frictionless model ([Chung et al., 2ZDHan et al., 2012]).

In our approach, we are using the frictionless contact mqga®lposed by Han et al.
[Han et al., 2012]. The main advantage of using a contact imadeead of applying displacements
on the surface nodes is that the interaction is modelleda@ttpl Moreover, this method avoids artifacts
on the breast surface that can occur if the displacementieedpm neighbouring nodes are different,
as discussed previously. Regarding the modelling of éicthetween the compression plate and the
breast skin, there is no experimental study that illustr&ither the effect that this has on the breast
deformation or the friction coefficient that describes libstbreast-plate interaction. Our assumption is

that a frictionless model provides a good approximatiom#actual breast compression.

Pectoral muscle

The behaviour of the breast tissue under compression igimdkd by the presence of the pectoral mus-
cle. This was modelled in the literature either by constrgjrihe nodes close to the pectoral muscle to
be fixed ([Samani et al., 2001], [Chung et al., 2008], [Hopglgt2012]), or by allowing them to slide
along the chest wall ([Tanner et al., 2011], [Han et al., 320[L2e et al., 2011]).

In our implementation, we approximate the pectoral musgle plane and allow the nodes to slide
along that plane. This approximation is not expected tahice significant errors to our modelling, as
the pectoral muscle is not visible in the CC view mammograrosthe MLO views, the pectoral muscle
is excluded from the area where the similarity measure isutatied, but our simplification is expected
to be less accurate for the MLO view. An advantage of this @axpration is the fact that it can avoid
meshing problems that might occur, as the chest wall sudtiea has topology irregularities. These are
caused from the fact that the segmentation algorithms d@matuce a smooth profile on that region,
as the intensity boundaries are not clearly defined. An elampsh showing the approximation of the

pectoral muscle as a plane is shown in Figurée 6.2(c).
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Table 6.1: Overview of our patient-specific FEM-based itegi®n framework.

Once 1. Segment the pre-contrast MR to fibroglandular tissue & fat
for each 2. Simulate a volume corresponding to X-ray attenuation
patient 3. Approximate the chest wall using a plane

4. Extract the surface and volumetric mesh
5. Create axmlfile with the geometry, the material properties and

the constraints of the breast model

Iterative Inputs: X-ray mammogram (target), X-ray attenuation vadufmoving),

registration|| breast modexmlfile

process 1. Cast rays through the deformetbvingimage
2. Calculate the similarity measure in 2D between
the real and the simulated mammogram

3. Update the 3D transformation parameters, accordingridesity

4. Go to step (1) until convergence

6.2 Integration of the FEM simulations in the registration frame-

work

In this section we use the patient-specific breast FE modilérthe registration process. Thisis achieved
via a transformation module that uses the FE solver to sitmilee mammographic compression. The
registration framework is the same as illustrated preVong=igure 4.1, with the modification described
in the previous chapter (sectibn 5.5) regarding the technigsed to combine the non-rigid transforma-
tion with the ray-casting. The difference of the approacttdeed here is the transformation model, that
consists of biomechanical simulations of the mammograpimspression.

An overview of the complete pipeline is given in Tablel6.1.wes can see, this approach has more
pre-processing requirements for each patient beforetragian than the other transformation techniques,
as the breast FE model needs to be created for each subjegtthsi methodology described in the
previous section. After the modelling is completed, the@infation is stored in armlfile. This file is
used as an additional input into the registration pipeltagether with the X-ray mammogram and the
X-ray attenuation volume.

Figure] 6.3 illustrates the axes to which the transformagiarameters correspond and an example
CC view compression for one of the patients. The parametatsare optimised inside the registration

process are:

Translation in X
e TranslationinY

» Rotation about the Y axis (rolling)

Rotation about the Z axis (in-plane)
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Figure 6.3: lllustration of an example CC view compressiba mesh generated from a subject’s MRI

and the axes used for the FEM transformation geometry.

e Amount of compression - constrained between: no commrg8i%) and 90% of the maximum
distance between the nodes in the Z direction (for a CC view)
+ Ratio of tissue enhancement coefficient (Anisotropy) -st@ined betweejt) — 512] (range taken

from the literature [Tanner et al., 2009], [Tanner et al1Z))
 Poisson’s ratio - constrained betwe@n5 and0.499

The first four parameters account for the initial positi@na the breast before compression and the
last three define the amount of breast compression and tlavibeh of the breast tissue. In our SDM
approach, in the previous chapter, we attempted to extrachtin modes of variation caused by the last
three parameters. In this method, we optimise these dirkmteach patient.

As previously, the distance between the X-ray source anddtextor is extracted from the DICOM
header of the X-ray mammogram andis= 660mm for all the mammograms using in this study. Before
registration, the moving volume is positioned on top of tetedtor and is translated in the corresponding
XY plane such that the centre of mass is projected onto thieecehmass of the real mammogram. This
provides a good initial position for the registration an@ésl@ot require manual interaction. The amount
of compression is initialised to a 50% plate displacemeoisgdn’s ratio tqu = 0.498 and the ratio of
tissue enhancement coefficientte= 250.

For an MLO view, the initial position changes, such that treslst has an initial rotation of 45°about
the Y axis (roll) and an in-plane rotation of 20-30°. Theiaditvalue of the roll angle is extracted from
the mammogram’s DICOM header and the initial in-plane fotais determined experimentally to be
either 20°or 30°, depending on the mammogram of each inaiidase.

The order of the transformations is important for this casevas described before for the SDM
transformation. For a point;, which is the intersection of the ray with the volume grid loé tmoving

image, equation 5.10 remains the same:
T(xz) = T2m'gid(Tnon—rigid(Tlrigid(xi)))

WhereTlTigid(xi) - Tt'r'anslation(Rin—plane(mi)) andTQ'rigid(xi) - Rr()lling (xz)a bUt now the non'rigid
transformatiory’,,,,—rig:iq iS NOt given by the PCA components. Itis the interpolatecengidplacement

at the current positiom; as computed by the FE solver at the current parameter pasitio
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Figure 6.4: lllustration of a the initial position of the pta before compression to avoid intersection of
the breast model nodes and the plates during registratignthe distance of each plate from the centre
of mass of the volume in the XZ plane and it is given by equafidh The grey plates illustrate where
the position of the plates would be set initially if only theximum distance on the Z axis was taken
into account. By considering also the X axis, the initialifon of the plates is set to the location of the

red plates. Consequently, the maximum plate separati®nds

To avoid an intersection of the breast nodes and the conipregkates when the breast is rotated
about the Y axis, we re-position the plates before registmiatuch that they are equidistant from the
centre of mass. This distance is equal to the maximum disteatween all the nodes and the centre of
the mass on the XZ plane. Figure 6.4 illustrates this prodestsC'(c,, ¢,, c.) be the centre of mass of
the breast volume andy; (n;,, ny, ni-) thei-th node of the FE model. As we can see in the figure, the

initial plate separation i% - d and the distancé is given by
d = maz(d¥?(N;, C)) (6.1)

where

deZ(Ni’ C) = \/(nm - cx)z + (niz - cz)2 (62)

The optimised parameter is the separation between the tmpression plates, and its maximum
value is2 - d. This way, the deformed volume is always centred aroundehé&re of mass. If the initial
position of the plates was changing at each iteration, thercorresponding deformed volumes would
not be centred around the same point. This would further ¢icatp the optimisation process as the
magnification factor of the projected mammogram would vary.

Regarding optimisation, in our previous implementatiohthe affine and the ellipsoidal transfor-
mation models we were using a gradient descent optimiséramiegular step size, as described in sec-
tion/4.1.2. Gradient-based optimisers are very commordyl iis medical image registration, providing
good results when the optimised function has a smooth betiawVvhen applying the same optimisation
method using the FE model, the results showed that the cgattion failed to reach the global mini-
mum, as the final alignment did not provide visually good lssiMoreover, often the similarity at the

last iteration was lower than that obtained for previougiiens. This behaviour can occur when the
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Table 6.2: Comparison between the Regular Step and the &e§tdp Gradient Descent optimisation

schemes.

Regular Step

Regular Step Gradient Descent

At each iteration i

For each parameter p

At each iteration i

For each parameter p

b= pi-l & step pi=pld. G step
w(p) w(p) P G(ki—1)
Z(iw(k) )

k=1
updatep’ if similarity increases
decrease step if the similarity doesn’t improyve decrease step if the directieh= +1 changes

stop if step < tolerance stop if gradient < tolerance

=G (p) : the gradient magnitude of the similarity measure with respe parameter p

=w(p) : the weight of parameter p that controls the magnitude difiee between the transformation

parameters

optimised function has a noisy profile with respect to theapaaters. Moving towards the direction of
the gradient does not guarantee better similarity. Our raxgats showed that, especially for the FEM
transformation model, where the initial position of thewok is already close to the optimal solution,
the similarity measure has a noisy behaviour around it aisaftimisation scheme did not provide good

registration results.

To overcome this problem, we propose the use of a regulapgtépiser that does not use gradients.
The optimisation scheme is simple. At each iteration, thaxaper sequentially varies all the parameters
by a specified factorstep and keeps the value that results in a better similarity. Mpgarison of this
optimisation scheme against the one that was used so favés @i Table 6.2. The results showed a

significant improvement when the new optimiser was used.

A further small improvement was achieved when updating et @aration of the registration only
one parameter, instead of all sequentially. According i® scheme, the parameter that is updated at

each iteration is the one that results in the largest ineredighe similarity measure, at the current

relative step size. This is also known as a simple hill-clmyfRussell and Norvig, 2003] optimisation

scheme. Using this technique is a logical approach for thientgation of our FEM-based transformation
parameters, as this has the effect that the translationsogatibns, which naturally contribute most to
the similarity measure, are updated first. Then, the redieparameters are updated according to their
contribution to the similarity measure, rather than thelative position in the transformation module,

which would occur if they were updated sequentially.
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Table 6.3: Registration error (in mm) of our FEM transforimatmethod and comparison with the
Ellipsoid-Statistical Deformation Model (E-SDM) and thelwme-preserving affine. The clip cases are
p4 and p5. The last three columns in the table corresponcetm#ran value, the standard deviation and
the confidence intervals of the mean values for a 95% confelkvel. For a value in the last column

the confidence interval is given bjimean — ¢, mean + cJ.

pl p2 p3 p4 p5 mean| std conf.
FEM CC 8.0 6.8 7.2 4.8 114 || 7.6 24 21
E-SDM CC 123 | 16.3 | 3.6 4.4 28.8 || 13.0 | 10.2 | 9.0
Affine CC 146 | 13.5 | 3.7 9.9 234 || 13.0 | 71 6.3

FEM MLO 12.2 | 115 | 103 | 11.1 | 6.2 10.2 | 2.3 2.0
E-SDMMLO | 11.0 | 24.7 | 16,5 | 75 215 | 16.2 | 7.1 6.2
Affine MLO 119 | 7.2 9.4 7.7 18.9 || 11.0 | 4.7 4.1

6.3 Experiments

For validation we used MRIs and X-ray mammograms of five padiéhat were acquired approximately
at the same time point. These data are described in séct®arl they include also two clip cases
(section A.4.1). In total we used three patients with iditilesions in both modalities and two with

MR and X-ray compatible clips. As before, the registratiomeis the 2D Euclidean distance between
the centres of the X-ray annotation/clip position and thgeation of the MR annotation/clip position,

after being deformed, first with our FEM-based method and fbBowing an affine (chapter 4) and an

SDM transformation (chaptéer 5) for comparison. These eérpats were part of the work described in
[Mertzanidou et al., 2012b].

The data selection process ensured that this dataset dbelude any MRI cases with unusual
breast shapes and irregularities, such as folding. Thibtédes the process of building a breast model
and avoids artifacts and convergence problems of the FEeisolfien a large breast compression is
applied. The solver used is the same as in the previous ¢chapBPU implementatichof an explicit
Finite Element (FE) solver [Taylor et al., 2009].

The registration errors of all registration tasks are giireffable[6.3. Overall, we can see from
the results that the patient-specific FEM-based transfoom@erformed best. Moreover, the standard
deviation of the registration errors had the lowest valube Tatter means that this approach gave the
most consistent results amongst the three models. Thesksrase not surprising, as a model that is
built from a patient’s MRI is less likely to give large errdrgn a geometrical or a statistical deformation
model, that are not constrained to provide physically stialideformations. In addition to the mean
values and the standard deviation, Table 6.3 contains thfidemce intervals of the mean values for

a 95% confidence level and assuming normally distributedrgrrAs the confidence intervals for all

Shttp://niftysim.sourceforge.net/
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three transformations overlap, one can conclude that fferelices in mean values are not statistically
significant. However given the small number of cases, futal&ation tests on a larger dataset will
examine whether this is a valid conclusion.

While for the CC view registrations the FEM had clearly the dsitverror {.6 4+ 2.4mm), for the
MLO view the registrations errors were slightly larged € 4 2.3mm) and also comparable to the affine
transformation. One possible explanation is the fact thatgectoral muscle has a larger effect on the
registration results of the MLO view and thus the simplificatof the pectoral muscle as planar could
have contributed to the method’s accuracy for this viewthamrvalidation on a larger number of cases
could verify this explanation.

It is also clear from the results that for this dataset the Sidroach performed slightly worse
than the affine for the MLO view. For the CC view the results @mparable, which can occur for a
specific dataset, although in the previous results the SDiNbpeed better. In these experiments we
used the new optimisation technique described in sect@rag.the one used in the previous chapter did
not provide good alignment. Nevertheless, the resultcatdithat this approach is less reliable for this
view. We can conclude that the approximation of the breaahadlipsoidal shape has a more significant
and negative effect on the MLO view registration.

Figures 6.5 and 6.6 show some example registration resulte &-EM-based transformation. As
was discussed in section 4.B.2 inevitably each modalitygiem different estimates of a lesion’s size,
but all the cases with annotated lesions show overlap. Tferelce in size as an effect of the different
contrast mechanisms and the difficulty in manually anniogatine lesions, cannot be avoided. Another
factor that results in larger sizes of the MR annotationkésuse of a homogeneous tissue type that can
result in a compression of the lesion size in the directiothefcompression and an expansion in the
perpendicular direction. This is expected, as the lesiorotsmodelled explicitly in our approach and
it was also previously observed in other FEM-based simarat[Ruiter, 2003]. The use of a different
tissue type for tumours could overcome this problem, butldvalso complicate further the modelling
and the FE simulation processes. Our error metric is notanfted by this lesion expansion effect, as it

takes into account only the centres of mass of the differenbtations.

6.4 Discussion

In this chapter we have presented a novel framework for MRI-tay mammography registration using
an iteratively updated FEM breast compression simulatibme results on five clinical datasets show
improved accuracy compared to the affine and the SDM tramsftion models, indicating that this could
be a useful tool and potentially help in better breast cadetgction and diagnosis. Better accuracy was
expected from this transformation model, as it providegentkspecific and more physically realistic
compressions of the breast than the other two models.

Compared to other patient-specific FEM-based methods useti§ task, quantitative results on

clinical cases showed a mean error of 4.3mm on 6 cases [Ruigdr 2006], and in a more recent

semi-automated implementation of the same appraach+ 6.5mm on CC view mammograms of 11

patients [Hopp et al., 2012]. However, a meaningful congmariis not possible unless these algorithms
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(a) p3 CC7.2mm (b) p3 MLO, 10.3mm (c) pLCC8mm (d) p1 MLO, 12.2mm

Figure 6.5: Registration results for two patients with itifieed lesions. The X-ray annotation is shown

in red and the projection of the MR annotation in green; thearlap is yellow.

(a) p5 CC,11.4mm (b) p5 MLO, 6.2mm (c) p4 CC4.8mm (d) p4 CC, sim

Figure 6.6: Registration results for the two patients witR nd X-ray compatible clips. The clip
location in the X-ray mammogram is visible as the high intgn®gion (and a red arrow for p4). The

MR annotation in shown in green. For the patient p4 we alsashe simulated CC X-ray mammogram

(d).
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are tested on the same datasets. The main novelty of our chigthioe integration of a biomechanical
transformation model into an intensity-based registratishere we simultaneously optimise both the
pose, via four degrees of freedom, and the model parameiars, further three degrees of freedom.

This framework maximises the amount of information usechgydptimisation, compared to registration

methods based only on the breast outline [Ruiter et al., R@6reasing the likelihood of the correct
transformation being obtained.

The breast modelling process proposed in this chapterdeslgertain simplifications, such as the
use of coarser resolution images to extract the meshes,sth@fuone homogeneous tissue type and
the approximation of the pectoral muscle as a plane. Nestedh, these methods contribute to a more
automated approach of the breast modelling, which when gwdbwith our registration framework,
only requires one interactive step, which is the pectoratatmisegmentation. As discussed previously
this can be automated in the future, and it could be intediate the clinics, providing a fully-automated
patient-specific framework for MRI to X-ray mammographygalinent.

Nevertheless, large breast compressions, such as thasgingéin mammography, can cause con-
vergence problems for the FE solver. As a result, this cautldduce the need for manual interaction,
which would not occur with an affine or the SDM transformatinadel. Further validation tests should
be performed to examine the applicability of this registraframework in clinical practice.

In future work it would be interesting to investigate thefpemance of this framework using a more
complex model of the breast. This would include for exampt@ertissue types. Classes that can be
considered are the fibroglandular and the fat tissue, thre pkictoral muscle and tumour (if present).
Regarding the boundary conditions, we could also optintisentodelling of the pectoral muscle as in

this implementation it is simply approximated by a plane.other factor that could be tested is the

removal of the effect of gravity before compression as psegoby [Rajagopal et al., 2008]. Finally,

further work includes validation using a larger number dbdats.



Chapter 7

Relating findings between X-ray

mammograms via an MR volume

In the previous chapters we presented our registrationewark for mapping MR coordinates to the
X-ray mammograms and we investigated the performance eétdifferent transformation models for
this task. Here we are using this framework for a differerligption: the mapping between X-ray
mammograms, via the MR volume.

The clinical importance of this application is high. X-rapmmogram registration techniques can
be used to assist radiologists in automatically determgigimrrespondences when examining temporal
mammographic images of the same view, or when they relata§adrom the CC to the MLO view and
vice-versa. Determining correspondences between X-ragmagrams is of interest for cases with an
available MRI. For the remaining cases, our method pavesdaydor a model-based approach that could
be performed without MRI in future. Moreover, these techieis|can be integrated in CAD algorithms

([Paquerault et al., 2002]

, [van Engeland et al., 2006] ef&hnet al., 2009]) to reduce the search space

when mapping texture features that are extracted fromrdiffenammographic views and also relate the
extracted information to improve CAD performance.

In the next sections we describe the modifications made iardadadapt the registration frame-
work for this purpose and also demonstrate its use for ifgsda and temporal registration of X-ray

mammograms.

7.1 Analysis

As we have seen in the literature review (section 2.2.1)erd&hing corresponding regions in X-ray

mammograms has been an active research field. Neverthelessprevious techniques approach this
problem as a 2D-to-2D correspondence task (so assumingpen@e correspondences), either using a
mapping based on texture and intensity measures, or usistpacke transform from features such as the
pectoral muscle and the nipple position. Since X-ray manrarog are projection images, any 2D trans-
formation model is inappropriate for this task, as the 3Dgits/ transformation of the tissue cannot be

modelled by a 2D technique. This problem was approached as-toemany correspondence approach

for the validation of X-ray mammography registration aitfons [Hipwell et al., 2007] and for relat-
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ing findings between ipsilateral X-ray mammography viewidtt al., 2001] and breast tomosynthesis

views [van Schie et al., 2011].

Assuming that we have an MRI and two mammograms (either CQvir@, or temporal) of the
same patient, then we can perform two registration taskglabe the MRI to the X-ray mammograms
independently. After having acquired the two transforovadi we can use them to map coordinates from

one X-ray image to the other.

7.1.1 Ipsilateral registration between CC and MLO mammographc views

An example case that illustrates the general pipeline isrgin Figure 7.1. Step (1) shows the CC view of
a patient’s X-ray mammogram. The area illustrated in gregresponds to the detected lesion (Invasive
Ductal Carcinoma). Step (2) shows the deformed MRI volunteeategistration position, obtained via a
FEM registration between the MRI and the CC view mammograne. ray illustrated in red corresponds
to the voxels that are projected to the centre of the greentated area in the previous step. Step (3)
shows the original undeformed MRI of the patient and the @als correspond to the ray illustrated in
the previous figure. For this step, we are using the transftiom result of the CC FEM registration. At
this stage we know which voxels of the original MRI correspdm the lesion identified in the CC view.
Step (4) shows the deformed MRI volume at the registratiitiom, obtained via a FEM registration
between the MRI and the MLO mammogram. For this step, we drguke transformation result
of the MLO FEM registration. Notice that this transformatimcorporates a rolling of the breast of
approximately 45°. Finally, step (5) shows the MLO view of thatient’s X-ray mammogram overlaid
with the lesion identified in the MLO view in green and the pjon of the lesion position from the CC
view (corridor shown in the previous step) in red. As expéctiee correspondence between the CC and
MLO view of the patient is not one-to-one, but one-to-many.

The registration framework described in the previous arggdoes not need to be altered for estab-
lishing correspondence between mammograms. However ighareadditional process that needs to be
followed. So far, we have seen that the output of the registras the set of optimised transformation
parameters. These parameters are then used to map regionsrest between the MRI and the two
X-ray images. We have described previously how we map aiposih the MRI onto the 2D X-ray
mammogram. For the inverse step that is used to map the egl¥etay coordinates to the MR, we
simply cast a ray from a specified 2D position on the mammogiarthis case the centre of mass of
the X-ray annotation, and then extract the four neighbotith@intersections of this ray with the 3D
MR grid, shown in red in step (2). We then use the FEM transétion from the registration result to
map the coordinates from the compressed to the uncompré&tiRedrhese transformed intersections
are shown in step (3) in red.

For display purposes, the corridors in Figure] 7.1 have bdated, using a binary structuring ele-
ment, and subsequently smoothed using Gaussian smoofthirsgprocess has the effect of producing a
single connected region when the surface mesh is extrabiigmtactice, this corridor can have discon-
tinuities, particularly during the mapping process fromggt (2), the CC compressed volume, to stage

(3), the undeformed MRI. In all the other results displayethie experiments (section 7.2) the corridors
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Figure 7.1: The process of determining corresponding foalimetween the CC and MLO view mam-

mograms of a patient, through the MRI. The patient shown is p3
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Figure 7.2: The process of determining corresponding foslinetween temporal CC view mammo-
grams of a patient, via the MRI. The centre of the annotaticthé mammograny (1) is mapped onto
the mammogram, (5), illustrated as green. The mammogram acquired abntains a clip, illustrated

as red. Their overlap is yellow. The patient shown is p5.

have not been dilated or smoothed.

7.1.2 Temporal mammogram registration

Following the same concept, we can use this framework foaliggment of temporal mammographic
images of the same view. For the registration between CC mewmograms acquired at timepoints
t; andt,, steps (4) and (5) in Figufe 7.1 will be different. Assumimgttthe X-ray mammogram
in step (1) was acquired at, then mapping a region in the X-ray mammogram to the undefdrm
MRI shown in step (3) requires the use of the CC FEM transftiondetween the MRI and the X-ray
mammogram at,;. Subsequently, we can then use the CC FEM transformatiaveleetthe MRI and
the X-ray mammogram &} to obtain a new deformed volume in step (4) and then projéstinthet,
mammogram in the final step (5). The same process can be éppliee MLO view mammograms.

The temporal mammogram registration process is valid if agume that there is no significant
change of the breast tissue during this time. This can beretsithe two timepoints are close to each
other. In practice, when there is a large time differencevben the two image acquisitions the breast
tissue appearance can change. For example this can be dgusieainges in the amount of fatty tissue,
the effect of tumour growth, or the removal of breast tissuénd) surgery. For these cases, and if there is

an MRI acquired at both timepoints andt,, we can add one more step in the registration pipeline that
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Table 7.1: Registration errors tnm for the CC to MLO registrations on ten cases. The clip cases ar
p9 and p10.

pl [ p2 | p3 | p4 |p5 | p6 | p7 | p8 | p9 | plO | mean std

FEM CC-to-MLO | 15.6| 11.5/ 0.1 | 156| 2.3 | 89 | 94 | 0.2 | 13.0/ 5.1 || 81 | 5.9

corresponds to the temporal alignment of the MR images. $rmporal MRI registration techniques
have been recently proposed to monitor change of the brisagetover time and tumour response to
treatment {[Chittineni et al., 2007], [Li et al., 2009], [Bdler et al., 2010]).

7.2 Experiments

For validation we used clinical X-ray mammograms of paseior whom an MRI was also acquired.
The mammograms included annotated lesions of various jpgfles. We also included cases that had
an X-ray compatible clip inserted after biopsy. The clip waserted at the position of the lesion and
consequently the annotations and clip positions were usemla standard correspondences across the
mammograms. The inter-observer error of the manual ariangatalculated from 4 radiologists on 4 of

the mammograms used in the experiments Wvasm.

For the evaluation, we consider the centres of mass of thetations and/or clips. Our error metric
is the minimum of the 2D Euclidean distances between thee@&ftmass of the annotation/clip in the
second mammogram and the projection of the uncompressegenmpressed ray locus corresponding

to the centre of the annotation in the first mammogram. Thifiéssame error metric that was also

proposed by [Kita et al., 2001].

7.2.1 Ipsilateral registration between CC and MLO mammographc views

In these experiments, we used data from ten patients, fahwhé had both MR and X-ray images ac-
quired approximately at the same time point. Two patiendsihserted clips that were used for validation

(sectiont A.4.1) and the rest had annotated lesions (se&tB)n

The registration errors are given in Table|7.1. The mearstgion error for this task i8.1 &
5.9mm. Figures 7.3 and 714 illustrate two example cases. It ig thed the projected area on the MLO
view is not a straight line. Also its length can vary, depegdon the position of the lesion inside the
breast: for example the length of the line in Figure 7.4 istieély short, as the lesion is positioned
close the the edge of the mammogram, while the line illustiat Figure 7.3 is longer, as the lesion is
positioned closer to the centre of the breast. The advamtiage method compared to other techniques
that use a distance metric from the nipple and the chestisafiat it can represent each correspondence
case individually and therefore incorporate these vamati as a patient-specific model is used for each

case.
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(a)p8 CC (b) p8 MLO

Figure 7.3: CC to MLO registration results for patient p8.eTfrray annotation of the CC view and its
projection on the MLO are shown in green. The X-ray annotatio the MLO view is shown in red.

The error is0.2mm.

(a) p10 CC (b) p10 MLO

Figure 7.4: CC to MLO registration results for patient p1MheTclip on the CC view its projection on

the MLO are shown in green. The X-ray clip on the MLO view iswhan red. The error i§.1mm.
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Figure 7.5: 2D registration errors for the temporal CC andOWiew registrations of 6 patients. Our
method is illustrated in red and it is compared against a ZiDeafransformation (green) and the initial

2D error, without registration (blue). The clip cases arggods p5 and p6.

7.2.2 Temporal mammogram registration

In these experiments, we demonstrate the use of the sameviain for the matching between tem-
poral mammograms. We used data from six patients, four witiotated lesions at two time points
(sectiorl A.3) and two with annotated diagnostic mammogrdmaswere mapped to X-rays obtained
after biopsy, with a clip inserted at the lesion’s positi@edtion| A.4.2). Our method was com-
pared against a 2D affine registration, that has been pror@nopsly to outperform other methods
(Ivan Engeland et al., 2003], [Pereira et al., 2010]). Thpeexnents that use the 2D affine, intensity-
based registration using normalised mutual informatiorevperformed by John Hipwell, as part of the
work published in [Pereira et al., 2010]. The algorithm wesvpusly implemented by Julia Schnabel
and Daniel Rueckert based on an original algorithm develdyyeColin Studholme. We also provide the
errors when no registration is performed.

All results are given in Figure 7.5. The mean registratiooreof our approach i8.5 + 3mm, the
2D affine registration error i6.5+4.6mm and no registration gives an errorldf.5+5.4mm. As we can
see, our method outperforms the 2D affine registration naethi@lso provides good registration results
for all cases, with a maximum error 8f5mm, while the maximum error of the 2D affine transformation
technique isl4.4mm. Two example cases, one good registration result and ommeawérger error, are
illustrated in Figures 716 and 7.7. The figures illustrate dme-to-many mapping between temporal

mammograms.

7.3 Discussion

In this chapter, we have demonstrated the use of our FEMddsd to X-ray mammography registra-
tion framework for the mapping of findings between X-ray mamgnams of the same patient that have
been acquired from a different view or at a different timepolt is the first time that a patient-specific

3D model of the breast with a physically realistic biomedbalsimulation has been used for this task.
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() p1 CC(t1) (b) p1 CC(t2)

Figure 7.6: Temporal registration results for the CC viewatient p1. The X-ray annotation at timepoint
t, is shown in green, as well as its projection on the second n@gram. The X-ray annotation of p1 at

timepointt, is shown in red. Their overlap is yellow. The errobi®8mm.

(a) p6 MLO (1) (b) p6 MLO (t2)

Figure 7.7: Temporal registration results for the MLO viefvpatient p6. The X-ray annotation at
timepointt; is shown in green, as well as its projection on the second n@gram. The clip of p6 at

timepointt, is shown in red. Their overlap is yellow. The erro6igm.
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The results showed that our method outperforms the 2D affamsformation that is typically used
for temporal alignment. In our experiments we assumed tigbteast tissue of the patient has not
changed significantly over time. In future work and if an MRIl&vailable at both time points, an
additional step could be inserted into the pipeline, thatildigerform a non-rigid registration between
the two MRIs, to account for any changes in breast volume &ndtare.

Our proposed framework was also tested for the matchingdetvcC and MLO mammograms.
The errors for these registrations were larger than thestbbshe temporal registration. This was ex-
pected, as the difference in breast deformation betweea ggaw mammograms will inevitably be much
smaller than the difference between CC and MLO views. Costpay other methods proposed in the
literature for the same task, the method of Kita et al. [Kitalg 2001] is the one that is most closely
related to our approach, as it did not make use of CAD extdafetatures. Instead the authors used a
simplified breast model reconstructed from the two mamnyigcaviews. The mean registration error
in their study wa$.8mm, which is comparable to our results. Nevertheless, the teamerrors cannot
be directly compared, as they were not applied to the sanzesgds. Future work includes validation
on a larger data set and further investigation of the effeat the biomechanical modelling has on the
registration accuracy, such as the use of more tissue tyjkemare accurate modelling of the pectoral
muscle.

Finally, the main drawback of this approach is that it regsian MRI of the patient to be also
acquired, in order to build the 3D model. Nevertheless,iththe first method that proposes a patient-
specific model with a physically realistic breast deformatfor this application. Previous methods
which employ 2D transformations are fundamentally inappede for this task. This study can lead to

a model-based approach for this task, that could be perfbemithout MRI in future.



Chapter 8

Conclusion

This thesis has presented a general framewaork for intebsibed registration between MR images and
X-ray mammograms. For this purpose, we have proposed an ER¥-Meast tissue classification tech-
nique that is required for the simulation of an X-ray atteinravolume from the MRI (chapter 3). We
then investigated the use of three different transformatimdels, with increased complexity, that at-
tempt to capture the complex breast deformation betweemprthee position in the MR scanner and
the compression between two plates during the X-ray mamamogrcquisition (chapters 4, 5 6).
Finally, we have also investigated the use of the same framefor determining correspondences be-
tween X-ray mammograms through the use of the 3D deformatiodel provided by the MRI of the
patient (chapter|7).

In section 8.1 we summarise and discuss the findings of eathoch@roposed in all the above
thesis chapters. Finally, in section 8.2 we discuss paséihitations, we propose methods to overcome

these in future work and we present different potentiali@pfibn areas of this framework.

8.1 Summary and conclusions

To summarise the advantages of our proposed registratéonefrvork, this is the first approach that
demonstrates the alignment between clinical MRI and X-nagges of the breast based on the breast’s
internal structures. Moreover, this framework is genenid ean incorporate any transformation model,
optimisation strategy or similarity metric by virtue of dgrivation from the Insight Toolkit registration
methodology [ITK, 2003]. All three proposed transformatimodels, from geometrical, through to
ellipsoidal-SDM and finally to FEM-based patient-specifiose reproducible results and parametrise
the space of the complex breast deformations using a low aupfliegrees of freedom. Our approach
is targeted for clinical use, as it could be potentially kasicorporated into clinical practice. Below we

summarise the conclusions for each one of the methodoldg®&sibed in this thesis.

8.1.1 X-ray simulations from an MR volume

In chaptef B we have seen in detail our methodology for sitimgaX-ray mammograms using the MR
volume. Although the research topic of this work is not theuaate X-ray image simulation from the
MR, this is an important component of the registration feavork, as the similarity between real and

simulated mammograms is used to drive the optimisationga®c
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The main contribution is the use of an EM-MRF breast tissassification algorithm that was
previously proposed for the classification of brain tissuelMoxels. As it has been discussed, the vali-
dation of this technique is problematic due to the lack of@ugd truth dataset with known, non-binary
classifications of the voxels in the breast. Consequetigychoice of this approach was made due to its
advantages over manual thresholding and specifically itgyato generate non-binary classifications,
give reproducible results and produce simulated X-ray magrams that include finer details of the
fibroglandular structures than those produced using mahregholding.

Overall, the use of the X-ray image simulation technique rasided us with the flexibility to
compare different transformation models, with increasingplexity, for their suitability in MRI to
X-ray mammography registration, as in all cases the sinwiaechnique remained the same. The
described framework includes certain simplifications,askample it does not account for scattering,
nevertheless it is computationally efficient and generAteay images that provide higher registration
accuracy than other proposed methods for this task. In tkieseetion we discuss how this methodology

could be further improved and optimised to potentially @ase registration accuracy.

8.1.2 MRI to X-ray registration using an affine transformation

Our proposed framework for MRI to X-ray image registrati@sveen introduced in chaptér 4, where we
have also presented our experiments using a volume-piegaffine transformation model. This was
the first work that investigated an intensity-based 2D/3@steation framework for this task. Previous
methods have mainly used a small number of extracted featurdne breast outline, while in this work
we propose an alignment based on the matching of the stesctuithin the whole breast. This method
uses the complete information about the images and thergimvides a more robust alternative to
feature-based techniques.

Furthermore this was the first methodology that was valiat@ large number of clinical datasets.
The experimental results on 113 registrations tasks, c@fnim 49 patients, showed that this framework
with a relatively simple transformation model could potalty be clinically useful for breast cancer

detection and diagnosis, providing a median registratioor ®f 13.1mm.

8.1.3 MRI to X-ray registration using an ellipsoidal breast model

Chapter 5 describes our work that proposed a new transfimmatodel with increased complexity, in
comparison to the affine, incorporated inside the sametratitm framework. We have proposed an
ellipsoidal SDM transformation model that uses breast licimanical simulations to learn the space of
plausible deformations that the breast undergoes undepremsion, by extracting the main modes of
variation. As part of the transformation model, apart fréva breast pose parameters, we also optimise
the relative weights of the extracted modes of variatiorinduthe iterative optimisation scheme of the
registration.

This approach has the advantage of using a more physicaligtie transformation model than the
affine, as it is based on biomechanical simulations of a glatepression. Furthermore, the approx-
imation of the breast shape as ellipsoidal, has the advarmhgroviding a model that is more easily

adaptable clinically, as it does not require patient-dpemodels to be built. The results on 10 clinical
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datasets demonstrate an improvement in the accuta®y:{n) compared to the affine transformation

model (15.9mm).

8.1.4 MRI to X-ray registration using a patient-specific biomechanical model

The final transformation model that we have proposed is @ipiasipecific biomechanical model of the
breast (chaptér 6), whose parameters are iteratively agdiaside the registration framework. The main
advantage of this approach is the use of a specific model @r patient, extracted from the MRI and
also the use of the updated rigid transformation paramatetshe biomechanical simulation parameters
in the same framework, using an FE solver that runs on the GRId.is the first approach that used a
2D/3D intensity-based framework for this task, with it@éraly optimised parameters of both the pose
and biomechanical modelling of mammographic compression.

The experiments on five clinical datasets show that this atettutperforms the other two transfor-
mation models, although for the MLO view the results showhgly lower accuracy, which is compa-
rable with the affine transformation. In addition to the ioygd mean accuracy of the patient-specific
approach, the standard deviation about this mean is alser linan the other methods. This suggests (al-
though the number of data sets is small) that this transfiilomanodel provides more consistent results.

To summarise the results of all three transformation modedse are displayed in Figure B.1.

8.1.5 Relating findings between X-ray mammograms via an MR voime

Finally, in chaptef 7 we have demonstrated the use of the sagistration framework for the map-
ping between temporal and different view mammograms of éimeespatient. This task was mainly ap-
proached so far as a one-to-one correspondence mappindparehaformation models were employed.
Our technique takes into account that the correspondemeesna-to-many and thus the alignment is
performed based on the 3D information provided by the MRI.

Our experiments showed that this framework could also be émethis application, providing
good accuracy. The registration error for the temporal magram registration was reduced3is +
3mm, while the commonly employed 2D affine registration prodiées + 4.6mm on the same dataset.
Furthermore the projection of a point in one mammogram tareecin the other, provides an illustration
of the accuracy that can be achieved when employing the uggrioius distance metrics for matching,
for example distances from the nipple or the pectoral muddlese techniques are frequently followed

in clinical practice.

8.2 Future work

In this section we discuss how this work can be further impdoand extended in future work. We also
propose different applications, in which the same framé&would be potentially integrated.

Further validation of the registration framework

Our experiments that compared all three proposed tranataymmodels for registration, indicate that
the patient-specific method performs best. Further vatidatests performed on larger datasets will

ensure that these results are not specific to the datasetltsedild also be beneficial to use a common
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Figure 8.1: lllustration of the registration errors acleié\by the three proposed transformation models
for the MRI to X-ray mammography registration (affine, E-S2Md FEM). The errors correspond to
the ones previously presented in Table 6.3.
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validation dataset in order to compare our method with diiev-based techniques previously proposed
for this task ([Ruiter et al., 2006], [Hopp et al., 2012], f.et al., 2011]).

Validation of the X-ray simulation technique

As discussed in chaptét 3, the validation of the breastdissassification algorithm is problematic,
due to lack of ground truth data sets. The EM-MRF techniqa¢ wWe propose for this task and the
X-ray simulation methodology that is described in appefiliprovide simulated X-ray mammograms
that can drive the intensity-based registration and leaal¢onvergence of the optimisation algorithm.
Nevertheless, both techniques incorporate the use ofdedgred parameters and simplifications, such as
the cost of having the class 'Fat’ next to 'Glandular’ tissunel the use of an effective attenuation volume
which ignores beam hardening effects. In future work ondcchwrther investigate the effect that these
parameters and simplifications have on the iterative negish in terms of its convergence performance

and accuracy.

Further optimisation of the implementation

Future work could include further optimisation of the cuntr@ipeline implementation. For example,

the use of a fully-automated pectoral muscle segmentatioeictly exists [Gubern-Merida et al., 2011]

and therefore, if incorporated, it can provide a framewbi does not require any manual interaction,
enabling an easier integration into clinical practice.

Furthermore, the implementation of the ray-casting atgoricould be improved. As we saw in
chapter 5, for the non-rigid registration framework at thenment we are computing the intersections of
the rays with the 3D grid at each iteration of the registratiOne option to accelerate this process is to
save these intersections in memory, as they remain the sameghout the registration process. More-
over, a GPU implementation could be used to speed up thiepspas the ray-casting is an algorithm
that can be easily parallelised.

The optimisation scheme used in the registration couldtzdoirther investigated, as other optimi-

sation strategies could lead to faster and potentially malsast convergence.

Improved breast biomechanical modelling

For the biomechanical modelling of the breast, we have maderal assumptions that have contributed
to an automated implementation of the pipeline and help soethat the FE solver converges robustly.
These include the use of a homogeneous tissue type, thesplsgof the MRI before meshing, and the
approximation of the pectoral muscle as a plane. In futurkywane could investigate further whether
the use of more tissue types (for the fibroglandular, fatcwnand skin), the accurate modelling of the
pectoral muscle, and the removal of the effect of gravityftbe MRI before compression, can improve

the results obtained so far.

Use of the post-contrast MR images

In the work described in this thesis, we have used only thepntérast DCE-MRI of the breast for regis-
tration. The use of the post-contrast image combined witptle-contrast can give detailed information

about the location and the shape of the tumour, as we haveirsseation 1.2.2. In future work one
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could investigate further the benefit of incorporating mfiation from the post-contrast images to assign
a different attenuation coefficient to the tumorous tisswmntthe normal fibroglandular structures and

thus enhance the contrast between them and produce mdsticeéray simulations from the MRI.

Application in breast cancer detection and diagnosis

As it has been discussed before, the MRI to X-ray mammogragdugtration can be used as part of a
clinical tool in order to assist radiologists in integratithe information shown in the two modalities and
potentially improve breast cancer detection and diagnosssuming that the radiologists are using a
multimodal workstation, our algorithm could be part of thewing tool, where the radiologists would
be able to navigate their cursor through the MRI and view threesponding location on the CC and
MLO view mammograms either as a point position or as a disk witradius that equals the mean
registration error extracted from a validation test. This ivould be particularly useful for the detection
of mammographically occult lesions and further evaluabbmammographically detected lesions. For
this application, the algorithm can run once off-line, wheth images become available. The result can

be stored as a transformation model, allowing the multirheigsving to be performed in real-time.

Application in CAD algorithms

Our MRI to X-ray registration framework could be incorp@@tinto multimodal CAD algorithms

[Yuan et al., 2010], to automatically map features extrdftem the MRI to both X-ray mammographic
views. This automatic correspondence between featuresdwmlp both in the training process of
feature classifiers and also in the testing of a suspiciousfimeling, as the classifier would take into
consideration the information extracted from the regiohmirest in both modalities. Moreover, the
mapping between the CC and MLO view of the mammograms, thatdeacribed in chapter 7, could
also be useful in X-ray CAD algorithms, although this cutherequires the patient to also have an MR

image acquired.

Application in X-ray guided biopsy

Another future potential application of our framework is itse as a tool to enable X-ray guided biopsy
for lesions that are not clear or visible in ultrasound anch¥X- Currently, these patients undergo MRI-
guided biopsy, which is expensive, time-consuming andrimenient for clinical practice. If an MRI to
X-ray registration framework were available with a suffitiéevel of accuracy, then a lesion visible in
the MRI could be identified and mapped onto the X-ray mamnmagihis would enable the radiologist
to perform an X-ray guided biopsy, which is a procedure thailel be faster, less expensive and more
widely available than using MRI. Nevertheless this appiccawould require better accuracy than mul-
timodal detection and diagnosis and therefore our impléatiem would need further improvement and

validation.

X-ray mammaogram registration

We proposed a novel technique that models, in a physicadlygible way, the 3D deformation that oc-
curs between two mammographic acquisitions (temporal #fereht view) and uses this to establish

correspondence. One limitation of our method is that itenity requires the MRI and therefore its
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clinical value is limited to these cases. However, this néphe paves the way for a model-based ap-
proach that could be performed without MRI in future. Forrapée, one could use a generic 3D model
of each patient’s breast, whose shape and dimensions wewddtimated from the CC and MLO view
mammograms. This model could then be used to relate themiafiton between two X-ray projection
images. Such a model would then be applicable to all patesg<and would model a physically real-
istic deformation, as opposed to previous methods which@ngD transformations, and are therefore

inappropriate for this task.
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Appendix A

Summary of datasets

This section summarises the datasets used in all the exg@sdescribed in the thesis.

A.1 MRI and X-ray film mammograms

These are DCE-MR images and digitised film mammograms frenJth MR Breast Screening Study
MARIBS [Leach et al., 2005] and the Cambridge University pitels NHS Foundation Trust. The

MR volumes used are the pre-contrast T1-weighted imagefavelvoxel dimensiond.33 x 1.33 x
2.5)mm?3. The original digitised mammograms have a pixel sizfdf x 0.1]mm? and were resampled

to [1 x 1Jmm? for registration, as discussed in the report.

A.2 MRI breast compression volunteer data

These data were acquired in the University College Londospial, as part of the validation study

described in [Tanner et al., 2011]. They are pre-contrasw&ihted MR images with voxel size of

[1.0x 1.0 x 2.5]mm3. The volunteers had initially pre-contrast images acahivithout any compression

and then repeated scans with an increasing amount of cosipmesom the lateral to medial direction.

A.3 MRI and FFDM with known annotated lesions

These cases were acquired in Radboud University NijmegeatiddeCentre and include DCE-MRI and
FFDM from women with benign or malignant lesions that areblésin both modalities. We used the
pre-contrast MRI T1-weighted images. The resolution ofNtiRls varies across patients and is either
[0.9 x 0.9 x 1.0]mm3 or [0.6 x 0.6 x 1.3]mm3. The original resolution of the X-ray mammograms is

[0.1 x 0.1]mm?; they were subsampled by a factor of 10 for registration.

The identified lesions were annotated by expert imaginghgisis using one or multiple spheres
for the MRI. A tresholding approach was used on the contrasharecement within the sphere/spheres to
find the enhancing lesion part following Otsu’s method. Akdis a free-form shape for the annotation

of the X-ray mammograms.
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A.4 MRI and FFDM with clips
A.4.1 Datawith MR and X-ray compatible clips

These are patient cases that had both an MRI and also X-raymograms acquired with an MR and
X-ray compatible clip at the lesion’s position, in the ClerUniversitsmedizin Berlin. The voxel
resolution of the MRI (T1-weighted) i.7 x 0.7 x 2]mm? and the FFDM0.085 x 0.085]mm?2. The

X-ray mammograms was subsampled by a factor of 10 for regjstr.

A.4.2 Data with X-ray compatible clips inserted after biopy

These cases include patients with lesions that are not/edsittified on the X-ray diagnostic mammo-
grams. These were annotated both on those images and al®diagnostic T1-weighted MRIs. These
patients had also an MR-guided biopsy where an clip wastgat the lesion’s position. Subsequently,
another FFDM was acquired after biopsy, where the clip waibl. Correspondence between these
temporal mammograms can be established using the clipguosind the annotations on the diagnostic
images.
These cases were acquired in Radboud University NijmegatiddeCentre. The voxel resolution

of the MRI'is[0.7 x 0.7 x 1.3]mm? and the FFDM[0.1 x 0.1]mm?2. The X-ray mammograms was

subsampled by a factor of 10 for registration.



Appendix B

Computation of an X-ray attenuation volume

from the MR

The following methodology is work of John Hipwell and it washtished as part of our study in
[Mertzanidou et al., 2012al].

After classifying each voxel in the MR volume into fibroglanar and fatty tissue, we then cal-
culate an “effective” monoenergetic X-ray attenuationwoé, . H captures the relative non-linear
attenuations of a poly-energetic X-ray spectrum, by fat fimebglandular tissue, in a single volume.
In this way we can repeatedly simulate DRRs during the iterategistration, using a simple ray-

casting and summation df, without having to recompute the attenuated spectrum foh eay cast.

[Robinson and Scrimger, 1991] demonstrate that that thefusé¢heoretical, effective attenuation and a
mono-energetic beam provides good agreement with labgrateasurements. Each vox#l(7) in this
volume is given by:

e No(€)e. { Pr(i)ur(€) + Pali)ua ()} de
. ;’S”” No(€)ede

H(i) = (B.1)

whereNy(e) is the X-ray spectrum with respect to photon energ¥r (i) is the probability of tissue
classes FatK) or Glandular (7) for voxel i, given by the EM-MRF classification andx|(¢) is the
linear attenuation of tissue classEsor G at photon energy. Details of the relevant X-ray parame-
ters, namely the anode type and anode angle, are obtaimadtiEomammogram’s DICOM header and

the manufacturer's X-ray set specifications, respectivelppm these the X-ray spectrumvy(¢), can

be estimated using published data [Cranley et al., 1997il&ily the linear attenuation coefficients,

rr)c(€), can be obtained from publicly available data publishedheyNational Institute of Standards

and Technology (NIST) [Hubbell and Seltzer, 2004]. The psgof this volume is to create an image

which can be repeatedly and efficiently projected to sineudaFull-Field Digital Mammogram. Beer’s
law [Beer, 1852] describes the absorption of X-ray photgndistance of a given material with linear,
mono-energetic, attenuation coefficignt For a monochromatic X-ray beam this can be expressed as
follows:

I=1Ipe ™ (B.2)

wherel is the incident photon energy ards the attenuated energy. When viewing an image of X-ray
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attenuation, such as a mammogram, it is common to “log ihvieet raw data,/, so that intensities in

the mammogrami,,, reflect the total attenuation of X-rays reaching the detect

In = —In(lpe ™) (B.3)
= —In(Ip) —In (e ") (B.4)
= —In(ly) + hp (B.5)

Substituting the effective attenuation volurikein equatiorl B.5 and ignoring the constant/,) term
gives:

hmaz
I = / H(h)dh (B.6)
h=0

which is simply a ray-casting dff .



Appendix C

Clinical validation on findings poorly or not

visible on FFDM

The purpose of this set of experiments was to validate thaeaffansformation model pipeline in a
clinical setting, as a requirement of the HAMAM project [HAW, 2012]. The goal was to investigate
the benefit of using automatically determined correspoceein cases where the lesion was poorly
or not visible in the X-ray mammogram, as these are the cabesena registration can be useful to
radiologists. Therefore, the data used was from patiemtisithd an MR-guided biopsy as the lesion
was not visible in the X-ray mammogram. This was joint workhathe HAMAM partners Radboud
University Nijmegen Medical Centre, MeVis Medical Solut®and University College London.

The result of the registration was presented to radiolsgitst a “linked cursor” which enables the
user to navigate through the MRI and view the projection eftetR position on the X-ray mammogram.
The radiologists were asked to indicate the lesion posdiothe CC and MLO view of the mammograms
with or without using the linked cursor. They were also askeithdicate how visible was the lesion and
how confident they were for their prediction. The experindggcription as given to the radiologists is
given in Table C.1.

Data from 12 patients were usedlhe six radiologists participating in the experiments eveam-
domly allocated to view half of the cases with and half withitie linked cursor between the modalities.

Due to technical problems related to the data exchange ardtdgration to the workstation, there
were several cases that were not accessed by some of thgigtmduring this initial evaluation. As a
result, no statistical analysis could be performed usiegitita. Nevertheless, the results are summarised
below.

Firstly, we have calculated the projection of the MR anriotabn the X-ray mammograms, to
which we refer here as thregistration result We have calculated the mean distance between the mean
radiologists’ annotation and thregistration resultboth without and with the use of the linking cursor.
The distance was decreased using the cursor §&0bmm to 31.37mm.

Also, to get an indication of how well the radiologists agtes the X-ray lesion location, we have

calculated the mean distance of their individual annotatitm the mean annotation, so in other words

1Data from: Radboud University Nijmegen Medical Centre
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Table C.1: Experiment description given to the radiolagidthis was created by the HAMAM partners

Radboud University Nijmegen Medical Centre and Univer§ittlege London.

In this experiment, you are being asked to provide your eéxmginion of the location of one or
more lesions in a pair of CC and MLO X-ray mammograms, coordmg to predefined lesions
visible in MRI. We will use this information to evaluate thecarracy and efficacy of our spatial
correspondence software.
In half the cases you will be shown, the location of the X-ragidn, as predicted by the current
version of our registration software, will also be displdy®/e ask you to consider this informatian
before marking your own opinion of the lesion location inteatthe CC and MLO views.
In the other half of the cases, you will be asked to mark yoedjation of the lesion location
without the benefit(!) of the registration software’s piitin.
For the first few cases the lesion in the X-ray mammogram shoeiclearly visible, but in the later
cases the lesion may not be visible at all. Either way, yowaaked to make your best guess of the
lesion location in the X-ray mammograms. The location yooos® should correspond, to the best
of your ability, to the location displayed in the MRI.
In addition to the location, you are asked to answer theiotlg questions for each case that you

asSess:

1. On ascale of one to five, how visible is the lesion in the Xfrmmmogram?

1 = very obvious, 5 = not visible at all.

12}

2. On a scale of one to five, how confident are you that your predilesion location is close

to, i.e. within approximately 20mm of, the correct locatiarihe X-ray mammogram?

1 = very confident, 5 = very uncertain.
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Table C.2: Mean distance (imm) of the radiologists’ annotation from their mean positiar{ance)

for the five cases that had two or more annotations both withiod with the linking cursor.

Mammogram view| patient 1| patient 2| patient 3| patient4| patient 5

CC - without 75.76 99.71 115.91 | 107.70 91.95

CC - with 66.05 59.76 22.34 28.59 82.85

MLO - without 107.69 | 152.81 | 102.34 | 111.02 | 175.30

MLO - with 42.86 14.80 33.34 16.16 84.56
Cluestion 1 Cluestion 2
2 =
E 5 g =
H Ja)
N £
. 3 3
2 2 5>
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s cursor off Cursor an e cursor off cursor an

Figure C.1: The mean responses of the radiologists to quessti and 2Question 1 On a scale of one
to five, how visible is the lesion in the X-ray mammogra@@estion 2 On a scale of one to five, how
confident are you that your predicted lesion location isekos i.e. within approximately 20mm of, the

correct location in the X-ray mammogram?

the variance. To do this, we needed patients that were axtbgswo or more radiologists both without
and with the use of the linking cursor. There were five of thesses and the results are summarised in
Tablg C.2. We can see that in all cases the mean distance w@smded with the use of thegistration
result

Finally, the radiologists’ impression for the difficulty tie cases viewed and their confidence of
their annotation is summarised in Figure IC.1.

Due to the small number of cases assessed, we cannot perfgistatistical analysis on the results.
Nevertheless, a first indication that we can obtain is thatittking cursor has reduced the spread of the
radiologists’ annotations and that these were closer todhistration result when the cursor was used.
The radiologists were therefore influenced by the regismaesult.

For this dataset, as the lesion is not visible in the X-ray magram, there is no gold standard
correspondence available. Therefore, even if a study wighigeer dataset determines that the radiolo-
gists are influenced, the results cannot be conclusive atfvether the registration has influenced them
towards the correct lesion location. This can only be domefdataset that has clearly defined corre-
spondences, as the one described in the previous sectimald#o worth noticing the wide range of

values in Tableé C.2, and the large erromimn both using the linked cursor and withostl(37mm and
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35.05mm respectively). The numbers indicate that establishingespondences in this set of data is a
particularly difficult task for radiologists. However, wart acknowledge the fact that the reported 2D
locations indicated by the radiologists might incorpot®rs related to the communication of the data

across the project partners.
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