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Super-Arrhenius Diffusion in an Undercooled Binary Lennard-Jones Liquid Results
from a Quantifiable Correlation Effect
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On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be
extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius
diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle
between steps in successive time windows. The correction factor accounts for the fact that on average,
successive displacements are negatively correlated, and this effect can therefore be linked directly with the
higher apparent activation energy for diffusion at low temperature.
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Super-Arrhenius temperature dependence of transport
properties such as the diffusion constant is a characteristic
of “fragile”” supercooled liquids in Angell’s classification
[1]. In such systems the effective activation energy in-
creases as the temperature falls, and the Vogel-Tammann-
Fulcher (VTF) equation is commonly used to fit such
behavior. In this Letter we show that for the binary
Lennard-Jones (BLJ) glass former, it is possible to separate
out an Arrhenius dependence that occurs on a shorter time
scale than the ergodic super-Arrhenius behavior. The short-
time-averaged results can be quantitatively corrected by
taking into account the correlation between displacements
in successive time windows.

Molecular dynamics simulations were performed for 60-
and 256-atom binary mixtures of 48 type A and 12 type B
particles, and 204 type A and 52 type B particles, respec-
tively, interacting via a Lennard-Jones potential in a peri-
odically repeated cell [2—7]. Number densities of 1.1 and
1.3 in reduced units of 0,3 (used throughout) were con-
sidered for interaction parameters oo, = 1.0, o4 = 0.8,
opg = 0.88, expn = 1.0, €5 = 1.5, and egg = 0.5 along
with the Stoddard-Ford quadratic cutoff [8], which ensures
that both the potential energy and its first derivative are
continuous. Cutoffs of half a box length were used, and a
velocity Verlet algorithm was employed to propagate the
trajectory with a time step of 0.005 in reduced units of
(mo3,/€an)"? (used throughout). For the 256-atom sys-
tem, each microcanonical run at constant energy included
10° initial steps followed by 10° steps of data collection.
For the 60-atom system, 107 initial steps were followed by
107 steps of data collection in each run. The final configu-
ration at a particular energy was used as a starting configu-
ration for the subsequent simulation, with the total energy
decreased by 10 e, 5 each time for 60 atoms and 50€, 5 for
256 atoms.

Self-diffusion coefficients, presented previously [9],
were obtained using Einstein’s proportionality relation
for the mean square displacement of a particle as a function
of observation time in the limit that + — oo. The gradient

0031-9007/06/96(5)/057802(4)$23.00

057802-1

PACS numbers: 61.20.Ja, 61.43.Fs, 64.70.Pf

was calculated by linear regression. All results are pre-
sented for the majority A atoms, although the B atoms
exhibit identical behavior.

To determine the time scale required to achieve effective
ergodicity in a given simulation we employed the energy
fluctuation metric (z) [9,10]. This metric measures the
deviation of the time-averaged energy of each individual
particle from the average for that species. If the system is
ergodic within a well-defined region of configuration space
then €)(7) vanishes for long times. Ergodicity can be diag-
nosed by requiring smooth, monotonic decay of )(¢) with
time and comparing results for simulations at different
energies [9]. There is then no heterogeneity in the distri-
bution of average particle energies or mobilities. However,
for computer simulations of supercooled liquids and
glasses over finite time intervals this ergodic limit may
not be accessible, especially at low temperature. Instead
Q(z) reaches an almost constant value, indicating that the
energy per particle is not self-averaging [11,12]. Hetero-
geneous dynamics [13—23] are therefore associated with
nonergodic averaging intervals in the present work.
Complementary information is provided by the non-
Gaussian parameter [24]
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which decays to zero for ergodic trajectories. Here (...)
denotes an average over all atoms of a particular type and
all time origins. a,(7) vanishes when the atomic motion is
homogeneous, which occurs during ballistic motion at
t — 0 and ergodic diffusion at t — oo.

In order to characterize differences between the most
mobile and immobile particles, we considered time scales
over which (#) indicates nonergodicity, and the non-
Gaussian parameter does not decay to zero. Here we define
mobility in terms of the displacement between the two end
points. If the entire trajectory is ergodic, we can divide the
total time, f,,, into m shorter nonergodic segments of
length 7. We then consider the result of calculating the

a(1) = ey
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diffusion constant, D(7), from the average mean square
displacement over different time scales, 7. The total mean
square displacement at the end of the trajectory is given by

N
(2 (toa)) = ;]<Z Ari(ttotal)2>) 2
i=

where here and subsequently, {. . .) denotes an average over
all time origins. The mean square displacement used to
calculate D(7) is given by (37, N | Ar;(j)*)/N, where
M7 = tigq and Ar;(j) = r;(jr) — r;(j7 — 7).

Figure 1 shows D(7) for the 10 most mobile and the 10
least mobile atoms for 7 = 25 in a 60-atom BLJ mixture of
number density 1.3. On this time scale D(7) for all the
atoms, whether more or less mobile, exhibits Arrhenius
temperature dependence. Furthermore, D(7) calculated for
individual atoms runs parallel to the true diffusion constant
at high temperature, but deviates at low temperature. The
deviation occurs where curvature in the true diffusion
constant becomes apparent, around T = 1.0€4/kg. This
is roughly the temperature where the system may enter a
“landscape-influenced”” regime, and the average potential
energy of minima sampled starts to fall significantly [2].

As 7 increases, and ergodicity is reached, D(r) should
tend to the true diffusion constant, whether calculated for
individual atoms, or averaged over all of them. Figure 2
shows D(7) calculated for the average over all (A) atoms at
several values of 7. Super-Arrhenius curvature is recovered
with increasing 7, and we see that it is only the lower
temperature results that change. At high temperature it
appears that ergodicity was already reached on the shortest
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FIG. 1 (color online). Variation of InD(7) with 1/T for the ten
most mobile atoms, the ten least mobile atoms and the average
over all A atoms (filled circles) determined over a time interval
of 7 =25 in a 60-atom BLJ mixture of number density 1.3.
Linear regression fits are shown. The dashed box encloses results
for the most mobile atom where €(¢) indicates nonergodicity
over the entire trajectory. The true diffusion constant obtained by
averaging over all A atoms on an ergodic time scale is shown by
filled diamonds together with a VTF fit.

time scale considered. ()(7) reveals that for the four lowest
temperatures, ergodicity is approached at a time around
2500 (not shown).

Arrhenius behavior is observed on time scales for
which the low temperature results are nonergodic. On
averaging over longer time windows super-Arrhenius be-
havior is progressively recovered. However, we find that
this super-Arrhenius diffusion does not result from aver-
aging over a distribution of particles that each behave in
Arrhenius fashion but with different barriers. Instead, the
analysis below shows that super-Arrhenius behavior is
caused by a negative correlation between the atomic dis-
placements in successive time windows. If the windows
are too short then there is insufficient time for reversals
in direction to be registered in lower temperature trajecto-
ries, and the calculated D(7) is too large. The magnitude
of the discrepancy increases with decreasing temperature,
in agreement with the suggestion that non-Arrhenius
transport properties are linked to the increasing time scale
required to achieve effective ergodicity at low tempera-
ture [7].

Further insight can be obtained by considering the physi-
cal significance of the mean square displacement employed
to calculate D(7). We can rewrite the total mean square
displacement in terms of atomic displacements in m time
intervals of length 7,

Ar;(tio)* = Z Ar,(j)* + 2ZAri(j) - Ar;(k)
i=1 i<k

= i Ar;(j)? + 2> Ari()Ari(k) cosb . (3)
j=1

i<k
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FIG. 2 (color online). Variation of InD(7) with 1/T for the
average over all A atoms in a 60-atom BLJ mixture of number
density 1.3. The D(7) were calculated over time intervals of 25,
250, and 2500, represented by crosses, squares, and circles,
respectively. The true diffusion constant obtained by averaging
over all A atoms on the longest time scale is shown by filled
diamonds.
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When calculating D(7) we include the first term in Eq. (3)
but not the second term. For 7 = 25 we find (cosf ;) # 0
only for adjacent time intervals (Fig. 3). At low tempera-
tures {cos, ;_;) is negative, and an atom is most likely to
move backwards relative to the displacement vector in the
previous time window. (cosf;; ;) tends to zero as 7 in-
creases sufficiently for ergodicity to be achieved.

If we assume that m is large and the displacements in
adjacent steps are similar, such that only the average
behavior of cosf j; is important, we obtain:

m

Z Ari(j)2> X (1 4 2(cosb; ;_)).

i=1j=1
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Using this formula, which adjusts the mean square dis-

placement, we can recover the correct super-Arrhenius
behavior for different values of 7, as shown in Fig. 4.
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The above analysis was repeated for the 256-atom BLJ
system at various number densities with analogous results.
Figure 5 shows D(7) calculated for several different values
of 7, with and without the (cos# ;) correction for the higher
density. The correction again recovers the correct diffu-
sion constants for all but the shortest values of 7. This
result is easily understood, since at low temperatures for
the shortest times, a plateau in the mean square displace-
ment shows that the particles are still caged. If D(7) is
calculated while the non-Gaussian parameter is still fol-
lowing a power law of the form a,(¢) = /¢ [25], i.e., during
caging, the (cosf ;) correction is not sufficient to recover
the true super-Arrhenius behavior.

Negative correlation for successive transitions between
local BLJ minima is evident in Fig. 6 of Ref [26]. Studies
by Keyes and Chowdhary for a 32-atom Lennard-Jones
system [27] and Doliwa and Heuer for a 65-atom BLIJ
system [5,28] also suggest that negative correlation exists,
in agreement with the present work. Our results provide a
quantitative link between negative correlation and the
higher apparent activation energy for diffusion in fragile
glasses at low temperature. A similar effect has been seen
in a model with a simple hierarchical landscape [29] and
has been suggested for Cus;Zrg; [30,31], BLJ [32], and for
hard spheres [33]. For the BLJ systems considered here the
negative correlation may be a direct result of a reduced
number of connections between local potential energy
minima that are sampled at lower energy [26,34]: if the
number of connections is limited then return to a previous
minimum becomes more likely.

In summary, the present work establishes a quantitative
connection between super-Arrhenius diffusion, correlated
atomic motion, heterogeneity, and ergodicity in a binary
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FIG. 3 (color online). Normalized probability distribution of
cosf;, between displacements in different time intervals of
length 25 are shown for adjacent time windows, k= j + 1,
and for time windows separated by one intervening window, k =
j + 2. The distributions for the lowest temperature are shown in
bold. For k = j + 2, there is little temperature dependence or
bias towards positive or negative cosf .
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FIG. 4 (color online). Variation of InD(7)* with 1/T averaged
over all A atoms in a 60-atom BLJ mixture with number density
1.3, calculated using the (cosf) correction in Eq. (4). The
results are for 7 = 25, 250, and 2500, represented by crosses,
squares, and circles, respectively. The long-time diffusion con-
stant averaged over all A atoms is shown by filled diamonds, and
the solid line shows the long-time VTF fit.
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FIG. 5 (color online). D(7) for a 256-atom BLJ mixture at a
number density of 1.3 calculated for different time intervals, 7,
as shown in the legend. Filled diamonds show the true diffusion
constants for the ergodic trajectory. (a) D(7) calculated for a
range of 7; (b) D(7) corrected by a factor containing the average
angle between successive displacements.

Lennard-Jones system. For short time scales and low tem-
peratures, over which the dynamics are nonergodic and
heterogeneous, the short-time-averaged diffusion constant
exhibits Arrhenius behavior. The mean-squared displace-
ment, and hence the diffusion constant, is overestimated
for time windows that are too short to register negative
correlations in atomic positions. The correct super-
Arrhenius behavior is recovered in the limit of long time
intervals, and the short-time-averaged results can also be
corrected by including a factor containing the average
angle between steps in successive time windows.
Negative correlation is therefore directly linked to the
increase in effective activation energy at low temperature
for this fragile glass former.
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