
DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Software-based
Approximate Computation
Of Signal Processing Tasks

Davide Anastasia

A thesis submitted for the degree of Doctor of Philosophy

Department of Electronic and Electrical Engineering
University College London

May 2012

Statement of Originality

I declare that the work presented in this thesis and the thesis itself

was composed and originated by myself in the Department of Elec-

tronic and Electrical Engineering, University College London. The

work of other persons is appropriately acknowledged.

Davide Anastasia

Abstract

This thesis introduces a new dimension in performance scaling of

signal processing systems by proposing software frameworks that

achieve increased processing throughput when producing approx-

imate results.

The first contribution of this work is a new theory for accelerated

computation of multimedia processing based on the concept of tight

packing (Chapter 2). Usage of this theory accelerates small-dynam-

ic-range linear signal processing tasks (such as convolution and

transform decomposition) that map integers to integers, without

incurring any accuracy loss.

The concept of tight packing is combined with incremental compu-

tation that processes inputs in a bitplane-by-bitplane manner (Chap-

ter 3), thereby leading to substantial throughput/distortion scal-

ability within filtering, transform-decomposition and motion-esti-

mation tasks. This framework also provides for region-of-interest

computation and has inherent robustness to arbitrary termination

of processing, imposed, for example, by a task scheduler.

Finally, the concept of packed processing is extended to floating-

point (lossy) matrix computations, with particular focus on the ge-

neric matrix multiplication (GEMM) routine of BLAS-3 (Chapters 4

and 5). This routine is a fundamental building block for several lin-

ear algebra and digital signal processing systems, such as face rec-

ognition and neural-network training for metadata-based retrieval

systems. In order to compete with the best-performing software de-

signs for GEMM, an implementation using single instruction, mul-

tiple data (SIMD) instructions is presented and analysed. The pro-

posed approach demonstrates substantial performance scaling in

practice; specifically, it is shown to achieve up to twice the pro-

cessing throughput of the best designs for GEMM when producing

approximate results (under the same hardware).

In summary, the proposed approximate computation of signal pro-

cessing tasks can be selectively disabled thereby producing conven-

tional full-precision/lower-throughput processing when deemed

necessary. Importantly, the proposed software designs run on off-

the-shelf computer hardware and provide for on-demand recon-

figuration, depending on the input data and the precision specifi-

cation (from full precision to noisy computation). Thus, the pro-

posed approximate computation framework allows for backward

compatibility and can be offered as an add-on service, creating sig-

nificant competitive advantages for application developers. It can

be used in mobile or high-performance computing systems when

the precision of computation is not of critical importance (error-

tolerant systems), or when the input data is intrinsically noisy.

Acknowledgements

This thesis is the end of a journey that began many years ago. From

a small city in South Italy, this journey brought me first to an impor-

tant university of North Italy and then to one of the most vibrant

universities in the world. The last four years have been full of re-

warding moments, as well as tough ones. However, thanks to the

support of family, friends and special people, I have never given

up. Hence I wish to express my sincere appreciation to those who

have contributed to this thesis and supported me in one way or

another during this amazing journey.

Foremost, I would like to express my sincere gratitude to my su-

pervisor, Professor Yiannis Andreopoulos. It has been an honour to

be his first PhD student, and it is only thanks to his guidance, en-

thusiasm and technical knowledge that I have achieved results that

I otherwise wouldn’t have. His help has been important in many

moments during these years, especially when friendship was more

needed than technical advice.

I would also like to thank Fabio Verdicchio, whose support was es-

pecially important when I had just moved to London and I needed

it most. His technical help was always enlightening and precise

making him a valuable advisor and more than that, over time, a

good friend.

A mention goes to my lifetime friend Giusi: she convinced me to

continue my academic career when I was close to giving up, to fill

in applications and, at the end, to start my PhD research.

I would like to thank my parents: when I told them that I was leav-

ing Italy, they thought I was completely crazy, but they supported

me every day and they can now say to have a “Doctor” in the fam-

ily (but I am not sure whether they still think I am crazy or not).

The last mention, the most important one, goes to my wonderful

girlfriend Laura. She paid the highest price of my decision to move

to London, but never failed to support and cheer me up when I was

down, or to celebrate the good moments with me. While she might

not understand most of this pile of formulas, charts and tables, this

thesis is dedicated to her nonetheless.

Contents

Abstract 2

Acknowledgement 4

List of Figures 14

List of Tables 16

Acronyms 17

Nomenclature 19

1 Introduction and Literature Review 21

1.1 Literature Review . 24

1.1.1 Algorithm-specific implementations with complexity/pre-

cision scalability . 25

1.1.2 Approximate and Incremental Computation 27

1.1.3 Memory Compression and Data Representation 29

1.1.4 High Performance Computing 31

1.1.5 Fault-tolerant Computation 33

1.2 Thesis Structure and Research Contributions 34

6

CONTENTS

1.2.1 General Structure . 34

1.2.2 Detailed Structure . 35

1.2.3 Research Publications . 36

2 Packing: a Method for Concurrent Calculation of Image Processing

Operators in Software 39

2.1 Tight Packing . 40

2.1.1 Theory of Operational Tight Packing 42

2.2 Loose Packing . 47

2.3 Floating-Point Aspects in Tight Packing 49

2.3.1 Validation of Proposition 1 in a Floating-Point Unit . . . 50

2.3.2 Setting of Operational Parameters for Tight Packing . . . 52

2.4 Loose Packing vs. Tight Packing 54

2.5 Remarks on the Usage of Packing for Image Processing Appli-

cations . 55

3 Incremental Computation using Packing and Unpacking 56

3.1 Introduction . 56

3.2 Loose Packing in a Incremental Framework 57

3.3 Transform Decomposition . 61

3.4 Two-Dimensional Convolution 64

3.5 Block Matching . 66

3.5.1 Bitwise Matching Criterion 67

3.5.2 Sum of Squared Error Criterion 69

3.5.2.1 Packing of Incremental Block and Search-Area

Samples using the Quincunx Lattice 70

7

CONTENTS

3.5.2.2 SS Error Calculation using Packed Representa-

tions . 71

3.5.2.3 Setting of the Packing Coefficient d 73

3.5.2.4 Overall Block Matching Algorithm 73

3.6 Experimental Results . 76

3.7 Incremental Transform Decomposition and 2D Convolution Ex-

periments . 77

3.7.1 Results Exposition . 78

3.7.2 Comparisons Performed 78

3.7.3 Analysis of Execution Efficiency 81

3.7.4 Analysis of Visual Quality 85

3.8 Incremental Block Matching Experiments 85

3.8.1 Bitwise Matching Criterion 87

3.8.2 Sum of Square Error Criterion 89

3.9 Applications . 91

3.9.1 Region-of-Interest Based Incremental Computation . . . 91

3.9.2 Time-Driven Computation 92

3.9.3 Energy-Distortion Efficiency of Software-based Incremen-

tal Computation for Real-Time Video Processing on the

XO Laptop . 96

3.10 Concluding Remarks . 99

4 Beyond Lossless Tight Packing 102

4.1 Generic Matrix Multiplication (GEMM) 103

4.2 Quantisation via Companding & Rounding 105

4.3 Packing Techniques . 107

8

CONTENTS

4.3.1 Asymmetric Packing . 107

4.3.2 Symmetric Packing . 108

4.3.3 Differences between symmetric and asymmetric packing 110

4.4 GEMM as a computation channel 112

4.4.1 Summary of known results on operational tight packing 112

4.4.2 Noise of Packed Results in Floating-point Representa-

tions . 114

4.4.3 Quantisation Noise Model 118

4.4.4 Combined Noise Model 119

4.5 Distortion-Controlled Throughput Scaling of

Subblock Multiplication . 120

4.5.1 Theoretical Calculation of Optimal Companders and Ex-

perimental Validation . 120

4.5.2 Practical GEMM Configuration for Optimised Through-

put/Distortion Processing 124

4.6 Concluding Remarks . 127

5 BLAS and Generic Matrix Multiplication 128

5.1 Generic Matrix Multiply Routine (GEMM) 129

5.1.1 Streaming SIMD Extensions and High Performance Com-

puting . 130

5.1.2 Matrix Reordering . 131

5.1.3 Top-Level of GEMM . 133

5.1.4 GEMM Kernels and Optimisation Techniques 133

5.1.5 Throughput/distortion Optimisation of Inner-Kernel

Multiplication . 136

5.2 Experimental Results . 138

9

CONTENTS

5.3 Applications . 142

5.3.1 Conceptual Example: Disturbance Cancellation under Es-

timation Uncertainty . 142

5.3.2 Accelerated Processing in State-of-the-art Face Recognition143

5.3.3 Accelerated Supervised Training of Multi-layer Percep-

tron (MLP) based Learning System 146

5.4 Concluding Remarks . 148

6 Conclusions 149

References 167

10

List of Figures

2.1 Graph of ûsafe (under double-precision floating-point represen-

tation) vs. u∗safe (derived by Proposition 1). 51

2.2 Experimentally derived ẑ (using double-precision floating-point

representation) versus its theoretical bound from Proposition 1. 52

2.3 Experimentally derived Ŵ versus its theoretical bound from Prop-

osition 1 and the packing rule of (2.18b). The bottom graph is a

zoomed section of the top one. 53

3.1 Incremental refinement of computation using packing and un-

packing of increment layers extracted progressively from the in-

put image data. The output result is progressively refined via

the computation of more increment layers. The computation of

each layer can also utilise results from previous layers to reduce

complexity or focus the computation on regions of interest. . . . 58

3.2 Packing, processing, unpacking and incrementing the result with

Q groups of W blocks. 61

3.3 Horizontal stripes in the implementation of the packed Two-

Dimensional Convolution. 64

3.4 Quincunx lattice . 70

3.5 Transform decomposition results: 4× 4 AVC transform. 79

3.6 Transform decomposition results: 8× 8 FRExt kernel. 80

11

LIST OF FIGURES

3.7 2D convolution results with 12 × 12 (mainstream profile) and

6× 6 (low-end profile) Gaussian kernels approximated with fixed-

point representation. 82

3.8 Block cross-correlation results. 83

3.9 Representative output frame for terminating the computation at

n = {5, 2, 0} bitplanes (shown from left to right) for the 12× 12

Gaussian filtering. 84

3.10 Frame-by-frame comparison for the reconstruction of the incre-

mentally computed 4× 4 transform decomposition of Figure 3.5;

Only the first 100 frames are shown. 86

3.11 Block matching results with bitwise criterion. 88

3.12 Block matching results. 90

3.13 ROI-based incremental transform decomposition. An example

frame with terminating bitplanes 5, 2, 0 is shown (from left to

right). 92

3.14 Time-driven computation of image processing tasks. The timer

thread sends the stop signal to the application thread in order to

terminate their execution for each frame. The application thread

initiates the timer thread by the restart signal. The signalling

is achieved via checking and setting/resetting flag_int. 93

3.15 Visual example of video frame; from left to right: fully-completed

frame, uncovered frame, covered frame but not fully completed

(i.e. the result is not computed to full precision). 95

3.16 SNR comparison in a constant time and a constant quality envi-

ronment. Example with 100 frames from the“Foreman” sequence. 97

3.17 Measured battery power-level reduction versus images captured

and processed with different precision (different terminating bit-

planes n) in the xo-laptop. The dotted line indicates the power-

level reduction when operating the frame capturing and battery

monitoring only (without any processing). 98

12

LIST OF FIGURES

4.1 Generic Matrix Multiplication (GEMM) 105

4.2 Conceptual example of W = 2 packings with z = 0.0001. Top:

result of (4.9); bottom: result of (4.6). Shaded blocks contain side

results that are produced during the packed processing but not

used in GEMM. 111

4.3 Mean squared error measurements for matrix multiplication of in-

teger inputs leading to different values of Rmax within single-

precision and double-precision representation and without quan-

tisation (cA = cB = 1). 116

4.4 Average error measurements for matrix multiplication of integer

inputs leading to different values of Rmax within single-precision

and double-precision representation and without quantisation

(cA = cB = 1). The results of double precision with W = 4

are not displayed beyond Rmax > 120000 as they clearly exceed

acceptable limits. 117

4.5 Indicative experiments for experimentally-obtained output SNR

versus the expected SNR by Proposition 4 under the use of the

optimal companders per Rmax value. 125

5.1 Typical SIMD Operations. 131

5.2 Matrix reordering using loop blocking. 132

5.3 Example distortion (mean squared error (MSE)) for each of the

subblocks of (4.1) with K/L = 4 and pruning steps enumerated

until Dkernel(2, 1) ≤ 11.0 is achieved. The dashed rectangles in-

dicate the final packing selection for each subblock. 137

5.4 Percentage of peak performance of sGEMM (higher is better)

under different distortion settings ∀i, j : Skernel(i, j) for the in-

ner kernel processing; 100% of peak performance corresponds

to 8× cfreq = 21.28 GFLOPS (giga floating-point operations per

second). 140

13

LIST OF FIGURES

5.5 Percentage of peak performance of dGEMM (higher is better)

under different distortion settings ∀i, j : Skernel(i, j) for the in-

ner kernel processing; 100% of peak performance corresponds

to 4× cfreq = 10.64 GFLOPS for dGEMM. 141

5.6 SNR vs. throughput in giga floating-point operations per sec-

ond for sGEMM under acceleration control. 142

5.7 Lowering the processor clock frequency for low-power GEMM

computation at comparable throughput, albeit at increased dis-

tortion. 144

14

List of Tables

2.1 Throughput expressed in frames/second for two convolution

examples. The tight packing increases the operational packing

from Ŵ = 2 to Ŵ = 3. 55

3.1 Average signal-to-noise ratio for the terminating bitplanes of the

mainstream-profile experiments of Figure 3.5-Figure 3.8. SNR

was infinity for all cases when n = 0. Both conventional and

incremental algorithms achieved identical SNR for each termi-

nating bitplane. 84

3.2 Average peak-signal-to-noise ratio for the terminating bitplanes

of the experiments of Figure 3.11. 87

3.3 Average peak-signal-to-noise ratio for the terminating bitplanes

of the experiments of Figure 3.12. 91

3.4 Percentage of uncovered and fully-completed frames for 4× 4

and 16 × 16 integer block transforms (top part), 8 × 8 cross-

correlation and 12 × 12 convolution (middle part), 8 × 8 and

16× 16 block matching (bottom). 94

5.1 Recognition accuracy versus requested SNR for the matrix oper-

ations of 2D PCA and versus the obtained throughput for matrix

multiplication (higher throughput is better). 146

5.2 Summary results of MLP algorithm. Smaller time values are

better. 147

15

LIST OF TABLES

16

Acronyms

CIF common interchange format. 76, 77

DCT discrete cosine transform. 25

DFT discrete Fourier transform. 27

DSP digital signal processing. 110, 128

DVS dynamic voltage scaling. 26

FFT fast Fourier transform. 29

FPGA field-programmable gate array. 30, 31

FPU floating-point processor unit. 49

FXP fixed-point. 77

GEMM generic matrix multiplication. 2, 23, 31, 34–36, 102, 103, 127, 130, 131,

133, 137, 148

GPU graphics processing unit. 30, 31

HPC high performance computing. 30, 33

i.i.d. independent and identically distributed. 35, 115, 118, 120, 151

KLT Karhunen-Loeve transform. 25

17

Acronyms

LSB least significant bit. 57, 58

MAC multiplier-accumulator. 106, 108, 110

MLP multi-layer perceptron. 146, 147

MSB most significant bit. 57, 58

MSE mean squared error. 23, 114, 115, 119, 136, 142

MSSIM mean SSIM. 84

PCA principal component analysis. 139, 143, 145

PSNR peak signal-to-noise ratio. 76, 77

QCIF quarter-CIF. 76, 77

ROI region-of-interest. 91

RV random variable. 115, 118

SIMD single instruction, multiple data. 2, 108, 110, 128, 130

SNR signal-to-noise ratio. 23, 76, 77, 84, 100, 120, 123

SSE streaming SIMD extensions. 102, 104, 127, 130, 133, 134, 148

SSIM structural similarity index measure. 84, 100

STFT short-time Fourier transform. 27

SVD singular value decomposition. 103

TLB translation lookaside buffer. 31, 130

18

Nomenclature

A Packed block. 107, 108

ã Companded value of the quantity a based on the companding coefficient cA.

The same notation is extended to matrices. 106

an
bit Computed value of a when only bitplane n of the input is used, with 0 ≤

n < N − 1. The same notation is extended to matrices. 57

an
full Computed value of a when the input consists of bitplanes N − 1 down to

(and including) bitplane n, with 0 ≤ n < N − 1. The same notation is

extended to matrices. 57

cA Companding coefficient for the matrix A. 106

d Packing coefficient. 47–49, 73

g Number of bitplanes packed in each increment layer n, e.g. g = 1 when a

single biplane is packed in each increment layer. 62, 65

Rmax Maximum possible value of the result of the operation op applied to

operands of known dynamic range. 41, 73

Rmin Minimum possible value of the result of the operation op applied to

operands with of known dynamic range. 41

Rrange Range of the possible value of the result of the operation op applied to

operands of known dynamic range. 42

19

Nomenclature

rtype Representation type: equal to −1 for 64-bit floating-point and to 1 for

unsigned integer. 47

ûsafe Experimental value for u∗safe. 49

u∗safe Theoretical minimum safe padding that assures errorfree packed pro-

cessing. 43

usys Relative relative precision of the computer used for the implementation.

42, 49

W Packing capability. 39, 42, 49, 50, 81, 100

wtype Representation width: approximately equal to 50 for 64-bit floating-point

and equal to 31 for unsigned integer. 47

z Packing factor. 39, 40, 42, 47, 110

20

Chapter 1

Introduction and Literature Review

One of the fundamental areas of Information and Communications Technolo-

gies (ICT) is computer-based information processing. Several popular ICT ap-

plications, such as media players, computer graphics, image and video post-

processing, and motion estimation and compensation, are implemented today

via software solutions in programmable processors.

Advances in this area hinge on the premise of inexpensive doubling of the pro-

cessing capability of microprocessors every 18∼ 24 months. However, today it

is widely acknowledged that this is threatened by fundamental limitations of

silicon-based transistor integration, which lead to excessive energy dissipation

and unacceptable fault rates for future microprocessors [1, 2]. In a last strive

to avoid such limitations, the microprocessor industry has extended conven-

tional single-processor architectures to networks of processors (cores), ranging

from 2 to 8 large cores (multi-core) up to 4096 small core units (many-core) [2].

Despite this increase in core numbers and core diversity, today there is very

little synergy between the system layer (software design, processor, task man-

ager) and the multimedia application layer (e.g. image processing task, such as

filtering). For example, if one is watching a movie on a portable video player

(e.g. [3]) and this is draining the system resources (battery), current systems

do not allow for seamless trade-offs in visual quality vs. battery life (execution

time per task). In such cases, the user is practically facing the on/off approach

21

of digital systems, while one would strongly opt for a best-effort approach, of-

ten found in analogue systems, where energy autonomy would be increased

with graceful degradation in the decoded video quality.

At the other end of the service deployment spectrum we have ultra-large scale

multimedia content analysis, indexing and retrieval services like Google Image

Search, social networking and automated media tagging, webpage ranking al-

gorithms, etc. These are deployed in large server-based clusters [4, 5]. While all

such algorithms aim for average error and not for the worst-case (e.g. expected

recall rate of misclassification percentage), all systems today implement such

algorithms without considering their precision aspects. Nevertheless, while

an individual user would not notice a drop on the image recall rate by a few

percentile points, he/she will notice server outages caused by exceeding the

system’s processing capacity.

The work described in this thesis aims to systematically trade-off quality of in-

formation processing services when the target application can cope with lower

accuracy. It goes beyond traditional throughput scaling approaches by paral-

lelisation, by introducing a new scaling dimension for a range of signal pro-

cessing and linear algebra computations: novel computational frameworks are

proposed that achieve increased processing throughput by producing approx-

imate outputs [6, 7, 8, 9, 10]. These can be used in mobile or high-performance

computing systems when the precision of computation is not of critical im-

portance (error-tolerant systems), or when the data is intrinsically noisy [9].

Importantly, such computational approaches run on off-the-shelf computer

hardware and they provide for on-demand reconfiguration, depending on the

input data and the precision specification (from full precision to noisy compu-

tation). Finally, it has also been established that this approach can run on a

fault-generating computer system, such as a modern processor under aggres-

sive voltage scaling or under an operating environment enforcing aggressive

thread scheduling.

Beyond the theoretical and concept study, this research is brought to a proof-

of-concept software design for image processing operations within a variety of

applications, like block decomposition and convolution [7, 11], with really en-

22

couraging results in throughput scalability, power consumption and real-time

scheduling. Essentially, this approach treats processing resources as a commu-

nication channel: when lower signal quality is required from the application,

the computation is accelerated (useful in high performance computing appli-

cations or multimedia) or requires less power (useful in high-end server clus-

ters or mobile computing environments).

Beyond multimedia-oriented software designs, this method has then been de-

veloped for GEMM [8, 9], which is a fundamental building block for several

digital signal processing routines, such as transform decomposition, LU factori-

sation and linear system solvers [12]. GEMM is also the core element within

more complex systems, such as face recognition software [13]. This newly de-

signed implementation has then been used inside multimedia and computer

vision applications (like video processing and face recognition), which require

high performance but can tolerate errors and approximate results. For in-

stance, by adjusting the imprecision introduced by the approximate GEMM

to match the inherent acquisition noise of images within a state-of-the-art face

recognition system, we demonstrate up to 100% increase in the processing

throughput with virtually no effect in the recognition accuracy. This means

that a high-performance computing cluster using the proposed GEMM design

for face recognition can handle twice the number of input images per second

in comparison to using the conventional GEMM of a high-performance library

like ATLAS or GOTO [14, 15]. Other systems of this type can also take advan-

tage of similar performance gains (a face recognition system is a particular case

of an object identification system [16, 17]).

The proposed approximate computation can be selectively disabled thereby

producing conventional full-precision/lower-throughput processing when con-

sidered necessary. Thus, such an approximate computation framework allows

for backward compatibility and can be offered as an add-on service, creating

significant competitive advantages for application developers.

Overall, the proposed frameworks of this thesis can be used to target a par-

ticular signal-to-noise ratio (SNR) or mean squared error (MSE) – against the

result computed at full precision – for a linear operation used within a mul-

23

1.1 Literature Review

timedia or numerical processing system. The impact of this approximation

on the final results of each application is assessed on a case-by-case basis via

experimentation with representative inputs and outputs. This is directly anal-

ogous to rate reduction via lossy source coding for multimedia, where all lossy

source coding algorithms are optimized for SNR or MSE distortion within par-

ticular subsets of the input (macroblocks in video, image pixels after quanti-

zation, etc.) and the impact of such distortion on the visual quality of each

algorithm is assessed on a case-by-case basis within each coding application

(e.g. video streaming, video playback, etc.). Hence, the proposed software-

based approaches for approximate computation take as input the required ap-

proximation in SNR or MSE, or the portion of the input bitplanes to process,

and derive the best possible acceleration under these constraints. The impact

of such approximate computation on the results of several multimedia pro-

cessing algorithms is assessed on a case-by-case basis via experiments with

representative inputs and it is not linked to the precision of the approximate

computation in an analytic manner.

In a practical deployment within a particular system and application, this

would entail the empirical matching of the acceptable accuracy of the appli-

cation and the acceleration obtained from the utilized system with the opera-

tional settings of the approximate computation being used. This is commonly

done in practical deployments of lossy source coding standards, where visual

quality and rate requirements of the application are linked in an empirical

manner to the operational settings of the rate-distortion optimized image or

video coding algorithm being used.

1.1 Literature Review

The proposals of this thesis involve a variety of methods, hence reviewing the

research literature related to each method is necessary.

This section starts by reviewing algorithm-specific implementations with com-

plexity/precision scalability in Subsection 1.1.1; this will serve as reference

24

1.1 Literature Review

for the proposals of Chapter 3. We then review different approaches for ap-

proximate computation, incremental computation and memory compression

schemes in Subsection 1.1.2 and 1.1.3; these approaches are related to the ba-

sic ideas proposed in Chapter 2 and 4 of this thesis. In Subsection 1.1.3 we

summarise different data representation schemes; such schemes comprise the

foundation of the description of the loose and tight packing used in Chapter 2

and Chapter 4. Finally a review of high performance computing techniques

and software systems is given in Subsection 1.1.4 and 1.1.5, which strongly

relates to the experimental development of the proposals of Chapter 4 and

Chapter 5 of this thesis.

1.1.1 Algorithm-specific implementations with complexity/pre-

cision scalability

Existing algorithm-oriented research focuses on complexity reduction [18, 19,

20] or complexity scalability for image processing tasks [21, 22, 23], where com-

putational complexity is decreased and approximate results are produced.

In complexity/distortion research, Goyal and Vetterli [18] study the relation-

ship between computational complexity and coding performance in a system-

atic way. They focused on the Karhunen-Loeve transform (KLT) and the dis-

crete cosine transform (DCT), two well known block decomposition trans-

forms to code a Gauss-Markov source and concluded that it is possible to cre-

ate a framework for complexity/distortion processing analogous to a frame-

work for rate-distortion coding.

A content-based approach is proposed in [19], where the complexity of the

encoding is calculated based on the estimation of the video scene content. Re-

sults for the Dynamic Closest Checking Point (DCCP) algorithm are presented,

demonstrating six-fold increase in execution time (in the best case) compared

with the full search. In [20] a different metric for quantifying motion esti-

mation complexity is proposed, in order to decrease execution time. Leng-

wehasatit and Ortega [21] propose an algorithm specific implementation for

the DCT, which is a hybrid between the frequency selection (only a subset of

25

1.1 Literature Review

DCT coefficients is considered) and the accuracy selection (DCT coefficients are

computed at reduced accuracy). In a similar way, [22] presents a complexity-

scalable scheme for motion estimation using different coding mode and spatio-

temporal decomposition structures. Finally, [23] introduces the concept of in-

cremental refinement using different portion of the input, but it does not show

how it can be realised in a real system and what kind of performance scaling

can be achieved. Similar works can be found in the literature on fine-tuning of

well-known algorithms, like DCT decomposition algorithms [24, 25], or block

motion estimation [26], in order to achieve higher performance. While signifi-

cant performance scaling can be achieved in some cases, these techniques are

algorithm-specific. As such, they require significant algorithm-based customi-

sation in order to provide complexity scalability, which can be cumbersome in

a general service deployment environment (e.g. multicore processors).

Hardware-oriented research on algorithm complexity scalability focuses on

multimedia-driven energy scaling of processors via dynamic voltage scaling

(DVS) in an attempt to provide energy consumption scaling with approxi-

mate results. For instance, Yuan and Nahrstedt [27] propose a voltage-scaling

method to minimise the total energy consumption while still meeting multi-

media timing requirements. Similarly, Akyol and van der Schaar [28] present a

model to adapt voltage/frequency in order to adapt dynamically to the work-

load. In their results, a DVS method for video decoding was used, demonstrat-

ing that a specialised version of the algorithm achieves reduction in energy

consumption compared to conventional DVS algorithms that do not consider

the precision of multimedia processing tasks.

Overall, for all existing approaches: (a) algorithm-specific and/or system-spe-

cific customisations are required, which limit the applicability of the proposed

techniques; (b) only one operational point in the complexity/distortion curve

[18, 22] can be obtained, i.e. one is not able to seamlessly increment the qual-

ity of the output with increased computation. The latter means that complex

hardware and software reconfigurations are required when different through-

put in frames-per-second (fps) is required. Hence, application scalability and

robustness is not obtained instantaneously and in a natural and straightfor-

26

1.1 Literature Review

ward manner.

1.1.2 Approximate and Incremental Computation

The concept of incremental computation is well known for many years now

(e.g. iterative system solvers [12]). The term is used in different areas with

slightly different meanings, but it always refers to the capability of a certain

algorithm to improve the accuracy of its result progressively, via a number of

iterations. There is an important difference between incremental computation

and incremental processing that is discussed in the following two paragraphs.

Theoretical proposals for incremental computation have been made for signal

transforms and salient point detection algorithms [29, 30, 31], where the main

principle is: under a refinement of the input source description (e.g. image

pixel refinement), the computation of the image processing task refines the

previously-computed result. Winograd and Nawab [29] present a theoreti-

cal framework for generating discrete Fourier transform (DFT) and short-time

Fourier transform (STFT), Andreopoulos and van der Schaar [30] present the

discrete wavelet transform computed in an incremental way, Andreopoulos

and Patras [31] show a similar approach applied to salient point detection algo-

rithms in images. However, these works are only using arithmetic complexity

estimates, such as the expected bit switching activity for additions and mul-

tiplications, and no practical realisations are proposed. An exception to this

is the work of Chandrakasan et al. [32, 33, 34] on hardware designs for data-

driven computation where incremental computation of the DCT and FIR filters

can be supported by hardware designs based on distributed arithmetic. Never-

theless, such approaches require custom-hardware designs and cannot be de-

ployed on commodity processors. However, in some cases, a trade-off between

custom-hardware designs and a pure software-based approach can be found

using advanced FPGA synthesis techniques. Constantinides et al. [35] propose

an approach to the wordlength allocation and optimization problem for linear

digital signal processing systems. This approach allow the user to trade-off im-

plementation area (between 6% and 45%) with a speed increase compared to

27

1.1 Literature Review

the optimum uniform wordlength design. More recently, a method to exploit

larger 6-LUTs in FPGAs has been proposed by Hutton et al. [36], against the

belief that 4-LUTs are the most efficient for area/delay trade-off: this method

instead shows a 15% performance increase with a 12% area decrease [36, 37].

Nevertheless, while these approaches can derive scalable resource-distortion

computation, they cannot provide for incremental computation, where the

quality of the result is improved with continued processing.

It is important to distinguish incremental computation and incremental process-

ing. Incremental processing [38, 39] refers to progressive quantisation (and po-

tentially entropy coding) which may or may not lead to an incrementally com-

putable algorithm. Practical systems, such as progressive JPEG decoding [40]

used in digital cameras, require additional resources to decode and display

complete image bitstream in comparison to non-progressive (conventional)

processing. However, they remain useful because they can decode a low-

resolution result with low latency, which is useful for fast image browsing in

digital cameras, for example.

The concept of incremental processing is also well known in the design of com-

pilers: Sundaresh and Hudak [41] study how to derive an incremental version

of an algorithm from a non-incremental description using a framework that

could be applicable to other domains. It also aims to find a methodology to

prove the correctness of the incremental approach given the non-incremental

one. Continuing on the same route, Hoover [42] explains how the ideas of

incremental processing and dynamic dependency analysis have been used to

develop a program transformation tool.

However, this technique starts by assuming that global algorithms are ap-

plied to an entire dataset, even though this dataset can already be in a state

that would facilitate the execution of a localised algorithm. For example, it

assumes a global sort algorithm is executed after every insertion in a vector,

even though a localised sort would suffice under the knowledge of the inser-

tion point. This means that such code transformation tools will not lead to

competitive solutions against the state-of-the-art implementation of the non-

incremental version of the algorithm.

28

1.1 Literature Review

Many of these approaches have to solve the problem of the storage of the inter-

mediate results. One method that has been proposed, called “static caching”

[43, 44, 45], allows the storage of not only the final result of each intermediate

state, but also of intermediate results for each stage that could be useful in the

following ones, thanks to static program analysis and semantics-preserving

program transformations. Overall, while all such approaches may offer incre-

mental processing for certain algorithmic classes, this usually comes at signifi-

cant implementation and memory cost that makes these approaches unsuitable

for compute and memory-intensive processing [43, 44, 45].

1.1.3 Memory Compression and Data Representation

Starting from studies on what the best storage hierarchy could be for a partic-

ular algorithm [46, 47], many research works have focused on memory com-

pression schemes. The bulk of the proposed methods target current high per-

formance systems with the aim to narrow the gap between processors’ per-

formance and memory bandwidth [48], which has historically been a bottle-

neck in computing performance. Some of these schemes apply at the cache

level [49, 50] and imply a slight redesign of the CPU in order to properly man-

age the cache. Specifically, Alameldeen and Wood [49] and de Castro et al. [50]

propose an adaptive decompression strategy for the memory data cache in or-

der to overcome the limitation in speed of a fully-compressed cache: while

for low-cache-miss benchmark such a scheme degrades the performance up to

17%, for memory-intensive application the gain can be up to 18% [49]. Other

methods are instead applied at the virtual memory level [51, 52]: they offer

advantages for applications that need to move large quantities of data in order

to perform their tasks (memory bounded applications), because they decrease

the bandwidth necessary to copy from the swap memory (usually disks) into

the main memory (or into the first level of the cache hierarchy): however, while

in general this method works well with a multitude of applications, exceptions

can be experienced in the several common application, like fast Fourier trans-

form (FFT) [52]. Finally, a multitude of methods have been proposed for the

29

1.1 Literature Review

compression of the main memory: Tuduce and Gross [53] present a memory

compression solution for applications that use large data sets frequently and

exhibit poor performance due to the excessive page faults. This method adapts

the allocation of memory between uncompressed and compressed pages and

also manages fragmentation without user involvement. The solution proposed

by Ekman and Stenstrom [54] instead exploits a simple compression scheme,

a highly-efficient structure for locating a compressed block in memory, and a

hierarchical memory layout that allows compressibility of blocks to vary with

a low fragmentation overhead. In this same area, Kjelso et al. [55] present a

new design for main memory hardware data compression, showing its perfor-

mance applied to a commonly used Unix application. Finally, by proposing

an unified compression scheme for the entire memory hierarchy, Hallnor and

Reinhardt [56] claim an effective increase of the on-chip cache capacity, off-chip

bandwidth and main memory size, while avoiding compression and decom-

pression overheads between levels. A similar mechanism can also be found

in the Memory Expansion Technology (MXT)1 developed by IBM [57, 58, 59].

A complete comparison of this hardware main memory compression is per-

formed in [59] using SPEC CPU2000 [60], which is a complete set of computer

programme benchmarks. A similar methodology has been used in [61] to mea-

sure the performance of Linux with a customised memory management mod-

ule (developed by HP). Operating system support is in fact necessary, either if

the memory compression is performed in hardware or in software [62].

In conclusion, it is important to mention that even the way data is stored is a

key aspect for the efficiency of a certain algorithm. Many studies have been

made in order to find out what could be the best method to store data in order

to minimise read and write implementation complexity (e.g. simplify address

calculation and minimise latency in data access): for example, chip producers

like Motorola and Intel ended up using different technical solutions (big en-

dian and little endian) for the memory organisation used by their processors.

1http://mxt.sourceforge.net/

30

http://mxt.sourceforge.net/

1.1 Literature Review

1.1.4 High Performance Computing

High performance computing (HPC) refers to the use of supercomputers or

computer clusters to solve advanced computational problems. The concept

of the supercomputer has evolved in time, thanks to the advancements in

new technologies, like multi-core processors [63], graphics processing units

(GPUs) [64] and field-programmable gate arrays (FPGAs) [65]. Although com-

pilers and software development methodologies have been proposed to try

and harness the power of multicore and GPU [66], there is a point where

adding more processor cores will not improve performance due to the cost

of the interconnection and communication which cannot be parallelised (Am-

dahl’s Law).

In terms of performance analysis, SPEC CPU2000 has been created in order

to define an industry standard to measure the computation performance of a

certain machine across a whole range of stimulus [60]. Before the introduction

of this standard (and others), throughput of supercomputers was measured

using LINPACK [67], which is heavily based on BLAS (Basic Linear Algebra

Subprograms)2, and in particular on GEMM. LINPACK is still used within the

measurement methodology performed to the get a new supercomputer listed

in the TOP500 list (list of the fastest 500 supercomputers in the world)3. For

this reason, GEMM still has an important place in the measurement of sys-

tem performance [68]. Thus, many chip manufacturer invest heavily in fine

tuning of BLAS routines in order to achieve the best possible performance

with their processors [69, 70, 71]. At the same time, mathematicians and com-

puter scientists contributed with several new ways of improve performance of

GEMM [14, 15, 72, 73, 74] (hence BLAS and LINPACK and all the applications

that use a set of those).

The majority of performance gains in GEMM computation came from two

open source projects, ATLAS [14] and GOTO [15]4: the first aims to create a

2A more extensive coverage of BLAS will be made in Chapter 5
3http://www.top500.org/lists
4However, even though ATLAS and BLAS are the most important projects in this field,

many others contributed as well, like PHiPAC [75].

31

http://www.top500.org/lists

1.1 Literature Review

BLAS implementation that, during compilation time, selects the best internal

structure for the target processor and memory architecture in order to achieve

the maximum throughput; the second one instead used manually fine-tuned

assembly code plus a novel approach that takes into account the translation

lookaside buffer (TLB) into the memory hierarchy [72]. However, other ap-

proaches have also been proposed: Fatahalian et al. [76] explain what are

the strengths and the weakness of a matrix-matrix multiplication performed

with GPU because of GPU’s different architecture compared to a mainstream

general purpose processor; Underwood and Hemmert [77] and Dou et al.

[78] show how FPGAs can be used in place of CPUs to perform matrix multi-

plication and BLAS routines.

However, instead of changing the architecture of the underlying hardware, in

literature we can find a multitude of mathematical methods for fast matrix

multiplication [12, 79]. The method proposed by Strassen [80] is surely the

best known [81], as the one presented by Coppersmith and Winograd [82].

Both of these methods try to reduce the number of multiplications required for

the exact computation of the matrix multiplication, in favour of additions and

subtractions, thus decreasing the final complexity, with the aim to achieve the

limit described by Coppersmith and Winograd [83]5.

A different branch of the search for a faster matrix multiplication is the one

that goes in the direction of approximated result. For instance, one presented

by Drineas and Kannan [85] comprises a fast Monte Carlo algorithm that down-

samples the number of rows (and columns) of the input matrices before per-

forming the matrix multiplication, hence decreases the number of operation

performed and consequently the execution time. The authors also provides a

proof for the error bound. This work is then extended in [86], where the au-

thors present an extension of the original row-wise method that decreases the

number of operations necessary to select the best subset of rows (or columns),

called pass-efficient model, plus a new element-wise algorithm that randomly

selects elements of the original matrices, scales them accordingly and zeroes

5However, the method described by Coppersmith and Winograd [82] only achieves a prac-
tical performance gain for matrices with dimensions larger than 1500 [81, 84].

32

1.1 Literature Review

all the others.

Many algorithms for HPC also adopt mixed-precision techniques: by running

different portions of the same algorithm with different precision, the process-

ing throughput can be increased in comparison to the same routine imple-

mented in double-precision [87]. This method works particularly well when

the difference in throughput between double-precision and single-precision

implementation is high, as proven by the experiments conducted in [87]. Sim-

ilar methods have been proposed in [88, 89]: Buttari et al. [88] study how

mixed-precision iterative refinement techniques can be used to speed up the

solution of dense linear systems, while maintaining the same precision, while

Demmel et al. [89] instead apply a similar technique to overdetermined linear

least squares (LLS) problems.

1.1.5 Fault-tolerant Computation

As technology continues to scale, and transistors dimension become smaller,

they also become increasingly vulnerable to soft errors [2]. Soft errors comprise

the phenomenon of an erroneous change in the logical value of a transistor, and

can be caused by several effects, including fluctuations in signal voltage, noise

in the power supply, inductive coupling effects, particle strikes [90, 91], etc.

Soft errors can result in incorrect results, segmentation faults, application or

system crash, or even the system entering an infinite loop. Solutions already

proposed belong to different categories [92, 93], such as: (a) hardware detection

and correction of soft errors [94, 95]; (b) cross-layer error resilience [96, 97];

(c) compiler techniques can reduce the impact of soft errors by changing the

computation to use processor resources that are protected, and approaches that

perform computation in a redundant fashion [98].

Overall, due to the predicted evolution of CMOS integration, techniques that

facilitate fault tolerance in conjunction with high performance are of increas-

ing importance in signal processing and linear algebra routines. As such, the

proposals of this thesis that allow for decreased execution time under approx-

imate results can become enablers for high-performance, fault-tolerant, com-

33

1.2 Thesis Structure and Research Contributions

putation. This can be performed either by trading off some of the obtained

performance gains for resilience to computing faults, or by allowing for grace-

ful degradation in the results’ quality under computing faults. Some initial

work concerning the latter is presented in Section 3.9.

1.2 Thesis Structure and Research Contributions

1.2.1 General Structure

The remaining chapters of this thesis are divided into two parts: the first part

addresses the concept of progressive computations by proposing a unified soft-

ware framework for image processing tasks exhibiting incremental refinement

of computation. The proposed software designs of transform decompositions,

two-dimensional (2D) convolution and block-matching operations combine in-

cremental computation with a recently-proposed packing approach that en-

ables the calculation of multiple limited dynamic-range integer operations via

one 32-bit or 64-bit arithmetic operation. The proposed software designs are

validated in two different systems and are also provided online [99]. This effort

is reported in detail in our published work in [6, 7, 11].

In the second part, inspired by the concept of incremental processing and

packing, a software-based approximate computation approach has been de-

veloped for GEMM, which is a fundamental building block for several digi-

tal signal processing routines (factorisation and system solving just to name

a few). GEMM is also the core element within more complex systems, such

as face recognition software. By systematically trading off precision in favour

of processing throughput, this method is able to achieve different operational

points in real-time. This effort is reported in details in our published work

in [9, 10].

34

1.2 Thesis Structure and Research Contributions

1.2.2 Detailed Structure

Because operational packing forms a key part of the proposals of this thesis,

Chapter 2 presents the theoretical background on the packing theory as well as

a novel proposal for operational tight packing, a result not previously known in

literature and reported in our work in [6]. Packing theory provides a practical

approach to calculate numerical signal processing algorithms using concur-

rent arithmetic processing. This concurrency is achieved with a pure software-

based approach without the need for machine-specific customisation or cus-

tom hardware requirements.

Chapter 3 merges packing theory with recently-proposed approaches for in-

cremental computation. This chapter focuses on the conversion of three ba-

sic building blocks for signal processing (convolution, block transformation

and block matching) into an incremental computation model using operational

packing. This synergy of packing and incremental computation enables new

interesting perspectives:

• from a performance point of view, it allows for progressive calculation

with virtually no loss in execution-time performance for the full-quality

(entire) result as compared to the conventional (non progressive) calcu-

lation;

• from a distortion/complexity point of view, it can obtain a coarse (but

useful) result of the computation at a fraction of the execution time re-

quired for the full calculation;

• from a functionality point of view, new adaptive computational models

are enabled; one can compute in regions of interest or refine the compu-

tation based on previously-produced results.

The second point is particularly important in a real-time environment where a

scheduler may allocate only a certain amount of execution time for the calcula-

tion of a single frame. These points are elaborated in Section 3.6 of this thesis,

where a full set of experiments is presented specifically focusing on this topic.

35

1.2 Thesis Structure and Research Contributions

A limitation of incremental computation as proposed in Chapter 3 is that it

works only for integer-to-integer processing. This constraint is alleviated in

Chapter 4 where, by dropping the constraints imposed by lossy-to-lossless

progressive computations we propose a novel way to combine input com-

panding and packing approaches. By selecting the correct operational settings

(e.g. the number of input samples to be squeezed together using the theoreti-

cal results of Chapter 2, their “distance” within the packed representation and

the loss of precision from companding in an analytical manner), a substantial

increase in processing throughput can be achieved by trading off precision,

hence the concept of lossy packed processing is proposed. The entire chapter

focuses on the mathematical background behind the implementation of this

newly developed method in a GEMM routine: a new revised lossy packed

processing theory is presented first (starting from the lossless packed process-

ing first presented in Chapter 2); then new packing techniques are presented,

showing their relative strength and weakness; finally, a stochastic model of

the interaction between the lossy packed processing and the internal GEMM

structure is presented for independent and identically distributed (i.i.d.) in-

puts, thus enabling the analytic study of the distortion/throughput trade off

and the analytic estimation of the best operational settings.

Chapter 5 complements the theory presented in Chapter 4 by presenting the

key software techniques used for the implementation of this proof-of-concept

approximate GEMM, along with a complete set of experiments. The experi-

ments performed demonstrate both the stand-alone performance of the pro-

posed approximate GEMM computation, as well as how such a component

performs inside bigger systems (such as a face recognition system).

Finally Chapter 6 presents the overall conclusions of this thesis.

1.2.3 Research Publications

The work presented in this thesis has led to 3 journal publications, 4 confer-

ence publications and presentations, 1 best paper award and 1 shortlist for the

EPSRC UK ICT Pioneers Competition 2011, plus some invited talks.

36

1.2 Thesis Structure and Research Contributions

Conference publications:

• D. Anastasia and Y. Andreopoulos, “Operational Refinement of Image

Processing: ORIP v1.0, ” in Proc. of London Communications Symposium

(LCS), London, UK, September, 2009

• D. Anastasia and Y. Andreopoulos, “Software designs of image process-

ing tasks with incremental refinement of computation,” in Proc. IEEE

Workshop on Signal Processing Systems (SiPS), 2009, Tampere, Finland, Oc-

tober 2009, pp. 249 –254.

• D. Anastasia and Y. Andreopoulos, “Scheduling and energy-distortion

tradeoffs with operational refinement of image processing,” in Proc. De-

sign, Automation & Test in Europe (DATE), Dresden, Germany, March 2010,

pp. 1719 –1724.

• D. Anastasia and Y. Andreopoulos, “Throughput-precision computation

for generic matrix multiplication: Toward a computation channel for

high-performance digital signal processing,” in 17th International Confer-

ence on Digital Signal Processing (DSP), Corfù, Greece, July 2011, pp. 1

–6.

Journal publications:

• D. Anastasia and Y. Andreopoulos, “Linear image processing operations

with operational tight packing,” IEEE Signal Processing Letters, vol. 17,

no. 4, pp. 375 –378, April 2010.

• D. Anastasia and Y. Andreopoulos, “Software designs of image process-

ing tasks with incremental refinement of computation,” IEEE Transactions

on Image Processing, vol. 19, no. 8, pp. 2099 –2114, August 2010.

• D. Anastasia and Y. Andreopoulos, “Throughput-distortion computation

of generic matrix multiplication: Toward a computation channel for dig-

ital signal processing systems,” IEEE Transactions on Signal Processing,

vol. 60, pp. 2024–2037, April 2012.

37

1.2 Thesis Structure and Research Contributions

Invited talks:

• Invited presentation “Software Designs of Image Processing Tasks with

Incremental Refinement of Computation,” at UCL Communications and

Information Systems Group Seminars, University College London, London,

UK, Dec 11, 2009

• Shortlisted poster “Software Designs Of Image Processing Tasks With In-

cremental Refinement Of Computation”, University Booth 2010 (co-located

with Design, Automation & Test in Europe), Dresden, Germany, March 2010

• Invited presentation “Operational Refinement of Image Processing,” at

Computer Laboratory Systems Research Group Seminars, University of Cam-

bridge, Cambridge, UK, April 20, 2010

• Invited presentation “Software Designs for Progressive Multimedia Pro-

cessing with Graceful Degradation,” at Electronics & Optical Engineering

Research Group Seminars, University of Aberdeen, Aberdeen, UK, Nov 18,

2010

Awards and recognitions:

• Bob Owens Best Student Paper Award (1 best paper award out of – approxi-

mately – 50 accepted papers) for the paper “Software Designs of Image Pro-

cessing Tasks with Incremental Refinement of Computations” at IEEE Work-

shop on Signal Processing Systems SiPS 2009: http://www.sips09.org/

paperawards.html

• Shortlisted for the EPSRC UK ICT Pioneers Competition 2011 as one of the

top-20 PhD research projects in ICT in the UK for the category “Innova-

tion for Sustainability” with the project “Error tolerant software adapta-

tion of signal processing systems”: http://www.epsrc.ac.uk/newsevents/

news/2011/Pages/ukictpioneers.aspx; A brief presentation of the pre-

sented work is available online: http://bit.ly/hWC7rP

38

http://www.sips09.org/paper awards.html
http://www.sips09.org/paper awards.html
http://www.epsrc.ac. uk/newsevents/news/2011/Pages/ukictpioneers.aspx
http://www.epsrc.ac. uk/newsevents/news/2011/Pages/ukictpioneers.aspx
http://bit.ly/hWC7rP

Chapter 2

Packing: a Method for Concurrent

Calculation of Image Processing

Operators in Software

If we consider the dynamic range that a modern 32-bit or 64-bit floating-point

or integer number can attain, we find out that in most practical applications we

fail to take advantage of this range because we perform small dynamic range

calculations. Thus, it was recognised by prior work that computer hardware

with native support for large-bitwidth operations can be used for the concur-

rent calculation of multiple independent linear image processing operations.

This is achieved by packing multiple input samples in one large bitwidth num-

ber [6, 11, 100], performing a linear operation in the packed representation and

extracting the results.

Thus, packed linear image processing hinges on the idea that the dynamic

range of a 32-bit or 64-bit numerical representation can be used for the concur-

rent calculation of multiple small dynamic range integer operations by stack-

ing multiple operands using the correct packing factor z to avoid overflow (or

“invading” [100]) of samples outside their interval in the packed representa-

tion. Hence, the packing factor z is the key aspect of packing theory, since it

controls the packing capability W, i.e. the maximum number of operands. Ide-

39

2.1 Tight Packing

ally we would like to maximise the packing capability in order to perform as

many operations simultaneously as possible [6, 100].

The value of z can be calculated following two different methods: using a loose

or a tight approach. Even though they give the same packing capability in

most cases, there are cases where an improvement can be obtained with tight

packing [6]. We will discuss the maximum theoretical packing capability in

Section 2.1, which is one of the theoretical proposals of this thesis. Section 2.2

reviews the alternative approach, which is loose packing. Since most general

purpose processors and graphics processing units offer higher speed for the

floating-point representation, in comparison to the integer representation of

the same bitwidth, Section 2.3 describes how to use the full capability of the

double-precision floating point representation to maximise the packing capa-

bility. Section 2.5 summarises the exposition and concludes this chapter.

2.1 Tight Packing

In this section we focus on the case of operational1 packing with real number

representations (0 < z < 1) and in particular with floating-point since: (a) the

parameters for the best-possible packing and unpacking with integer repre-

sentations are a direct extension of this approach as it will shown in the Sec-

tion 2.2; (b) unlike integer representations, floating-point representations pre-

serve the sign information for each packed number [7, 100]; (c) programmable

processors can offer better native support for floating-point representations in

comparison to integer representations thereby enabling higher speed [7] .

Consider a linear operation op that can be applied to W image blocks Bp con-

currently2 (p ∈ {1, . . . , W}, W ≥ 1), using integer operator matrix3 K:

Up = (Bp op K). (2.1)

1The term operational refers to an algorithm or representation realisable by a computer.
2The W blocks can be parts of different images that are processed concurrently, or parts of

the same image.
3Boldface capital letters indicate matrices; the corresponding italicised letters indicate indi-

vidual matrix elements, e.g. A and A[i, j]; all indices are integers.

40

2.1 Tight Packing

For instance, K can be the 4× 4 H.264/AVC DCT kernel [101], defined as:

K =













1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1













and op describes a block decomposition algorithm:

Up = KBpKT

where Bp is an 4× 4 matrix taken from the input image.

Operational packing first forms a single block D by:

D =
W

∑
p=1

Bp zp−1 (2.2)

with z > 0 an appropriate packing factor. Then, the concurrent processing takes

place by

R = (D op K). (2.3)

Considering the use of an operational real-number representation, such as

floating-point, the results can be unpacked sequentially [100]. To do so, all

packed results are shifted to the non-negative region of zero by:

R+ = R− Lmin · J (2.4)

with: Lmin = Rmin ∑
W
p=1 zp−1, Rmin being the minimum possible value of the

results4 of (2.1) and J the unit matrix (matrix of ones). Each result is subse-

quently unpacked from R+ by:

4The minimum and maximum possible values of the output (Rmin and Rmax) can be calcu-
lated a-priori for given op and K, under the known dynamic range of the input.

41

2.1 Tight Packing

p = 1 :

{

R+
1 ≡ R+

U+
1 = ⌊R+

1 ⌋
(2.5a)

∀p ∈ {2, . . . , W} :

{

R+
p = 1

z (R
+
p−1 −U+

p−1)

U+
p = ⌊R+

p ⌋
(2.5b)

where R+
p indicates the contents of R+ during the pth unpacking and ⌊a⌋

the largest integer smaller or equal to a. Finally, the results are derived from

U+
1 , . . . , U+

W by offsetting to their original range:

∀p ∈ {1, . . . , W} : Up = U+
p + Rmin. (2.6)

The higher the value of W , the higher the execution time reduction offered by

operational packing, since more results are calculated concurrently [7, 100].

If an appropriate factor z is chosen for (2.2), it can be shown [6, 100] that the

results Up can be extracted correctly (i.e. Up of (2.6) is equal to Up of (2.1)), if:

1. the processing kernel K contains integers;

2. op is a linear operation.

The selection of the appropriate packing factor z depends on the dynamic

range of the specific algorithm being considered, as elaborated in the following

section.

2.1.1 Theory of Operational Tight Packing

Bounds for z and W can be derived from the dynamic range of the output

Rrange, Rrange = Rmax − Rmin, that the image processing operation can pro-

duce, and from the precision of the operational framework. This range can be

calculated if op and K are known.

The following proposition presents the bound for tight packing based on Rrange

and usys, with the later being the relative precision of the computer used for the im-

42

2.1 Tight Packing

plementation5. For block decomposition and convolution, a full exposition of

the calculation algorithms will be presented in the Section 3.3 and 3.4 respec-

tively.

Proposition 1 (Error-free Packed Processing [6]). Packing W integers via (2.2) for

linear integer-to-integer processing with output range Rrange, followed by unpacking

by (2.4)-(2.6), requires:

z <
1

Rrange + u∗safe
(2.7)

and, under z < 1,

W ≤
⌊

logz[(Rrange + 1)usys] + 1
⌋

(2.8)

with

u∗safe = arg min
∀usafe∈R+

{∣

∣

∣

(

Rrange + usafe
)W−1

(1− usafe)− Rrange

∣

∣

∣

}

(2.9)

and usys the relative precision.

Proof of (2.7): Expanding any element (i, j) of R+ we have:

R+[i, j] = (U1[i, j]− Rmin) + (U2[i, j]− Rmin) z + . . .

+ (UW [i, j]− Rmin) zW−1
(2.10)

with Up[i, j], p ∈ {1, . . . , W}, the (i, j)th result for the pth packed block. In

order to recover U1[i, j] correctly via (2.5a):

0 ≤
W

∑
p=2

(

Up[i, j]− Rmin
)

zp−1
< 1. (2.11)

The upper bound is approached when the linear processing derives ∀p ∈
{2, . . . , W}: Up[i, j] = Rmax, i.e. the maximum value for each packed result:

W

∑
p=2

zp−1 − 1
Rrange

< 0⇔ −Rrange zW + (Rrange + 1) z− 1 < 0 (2.12)

5Since usys stems from the finite precision of the implementation, it can be calculated offline
by a simple numerical experiment with the target implementation platform [100].

43

2.1 Tight Packing

Furthermore, ∀p ∈ {2, . . . , W} : Up[i, j] = Rmin, the lower bound of (2.11) is

achieved, regardless of z. Hence, the allowed values of z can be bounded solely

based on (2.12) by:

z ∈
(

0,
1

Rrange + u∗safe

)

(2.13)

with u∗safe > 0 derived from the solution of (2.12) under the marginal condition

of equality to zero. The analytic expression deriving the exact value for u∗safe

from (2.12) under this marginal condition can be simplified to:

(Rrange + u∗safe)
W−1(1− u∗safe)− Rrange = 0. (2.14)

Since the last equation has no closed-form solution for u∗safe when W ≥ 4, we

can express u∗safe as the argument minimising the magnitude of (2.14), i.e. (2.9),

and use numerical methods (e.g. bisection) to find u∗safe. When unpacking any

Up[i, j], p ∈ {3, . . . , W}, all admissible solutions for z fall within the interval

of (2.13) with u∗safe given by (2.9) because ∑
W
p=k zp−1 in (2.12) (k ≥ 2, 0 < z < 1)

is maximised when k = 2. As a result, the upper bound for z, which ensures

all unpacked samples are mathematically correct, is controlled from the first

unpacking.

Proof of (2.8): Assuming (2.10) under the worst case, i.e. with the maximum

value for each element of R+ (∀p ∈ {1, . . . , W} : Up[i, j] = Rmax) and relative

machine precision usys, we have6:

R[i, j] = Rrange

W

∑
p=1

zp−1 + (Rrange + 1) usys (2.15)

In order to recover all Up[i, j] correctly via (2.5)-(2.6), with p ∈ {1, . . . , W},
6This includes the term (Rrange + 1)usys to account for the maximum possible numerical

error, which is upper bounded by the maximum value of the calculation, (Rrange + 1), scaled
by the relative precision usys.

44

2.1 Tight Packing

unpacking via (2.5b) imposes:

Rrange

(

∑
W
n=p+1 zn−1 + usys

)

zp−1 < 1. (2.16)

For the last unpacking, i.e. p = W, we have ∑
W
n=p+1 zn−1 = 0 and, hence, we

reach (2.9) after rounding down to the nearest integer. When any other unpack-

ing p = M − k, k ∈ {1, . . . , W − 1} is considered, we have

∑
W
n=W−k+1 z(n−1)

> 0 and hence we reach bounds for W that are larger or

equal to the one of (2.9). As a result, the tightest upper bound for W is derived

by the last unpacking.

Remark 2.1 (Solution of (2.14) when W ≤ 3). If 2 ≤ W ≤ 3, (2.14) has the

following analytic solution (usafe ∈ R
+):

W = 2 : u∗safe = 1− Rrange ⇒ z ∈ (0, 1) (2.17a)

W = 3 : u∗safe =
1
2

(√

R2
range + 4Rrange − Rrange

)

(2.17b)

The solutions of (2.14) for W = 2 and W = 3 address common cases in the

experimental instantiations. We also note that the solution for W = 1 is mean-

ingless because (2.10) contains only one element (i.e. no packing), which does

not depend on the value of z. �

Remark 2.2 (Effect of machine precision on (2.7)). The upper bound of (2.7)

did not consider the machine precision. Unlike (2.8), where the finite precision

of the machine (represented by usys) is the reason that makes W a finite num-

ber, the upper bound of (2.7) is imposed by the unpacking process itself and it

is valid even under infinite precision. Finite-precision effects will decrease the

practical value of z slightly in some cases, as it will be shown experimentally in

Subsection 2.3.1. Since this effect is marginal and it depends heavily on the im-

plementation, the next remark proposes a practical, low-complex, framework

for setting the operational parameters for tight packing via Proposition 1. �

Remark 2.3 (Practical usage). The practical calculation of the bounds is done

as follows.

45

2.1 Tight Packing

Step 0 (Initialisation) Set L = 1. Set W{0} ≡ 1, u∗safe{0} ≡ ∅, z∗{0} ≡ ∅ (the

default is no packing capability).

Step 1 (Increment of packing) Set W{L} = L + 1.

Step 2 (Parameters calculation): Calculate u∗safe{L} from (2.9) and z{L} set equal

to the bound of (2.7).

Step 3 (Packing bound check) If W{L} satisfies (2.8), increment L by 1 and go

to Step 1. Otherwise, the tight packing parameters are settled to: W{L−1},

u∗safe{L−1}, z{L−1}. �

Remark 2.4 (Link to prior work). In their work on tight packing, Kadyrov

and Petrou [100] propose rules for tight packing, which, under the operational

scenario of (2.2)-(2.6), are expressed by [(20), [100]]:

z ≤ 1
Rrange + 1

(2.18a)

zW−1
> 2g (2.18b)

with g the maximum numerical error during the packing and processing of (2.2)

and (2.3), and Rmin, Rmax the minimum and maximum possible value of the re-

sults of (2.1), respectively. Parameter g is expressed as [100, p. 1883]:

g = max{|Rmax|, |Rmin|}usys, i.e. the maximum absolute value produced dur-

ing the processing, multiplied by parameter usys that represents the relative

precision of the computer arithmetic hardware.

The results of Proposition 1 are similar to the previously-proposed rules given

by (2.18) [100], but not identical. For example, under non-negative input and

kernel values, we have Rmin = 0, which leads to:

W ≤ | logz ⌈(Rmax + 1)usys⌉+ 1|

under Proposition 1, instead of:

W ≤ | logz ⌈2Rmax usys⌉+ 1|

46

2.2 Loose Packing

of (2.18). In general, (2.18) will approximate the bounds of Proposition 1 only

under symmetric dynamic range, i.e. when Rmax = −Rmin. Finally, even

though it is proposed in [100] to utilise the remaining space beyond the last

packing (i.e. beyond W{L−1} from Remark 2.3) by reducing the range of the

last packing, or by the introduction of error in the results of the last block UW ,

this is not applicable when all packed numbers are under the same dynamic

range [Rmin, Rmax], since the same operation is performed in all input blocks,

or when only error-free operation is considered. �

2.2 Loose Packing

A simplified version of the tight packing theory can be used in order to achieve

packing with integer representation. This different type of packing involves

precise division or multiplication by z and, for this reason, if z is defined as

a power of two, the resultant values are visibly placed in the packed sample.

This packing has the advantage that it consists of bit shift operations and hence

packing and unpacking can be performed with a fast procedure under appro-

priate software or hardware platform-specific support. This simplified version

is called loose packing [100]. We can define z as:

z ≡ 2rtype·d (2.19)

with d an integer greater than zero, rtype = −1 for 64-bit floating-point repre-

sentation or rtype = 1 for 32-bit unsigned integer representation. The dynamic

range of the packing obtained with the maximum packing coefficient cannot

be smaller than 2−50 for 64-bit floating-point representation7, and it cannot be

larger than 231 for 32-bit unsigned integer representation, which leads to

⌈W + 0.5(rtype − 1)⌉d ≤ wtype, (2.20)

7For typical floating-point precision, usys = 1.3417592× 10−16 (see details in Section 2.3.1),
which leads to log2 usys ≃ −50.

47

2.2 Loose Packing

with wtype = 50 or wtype = 31 respectively8.

If the range of all outputs of (2.3) is contained in the interval9 [Rmin, Rmax],

then, following loose packing theory [100], we have:

d ≥ ⌈log2 Rmax⌉+ 1. (2.21)

Selecting the minimum value of d satisfying the inequality, we reach:

W ≤
⌊

wtype

⌈log2 Rmax⌉+ 1

⌋

− 0.5(rtype − 1) (2.22)

Loose packing is performed by (2.2) with d selected by (2.19). For floating-

point representation (rtype = −1), unpacking is performed by [7, 11]:

p = 1 :

{

R1[i, j] ≡ R1[i, j]

U1[i, j] = ⌊R1[i, j]⌉
(2.23a)

∀p ∈ {2, . . . , M} :

{

Rp[i, j] = 2d(Rp−1[i, j]−Up−1[i, j])

Up[i, j] = ⌊Rp[i, j]⌉
(2.23b)

where: Up is the output increment of the result for block p, Rp is the R matrix

at the pth unpacking and ⌊a⌉ performs rounding to the nearest integer.

For integer representation (rtype = 1), the unpacking is performed by:

p = 1 :

{

R1[i, j] ≡ R1[i, j]

U1[i, j] = R1[i, j] (mod 2d)
(2.24a)

∀p ∈ {2, . . . , M} :

{

Rp[i, j] = (Rp−1[i, j]≫ d)

Up[i, j] = Rp[i, j] (mod 2d)
(2.24b)

where (a ≫ d) shifts a down by d bits and a (mod 2d) = a − ⌊a/2d⌋2d is the

modulo operation.

8The term W + 0.5(rtype− 1) presents the fact that when rtype = −1 (floating point), there is
an additional packing at the mantissa which is not included within wtype = 50; when rtype = 1
(integer representation), the entire packing is achieved within wtype = 31.

9For simplicity in the exposition and without loss of generality, in the following we assume
|Rmax| ≥ |Rmin|

48

2.3 Floating-Point Aspects in Tight Packing

In order to ensure there is no numerical error in the calculation when packing

with floating-point arithmetic, the magnitude of the maximum possible error

[100] must allow for correct rounding by (2.23a) and (2.23b), i.e.:

2−wtypeRmax

2−(W−1)d
< 0.5. (2.25)

In our designs, W is initially derived by (2.22) and then decreased (if needed)

so that (2.25) holds. Note that no numerical error is possible in the integer

packing if the output of each result remains within [Rmin, Rmax].

2.3 Floating-Point Aspects in Tight Packing

Loose packing will achieve error-free operation under a floating-point repre-

sentation if (2.25) is satisfied for d and W. However, tight packing, as for-

malised by Proposition 1, depends explicitly on the machine relative precision

usys. In this section we investigate in more detail the practical implications of

the machine precision on tight packing under floating point.

It is well known that the mapping of the floating-point representation (with

single or double precision) in the IEEE standard is not linear [102]. Floating–

point processor units (FPUs) are designed to have increasingly-finer sampling

around zero. Consequently, in an operational environment with an FPU, the

experimental value for u∗safe, denoted by ûsafe, may be larger than the theo-

retical estimate of (2.9) and, hence, the practical value of z may need to be

decreased for correct packing and unpacking in floating-point. This is due to

the fact that, under the packing of (2.2), the working region of each packed

sample (i, j) becomes (U1[i, j] − 0.5, U1[i, j] + 0.5), i.e. centers around U1[i, j]

instead of the high-precision region around zero. Naturally, we can translate

this region to the high-precision region of (−0.5, 0.5) if we sacrifice the pack-

ing performed in the operand (base) of the floating-point number, i.e. if we

set B1 ≡ 0 in (2.2). We perform a related experiment in the next section to

demonstrate the practical relevance of the derived bounds and the impact of

the precision of FPUs.

49

2.3 Floating-Point Aspects in Tight Packing

2.3.1 Validation of Proposition 1 in a Floating-Point Unit

We examine the popular case of convolution operations Up = (Bp op K), p ∈
{1, . . . , W} , with unsigned 8-bit input samples and non-negative convolu-

tion10 kernels K (Rmin = 0) deriving increasing values for Rmax. We used 25

convolution kernels representing various realistic examples such as: 2D Gaus-

sian smoothing filters converted to fixed-point (integer) representation [7], im-

age processing kernels (e.g. kernels simulating camera motion effects or smooth-

ing from Matlab’s fspecial() function), kernels derived from image templates

(for template matching via cross-correlation [7, 100]), etc. Our experiments

cover: Rmax = {10, . . . , 1000} × (28 − 1). For each kernel, we calculate u∗safe by

solving (2.9) with numerical methods (bisection) for each W admissible by (2.8)

and selected the corresponding to the maximum admissible W. The calculated

relative machine precision in the implementation hardware (double-precision

floating point realisation using an Intel Core Duo 2 processor under Microsoft

Visual C++ 9.0) was found to be usys = 1.3417592× 10−16 using the test of

[(28), [100]]. Per kernel (i.e. per Rmax value), the experimental value for u∗safe

was found by iteratively increasing u∗safe: ûsafe = u∗safe + 0.01i, i = 0, 1, . . . ,

until the packed convolution results can be unpacked without error under the

operational tight packing framework of (2.2)-(2.6) in two different cases: (a) no

sample packed in the FPU operand (base), i.e. B1 ≡ 0 in (2.2); (b) one sample

packed in the FPU operand, which is the commonly-utilised setting [7, 100].

Figure 2.1 presents the experimental points (ûsafe) vs. theoretical prediction

(u∗safe) for case (a) and (b). The floating-point precision causes slight deviations

of ûsafe from the theoretically-predicted value, which, as expected, are slightly

higher in the case of one packing in the operand. Importantly, the solution

of (2.9) predicts the transition point for ûsafe accurately. Hence, Proposition 1

offers a more precise characterisation of the experimental results than the pack-

ing rules of (2.18b), which suggest that ∀Rmax : u∗safe = 1.

For the more noisy case of one packing in the operand (which offers higher

packing and is used in practice [7, 100]), Figure 2.2 and Figure 2.3 shows the

10A full description of the convolution algorithm will be made in the Section 3.4.

50

2.3 Floating-Point Aspects in Tight Packing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50000 100000 150000 200000 250000

No packing in the operand

Floating point (64-bit)
Proposition 1

u
sa

fe

Rmax

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50000 100000 150000 200000 250000

One packing in the operand

Floating point (64-bit)
Proposition 1

u
sa

fe

Rmax

Figure 2.1: Graph of ûsafe (under double-precision floating-point representation) vs.
u∗safe (derived by Proposition 1).

51

2.3 Floating-Point Aspects in Tight Packing

-1e-09

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Floating Point (64-bit) vs. Proposition 1
Floating Point (64-bit) vs. Proposition 1

E
rr

or
of

z

Rmax

Figure 2.2: Experimentally derived ẑ (using double-precision floating-point repre-
sentation) versus its theoretical bound from Proposition 1.

corresponding experimentally-derived ẑ and Ŵ versus the theoretical bounds

of Proposition 1 and the rule of (2.18b) from [100]. For Proposition 1, we mea-

sured: ∑∀Rmax
|z− ẑ| = 2.15× 10−8, while for the rule of (2.18b): ∑∀Rmax

|z− ẑ| =
3.97× 10−8 , i.e. both theoretical estimates are very close to the measured val-

ues. Finally, the bound of (2.9) predicts the experimentally observed number

of packings, Ŵ, for all cases. Notice that the rule of (2.18b) from [100] does not

match the transition points from W = 4 to W = 3 and from W = 3 to W = 2,

since it does not provide the upper bound for the packing capability W.

2.3.2 Setting of Operational Parameters for Tight Packing

Following the results of Figure 2.1, 2.2 and 2.3, it is evident that only minor

experimental adjustment is needed to derive the operational parameters for

tight packing. Under the knowledge of the algorithmic parameters (op and

K), we first set ûsafe = u∗safe{L−1}, ẑ = z∗{L−1} and Ŵ = W∗{L−1} following Re-

52

2.3 Floating-Point Aspects in Tight Packing

 2

 3

 4

 50000 100000 150000 200000 250000

Comparison of W
Proposition 1

Kadyrov’s Rule
Floating point (64-bit)

W

Rmax

 3

 4

 4000 6000 8000 10000 12000 14000

Comparison of W (section)
Proposition 1

Kadyrov’s Rule
Floating point (64-bit)

W

Rmax

Figure 2.3: Experimentally derived Ŵ versus its theoretical bound from Proposi-
tion 1 and the packing rule of (2.18b). The bottom graph is a zoomed section of the
top one.

53

2.4 Loose Packing vs. Tight Packing

mark 2.3. We then pack Ŵ values equal to the maximum and minimum input

(e.g. 255 and 0, respectively, for 8-bit images), process them with op and K, and

unpack them checking whether the unpacked results are correct (they should

all be equal to Rmax and Rmin, respectively). If not, we increase ûsafe by 0.1,

recalculate ẑ and Ŵ, and repeat the process until the results are correct. For

all our experiments, this derived the tight operational parameters requiring

(maximally) two iterations, since the bounds of Proposition 1 provide a very

precise characterisation of the operational parameters. This process has negli-

gible complexity and can be performed at an initialisation phase, as described

in Remark 2.3. Furthermore, it is completely realisable in software without

requiring access to hardware specifications of a particular system.

2.4 Loose Packing vs. Tight Packing

In order to demonstrate the impact of the tight packing framework in appli-

cations, we present example results with two convolution kernels, a 12× 12

Gaussian kernel converted to fixed-point assuming nine fractional bits, and a

5× 9 integer kernel simulating camera-motion effects derived from the Mat-

lab’s fspecial(’motion’). Both kernels derive Rmax within {15.5, . . . , 19.0} ×
105 × (28 − 1), which allows for Ŵ = 3 in the proposed packing, while tight

packing via (2.18b) (denoted as “Kadyrov’s Packing”) and the operational loose

packing environment, denoted as “Loose packing”, achieve Ŵ = 2. Testing

environment will be described in more details in Section 3.6, where the en-

tire set of experiments performed will be presented (Dell Latitude D630 with

Intel Core 2 Duo 2.5 GHz, 2 Gb RAM, Microsoft Windows XP, Microsoft Vi-

sual Studio 2008, with all default optimisations of -O2). All programs were

executed using a convolution kernel to operate using (2.1)-(2.6) and, also, us-

ing all 8 input bitplanes directly, in order to operate without the incremental

computation features. The input content consisted of the luminance frames of

several 704x576 YUV progressive video sequences (at 30 frames-per-second).

We report the average processing throughput in frames/second for all cases

in Table 2.1. Similar results were obtained for several convolution or cross-

54

2.5 Remarks on the Usage of Packing for Image Processing Applications

Kernel Type Conventional Kadyrov’s Packing and
Loose Packing

Tight Packing

5× 9 Camera motion blurring 11.7 47.5 58.8
12× 12 Gaussian fixed-point 9.2 30.3 36.9

Table 2.1: Throughput expressed in frames/second for two convolution examples.
The tight packing increases the operational packing from Ŵ = 2 to Ŵ = 3.

correlation experiments where an increase of the packing capability was ob-

tained, i.e. in the regions of Figure 2.3 where the proposed method offers in-

creased Ŵ in comparison to operational tight packing of [100].

2.5 Remarks on the Usage of Packing for Image Pro-

cessing Applications

Packing works particularly well when the the input has small dynamic range

as indicated by Proposition 1. Detailed experimental results supporting this

statement are presented in Section 3.6. This can also be intuitively explained

based on the fact that, because the output dynamic range grows due to the per-

formed operations, the number of operands that can be packed successfully is

small when the input already has high dynamic range. We can then begin

to think of an approach that would split the input samples into “portions” of

smaller width and then process these portions through the use of packing and

accumulate the unpacked results to obtain the final result. The process of sep-

aration of the input source samples into increments is known in the literature

as incremental computation [29]. As a result, we can envision the merging of

incremental computation with the packing theory for two important reasons:

(a) increase the packing capability thanks to the smaller input dynamic range;

(b) decrease the required computation of incremental refinement, which, in its

original form [29], requires more operations than the conventional computa-

tion. The proposal for the merging of packing with incremental computation

is the topic of the next chapter.

55

Chapter 3

Incremental Computation using

Packing and Unpacking

The packing theory provides a powerful approach for small dynamic range

integer-to-integer data processing. This feature can be used in a progressive

computation environment to keep the execution time comparable with the ex-

ecution of the same algorithm computed with the conventional approach.

3.1 Introduction

If we modify an algorithm to make it progressive in execution through a se-

ries of calculation increments (or steps), the execution time will increase by

a certain factor (which is linearly dependent on the number of steps within

the progressive execution). This effect can be compensated by using packed

processing, so that we can obtain a progressive algorithm with small over-

head (or even zero) in execution time in comparison to the conventional (non-

progressive) execution. To examine this approach, a novel framework is pro-

posed in this chapter for incremental computation of three different well-known

multimedia processing tools: filtering, block transformation and block match-

ing. These three algorithms cover numerous potential applications, such as

image transform-based coding [103, 104], de-noising by filtering or by decom-

56

3.2 Loose Packing in a Incremental Framework

position [105], motion estimation and compensation [20], and image and video

analysis algorithms. As a result, these algorithms are the perfect candidates to

demonstrate the idea in a operational environment.

This chapter describes the framework, how it works and how the packing the-

ory is merged with the progressive calculation. The notational conventions

used for the packing theory are expanded in order to accommodate the ex-

position of the progressive calculation proposed in this chapter. For each al-

gorithm, data-partitioning, packing, processing and unpacking are analysed

both mathematically and operationally.

3.2 Loose Packing in a Incremental Framework

A pictorial depiction of the operational framework for incremental computa-

tion is given in Figure 3.1. In this chapter, we discuss this framework in more

detail, while the next chapter presents the basic tradeoffs of the proposed pack-

ing approach and a full set of experimental results.

The proposed framework is built under the notion of processing of bitplanes

n, starting from the most significant bit (MSB) of the input (n = N − 1) and

going down to the least significant bit (LSB), which is bitplane n = 0. For non-

negative 8-bit images considered in this work, N = 8. Two useful definitions

of quantities used in the remainder of this chapter are given below.

Definition 1. For any quantity a used in the computation of an algorithm, an
full,

0 ≤ n < N− 1, is the computed value of a when the input consists of bitplanes

N − 1 down to (and including) bitplane n. �

Definition 2. For any quantity a used in the computation of an algorithm, an
bit,

0 ≤ n < N − 1, is the computed value of a when only bitplane n of the input

is used. �

The notational conventions of Definition 1 and Definition 2 are extended to

57

3.2 Loose Packing in a Incremental Framework

Figure 3.1: Incremental refinement of computation using packing and unpacking
of increment layers extracted progressively from the input image data. The output
result is progressively refined via the computation of more increment layers. The
computation of each layer can also utilise results from previous layers to reduce
complexity or focus the computation on regions of interest.

matrices1, e.g. An
bit is the matrix containing the computed coefficients of A

when only bitplane n of the input image is used.

As shown in Figure 3.1, an input image is initially partitioned into M non-

overlapping blocks, whose binary (bitplane-by-bitplane) representation is

shown in the middle of the figure, from MSB to the LSB. A total of N incre-

ment layers are formed by grouping together the nth bitplane of all blocks

(“Increment layer n” in Figure 3.1), 0 ≤ n < N − 1. Each increment layer n is

also a layer of computation.

First, all W blocks Bn
1,bit, . . . , Bn

W,bit of one layer are stacked together in one

block Dn
bit by:

Dn
bit[i, j] =

W

∑
p=1

Bn
p,bit[i, j]2rtype(p−1)d (3.1)

where Bn
p,bit[i, j] is the (i, j)th value of block Bn

p,bit (p ∈ {1, . . . , W}) that contains

parts of increment layer n belonging to the mth spatial block. The last equation

is the extension of (2.2) using the “loose packing” described in the Section 2.2

1Superscripts in matrices or scalars indicate the bitplane number and, for the case of block
matching (Section 3.5) the video frame index (except for superscript T that indicates transpo-
sition); the distinction between bitplane and frame is identifiable from the contest.

58

3.2 Loose Packing in a Incremental Framework

in order to accommodate the new incremental notation; in particular, it shows

that the nth bitplane of the pth block is scaled by 2rtype(p−1)d and is then added

to the sum of the previous blocks {1, . . . , p− 1} of the same increment layer.

This leads to a packed increment layer having all W blocks placed on one block

Dn
bit and using integer or floating-point representation2.

After the packing approach, the desired image processing task op is applied to

Dn
bit for each layer n, 0 ≤ n < N, e.g. convolution with kernel K is performed

by (extension of (2.3)):

Rn
bit = (Dn

bit op K) (3.2)

Unpacking is performed by (2.23) with Rp and Up replaced by Rn
p,bit and Un

p,bit.

For floating-point representation (rtype = −1), unpacking is performed by [7]

(extension of (2.23)):

p = 1 :

{

Rn
1 [i, j] ≡ Rn

1 [i, j]

Un
1 [i, j] = ⌊Rn

1 [i, j]⌉
(3.3a)

∀p ∈ {2, . . . , W} :

{

Rn
p[i, j] = 2d(Rn

p−1[i, j]−Un
p−1[i, j])

Un
p [i, j] = ⌊Rn

p[i, j]⌉
(3.3b)

where: Up is the output increment of the result for block p, Rp is the R matrix

at the pth unpacking and ⌊a⌉ performs rounding to the nearest integer.

For integer representation (rtype = 1), the unpacking is performed by (exten-

sion of (2.24):

p = 1 :

{

Rn
1 [i, j] ≡ Rn

1 [i, j]

Un
1 [i, j] = Rn

1 [i, j] (mod 2d)
(3.4a)

∀p ∈ {2, . . . , W} :

{

Rn
p[i, j] = (Rn

p−1[i, j] ≫ d)

Un
p [i, j] = Rn

p[i, j] (mod 2d)
(3.4b)

where (a ≫ d) shifts a down by d bits and a (mod 2d) = a − |a/2d|2d is the

modulo operation.

2The best choice for the utilised representation (integer or floating-point) is system depen-
dent, as it will be shown by our experiments.

59

3.2 Loose Packing in a Incremental Framework

After unpacking, the final stage of the proposed computation increments the

previously-computed results of increment layers N− 1, . . . , n + 1 by adding to

them the results of the current layer, Un
1,bit, . . . , Un

W,bit:

∀p ∈ {1, . . . , M} : Un
p,full = Un+1

p,full + Un
p,bit (3.5)

with UN−1
p,full ≡ 0.

Depending on the algorithm of interest, one could localise the calculation of

(3.2) around areas of interest based on the previously-computed increment lay-

ers (as indicated in Figure 3.1). This will be used in the block matching task and

in our experiments with region-of-interest based computation in the following

chapter.

Due to the utilisation of the packing technique, the results of all W blocks are

computed concurrently by (3.2). Depending on the overhead of packing and

unpacking, a comparable number of operations maybe performed in compar-

ison to the direct non-incremental computation of each block.

For notational simplicity, this work discusses bitwise inputs and N = 8 incre-

ment layers for 8-bit images; however, one can combine a number or bitplanes

into one layer in order to reduce the increments required to obtain the full-

precision result. This is enabled by the implementation of the proposed ap-

proach [99] and it is utilised in the Chapter 3.6 in order to make the execution

time of the proposed approach comparable to the equivalent non-incremental

design of each algorithm of interest. Finally, even though Figure 3.1 indicates

that all image blocks are packed together (i.e. the algorithm splits the image

into W blocks), in an operational environment the number of blocks that can be

packed together may not suffice to cover the entire image. Hence, after packing

Q groups of W blocks (where Q×W gives the total number of image blocks),

the processing and unpacking are interleaved. This is shown in the schematic

of Figure 3.2. Once the first increment is computed for all groups, the interleav-

ing allows for arbitrary termination of the algorithm even in-between increment

layers: this is a feature that allows for virtually seamless quality improvement

with increased computation within each increment layer.

60

3.3 Transform Decomposition

Figure 3.2: Packing, processing, unpacking and incrementing the result with Q
groups of W blocks.

3.3 Transform Decomposition

The input of this case is Q groups of W blocks of C × C input pixels, B0
p,full,

1 ≤ p ≤ W, with C = {4, 8, 16} for typical cases of block transforms found in

the literature [103, 104, 106]. The transform matrix is given by a C× C integer

kernel Tfor, e.g. the H.264/AVC 4× 4 transform [103]. Transform kernels with

non-integer coefficients can be approximated by a fixed-point (FXP) represen-

tation with the appropriate number of fractional bits [107]. Hence, they can be

computed with an integer kernel followed by inverse scaling after the termi-

nation of the calculation and can be accommodated by our framework. The

following describe the proposed incremental computation for all W blocks of

each group of blocks q, 1 ≤ q ≤ Q.

Under an integer transform kernel, the decomposition of the pth block is per-

formed by:

∀p ∈ {1, . . . , W} : U0
p,full = TforB

0
p,fullT

T
for. (3.6)

When bitplanes of the input are used for the transform decomposition, the

process can be performed for each bitplane n (from n = N − 1 down to n = 0)

61

3.3 Transform Decomposition

of the pth block by:

∀p ∈ {1, . . . , W} : Un
p,bit = TforB

n
p,bitT

T
for. (3.7)

and the results are added to the previously-computed results by (3.5).

The above process was already proposed within transform-specific formula-

tions for incremental computation of the discrete Fourier transform [29] and

the lifting-based discrete wavelet transform [30]. Here, we consider packing

the results in order to accelerate the incremental computation in software. We

form Dn
bit by (3.1) and it is used to compute the packed result of all W blocks

by:

Rn
bit = TforD

n
bitT

T
for. (3.8)

The results are unpacked from Rn
bit using (3.3a) and (3.3b) [or (3.4a) and (3.4b)

if integer packing is performed] and the final results per bitplane n are derived

by (3.5). Notice that only one transform decomposition with block Dn
bit is per-

formed by (3.8) instead of W block decompositions performed by (3.7). This

is expected to save operations by combining blocks together via the incremen-

tal packing approach. As shown by (8) and (9), the total number of blocks

combined (packing capability), W, depends on the worst-case dynamic range

Rrange of (3.7). This range can be found by assuming the worst-case block:

Bs[i, j] =

{

1, if (−1)sTfor[i, j] > 0

0, if (−1)sTfor[i, j] ≤ 0
for 0 ≤ i, j < C, s ∈ {0, 1}. (3.9)

Rmax = (2g − 1)max
∀s

{

max
∀j

{

C−1

∑
i=0

Tfor[i, j]Bs[i, j]

}

·max
∀i

{

C−1

∑
j=0

Tfor[i, j]Bs[i, j]

}}

(3.10)

where g is the number of bitplanes packed in each increment layer n, e.g. g = 1

when we pack a single biplane in each increment layer.

Concerning the transform reconstruction (synthesis) process, the same approach

62

3.3 Transform Decomposition

can be followed, where the synthesis is given by

∀p ∈ {1, . . . , W} : B0
p,full = TinvR0

p,fullT
T
inv, (3.11)

with Tinv = T−1
for . In this case the maximum bitplane of the input is changed

depending on the dynamic range expansion of the forward transform. When

using packing with integer representation, the incremental approach as pre-

sented so far only covers the use of transform kernels with non-negative co-

efficients because the sign information is not preserved via integer packing.

In order to cover the general case of arbitrary transform kernels, we need to

convert all transform coefficients to non-negative numbers by:

Tfor+ = Tfor + P, (3.12)

with P = −min∀i,j {Tfor[i, j]} · J and J a matrix of ones. After the incrementally-

computed decomposition is performed for each input block Dn
bit using Tfor+,

we need compensate for the added component of the kernel of (3.12) during

the derivation of the final results per bitplane. However, simple linear algebra

shows that several multiplications and additions are needed in order to derive

the correct result since the decomposition with the transform kernel of (3.12)

derives:

Rn
bit+ = TforDn

bitT
T
for + PDn

bitT
T
for + TforD

n
bitP

T + PDn
bitP

T (3.13)

out of which only the term TforDn
bitT

T
for is the desired increment. Hence, we do

not investigate this option in this work and restrict our approach to floating-

point representation for the transform decomposition case; as mentioned in

Chapter 2, packet representation in floating point maintain the sign informa-

tion and can handle positive and negative operands.

63

3.4 Two-Dimensional Convolution

3.4 Two-Dimensional Convolution

For an image consisting of Rin × Cin pixels, the block partitioning of this case

separates the image into W partially overlapping horizontal “stripes”, each of

which is the considered to be the input block of samples, B0
p (1 ≤ p ≤ W),

each having Cin columns (as shown in Figure 3.3). The number of rows in each

block is controlled by the input image rows and the packing capability (i.e. the

value of W).

Figure 3.3: Horizontal stripes in the implementation of the packed Two-
Dimensional Convolution.

The convolution filter is given by a Vkernel×Ckernel coefficient kernel Tconv and

convolution of the pth block is performed by:

∀p ∈ {1, . . . , W} : U0
p,full = B0

p,full ∗ Tconv. (3.14)

In order to produce the correct result with the block-based calculation of (3.14),

consecutive blocks share a common subset of rows Voverlap = |Vkernel/2|, i.e.

the first block (“stripe”) is overlapping with the second block vertically by

Voverlap rows, all subsequent blocks overlap with their previous and next blocks

by Voverlap rows (above and below the block), and the last block overlaps with

its previous block by Voverlap rows. When bitplanes of the input are used, the

64

3.4 Two-Dimensional Convolution

process can be performed for each bitplane n of the pth block by:

∀p ∈ {1, . . . , W} : Un
p,bit = Bn

p,bit ∗ Tconv, (3.15)

and the results are added to the previously-computed outputs by (3.5).

If we consider packing the results in order to accelerate the incremental com-

putation, then Dn
bit is formed by (3.1) and it is used to compute the packed

result of all W blocks by:

Rn
bit = Dn

bit ∗ Tconv. (3.16)

The results are unpacked from Rn
bit using (3.3a) and (3.3b) [or (3.4a) and (3.4b)

if integer packing is performed] and the final results per bitplane n are derived

by (3.5). Visual examples of Gaussian filtering when n ∈ {6, 4, 2} are given in

Figure 3.1; similar examples with n ∈ {5, 2, 0} are given in Figure 3.9. As in

Section 3.3, the packing capability depends on the worst-case dynamic range,

which is calculated using Tconv in (3.9) and then:

Rmax = (2g − 1)max
∀s

{∣

∣

∣

∣

∣

Vkernel−1

∑
i=0

Ckernel−1

∑
j=0

Bs[i, j]Tconv[i, j]

∣

∣

∣

∣

∣

}

. (3.17)

In addition, similarly to the transform decomposition case, kernels with non-

integer coefficients can be approximated by an FXP representation. When us-

ing packing with integer representation and the convolution kernel contains

negative coefficients, we apply (3.12) using Tconv and then, after unpacking,

we increment the result by:

∀p ∈ {1, . . . , W} : Un
p,full = Un+1

p,full + Un
p,bit

+ min
∀i,j
{Tconv[i, j]}

Vkernel−1

∑
i=0

Ckernel−1

∑
j=0

Bn
p,bit[i, j]

(3.18)

in order to compensate for the added element P = −min∀i,j {Tconv[i, j]} · J.

Finally, in order to permit incremental computation even within an increment

layer, the calculation of (3.16) and the unpacking and incrementation of re-

sults are interleaved for each output coefficient Rn
bit[i, j]. This permits virtually

65

3.5 Block Matching

seamless quality improvement with increased computation within each incre-

ment layer.

3.5 Block Matching

The problem of block matching between two successive images I0,t−1
full and I0,t

full

(of Rin × Cin pixels) can be abstracted as follows. Given the qth non-overlap-

ping block B0,t
q,full of C×C pixels in I0,t

full (1 ≤ q ≤ Q, assuming Q blocks in total)

and a corresponding search area S0,t−1
q,full of 2S× 2S overlapping blocks in I0,t−1

full ,

find the C × C block in the search area that is closest to the qth block. Con-

ventional search algorithms use non-linear distance criteria, such as the sum

squared (SS) error or the sum of absolute differences (SAD) error [20]. In this

work, we propose an approach to perform incremental block matching using

the SS error criterion. However, since the framework of (3.1)-(3.5) works with

linear processing, careful handling of the packing, processing and unpacking

is required.

The first problem to be addressed is the packing itself. There are several ways

one can consider using incremental processing with packing in the block match-

ing case. One could consider two consecutive image blocks in frame and pack

increments of these blocks together to compute a single distance criterion for

both blocks. On the other hand, it is also possible to pack sample of the same

block and the same search area, in order to decrease the number of required

operations for each match.

Here we present both approaches. In Subsection 3.5.1 we present the block

matching algorithm with a bitwise matching criterion. In this case the packing

is performed using different blocks and search areas at the same time. In Sub-

section 3.5.2 a completely different approach is described that uses the packing

inside the block itself and uses the SS error as distance metric.

66

3.5 Block Matching

3.5.1 Bitwise Matching Criterion

The first approach is to consider two consecutive image blocks in frame I0,t
full

and pack increments of these blocks together to compute a single distance cri-

terion for both blocks, i.e. following the generic overview of Figure 3.1. The

target in this case is to achieve both the maximum packing capability W and,

at the same time, be able to check an early termination condition. However,

due to the fact that the positions of the best match within the search ranges

in frame I0,t−1
full will be different, this has two important detriments: it makes

early termination difficult to apply for block matching3 and, for increments

beyond the first one, it complicates the localisation of the calculation around

the previously-established match. However, we shall still pursue this case not

only to show a complementary block matching criterion to the one described

in the Section 3.5.2, but also to show how different types of packing pattern

can be applied to the same algorithm.

In particular, we consider here the popular one-bit motion estimation of Natara-

jan et al. [108], where a binarisation of the input image is performed prior to

block matching and the exclusive-OR (XOR) function is used as a matching

criterion.

This block matching method starts with the application of an integer high-pass

2D mask Thigh to the input images:

∀τ ∈ {t− 1, t} : R0,τ
high,full = I0,τ

full ∗ Thigh (3.19)

3Early termination stops the calculation of the distance for a candidate match once the
distance value has exceeded the one of the already-found best match [20]. This becomes cum-
bersome for concurrent processing of two (or more) blocks as they have different matches with
different minimum distances.

67

3.5 Block Matching

where we use the 19× 19 mask proposed by Erturk [109]:

Thigh[i, j] =











































1
16 , if(i, j) ∈































(0, 9), (3, 6), (3, 12),

(6, 3), (6, 9), (6, 15),

(9, 0), (9, 6), (9, 12), (9, 18),

(12, 3), (12, 9), (12, 15),

(15, 6), (15, 12), (18, 9)































0, otherwise

(3.20)

After filtering, the one-bit representation of the filtered image is formed by

thresholding the high-frequency images [108]:

0 ≤ i < Rin

0 ≤ j < Cin

: R0,τ
bin,full[i, j] =

{

1, if R0,τ
high,full[i, j] ≥ I0,τ

full

0, otherwise
(3.21)

Then, block matching is performed between all W non-overlapping blocks of

C× C (binarised) pixels in R0,t
bin,full (1 ≤ p ≤ W) and their corresponding (bina-

rised) search areas in R0,t−1
bin,full. For each block p at position (ip, jp) within image

R0,t
bin,full, this derives the optimal location {x0,∗

p,full, y0,∗
p,full} of the matching block

within its search area (−S ≤ x, y < S) in frame R0,t−1
bin,full by:

{

x0,∗
p,full, y0,∗

p,full

}

= arg min
∀x,y

R−1

∑
i=0

C−1

∑
j=0

{

R0,t
bin,full[ip + i, jp + j]⊕

R0,t−1
bin,full[ip + i + x, jp + j + y]

}

(3.22)

The distance function of (3.22) is simply the summation of the result of the

XOR operation between the current block and each block of the search area,

which is the Hamming weight. This can be parallelised by packing 32 values

of R0,t
bin,full and R0,t−1

bin,full in two unsigned 32-bit operands and using a specific

processor instruction or a few low-cost operations for the calculation of their

Hamming weight [20].

When all bitplanes n ∈ {N − 1, N − 2, . . . , 0} of the input images In,τ
full are pro-

cessed independently, the first part can be performed by the incremental con-

68

3.5 Block Matching

volution approach of the previous section. Once the results Rn,τ
high,full of the

convolution have been produced, the binarisation of (3.21) is applied in or-

der to produce Rn,τ
bin,full. Then, for every n, the best match per block is found

by (3.22) using Rn,τ
bin,full and 32-bit integer packing.

However, the above technique is expected to increase the execution time for the

incremental block matching process, as each increment layer applies the full

search algorithm. In order to accelerate this case, we utilise the knowledge of

the best match found for each block during the previous increment layers N−
1, ..., n + 1. This is performed as follows. For the first increment layer n = N −
1, we perform a fast search using logarithmic-step search [20]. Subsequently,

for each block p we only search in the neighbourhood of the previously-found

best match for this block. The localised search pattern is a spiral search with a

fixed distance limit of Sspiral pixels horizontally and vertically (see [99] for more

details). The use of log-search and the localisation of the search around the

previously-found best match will produce approximate results per increment

layer.

3.5.2 Sum of Squared Error Criterion

Another way to consider the incremental processing for the block matching

is to pack two sets of samples of a single block together in order to compute

the distance criterion on both sets concurrently. The search area can also be

packed in the same way in order to allow for comparisons between packed

incremental representations. This is detailed in the following subsection. Sub-

section 3.5.2.2 explains how the (non-linear) SS error criterion can be calcu-

lated using the packed representations. The overall block matching algorithm

is summarised in Subsection 3.5.2.4.

69

3.5 Block Matching

(a) Example of
quincunx lattice
for a 4× 4 block.

(b) Example of quincunx lattice of an 8× 8 search area with indicative
search positions highlighted. Any sub block of the search area within
the coordinates {(0, 0), . . . , (7, 7)} can be selected as a match.

Figure 3.4: Quincunx lattice

3.5.2.1 Packing of Incremental Block and Search-Area Samples using the

Quincunx Lattice

We split the block and search-area samples into two non-overlapping sets us-

ing the quincunx lattice, whose samples x[i, j] and o[i, j] are shown in Figure 3.4

for an example 4× 4 block and its corresponding 8× 8 search area. For each

new increment n of the block and search area, the packing within each block

B0,t
q,full is done by4 (0 ≤ i < C, 0 ≤ j < C/2):

Bn,t
q,full[i, j] = xn,t

q,full[i, j] + on,t
q,full[i, j]2−d (3.23)

with xn,t
q,full[·, ·], on,t

q,full[·, ·] the samples of B0,t
q,full up to (and including) the nth

bitplane and following the quincunx lattice of Figure 3.4a and d the packing

coefficient, whose setting is discussed in Subsection 3.5.2.2.

For the corresponding search area S0,t−1
q,full , we form four packings by (0 ≤ i <

4For exposition simplicity we focus on the case of floating-point packing, i.e. rtype = −1.

70

3.5 Block Matching

2S, 0 ≤ j < S):

Sn,t−1
q,full [i, j, 0, 0] = xn,t−1

q,full [i, j] + on,t−1
q,full [i, j]2−d (3.24a)

Sn,t−1
q,full [i, j, 1, 0] = on,t−1

q,full [i, j] + xn,t−1
q,full [i, j]2−d (3.24b)

Sn,t−1
q,full [i, j, 0, 1] = on,t−1

q,full [i, j] + xn,t−1
q,full [i, j + 1]2−d (3.24c)

Sn,t−1
q,full [i, j, 1, 1] = xn,t−1

q,full [i, j] + on,t−1
q,full [i, j + 1]2−d (3.24d)

with xn,t−1
q,full [·, ·], on,t−1

q,full [·, ·] the samples of S0,t−1
q,full up to (and including) the nth

bitplane and following the quincunx lattice of Figure 3.4b. Notice that the

packing rules of (3.23) and (3.24) correspond to the case of W = 2 of (3.1)

but, instead of using two blocks, we use the two lattice sample sets. The need

for the four separate packings given by (3.24) becomes evident once we ex-

amine the samples that will be compared in the packed representation for ev-

ery possible combination of search positions. In particular, the packings of

(3.24a) and (3.24b) are used when the block is compared to blocks located

at (even,even) and (odd,even) positions in the search grid, respectively. The

packings of (3.24c) and (3.24d) are used when the block is compared to blocks

located at (even,odd) and (odd,odd) positions in the search grid, respectively.

Examples for all four cases are given in Figure 3.4b. Hence, for each search

location S0,t−1
q,full (is, js) we use Sn,t−1

q,full [is, ⌊js/2⌋, x, y] with x = mod(is, 2) and y =

mod(js, 2). To keep the required memory footprint for (3.23) and (3.24) small,

the packing and block matching is performed separately for each block and its

search area. In this way, even for 16× 16 blocks with ±16 pixels search range,

less than 20Kb are required per block match, i.e. an amount of memory that

can easily fit in the level-one cache of all modern processors. In the follow-

ing subsection, we examine the approach we follow to calculate the packed SS

error.

3.5.2.2 SS Error Calculation using Packed Representations

The block SS error calculation with packed representations using W = 2 is

performed as follows. Assume the packed block samples Bn,t
q,full[i, j] and a can-

71

3.5 Block Matching

didate block in the packed search area Sn,t−1
q,full [is + i, ⌊js/2⌋+ j, x, y], which cor-

responds to search location (is, js) in S0,t−1
q,full . We calculate the packed SS error

by:

DSS =
C−1

∑
i=0

C/2−1

∑
j=0

(

Bn,t
q,full[i, j]− Sn,t−1

q,full [is + i, ⌊js/2⌋+ j, x, y]
)2

(3.25)

Per block position (i, j), (3.25) performs the squared difference between the

packing of (3.23) and one of (3.24). In the remainder of this subsection, we

analyse the case when (3.23) and (3.24a) are used in (3.25), i.e. x = 0 and y = 0,

since all other cases of (x, y) are examined in the same manner.

By replacing the packed representations using (3.23) and (3.24a), and expand-

ing the square we have:

DSS =
C−1

∑
i=0

C/2−1

∑
j=0

[

(

xn,t
q,full[i, j]− xn,t−1

q,full [is + i, ⌊js/2⌋+ j]
)

+
(

on,t
q,full[i, j]− on,t−1

q,full [is + i, ⌊js/2⌋+ j]
)

2−d

]2

=
C−1

∑
i=0

C/2−1

∑
j=0

(

xn,t
q,full[i, j]− xn,t−1

q,full [is + i, ⌊js/2⌋+ j]
)2

+
C−1

∑
i=0

C/2−1

∑
j=0

(

on,t
q,full[i, j]− on,t−1

q,full [is + i, ⌊js/2⌋+ j]
)2
× 2−2d

+2
C−1

∑
i=0

C/2−1

∑
j=0

(

xn,t
q,full[i, j]− xn,t−1

q,full [is + i, ⌊js/2⌋+ j]
)

(

on,t
q,full[i, j]− on,t−1

q,full [is + i, ⌊js/2⌋+ j]
)

× 2−d

(3.26)

The three terms of (3.26) show that we can unpack the SS error of each sam-

pling grid and discard the unwanted cross-product term (which is scaled by

2−d). This is done following the unpacking process of (3.3a) and (3.3b): U1 =

⌊DSS + 0.5⌋, DSS,1 = (DSS − U1)2−d, U2 = ⌊DSS,1 + 0.5⌋, U3 = |(DSS,1 −
U2)2−d + 0.5⌋. The total SS error of both grids is DSS,grid = U1 + U3 and U2

is the unpacked cross-product term. Hence, the packed SS error of (3.25) “car-

72

3.5 Block Matching

ries” within it the result of both incremental grids. Notice that, even though

we packed two inputs, we need to perform three unpacking because of the

unwanted cross-product term.

3.5.2.3 Setting of the Packing Coefficient d

As explained in Section 2.2, d can be set based on the worst-case dynamic range

Rmax of the computed results within the packed representation. The worst

case for (3.26) occurs in the cross-product term, where we have Rmax = C2 ×
(

2(N−n)
)2

. When we have large blocks (e.g. when C = 16) or when we reach

the least significant bits (n = 0) this range may be prohibitively large to permit

W = 3 correct unpacking. However, during the calculation of (3.25) we check

at the end of every odd-numbered row for early termination (i.e. whether

the SS error exceeds the previously-found best one). Hence, we can also set

a worst-case dynamic range R
early
max which, if exceeded, we enforce early termi-

nation because this will most-likely not correspond to a good match. Using

(2.22) and (2.25) with W = 3, we find that loose packing can accommodate

Rmax = 32768. Based on experiments with numerous real-world video se-

quences, we set R
early
max = Rmax

2 as the threshold for early termination.

3.5.2.4 Overall Block Matching Algorithm

The basic algorithm performed for each increment is given in Algorithm 3.1.

In particular, each increment layer applies the search algorithm with a row-

by-row scan pattern using early termination. The search area grid to be used

is selected via step 5, which is performed before the loop that calculates the

packed SS error. This simplifies the indexing of the software implementation.

This algorithm can be readily extended to consider interpolation grids, and

multi-frame motion estimation.

Incremental block matching can benefit from the knowledge of the best match

found for each block during the previous increment layers N − 1, . . . , n + 1 in

order to speed up the execution. This is performed as follows. For the first

73

3.5 Block Matching

Algorithm 3.1 Incremental block matching using sum squared error

R
early
max ← 2C× 2N2

d = ⌈log2 R
early
max ⌉+ 1 {Set packing coefficient to be used}

in,∗
s,q ← S− 1, jn,∗

s,q ← S− 1 {Coordinates of best match are set to the center of
the search area}
{Incremental block matching using SS error for each input block Bn,t

q,full and search

area Sn,t−1
q,full }

for all n = N − 1, . . . , 0 do {For each increment n}
Extract Bn,t

q,full and Sn,t−1
q,full

Calculate Bn,t
q,full and Bn,t−1

q,full using (3.23) and (3.24)
Set D∗SS = ∞ {The minimum distance will go in D∗SS}
for all is = 0, . . . , 2W − 1 do {For each search row is}

for all js = 0, . . . , 2W − 1 do {For each search column js}
x← is (mod 2)
y← ij (mod 2)
DSS ← 0
for all i = 0, . . . , C− 1 do {For each block row i}

for all j = 0, . . . , C/2− 1 do {For each block column j}
DSS ← DSS + (Bn,t

q,full[i, j]−Sn,t−1
q,full [is + i, ⌊js/2⌋+ j, x, y])2

end for
if i (mod 2) = 1 then

U1 ← ⌊DSS + 0.5⌋
DSS,1 ← (DSS −U1)2−d

U2 ← ⌊DSS,1 + 0.5⌋
U3 ← ⌊(DSS,1 −U2)2−d + 0.5⌋
DSS,grid ← U1 + U3 {Unpack DSS values of both grids and add
them}
if DSS,grid > D∗SS or DSS,grid > R

early
max then {Early termination}

Goto Early-Termination
end if

end if
end for
Early-Termination:
if DSS,grid < D∗SS then
DSS,grid ← D∗SS
in,∗
s,q ← is, jn,∗

s,q ← js
end if

end for
end for
Store coordinates of best match for increment n of block q

end for

74

3.5 Block Matching

increment layer n = N − 1, we perform a fast search using the logarithmic-

step search followed by a spiral search pattern around the location of the best

match [20]. For subsequent increments of each block q, we only search in the

neighbourhood of the previously-found best match for this block. This is per-

formed by performing a spiral search within a fixed distance limit of Sspiral pix-

els horizontally and vertically (see [99] for full details on the implementation).

The use of log-search and the localisation of the search around the previously-

found best match will produce approximate results per increment layer. Com-

parisons against the conventional (non-incremental) full search algorithm in

terms of prediction quality vs. execution time are given in the Section 3.8.2.

75

3.6 Experimental Results

3.6 Experimental Results

For the experiments, the xo-laptop of the OLPC foundation (detailed specifica-

tion can be found in [110]) running its native Linux operating system (denoted

as ”low-end“ profile) and a Dell Latitude D630 mainstream laptop with an

Intel Core 2 Duo processor (clocked at 2.5 GHz with 2 Gb RAM) running Mi-

crosoft Windows XP (denoted as ”mainstream“ profile) are used. All programs

were written in C++ and compiled with the GCC 4.1.2 compiler in Linux and

with the Microsoft Visual Studio 2008 compiler in Windows, with all default

optimisations of -O2 (maximise speed) mode in both cases. To achieve stable

execution-time measurements with high precision in both platforms, the Win-

dows QueryPerformanceCounter() function and the Linux gettimeofday()

function are used and all programs run on the highest priority. Only the exe-

cution time required for the computation was measured to display the results

of this section (and converted to milliseconds based on system-specific timing

measurement). All I/O time from/to the disk was excluded, since it produced

the same overhead for both the conventional and the incremental approaches.

The common interchange format (CIF) version of the “Coastguard”, “Fore-

man”, “Mobile”, “Silent” and “Stefan” video sequences were used as input

video frames at 30 fps. Every sequence consists of 300 frames. This set of se-

quences creates a 1500-frame video with diverse content. For the low-end pro-

file, downsampled sequences to quarter-CIF (QCIF) format at 10 fps were used

in order to achieve real-time (or near real-time) processing with the xo-laptop.

The SNR or the peak signal-to-noise ratio (PSNR) measurements presented

in the results utilise only the Y (luminance) channel. SNR was measured for

all transform and convolution experiments using as reference (noise-free) the

result when processing up to the LSBs of each frame (full precision, n = 0). P-

SNR was measured for the block matching experiment by using the prediction

error of frame-by-frame motion compensation (using the original frames) with

the motion vector of each block produced from the location of the best match

found within the search area.

76

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

For a R× C Y-channel of a video frame, SNR is measured by:

SNR(Ycurrent) = 10 log10

(

R−1

∑
i=0

C−1

∑
j=0

(Yref[i, j])2

(Yref[i, j]−Ycurrent[i, j])2

)

(3.27)

where Ycurrent is the current frame under analysis and Yref is the reference

frame. PSNR is measured by:

PSNR(Ycurrent) = 10 log10

(

2552

1
R·C ∑

R−1
i=0 ∑

C−1
j=0 (Yref[i, j]−Ycurrent[i, j])2

)

. (3.28)

The results are averages over all the tested video frames, unless is specified

otherwise in the particular experiment.

3.7 Incremental Transform Decomposition and 2D

Convolution Experiments

We present results with the 4× 4 H.264/AVC block transform [103] and with

the fidelity-range extension (FRExt) 8× 8 block transform kernel [104] in order

to cover two different transform sizes that are used in practice. For the 2D con-

volution case, we present results with 12× 12 and 6× 6 Gaussian kernels with

their coefficients approximated by fixed-point (FXP) representation with frac-

tional part set to 8 bits and 6 bits, respectively, with the final results rounded to

8-bit integers for display purposes. The selection of the number of bits for the

fractional part of the FXP representation ensured that SNR above 58 dB was

obtained for all our filtering experiments in comparison to the results obtained

with the floating-point representation of the filter kernels. The small kernel is

applied on the QCIF content in the low-end profile and the large one on the CIF

content in the mainstream profile. We also performed an experiment of block

cross-correlation using random image blocks of 8× 8 pixels as kernel Tconv for

the two profiles. The results are shown in Figure 3.5-Figure 3.8, where we also

report the number of packed blocks W achieved by the incremental approach

77

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

following (2.22) and (2.25). The corresponding average SNR results are given

in Table 3.1. Visual examples of outputs of the 12× 12 Gaussian filtering at

different precisions are given in Figure 3.9.

3.7.1 Results Exposition

For the results of the incremental approach, instead of inserting each bitplane

separately in the incremental computation, we inserted groups of bitplanes to-

gether following the pattern {3, 3, 2}, i.e. the three most significant bitplanes,

followed by the 3 intermediate bitplanes, followed by the two least-significant

bitplanes. Per video frame, this provides for three quality-driven termination

points for the algorithm’s execution, which are indicated by the terminating

bitplanes of the figures. Conversely, the conventional (non-incremental) ap-

proach was executed three times, each time using the source precision indi-

cated by the terminating bitplanes in the figures. Even though the proposed

incremental approach can also terminate at arbitrary points in-between incre-

ment layers, we do not demonstrate this in the results of Figure 3.5-Figure 3.8

since the conventional approach cannot provide for arbitrary termination. In-

stead, this feature is explored in detail in Section 3.9.

3.7.2 Comparisons Performed

In order to examine the impact of the utilised numerical representation, Fig-

ure 3.5-Figure 3.8 show execution time results for both conventional and in-

cremental approaches when using floating-point and integer representation.

The only exception are in Figure 3.5 and 3.6 (transform decomposition), where

Section 3.3 demonstrated [via (3.13)] that integer representations are impracti-

cal when the processing kernel has negative coefficients. In addition, in order

to demonstrate the impact of using packed processing, Figure 3.5-Figure 3.8

include the execution time required for packing and unpacking (without pro-

cessing). This time is included within the reported results for the incremen-

tal approaches. We also present the performance of the incremental approach

78

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

4x4 block transform (Mainstream, W=5)
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

 0

 10

 20

 30

 40

 50

 60

 70

 80

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

4x4 block transform (Low-end, W=5)
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

Figure 3.5: Transform decomposition results: 4× 4 AVC transform.

79

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

 0

 5

 10

 15

 20

 25

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

8x8 block transform (Mainstream, W=2)
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

 0

 20

 40

 60

 80

 100

 120

 140

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

8x8 block transform (Low-end, W=2)
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

Figure 3.6: Transform decomposition results: 8× 8 FRExt kernel.

80

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

when packing is not used, i.e. each increment of each block is computed sepa-

rately.

3.7.3 Analysis of Execution Efficiency

The experiments summarised in Figure 3.5-Figure 3.8 demonstrate that the 32-

bit integer representation executes faster than double-precision floating-point

in the low-end profile. The mainstream profile exhibits the reverse behaviour.

The two profiles analysed lead to the following generic rules for the proposed

approach:

• Representations with larger bitwidth are advantageous for the proposed

approach because they increase the packing capability, as shown in the

results of Figure 3.7 and 3.8;

• Use of packing is always beneficial for the proposed approach; incremen-

tal processing without packing is consistently found to run slower in all

experiments;

• When the packing capability W is lower or equal to the number of ter-

minating bitplanes, the proposed approach tends to be inefficient. This

is particularly evident in the low-end profile results of Figure 3.6. Con-

versely, if W is high, the proposed approach becomes very efficient, unless

it uses a representation that is not fast in the implementation hardware

(e.g. low-end profile of Figure 3.7 with floating-point representation).

• When the packing/unpacking cost requires more than 30% of the execu-

tion time of the conventional (non-incremental) approach, the proposed

approach becomes inefficient [e.g. low-end profile of Figure 3.6]. The

exception to this rule is when high packing capability is achieved using

a fast numerical representation in the utilised hardware, as seen in the

mainstream profile of Figure 3.6.

• The average execution time of the proposed approach is increasing lin-

early when the source is processed with increased precision (lower ter-

81

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

 0

 10

 20

 30

 40

 50

 60

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

12x12 block transform (Mainstream, W={3(int),5(float)})
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

Incremental int

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

6x6 convolution (Mainstream, W={3(int),5(float)})
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

Incremental int

Figure 3.7: 2D convolution results with 12× 12 (mainstream profile) and 6× 6 (low-
end profile) Gaussian kernels approximated with fixed-point representation.

82

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

8x8 cross correlation (Mainstream, W={2(int),4(float)})
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

Incremental int

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

8x8 cross correlation (Low-end, W={2(int),4(float)})
Conventional int

Conventional float
Incremental float

Packing/Unpacking
Incremental - No Packing

Incremental int

Figure 3.8: Block cross-correlation results.

83

3.7 Incremental Transform Decomposition and 2D Convolution
Experiments

Transform Decomposition
SNR (dB)

2D Filtering SNR (dB)

Terminating
Bitplane

4x4 16x16 12x12 gaussian 8x8
cross-correlation

n = 5 16.74 19.12 18.88 18.88
n = 2 35.45 39.05 39.35 39.34

Table 3.1: Average signal-to-noise ratio for the terminating bitplanes of the
mainstream-profile experiments of Figure 3.5-Figure 3.8. SNR was infinity for all
cases when n = 0. Both conventional and incremental algorithms achieved identi-
cal SNR for each terminating bitplane.

Figure 3.9: Representative output frame for terminating the computation at n =
{5, 2, 0} bitplanes (shown from left to right) for the 12× 12 Gaussian filtering.

minating bitplanes). This contrasts with the conventional approach that

requires constant execution time regardless of the input precision. Once

two increments have been processed, this feature can be used to establish

the average execution time of subsequent increments of the proposed ap-

proach.

These five rules encapsulate all our experimental observations. They also form

useful guidelines for deciding if and how to deploy the proposed approach:

which numerical representation to use, how many terminating bitplanes are

possible without significant loss in efficiency, whether the algorithm is not

complex enough to outweigh the cost of packing and unpacking, are all fac-

tors that affect the deployment of the proposed approach.

84

3.8 Incremental Block Matching Experiments

3.7.4 Analysis of Visual Quality

Identical SNR results were obtained for both conventional and incremental al-

gorithms in all cases (Table 3.1). Importantly, SNR per frame is monotonically

increased when processing more increments (lower terminating bitplanes). An

example is given in Figure 3.10a by inverting the results of the 4× 4 transform

decomposition back to the image domain and comparing with the original

video frames (since the transform is lossless at full precision). Since SNR com-

parisons may not reflect the visual distortions caused by terminating the pro-

cessing to higher bitplanes, we have also performed tests with the structural

similarity index measure (SSIM) of Wang et al. [111] using the related Matlab

source code5 with the suggested parameter settings. We used the Y-frames of

each sequence for this purpose and provide an example in Figure 3.10b for the

transform decomposition. Indeed, the comparison between Figure 3.10a and

3.10b shows that even though a significant drop occurs in SNR, the output re-

sults are visually meaningful since the mean SSIM (MSSIM) remains around

0.8 [11]. For terminating bitplane n = 0, SNR is infinite and the MSSIM is one.

As a final remark, it is important to emphasise that the incremental approach

produces all execution-time vs. distortion measurements via one single execution. In

other words, if, for any frame, the computation is terminated arbitrarily at a

given point by a task scheduler, the results based on the already computed bit-

planes of that frame are readily available in the program’s allocated memory.

3.8 Incremental Block Matching Experiments

Two set of experiments were made for the two different solutions of the block

matching algorithm described in the Section 3.5. We present the case of C =

S = 16 for both profiles and both implementations.

5available online at http://www.cns.nyu.edu/ lcv/ssim/

85

3.8 Incremental Block Matching Experiments

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

S
N

R
 (

dB
)

Frame no.

Foreman (CIF)

Terminating bitplane n=5
Terminating bitplane n=2

(a) SNR comparison

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80 90 100

M
ea

n
S

S
IM

Frame no.

Foreman (CIF)

Terminating bitplane n=5
Terminating bitplane n=2

(b) MSSIM comparison

Figure 3.10: Frame-by-frame comparison for the reconstruction of the incrementally
computed 4× 4 transform decomposition of Figure 3.5; Only the first 100 frames are
shown.

86

3.8 Incremental Block Matching Experiments

Mainstream Profile PSNR (dB) Low-end profile PSNR (dB)

Bitplane Incremental Conventional Incremental Conventional

n = 5 27.32 28.32 23.57 24.67
n = 2 28.48 28.52 24.77 24.83
n = 0 28.51 28.57 24.79 24.84

Table 3.2: Average peak-signal-to-noise ratio for the terminating bitplanes of the
experiments of Figure 3.11.

3.8.1 Bitwise Matching Criterion

Indicative results for the block matching algorithms are shown in Figure 3.11.

The corresponding PSNR results are shown in Table 3.2. Since the convolution

kernel Thigh of Erturk [109] only requires 16 additions, it was found experi-

mentally that the incremental algorithm can perform the convolution directly

per input set of bitplanes (rather than use the packing approach) without sig-

nificant overhead. Similar to the previous cases, instead of always inserting

individual bitplanes, we inserted the input-image bitplanes following the pat-

tern {3, 3, 2} (as indicated by the terminating bitplanes of Figure 3.11).

The PSNR results of Table 3.2 demonstrate that the log-search performed for

the first terminating biplane (n = 5) provides significantly inferior prediction

result for the incremental method as compared to the conventional approach

that performs full search (approximately 1 dB loss). However, the prediction

quality of the incremental algorithm becomes virtually identical to the con-

ventional approach once more bitplanes are processed and the spiral search

refines the motion vector per block. In particular, incremental motion estima-

tion provides only 0.06 dB loss of prediction precision at full precision, n = 0,

with Sspiral = 9 in the mainstream profile and Sspiral = 4 in the low-end pro-

file. In addition, since the performance seems to saturate when n < 2, the

proposed approach can terminate the computation earlier and achieve near

real-time performance, something that the conventional approach cannot take

advantage of, since its execution time does not scale down with decreased pre-

cision.

87

3.8 Incremental Block Matching Experiments

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

16x16 block matching (Mainstream)

Conventional
Incremental

 30

 40

 50

 60

 70

 80

 90

 100

 110

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

16x16 block matching (Low-end)

Conventional
Incremental

Figure 3.11: Block matching results with bitwise criterion.

88

3.8 Incremental Block Matching Experiments

3.8.2 Sum of Square Error Criterion

For this second case, the packing structure and the weight function are differ-

ent. As described in the Section 3.5.2, in this case packing is made inside both

block and search area and for this reason both refinement of the previously-

found best match and early termination can be performed without any addi-

tional algorithmic cost.

The average execution times obtained for the block matching algorithms are

shown in Figure 3.12. The corresponding PSNR results are shown in Table 3.3.

The conventional approach is using SAD-based matching in order to corre-

spond to the common full-search algorithm found in the literature. We also

include the proposed incremental block matching scheme without the use of

packing for comparison purposes. Similar to the previous cases, instead of

always inserting individual bitplanes, we inserted the input-image bitplanes

following the pattern {3, 3, 2} (as indicated by the terminating bitplanes of Fig-

ure 3.12).

The PSNR results of Table 3.3 demonstrate that the log-search performed for

the first terminating biplane (n = 5) provides significantly inferior prediction

result for the incremental method as compared to the conventional approach

that performs full search (approximately 0.6 dB loss in performance). How-

ever, the prediction quality of the incremental algorithm approaches the con-

ventional approach once more bitplanes are processed and the spiral search

refines the best match location found per block. In particular, over the larger

range of video content tested (1500 frames from 5 sequences), incremental

block matching leads to only 0.2 dB loss of prediction efficiency at full pre-

cision (n = 0). We used sspiral = 9 in the mainstream profile and Sspiral = 8

in the low-end profile. In addition, since the performance seems to saturate

when n < 2, the proposed approach can terminate the computation earlier

and achieve near real-time performance, something that the conventional ap-

proach cannot take advantage of, since its execution time does not scale down

with decreased precision.

89

3.8 Incremental Block Matching Experiments

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

16x16 block matching (Mainstream)
Conventional

Incremental
Incremental - No Packing

 100

 150

 200

 250

 300

 350

 400

025

E
xe

cu
tio

n
T

im
e

(m
s)

Termination Bitplane n

16x16 block matching (Low-end)
Conventional

Incremental
Incremental - No Packing

Figure 3.12: Block matching results.

90

3.9 Applications

Mainstream Profile PSNR (dB) Low-end profile PSNR (dB)

Bitplane Incremental Conventional Incremental Conventional

n = 5 28.43 29.18 24.38 24.88
n = 2 29.10 29.46 24.70 25.01
n = 0 29.25 29.46 24.78 25.01

Table 3.3: Average peak-signal-to-noise ratio for the terminating bitplanes of the
experiments of Figure 3.12.

3.9 Applications

In this section, we exploit the incremental and scalable nature of the proposed

incremental computation in order to show its usefulness in applications. We

first present a simple example of how one can use the proposed framework

for region-of-interest computation. Subsection 3.9.2 presents results with a

real-time scheduling framework, while Subsection 3.9.3 presents indicative re-

sults for the energy-distortion trade-offs enabled by the proposed software-

based incremental computation of image processing on the ultra low-power

xo-laptop. Since the last two application examples use multi-process execu-

tion, the reported timing measurements therein include both the computation

time as well as all I/O time from/to the disk.

3.9.1 Region-of-Interest Based Incremental Computation

The proposed approach can selectively refine parts of the computation for a

given input video depending on a preselected region-of-interest (ROI) mask.

To demonstrate this, we selected the “Silent” sequence that involves a sign-

language presenter at a static location in each frame and defined the arbitrary

ROI mask shown in Figure 3.13 that focuses on the presenters face and hands

region. The 4× 4 AVC block transform decomposition was used as an indica-

tive processing algorithm (running on the mainstream profile). The decompo-

sition occurred progressively for each terminating bitplane n ∈ {5, 2, 0}within

the ROI. However, the decomposition outside of the ROI terminated at n = 5

91

3.9 Applications

Figure 3.13: ROI-based incremental transform decomposition. An example frame
with terminating bitplanes 5, 2, 0 is shown (from left to right).

(first increment only). The average execution times per frame were: 5 ms for

n = 5, 6ms for n = 2 and 7 ms for n = 0. Incremental computation without

the ROI required 5 ms, 10 ms and 16 ms, respectively. Conventional (non incre-

mental) computation required 15 ms for all cases since the execution time does

not scale down with decreased precision. Indicative visual results of this pro-

cess are shown in Figure 3.13 by reconstructing the video from each calculated

decomposition.

3.9.2 Time-Driven Computation

Conventional real-time software for image processing tasks operates under

worst-case assumptions, e.g. see [19]. Here, we want to investigate what hap-

pens when scheduling deadlines do not comply with the worst case. To this

end, we consider the scenario where, for each video frame, the image process-

ing task of interest is controlled by a scheduler (timer), which terminates the

task after the scheduled time per video frame elapses. When the termination

signal is received, the task immediately provides the already computed results

for the input frame, before proceeding to the next video frame. We illustrate

this approach in Figure 3.14. In order to implement this design, we have used

the cross-platform OpenMP framework [112] where two independent threads

(timer and main thread) are concurrently executed. The two threads share the

common memory element flag_int to realise the signalling: when flag_int is

set to true by the timer thread, the application thread terminates the processing

92

3.9 Applications

Figure 3.14: Time-driven computation of image processing tasks. The timer thread
sends the stop signal to the application thread in order to terminate their execution
for each frame. The application thread initiates the timer thread by the restart

signal. The signalling is achieved via checking and setting/resetting flag_int.

of the current frame and resets flag_int to false.

In our first experiment, the termination signal is generated by the timer thread

using an average value A with D% of variability around the average value. Two

cases are considered: (a) “regular-variability” scheduling, where A=100% of the

average frame completion time for each task and D=30% of A, and (b) “aggressive-

variability” scheduling, where A=80% of the average frame completion time for

each task and D=50% of A. In order to report results for both conventional and

incremental versions of the algorithms, we measure two aspects: (a) the per-

centage of uncovered frames; these are frames with areas within them that have

not been processed (covered) at all (i.e. areas with no decomposition or filter-

ing, or no block matching for some blocks); (b) the percentage of fully-completed

frames; these are fully-covered frames and with the result computed at full pre-

93

3.9 Applications

Scheduling
Type

Regular-variability (A=100% of
each method, D=30%)

Aggressive-variability (A=80% of
each method, D=50%)

Measurement Uncovered Fully-completed Uncovered Fully-completed

Transform Decomposition

Conventional 33.90% 66.10% 42.99% 57.01%
Incremental 0.19% 91.06% 5.61% 81.86%

2D Filtering

Conventional 4.41% 95.59% 6.31% 93.69%
Incremental 0.06% 99.87% 0.56% 97.59%

Block Matching

Conventional 75.24% 24.76% 79.09% 20.91%
Incremental 0.10% 76.85% 10.88% 67.58%

Table 3.4: Percentage of uncovered and fully-completed frames for 4× 4 and 16× 16
integer block transforms (top part), 8× 8 cross-correlation and 12× 12 convolution
(middle part), 8× 8 and 16× 16 block matching (bottom).

cision. Naturally, for optimal performance, the first percentage should be as

close to zero as possible, while the second should be as close to 100% as possi-

ble. The results are given in Table 3.4.

The proposed approach also has an intermediate case, which is covered frames

but not fully-completed, i.e. not all increments have been computed. Repre-

sentative visual examples of the artefacts observed are given in Figure 3.15.

Post-processing with error concealment could potentially reduce the distortion

caused by uncovered areas in both conventional and incremental processing at

the cost of additional complexity. However, the results of Table 3.4 show that

the proposed incremental approach rarely requires this, since the percentage of

uncovered frames remains well below 1% in all but two experiments. This is an

order of magnitude difference with the conventional approach that typically

leaves more than 10% of the frames with uncovered areas when operating un-

der scheduling. This demonstrates that, unlike the conventional implementa-

tions, the proposed approach obtains reasonable quality even when the sched-

uler does not provide for the worst-case. It is interesting to observe that, apart

from this advantage, the proposed method also provides significantly-higher

94

3.9 Applications

Figure 3.15: Visual example of video frame; from left to right: fully-completed
frame, uncovered frame, covered frame but not fully completed (i.e. the result is
not computed to full precision).

percentage of fully-completed frames under both scheduling provisions. We

observed that the execution time of the proposed incremental approach fluctu-

ates less across different frames in comparison to the conventional approach.

This allows for successful completion of more frames for this method when

the scheduling time fluctuates around the mean execution time.

In a second scheduling experiment, we want to explore the throughput vs.

quality tradeoffs enabled by the proposed approach via execution with fixed

deadline per frame. Figure 3.16a shows typical SNR versus throughput results

(in terms of frame-per-second – fps) obtained with the incremental 2D convo-

lution with the 12× 12 Gaussian mask (mainstream profile). We gradually de-

creased the scheduling deadline (without variability) from A=31ms to A=19ms

per frame6, which leads to increased throughput, from 32.3fps to 52.6fps re-

spectively, with a corresponding drop in SNR from infinity (full precision) to

19.36 dB. Representative visual results are shown in Figure 3.9: from left to

right the displayed frames represent typical outputs from highest fps to lowest

fps, i.e. from stopping at increment layer n = 5 to stopping at n = 0, respec-

tively. It is important to remark that, for all results reported in Figure 3.16,

no uncovered frames were produced, i.e. there were no sudden blanks in

the filtered video apart from the gradual quality reduction. This straightfor-

6Notice that the scheduling deadline includes I/O time, therefore the scheduling deadlines
are higher than the timing measurements of Figure 3.7 that are reporting only the average
computation time per frame.

95

3.9 Applications

ward quality-complexity scalability provides a very efficient tool when the

processing requirements need to be scaled on-the-fly to match throughput re-

quirements. Notice that constant-time execution is complementary to bitplane-

based execution (shown in Figure 3.7) where constant-quality processing is

achieved but the execution time per frame can vary. The SNR results per frame

shown in Figure 3.16b demonstrate this difference; there, the constant-quality

execution was terminated at bitplane n = 2 per frame, while the constant-time

execution imposed A=24ms per frame (41.7fps); both methods required virtu-

ally the same average time per frame (the difference was within a 5% mar-

gin). However, constant-time execution produces occasional drops in SNR in

certain frames, while constant-quality execution provides near-constant SNR

with occasional bursts of execution time due to differences in the execution

flow caused by time-varying processor or operating-system interrupts.

3.9.3 Energy-Distortion Efficiency of Software-based Incremen-

tal Computation for Real-Time Video Processing on the

XO Laptop

The proposed incremental computation is aiming for accelerated processing

by handing only a subset of the input bitplanes. As such, when accelerated

processing is obtained, this leads to energy consumption reduction, which is

a side-effect stemming from the obtained acceleration. To examine the effect

of incremental computation on the energy consumption, in this experiment [8]

we use the on-board camera of the xo-laptop to capture still images in raw

YCbCr format (640× 480 pixels) and apply the 8× 8 cross-correlation algo-

rithm with floating-point packing using a high-pass filter kernel. This corre-

sponds to an image capturing and filtering scheme for edge detection in a live

monitoring application. We used the Linux Hardware Abstraction Layer7 to

periodically read the xo-laptop’s battery status during the algorithm execu-

tion. Our goal is to measure the power-level reduction when computing the

high-pass filtering with different accuracies (in terms of terminating bitplane

7http://www.freedesktop.org/wiki/Software/hal

96

3.9 Applications

19

22

30

39

42

52

infinity

32 34 37 40 43 47 52

S
N

R
 (

dB
)

Frames per Second

SNR vs Throughput
12x12 Gaussian Mask

(a) Experimental results on mainstream profile with reduced scheduling dead-
line

 30

 32

 34

 36

 38

 40

 42

 0 10 20 30 40 50 60 70 80 90 100

S
N

R
 (

dB
)

Frame no

Frame SNR

Constant-quality execution
Constant-time execution

(b) SNR per frame for constant-time execution versus constant-quality execu-
tion

Figure 3.16: SNR comparison in a constant time and a constant quality environ-
ment. Example with 100 frames from the“Foreman” sequence.

97

3.9 Applications

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400

P
ow

er
 L

ev
el

 (
%

)

Image Number

Conventional
Incremental, n=5
Incremental, n=2
Incremental, n=0

Capturing and Monitoring

Figure 3.17: Measured battery power-level reduction versus images captured and
processed with different precision (different terminating bitplanes n) in the xo-
laptop. The dotted line indicates the power-level reduction when operating the
frame capturing and battery monitoring only (without any processing).

n). To this end, we switched the xo-laptop to terminal mode and converted

the monitor to low-power (reflective) mode [110]. Live image capturing was

realised with the gstreamer framework [110]. We run the image capturing and

filtering algorithm continuously from battery power level 97% down to power

level 17%. Typical output results are shown in Figure 3.17 in terms of battery

power level and number of images captured and processed for conventional

full-precision processing and incremental processing with different terminat-

ing bitplanes.The results demonstrate that the proposed software achieves up

to 20% more images processed for the same reduction in battery power level

when reducing precision from n = 0 to n = 5. Conversely, once the experiment

passes the 700th image, significant difference in power level can be observed

for the same number of images in all approaches. For example, for 900 images,

the power level goes from 28% for the conventional and the incremental ap-

proach with n = 0, to 35% for the incremental approach with n = 2, and to

41% for n = 5. For a low-power surveillance and monitoring scenario where

98

3.10 Concluding Remarks

for most of the time no activity is observed and hence the system can predomi-

nantly operate in lowest-precision mode, this indicates that there is potential of

offering increased energy autonomy without requiring any specific customisa-

tions. Additional techniques, such as platform-specific optimisation to reduce

the power consumed by the image capturing process, could provide further

improvements.

3.10 Concluding Remarks

Incremental computation is a well-known method to achieve different quality

levels from the same input. However, due to the nature of the process, the

calculation has to be executed multiple times, i.e. once for each increment of

the image. This increases the execution time of the method by a factor that

depends on the number of increments. The packing theory presented in the

Chapter 2 shows how to perform small dynamic range integer-to-integer lin-

ear data processing concurrently. This can be used to compensate for the in-

crease in execution time when performing incremental processing, especially

based on the fact that incremental computation tends to decrease the dynamic

range of the operations for each increment in comparison to the conventional

computation.

This chapter proposed the merging of the packing with the incremental com-

putation. In Section 3.2, a generalisation of the loose packing was proposed in

order to accommodate the progressive calculation (and the notation needed).

Then transform decomposition (Section 3.3), two-dimensional convolution (Sec-

tion 3.4) and block matching (Section 3.5) are presented as real examples of the

merging of the packing and the incremental computation.

This chapter also contains a full set of experiments: they describe the frame-

work from different angles, such as execution time, time-driven computation

or energy-distortion efficiency. Moreover, to demonstrate the generality of the

derived software solution, different architectures were used: a common laptop

as a mainstream profile and a small device as low-end profile.

99

3.10 Concluding Remarks

From the experiments it is possible to notice that:

• Large bitwidth representations allow for higher packing capability, hence

lower execution time;

• Packing is always beneficial because it allows for lower execution time,

as shown in Figure 3.5, 3.6, 3.7 and 3.8;

• The packing capability, W, is inherently dependent on the number of ter-

minating bitplanes used in the incremental processing: together they de-

termine if the algorithm is efficient or not for a certain instantiation. If W

is higher, the proposed approach becomes very efficient; instead, if W is

lower than the number of terminating bitplanes, this approach tends to

be inefficient;

• The packing and unpacking functions have to be constructed carefully in

software, because they lead to fixed overhead on the execution time and

for this reason they have to incur the smallest possible overhead;

• When increasing the input precision (number of bitplanes), the average

execution time increases linearly, rather than staying constant, as it hap-

pens for the conventional approach.

The objective (SNR) and visual (SSIM) quality of transform decomposition and

filtering was presented in Section 3.7.3. For the block matching, a similar set

of experiments were presented: execution time can be found in Figure 3.11

and 3.12, while the quality results measured in PSNR are presented in Table 3.2

and 3.3.

Apart for the quality and performance results presented, several applications

were described: a region of interest localised execution is analysed in Sec-

tion 3.9.1, where it is shown how this feature can improve performance with-

out a significant penalty in visual results; a time-driven computation (Sec-

tion 3.9.2) exploits how the scalable execution can fit different time constraints;

and finally, the last application (deployed on the XO Laptop of the OLPC Foun-

dation [110]) shows that setting different quality levels affects the power con-

sumption significantly (Section 3.9.3) [8].

100

3.10 Concluding Remarks

All the information about the code, a short manual and all the references are

available online at http://www.ee.ucl.ac.uk/~iandreop/ORIP.html. The proj-

ect is open source and available for download [99].

101

http://www.ee.ucl.ac.uk/~iandreop/ORIP.html

Chapter 4

Beyond Lossless Tight Packing

Even though the previous chapters demonstrated scaling of the execution time

(or, equivalently, of the processing throughput), the proposal of incremental

packed processing has certain limitations:

• It is limited to integer-to-integer incremental linear processing or, in other

words, performs fixed-point processing with the input refined progres-

sively;

• Only the packing of one operand (e.g. input image pixels) is performed:

it is possible to gain in performance and/or operational flexibility if both

operands (e.g. input image and filter kernel) are packed;

• While generic signal processing primitives are converted to incremental

form, it would be interesting to explore the processing throughput vs.

distortion scaling possibilities of generic linear algebra primitives, such as

matrix-vector or matrix-matrix processing in BLAS [113];

• Last but not least, while the proposals of the previous chapters can be

performed with streaming SIMD extensions (SSE) instructions, this is not

demonstrated in practice.

The remaining chapters of this thesis address these issues. In particular, this

chapter describes the theory behind lossy tight packing when it is applied to

102

4.1 Generic Matrix Multiplication (GEMM)

a Generic Matrix Multiplication (GEMM) subprogram1. An acceleration tech-

nique for GEMM based on dynamically adjusting the imprecision (distortion) of

computation is proposed. This technique employs adaptive scalar compand-

ing and rounding to input matrix blocks followed by two forms of tight pack-

ing in floating-point that allow for concurrent calculation of multiple results.

Since the adaptive companding process controls the increase of concurrency

(via packing), the increase in processing throughput (and the corresponding

increase in distortion) depends on the input data statistics. To demonstrate

this, an optimal throughput-distortion control framework for GEMM is de-

rived for the broad class of zero-mean, independent identically distributed, in-

put sources. This approach thus converts matrix multiplication in programmable

processors into a computation channel since, when increasing the processing

throughput, the output noise (error) increases due to: (i) coarser quantisation

and (ii) computational errors caused by exceeding the machine-precision limi-

tations

Why is the focus on GEMM? It is well known that GEMM forms the core com-

ponent of all computationally intensive routines of BLAS Level-3 [114] (e.g.

singular value decomposition (SVD), LU, linear solver), as most routines can

be written to use GEMM as the problem size scales. Moreover, GEMM has

important uses as a stand-alone function as we shall show by the applications

of the next chapter.

4.1 Generic Matrix Multiplication (GEMM)

This section describes the preliminaries required for the understanding of the

theory behind the lossy tight packing applied to a Generic Matrix Multiplica-

tion (GEMM). A detailed description of the implementation and experiments

within applications will be presented in Chapter 5.

Consider the GEMM design depicted in Figure 4.1a: the application calls sGEMM

or dGEMM (depending on whether single or double precision is required) for

1An extended description of the implementation will be discussed in the Chapter 5

103

4.1 Generic Matrix Multiplication (GEMM)

an M × K by K × N matrix multiplication, [top-level of Figure 4.1b] which is

further subdivided into L× L “inner-kernel” matrix multiplications.

The inner-kernel result R2,1 of the example shown in Figure 4.1a comprises mul-

tiple subblock multiplications A2,lBl,1:

R2,1 =

K
L−1

∑
l=0

A2,lBl,1. (4.1)

If the matrices’ dimensions are not multiples of L, some “cleanup” code [14] is

applied at the borders to complete an inner-kernel result of the overall matrix

multiplication.

This separation into top-level processing and subblock-level processing is done

for efficient cache utilisation and for efficient parallelisation in multithreaded

multicore processing environments. Specifically, during the initial data access

of sGEMM for top-level processing, data in matrix A and B is reordered into

block major format: for each L × L pair of subblocks Ai,l and Bl,j multiplied

to produce inner-kernel result Ri,j , 0 ≤ l < K
L , the input data within Ai,l and

Bl,j is scanned in rowwise and columnwise raster manner, respectively. In this

way, sequential data accesses are performed during the actual computation

and this enables the use of SIMD instructions for each subblock multiplication,

thereby leading to significant acceleration2.

As shown in Figure 4.1b, our proposal creates an intermediate level (Tier 1.5)

that performs certain pre-processing for companding, rounding and packing

before calling the subblock matrix multiplication code. Once the calculation is

completed for each subblock multiplication, post-processing is applied to re-

trieve the results. The subblock-specific adjustment of the companding factors

in our approach allows for data-driven (adaptive) packing and concurrency

in the calculation of the inner-kernel results - thus, sGEMM and dGEMM are

accelerated according to the input statistics of each subblock. Since our modi-

fications are applied externally to the L× L subblock matrix multiplication, in

the next section we focus on the subblock processing stage. If the matrix sizes

2A detailed discussion of SSE instruction will be presented in Section 5.1.1

104

4.2 Quantisation via Companding & Rounding

M

K

N

A x B

A2,0

K

A2,1

R

B0,1

B1,1

N

M

R2,1

(a) Illustration of outer and inner-kernel processing of GEMM in BLAS.

Application (e.g. transform decomposition)

Tier 1 Top-Level (sGEMM, possibly parallelized)

Tier 1.5 (Companding, rounding and packing)

Tier 2 Subblock code (e.g. highly-optimized machine-specific code)

Platform (multicore or manycore processor)

A
p
p

lic
a
ti
o

n

R
e

q
u

ir
e

m
e
n

ts

T
h

ro
u

g
h

p
u

t
/
p
re

c
is

io
n

A
d
a

p
ti
o

n

(b) Positioning of the proposed work within the execution environment of
signal processing tasks based on optimised linear algebra libraries.

Figure 4.1: Generic Matrix Multiplication (GEMM)

are not multiples of L, trivial size modifications are required for the cleanup

code at the borders [14].

4.2 Quantisation via Companding & Rounding

In Chapter 3 we discussed how tight packing can be used in order to increase

performance of common image processing algorithms, like convolution and

block decomposition. These algorithms map integers to integers, with small

input bitwidth (e.g. 8 bit images). Unfortunately, many applications require

105

4.2 Quantisation via Companding & Rounding

processing of floating point data and this breaks one of the hypothesis we set

in the Section 2.1. At the same time, in many applications a definition of the

maximum amplitude of the input dynamic range can not be made in a reliable

manner at runtime, which makes impossible to calculate the proper output

dynamic range, necessary to safely pack samples.

To solve this problem, an intermediate level performs certain pre-processing

for companding, rounding and packing before the actual calculation. Once the

calculation is completed, post-processing is applied to each dataset to retrieve

the results.

Quantisation is adjusted according to the input’s numerical range, which is

calculated by reading each input block and storing its maximum amplitude.

This operation is performed during each input block reordering to minimise

its impact in the overall runtime (i.e. in the overall runtime of the matrix mul-

tiplication routine), as it will discuss in detail in Chapter 5.

In the case of the matrix multiplication, each input block is an L× L subblock

of the input matrices. Uniform companding and rounding within each sub-

block A and B is performed, assuming input ranges [−max A, max A] and

[−max B, max B] symmetric. For any element am,n, bm,n of A, B, 0 ≤ m, n < L,

we have:

ãm,n = ⌊cAam,n⌉
b̃m,n = ⌊cBbm,n⌉

. (4.2)

Hence, ãm,n are integers within {⌊−cA max A⌉, . . . , ⌊cA max A⌉}, with cA the

companding coefficient (cA > 0) that is designed according to precision re-

quirements for the final result (equivalently for b̃m,n and cB). Those values are

then used in the core of the calculation, which, for each output element, is a

vector inner product with L multiplier-accumulator (MAC) operations:

r̃m,n =
L−1

∑
l=0

ãm,l b̃l,n. (4.3)

106

4.3 Packing Techniques

The final result is recoverd after reverse companding:

r̂m,n =
1

cAcB
r̃m,n. (4.4)

Despite the distortion
∥

∥R̃− R
∥

∥

2
F

due to quantisation, using (4.3) for the actual

computation of r̃m,n would not lead to any acceleration in a programmable

processor; however, once the inputs have been companded and rounded, we

can create reduced-size input blocks by packing multiple inputs together via

two different methods. Both methods aim for accelerated processing.

4.3 Packing Techniques

In Chapter 2 we presented a complete discussion on how the packing is per-

formed for three class of problems: block decomposition, convolution and

block matching. The following two subsections will expand further this topic,

showing two different methods to perform packing inside the matrix multipli-

cation routine.

4.3.1 Asymmetric Packing

In the first method, only one input block (namely Ã) is packed. This is fol-

lowing the packing described in Chapter 2 and also proposed in previous

work [6, 100]. Specifically, once the inputs have been companded and rounded

by (4.2), the packing process creates block A with L
W × L coefficients given by

(∀m, n : 0 ≤ m, n < L, m = ⌊ m
W ⌋):

am,n =
W−1

∑
p=0

zp ãWm+p,n, (4.5)

107

4.3 Packing Techniques

where z, 0 < z < 1, is the utilised packing coefficient. Once (4.5) is completed,

processing occurs via R = AB̃ (∀m, n : 0 ≤ m, n < L, m = ⌊ m
W ⌋):

rm,n =
L−1

∑
j=0

am,jb̃j,n =
L−1

∑
j=0

W−1

∑
p=0

zp ãWm+p,jb̃j,n (4.6)

The packed result of (4.6) contains the output of groups of W rows packed

together. Since the processing is performed in the function’s native represen-

tation, any high-performance L
W × L by L× L software kernel for sGEMM can

be used for (4.6). Following the completion of the processing, unpacking of the

results can be performed by the following iterative process, as already shown

in Subsection 2.1 and Subsection 2.2 [6] (∀m, n : 0 ≤ m, n < L, m = ⌊ m
W ⌋):

r̃m,n = ⌊rm,n⌉ (4.7a)

∀p ∈ {1, . . . , W − 1} :

{

rm+p,n = 1
z (rm+p−1,n − r̃m+p−1,n)

r̃m+p,n = ⌊rm+p,n⌉
(4.7b)

Reverse companding can be applied to each r̃m,n via (4.4).

4.3.2 Symmetric Packing

In the second method, once the inputs have been companded and rounded, the

packing process creates two blocks A and B with L× L
W and L

W × L coefficients

(respectively) given by (∀m, n : 0 ≤ m, n < L, m = ⌊ m
W ⌋, n = ⌊ n

W ⌋):

am,n =
W−1

∑
p=0

zp ãm,Wn+p (4.8a)

bm,n =
W−1

∑
p=0

z−p b̃Wm+p,n (4.8b)

where z, 0 < z < 1, is the utilised packing coefficient that controls the al-

located space for each packed input3 within the floating point representation

3Details on the setting of z were discussed in Subsection 2.1.

108

4.3 Packing Techniques

and W the number of packings performed. Notice that, unlike previous work

on block-based packed processing [6, 11, 100], the elements of both Ã and B̃

are packed along input rows and columns (respectively). Due to the block

major-format reordering, (4.8a) and (4.8b) perform MAC operations in sequen-

tial memory elements, thereby allowing the use of SIMD instructions for accel-

erated processing.

Processing occurs using the packed data, i.e. R = AB:

∀m, n : rm,n =

L
W−1

∑
j=0

am,jbj,n =

=

L
W−1

∑
j=0







W−1

∑
p=0

ãm,Wj+p b̃Wj+p,n +
W−1

∑
p=0

W−1

∑
h=0
h 6=p

zp−h ãm,Wj+pb̃Wj+h,n







(4.9)

The packed result of (4.9) contains the required output as well as (W2 −W)

“side” outputs: op,h = zp−h ãm,Wj+h b̃Wj+h,n, ∀p, h : 1 ≤ p, h < W & p 6= h. No-

tice that (4.9) is performed in the function’s native representation. As such, any

high-performance L× L
W by L

W × L software kernel for sGEMM or dGEMM can

be used for (4.9), as indicated in the subblock processing of Figure 4.1b. Due

to companding and packing, (4.9) performs W times the operations of con-

ventional SIMD-based matrix multiplication; we term this approach as turbo

SIMD.

Following the completion of the processing, unpacking of the results can be

performed by (∀m, n):

um,n = ⌊rm,n⌉ (4.10a)

r̃m,n = um,n − (z−1⌊zum,n⌉) (4.10b)

The unpacking process extracts the useful result from the packed output by:

(a) the rounding operation to remove the first unneeded set of results, op,h with

p > h, of (4.9); (b) removing the second unneeded set of results, op,h with p < h,

109

4.3 Packing Techniques

of (4.9) by (4.10b). Reverse companding can be applied to each r̃m,n via (4.4).

4.3.3 Differences between symmetric and asymmetric packing

Remark 4.1 (Packing Trade-off). The symmetric packing approach of Subsec-

tion 4.3.2 produces L × L outputs, each requiring L/W MAC operations. It

requires 2L2W−1brepr bytes for storage of the packed input data with brepr re-

spectively equal to 4 and 8 for single-precision and double-precision. On the

other hand, the asymmetric packing of Subsection 4.3.1 produces (L/W) × L

outputs (that are then unpacked to the final L × L outputs), each requiring

L MAC operations. It requires L2(1 + W−1)brepr bytes for storage of the in-

put data. Evidently, both approaches have the same complexity in terms of

MAC operations. They are both memory efficient in comparison to the con-

ventional approach that requires 2L2brepr bytes of memory for the input data.

Between them, the symmetric packing requires the least amount of memory

for the computation. However, the disadvantage of the symmetric packing

approach is that the second group of side results of the packed output (i.e. oi,h

with i < h) is occupying space in the numerical representation even though it

is not used in the results. �

Remark 4.2 (Integer Processing). Even though one may consider avoiding the

use of packing and instead construct matrix multiplication in 16-bit integer

representations (integer SIMD instructions exist for all mainstream proces-

sors), this has the following detriments:

1. integer conversion to and from floating point (which is the general input

required by linear algebra and digital signal processing (DSP) applica-

tions) leads to significant overhead since it cannot be performed with

SIMD instructions;

2. unlike floating point representations where the maximum packed value

can be flexible with graceful degradation in the results, a strict limit is set

on the quantised values in integers in order to avoid overflow. �

110

4.3 Packing Techniques

Figure 4.2: Conceptual example of W = 2 packings with z = 0.0001. Top: result
of (4.9); bottom: result of (4.6). Shaded blocks contain side results that are produced
during the packed processing but not used in GEMM.

The last point of Remark 4.2 identifies that, unlike integer representations,

floating-point representations are lossy by construction, in order to allow for

a more flexible representation of real numbers without running into overflow

problems for well-conditioned numerical computations [102]. In the proposed

packing approaches of the last two subsections, this can be exploited by appro-

priate adjustment of packing factor, z, in order to increase the space allowed for

the quantised inputs and thus decrease the distortion incurred by the proposed

packed computation. We shall in fact show that significantly-higher quantisa-

tion accuracy can be achieved within packing of W = 2 in single-precision

floating point representation than within the 16-bit integer representation.

A conceptual illustration of the packed representation of (4.9) and (4.6) and

how the floating-point representation noise affects the packed results is given

in Figure 4.2. Symmetric packing is better protected from the numerical rep-

resentation noise, because the“lower” side result (multiplied by z = 0.0001)

is not used; this is despite the fact that noise is amplified in this representa-

tion as the “higher” side result (multiplied by z−1 = 10000) takes the number

further away from the high-precision region around zero [102]. This repre-

sentation noise creates the notion of computational capacity in our approach:

111

4.4 GEMM as a computation channel

for given quantisation distortion, there is a limit on the throughput increase

achieved via increased packing (i.e. increased values for W, surpassing W = 2

shown in Figure 4.2), beyond which the distortion stemming from the floating

point computation surpasses the quantisation distortion. The interdependency

between throughput and distortion and the notion of computational capacity

make our approach a computation channel for generic matrix multiplication.

4.4 GEMM as a computation channel

In the proposed framework, noise stems from companding and rounding, but

it can also stem from erroneous unpacking of the packed results.

4.4.1 Summary of known results on operational tight packing

The quantisation of (4.2) may not be the only noise source in the proposed

packed processing. The real-number space is not mapped linearly in the float-

ing-point representation, thereby resulting in higher accuracy around zero [102].

Limits for error-free packing of integers have been established within the tight

packing theory in [6, 100].

Proposition 1 (Subsection 2.1.1) states that error-free unpacking of Wef signed

integers [6] by (4.7a) and (4.7b) or (4.10a) and (4.10b) after performing (4.6) or

(4.9), respectively, requires4:

z <
1

2Rmax + u∗safe
(4.11)

Wef ≤ ⌊logz [(2Rmax + 1)usys] + 1⌋, (4.12)

with: usys the relative precision of the computer hardware/software used for

4Proof was given in Subsection 2.1.1.

112

4.4 GEMM as a computation channel

implementation [6],

u∗safe = arg min
∀usafe∈R+

∣

∣

∣
(Rmax + usafe)

Wef−1(1− usafe)− Rmax

∣

∣

∣
(4.13)

and, within the context of the proposed companding process of (4.2), the max-

imum amplitude of the elements of the packed matrix R, Rmax, given by:

Rmax = ⌈cAcBL max A max B⌉. (4.14)

In practice, one can set u∗safe = 50 to cover all possible scenarios with no prac-

tical loss in the packing capability. A simple algorithm to calculate z and Wef

for any processor is provided in Subsection 3.5.2.3 [6, 100].

Can we go beyond the limits of error-free packed processing of Proposition 1 under the

proposed throughput/distortion framework?

There are two ways this may be possible. Firstly, one can attempt to increase

z beyond the limit of (4.11) in order to “squeeze in” more data in the floating-

point representation. In such a case, the output results from the quantised

processing of (4.6) or (4.9) may “invade” each other causing catastrophic error

during unpacking [6, 100]. Because of the severity of the errors caused, this is

clearly an undesired option. As an alternative, one can attempt to utilise val-

ues for packing beyond Wef that is the limit set by (4.12). If one does apply such

increased packing, distortion will gradually be introduced in the unpacked re-

sults of (4.10b) and (4.7a), (4.7b). However, this may be acceptable since quan-

tisation already introduces approximation. To this end, by modifying Rmax

for every W, W > 1, one can systematically investigate the trade-off between

quantisation-induced error and representation induced error: high values for

Rmax reduce the quantisation error [since cA and cB can be increased in (4.14)]

but may lead to significant representation induced error if the bound of (4.12)

is violated (i.e. if we use W > Wef for the selected Rmax value); low values for

Rmax cause the reverse effect. Thus, to establish the optimal operational con-

ditions for throughput/distortion processing via the use of companding and

packing, we must identify the appropriate value of Rmax for each packing W.

113

4.4 GEMM as a computation channel

We investigate this via a statistical characterisation for the combined impact of

quantisation-induced and representation induced error.

4.4.2 Noise of Packed Results in Floating-point Representa-

tions

In order to collect statistics from the representation induced error under packed

processing, we use integer samples for A and B with L = 288 and we set

cA = cB = 1 in all these experiments, i.e. no loss is caused from compand-

ing and rounding. The experiments are performed with max A = 22 and

max B ∈ {1, 2, . . . , 63} using five random instantiations for A and B for each

combination of maximum input values5. Using (4.14), the selected ranges and

subblock size lead to output range Rmax ∈ {6336, 12672, . . . , 399168}, which

encompasses the range where Wef ∈ {2, 3, 4} is obtained in single- or double-

precision floating point representations. For each instantiation of each combi-

nation of Rmax and W, we measure the mean error and the MSE of each matrix

multiplication in packed form by:

∀max A, max B, W :

{

m(Rmax, W) = 1
L2 ∑

L−1
m=0 ∑

L−1
n=0 (r̂m,n − rm,n)

v(Rmax, W) = 1
L2

∥

∥R̂− R
∥

∥

2
F

(4.15)

respectively, with: W ∈ {2, 3, 4} packings, z set for each W according to (4.11)

and R computed with W = 1 (conventional computation) under the same data

type (single or double-precision floating point representation).

When m(Rmax, W) ∼= 0 (approximately zero bias), v(Rmax, W) approaches the

sample variance of the error. Furthermore, given that in this experiment there

is no quantisation noise, any mismatch in the results stems solely from the

imprecision caused by the numerical representation. Specifically, depending

on the value of W and the input dynamic range, packed processing may not

5The ranges for A and B were chosen so as to produce Rmax values within the range re-
quired to cover the numerical representation limits for each number of packings W; the mo-
ments of the representation induced error are invariant to the specific ranges and depend
solely on Rmax and W.

114

4.4 GEMM as a computation channel

induce any error [6, 100]. However, once W > Wef of (4.12) for the setting of

Rmax of a particular measurement, the output will contain numerical errors.

Figure 4.3 shows the relationship of MSE with Rmax for single and double-

precision floating-point representations in an Intel Core 2 Duo P8800 processor

(with W = 2 and W = 4, respectively). Figure 4.4 presents the average error

for each case. This experiment indicates that, depending on the numerical rep-

resentation (single or double-precision) and the value of W, one can select a

range of Rmax values and assume zero average error m(Rmax, W), i.e. no sys-

tematic error. In such a case, the sample variance of the representation induced

error is monotonically increasing with Rmax.

Since each value of m(Rmax, W) and v(Rmax, W) reported in Figure 4.3 and Fig-

ure 4.4 corresponds to hundreds of thousands of independent inner-product

calculations [via (4.9) or (4.6)], the results of Figure 4.3 and Figure 4.4 are a

good approximation of the ensemble statistics. Thus, they are independent of

the actual data being used for the matrix multiplication and stem solely from

the numerical representation limitations and the utilised packing.

Interestingly, for symmetric packing in single-precision floating point repre-

sentation with W = 2, we can use up to Rmax = 320000 and obtain:

m(Rmax, 2)/Rmax < 0.0001% and
√

v(Rmax, 2)/Rmax < 0.04%. This indicates

that one can utilise Rmax values that are up to an order of magnitude higher

than the maximum range of 16-bit signed integer representations (where

Rmax < 32768 is imposed in order to avoid overflow) with very small repre-

sentation induced error. Overall, the proposed packed processing in floating-

point representations allows for significantly increased quantisation range at

the cost of gradually increased representation induced noise [i.e. increased

noise variance v(Rmax, W) for increased Rmax]. This noise is significantly small-

er for the case of symmetric packing, as shown by the comparison between

the two graphs of Figure 4.3. This occurs because this packing does not use

outputs op,h of (4.9) with p > h, which are the outputs affected the most by

the representation induced noise as they correspond to the decimal part of the

packed result. This part is indeed used in the asymmetric packing that actually

extracts all outputs of (4.6) via the iterative unpacking of (4.7a), (4.7b).

115

4.4 GEMM as a computation channel

 0

 5000

 10000

 15000

 20000

 0 50000 100000 150000 200000 250000 300000 350000 400000

M
S

E

Symmetric Packing

Single-precision, W=2
Double-precision, W=4

Rmax

 0

 5000

 10000

 15000

 20000

 0 50000 100000 150000 200000 250000 300000 350000 400000

M
S

E

Asymmetric Packing

Single-precision, W=2
Double-precision, W=4

Rmax

Figure 4.3: Mean squared error measurements for matrix multiplication of integer
inputs leading to different values of Rmax within single-precision and double-
precision representation and without quantisation (cA = cB = 1).

116

4.4 GEMM as a computation channel

-4

-2

 0

 2

 4

 0 50000 100000 150000 200000 250000 300000 350000 400000

A
ve

ra
ge

 E
rr

or
Symmetric Packing

Single-precision, W=2
Double-precision, W=4

Rmax

-4

-2

 0

 2

 4

 0 50000 100000 150000 200000 250000 300000 350000 400000

A
ve

ra
ge

 E
rr

or

Asymmetric Packing

Single-precision, W=2
Double-precision, W=4

Rmax

Figure 4.4: Average error measurements for matrix multiplication of integer inputs
leading to different values of Rmax within single-precision and double-precision
representation and without quantisation (cA = cB = 1). The results of double pre-
cision with W = 4 are not displayed beyond Rmax > 120000 as they clearly exceed
acceptable limits.

117

4.4 GEMM as a computation channel

4.4.3 Quantisation Noise Model

We now present a statistical model of the quantisation noise introduced via

companding. Inputs am,n and bm,n are modeled as zero-mean i.i.d., random

variables (RVs) α ∼ Pα(σα), β ∼ Pβ(σβ), respectively. Quantisation noise

in ãm,n, b̃m,n is modeled as additive, zero-mean, i.i.d. white [115], RVs να ∼
Pνα(σνα), νβ ∼ Pνβ

(σνβ
) with σνα = 1/(cA

√
12), σνβ

= 1/(cB

√
12), i.e. the stan-

dard deviation of the noise per matrix is scaled according to the companding

applied. Finally, the output results âm,n are modeled by zero-mean i.i.d. RVs

ρ̂ ∼ Pρ̂(σρ̂).

Proposition 2 (Quantisation Noise Power). Under i.i.d. inputs modeled by α ∼
Pα(σα), β ∼ Pβ(σβ) and i.i.d. quantisation noise modeled by να ∼ Pνα(σνα), νβ ∼
Pνβ

(σνβ
), the expected noise power of the output results of the matrix multiplication

under error-free unpacking is (0 ≤ m, n < L):

E
{

(ρm,n − ρ̂m,n)
2
}

= L
[

(σα σνβ
)2 + (σβ σνα)

2 + (σνα σνβ
)2
]

. (4.16)

Proof. From (4.3) and under i.i.d. input statistics, the resulting output random

variable ρ̂m,n is:

ρ̂m,n =
L−1

∑
l=0

α̂m,l β̂l,n (4.17)

where, ∀m, l, n : µα̂m,l = µβ̂l,n
= 0, σα̂m,l = σα + σνα ,σβ̂l,n

= σβ + σνβ
. We can

express ρ̂m,n in affine form [116]:

ρ̂m,n =
L−1

∑
l=0

(

µα̂m,l µβ̂l,n
+ µα̂m,l σβ̂l,n

χl + µβ̂l,n
σα̂m,l χL+l + σα̂m,l σβ̂l,n

χ2L+l

)

(4.18)

with χ0, . . . , χ3L−1 ∼ Pχ(1) zero-mean i.i.d. RVs with unit standard deviation.

Expanding on (4.18), we have:

ρ̂m,n =
L−1

∑
l=0

(

σασβψl + σασνβ
ψL+l + σβσνα ψ2L+l + σνα σνβ

ψ3L+l

)

(4.19)

with ψ0, . . . , ψ4L−1 ∼ Pψ(1) zero-mean i.i.d. RVs with unit standard deviation.

118

4.4 GEMM as a computation channel

The equivalent expression for the inner product of a row of A with a column

of B is:

ρm,n =
L−1

∑
l=0

σασβψl. (4.20)

Hence, the noise is expressed by:

ρm,n − ρ̂m,n =
L−1

∑
l=0

(

σασνβ
ψL+l + σβσνα ψ2L+l + σνα σνβ

ψ3L+l

)

(4.21)

and the expected noise power, E
{

(ρm,n − ρ̂m,n)2}, is given by (4.16).

The expected power of the (error-free) output R is L(σασβ)
2. Hence, the ex-

pected SNR of R̂ versus R is:

E {Ssubblock} = 10 log10
L(σασβ)

2

E {(ρm,n − ρ̂m,n)2} . (4.22)

Notice that, if the statistics of the input matrices are known (i.e. assuming

known or estimated Pα and Pβ), (4.16) and (4.22) are parameterised solely by

cA and cB.

4.4.4 Combined Noise Model

Since the quantisation noise of Proposition 2 and the representation induced

noise of Subsection 4.4.2 stem from physically independent processes, we can

assume they are statistically independent. The expected noise power of the

output results is then:

DW (Rmax, cA, cB) = L
[

(σασνβ
)2 + (σβσνα)

2+ (σνα σνβ
)2
]

+
1

(cAcB)2 v(Rmax, W)
(4.23)

where v(Rmax, W) is the experimentally-measured MSE of the representation

induced noise for values of Rmax and W that correspond to m(Rmax, W) ∼= 0

119

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

[examples for W = 2 and W = 4 are given in Figure 4.3], and factor (cAcB)
−2

maps the representation induced noise from the quantisation index domain to

the output value domain [via the reverse companding of (4.4)]. For a given

choice of packing W, W > 1, we can express the intuitive trade-off between

quantisation and representation induced noise by combining (4.23) and (4.14):

increasing Rmax leads to increased values for cA and cB and therefore reduced

quantisation noise variances σνα and σνβ
and reduced quantisation noise power

from Proposition 2; however, as shown in Figure 4.3, the representation in-

duced noise v(Rmax, W) increases monotonically with Rmax. Hence, DW, as ex-

pressed by (4.23), becomes the mechanism for adjusting the desired through-

put and distortion of GEMM according to user-specified constraints for: (i)

percentile throughput increase against the conventional (full precision) com-

putation R = A B and (ii) the SNR of R̂ versus R.

4.5 Distortion-Controlled Throughput Scaling of

Subblock Multiplication

When attempting to accelerate GEMM with the proposed approach, it is im-

perative to minimise DW for each L× L subblock multiplication of each L× L

inner-kernel calculation of the M × K by K × N matrix multiplication [e.g.

∀l : A2,lBl,1 of R2,1 of Figure 4.1 and (4.1)] via the optimal use of compand-

ing and packing. Once the optimal configuration and minimum distortion is

established for each packing W of each subblock, the configuration for com-

panding and packing can be decided for the overall matrix multiplication.

4.5.1 Theoretical Calculation of Optimal Companders and Ex-

perimental Validation

The following proposition provides the general form of admissible compan-

ders for each L× L subblock under i.i.d. inputs.

120

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

Proposition 3 (General Form of Companders). For packed subblock multiplica-

tion ÃB̃ of i.i.d. inputs within [−max A, max A] and [−max B, max B] modeled by

α ∼ Pα(σα), β ∼ Pβ(σβ), respectively, and quantisation noise modelled by

να ∼ Pνα(σνα), νβ ∼ Pνβ
(σνβ

), the companders achieving expected SNR of

E{Ssubblock}dB against AB calculated with floating-point precision are:

cA =
1√

2σαctot

√

DQvR ±
√

D2
QvR− 4σ2

ασ2
βc2

tot (4.24a)

cB =

√
2σα

√

DQvR ±
√

D2
QvR− 4σ2

ασ2
βc2

tot

(4.24b)

with DQvR expressing the quantisation versus representation induced distortion, given

by:

DQvR =
12σ2

ασ2
β

100.1 E{Ssubblock}
+

1− 144ν(Rmax, W)

12c2
tot

(4.25)

with

ctot =
L max A max B

Rmax
(4.26)

and

DQvR ≥ 2σασβctot. (4.27)

Proof. We express cB in function of cA from (4.14). We then link cA with the

expected SNR via (4.23), given that

E
{

(ρm,n) − ρ̂m,n)
2
}

=
L(σασβ)

2

100.1 E{Ssubblock}
.

Replacing (4.23) in the last equation and after a few straightforward algebraic

manipulations, we reach:

σ2
αc2

totc
4
A +

[

1 + 144 v(Rmax, W)

12c2
tot

−
12σ2

ασ2
β

100.1 E{Ssubblock}

]

c2
A + σ2

β = 0 (4.28)

121

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

with ctot defined by (4.26). Solving (4.28) for c2
A provides:

c2
A =

DQvR±
√

D2
QvR− 4σ2

ασ2
βc2

tot

2σ2
αc2

tot
(4.29)

with DQvR representing the quantisation-versus-representation noise, defined

by (4.25). From (4.29), in order for cA to be real, |DQvR| ≥ 2σασβctot and DQvR >

0. This leads to companders defined by (4.24).

Given the input statistics, Proposition 3 demonstrates that various pairs of

companders provide for E {Ssubblock} dB as long as they lead to Rmax [via (4.14)]

that satisfies (4.27). This complicates the selection process for the operational

parameters since, per L × L subblock of the matrix multiplication, one must

select:

1. the number of packings used (W),

2. the desired value of Rmax in order to find v(Rmax, W) for this choice of

packed processing via Figure 4.3,

3. the desired value for E {Ssubblock} for the particular subblock [leading to

DQvR that satisfies (4.27)], and

4. the specific set of companders from the permissible options of (4.24).

Fortunately, in the following we show that, for each subblock and each choice

of packing, W ∈ {2, 3, 4}, there exists a unique value for each of: Rmax, cA,

and cB, which maximises the expected SNR E {Ssubblock}. An expression for

the obtained (maximum) value of E {Ssubblock} for each W is also provided.

This facilitates the parameter selection to a great extent as there is a unique

(optimal) parameter configuration for each packing W of each subblock.

Proposition 4 (Minimum-error Companders). Under the settings of Proposition 3

for subblock multiplication, for each packing W > 1, the companders providing the

122

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

maximum expected SNR of E
{

S∗subblock

}

dB are:

c∗A =

√

σβ

σαctot

c∗B =

√

σα

σβctot

(4.30)

with

{R∗max, E{S∗subblock}}W = arg max
∀Rmax

{

E{Ssubblock} =

−10 log10

[

144 v(Rmax, W) + 1
144 σ2

ασ2
βc2

tot
+

ctot

6σασβ

]}

(4.31)

for every W > 1 and ctot given by (4.26).

Proof. The term DQvR of (4.25) expresses the quantisation versus the represen-

tation noise. In particular, when quantisation is refined via the use of larger

Rmax, the first term of (4.25), 12σ2
ασ2

β10−0.1 E{Ssubblock}, is monotonically decreas-

ing as E {Ssubblock} (obtained SNR) is monotonically increasing. However, the

second part of (4.25) is monotonically increasing for increased Rmax, since c−2
tot

is proportional to R2
max and v(Rmax, W) is monotonically increasing with Rmax

[something that was also verified experimentally in Figure 4.3]. Hence, the op-

timal point is found at the value of Rmax for which DQvR = 2σασβctot, i.e. the

maximum possible SNR is obtained with companders that remain marginally

admissible by (4.27). This condition leads to the companders shown in (4.30).

Furthermore, under this condition, solving (4.26) for E {Ssubblock} derives the

form for E {Ssubblock} given in (4.31). Since this expression depends on v(Rmax, W),

for which no clear analytic model exists, we can solve this equation numeri-

cally to derive the optimal (maximum) value for E {Ssubblock} and Rmax under

the input data statistics and the given packing W.

Besides the simple form of the optimal companders, it may seem surprising

123

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

that such a unique solution should exist in the first place. This can be explained

as follows. For each value of W, increasing Rmax initially leads to decreased

error due to the decrease of quantisation error. However, after a certain point,

the representation induced error, v(Rmax, W), begins to rise exponentially, as

seen in Figure 4.3. This counteracts the quantisation error reduction.

We demonstrate indicative experimental versus theoretical (model) curves of

E {Ssubblock} in Figure 4.5. Per Rmax value, the experimental curves are pro-

duced by measuring Ssubblock numerically from the output of multiple runs

under the experimental settings of Subsection 4.4.2 but this time using floating-

point inputs instead of integers, and companders set via (4.30). For the the-

oretical calculation for each Rmax value, we use the expression of (4.31) for

E {Ssubblock} with v(Rmax, W) taken from the results of Figure 4.3. The very

good agreement between the theoretical and experimental results validates

both the independence assumption between quantisation-induced and repre-

sentation induced error, as well as the accuracy of the proposed SNR estima-

tion model of (4.31). Finally, the unique maximum SNR observed in the results

of Figure 4.5 shows that, under the conditions of Proposition 3, there is indeed

a unique solution for companders per subblock (and per W) that minimises

the produced error, which is given by (4.31) of Proposition 4.

4.5.2 Practical GEMM Configuration for Optimised Through-

put/Distortion Processing

Proposition 4 simplifies the optimum selection of operational settings for the

overall matrix multiplication under throughput/distortion constraints. This

is achieved by first computing max A, max B, σα, σβ during the subblock data

accesses for reordering to block-major format. Subsequently, for every L × L

subblock multiplication of every L× L inner-kernel of the overall (M × K)×
(K × N) matrix multiplication, c∗A, c∗B,

{

R∗max, E
{

S∗subblock

}}

are computed via

Proposition 4 for every packing W, W ∈ {2, 3, 4}. For each W, the expected

percentile throughput scaling, FW , versus the plain processing (W = 1) can be

calculated by off-line experiments on the target platform since depends only

124

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Symmetric Packing, Single-precision (W=2)
Joint noise (measured)

Joint noise (model)
Representation induced noise

Quantization induced noise

Rmax

SN
R

(d
B

)

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Asymmetric Packing, Single-precision (W=2)
Joint noise (measured)

Joint noise (model)
Representation induced noise

Quantization induced noise

Rmax

SN
R

(d
B

)

Figure 4.5: Indicative experiments for experimentally-obtained output SNR versus
the expected SNR by Proposition 4 under the use of the optimal companders per
Rmax value.

125

4.5 Distortion-Controlled Throughput Scaling of
Subblock Multiplication

on the subblock size and the implementation of the inner-kernel processing.

These optimal parameters for each packing configuration W of each subblock,

along with FW , are kept in a data structure in order to prune out the best pos-

sible combination of subblock multiplication options according to distortion

or throughput constraints, as discussed in the next section. The only complex

part of this process is obtaining the numerical solution of (4.31) per subblock.

However, Figure 4.5 shows that obtaining the exact solution for R∗max is not of

critical importance, since there is a wide range of Rmax values attaining near

maximum SNR per subblock. Hence, we pre-compute an approximation for all

possible solutions of (4.31) offline, by using a representative set Boffline of car-

dinality |Boffline|, consisting of input block standard deviations expected from

each application, i.e.

{

σα, σβ

}∣

∣

boffline
∈ Boffline

1 ≤ boffline ≤ |Boffline|
. (4.32)

We keep the corresponding solutions, ∀boffline :
{

R∗max , E
{

S∗subblock

}}∣

∣

boffline
,

obtained by (4.31) in a data structure. During the GEMM operation, for each

pair of subblocks Ai,l and Bl,j (0 ≤ l < K/L) with standard deviations σα,i,l and

σβ,l,j, once the actual values for {σα,i,l, σβ,l,j} are found during the block major

format reordering, the solution ∀W :
{

R∗max, E
{

S∗subblock

}}∣

∣

b∗offline
correspond-

ing to the closest element within Boffline is used, i.e.:

b∗offline = arg min
1≤boffline≤|Boffline|

∥

∥

∥

{

σα,i,l, σβ,l,j
}

−
{

σα, σβ

}∣

∣

boffline

∥

∥

∥

2

F
(4.33)

Naturally, since the set of input values contains only certain values out of the

possible combinations of the two standard deviations, the produced GEMM

configuration becomes slightly less accurate in comparison to the theoretical

maximum. For values of σα,σβ selected with step equal to 20% of their maxi-

mum possible range for each application, this loss of accuracy was found to be

negligible and (4.33) requires minimal effort.

126

4.6 Concluding Remarks

4.6 Concluding Remarks

In the introduction of this chapter, we presented what the limitations of the

approach presented in Chapter 2 are. Even though this proposed approach

brought to positive experimental results (presented in Chapter 3), bounding

this approach into the family of integer-to-integer linear processing is a huge

constraint for many applications.

This chapter addresses this important problem, proposing an extension of the

theory presented in Chapter 2: using a technique that pushes quantised data

(by companding and rouding, as presented in the Subsection 4.2) inside the

packing module, multiple throughput/distortion trade-offs can be obtained

and input values can be floating-point.

However, to fully exploit the capability of this new quantised approach, pack-

ing theory has been extended to obtain the packed format for both the operands

of the performed calculation. This responds to the second limitation envisaged

in the introduction of this chapter.

Next chapter will further extend this newly revised theory with a real world

example: a GEMM subprogram implementation. Moreover, to compete with

state-of-the art implementations of GEMM, a reference implementation based

on SSE instructions will be presented. This implementation will be also used

inside real world application that require GEMM: a face recognition system

and a neural network.

127

Chapter 5

BLAS and Generic Matrix

Multiplication

Basic Linear Algebra Subprograms (BLAS) is a de facto application programming

interface standard for publishing libraries to perform basic linear algebra op-

erations such as vector and matrix multiplication. First published in 1979 as

a set of FORTRAN routines [113, 117], they were written to address common

matrix manipulation problems and, during the years, they became a standard

choice for all the applications that need matrix calculation and they were used

to build larger packages, such as LAPACK, Matlab and others. These routines

are heavily used in high-performance computing and highly optimised imple-

mentations of the BLAS interface have been developed by hardware vendors

through the years, such as Intel MKL (Math Kernel Library), ACML (AMD

Core Math Library), Apple Accelerate and many others, as well as by other

authors, such as Goto BLAS and ATLAS [14, 15]. At the same, multiple C or

C++ wrappers (and other languages) have been developed around the original

FORTRAN interface.

The Generic Matrix Multiply routine is the core element of high-performance

linear algebra libraries used in many computationally-demanding DSP opera-

tions, such as covariance scatter matrix calculation [13], noise cancellation [118],

back-propagation learning [119], and two-dimensional (2D) transform analy-

128

5.1 Generic Matrix Multiply Routine (GEMM)

sis and synthesis of large data sets [120]. Optimised realisations of such op-

erations in programmable processors are based on BLAS [14, 15], which is

tailored to the particular hardware via the use of assembly kernels or SIMD

operations [121].

As discussed in Chapter 4, single and double-precision floating-point matrix

multiplication are realised in BLAS by the Generic Matrix Multiply (GEMM)

routines. Since most BLAS functions can be rewritten to use GEMM as the

dominant operation as the problem size scales [114], GEMM throughput mea-

surements have traditionally been considered important enough to form a core

part of processor benchmarking efforts.

BLAS functionalities are divided into three levels: 1, 2 and 3. BLAS Level 1

contains vector operations of the form y← αx + y as well as scalar dot products

and vector norms. BLAS Level 2 contains matrix-vector operations of the form

y ← αA x + βy as well as solving T x = y for x with T being triangular. BLAS

Level 3 [122] contains matrix-matrix operations of the form C ← αA B + βC as

well as solving B ← αT−1 B for triangular matrices T. This level contains the

GEMM routine.

5.1 Generic Matrix Multiply Routine (GEMM)

Matrix multiply is written in terms of a lower-level building block, usually

called kernel. Kernels perform matrix multiplication with fixed input dimen-

sion, e.g.: M = N = K = L, where the block size L is chosen in order to

maximise L1 cache reuse. Matrices are taken as input in row-major storage and

then reordered into block-major storage. For example, if the input matrix is

defined as:






















10 23 4 5 6 20

7 4 23 1 7 23

10 22 31 10 7 6

2 9 4 54 32 1

0 9 43 2 1 3

0 7 23 1 3 4























129

5.1 Generic Matrix Multiply Routine (GEMM)

and L = 3, the row-major storage will be:

[10 23 4 5 6 20 7 4 23 1 7 23 10 22 31 10 7 6 2 9 4 54 32 1 0 9 43 2 1 3 0 7 23 1 3 4]

while the block-major storage will be:

[10 23 4 7 4 23 10 22 31 5 6 20 1 7 23 10 7 6 2 9 4 0 9 43 0 7 23 54 32 1 2 1 3 1 3 4]

In block-major storage, the L× L blocks operated on by the kernel are actually

contiguous in memory. This optimisation prevents unnecessary cache misses,

cache conflicts and TLB problems [14, 15, 72].

5.1.1 Streaming SIMD Extensions and High Performance Com-

puting

Streaming SIMD Extension (SSE) is a SIMD instruction set designed by In-

tel and introduced in 1999. SSE allows SIMD computations to be performed

on operands that contain four packed single-precision floating-point data el-

ements. The operands can be in memory or in a set of eight 128-bit XMM

registers. SSE was subsequently expanded by Intel to SSE2 (extends SIMD

computations to process packed double-precision floating-point data elements

and 128-bit packed integers [123]), SSE3 (provides new instructions that can

accelerate application performance in specific areas, such as video processing,

complex arithmetic operations, and thread synchronisation and complements

SSE and SSE2 with instructions that process data asymmetrically and facili-

tate horizontal computation [123]), SSSE3 (provides additional enhancement

for SIMD computation with new instructions on digital video and signal pro-

cessing [123]), SSE4 (targeted to improve the performance of media, imaging,

and 3D workloads [124]) and SSE4.1 (adds instructions that improve compiler

vectorisation [124]).

SSE instructions can greatly increase performance when the same operations

are to be performed on multiple data, which often happens in digital sig-

130

5.1 Generic Matrix Multiply Routine (GEMM)

nal processing and graphic processing, as well as in linear algebra routines

(like GEMM). Figure 5.1 shows a typical SIMD computation. Two sets of four

packed data elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are operated

on in parallel, with the same operation being performed on each pair of data

elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the

four parallel computations are sorted as a set of four packed data elements.

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

opopop op

Figure 5.1: Typical SIMD Operations.

5.1.2 Matrix Reordering

Matrix reordering is performed using a technique called “loop blocking” [123,

125], a useful technique for memory performance optimisation. Loop blocking

obtains blocks to be operated on by the kernel that are actually contiguous in

memory. The main purpose of loop blocking is to eliminate as many cache

misses as possible. This technique transforms the memory domain of a given

problem into smaller contiguous portions rather than sequentially traversing

through the entire memory domain. Each portion should be small enough to

fit all the data for a given computation into the cache, thereby maximising data

reuse.

Listing 5.1 shows a basic implementation of the matrix reordering algorithm,

which is illustrated in Figure 5.2.

It is important to note that, given the different role of A and B in the ma-

trix multiply, reordering algorithm swaps the lines and rows accordingly, as

depicted in Figure 5.2. We also note that in the asymmetric packing approach

131

5.1 Generic Matrix Multiply Routine (GEMM)

✞ ☎
/ / b l o c k r e o r d i n g o f A
i n t idx = 0 ;
for (i n t oi = 0 ; o i < M; oi+=KERNEL_SIZE)

for (i n t o j = 0 ; o j < K; o j +=KERNEL_SIZE)
for (i n t a i = 0 ; a i < KERNEL_SIZE ; a i ++)

for (i n t a j = 0 ; a j < KERNEL_SIZE ; a j ++)
{

At [idx] = A[(o i + a i)∗K + o j + a j] ;
idx ++;

}

/ / b l o c k r e o r d e r i n g and t r a n s p o s i t i o n o f B
idx = 0 ;
for (i n t o j = 0 ; o j < N; o j +=KERNEL_SIZE)

for (i n t oi = 0 ; o i < K; oi +=KERNEL_SIZE)
for (i n t b j = 0 ; b j < KERNEL_SIZE ; b j ++)

for (i n t bi = 0 ; b i < KERNEL_SIZE ; b i ++)
{

Bt [idx] = B [(o i + b i)∗N + o j + b j] ;
idx ++;

}
✝ ✆

Listing 5.1: Basic reordering algorithms

(Subsection 4.3.1), either Ã or B̃ can be packed after matrix reordering has been

performed: this selection does not affect the performance in the case of GEMM

as both blocks have been reordered in block major format.

Figure 5.2: Matrix reordering using loop blocking.

132

5.1 Generic Matrix Multiply Routine (GEMM)

5.1.3 Top-Level of GEMM

In Section 4.1 we have seen that inner-kernel result R2,1 of the example shown

in Figure 4.1a comprises multiple subblock multiplications A2,lBl,1, as formu-

lated in (4.1).

A code snippets that shows how this algorithm can be implemented is pre-

sented in Listing 5.2. This implementation relies on the fact that the input ma-

trices have been reordered in block-major format (as shown in Subsection 5.1.2),

so that blocks are contiguous in memory, in order to minimise the number of

cache misses.

✞ ☎
const i n t M_LOOPS = M/KERNEL_SIZE ;
const i n t N_LOOPS = N/KERNEL_SIZE ;
const i n t K_LOOPS = K/KERNEL_SIZE ;

f l o a t ∗pA, ∗pB , ∗pC ;

for (i n t i i = 0 ; i i < M_LOOPS ; i i ++) / / b l o c k s o f A
{

for (i n t j j = 0 ; j j < N_LOOPS ; j j ++) / / b l o c k s o f B
{

pC = &C[i i ∗N_LOOPS∗KERNEL_ELEMS + j j ∗KERNEL_SIZE] ;

pA = &At [(i i ∗K_LOOPS)∗KERNEL_ELEMS] ;
pB = &Bt [(j j ∗K_LOOPS)∗KERNEL_ELEMS] ;

KernelGemm (pA, pB , 0 , pC, N) ;

for (i n t kk = 1 ; kk < K_LOOPS ; kk++)
{

pA = &At [(i i ∗K_LOOPS + kk)∗KERNEL_ELEMS] ;
pB = &Bt [(j j ∗K_LOOPS + kk)∗KERNEL_ELEMS] ;

KernelGemm (pA, pB , 1 , pC , N) ;
}

}
}

✝ ✆

Listing 5.2: Basic GEMM structure

5.1.4 GEMM Kernels and Optimisation Techniques

Different optimisation techniques can be used in the implementation of the

inner-kernel, usually tailoring the implementation for a specific architecture.

133

5.1 Generic Matrix Multiply Routine (GEMM)

In fact, this is the portion of the GEMM subroutine where most of the low-

level optimisation is made. These optimisation can be divided in two groups:

low-level (SSE or assembly) instructions and instruction reordering, which also

includes loop unrolling techniques.

The inner-kernel implementation used for the experiments in Section 5.2 and

Section 5.3 uses a synergy of SSE instructions and loop unrolling, in order to

obtain the maximum parallelism achievable using XMM registers. Listing 5.3

shows a simplified version of this kernel. This particular implementation uses

Intel SSE Intrinsic (C calls that maps one-to-one with assembler instructions) in

order to exploit the maximum parallelism from the architecture. At the same

time, loops are unrolled in order to fill completely every XMM register during

every phase of the execution: four rows of B (index jj is then incremented

by four every loop) are multiplied against two rows A (index ii is then incre-

mented by two every loop), in order to fill completely two register that will

be stored inside C. Index kk is incremented by four every loop because every

128-bit SSE register holds four single-precision floating point samples.

✞ ☎
void KernelGemm (const f l o a t ∗ A,

const f l o a t ∗ B ,
const f l o a t beta ,
f l o a t ∗ C,
const i n t ld c)

{
/ / M = N = K = KERNEL_SIZE
__m128 a , b0 , b1 , b2 , b3 , B0 , B1 , B2 , B3 ;
__m128 c00 , c01 , c02 , c03 , c10 , c11 , c12 , c13 ;

const __m128 BETA = _mm_set1_ps (beta) ;

for (i n t i i = 0 ; i i < KERNEL_SIZE ; i i +=2) / / rows o f A
{

for (i n t j j = 0 ; j j < KERNEL_SIZE ; j j +=4) / / c o l s o f B
{

b0 = _mm_load_ps(&B [j j ∗KERNEL_SIZE]) ;
b1 = _mm_load_ps(&B [(j j +1)∗KERNEL_SIZE]) ;
b2 = _mm_load_ps(&B [(j j +2)∗KERNEL_SIZE]) ;
b3 = _mm_load_ps(&B [(j j +3)∗KERNEL_SIZE]) ;

a = _mm_load_ps(&A[i i ∗KERNEL_SIZE]) ;

c00 = _mm_mul_ps(b0 , a) ;
c01 = _mm_mul_ps(b1 , a) ;
c02 = _mm_mul_ps(b2 , a) ;
c03 = _mm_mul_ps(b3 , a) ;

a = _mm_load_ps(&A[(i i +1)∗KERNEL_SIZE]) ;

134

5.1 Generic Matrix Multiply Routine (GEMM)

c10 = _mm_mul_ps(b0 , a) ;
c11 = _mm_mul_ps(b1 , a) ;
c12 = _mm_mul_ps(b2 , a) ;
c13 = _mm_mul_ps(b3 , a) ;

for (i n t kk = 4 ; kk < KERNEL_SIZE ; kk+=4)
{

b0 = _mm_load_ps(&B [j j ∗KERNEL_SIZE + kk]) ;
b1 = _mm_load_ps(&B [(j j +1)∗KERNEL_SIZE + kk]) ;
b2 = _mm_load_ps(&B [(j j +2)∗KERNEL_SIZE + kk]) ;
b3 = _mm_load_ps(&B [(j j +3)∗KERNEL_SIZE + kk]) ;

a = _mm_load_ps(&A[i i ∗KERNEL_SIZE + kk]) ;

B0 = b0 ;
B0 = _mm_mul_ps(B0 , a) ; / / a = a∗b0
c00 = _mm_add_ps(c00 , B0) ; / / c = c + a∗b0
B1 = b1 ;
B1 = _mm_mul_ps(B1 , a) ;
c01 = _mm_add_ps(c01 , B1) ;
B2 = b2 ;
B2 = _mm_mul_ps(B2 , a) ;
c02 = _mm_add_ps(c02 , B2) ;
B3 = b3 ;
B3 = _mm_mul_ps(B3 , a) ;
c03 = _mm_add_ps(c03 , B3) ;

a = _mm_load_ps(&A[(i i +1)∗KERNEL_SIZE + kk]) ;

b0 = _mm_mul_ps(b0 , a) ; / / a = a∗b0
c10 = _mm_add_ps(c10 , b0) ; / / c = c + a∗b0
b1 = _mm_mul_ps(b1 , a) ;
c11 = _mm_add_ps(c11 , b1) ;
b2 = _mm_mul_ps(b2 , a) ;
c12 = _mm_add_ps(c12 , b2) ;
b3 = _mm_mul_ps(b3 , a) ;
c13 = _mm_add_ps(c13 , b3) ;

}

c00 = _mm_hadd_ps(c00 , c01) ;
c02 = _mm_hadd_ps(c02 , c03) ;
c00 = _mm_hadd_ps(c00 , c02) ;

c03 = _mm_load_ps(&C[i i ∗ ld c + j j]) ;
c03 = _mm_mul_ps(c03 , BETA) ;
c00 = _mm_add_ps(c00 , c03) ;
_mm_store_ps(&C[i i ∗ ld c + j j] , c00) ;

c10 = _mm_hadd_ps(c10 , c11) ;
c12 = _mm_hadd_ps(c12 , c13) ;
c10 = _mm_hadd_ps(c10 , c12) ;

c13 = _mm_load_ps(&C[(i i +1)∗ ld c + j j]) ;
c13 = _mm_mul_ps(c13 , BETA) ;
c10 = _mm_add_ps(c10 , c13) ;
_mm_store_ps(&C[(i i +1)∗ ld c + j j] , c10) ;

}
}

}
✝ ✆

Listing 5.3: GEMM Inner-kernel

135

5.1 Generic Matrix Multiply Routine (GEMM)

5.1.5 Throughput/distortion Optimisation of Inner-Kernel

Multiplication

We propose throughput/distortion acceleration, controlled at the subblock

level of the overall matrix multiplication. Consider the example of the inner-

kernel result R2,1 shown in Figure 4.1a and computed by (4.1). As elaborated

in the previous section, for each individual subblock multiplication of (4.1),

i.e. A2,l Bl,1 with 0 ≤ l <
K
L , we have precomputed parameters:

∀W, l :
{

R∗max, E
{

S∗subblock

}}∣

∣

b∗offline
and FW , and for each packing we can com-

pute c∗A,c∗B by (4.30) at runtime [and from that we can readjust S∗subblock via

the expression of (4.31) for additional accuracy]. The aim is to select (per sub-

block) the best possible packing, W, along with the best possible parameters,

such that the resulting inner-kernel, R2,1, is computed with:

1. the highest percentile acceleration possible under an SNR constraint, or

2. the highest SNR possible under a percentile acceleration constraint.

Controlling the throughput/distortion optimisation process at the inner-kernel

level allows for flexibility within practical applications. For example, if ma-

trix multiplication is used for transform decomposition, some inner-kernels of

the resulting matrix corresponding to transform coefficients that are required

at the smallest possible distortion can be computed with W = 1, i.e. with

native floating point accuracy of sGEMM or dGEMM, while others can be accel-

erated via the use of W = {2, 3, 4} and produce approximate results. The

application must only specify the required SNR Skernel(i, j) per L × L inner-

kernel Ri,j against the result at the native precision of GEMM, or the required

percentile acceleration, Fkernel(i, j), in comparison to computing with W = 1

and the pruning process described in the following will derive the appropri-

ate settings per subblock multiplication in order to meet this specification.

For each inner kernel Ri,j, Skernel(i, j) is converted to MSE by Dkernel(i, j) =

10−0.1Skernel(i,j) L ∑
K/(L−1)
l=0 (σα,i,lσβ,l,j)

2 , with σα,i,l and σβ,l,j the standard devia-

tion of Ai,l and Bl,j, respectively.

136

5.1 Generic Matrix Multiply Routine (GEMM)

733.832 727.178 2908.13 106.008

37.52479.4689 9.3831 1.3679

0.03570.009 0.0089 0.0013

00(conventional processing) W=1

Subblocks

0 0

W=2

W=3

W=4

Figure 5.3: Example distortion (mean squared error (MSE)) for each of the subblocks
of (4.1) with K/L = 4 and pruning steps enumerated until Dkernel(2, 1) ≤ 11.0 is
achieved. The dashed rectangles indicate the final packing selection for each sub-
block.

The utilised pruning is a top-down approach where, starting from the maxi-

mum acceleration, the selection is pruned by removing the outcome with the

highest distortion, until the distortion constraint, Dkernel(i, j), or the percentile

throughput acceleration constraint, Fkernel(i, j), is met. This is illustrated for

distortion-constrained processing of inner-kernel R2,1 in the example of Fig-

ure 5.3, where we set Skernel(i, j) corresponding to Dkernel(2, 1) = 11.0 and we

assume K
L = 4. For every calculation A2,lBl,1, 0 ≤ l < 4, the algorithm starts

from W = 4 and successively removes the subblock result with the highest

distortion (the removal steps are enumerated in the figure), until the distortion

(or throughput) constraint is met.

The resulting operational settings utilise the maximum packing possible (i.e.

offer the maximum acceleration) and provide the minimum distortion possi-

ble under the proposed framework. These settings are guaranteed to provide

the best solution under iid statistics because distortion decreases monotoni-

cally with increased packing due to the required increase of companding coef-

ficients.

137

5.2 Experimental Results

5.2 Experimental Results

The proposed GEMM has been implemented in its entirety using SSE3 in an

Intel Core 2 Duo P8800 processor operating at cfreq = 2.66 GHz (to ensure max-

imum performance, single-threaded execution, CPU throttling disabled and

gcc4.4.1 -O3 -march=native -fomit-frame-pointer). In our experiments

we selected: W ∈ 1, 2 for single precision floating point; W ∈ 1, 2, 3, 4 for

double precision; and L = 288 as a representative inner-kernel size.

In our implementation, the top-level processing of GEMM follows the well-

known reordering techniques of other optimised packages [14]. For the generic

experiments of this section, we set input matrices A and B to contain uni-

formly distributed floating-point inputs selected from [−maxe, maxe] within

subblocks of 288× 288, with maxe selected randomly for each subblock from

the set 4.0, 5.0, 6.0, . . . , 2048.0. By disabling the processor throttling and run-

ning the proposed approach in maximum priority, we set various SNR require-

ments Skernel(i, j) for each inner-kernel processing and obtain the results for

M = K = N shown in Figure 5.4 and Figure 5.5. As an external compari-

son, we provide the performance of the utilised kernel without the proposed

approach (“sGEMM plain”) as well as the performance of the state-of-the-art

ATLAS [14] and GOTO packages [15]. With the selected input dimensions, all

packages avoid “cleanup” code for the borders of the matrix multiplication.

The results reported in Figure 5.4 and Figure 5.5 show that the proposed ap-

proach provides for processing throughput that changes according to the re-

quired SNR value and it can in fact exceed 130% and 175% of the peak perfor-

mance for single-precision and double-precision representation, respectively.

The results of Figure 5.4 and Figure 5.5 show that exceeding 100% of peak per-

formance is indeed possible in practice, due to the utilised companding and

packing. Notice that the companders for each inner kernel are found at run-

time and the performance figures reported in Figure 5.4 and Figure 5.5 for our

approach include the entire process and the control framework described in

Chapter 4 and Subsection 5.1.5. Finally, we validated that, even when the SNR

setting leads to W = 1 for all inner-kernel processing, no loss in performance

138

5.2 Experimental Results

is observed against the conventional “sGEMM plain” and “dGEMM plain”

approaches.

Beyond distortion-controlled execution, we present an example of throughput-

controlled acceleration in Figure 5.6 for the case of sGEMM, where W ∈ {1, 2}.
The 11 points reported in the figure were obtained for size M = N = K = 4032

matrix multiplication by increasing the percentage of accelerated inner-kernel

blocks in steps of 10%: the (leftmost) maximum-SNR point (infinity) corre-

sponds to 0% of inner-kernel blocks accelerated (i.e. W = 1 for all), while

the (rightmost) lowest-SNR point (27.8 dB for symmetric packing and 23.9dB

for asymmetric packing) corresponds to 100% of inner-kernel blocks acceler-

ated (i.e. W = 2 for all). Evidently, the symmetric packing provides for lower

distortion along the operational points. Goto’s throughput was 19.7 GFLOPS

while ATLAS achieved 18.0 GFLOPS for this example.

Overall, due to the highly optimised nature of GOTO and ATLAS, our “sGEMM

plain” software kernel for matrix multiplication is 25% less efficient than GOTO.

In addition, our plain software kernel is approximately 10% less efficient than

ATLAS. In double precision, the equivalent loss in performance is 46% and

34%, respectively. This indicates that there is room for further improvement:

if our approach were to be deployed within GOTO (or any other) high-per-

formance kernel code, landmark performance of beyond 150% of peak perfor-

mance in single precision and beyond 200% of peak performance in double-

precision representation could be achieved under throughput/distortion scal-

ing.

The gains in processing throughput can be exchanged for fault detection and

correction functionalities under error-generating operating systems or proces-

sors [1, 93, 126]. Alternatively, one can reduce the operating processor fre-

quency and still obtain comparable performance to using “sGEMM plain”

(or “dGEMM plain”) at a higher processor frequency, albeit at higher distor-

tion. This approach effectively translates the throughput/distortion scaling

into power/distortion. Indicative applications of the proposed framework are

presented in the following section.

139

5.2 Experimental Results

 50

 60

 70

 80

 90

 100

 110

 120

 130

 500 1000 1500 2000 2500 3000 3500 4000

P
ea

k
P

er
fo

rm
an

ce
 (

%
)

Symmetric Packing, Single-precision

Proposed: sGEMM plain
Proposed: SNR >= 30dB
Proposed: SNR >= 24dB

GOTO
ATLAS

M = N = K

 50

 60

 70

 80

 90

 100

 110

 120

 130

 500 1000 1500 2000 2500 3000 3500 4000

P
ea

k
P

er
fo

rm
an

ce
 (

%
)

Asymmetric Packing, Single-precision

Proposed: sGEMM plain
Proposed: SNR >= 30dB
Proposed: SNR >= 24dB

GOTO
ATLAS

M = N = K

Figure 5.4: Percentage of peak performance of sGEMM (higher is better) under
different distortion settings ∀i, j : Skernel(i, j) for the inner kernel processing; 100%
of peak performance corresponds to 8× cfreq = 21.28 GFLOPS (giga floating-point
operations per second).

140

5.2 Experimental Results

 60

 80

 100

 120

 140

 160

 180

 200

 220

 500 1000 1500 2000 2500 3000 3500 4000

P
ea

k
P

er
fo

rm
an

ce
 (

%
)

Symmetric Packing, Double-precision
Proposed: sGEMM plain
Proposed: SNR >= 70dB
Proposed: SNR >= 40dB
Proposed: SNR >= 25dB
Proposed: SNR >= 19dB

GOTO
ATLAS

M = N = K

 60

 80

 100

 120

 140

 160

 180

 200

 220

 500 1000 1500 2000 2500 3000 3500 4000

P
ea

k
P

er
fo

rm
an

ce
 (

%
)

Asymmetric Packing, Double-precision
Proposed: sGEMM plain
Proposed: SNR >= 70dB
Proposed: SNR >= 40dB
Proposed: SNR >= 25dB
Proposed: SNR >= 19dB

GOTO
ATLAS

M = N = K

Figure 5.5: Percentage of peak performance of dGEMM (higher is better) under
different distortion settings ∀i, j : Skernel(i, j) for the inner kernel processing; 100%
of peak performance corresponds to 4× cfreq = 10.64 GFLOPS for dGEMM.

141

5.3 Applications

 25

 30

 35

 40

 16000 18000 20000 22000 24000 26000 28000

S
N

R
 (

dB
)

Throughput (FLOPS)

Throughput-controlled Execution
Symmetric Packing

Asymmetric Packing

Figure 5.6: SNR vs. throughput in giga floating-point operations per second for
sGEMM under acceleration control.

5.3 Applications

The proposed approach can bring important benefits to high-performance sig-

nal processing systems when the precision of computation is not of critical

importance (error-tolerant systems) or when the data is intrinsically noisy. In

this section, the benefits of the proposed framework is validated within three

DSP applications of increasing complexity: a conceptual example of a noise

cancellation system, a face recognition application based on principal compo-

nent analysis (PCA), and an example of artificial neural network training for

metadata learning from a large music feature database.

5.3.1 Conceptual Example: Disturbance Cancellation under Es-

timation Uncertainty

Assume a 576-parameter system is linearly disturbed by well-conditioned ran-

dom disturbance matrix G, ∀i, j ∈ {0, 575} : gi,j ∈ [−0.5, 0.5]. Due to com-

142

5.3 Applications

putation, measurement and estimation inaccuracies, we assume that both G

and the disturbance cancellation matrix, G−1, are corrupted by additive noise

uniformly distributed within [−0.05, 0.05]. We examined the accuracy of dis-

turbance cancellation, Î = G−1G, by calculating the MSE: MSE = 1
576‖I −

Î‖2
F under multiple additive noise instantiations using: (i) the proposed ap-

proach with W = 2 for every subblock via cA = cB = 32; (ii) sGEMM via

“sGEMM plain” and via the GOTO software kernel. We obtained MSE(i) =

0.065, MSE(ii) = 0.060. Hence, even though the companders were not match-

ing the additive noise range, similar precision is achieved, and the proposed

approach is 56% more efficient “sGEMM plain” and 28% more efficient than

GOTO. The throughput scaling in this case can turn into a power-scaling ad-

vantage. In particular, we can reduce the CPU frequency to 1.60 GHz (instead

of the peak frequency of 2.66 GHz). As shown by the results of Figure 5.7, de-

spite the significantly lower clock frequency, this allows for throughput com-

parable to “sGEMM plain” (and only 12% less efficient that GOTO clocked at

2.66 GHz). Alternatively, one can consider our approach as a way to use older

processors (operating at lower frequency) to compute results with comparable

throughput to newer processors. This would allow graceful degradation of

hardware: older hardware continues to be used to produce results at compa-

rable throughput to newer instantiations, albeit at lower precision, by a simple

distortion or throughput parameter setting in the numerical processing library.

5.3.2 Accelerated Processing in State-of-the-art Face Recogni-

tion

State-of-the-art techniques for robust image recognition systems derive fea-

ture matrices and use 2D decomposition schemes via matrix multiplication

in order to match features between a new image and an existing database of

images (e.g. for automatic identification of human faces [13]. Large-scale de-

ployments of such systems run in high-performance workstations or in cloud

computing infrastructures, such as Amazon’s EC2. In such deployments, it

is not uncommon to expect that thousands of training and recognition tasks

143

5.3 Applications

 14

 15

 16

 17

 18

 19

 20

 500 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Power Scaling by CPU Frequency Change

Proposed: sGEMM plain @ 2.66 GHz
Proposed: SNR = 24dB @ 1.6 GHz

GOTO
ATLAS

M = N = K

Figure 5.7: Lowering the processor clock frequency for low-power GEMM compu-
tation at comparable throughput, albeit at increased distortion.

should be computed with the highest-possible throughput/precision capabil-

ity of each system in order to maximise the processors’ or cloud utilisation.

An example would be a real-time matching engine for human faces formed by

continuous (incremental) 2D PCA training via hundreds of thousands of pic-

tures uploaded by its users, while simultaneously handling new face matching

queries. Using the proposed approach, one can accelerate the real-time train-

ing and matching process. Specifically, the accelerated GEMM can be used for

the image covariance matrix calculation and for the input image projection to

the feature matrix [13]. This application is suitable for approximate GEMM

results as the feature-selection process is anyway approximate, since only the

feature matrices corresponding to the most significant eigenvalues of the train-

ing images are selected for the matching process [13]. In the following, we

provide details of such a deployment for the prominent 2D PCA system of [13]

under different SNR values for the GEMM computations.

The algorithm consists of three stages: training, feature extraction and clas-

sification. The training stage uses a number of training input images and first

144

5.3 Applications

calculates the image covariance scatter matrix from Jset zero-mean input im-

ages, Aj, by: GJ = ∑
Jset
j=1 AjA

T
j . Based on this input training set, it then calcu-

lates the projection matrix comprising a series of projection axes (eigenvectors),

X = [x1| . . . |xd], with xi, 1 ≤ i ≤ d the orthonormal eigenvectors of GJ corre-

sponding to its d largest eigenvalues [13]. Each training-set image is mapped

to X via: Yset,j = AjX.

For the feature extraction stage, each new input image Bi (test image) is pro-

jected to all x1, . . . , xd, via: Ytest,i = BiX. Finally, the classification stage deter-

mines for each test image Bi the test-set image j∗ with the smallest distance in

their projections:

j∗Bi
= arg min

∀j
‖Ytest,i − Yset,j‖F (5.1)

From the algorithm description, it is evident that the complexity of 2D PCA is

predominantly concentrated in the matrix multiplication operations required

for the construction of GJ and the mapping during the feature extraction, i.e.

Ytest,i. This is because the eigenvalue decomposition required for the creation

of X is only performed once every Jset training images, and fast algorithms for

the quick estimation of the best match via (5.1) have been known for several

years1 [127].

To examine the effects of throughput/distortion within this application, we

utilise the proposed single-precision GEMM design for the matrix multiplica-

tion operations of 2D PCA. The Yale database of images2 was used for our ex-

periments and, following prior work [13], each image was cropped to 288× 288

pixels (that includes the face portion) and the mean value was subtracted prior

to processing. Results from performing all matrix multiplication operations

with reduced Skernel(0, 0) are presented in Table 5.1. Following [13], 75 images

were used for the training set and 90 images were used as test images. The

table demonstrates that decreasing Skernel(0, 0) leads to increased processing

throughput with the recognition accuracy remaining equal to the one obtained

with the full-precision computation. In fact, for Skernel(0, 0) = 20 dB, we ob-

1Examples are early termination techniques and bounding via the Cauchy-Schwarz in-
equality.

2http://www.face-rec.org/databases/

145

http://www.face-rec.org/databases/

5.3 Applications

Method Recognition (%) Throughput (GFLOPS)

GOTO [15] 78.4 18.27
Proposed: sGEMM plain 78.4 14.85

Proposed: Skernel(0, 0) = 50 dB 78.4 16.11
Proposed: Skernel(0, 0) = 20 dB 78.8 25.31

Table 5.1: Recognition accuracy versus requested SNR for the matrix operations
of 2D PCA and versus the obtained throughput for matrix multiplication (higher
throughput is better).

served a slight increase in the recognition accuracy due to the companding

acting as a noise removal mechanism. Importantly, due to the flexibility of the

proposed framework, we obtain the results of Table 1 without any application-

specific tailoring of the computation; instead, only a simple adjustment of the

distortion (or throughput) specification is required.

5.3.3 Accelerated Supervised Training of Multi-layer Percep-

tron (MLP) based Learning System

As a final example, we examine the benefits of the proposed approach in a

large deployment of a multi-layer perceptron (MLP) based learning system [119].

MLP-based learning uses back-propagation to train a neural network to create

connections between input features and outputs. We follow the OpenCV im-

plementation of the back-propagation learning algorithm operating in bunch

mode: instead of using one training pattern at a time to update the weight ma-

trices, the design uses np training patterns. When np = 1, only matrix-vector

operations are involved in the training algorithm. However, when np > 1,

matrix multiplications are used and comprise the dominant part of the exe-

cution. In order to derive test results, we utilised the Million-song dataset, a

“freely-available collection of audio features and metadata for a million con-

temporary popular music tracks” from Columbia University, available via the

UCI Machine Learning Repository [128]. Our target was to predict the publi-

cation year of each song (between 1920-2010) based on the provided set of 90

146

5.3 Applications

Method
Average number

of epochs

Average recognition
accuracy

(correct/total)

Total time for
GEMM

computations
(hours)

Proposed: sGEMM
plain

510240 14324/24576 (58%) 474.6

GOTO [15] 510240 14324/24576 (58%) 376.6
Proposed: sGEMM with

W = 2
543460 14324/24576 (58%) 375.5

Table 5.2: Summary results of MLP algorithm. Smaller time values are better.

features per song. MLP-based approaches are appropriate for such problems

as there is no clear methodology to connect song features and publication year

and the hope is that the learning algorithm will discover such connections au-

tomatically.

For our experiment, the bunch size was set to np = 384 and training was re-

peated in groups of 24576 songs randomly chosen from the training subset of

the database. Validation was done on groups of 24576 songs from the vali-

dation subset of the database [128]. The only modification performed in the

MLP implementation was the replacement of the matrix multiplication with:

sGEMM from the GOTO library [15], sGEMM plain, and sGEMM with W = 2

packings. All experiments were executed on a high-performance server com-

prising two quad-core processors with the Intel Xeon X5460 at 3.16 GHz. Ta-

ble 5.2 reports summary results, showing that sGEMM with W = 2 packings

achieves the same recognition accuracy as the conventional (full-precision) ap-

proaches. In this case, companding and rounding the inputs corresponds to

quantising to 13-15 bits. While it is well known that the back-propagation al-

gorithm is robust to quantisation [129], the quantisation noise can increase the

number of epochs required for training, as shown by Table 5.2. Importantly,

sGEMM with W = 2 achieves 21% execution time reduction in comparison to

sGEMM plain (i.e. approximately 4 days less). Despite this reduction, in this

case sGEMM with W = 2 does not outperform GOTO due to its highly-optimised

software implementation as compared to our own sGEMM plain design. How-

ever, a deployment of our approach using GOTO as the utilised sGEMM plain

147

5.4 Concluding Remarks

software kernel would indeed benefit from the demonstrated execution time

speedup.

5.4 Concluding Remarks

In Chapter 2 we presented a method for concurrent computation using the

packing technique. Chapter 4 further extended this theory, trying to address

the shortcomings described in the introduction of Chapter 4. Finally, Chapter 4

addresses how to perform algorithms that fall outside of the integer-to-integer

calculation and explains how the way the packing is performed has an impact

on the achievable speed up and the overall distortion. However, no explana-

tion was given on how to actually implement this newly revised theory into a

linear algebra routine and what kind of benefit can be measured.

This chapter addresses these final shortcomings: we presented an implemen-

tation of GEMM that uses SSE intrinsics which is competitive with the state-

of-the-art implementation of GEMM, like ATLAS [14] and GOTO [15], in order

to prove the throughput increase. Then we presented the achievable through-

put/distortion scalability and validated the proposed distortion model of Chap-

ter 4 against the measured distortion incurred from input data matching the

model assumptions. We then used our GEMM implementation inside three

well known applications (disturbance cancellation, face recognition and neu-

ral network training), demonstrating that some applications are more resilient

than others to approximation in one of their components.

148

Chapter 6

Conclusions

The first part of this thesis presented a novel software framework for image

processing tasks that processes input increments in an accelerated manner and

refines previously-computed results. This framework is based on the mathe-

matical theory of the packed processing, presented and extended in Chapter 2.

Specifically our proposal was realised by the synergy of the packing theory

and incremental computation of linear operations, as described in the Chap-

ter 3. Packed processing works well when the packed samples have small dy-

namic range. This can be achieved by using “portions” of the input samples,

which leads to incremental computation.

The resulting framework was validated in Section 3.6. By implementing this

approach for transform decompositions, two dimensional convolution and

cross correlation, and frame by frame block matching. The results with bit-

plane-based computation indicate that the proposed approach can be compa-

rable or superior to conventional (non incremental) computation for several

cases. The scheduling results (Section 3.9.2) demonstrate that, by exploiting

the incremental nature of the proposed computation, the worst-case (“digital

world”) approach of: ’Can this image processing task be performed in X frames/sec-

ond?’ changes to the best-effort (“analogue world”) approach of: ’What is the

achieved quality when this task is performed in X frames/second?’. Simi-

larly, the power/distortion results (Section 3.9.3) highlight that the proposed

149

software-based incremental computation allows for seamless prolongation of

the battery life of a low-power device with a simple change of output quality

level.

After exploring all the aspects related to the progressive computation for im-

age processing tasks using packing processing, this thesis introduced the con-

cept of “lossy packed processing” in Chapter 4. This new concept, not previ-

ously known in literature, allows the creation of on-the-fly precision/through-

put trade off in many computationally-intensive algorithms. In fact, by intro-

ducing the trade-off between Companding and Packing (Section 4.2), this work

exploits the maximum numerical precision of the floating point unit (in either

single or double precision) to accelerate subsets of computations where the

maximum precision is not required. In order to test this new theory in a real

world scenario (as done previously for image processing tasks), the develop-

ment of the theory was coupled with the implementation of an ad-hoc Generic

Matrix Multiplication (GEMM) routine that uses the state-of-the-art program-

ming techniques for high performance computing development. A detailed

study was conducted on the impact of the quantisation on the precision of

the computation and the packing capability, which brought to the results sum-

marised in Subsection 4.4.2. At the same time, based on this results, it was

possible to formalise a stochastic model to describe the precision/throughput

trade off achievable for iid input sources (Subsection 4.4.4).

Chapter 5 showed how the theory and the practical implementation were merged

together: Subsection 5.1 describes all the details of the implementation, show-

ing simplified portions of code1, that focus on the memory optimisation, code

organisation and SSE usage. The proposed approach was then compared against

state-of-the-art free BLAS (Basic Linear Algebra Subroutines) implementations

(namely, ATLAS and GOTO libraries), showing the increase in processing through-

put that can be achieved when different distortions (in dB) are required by the

application (from full precision floating-point to noisy computation).

In order to show the potential of this kind of approach, this newly design

1This code is currently release in the ORIP project: http://code.google.com/p/orip/,
http://www.ee.ucl.ac.uk/~iandreop/ORIP.html.

150

http://code.google.com/p/orip/
http://www.ee.ucl.ac.uk/~iandreop/ORIP.html

GEMM subroutine was then used within several systems where matrix mul-

tiplication plays an important role, such as matrix inversion, face recognition

and MLP training. In all of them, after a careful selection of the correct trade

off for the specific application, we have observed significant acceleration with

minimal or no impact in the results accuracy.

The amount of throughput acceleration achievable depends strongly on the

type of application that the system handles: for instance in the face recognition

system, the throughput increase was higher than the one of the MLP training;

in the first the images submitted to the system are inherently noisy and the

quantisation behaves like a low-pass filter, removing what could be consid-

ered noise; in the later, however, because of the perturbations that the network

is subject to during the training with approximate inputs, even though there

is a measurable speed up in the evaluation of a single epoch, more epochs are

necessary to obtain the same level of prediction accuracy. Both these results

provide some initial insights on how to find the perfect balance between the

imprecision of the computation and throughput acceleration for a specific al-

gorithm.

Further studies are necessary to understand how this method can be used in

fault-tolerant environments, by investigating its capability for fault detection

and recovery and perhaps establishing new theoretical results.

While the initial steps for modelling the noise introduced by the approximated

GEMM in function of the input source statistics have been done in Section 4.4,

extending such work to non i.i.d. sources would be interesting. The model can

be extended for different distribution of the input or, alternatively, this could

be pursued by matching the input source model to the marginal distribution

of the input data. This can be coupled with specific applications. Recent work

along these lines is reported by [130] for cross-correlation in music matching

systems and metadata calculation for audio sources.

Further work can also be done on the implementation side, for instance apply-

ing the proposed techniques to other domains, such as GPU-based or FPGA-

based hardware designs. This is a promising avenue that can demonstrate

computational scalability and acceleration by approximate processing in dif-

151

ferent domains. It is also possible that even higher acceleration could be achieved

if some of the pre and post-processing tasks had hardware support (e.g. pack-

ing/unpacking).

152

References

[1] D. Lammers, “The era of error-tolerant computing,” IEEE Spectrum, Nov.

2010.

[2] D. Patterson, “The trouble with multicore,” IEEE Spectrum, Jul. 2010.

[3] M. Macedonia, “Power from the edge [apple video ipod],” Computer,

vol. 38, no. 12, pp. 123–125, Dec. 2005.

[4] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, and

P. Maechling, “Scientific workflow applications on amazon EC2,” in E-

Science Workshops, 2009 5th IEEE International Conference on, dec. 2009, pp.

59 –66.

[5] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “A performance analysis of EC2 cloud computing services for

scientific computing,” in Cloud Computing, ser. Lecture Notes of the Insti-

tute for Computer Sciences, Social Informatics and Telecommunications

Engineering. Springer Berlin Heidelberg, 2010, vol. 34, pp. 115–131.

[6] D. Anastasia and Y. Andreopoulos, “Linear image processing operations

with operational tight packing,” IEEE Signal Processing Letters, vol. 17,

no. 4, pp. 375 –378, April 2010.

[7] ——, “Software designs of image processing tasks with incremental re-

finement of computation,” in Proc. IEEE Workshop on Signal Processing

Systems (SiPS), 2009, Tampere, Finland, October 2009, pp. 249 –254.

153

REFERENCES

[8] ——, “Scheduling and energy-distortion tradeoffs with operational re-

finement of image processing,” in Proc. Design, Automation & Test in Eu-

rope (DATE), Dresden, Germany, March 2010, pp. 1719 –1724.

[9] ——, “Throughput-precision computation for generic matrix multiplica-

tion: Toward a computation channel for high-performance digital signal

processing,” in 17th International Conference on Digital Signal Processing

(DSP), July 2011, pp. 1 –6.

[10] ——, “Throughput-distortion computation of generic matrix multiplica-

tion: Toward a computation channel for digital signal processing sys-

tems,” IEEE Transactions on Signal Processing, vol. 60, pp. 2024–2037,

April 2012.

[11] ——, “Software designs of image processing tasks with incremental re-

finement of computation,” IEEE Transactions on Image Processing, vol. 19,

no. 8, pp. 2099 –2114, August 2010.

[12] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.). Baltimore,

MD, USA: Johns Hopkins University Press, 1996.

[13] J. Yang, D. Zhang, A. F. Frangi, and J. yu Yang, “Two-dimensional PCA:

A new approach to appearance-based face representation and recog-

nition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 26, pp. 131–137, 2004.

[14] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra

software,” in Proceedings of the 1998 ACM/IEEE conference on Supercomput-

ing, ser. Supercomputing ’98. Washington, DC, USA: IEEE Computer

Society, 1998, pp. 1–27.

[15] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance ma-

trix multiplication,” ACM Transactions on Mathematical Software (TOMS),

vol. 34, pp. 12:1–12:25, May 2008.

154

REFERENCES

[16] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-

nition using shape contexts,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 4, pp. 509 –522, apr 2002.

[17] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic

object recognition with invariance to pose and lighting,” in Proceedings of

the 2004 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2004. CVPR 2004., vol. 2, june-2 july 2004, pp. II–97 – 104

Vol.2.

[18] V. Goyal and M. Vetterli, “Computation-distortion characteristics of

block transform coding,” in IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP-97), vol. 4, Apr 1997, pp. 2729–2732

vol.4.

[19] J. Valentim, P. Nunes, and F. Pereira, “Evaluating MPEG-4 video decod-

ing complexity for an alternative video complexity verifier model,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 12, no. 11, pp.

1034–1044, Nov 2002.

[20] B. Zeng, R. Li, and M. L. Liou, “Optimization of fast block motion es-

timation algorithms,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 7, no. 6, pp. 833–844, Dec 1997.

[21] K. Lengwehasatit and A. Ortega, “Scalable variable complexity approx-

imate forward DCT,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 14, no. 11, pp. 1236–1248, Nov. 2004.

[22] D. Turaga, M. van der Schaar, and B. Pesquet-Popescu, “Complexity

scalable motion compensated wavelet video encoding,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 15, no. 8, pp. 982–

993, Aug. 2005.

[23] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M.Winograd,

and J. T.Ludwig, “Approximate signal processing,” J. VLSI Signal Process.

Syst., vol. 15, no. 1/2, pp. 177–200, 1997.

155

REFERENCES

[24] T. Tran, “The binDCT: fast multiplierless approximation of the DCT,”

IEEE Signal Processing Letters, vol. 7, no. 6, pp. 141 –144, jun 2000.

[25] J. Liang and T. Tran, “Fast multiplierless approximations of the DCT with

the lifting scheme,” IEEE Transactions on Signal Processing, vol. 49, no. 12,

pp. 3032 –3044, dec 2001.

[26] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast

block motion estimation,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 6, no. 3, pp. 313 –317, jun 1996.

[27] W. Yuan and K. Nahrstedt, “Practical voltage scaling for mobile multi-

media devices,” in MULTIMEDIA ’04: Proceedings of the 12th annual ACM

international conference on Multimedia. New York, NY, USA: ACM, 2004,

pp. 924–931.

[28] E. Akyol and M. van der Schaar, “Complexity model based proactive

dynamic voltage scaling for video decoding systems,” IEEE Transactions

on Multimedia, vol. 9, no. 7, pp. 1475–1492, Nov. 2007.

[29] J. Winograd and S. Nawab, “Incremental refinement of DFT and STFT

approximations,” IEEE Signal Processing Letters, vol. 2, no. 2, pp. 25–27,

Feb 1995.

[30] Y. Andreopoulos and M. van der Schaar, “Incremental refinement of

computation for the discrete wavelet transform,” IEEE Transactions on

Signal Processing, vol. 56, no. 1, pp. 140–157, Jan. 2008.

[31] Y. Andreopoulos and I. Patras, “Incremental refinement of image salient-

point detection,” IEEE Transactions on Image Processing, vol. 17, no. 9, pp.

1685–1699, Sept. 2008.

[32] A. Chandrakasan and T. Xanthopoulos, “A low-power IDCT macrocell

for MPEG-2 MP@ML exploiting data distribution properties for minimal

activity,” Solid-State Circuits, IEEE Journal of, vol. 34, no. 5, pp. 693 –703,

may 1999.

156

REFERENCES

[33] ——, “A low-power DCT core using adaptive bitwidth and arithmetic

activity exploiting signal correlations and quantization,” Solid-State Cir-

cuits, IEEE Journal of, vol. 35, no. 5, pp. 740 –750, may 2000.

[34] A. Chandrakasan, A. Sinha, and A. Wang, “Energy scalable system de-

sign,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 10, no. 2, pp. 135 –145, april 2002.

[35] G. Constantinides, P. Cheung, and W. Luk, “Wordlength optimization

for linear digital signal processing,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 22, no. 10, pp. 1432 – 1442,

oct. 2003.

[36] M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kaptanoglu,

G. Baeckler, B. Ratchev, K. Padalia, M. Bourgeault, A. Lee, H. Kim, and

R. Saini, “Improving fpga performance and area using an adaptive logic

module,” in Field Programmable Logic and Application, ser. Lecture Notes

in Computer Science. Springer Berlin / Heidelberg, 2004, vol. 3203, pp.

135–144.

[37] D. Dickin and L. Shannon, “Exploring FPGA technology mapping for

fracturable LUT minimization,” in Field-Programmable Technology (FPT),

2011 International Conference on, dec. 2011, pp. 1 –8.

[38] P. Sherwood and K. Zeger, “Progressive image coding on noisy chan-

nels,” in Proceedings Data Compression Conference, 1997. DCC ’97., mar

1997, pp. 72 –81.

[39] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding

using wavelet transform,” IEEE Transactions on Image Processing, vol. 1,

no. 2, pp. 205 –220, apr 1992.

[40] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still im-

age coding system: an overview,” IEEE Transactions on Consumer Elec-

tronics, vol. 46, no. 4, pp. 1103 –1127, nov 2000.

157

REFERENCES

[41] R. Sundaresh and P. Hudak, “Incremental computation via partial eval-

uation,” in Proceedings 18th Symposium on Principles of Programming Lan-

guages. ACM, Jan. 1991, pp. 1–13.

[42] R. Hoover, “Alphonse: incremental computation as a programming ab-

straction,” in Proceedings of the ACM SIGPLAN 1992 conference on Pro-

gramming language design and implementation, ser. PLDI ’92. New York,

NY, USA: ACM, 1992, pp. 261–272.

[43] W. Pugh and T. Teitelbaum, “Incremental computation via function

caching,” in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, ser. POPL ’89. New York, NY,

USA: ACM, 1989, pp. 315–328.

[44] Y. A. Liu, S. D. Stoller, and T. Teitelbaum, “Static caching for incremental

computation,” ACM Trans. Program. Lang. Syst., vol. 20, pp. 546–585, May

1998.

[45] W. W. Pugh, “Incremental computation and the incremental evaluation

of functional programs,” Ph.D. dissertation, Cornell University, August

1988.

[46] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evaluation techniques for

storage hierarchies,” IBM Systems Journal, vol. 9, no. 2, pp. 78 –117, 1970.

[47] “Multifacet project,” 1998 –2012. [Online]. Available: http://www.cs.

wisc.edu/multifacet/

[48] D. Citron and L. Rudolph, “Creating a wider bus using caching tech-

niques,” in High-Performance Computer Architecture, 1995. Proceedings.,

First IEEE Symposium on, 1995, pp. 90 –99.

[49] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for

high-performance processors,” in Proceedings of the 31st annual interna-

tional symposium on Computer architecture, ser. ISCA ’04. Washington,

DC, USA: IEEE Computer Society, 2004, pp. 212–.

158

http://www.cs.wisc.edu/multifacet/
http://www.cs.wisc.edu/multifacet/

REFERENCES

[50] R. S. de Castro, A. P. do Lago, and D. D. Silva, “Adaptive compressed

caching: Design and implementation,” Computer Architecture and High

Performance Computing, Symposium on, vol. 0, p. 10, 2003.

[51] T. Cortes, Y. Becerra, and R. Cervera, “Swap compression: resurrecting

old ideas,” Softw. Pract. Exper., vol. 30, pp. 567–587, April 2000.

[52] R. Cervera, T. Cortes, and Y. Becerra, “Improving application perfor-

mance through swap compression,” in Proceedings of the annual conference

on USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX

Association, 1999, pp. 46–46.

[53] I. C. Tuduce and T. Gross, “Adaptive main memory compression,” in

Proceedings of the annual conference on USENIX Annual Technical Confer-

ence, ser. ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp.

29–29.

[54] M. Ekman and P. Stenstrom, “A robust main-memory compression

scheme,” in Proceedings of the 32nd annual international symposium on Com-

puter Architecture, ser. ISCA ’05. Washington, DC, USA: IEEE Computer

Society, 2005, pp. 74–85.

[55] M. Kjelso, M. Gooch, and S. Jones, “Design and performance of a main

memory hardware data compressor,” EUROMICRO Conference, vol. 0, p.

0423, 1996.

[56] E. Hallnor and S. Reinhardt, “A unified compressed memory hierarchy,”

in High-Performance Computer Architecture, 2005. HPCA-11. 11th Interna-

tional Symposium on, feb. 2005, pp. 201 – 212.

[57] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith,

M. E. Wazlowski, and P. M. Bland, “IBM memory expansion technology

(MXT),” IBM Journal of Research and Development, vol. 45, no. 2, pp. 271

–285, march 2001.

[58] B. Abali, H. Franke, D. E. Poff, R. A. Saccone, C. O. Schulz, L. M. Herger,

and T. B. Smith, “Memory expansion technology (MXT): Software sup-

159

REFERENCES

port and performance,” IBM Journal of Research and Development, vol. 45,

no. 2, pp. 287 –301, march 2001.

[59] B. Abali, H. Franke, X. Shen, D. E. Poff, and T. B. Smith, “Performance of

hardware compressed main memory,” in The Seventh International Sym-

posium on High-Performance Computer Architecture, 2000, pp. 73–81.

[60] J. Henning, “SPEC CPU2000: measuring CPU performance in the new

millennium,” Computer, vol. 33, no. 7, pp. 28 –35, jul 2000.

[61] S. Roy, R. Kumar, and M. Prvulovic, “Improving system performance

with compressed memory,” in Parallel and Distributed Processing Sympo-

sium., Proceedings 15th International, apr 2001, p. 7 pp.

[62] B. Abali and H. Franke, “Operating system support for fast hardware

compression of main memory contents,” in Main MemoryâĂİ, Mem-

ory Wall Workshop, International Symposium on Computer Architecture

(ISCA2000, 2000.

[63] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38,

no. 5, pp. 11–13, May 2005.

[64] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,

“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879 –899,

may 2008.

[65] R. Dimond, S. RacanieÌĂ andre, and O. Pell, “Accelerating large-scale

HPC applications using FPGAs,” in Computer Arithmetic (ARITH), 2011

20th IEEE Symposium on, july 2011, pp. 191 –192.

[66] A. Bhattacharjee, G. Contreras, and M. Martonosi, “Parallelization li-

braries: Characterizing and reducing overheads,” ACM Trans. Archit.

Code Optim., vol. 8, pp. 5:1–5:29, February 2011.

[67] G. Liu and X. Hu, “Performance and efficiency evaluation and analysis

of supercomputers,” in Computer Science and Information Technology (ICC-

SIT), 2010 3rd IEEE International Conference on, vol. 4, july 2010, pp. 642

–646.

160

REFERENCES

[68] B. Greer, “The most important technical library in the world,” SIGPLAN

Fortran Forum, vol. 17, pp. 25–32, December 1998.

[69] Intel Corporation, Intel R©Math Kernel Library, Reference Manual. [Online].

Available: http://software.intel.com/sites/products/documentation/

hpc/mkl/mklman/mklman.pdf

[70] ——, Intel R©64 and IA-32 Architectures Optimization Reference Manual,

June 2011. [Online]. Available: http://www.intel.com/content/dam/

doc/manual/64-ia-32-architectures-optimization-manual.pdf

[71] Advanced Micro Devices Inc., Software Optimization Guide for AMD64

Processors, September 2005. [Online]. Available: http://support.amd.

com/us/Processor_TechDocs/25112.PDF

[72] K. Goto and R. van de Geijn, “On reducing TLB misses in matrix multi-

plication,” 2002.

[73] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the sparse basic

linear algebra subprograms: The new standard from the BLAS technical

forum,” ACM Trans. Math. Softw., vol. 28, pp. 239–267, June 2002.

[74] J. Choi, J. Dongarra, and D. Walker, “PB-BLAS: a set of parallel block ba-

sic linear algebra subprograms,” in Scalable High-Performance Computing

Conference, 1994., Proceedings of the, may 1994, pp. 534 –541.

[75] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing matrix

multiply using PHiPAC: a portable, high-performance, ANSI C coding

methodology,” in Proceedings of the 11th international conference on Super-

computing, ser. ICS ’97. New York, NY, USA: ACM, 1997, pp. 340–347.

[76] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the ef-

ficiency of GPU algorithms for matrix-matrix multiplication,” in Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, ser. HWWS ’04. New York, NY, USA: ACM, 2004, pp. 133–137.

161

http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/mklman.pdf
http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/mklman.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://support.amd.com/us/Processor_TechDocs/25112.PDF
http://support.amd.com/us/Processor_TechDocs/25112.PDF

REFERENCES

[77] K. Underwood and K. Hemmert, “Closing the gap: CPU and FPGA

trends in sustainable floating-point BLAS performance,” in Field-

Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual

IEEE Symposium on, april 2004, pp. 219 – 228.

[78] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, “64-bit

floating-point FPGA matrix multiplication,” in Proceedings of the 2005

ACM/SIGDA 13th international symposium on Field-programmable gate ar-

rays, ser. FPGA ’05. New York, NY, USA: ACM, 2005, pp. 86–95.

[79] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[80] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-

matik, vol. 13, pp. 354–356, 1969.

[81] S. Huss-Lederman, E. Jacobson, J. Johnson, A. Tsao, and T. Turnbull, “Im-

plementation of strassen’s algorithm for matrix multiplication,” in Pro-

ceedings of the 1996 ACM/IEEE Conference on Supercomputing, 1996., 1996,

p. 32.

[82] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic

progressions,” in Proceedings of the nineteenth annual ACM symposium on

Theory of computing, ser. STOC ’87. New York, NY, USA: ACM, 1987,

pp. 1–6.

[83] ——, “On the asymptotic complexity of matrix multiplication,” in Pro-

ceedings of the 22nd Annual Symposium on Foundations of Computer Science,

ser. SFCS ’81. Washington, DC, USA: IEEE Computer Society, 1981, pp.

82–90.

[84] S. Robinson, “Toward an optimal algorithm for matrix multiplication,”

SIAM News, November 2005. [Online]. Available: http://www.siam.

org/news/news.php?id=174

162

http://www.siam.org/news/news.php?id=174
http://www.siam.org/news/news.php?id=174

REFERENCES

[85] P. Drineas and R. Kannan, “Fast monte-carlo algorithms for approximate

matrix multiplication,” in Foundations of Computer Science, 2001. Proceed-

ings. 42nd IEEE Symposium on, 2001, pp. 452 –459.

[86] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo algorithms

for matrices I: Approximating matrix multiplication,” SIAM J. Comput.,

vol. 36, pp. 132–157, July 2006.

[87] M. Baboulin, A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek,

and S. Tomov, “Accelerating scientific computations with mixed preci-

sion algorithms,” 2008.

[88] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak,

“Mixed precision iterative refinement techniques for the solution of

dense linear systems,” Int. J. High Perform. Comput. Appl., vol. 21, pp.

457–466, November 2007.

[89] J. Demmel, Y. Hida, E. J. Riedy, and X. S. Li, “Extra-precise iterative re-

finement for overdetermined least squares problems,” ACM Trans. Math.

Softw., vol. 35, pp. 28:1–28:32, February 2009.

[90] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on

the atmospheric neutron soft error rate,” IEEE Transactions on Nuclear

Science, vol. 47, no. 6, pp. 2586 –2594, dec 2000.

[91] R. Baumann, “The impact of technology scaling on soft error rate per-

formance and limits to the efficacy of error correction,” in International

Electron Devices Meeting, 2002 (IEDM ’02), 2002, pp. 329 – 332.

[92] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem:

an architectural perspective,” in 11th International Symposium on High-

Performance Computer Architecture, 2005. HPCA-11., feb. 2005, pp. 243 –

247.

[93] S. R. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap: (invited pa-

per),” in Proceedings of the Conference on Design, Automation and Test in

Europe, ser. DATE ’10, 2010, pp. 1011–1016.

163

REFERENCES

[94] S. Mitra, M. Zhang, N. Seifert, T. Mak, and K. S. Kim, “Built-in soft error

resilience for robust system design,” in IEEE International Conference on

Integrated Circuit Design and Technology, 2007 (ICICDT ’07), 30 2007-june

1 2007, pp. 1 –6.

[95] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth, J. Ackaret,

R. Lockwood, J. Schumann, and C. R. Jones, “Soft-error resilience of the

IBM POWER6 processor,” IBM J. Res. Dev., vol. 52, pp. 275–284, May

2008.

[96] N. P. Carter, H. Naeimi, and D. S. Gardner, “Design techniques for cross-

layer resilience,” in Proceedings of the Conference on Design, Automation

and Test in Europe, ser. DATE ’10, 2010, pp. 1023–1028.

[97] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochastic

processors,” in Proceedings of the Conference on Design, Automation and Test

in Europe, ser. DATE ’10, 2010, pp. 335–338.

[98] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,

“Soft-error detection using control flow assertions,” in Proceedings. 18th

IEEE International Symposium on Defect and Fault Tolerance in VLSI Sys-

tems, 2003., Nov. 2003, pp. 581 – 588.

[99] “Operation refinement of image processing (ORIP) tasks project,”

2008-2012. [Online]. Available: http://www.ee.ucl.ac.uk/~iandreop/

ORIP.html

[100] A. Kadyrov and M. Petrou, “The “invaders” algorithm: Range of val-

ues modulation for accelerated correlation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1882–1886, Nov. 2006.

[101] A. K. Prasoon and K. Rajan, “4× 4 2-D DCT for H.264/AVC,” in Proceed-

ings of the International Conference on Advances in Computing, Communica-

tion and Control, ser. ICAC3 ’09. New York, NY, USA: ACM, 2009, pp.

573–577.

164

http://www.ee.ucl.ac.uk/~iandreop/ORIP.html
http://www.ee.ucl.ac.uk/~iandreop/ORIP.html

REFERENCES

[102] D. Goldberg, “What every computer scientist should know about

floating-point arithmetic,” ACM Comput. Surv., vol. 23, no. 1, pp. 5–48,

1991.

[103] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-

complexity transform and quantization in H.264/AVC,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 598–

603, July 2003.

[104] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC fidelity

range extensions: tools, profiles, performance, and application areas,” in

IEEE International Conference on Image Processing, 2005. ICIP 2005., vol. 1,

Sept. 2005, pp. I–593–6.

[105] D. Donoho, “De-noising by soft-thresholding,” IEEE Transactions on In-

formation Theory, vol. 41, no. 3, pp. 613 –627, may 1995.

[106] H. Sun and W. Kwok, “Concealment of damaged block transform coded

images using projections onto convex sets,” IEEE Transactions on Image

Processing, vol. 4, no. 4, pp. 470–477, Apr 1995.

[107] W. Sung and K.-I. Kum, “Simulation-based word-length optimization

method for fixed-point digital signal processing systems,” IEEE Transac-

tions on Signal Processing, vol. 43, no. 12, pp. 3087–3090, Dec 1995.

[108] B. Natarajan, V. Bhaskaran, and K. Konstantinides, “Low-complexity

block-based motion estimation via one-bit transforms,” IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 7, no. 4, pp. 702

–706, Aug 1997.

[109] S. Erturk, “Multiplication-free one-bit transform for low-complexity

block-based motion estimation,” IEEE Signal Processing Letters, vol. 14,

no. 2, pp. 109 –112, Feb. 2007.

[110] “The olpc wiki.” [Online]. Available: http://wiki.laptop.org/

165

http://wiki.laptop.org/

REFERENCES

[111] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-

ment: from error visibility to structural similarity,” IEEE Transactions on

Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[112] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared

Memory Parallel Programming (Scientific and Engineering Computation).

The MIT Press, 2007.

[113] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear

algebra subprograms for fortran usage,” ACM Transactions on Mathemat-

ical Software (TOMS), vol. 5, pp. 308–323, September 1979.

[114] J. L. Gustafson and B. S. Greer, “A hardware accelerator for the Intel

Math Kernel,” White Paper, ClearSpeed Technology Inc., 2006.

[115] R. Gray and D. Neuhoff, “Quantization,” IEEE Transactions on Informa-

tion Theory, vol. 44, no. 6, pp. 2325 –2383, oct 1998.

[116] L. H. de Figueiredo and J. Stolfi, “Affine arithmetic: Concepts and appli-

cations,” Numerical Algorithms, vol. 37, pp. 147–158, 2004.

[117] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An ex-

tended set of FORTRAN basic linear algebra subprograms,” ACM Trans-

actions on Mathematical Software (TOMS), vol. 14, pp. 1–17, March 1988.

[118] F. Abdelkefi, P. Duhamel, and F. Alberge, “Impulsive noise cancella-

tion in multicarrier transmission,” IEEE Transactions on Communications,

vol. 53, no. 1, pp. 94 – 106, jan. 2005.

[119] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly Media, 2008.

[120] Q. Du and J. Fowler, “Hyperspectral image compression using JPEG2000

and principal component analysis,” IEEE Geoscience and Remote Sensing

Letters, vol. 4, no. 2, pp. 201 –205, april 2007.

[121] D. Aberdeen and J. Baxter, “Emmerald: a fast matrixâĂŞmatrix multiply

using intel’s SSE instructions,” Concurrency and Computation: Practice and

Experience, vol. 13, no. 2, pp. 103–119, 2001.

166

REFERENCES

[122] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level

3 basic linear algebra subprograms,” ACM Transactions on Mathematical

Software (TOMS), vol. 16, pp. 1–17, March 1990.

[123] Intel R© 64 and IA-32 Architectures Optimization Reference Manual, Intel Cor-

poration, November 2009, reference Number: 248966-020.

[124] Intel R© SSE4 Programming Reference, Intel Corporation, July 2007, refer-

ence Number: D91561-003.

[125] “Loop blocking to optimize memory use on 32-bit architec-

ture.” [Online]. Available: http://software.intel.com/en-us/articles/

loop-blocking-to-optimize-memory-use-on-32-bit-architecture

[126] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochastic

computation,” in Proceedings of the 47th Design Automation Conference, ser.

DAC ’10. New York, NY, USA: ACM, 2010, pp. 859–864.

[127] Y.-C. Lin and S.-C. Tai, “Fast full-search block-matching algorithm for

motion-compensated video compression,” IEEE Transactions on Commu-

nications, vol. 45, no. 5, pp. 527 –531, may 1997.

[128] A. Frank and A. Asuncion, “YearPredictionMSD data set (a subset

of the data from the million song dataset),” UCI Machine Learning

Repository, Irvine, CA: University of California, School of Information

and Computer Science, Tech. Rep., 2011. [Online]. Available: http://

archive.ics.uci.edu/ml/datasets/YearPredictionMSD

[129] K. Asanovic and N. Morgan, “Experimental determination of preci-

sion requirements for back-propagation training of artificial neural net-

works,” in In Proceedings 2nd International Conference on Microelectronics

for Neural Networks, 1991, pp. 9–15.

[130] M. Anam and Y. Andreopoulos, “Throughput scaling of convolution for

error-tolerant multimedia applications,” IEEE Transactions on Multime-

dia, vol. 14, no. 3, pp. 797 –804, june 2012.

167

http://software.intel.com/en-us/articles/loop-blocking-to-optimize-memory-use-on-32-bit-architecture
http://software.intel.com/en-us/articles/loop-blocking-to-optimize-memory-use-on-32-bit-architecture
http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	Acronyms
	Nomenclature
	1 Introduction and Literature Review
	1.1 Literature Review
	1.1.1 Algorithm-specific implementations with complexity/precision scalability
	1.1.2 Approximate and Incremental Computation
	1.1.3 Memory Compression and Data Representation
	1.1.4 High Performance Computing
	1.1.5 Fault-tolerant Computation

	1.2 Thesis Structure and Research Contributions
	1.2.1 General Structure
	1.2.2 Detailed Structure
	1.2.3 Research Publications

	2 Packing: a Method for Concurrent Calculation of Image Processing Operators in Software
	2.1 Tight Packing
	2.1.1 Theory of Operational Tight Packing

	2.2 Loose Packing
	2.3 Floating-Point Aspects in Tight Packing
	2.3.1 Validation of Proposition 1 in a Floating-Point Unit
	2.3.2 Setting of Operational Parameters for Tight Packing

	2.4 Loose Packing vs. Tight Packing
	2.5 Remarks on the Usage of Packing for Image Processing Applications

	3 Incremental Computation using Packing and Unpacking
	3.1 Introduction
	3.2 Loose Packing in a Incremental Framework
	3.3 Transform Decomposition
	3.4 Two-Dimensional Convolution
	3.5 Block Matching
	3.5.1 Bitwise Matching Criterion
	3.5.2 Sum of Squared Error Criterion
	3.5.2.1 Packing of Incremental Block and Search-Area Samples using the Quincunx Lattice
	3.5.2.2 SS Error Calculation using Packed Representations
	3.5.2.3 Setting of the Packing Coefficient d
	3.5.2.4 Overall Block Matching Algorithm

	3.6 Experimental Results
	3.7 Incremental Transform Decomposition and 2D Convolution Experiments
	3.7.1 Results Exposition
	3.7.2 Comparisons Performed
	3.7.3 Analysis of Execution Efficiency
	3.7.4 Analysis of Visual Quality

	3.8 Incremental Block Matching Experiments
	3.8.1 Bitwise Matching Criterion
	3.8.2 Sum of Square Error Criterion

	3.9 Applications
	3.9.1 Region-of-Interest Based Incremental Computation
	3.9.2 Time-Driven Computation
	3.9.3 Energy-Distortion Efficiency of Software-based Incremental Computation for Real-Time Video Processing on the XO Laptop

	3.10 Concluding Remarks

	4 Beyond Lossless Tight Packing
	4.1 Generic Matrix Multiplication (GEMM)
	4.2 Quantisation via Companding & Rounding
	4.3 Packing Techniques
	4.3.1 Asymmetric Packing
	4.3.2 Symmetric Packing
	4.3.3 Differences between symmetric and asymmetric packing

	4.4 GEMM as a computation channel
	4.4.1 Summary of known results on operational tight packing
	4.4.2 Noise of Packed Results in Floating-point Representations
	4.4.3 Quantisation Noise Model
	4.4.4 Combined Noise Model

	4.5 Distortion-Controlled Throughput Scaling of Subblock Multiplication
	4.5.1 Theoretical Calculation of Optimal Companders and Experimental Validation
	4.5.2 Practical GEMM Configuration for Optimised Throughput/Distortion Processing

	4.6 Concluding Remarks

	5 BLAS and Generic Matrix Multiplication
	5.1 Generic Matrix Multiply Routine (GEMM)
	5.1.1 Streaming SIMD Extensions and High Performance Computing
	5.1.2 Matrix Reordering
	5.1.3 Top-Level of GEMM
	5.1.4 GEMM Kernels and Optimisation Techniques
	5.1.5 Throughput/distortion Optimisation of Inner-Kernel Multiplication

	5.2 Experimental Results
	5.3 Applications
	5.3.1 Conceptual Example: Disturbance Cancellation under Estimation Uncertainty
	5.3.2 Accelerated Processing in State-of-the-art Face Recognition
	5.3.3 Accelerated Supervised Training of Multi-layer Perceptron (MLP) based Learning System

	5.4 Concluding Remarks

	6 Conclusions
	References

