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Abstract

In the late 1960’s, E.A. Nordgren and J.V. Ryff studied composition opera-

tors on the Hardy space H2. They provided upper and lower bounds on the

norms of general composition operators and gave the exact norm in the case

where the symbol map is an inner function.

Composition operators themselves, on various other spaces, have been

studied by many authors since and much deep work has been done concerning

them. Recently, however B.D. MacCluer and T. Kriete have developed the

study of composition operators on very general weighted Bergman spaces of

the unit disk in the complex plane. My starting point is this work.

Composition operators serve well to link the two areas of analysis, oper-

ator theory and complex function theory. The products of this link lie deep

in complex analysis and are diverse indeed. These include a thorough study

of the Schröeder functional equation:

σ ◦ ϕ = λσ

and its solutions, see [16] and the references therein, in fact some of the well

known conjectures can be linked to composition operators. Nordgren, [12],
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has shown that the Invariant Subspace Problem can be solved by classifying

the minimal invariant subspaces of a certain composition operator onH2, and

de Branges used composition operators to prove the Bieberbach conjecture.

In this thesis, I use various methods from complex function theory to

prove results concerning composition operators on weighted Bergman spaces

of the unit disk, the main result is the confirmation of two conjectures of T.

Kriete, which appeared in [7]. I also construct, in the final chapter, inner

functions which map one arbitrary weighted Bergman space into another.
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Chapter 1

Preliminaries

1.1 Some basic definitions

In this thesis I study composition operators on weighted Bergman spaces.

These spaces consist of functions which are analytic in the unit disk

D = {z: |z| < 1},

and satisfy the growth condition

‖f‖ =

{∫∫
D
|f(z)|2G(|z|)dA(z)

}1/2

<∞. (1.1)

Here dA denotes normalised 2-dimensional Lebesgue measure on the unit

disk. That is

dA =
dx dy

π
=
rdr dθ

π
.

The constant is chosen so that A(D) = 1. G(r) will always denote a contin-

uous, non-increasing function on [0, 1) which satisfies

G(r) → 0 as r → 1.

11



12 CHAPTER 1. PRELIMINARIES

This space, we will denote A2
G, and call the weighted Bergman space with

weight G. It is a Hilbert space with inner product

〈f, g〉 =

∫∫
D
f(z)g(z)G(|z|)dA(z).

Now, suppose that ϕ is a function analytic in D such that ϕ(D) ⊂ D,

then by the composition operator Cϕ we mean the linear operator acting on

A2
G as

Cϕ(f) = f ◦ ϕ.

We will mainly be concerned with Cϕ as an operator mapping A2
G into itself.

The spaces A2
G were introduced in [8] where a systematic study of com-

position operators acting on them is undertaken.

The adjoint operator C∗
ϕ is the unique operator acting on A2

G as

〈Cϕ(f), g〉 = 〈f, C∗
ϕ(g)〉.

We define the operator norm of Cϕ as

‖Cϕ‖ = sup
‖f‖=1

‖Cϕ(f)‖ = sup
f∈A2

G

‖Cϕ(f)‖
‖f‖

,

then the following relation is true

‖Cϕ‖ = ‖C∗
ϕ‖ =

√
‖CϕC∗

ϕ‖.

The study of composition operators was pioneered in the late 1960s by

Nordgren, Ryff and Schwartz, see [11, 14, 15]. They studied Cϕ acting on

H2, the Hardy space. In the past 15 years, this area has received much atten-

tion once more. Composition operators have been linked to some very deep
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areas of analysis and operator theory, see for example [16]. Recently Nord-

gren, Rosenthal and Wintrobe have shown that the solution of the Invariant

subspace problem for Hilbert space is equivalent to studying the minimal

invariant subspaces of a certain composition operator on H2, see [12].

The question of what conditions on the symbol ϕ determine when the

composition operator Cϕ maps A2
G boundedly into itself has been much stud-

ied, see [4] for an introduction. A complete solution to this was given in [8]

and [7] by Kriete and MacCluer. It was shown that Cϕ maps A2
G boundedly

into itself if, and only if the following condition is satisfied:

lim sup
r→1−

G(r)

G(M(r, ϕ))
<∞, where M(r, ϕ) = max

|z|=r
|ϕ(z)|. (1.2)

As an example, we consider the weighted Bergman spaces with weight

function

G(r) = (1− r)α, α > 0.

These are the so-called standard weighted Bergman spaces which we will

henceforth write as A2
α. In this case the above criterion is just

lim sup
r→1

(
1− r

1−M(r, ϕ)

)α
<∞.

This is equivalent to requiring that the angular derivative be positive at each

point in the unit circle ∂D. This is always true however, as we will now see.

1.2 Geometric Function Theory

In this section we introduce some definitions which will be important through-

out the rest of this thesis.
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1.2.1 The angular derivative

As with most introductions to geometric function theory in the unit disk, we

must first state the following.

Theorem 1 (Schwarz-Pick Theorem). If ϕ is an analytic self-map of the

unit disk into itself, then∣∣∣∣∣ ϕ(w)− ϕ(z)

1− ϕ(w)ϕ(z)

∣∣∣∣∣ ≤
∣∣∣∣ w − z

1− wz

∣∣∣∣ .
If equality holds in the above for any z 6= w, then ϕ is an automorphism of

the disk.

This theorem has a different interpretation see [1]. If we define the pseu-

dohyperbolic metric in the disk as

d(z, w) =

∣∣∣∣ z − w

1− zw

∣∣∣∣ ,
then the pseudohyperbolic metric is clearly invariant under conformal maps.

Since the shortest path from 0 to z ∈ D is along the radius, and conformal

maps map straight lines onto circles; we must have that the geodesics of this

metric are either arcs of circles orthogonal to the unit circle, or radii.

Theorem 1 can be restated by saying that self-maps of D are contractions

in the pseudohyperbolic metric, and the automorphisms of D are the only

isometries. As a simple corollary we have the following.

Corollary 1. If ϕ is an analytic self-map of the unit disk, then

|ϕ(z)| ≤ |z|+ |ϕ(0)|
1 + |z| |ϕ(0)|

.
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In particular we have that

1− |ϕ(z)|
1− |z|

≥ 1− |ϕ(0)|
1 + |ϕ(0)|

,

and hence

sup
r∈[0,1)

(
1− r

1−M(r, ϕ)

)α
≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)α
<∞

for any function ϕ, which proves the claim asserted earlier, that all ϕ give

bounded composition operators on A2
α.

1.2.2 Julia’s Lemma

Let us define the following quantity. Given a self-map of the unit disk ϕ, let

dϕ(ζ) = lim inf
z→ζ

1− |ϕ(z)|
1− |z|

, (1.3)

where the limit is taken as z → ζ along any path in D. An important

observation is that the limit is finite only if

lim
z→ζ

|ϕ(z)| = 1.

This quantity plays an important role in the determination of the growth of

ϕ at the point ζ. More precisely we have the following

Lemma 1 (Julia’s lemma). Suppose ζ is in the unit circle, and dϕ(ζ), as

defined in (1.3), is finite. Let {an} be a sequence along which this lower limit

is achieved and for which ϕ(an) converges to η ∈ ∂D. Then for every z ∈ D

|η − ϕ(z)|2

1− |ϕ(z)|2
≤ dϕ(ζ)

|ζ − z|2

1− |z|2
.

Furthermore, if equality holds at any point z ∈ D, then ϕ is an automorphism

of D.
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For a proof of this, see [4]. An interesting application of Julia’s lemma to

Alexandrov measures exists. The Alexandrov measure of ϕ at α ∈ ∂D is the

positive Borel measure σα defined on the unit circle by

Re
α+ ϕ(z)

α− ϕ(z)
=

∫
∂D

ζ + z

ζ − z
dσα(ζ).

The fact that σα exists follows from the Herglotz representation and the fact

that

|ϕ(z)| < 1, z ∈ D.

If ϕ(α) = β then Julia’s lemma implies that

σβ =
1

dϕ(α)
δα + µβ,

where µβ is another such positive measure. Here δα denotes the Dirac point

mass at α.

Proof.

Re
β + ϕ(z)

β − ϕ(z)
− 1

dϕ(α)

α+ z

α− z
=

1− |ϕ(z)|2

|β − ϕ(z)|2
− 1

dϕ(α)

1− |z|2

|α− z|2
≥ 0.

Hence, Herglotz representation theorem implies there is a positive measure,

µβ on ∂D such that the above is equal to∫
∂D

ζ + z

ζ − z
dµβ(ζ).

In fact, it is easy to see that if αn:n = 1, . . . , N are points on the unit

circle, such that ϕ(αn) = β then there is a positive measure νβ with νβ(∂D) =

O(1/N) such that

σβ = νβ +
1

N

N∑
n=1

1

dϕ(αn)
δαn .
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Figure 1.1: A typical Stolz angle

1.2.3 Julia-Caratheodory’s Theorem and angular deriva-
tives

A function, analytic in the unit disk, is said to have a non-tangential limit

at a point ζ ∈ ∂D if the limit of f(z) as z → ζ exists in each Stolz angle.

A Stolz angle is a region similar to the one shown in figure 1.1, the only

important aspect of this region is the angle at ζ. In fact it can be replaced

by any region which has this angle at ζ.

We say that ϕ has a finite angular derivative at ζ if

lim
z→ζ

ϕ(z)− η

z − ζ

exists and is finite in each Stolz angle. Here η is the image of ϕ(ζ) on the

unit circle. If this limit exists, we denote it ϕ′(ζ). Notice it is not the same
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as the derivative since we need η ∈ ∂D. They are related as follows however,

(see [4] for a proof).

Theorem 2 (Julia-Caratheodory’s Theorem). If ϕ is an analytic self

map of the unit disk D, and ζ ∈ ∂D then the following are equivalent:

1. dϕ(ζ) <∞.

2. ϕ has finite angular derivative at ζ.

3. Both ϕ and ϕ′ have finite nontangential limit at ζ, with |η| = 1, where

η = limz→ζ ϕ(z).

Moreover, when these conditions hold, we have limr→1 ϕ
′(rζ) = ϕ′(ζ) =

dϕ(ζ)ζη

This theorem concludes the section.

1.3 Boundedness of Cϕ.

In this section we briefly look at the boundedness of Cϕ on the standard

weighted Bergman spaces, A2
α for α > 0. Although we have already seen,

from the characterisation of bounded composition operators given by Kriete

and MacCluer, that all composition operators are bounded on these spaces,

we will now study this a little more. The aim of this section is to highlight

some important aspects concerning the boundedness of composition opera-

tors. We begin with the following theorem of Littlewood:



1.3. BOUNDEDNESS OF Cϕ. 19

Theorem 3 (Littlewood’s subordination theorem). Let ϕ be an ana-

lytic self-map of the unit disk D such that ϕ(0) = 0. Then if f is analytic in

D, ∫ 2π

0

|f ◦ ϕ(reiθ)|2dθ ≤
∫ 2π

0

|f(reiθ)|2dθ

for any 0 < r < 1.

A proof of this theorem is given in [5, page 10]. So, given any weight

function G we have that Cϕ is bounded as an operator on A2
G and

‖Cϕ‖ ≤ 1

whenever ϕ(0) = 0.

Now given any self-map ϕ of D, we have the following decomposition

ϕ = ϕ1 ◦ ψ ◦ ϕ2,

where ψ(0) = 0 and ϕ1 and ϕ2 are automorphisms of D, and hence each

composition operator has the decomposition

Cϕ = Cϕ2CψCϕ1 .

Since bounded operators on any Hilbert space form a Banach algebra we

must have that Cϕ is bounded if, and only if Cϕ1 and Cϕ2 are. Hence we

must show that all automorphisms of the disk give bounded composition

operators.

This is easy however. If we look at the equivalent weights (1− r2)α then

we find that, using a simple change of variables formula, if

ψ(z) =
a− z

1− az
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is an automorphism of the disk and f is analytic in the disk then∫∫
D
|f ◦ ψ(z)|2(1− |z|2)αdA =

∫∫
D
|f(z)|2(1− |ψ(z)|2)α 1

|ψ′(z)|
dA

=

∫∫
D
|f(z)|2(1− |z|2)α

(
1− |a|2

|1− az|2

)α−1

dA.

It doesn’t take much calculation to show that(
1− |a|2

|1− az|2

)α−1

is bounded in D.

Thus unboundedness of composition operators is essentially determined

by the behaviour of the automorphism induced composition operators. This

is an important fact to notice. For some weight functions, notably those for

which

lim
r→1

G(r)

(1− r)p
= 0, for every p > 0,

there are unbounded composition operators. This, then, must mean that

automorphisms never give bounded composition operators on these spaces,

which is true.

1.4 Inner functions

Used by Beurling to characterise the invariant subspaces of the shift operator

on H2, inner functions are probably the most important class of self-maps of

the unit disk.

Definition 1. A self-map, ϕ, of D is said to be an inner function if

lim
r→1

|ϕ(rζ)| = 1
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for almost all ζ ∈ ∂D. Note that this limit exists a.e. by Fatou’s theorem.

There are essentially only two types of inner functions, Blaschke products

and Singular inner functions.

1.4.1 Blaschke Products

Given a finite or infinite sequence {zn} in D, define the Blaschke product

B(z) =
∏ |zn|

zn

zn − z

1− z̄nz
.

Now a simple calculation shows that if |z| ≤ R < 1∣∣∣∣1− |zn|
zn

zn − z

1− z̄nz

∣∣∣∣ =

∣∣∣∣(zn + |zn|z)(1− |zn|)
zn(1− z̄nz)

∣∣∣∣ ≤ 2(1− |zn|)
1−R

.

Hence, if {zn} satisfies the Blaschke condition

∑
n

(1− |zn|) <∞,

then we see that B(z) coverges on compact subsets of D and is not identically

0 there. Hence it represents an analytic function on D. It can also be shown

that |B(eiθ)| = 1 for almost all eiθ ∈ ∂D, so that B is an inner function.

Note that B has zeros at the points {zn} and only at these points.

1.4.2 Singular inner functions

Whereas Blaschke products represent functions with prescribed zeros in the

disk, Singular inner functions represent functions with prescribed zeros on

the unit circle. Recall that a measure µ on ∂D is singular with respect to

Lebesgue arc-length measure on ∂D if the derivative of the function µ([0, t])
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is zero almost everywhere with respect to Lebesgue arc-length measure. For

example the dirac point-mass, δζ which assigns to an arbitrary set E, the

following measure.

δζ(E) =

{
1 if ζ ∈ E,
0 otherwise.

is singular. We will henceforth assume that singular means singular with

respect to Lebesgue arc-length measure.

Definition 2. Let µ be a singular measure on ∂D, then we call S a singular

inner function if it has the representation:

S(z) = exp

{
−
∫ 2π

0

eit + z

eit − z
dµ(t)

}
.

Note that if we define the Poisson kernel by

Pz(e
it) =

1− |z|2

|eit − z|2
,

then

|S(z)| = exp

{
−
∫ 2π

0

Pz(e
it)dµ(t)

}
.

It can be shown that there are no other inner functions, and by that we

mean that every inner function, I, has the form

I = eiλznB(z)S(z)

where n is some non-negative integer, B is a Blaschke product, S is a singular

inner function and λ is real.
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1.5 Results

In the following chapters I continue the work on composition operators on

large weighted Bergman spaces initiated by Kriete and MacCluer in [8, 9, 7].

In the second chapter I look at unbounded composition operators, the main

results are that the sets ET = {f ∈ A2
G:Tf ∈ A2

G} are of Baire category 1,

where T is either Cϕ or C∗
ϕ. I also give a construction of functions in A2

G

whose image is not in A2
G. These constructions rely heavily on properties of

the reproducing kernels of A2
G.

In the third chapter, I look at bounded composition operators. In [7] Tom

Kriete asked the following question of a particular range of weight functions

G:

Question: Suppose Gi = e−hi , i = 1, 2 are two weight functions such

that

h′1(r)

h′2(r)
→∞ as r → 1,

does there exist a Cϕ bounded on A2
G2

but not on A2
G1

?

I answer this question in the affirmative. The main construction is a

function analytic in the disk D such that

lim sup
r→1

(M(r, ϕ)− r)h′1(r) = ∞,

but lim sup
r→1

(M(r, ϕ)− r)h′2(r) <∞.

This construction has interesting implications concerning a theorem of

Burns and Krantz in [3]. We give some consequences of this theorem includ-

ing the answer to a second question asked in [7].
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In the final chapter, I discuss the problem of finding an inner function

such that its composition operator maps arbitrarily large Bergman spaces

into arbitrarily small Bergman spaces. This is shown to be equivalent to the

construction of an inner function with certain slow growth. I construct both

a Blaschke product and a singular inner function which solve this problem.



Chapter 2

Unbounded Composition
Operators

In this chapter we use Baire’s category theorem to prove that the pre-image

of Cϕ and C∗
ϕ intersected with A2

G are of Baire category 1 if Cϕ is unbounded.

As consequences we construct functions f ∈ A2
G for which Cϕf 6∈ A2

G and

similarly for C∗
ϕ. A subset S of a topological space X is said to be nowhere

dense if, for every point s ∈ S̄, the closure of S, and every open set U

containing s, there is a point in U and an open set containing that point

which is not in S. Then a topological space is said to be of the first category

if it is the countable union of nowhere dense subsets. We thus have the

following famous theorem.

Theorem 4 (Baire’s category theorem). If X is a complete metric space;

then X is not of the first category in itself.

We write Kz as the reproducing kernel of A2
G, i.e. the unique function in A2

G

25
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with the property

f(w) = 〈f,Kw〉 ∀f ∈ A2
G

Kz also has the useful property, ‖Kz‖ = ‖K|z|‖.

We have the following theorem of T. Kriete, which relates the growth of

‖Kr‖, to the decay of G(r), see [7].

Theorem 5. Suppose G = e−h is an admissible weight function as defined

below. Then there exists an increasing function β(r), (0 < r < 1) such that

β(r) →∞ and

‖Kr‖2G(r)

β(r)
→ 1.

as r → 1.

The definition of an admissible weight is very technical, however it can be

seen that most ‘well-behaved’ weight functions are admissible. The definition

of admissible is given in [7] where an admissible weight is called a quick

admissible weight.

Definition 3. If v is defined by the equation

G(r) = exp−v
(

log

(
1

r

))
,

then G is an admissible weight function if there is a t0 > 0 such that v is of

class C4 on (0, t0) and the following 9 conditions hold:

1. v′(t) < 0, v′′(t) > 0, and v′′′(t) < 0 on (0, t0).
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2. The function

1

v′′(t)

(
2 +

d2

dt2
1

v′′(t)

)
is positive and increasing on (0, t0).

3. The positive function −v′′′(t)/v′′(t) is decreasing on (0, t0).

4.

v′′′(t)
√
v(t)

v′′(t)v′(t)
→ 0 as t→ 0.

5. v′′′(t)/v′′(t)
3
2 → 0 as t→ 0.

6. The positive function −v′′′(t)/v′′(t)2, which must tend to 0 with t by the

above condition, does so in an almost monotone sense as follows: there

exists a positive function g(t) defined and increasing for small t > 0,

so that

−v
′′′(t)/v′′(t)2

g(t)

is bounded above and away from 0 for t near 0.

7. v′(t)v′′(t)e−v(t) remains bounded as t→ 0.

8. −tv′(t) →∞ as t→ 0.

9. −tv′(t)/v(t) remains bounded as t→ 0.

We will always assume that our weight function G is admissible as we

will use Theorem 5 extensively.
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2.1 The adjoint composition operator

Now if f is an arbitrary function in A2
G, we have

〈f, C∗
ϕKz〉 = 〈Cϕf,Kz〉 = f ◦ ϕ(z)

= 〈f,Kϕ(z)〉.

Hence we see that

C∗
ϕKz = Kϕ(z).

This is the crux of the following proof.

Theorem 6. Let ϕ : D → D be analytic with maximum modulus function

M(r) satisfying

lim sup
r→1−

G(r)

G(M(r))
= ∞.

Then the set

E = {f ∈ A2
G : C∗

ϕf ∈ A2
G}

is of Baire category 1.

Proof. Now by hypothesis there exists a sequence rn → 1− such that

lim
n→∞

G(rn)

G(M(rn))
= ∞.

Thus for n large enough M(rn) > rn; hence from Theorem 5 we see that

since β is increasing:

‖KM(rn)‖
‖Krn‖

∼ G(rn)

G(M(rn))

β(M(rn))

β(rn)
≥ G(rn)

G(M(rn))
→∞
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and so there is a sequence (zn) ∈ D such that

lim
n→∞

‖Kϕ(zn)‖
‖Kzn‖

= ∞

We can now split E up into a countable union of nowhere dense subsets, as

follows:

Set

Em = {f ∈ A2
G : ‖C∗

ϕf‖ ≤ m} m = 0, 1, . . .

then clearly we have

E =
∞⋃
m=0

Em.

Thus it suffices to show that Em is nowhere dense. To do this we need to

show that for any f ∈ Em and ε > 0 there is a function inside the ε-ball

around f that isn’t in the set Em.

To procceed, we take any ε > 0 and any f ∈ Em, then choose an n so that if

pn(z) =

(
1− 1

n

)
f(z), we have ‖f − pn‖ =

1

n
‖f‖ < ε/2.

Now by the calculation at the beginning of the proof we can choose an n

large enough so that

‖Kϕ(zn)‖
‖Kzn‖

>
4m

ε
. (2.1)

Then if we let

g(z) = pn(z) +
ε

2

Kzn(z)

‖Kzn‖
,

we get

‖f − g‖ ≤ ‖f − pn‖+
ε

2

∥∥∥∥ Kzn

‖Kzn‖

∥∥∥∥ < ε.
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But

‖C∗
ϕg‖ =

∥∥∥∥C∗
ϕpn +

ε

2
C∗
ϕ

Kzn

‖Kzn‖

∥∥∥∥
≥

∣∣∣∣ ε2 ‖Kϕ(zn)(z)‖
‖Kzn‖

− ‖C∗
ϕpn‖

∣∣∣∣
>

ε

2

‖Kϕ(zn)(z)‖
‖Kzn‖

−m

> m,

by (2.1). So g is not in Em. Hence Em is nowhere dense and E is of Baire

category 1.

We note that this theorem provides some insight into exactly why a function

which fails to satisfy (1.2) gives an unbounded composition operator. A

reason why the reproducing kernel function is important in this respect is

due to the inequality: |f(z)| ≤ ‖f‖ ‖Kz‖; which holds for all functions f in

A2
G and more importantly, noticing that the inequality becomes an equality

when f = Kz. So in this sense, the reproducing kernel, Kz, provides us with

a function which has the worst growth at the point z.

We can, in fact, use the kernel functions to construct functions, f , in A2
G

for which ‖C∗
ϕf‖ = ∞ as follows. Firstly, we choose a sequence of complex

numbers (εn) with the following properties:

∞∑
n=0

|εn| <∞, (2.2)
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n2|εn| → ∞ n→∞. (2.3)

Secondly, we can choose a sequence (zn) ⊂ D with the following:

‖Kϕ(zn)‖
‖Kzn‖

≥ n2, (2.4)

∞∑
n=0

(1− |ϕ(zn)|) <∞, (2.5)

∏
j 6=k

∣∣∣∣∣ ϕ(zk)− ϕ(zj)

1− ϕ(zj)ϕ(zk)

∣∣∣∣∣ ≥ δ > 0. (2.6)

Remarks: a) The sequence (zn) can be constructed by simply choosing a

subsequence of the sequence used in the proof of Theorem 6. b) We will also

see that we may replace the n2 in (2.3) and (2.4) by any suitable increasing

function of n tending to infinity rapidly enough.

Now with these sequences, we define a function

f =
∞∑
n=0

εn
Kzn

‖Kzn‖

Then this function converges uniformly in compact subsets of the unit disk

since for |z| ≤ R < 1 we have |Kzn(z)| ≤ ‖Kzn‖ ‖Kz‖ ≤ ‖Kzn‖ ‖KR‖ so that

|f(z)| ≤ ‖KR‖
∑

|εn| <∞,

by (2.2). Hence, f is analytic in D and since

‖f‖ ≤
∑

|εn| <∞

it is in A2
G.
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We claim that this function is such that C∗
ϕ(f) is not in A2

G. To prove this we

use the Riesz Representation Theorem and show that the linear functional

defined by C∗
ϕ(f) is unbounded. To do this we must find a family of functions

(fk) ⊂ A2
G such that

|〈fk, C∗
ϕ(f)〉|

‖fk‖
→ ∞ k →∞.

We let

Bk(z) =
∏
j 6=k

(
z − ϕ(zj)

1− ϕ(zj)z

)
.

By condition (2.5), this Blaschke product converges. Now we let fk =

BkKϕ(zk) so that we have

|〈fk, C∗
ϕf〉| =

∣∣∣∣∑ εn
‖Kzn‖

〈BkKϕ(zk), Kϕ(zn)〉
∣∣∣∣

= |εk||Bk(ϕ(zk))|
‖Kϕ(zk)‖2

‖Kzk
‖

≥ δk2|εk| ‖Kϕ(zk)‖.

Hence, since ‖fk‖ ≤ ‖Kϕ(zk)‖,

|〈fk, C∗
ϕf〉|

‖fk‖
≥ δk2|εk| → ∞. (2.7)

C∗
ϕ(f) must, then, give an unbounded linear functional on A2

G and therefore

it cannot be a member of A2
G, which is what we were required to prove.

2.2 The composition operator

The above construction can be used to prove our second category theorem.
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Theorem 7. If ϕ is analytice in D and G is an admissible weight such that

lim sup
r→1

G(r)

G(M(r, ϕ))
= ∞,

then the set

F = {g ∈ A2
G : Cϕ(g) ∈ A2

G}

is of Baire category 1 in A2
G.

Proof. We prove this in the same way we proved Theorem 6, but first we

need a substitute for the functions
Kzn

‖Kzn‖
used in that proof.

Let us define the linear functionals Tk as

Tk(g) =

〈
g,
Cϕ(fk)

‖fk‖

〉
,

where fk are the functions constructed in the proof of theorem 6. Now

suppose ‖Tk‖ ≤ m for all k, then for fixed g

|Tk(g)| ≤ m‖g‖

for k = 0, 1, . . .. But by (2.7) we see that

|〈f, Cϕ(fk)〉|
‖f‖‖fk‖

→ ∞

That is

|Tk(f)|
‖f‖

→ ∞.

We must, then, have

lim sup
k→∞

‖Tk‖ = ∞.
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But by Riesz’s representation theorem

‖Tk‖ =
‖Cϕfk‖
‖fk‖

.

So

lim sup
k→∞

‖Cϕfk‖
‖fk‖

= ∞.

Hence by a suitable choice of subsequence, (nk), if we let

gk =
fnk

‖fnk
‖

we have our family of functions with the properties: ‖gk‖ = 1 and ‖Cϕ(gk)‖ →

∞ as k →∞. The rest of the proof is as the proof of Theorem 6 and is there-

fore omitted.

We can now construct a function f ∈ A2
G such that Cϕf 6∈ A2

G as follows

using the above functions gk. We will assume that the conditions (2.2) to

(2.6) hold for the sequences (εn) and (zn). Then as before, we see that the

function

h(z) =
∞∑
n=0

εkgk

is in A2
G, but that

|〈Kznj
, Cϕh〉|

‖Kznj
‖

→ ∞.

So Cϕh 6∈ A2
G. The details are as above and are therefore omitted.



Chapter 3

Bounded Composition
Operators

3.1 Introduction

We define

C(G) = {ϕ : Cϕ is bounded as an operator mapping A2
G into A2

G}.

On one hand, we have shown in Section 1.3 that for G(r) = (1 − r)α,

α > 0, C(G) consists of all analytic self-maps of D; this is a consequence of

the fact that all such maps of D can be decomposed as ϕ = ϕ1 ◦ψ ◦ϕ2, where

ψ(0) = 0 and ϕ1 and ϕ2 are automorphisms of the disk.

On the other hand, it has been shown in [9] that if we write G = e−h and

assume that lim sup
r→1

(1− r)3h′(r) = ∞, then

C(G) = {ϕ : ϕ(z) = eiλz or |ϕ′(ζ)| > 1 ∀ ζ ∈ ∂D}, (3.1)

where |ϕ′(ζ)| denotes the angular derivative of ϕ at ζ ∈ ∂D, as defined in

35
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Chapter 1. Thus, in these ranges, C(G) is independent of the choice of G.

We say that G is a fast weight if

lim
r→1

G(r)

(1− r)p
= 0 ∀p > 0.

These weights should be seen as the opposite of the standard weights. The

Bergman spaces they define contain functions with very fast growth, and

more importantly, functions with essential singularities on the boundary. It

is not surprising that automorphisms of the unit disk do not give bounded

composition operators on these spaces.

The question was raised in [7] of what monotonicity, if any, does C(G)

display in the range where G is a fast weight, but (1 − r)3h′(r) remains

bounded as r → 1?

It is readily seen from the condition (1.2) that if Gi = e−hi , for i = 1, 2,

are fast weights such that

h′2(r)

h′1(r)
≤ C,

then we have

G2(r)

G2(M(r, ϕ))
= exp (h(M(r, ϕ))− h(r))

= exp

∫ M(r,ϕ)

r

h′2(s)ds

≤ expC

∫ M(r,ϕ)

r

h′1(s)ds

=

(
G1(r)

G1(M(r, ϕ))

)C
.
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Hence,

C(G1) ⊆ C(G2).

See [7, Theorem 4]. It can also be shown that if

lim
r→1

h′2(r)

h′1(r)
= 0,

then

C(G1) = C(G∗).

Here G∗ = G1/G2. Put another way, given a weight G, one can find another

weight Ĝ such that G/Ĝ→∞ or 0 but C(G) = C(Ĝ). This can also be seen

by noticing that C(G) = C(Gp) for any p > 0. Hence monotonicity of C(G)

does not depend on the weight function G in itself, but rather, on h′.

3.2 Main Results

We prove the following theorem which was conjectured in [7].

Theorem 8. Let Gi = e−hi be such that (1 − r)3h′i(r) remains bounded as

r → 1, for each i = 1, 2. Suppose that

lim
r→1

h′1(r)

h′2(r)
= ∞.

Then
C(G1)⊂6= C(G2).

We note that if there are constants c1, c2 > 0 such that

c1 ≤
h′1(r)

h′2(r)
≤ c2
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then C(G1) = C(G2), and so the theorem can be considered as exploring the

converse to this statement.

We will say that an increasing function ω(r) belongs to the class π0 if

whenever the two quantities a(r) and b(r) are such that

lim
r→1

1− a(r)

1− b(r)
= 1,

then there are constants c1, c2 > 0, depending only on a(r) and b(r), such

that

c1 ≤
ω(a(r))

ω(b(r))
≤ c2.

We will say that a weight function G = e−h ∈ Π if h′ ∈ π0. Notice firstly,

that π0 contains all functions such that

ω(r) = (1− r)−γp

(
log

1

1− r

)
,

where p is a polynomial, and secondly, that ω ∈ π0 is actually a condition on

the growth of ω′(r).

From now on, we will assume G2 ∈ Π, which we may do by replacing h2

by another smoother function h∗2 for which h2(r)/h
∗
2(r) remains bounded as

r → 1.

To prove Theorem 8 we will construct explicitly a function ϕ such that

Cϕ is bounded on A2
G2

but not bounded on A2
G1

.

Let 0 ≤ r1 < r2 < · · · < rn → 1 as n → ∞. Then for a sequence

Λ = (λn)
∞
n=1 define

F (r) = F (r; Λ) =
∞∑
n=1

χ[rn,rn+1)(r)

(
1

1− r

)λn

,
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where χ[rn,rn+1)(r) is the characteristic function for the interval [rn, rn+1).

Lemma 2. Let ρ : [0, 1) → [0,∞) be an increasing continuous function

with

lim
r→1

ρ(r) = ∞, (3.2)

∀ δ > 0 lim
r→1

(1− r)δρ(r) → 0. (3.3)

Then there is a sequence (rn) with

lim sup
n→∞

n

log 1
1−rn

> 0. (3.4)

Moreover 1 − rn = O(1 − rn+1), and there exists a sequence, Λ = (λn) with

λn → 0, such that

ρ(r) ∼ F (r; Λ) as r → 1. (3.5)

We will postpone the proof of this lemma until later.

We now define

L(r; ρ) = (1− r)
ρ′(r)

ρ(r)
, and F(r; ρ) =

log ρ(r)

log
1

1− r

.

The following corollary shows the importance of F and L.

Corollary 2. If ρ(r) ∈ C1 is such that

L(r; ρ) < F(r; ρ) (3.6)

then the sequence (λn) of Lemma 2 associated with ρ is decreasing.
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Since the proof of this corollary depends on the proof of lemma 2, we

postpone it until we have proved the lemma.

It is clear that the condition (3.6) is sufficient for ρ to be in π0. Hence

membership of ρ in π0 can be seen as a growth condition on

(log log ρ)′ .

We also need the following lemma which was proved with help from J. Clu-

nie, to whom I am greatly indebted. We write H− = {z : Im z < 0} for the

lower half-plane.

Lemma 3. If 1 ≤ b ≤ 3 then

Re
(1− z)b

z
≤ (1− |z|)b

|z|
.

Proof. We will show that the above real part is decreasing for z = reiθ and

θ ∈ [0, π]. Since the function (1 − z)b/z is clearly symmetric about the real

axis, this will suffice.

We have

∂

∂θ
Re

(1− z)b

z
= Re iz

(
−bz(1− z)b−1 − (1− z)b

z2

)
= Re − i

z
(1− z)b−1(1 + (b− 1)z)

= Im
(1− z)b−1

z
(1 + (b− 1)z) = v(z).

Now let c = b − 1, so that c ∈ [0, 2]. We will deal only with the domain

Dδ = {z : Im z > 0, δ < |z| < 1}. This will suffice since, as we have
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already mentioned,
(1− z)b

z
is symmetric about the real axis and is defined

everywhere except 0. Since we want v(z) ≤ 0, we will write

v(z) = Im
(1− z)c

z
+ c(1− z)c = Im f1(z) + f2(z).

Firstly, it is clear that since Arg(1− z) ∈ [−π/2, 0] and c ≤ 2, we must have

that Im f2(z) ≤ 0, and so we only need to show that Im f1(z) ≤ 0.

But since 0 < c ≤ 2

1

f1(z)
=

z

(1− z)c

is the univalent, conformal map which takes D onto the domain

L = {z :
∣∣Arg(z + 2−c)

∣∣ < cπ/2}.

Clearly 1/f1 maps the upper half of the unit disk into the upper half

plane since it is univalent, and since the map
1

w
maps the upper half plane

into the lower and vice versa, we must have

f1(Dδ) ⊂ H−,

as required. The result now follows since δ is arbitrary.

The crux of the proof of Theorem 8 is the following construction.

Proposition 1. a) Suppose that

lim
r→1

ρ1(r)

ρ2(r)
= ∞.
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Then there is a function g, analytic in D such that

lim sup
r→1

g(r)ρ1(r) = ∞,

but sup
0<r<1

g(r)ρ2(r) <∞.

Moreover if

ϕ(z) = z + t(1− z)ag(z),

where t is chosen small enough, then

M(r, ϕ) = ϕ(r), for r sufficiently close to 1.

b) Suppose, on the other hand, that

lim
r→1

ρ2(r)

ρ1(r)
= ∞.

Then there is a function h, analytic in D such that

lim inf
r→1

h(r) ρ1(r) = 0,

but lim inf
r→1

h(r) ρ2(r) > 0.

Moreover we have that h(z) 6= 0 in D and again, if

ψ(z) = z + t
(1− z)a

h(z)
,

where t is chosen small enough, then

M(r, ψ) = ψ(r), for r sufficiently close to 1.
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Proof. Part a). The function g, which we will construct, is of the form

g(z) =
∞∑
i=1

ai(1− z)λi ,

where the ai will be 0 infinitely often.

Now we can find a function τ0(r) ↑ ∞ such that

ρ1(r)

ρ2(r)

1

τ0(r)
→∞ as r → 1, (3.7)

and

ρ2(r)

τ0(r)
→∞ as r → 1. (3.8)

Now, let M = (µn) and Λ = (λn) be the sequences of Lemma 2 associated

with ρ2 and τ0 respectively. We can assume that these sequences are decreas-

ing since, by the corollary to lemma 2, this depends only on the growth of

L(r; ρ2) and L(r; τ0), and these can be replaced by suitable functions which

satisfy this criterion.

Given a subsequence rnk
of the rn, which we will choose later, let

ai =


1

ρ2(rnk
)
− 1

ρ2(rnk+1
)

if i = nk,

0 otherwise.

Then we have that

ρ1(rnk
)g(rnk

) ≥ ρ1(rnk
)
∑
i≥nk

ai(1− rnk
)λi

≥ ρ1(rnk
)

ρ2(rnk
)
(1− rnk

)λnk

∼ ρ1(rnk
)

ρ2(rnk
)

1

τ0(rnk
)
→∞ as k →∞. (3.9)
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Moreover,

sup
rn≤r≤rn+1

ρ2(r)g(r) ∼ sup
rn≤r≤rn+1

∞∑
i=1

ai(1− r)λi−µn

≤
m(n)∑
i=1

ai(1− rn)
λi−µn +

∑
i>m(n)

ai(1− rn+1)
λi−µn ,

with m(n) defined as the largest integer, m, such that λm ≥ µn. The above

does not exceed

∞∑
i=1

ai + c
∑

i>m(n)

ai(1− rn)
−µn

≤ 1/ρ2(rn1) + cρ2(rn)
∑

i>m(n)

ai.

Let us mention two important features of the function m(n). Firstly,

m(n) is increasing since the sequences (λn) and (µn) are decreasing, and

secondly, we see that by (3.8), m(n) < n for all n large enough.

We can therefore define a sequence nk such that

nk < m(nk+1) < nk+1.

Now if we assume that m(nk+1) is always much larger than nk, then

there is a largest integer nα(k) such that m(n) ≤ nk for n = nk, . . . , nα(k) and

m(n) > nk for n = nα(k) + 1, . . . , nk+1.

For the first case above we have

ρ2(rn)
∑

i>m(n)

ai ≤ ρ2(rn)
∑
i≥nk

ai ≤
ρ2(rnα(k)

)

ρ2(rnk
)
,
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and for the second,

ρ2(rn)
∑

i>m(n)

ai ≤ ρ2(rn)
∑

i≥nk+1

ai ≤ 1.

Thus we need
ρ2(rnα(k)

)

ρ2(rnk
)

to be bounded. This is clearly not true in general.

However since all we required of τ0 is that

lim
k→∞

ρ1(rnk
)

ρ2(rnk
)

1

τ0(rnk
)

= ∞,

we can simply construct a function τ(r), equal to τ0(r) at each rnk
such that,

for m(n) and nα(k) defined as above with τ0 replaced by τ , we have

1. nk < m(nk+1) < nk+1,

2.
ρ2(rnα(k)

)

ρ2(rnk
)
≤ C.

Of course, in general, (3.7) and (3.8) will not hold for such τ , but this

will not matter.

To construct τ from τ0 we let nα(k) be the sequence constructed above

from τ0. Given some nk let nβ(k) < nα(k) be such that

ρ2(rnβ(k)
)

ρ2(rnk
)
≤ K,

where K > 1 is some pre-chosen constant. Clearly we can assume that the

sequence (nk) has been chosen so that

τ0(rnk+1−1) > ρ2(rnα(k)
).
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ρ2

τ

τ0

nk nβ(k) nα(k) nk+1

Figure 3.1: Construction of τ from ρ2 and τ0

Suppose, now, that τ has been defined for r < rnk
. Then we define τ(r)

for rnk
≤ r ≤ rnk+1

as follows:

rnk
≤ r ≤ rnβ(k)

τ(r) = τ0(r),

rnβ(k)
≤ r ≤ rnβ(k)+1 τ(r) is linear, increasing from τ0(rnβ(k)

) to ρ2(rnβ(k)+1),

rnβ(k)+1 ≤ r ≤ rnα(k)
τ(r) = ρ2(r),

rnα(k)
≤ r ≤ rnk+1−1 τ(r) is linear, increasing from ρ2(rnα(k)

) to τ0(rnk+1−1),

rnk+1−1 ≤ r ≤ rnk+1
τ(r) = τ0(r).

Thus τ(r) is jumping between τ0(r) and ρ2(r), but is always increasing

(See the above figure 3.1). We show that this function τ satisfies all that is

required of it. We will use the obvious notation mτ (n) and mτ0(n) for the

functions m(n) defined above for τ and τ0 respectively.

For nk ≤ n ≤ nβ(k), τ is the same as τ0 and so mτ (n) = mτ0(n) < nk.
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For n = nβ(k) + 1, τ(rn) = ρ2(rn) and so mτ (n) ≥ n > nk.

For the other values of n we see that since τ(r) is increasing from rnβ(k)+1

to rnk+1
and is equal to ρ2 on the interval [rnβ(k)+1, rnα(k)

], mτ is increasing

and so mτ (n) ≥ mτ (nβ(k) + 1) > nk. This concludes our construction of g.

To show that M(r, ϕ) = ϕ(r) for r ≥ r0 when ϕ(z) = z + t(1 − z)ag(z)

we look at

|ϕ(z)|2 = |z|2 + 2tRe z
∞∑
j=1

aj(1− z)a+λj + t2

∣∣∣∣∣
∞∑
j=1

aj(1− z)a+λj

∣∣∣∣∣
2

.

Setting z = reiθ and seix = 1− z, we have

|ϕ(z)|2 = r2 + 2tRe
∑
j

ajre
−iθsa+λjei(a+λj)x + t2

∣∣∣∣∣∑
j

ajs
a+λjei(a+λj)x

∣∣∣∣∣
2

.

Let us, then, define

In =

∣∣∣∣∣
∞∑
j=n

ajs
a+λjei(a+λj)x

∣∣∣∣∣
2

.

An easy calculation shows that we have the relation

In = a2
ns

2(a+λn) + 2ans
a+λn

∞∑
j=n+1

ajs
a+λj cos(λn − λj)x+ In+1.

Hence,

I1 =
∞∑
n=1

In − In+1

=
∞∑
n=1

a2
ns

2(a+λn) + 2
∞∑
n=1

ans
a+λn

∞∑
j=n+1

ajs
a+λj cos(λn − λj)x.
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It follows that

|ϕ(r)|2 −
∣∣ϕ(reiθ)

∣∣2 = 2t
∞∑
j=1

aj
{
r(1− r)a+λj − rsa+λj cos[(a+ λj)x− θ]

}
+ t2

∞∑
n=1

a2
n

{
(1− r)2(a+λn) − s2(a+λn)

}
+ 2t2

∞∑
n=1

an

{
(1− r)a+λn

∞∑
j=n+1

aj(1− r)a+λj

−sa+λn

∞∑
j=n+1

ajs
a+λj cos(λn − λj)x

}
= 2tS1 + t2S2 + 2t2S3.

Clearly, we need this quantity to be non-negative for all r large enough.

But S1 > 0 by Lemma 3, since

Re (1− r)b − (1− reiθ)be−iθ > 0

when b ≤ 3, this is precisely where this condition is used. It is easy to see

that S2 < 0 and S3 < 0 if we choose λn − λj < λn small enough, which we

can do.

Hence we can choose t small enough so that the above is in fact non-

negative for all r close to 1.

The second part of the proposition is proved similarly.

Part b) Suppose now that

ρ2(r)

ρ1(r)
→∞ r → 1.
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Then we need a function h such that

lim inf
r→1

ρ2(r)h(r) > 0, (3.10)

and lim inf
r→1

ρ1(r)h(r) = 0.

However, without loss of generality, we will construct a function h so that

(3.10) holds and a sequence nk so that

lim
k→∞

ρ1(rnk
)h(rnk

) ≤ C, (3.11)

and lim
k→∞

ρ2(rnk
)h(rnk

) = ∞.

Choose τ0(r) ↑ ∞ such that

lim
r→1

ρ2(r)

ρ1(r)τ0(r)
= ∞.

Let (µn), (νn) and (λn) be the decreasing sequences associated with

ρ2(r), ρ1(r) and τ0(r). Then we have, as before, the functions m1(n) and

m2(n). Now let us define the subsequence nk so that

mi(nk+1) > nk i = 1, 2,

and suppose that

ai =


1

ρ1(rnk
)
− 1

ρ1(rnk+1
)

i = nk,

0 otherwise.

Then as before, let

h0(z) =
∞∑
i=1

ai(1− z)λi ,
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so that

ρ1(rnk
)h0(rnk

) ∼
∞∑
i=1

ai(1− rnk
)λi−νnk

=
∑

i≤nk−1

ai(1− rnk
)λi−νnk +

∑
i≥nk

ai(1− rnk
)λi−νnk

≤ C + cρ1(rnk
)
∑
i≥nk

ai = C.

Now for ρ2 we have

inf
rn≤r≤rn+1

h0(r)

(1− r)µn
≥ c

∑
i≤m2(n)

ai(1− rn)
λi−µn +

∑
i>m2(n)

ai(1− rn)
λi−µn

= o(1) +
∑

i>m2(n)

ai(1− rn)
λi−µn .

Let nα(k) be defined as above so that

m2(n) ≤ nk whenever nα(k−1) < n ≤ nα(k),

then for n in the above range, we have∑
i>m2(n)

ai(1− rn)
λi−µn =

∑
i≥nk

ai(1− rn)
λi−µn ≥ (1− rn)

λnkρ2(rn)

ρ1(rnk
)

. (3.12)

We will assume the sequences (nk) were defined with the following con-

straints, which we may clearly do:

(i) nk is close enough to nα(k−1) so that (3.12) is bounded below for n =

nα(k−1), . . . , nk.

(ii) For some nβ(k) > nk, (3.12) is bounded below when n = nk, . . . , nβ(k).

(iii)
ρ2(rn)

τ0(rn)ρ1(rn)
→ ∞ as n tends to infinity but remains always between

nβ(k) and nα(k).
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Then we will construct other functions hn(z), n = 1, 2, . . ., which are

concentrated on the points where (3.12) is not bounded below so that the

sum h(z) =
∑

n xnhn(z) satisfies (3.10) and (3.12). Here xn is chosen such

that xn > 0 and
∑
xn = 1.

Let (n(γk, i)) be a sequence such that

nβ(k) ≤ n(γk, i) ≤ nα(k) for all k,

and
∞⋃

k,i=0

{n(γk, i)} =
∞⋃
k=0

{
nβ(k), . . . , nα(k)

}
.

Then let

Aij =


1

ρ1(rn(γk,i))
− 1

ρ1(rn(γk+1,i))
if j = n(γk, i),

0 otherwise.

As before, let

hi(z) =
∞∑
j=0

Aij(1− z)λj .

Then the same calculation as above shows that there is a constant C inde-

pendent of i such that

ρ1(rnk
)hi(rnk

) ≤ C.

Moreover, for n close to n(γk, i)

inf
rn≤r≤rn+1

ρ2(r)hi(r) >
(1− rn)

λn(γk,i)ρ2(rn)

ρ1(rn(γk,i))
.

Now if we consider

h(z) =
∞∑
n=0

xnhn(z),
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then h is a bounded analytic function in D that satisfies

lim inf
r→1

ρ2(r)h(r) > 0,

but ρ1(rnk
)h(rnk

) ≤ C.

Now h(z) is of the form

∞∑
j=0

Xj(1− z)`j ,

where `j and Xj are positive numbers. Thus h(z) 6= 0 since

Re (1− z)b > 0 when 0 < b ≤ 1.

The calculation showing that if ψ(z) = z+ t(1− z)a/h(z) then M(r, ψ) =

ψ(r), is now identical to the one for part a).

We now prove Theorem 8. The function ϕ which we require needs to have

lim sup
r→1

G1(r)

G1(M(r, ϕ))
= ∞, (3.13)

but
G2(r)

G2(M(r, ϕ))
≤ C, as r → 1. (3.14)

Now (3.13) means that lim supr→1 h1(M(r))− h1(r) = ∞. But

h1(M(r)− h1(r)

= h′1(s)(M(r)− r) for some s ∈ (r,M(r))

> h′1(r)(M(r)− r). (3.15)
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Similarly for (3.14) we have

h′2(s)(M(r)− r) for some s ∈ (r,M(r))

≤ Ch′2(r)(M(r)− r), (3.16)

if

lim
r→1

1−M(r, ϕ)

1− r
= 1.

Note that G2 ∈ Π means that if a(r) and b(r) are such that

lim
r→1

1− a(r)

1− b(r)
= 1,

then there are constants c1, c2 > 0 such that

c1 <
h′2(a(r))

h′2(b(r))
< c2.

In the above we have used a(r) = M(r, ϕ) and b(r) = r.

We now write

h′1(r) =

(
1

1− r

)a
ω1(r),

and h′2(r) =

(
1

1− r

)b
ω2(r),

where ωi are functions which are either constant or tend to 0 (or ∞) slower

than any power of (1− r) as r → 1−. Then either a > b or a = b. In the first

case we may simply choose ϕ to be ϕ(z) = z + t(1− z)c, for some b < c < a.

Then we have

M(r, ϕ)− r = t(1− r)c,
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for r large enough, and so (3.15) tends to infinity as r → 1, but (3.16) remains

bounded.

In the second case, a = b, we employ Proposition 1 in three subcases.

Case 1: ωi(r) →∞ for i = 1, 2. We use Proposition 1 part a) to construct

a function with

lim sup
r→1

M(r, ϕ)− r

(1− r)a
ρ1(r) = ∞,

but
M(r, ϕ)− r

(1− r)a
ρ2(r) ≤ C.

where ω1 = ρ1 and ω2 = ρ2.

Case 2: ρi(r) → 0 for i = 1, 2. We use Proposition 1 part b) to construct

the function we need, this time with ρ1 = 1/ω1 and ρ2 = 1/ω2.

Case 3: ρ1(r) →∞ but ρ2(r) → 0 In this case the function z + t(1− z)a

will do.

Theorem 8 is thus proved.

3.3 Proof of lemma 2 and corollary 2

We now prove lemma 2. Firstly let rn be a sequence satisfying (3.4) such

that

lim
n→∞

ρ(rn)

ρ(rn+1)

exists and is finite. Such a sequence can easily be constructed. Let δn ↑ ∞

be such that

ρ(rn) = eδn ,
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and write rn = 1−e−φ(n). We will show that the sequence, Λ = (λn), defined

as

λn =
δn
φ(n)

n = 1, 2, . . .

satisfies (3.5). Now clearly we have

(1− rn)
λnρ(rn) = exp(−λnφ(n) + δn) = 1.

We also have that

(1− rn+1)
λnρ(rn+1) = exp(−λnφ(n+ 1) + δn+1),

and so (3.5) will follow if we can show that

lim
n→∞

δn+1 − λnφ(n+ 1) = 0. (3.17)

In that case we will have that for rn ≤ r ≤ rn+1, there is an an → 1 such

that

an

(
1

1− rn

)λn

≤ ρ(rn) ≤ ρ(r) ≤ ρ(rn+1) ≤
(

1

1− rn+1

)λn+1

and so

(1− r)λnρ(r) ≤ (1− rn)
λn

(1− rn+1)λn+1

which, as we will see later, tends to 1 as n→∞. Also

(1− r)λnρ(r) ≥ an

(
1− rn+1

1− rn

)λn

∼ an → 1.

Now (3.17) is equivalent to

lim
n→∞

log ρ(rn+1)−
φ(n+ 1)

φ(n)
log ρ(rn) = 0.
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This is equivalent to showing that

lim
n→∞

log
ρ(rn+1)

ρ(rn)
+
φ(n)− φ(n+ 1)

φ(n)
log ρ(rn) = 0. (3.18)

Now by virtue of (3.3) we have that

lim
n→∞

log ρ(rn)

φ(n)
= 0. (3.19)

This implies that the first term in (3.18) tends to zero.

We also need to show that the second term in (3.18) tends to zero. This

will follow if we can show that

lim
n→∞

ρ(rn)

ρ(rn+1)
= 1.

Since ρ is positive and increasing, we already have

0 <
ρ(rn)

ρ(rn+1)
< 1,

and so if we assume, towards a contradiction, that

a = lim
n→∞

ρ(rn)

ρ(rn+1)
6= 1,

then we know that 0 ≤ a < 1. Hence if we choose any 0 < ε < 1− a we can

find an N so that

ρ(rn)

ρ(rn+1)
≤ (a+ ε) < 1,

for any n ≥ N . But then in particular, we have that for each positive integer

m,

ρ(rN)

ρ(rN+m)
≤ (a+ ε)m,
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or

log ρ(rN+m) ≥ log ρ(rN) +m log
1

a+ ε
.

But this means that

lim sup
m→∞

log ρ(rN+m)

φ(N +m)
> 0,

by (3.4), which is a contradiction of (3.19). Hence, we must have a = 1 and

(3.18) does tend to zero which proves (3.5).

We also, now, prove corollary 2

Proof of corollary 2.

From the proof of lemma 2 we see that the sequence λn is defined to

be F(rn) and so the corollary follows by differentiating F and using the

hypothesis to show it is decreasing.

Another way to see this is to note that if L(r; ρ) < ε for r ≥ r0 then

(1 − r)ερ(r) is decreasing for r ≥ r0. Hence the hypotheses merely say that

(1− r)λnρ(r) is decreasing whenever r ≥ rn.

3.4 Consequences

A second question was asked in [7] regarding the function C(G).

Question 1. It is known that for fast weights, G, Cϕ bounded on A2
G implies

the angular derivative satisfies

|ϕ′(ζ)| ≥ 1 ∀ζ ∈ ∂D.

Does there exist a weight for which there are no further restrictions.
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We are now able to answer this question.

Proposition 2. Let

H = {ϕ: |ϕ′(ζ)| ≥ 1 ∀ζ ∈ ∂D}.

There is no weight function G such that

C(G) = H.

Proof. Suppose, on the contrary, that there is a function G such that C(G) =

H, and as usual write G = e−h. Now since C(G) is known when

G(r) = (1− r)α

and when lim sup
r→1

(1− r)3h′(r) = ∞,

and C(G) 6= H in either of these ranges, we must conclude that G is exactly

in the range we have been discussing in this chapter.

Hence we can find another weight function G∗ = e−h∗ with

lim
r→1

h′(r)

h′∗(r)
= ∞

to deduce that

H = C(G)⊂6= C(G∗) ⊆ H

which is a contradiction.
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3.5 Complex Analysis

As mentioned at the beginning of this thesis, the set C(G) is independent of

the weight G, provided

lim sup
r→1

(1− r)3h′(r) = ∞. (3.20)

This criterion comes from a result of Burns and Krantz, [3], which states

that if ϕ is a self-map of the unit disk, and is such that

ϕ(z) = z + o(1− z)3 as z → 1,

then ϕ(z) ≡ z.

The authors of [3] prove this using the Herglotz representation to show

that

Re
1 + ϕ(z)

1− ϕ(z)
− 1 + z

1− z
> 0.

However an application of Julia’s lemma suffices since

Re
1 + ϕ(z)

1− ϕ(z)
− 1 + z

1− z
=

1− |ϕ(z)|2

|1− ϕ(z)|2
− 1− |z|2

|1− z|2
> 0

as ϕ(z) has an angular derivative of 1 at 1.

A refinement of this result was used in [9] to get the above criterion (3.20).

In fact the authors improved the result of Burns and Krantz to the following:

If ϕ has angular derivative 1 somewhere on the unit circle, and

lim inf
r→1

M(r, ϕ)− r

(1− r)3
= 0,

then M(r, ϕ) = r, in other words, ϕ(z) = eiλz for some real λ.

The main result in this chapter can now be restated as
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Theorem 9. Suppose ωi(r)(1 − r)3 remains bounded as r → 1 for i = 1, 2,

where ωi are non-decreasing functions on [0, 1), tending to infinity as r → 1.

Suppose also that

lim
r→1

ω1(r)

ω2(r)
= ∞. (3.21)

Then there is an analytic self-map of the unit disk ϕ such that

lim sup
r→1

(M(r, ϕ)− r)ω1(r) = ∞

lim sup
r→1

(M(r, ϕ)− r)ω2(r) < ∞.

This result, then, is of independent interest given the Burns and Krantz

result. It is also, therefore, worth noting that (3.21) can be replaced with

lim sup
r→1

ω1(r)

ω2(r)
= ∞.

This can be seen by inspection of the construction in Proposition 1.

It is unlikely that one could strengthen the conclusion of Theorem 9 to

M(r, ϕ)− r ∼ 1

ω(r)
,

for arbitrary increasing functions ω(r). However, it would be of interest to

classify such functions ω(r). As a positive result, it can be seen that for any

function of the form

τ(r) =
∞∑
n=1

an(1− r)λn

there are functions ϕ and ψ such that

M(r, ϕ)− r = (1− r)aτ(r) or M(r, ψ)− r =
(1− r)a

τ(r)
.



Chapter 4

Growth of Inner functions

4.1 Introduction

In this chapter we consider the question of whether or not we can construct

an inner function I, such that CI maps one weighted space into another. We

will, however, not consider weighted Bergman spaces as such, but rather the

following spaces: let w(r) ↑ ∞, as r → 1, be a continuous weight function,

then we define

Hw = {f : f is analytic in D and M(r, f) = O(w(r))} .

It is clear that for every weight G, there are two weights w1 and w2, such

that

Hw1 ⊂ A2
G ⊂ Hw2 ,

so we can, without loss of generality look at these spaces.

In [2], the authors construct an inner function I such that CI maps Hw

into the little Bloch space B0. It is of interest to note that one cannot

construct an inner function I such that the composition operator CI which

61
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maps Hw into the Hardy spaces Hp, since MacLane showed in [10] that there

are functions in Hw with no radial limits, but functions in the Hardy spaces

have radial limits almost everywhere, see [5].

If we define a norm on Hw as

‖f‖Hw
= sup

z∈D

|f(z)|
w(|z|)

,

then an inner function I forms a bounded composition operator from Hw1 to

Hw2 if

|f ◦ I(z)|
w2(|z|)

≤ w1(|I(z)|)
w2(|z|)

≤ C <∞.

But if we let φ(r) = w−1
1 ◦w2(r), for r > r0, then the last inequality above

with C = 1 is just

M(r, I) ≤ φ(r). (4.1)

Here we consider φ as an arbitrary increasing function mapping [0, 1] into

[0, 1] with φ(1) = 1.

Thus, for the remainder of this chapter we will consider the problem of

construction an inner function I which solves (4.1).

4.2 Blaschke products

In this section we construct a Blaschke product which satisfies (4.1).

Theorem 10. Let r0 be given 0 < r0 < 1 and let φ(r) be a continuous

increasing function with φ(1) = 1. Then there exists a Blashke product B(z)

such that

M(r, B) < φ(r)
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for r0 < r < 1.

Proof. Let {εn}∞1 be a monotonic decreasing sequence satisfying

i) εn → 0 as n→∞, ε1 < 1/2.

ii)
∑∞

n=1 εn <∞.

and define sequences {rn} and {Nn} by

a) φ(rn) = 1− εn.

b) rNn
n+1 < εn.

Now put

ψn(z) =
zNn + (1− 2εn)

1 + (1− 2εn)zNn
.

Then, for rn ≤ r ≤ rn+1,

ψn(r) ≤ ψn(rn+1),

by the maximum modulus principle, since M(r, ψn) = ψn(r).

Thus

ψn(r) ≤ (1− 2εn) + εn = 1− εn = φ(rn) ≤ φ(r).

We now let

B(z) =
∞∏
n=1

ψn(z),

then B is a Blaschke product, and for rn ≤ r ≤ rn+1,

M(r, B) = B(r) < ψn(r) ≤ φ(r)

for all r > φ−1(1− ε0) = r0.



64 CHAPTER 4. GROWTH OF INNER FUNCTIONS

Now, the Blaschke condition is satisfied since∑
(1− |zn|) =

∑
n

Nn(1− (1− 2εn)
1/Nn)

∼
∑

Nn

(
1−

(
1− 2εn

Nn

+O

(
ε2n
N2
n

)))
=

∑
2εn +O

(
ε2n
Nn

)
<∞.

Finally, r0 can be made as small as possible by considering zMB(z).

4.3 Singular Inner functions

In this final section we construct a Singular inner function which solves (4.1).

Theorem 11. Let r0 be given, 0 < r0 < 1 and let φ(r) be a continuous

increasing function with φ(1) = 1. Then there exists a singular inner function

S(z) such that

M(r, S) ≤ φ(r),

for r0 < r < 1.

Proof. Let εn be a sequence with εn ↓ 0 as n→∞ and

∞∑
n=1

εn <∞.

Define a sequence {rn} by

φ(rn) = e−
1
2
εn .

The function w =
1 + z

1− z
maps D onto the right half plane, {z: Re z > 0}

with w(0) = 1. Thus if r is sufficiently small,

Re
1 + z

1− z
>

1

2
for all z with |z| ≤ r.



4.3. SINGULAR INNER FUNCTIONS 65

Now define a sequence {Nn} so that

Re
1 + rNn

n+1

1− rNn
n+1

>
1

2

for |z| ≤ rn+1.

Set

ϕn(z) = exp

{
−εn

(
1 + zNn

1− zNn

)}
,

so that by the maximum modulus theorem, for rn ≤ r ≤ rn+1,

|ϕn(r)| ≤ |ϕn(rn+1)| < exp−1

2
εn ≤ ϕ(r),

and so

|ϕn(z)| ≤ φ(r) for rn ≤ |z| ≤ rn+1.

Set

S(z) =
∞∏
n=1

ϕn(z) = exp

{
−

∞∑
n=1

εn

(
1 + zNn

1− zNn

)}
and note that, because

∑
εn <∞, the series converges uniformly and abso-

lutely on every compact subset of D. Also

Re −
∞∑
n=1

εn

(
1 + zNn

1− zNn

)
≤ 0

in D, so that S(z) is either an inner function or S(z) ≡ 0. But

S(0) = exp

{
−

∞∑
n=1

εn

}
6= 0,

so S is an inner function.

Also

M(r, S) = S(r) ≤ φ(r)
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for all r sufficiently large. To arrange that S(r) < φ(r) for all r > r0, we just

replace S(z) by S(z)N for some large enough N .
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