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Difficulties in reproducing experimental
observations not only between different labo-
ratories but also within the same laboratory
have vexed the endocrine-disruptor (ED)
field in recent years. This has provoked an
unusually heated controversy in the field,
with claims of bias due to sources of research
funding (vom Saal and Hughes 2005). In a
reanalysis of the published data, Ashby et al.
(2004) identified variations in control
responses as a major factor explaining the
lack of experimental reproducibility.
Examples were presented where the between-
experiment variability of untreated controls
exceeded that seen in treatment groups. At
the same time, the effects observed in
exposed groups were often consistent from
experiment to experiment, even between dif-
ferent laboratories. What is perplexing to
many observers is that some laboratories
apparently failed to confirm endocrine
effects, even when purportedly the same
experimental protocol was used. To resolve
these problems, Ashby et al. (2004) sug-
gested researching the reasons behind con-
trol variability and proposed to set up a
historical database that could serve to com-
pare assay performance and test results. In
contrast, vom Saal and Welshons (2006)
and vom Saal and Hughes (2005) dismissed
these suggestions by pointing to a multitude
of factors that may influence the magnitude
of a response, including control responses.
They maintained that background variabil-
ity in control responses does not, in itself,
invalidate experimental observations, as long

as the experimental system remains sensitive to
positive control agents used for the effect in
question. To complicate matters further, there
are many examples in which researchers
attempted to replicate findings by others, with-
out paying attention to sources of systematic
error such as different animal strains or feeds
[for some recent examples, see Oehlmann et al.
(2006), Ohsako and Tohyama (2005), and
vom Saal and Hughes (2005)]. 

Although both of these viewpoints have
certain merits, they do not take sufficient
account of issues of statistical power in the
testing of ED chemicals (EDCs), nor do they
adequately confront the general problems
that exist in estimating low effects and low-
effect doses. In this article, we wish to place
the EDC low-dose discussion in the wider
context of quantitative approaches for low-
effect estimation, which are used in human
toxicology and environmental ecotoxicology,
and we will discuss their inherent problems.
We argue that satisfactory solutions to the
low-dose issue will have to go further than
analyzing positive or negative controls, as sug-
gested by Ashby et al. (2004) and vom Saal
and Welshons (2006). Claims of absence of
effects should include appropriate statistical
power calculations, and prospective power
evaluations embedded in the design stage of
the experiment (or of replication studies) are
to be encouraged. Such power evaluations
would trigger a badly needed discussion
about the choice of effect levels that are
judged to be of toxicologic relevance in the
context of endocrine disruption.

Materials and Methods

Concepts and terms in statistical hypothesis
testing. Statistical hypothesis testing operates
on the basis of the general scientific approach
of disproving unsatisfactory hypotheses and
proposing new, improved hypotheses that
must always be testable. The topic is usually
introduced within the framework of the
Neyman-Pearson approach, where it is pro-
posed that one of two hypotheses, the null
hypothesis and the alternative hypothesis, must
hold. The null hypothesis is assumed to be cor-
rect, and the goal of a statistical test is to reject
the null hypothesis in favor of the alternative
hypothesis. Applied to EDC testing, a typical
null hypothesis results when—under the con-
ditions tested—the response to the putative
EDC is equal to the background response in
unexposed control animals (or cells). In statis-
tical terminology, the aim is to reject the
notion that “all mean responses are equal” by
comparing the mean response of the control
group with that of one or more treatment
groups. It is important to realize that all test
decisions refer to means, and all generalizations
from these sample-based results to the popula-
tion level are only justified in terms of means.

If the null hypothesis is rejected because a
chemical shows ED effects, when in fact it does
not, a so-called type I error, or false positive,
has occurred. Scientists control the probability
of type I errors by choosing an appropriate sig-
nificance level (α, by convention at least 0.05).
Much less attention is paid to the probability
(β) of committing a type II error (false nega-
tive), which is equivalent to saying “chemical X
has no ED potential,” when in truth it does.
Power is the complement of the type II error
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rate (1 – β) and can be defined as the probabil-
ity that the experiment will detect a real differ-
ence between exposed subjects and controls. In
toxicology and risk assessment, the two most
well-known descriptors derived from hypothesis
testing are the lowest observed (adverse) effect
level [LO(A)EL] and the no observed (adverse)
effect level [NO(A)EL]. The LO(A)EL is the
lowest tested dose showing effects significantly
different from untreated controls, and the
NO(A)EL is the next lower tested dose.
Therefore, decisions about a NO(A)EL depend
heavily on the spacing of doses below the
LO(A)EL. If the lowest tested dose already
causes effects, a NOAEL, in the strict sense of
the word, cannot be established experimentally.
In such a situation, investigators may wish to
retest lower doses. Alternatively, a NOAEL can
be estimated by applying extrapolation factors
(e.g., as a dose 10 times below the LOAEL).

A key outcome of the ED low-dose peer
review under the auspices of the National
Toxicology Program (NTP 2001), was that
some EDCs exhibit nonmonotonic dose–
response relationships, where responses
increased as the doses were lowered, resulting
in U-shaped dose–response curves. It should
be noted that monotonicity is not an a priori
prerequisite for statistical testing methods.

Post hoc power analysis. We used data
from several low-dose studies performed by
Sharpe et al. (1995, 1998) and Ashby et al.
(1997, 2004) for statistical post hoc power
analyses. For power calculations, we used the
statistical methods employed by Sharpe et al.
and Ashby et al. in their articles. Exact power
computations for this test were performed as
described by O’Brien and Muller (1993). It
should be noted that in their studies, Sharpe
et al. (1995, 1998) and Ashby et al. (1997,
2004) did not adjust the individual error rates
α for multiplicity, nor did they consider litter
effects in the data analysis. In the present
study, we also used the dose–response data set
for effects of nonylphenol (NP) on vitello-
genin (VTG) induction in rainbow trout
(Thorpe et al. 2001) for reanalysis with two
different multiple hypothesis-testing methods,
the Dunnett test (Dunnett 1955) and the
Bartholomew test (Bretz and Hothorn 2003).

Results and Discussion

Reproducibility, biological variation, and sta-
tistical power. The problems reported in repro-
ducing some EDC effects might suggest that
there is something inherently “difficult” about
ED end points that renders them fragile to
independent confirmation. With the EDC
doses frequently investigated, many of the rele-
vant end points have a narrow dynamic range,
and it is not uncommon that the variation in
responses found at a given dose level already
covers a large part of the maximally possible
effect difference between controls and treated

groups [see Ashby et al. (2004) and vom Saal
and Welshons (2006) for examples]. These fea-
tures are likely to impact negatively on the
probability of detecting an effect if it is present,
and may contribute to difficulties in reproduc-
ing observations. This would also suggest that
there is nothing inherently specific about ED
end points and their reproducibility, rather
that the small magnitude of effects is a limiting
factor. However, this conjecture remains to be
examined.

In toxicology, with its focus on safety
assessments, reports of the absence of effects
pose a difficult dilemma: either the effect truly
did not occur, or the chosen experimental sys-
tem was inadequate to detect any responses.
Statistical power considerations are useful in
aiding rational decision making in such situa-
tions, but power analyses have rarely been
applied to the analysis of ED data.

Statistical power, defined as the likelihood
of detecting an effect if it is present, is influ-
enced by the sample size, the variance of the
effect studied, the difference between the
means of the two treatment groups, and the
type I error rate (α). Power usually increases
with sample size, and is higher when the effect
differences between treatment groups are large.
It decreases with high variance, small differ-
ences between treatment groups, and small
type I error rates. The rates for type I errors (α)
and type II errors (β) are inversely related: the
smaller the probability of one, the larger the
likelihood of the other. This latter point is of
particular relevance to the ED field: Researchers
tend to control type I error rates by adopting a
small α, without realizing that this may have a
detrimental effect on power by resulting in an
attendant increase in the type II error rate β.

Post hoc power analyses of selected EDC
studies. To illustrate this point, an often
quoted example (Ashby et al. 2004) for prob-
lems with reproducibility of ED effects is a
study of the effects of gestational exposure of
rats to octylphenol (OP) and butyl benzyl
phthalate (BBP) in which small but repeat-
able decreases of testis weight and sperm pro-
duction in Wistar rats were ascribed to these
chemicals (Sharpe et al. 1995). Motivated by
a failure to observe any of these effects with

BBP (Ashby et al. 1997), Sharpe et al. (1998)
communicated their experiences with a tem-
poral decline in body and testis weights of
control rats. These unexplained changes
(which coincided with a change in water sup-
ply) were of a magnitude comparable with the
most marked treatment effect in the original
study (Sharpe et al. 1995).

Table 1 shows a compilation of some of
the relevant observations (Sharpe et al. 1995,
1998). In the original study (Sharpe et al.
1995), all treatment effects reached statistical
significance (two-sided t-test, α < 0.05), and
the statistical power was sufficient to detect
changes in testes weights as a consequence of
gestational exposure to OP and BBP. During
the period when testes weights in unexposed
control animals were low, Sharpe et al. (1998)
carried out a repeat experiment with OP. Not
only did OP fail to induce a reduction in testis
weight, it paradoxically caused the opposite
effect by increasing testes weights by 7%
(Table 1). Judging by the customary signifi-
cance criterion of α = 0.05, the effect was not
statistically significant. However, because fewer
offspring were used than in the original studies
(Sharpe et al. 1995), the statistical power of
this repeat experiment was too low (0.61) to
detect an effect with reliability, if it was there.
A power of 0.6 is equivalent to finding an
effect 6 of 10 times, but missing it 4 of
10 times. Thus, the experimental design used
in the repeat study came dangerously close to a
50% chance of reaching the correct decision, if
the null hypothesis (OP has no effect on testis
weights) was false. Unfortunately, it would
have been more efficient, but just as accurate,
to flip a coin to make decisions about ED
effects of OP, rather than carrying out the
experiment. Had the same number of controls
and treated offspring been used in the original
study, power would have decreased from 0.83
to 0.34, with the likely consequence that
Sharpe et al. (1995) would have overlooked the
reported OP effects altogether. Figure 1 shows
how power increases as mean testis weights
decrease for three of Sharpe et al’s experiments.
This plot allows us to determine what decrease
in testis weight would be detectable with vari-
ous differing degrees of certainty. Using a
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Table 1. Post hoc power analysis of the effects of OP, BBP, and DES on testes weights in rats.

Treatment No. Absolute testis weight (mg ± SD) Powera

Control 26 2,014 ± 155
OP (1 mg/L) 27 1,899 ± 123 0.833
BBP (1 mg/L) 35 1,809 ± 126 1
DES (0.1 mg/L) 26 1,750 ± 180 1

Repeat study during the period of low control weights
Control 7 1,824 ± 79
OP (1 mg/L) 15 1,950 ± 173 0.61

Repeat studies after the change in control weights normalized
Control 12 2,050 ± 84
DES (0.05 mg/L) 10 1,903 ± 146 0.745

Adapted from Sharpe et al. (1995, 1998).
aAssuming normally distributed testes weights, α = 0.05 and a two-tailed t-test.



power of 0.8 as the statistical decision crite-
rion, it was possible to detect reduced testis
weights of at least 1,904 mg for 1 mg/L OP,
1,908 mg for 1 mg/L BBP and 1,882 mg for
0.1 mg/L diethylstilbestrol (DES) as statisti-
cally significant.

After control organ weights had normal-
ized, Sharpe et al. (1998) carried out a repeat
study with DES. Probably because of the lower
dose of 50 µg/L in drinking water, the reduc-
tion in absolute testis weight was smaller this
time, albeit still statistically significant. The
power of this experiment (0.745) was suffi-
ciently large. Although Sharpe et al. seemed to
be concerned about between-experiment varia-
tions, it can be argued that the outcome of the
DES repeat study agreed reasonably well with
the original experiment, considering all of the
potential sources of experimental error. Thus,
one of the reasons for the perceived inconsis-
tencies in experimental outcomes is statistical
power and not, as Sharpe et al. (1998) sug-
gested, an inherent difficulty in reproducing
ED data in different laboratories or between
different studies.

The above analysis fails to explain why
Ashby et al. (1997) did not observe an effect
of BBP on testis weights of the male offspring
of exposed pregnant rats. Because different
strain of rats was used (AP rats, not the
Wistar strain employed by Sharpe et al.), and
the rats were examined at a later stage [post-
natal day (PND) 90 rather than PND20],
Ashby et al. themselves prefer to class their
experiment as a failure to confirm Sharpe’s
observations (Sharpe et al. 1995), rather than
a refutation of Sharpe et al.’s findings. This is
prudent, given that the protocol adopted by
Ashby et al. (1997) introduced the potential
for systematic differences between the two

studies, thus violating a precondition of
hypothesis testing within the Neyman-
Pearson framework, namely, that under the
conditions tested all mean responses are equal.
Nonetheless, the study by Ashby et al. (1997)
was considerably larger than that by Sharpe
et al. (1995). The control group included 109
pups, and the BBP-treated group contained
105 pups. At PND90, the control testes
weights (mean ± SD) were 1.66 ± 0.13 g,
whereas the same measures in the BBP-
exposed group were 1.68 ± 0.12 g. Setting α
at 0.05 and assuming normally distributed
testes weights [as done by Ashby et al. (1997)],
the statistical power of this experiment is only
0.213 for detecting an effect difference of
0.02 g as statistically significant. With the
reported effect differences between controls
and BBP-treated groups, it would have been
necessary to use unsustainably large sample
sizes (639 controls and 589 BBP treated) to
reach a power of 0.8, a value that is often
deemed appropriate. Conversely, the sample
sizes chosen by Ashby et al. (1997) would have
been sufficient to demonstrate a 3% change in
testes weights with a power of 0.8.

This example highlights several important
issues. First, the demand that a small type I
error (α) is a prerequisite for claims that an
effect is present should be matched by an
equal requirement for small type II errors (β)
(and conversely, high power) for declarations

of absence of effects. Strategies for balancing
type I and type II errors in toxicologic studies
have been discussed (Muller et al. 1984;
Muller and Benignus 1992). Second, the
importance of making distinctions between
statistical significance and toxicologic rele-
vance in interpreting the outcome of ED stud-
ies becomes pressing. Power analyses can help
in reaching decisions about the sensitivity of
experimental studies, but this should not be
taken exclusively in the sense of varying sam-
ple size. Another important determinant of
power is the difference in effect size between
treatment groups. These differences should be
of toxicologic relevance rather than trivially
small. For example, before devoting massive
resources to examining ever-smaller effects, a
decision should be made whether, for exam-
ple, a 3% decrease in testes weights should be
considered trivially small or of relevance for
risk assessment.

Minimum significant differences. Another
way of using power analyses is to establish
effect differences that can be detected with
high probability as statistically significant, and
to analyze how this varies with changes in sam-
ple size and variance. Such effect differences are
termed “minimum significant difference”
(MSD) and characterize the statistical detec-
tion limit of a specific experimental setup. As
an example to illustrate problems with varia-
tions in control animals, Ashby et al. (2004)
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Figure 2. MSD for prostate weight as a function of the number of rats per dose group for three 2 µg/kg
finasteride treatments carried out in three indpendent experiments reported by Ashby et al. (2004) in their
Table 1. Experimentally observed effect differences are shown as data points. The inset shows the MSD
as a function of the pooled SD for a balanced design of six animals per group.
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reported low-dose experiments of the effects of
finasteride in the Hershberger assay; these data
present an opportunity to characterize MSDs
as a function of the number of animals per
dose group.

Finasteride inhibits the conversion of
testosterone to dihydrotestosterone and is
able to disrupt male sexual development. In
combination with testosterone propionate, it
also shows antiandrogenic effects in the
Hershberger assay; Ashby et al. (2004) aimed
to establish a no observed effect level (NOEL)
for this end point. They found a statistically
significant increase in prostate weights at a
dosage of 2 µg/kg finasteride, suggesting an
androgenic (and not an antiandrogenic) effect,
with an inverted U-shaped dose–response
curve. In one repeat study, a statistically non-
significant increase was observed at this dose,
whereas a third experiment failed to show the
effect. Pointing to a high variability in control
prostate weights, Ashby et al. concluded from
these data that the increase in prostate weights
observed with 2 µg/kg finasteride was proba-
bly a chance finding and that finasteride did
not show a low-dose effect because the effect
was not reproducible.

For each of the three finasteride low-dose
experiments carried out by Ashby et al. (2004),
Figure 2 shows how the MSD in prostate
weights decreases as the number of animals per
dose group increases (two-sided t-test,
α < 0.05). The experimentally observed effect
differences are also shown. For the two repeat
studies, the observed differences in prostate
weight were smaller than the statistical detec-
tion limit afforded by the six animals per dose
group that were used in these experiments. In
the first study, the observed effect was just
above the MSD. The inset in Figure 2 shows
the dependence of the MSD on effect-data
variation, assuming a balanced design with six
rats per dose. These considerations support the
conclusion drawn by Ashby et al. (2004) that
the weight increase observed in the first study
was a chance finding.

However, this conclusion needs to be tem-
pered in light of the power analysis shown in
Figure 2; within the parameters of the chosen
experimental design, the effect was probably a
chance finding. With a larger sample size, the
observed weight differences would have been
resolvable as statistically significant if they
were real. The power was simply not sufficient
to detect smaller weight differences with confi-
dence. Thus, it was this lack of power and not
the variation in control prostate weights
per se, that has prevented Ashby et al. from
resolving conclusively the finasteride low-dose
phenomenon. Without a doubt, the high vari-
ation in control values had a negative influ-
ence on the power of the experiment, but this
could have been compensated for by increas-
ing samples size, up to a limit.

Dose–response data, sample size, statistical
test methods, and NOELs. With given effect
variance and specified type I and II error
rates, the MSD decreases as the sample size
increases, with an attendant increase in the
sensitivity of the entire experimental set up
(Figure 2). However, in practice the MSD
never reaches zero. This implies that even
with very large sample sizes there will always
be an effect difference larger than zero
between treated groups and controls that can-
not be resolved as statistically significant. This
insight has important implications for recog-
nizing the limitations of hypothesis testing in
toxicology and of NO(A)ELs, estimates
derived from hypothesis testing and one of
the most widely used measures of low effects
in the ED field and in toxicology.

As previously defined, the NO(A)EL is
derived from a LO(A)EL, which is the lowest
tested dose that shows effects significantly dif-
ferent from untreated controls, and the
NO(A)EL is simply the next lower tested dose.
Probably because of its suggestive wording, the
term NO(A)EL [described by Moore and Caux
(1997) as “one of the most misunderstood
notions in ecotoxicology”] is usually taken to
imply an absence of effects, as was recently suc-
cinctly expressed by Ashby et al. (2004): “If the
statistical methods used are appropriate, the
absence of significance should indicate the
absence of a chemically induced effect.”

We used the dose–response data on the
effects of NP on VTG induction in rainbow

trout by Thorpe et al. (2001) to analyze how
estimates of no observed effect concentrations
(NOECs) can be influenced by sample size,
the statistical method employed for carrying
out the significance test, and the chosen signif-
icance level α (Figure 3). The original experi-
ment was carried out with 12 fish per
treatment group. The mean level of VTG in
unexposed fish was 412 ng/mL blood serum.
With α and β set at 0.05 and 0.1, respectively,
and by using Dunnett’s test (one-sided), the
concentration of NP that yielded an effect sta-
tistically significantly different from controls
(LOEC; lowest observed effect concentration)
can be estimated as 10.2 µg/L. Consequently,
the next lower tested concentration, which in
this case was 6.09 µg/L, is designated as the
NOEC (Figure 3A). Under these experimen-
tal conditions, the MSD is 2,510 ng VTG/mL
blood serum, which is equivalent to saying
that any VTG level < 2,510 ng/mL could not
be statistically significant.

Figure 3B represents a hypothetical case in
which we examined the influence of sample
size on NOEC estimates by simply doubling
the original control data to yield 24 untreated
fish instead of 12. In this situation, the statisti-
cal power would have been sufficient to detect
an NP concentration of 6.09 µg/L as statisti-
cally significantly different from controls. This
concentration was the NOEC estimated from
the original data, but the “new” NOEC has
now decreased to the next lower tested con-
centration, 3.57 µg/L. Conversely, the MSD
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Figure 3. NOEC estimations for the dose–response data of the effects of NP on VTG induction in rainbow
trout (Thorpe et al. 2001). (A) The multiple Dunnett test (one-sided, α = 0.05). (B) Same method as in (A), but
with twice the number of controls. (C) Bartholomew test (one-sided, α = 0.05). (D) One-sided multiple Dunnett
test, but with α = 0.07.
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has decreased from 2,510 ng VTG/mL blood
serum to 1,260 ng/mL.

The choice of a methodology for testing
statistical significance also has a strong effect
on what is estimated as the LOEC. There are
many statistical procedures for these purposes,
and they differ in their assumptions and objec-
tives and in the way they protect against type I
and type II errors. For example, the frequently
used Dunnett’s test is applicable to normally
(or log-normally) distributed data without
making any assumptions about the underlying
dose–response relationship. It controls experi-
ment-wide error rates by correcting for multi-
ple comparisons and is therefore more
appropriate than multiple applications of the
t-test, which would result in unacceptably
high type I error rates (false positives). More
advanced trend and contrast tests also main-
tain the global error rate but are more power-
ful in that they include additional assumptions
about the true unknown dose–response rela-
tionship (Bretz and Hothorn 2003). For VTG
induction in fish, a monotonic trend is plausi-
ble, at least for nontoxic concentration ranges;
therefore, the application of the Bartholomew
test (Bretz and Hothorn 2003) to Thorpe
et al.’s original data with 12 fish per group
(Thorpe et al. 2001) leads to a different
LOEC estimate. Instead of 10.2 µg/L, it is
now 3.57 µg/L, and the MSD has changed to
892 ng VTG/mL blood serum (Figure 3C).

Finally, a relatively small but arbitrary
change of type I error rate α from the conven-
tional 0.05 to 0.07 is sufficient to decrease the
original LOEC of 10.2 µg/L to 6.09 µg/L,
with an attendant decrease of MSD from
2,510 ng VTG/mL blood serum to 1,514 ng/L
(Figure 3D). It is also evident that the spacing
of tested concentrations would have affected
the numerical value of an NOEC. Had there
been more concentrations tested < 10.2 µg/L, a
value > 6.09 µg/L would have been designated
as the NOEC. Conversely, omission of the
6.09 µg/L treatment group would have low-
ered the NOEC to 3.57 µg/L.

These examples demonstrate that NOECs
[and by implication also NO(A)ELs] are sensi-
tive to the specific features of the chosen
experimental design and the choices of statisti-
cal methods and significance criteria. They are
not fixed values; thus, when there is no statisti-
cally significant difference in response between
treated groups and controls, it can only be
concluded that the magnitude of effect was
below the detection limit of the particular
experimental arrangement used. In risk com-
munication terms, this is a weak statement.

Taking this analysis to its logical conclu-
sion, hypothesis testing leads to an irresolvable
dilemma. Below the detection limit of a spe-
cific experimental system, the presence of
effects can neither be proven nor ruled out.
We suggest that this, rather than bias due to

sources of research funding (vom Saal and
Welshons 2006), is at the root of the ED
“low-dose” impasse.

Why worry about small effects? The issue
of defining effect thresholds for EDCs. The fact
that empirical data never allow conclusions of
zero effects may, in itself, not be problematic.
This is because, from a biological point of
view, an effect may be irrelevant even though it
is not strictly zero (Slob 1999). Biological sys-
tems are capable of correcting certain distur-
bances provoked by exposure to chemicals;
however, the challenge lies in establishing a
relevant effect size that defines the borderline
between effect and no effect in a biological or
toxicologic sense, and not a statistical sense.
The issue relates back to the thorny problem of
delineating adverse effects from harmless ones
and is linked to homeostasis and repair, as well
as to the question of how different ED end
points relate to one another. For example,
Sharpe et al. (1995) attributed decreases in
testis weight resulting from gestational expo-
sure to OP or BBP to reductions in the num-
ber of Sertoli cells. It would aid the definition
of a critical effect size in reduced testis weight if
it was known how Sertoli cell number relates
to testis weight. Slob (1999) rightly lamented
the fact that the topic of establishing relevant
or critical effect levels is notoriously neglected,
although it should be at the core of toxicology.
In the ED field, it has not even appeared on
the horizon. In any case, hypothesis-testing
procedures could be put on a better footing if
decisions about a biological or toxicologic
effect size of relevance would form the starting
point of power analyses. Power considerations
could then reveal which resources are necessary
to demonstrate such effects.

Approaches to defining effects of relevance.
Several approaches exist to defining an effect of
relevance quantitatively. In criterion-referenced
evaluations, the importance of an effect is
judged in relation to a clear biological or clini-
cal criterion. An example relevant to ED would
be the process involved in defining a critical
sperm count below which fertility experts rec-
ommend assisted fertilization. This was based
on information about correlations between
sperm count and fertilization success in human
populations. The criterion used was the point
below which fertilization rates began to
decrease with lower sperm counts (Joergensen
et al. 2006).

Often, straightforward biological criteria
are not available, and in these situations effects
of relevance are defined by norm-referenced
evaluations. This involves establishing a criti-
cal effect by considering the variance of the
effect parameter in the population under
investigation. There are numerous examples
that follow this approach. Cutoff points for
elevated cholesterol levels, low birth weights,
or late onset of walking in children are all

derived by determining certain percentiles—
often the 95th percentile—of cumulative pop-
ulation frequency distributions of the selected
effect variable. In mutagenicity testing, critical
mutation frequencies are defined in terms of
multiples of SDs of background mutation
rates (Venitt and Parry 1984).

The task of deriving rational criteria for
the choice of effect sizes of relevance probably
represents one of the biggest challenges in
toxicology and the health sciences. For end
points relating to ED in human and eco-
toxicology, this thinking has not even begun
and progress in this area is likely to be slow.
Until well-founded criteria emerge, effect
sizes may have to be defined arbitrarily (e.g.,
as 5% or 10% effect levels), as is common
practice in the estimation of effect doses by
using regression-based methods. 

Estimating low-effect doses: regression-
based approaches. The weaknesses of hypothe-
sis-testing methods in safety assessment have
motivated the search for better procedures in
estimating low effects and effect doses, and
regression model-based approaches are increas-
ingly promoted as viable alternatives. The
rationale is to carry out dose–response analyses
to construct a model description for effect data.
The model is then used to estimate low-effect
doses by either interpolation or extrapolation.
These doses are called benchmark doses
(BMD) [Crump 1995; U.S. Environmental
Protection Agency (EPA) 1995], and they are
defined in relation to an effect level that is criti-
cal for the end point under investigation. If
biological or norm-referenced criteria are not
available, the critical level is often set arbitrarily
as 5% or 10% of a maximal effect. The lower
95% confidence limit of the BMD is usually
referred to as the benchmark dose limit
(BMDL) and reflects the degree of uncertainty
associated with the data. Poor data quality will
lead to a lower BMDL. Conversely, better
data, with their reduced degree of uncertainty,
are “rewarded” with higher BMDLs. This is
very different from hypothesis-testing proce-
dures in which poor data quality usually results
in higher NO(A)ELs. For instance, for the
dose–response data shown in Figure 3, a corre-
sponding regression fit would produce the
same BMD estimate in all cases. In Figure 3B,
the statistical confidence interval of the BMD
would be slightly smaller because more control
data are available. Gaylor et al. (1998) has sug-
gested that, for all of these reasons, the BMDL
should replace the NO(A)ELs as a basis for
establishing acceptable human exposure limits.

Regression-based approaches: a solution for
the low-dose dilemma? Whereas the pair-wise
comparisons carried out in hypothesis-testing
procedures cannot utilize the information
available from other dose groups, the strength
of regression methods lies in the fact that the
statistical power contained in the entirety of
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experimental observations is accessible for low-
effect dose estimations. However, adequate
characterizations of dose–response relation-
ships by mathematical modeling have to rely
on the use of a sufficient number of dose
groups. Concerns that this might lead to an
increase in the total number of animals are
unfounded if sound design strategies are used
(Woutersen et al. 2001). In any case, meaning-
ful application of regression-based techniques
in the ED field would require a drastic change
in current testing practice. The overwhelming
majority of EDC low-dose studies are not
usable for regression analysis because often
only one dose (and in exceptional cases two)
was tested. In most published EDC studies,
the minimum data requirements laid down in
technical testing guidelines for NO(A)EL esti-
mations are not fulfilled [e.g., Organisation for
Economic Co-operation and Development
(OECD) guideline 416 (OECD 2001) recom-
mends a minimum of three doses in two-gen-
eration reproduction toxicity studies]. A
regression analyses usually requires at least four
different doses for nonlinear monotonic dose–
response relationships and even more for more
complex shapes (e.g., nonmonotonicity).

By way of extrapolation, regression model-
ing also allows predictions about effects in dose
ranges that were not actually tested. However,
the validity of low-dose estimates derived from
modeling techniques is highly dependent on
the correct choice of a regression model (Bailer
et al. 2005; Moore and Caux 1997; Sand et al.
2002; Scholze et al. 2001). Unfortunately,
a priori criteria for choosing a general model
for low-dose modeling do not exist, and it is
usually not an option to use knowledge about
the mode of action of a chemical as a selection
criterion for a suitable regression model. In
most cases, there is no alternative to choosing
a best-fitting model from a collection of
regression models on the basis of goodness-of-
fit criteria (Scholze et al. 2001; Slob 2001).

Some EDCs exhibit nonmonotonic dose–
response curves with inverted U shapes; these
can arise when there are dose-dependent
changes in the underlying mechanisms
(Almstrup et al. 2002). In principle, regression
modeling can cope with nonmonotonic dose–
response patterns, and appropriate parametric
models are available (van Ewijk and Hoekstra
1993). They can be characterized as an expan-
sion of monotonic models by including addi-
tional model parameters which allow the
estimation of U shapes in the lower part of the
curve. However, application of such models to
effects of EDs requires testing of a larger num-
ber of dose levels than is current practice.

Because the mathematical features of most
regression models mean that zero effects are
approached asymptotically without the regres-
sion line ever crossing the dose axis, the esti-
mation of any possible effect, even down to

infinitesimally small values, is feasible in prin-
ciple. However, because of the lack of power,
the models themselves cannot give any indica-
tions as to when estimates become unreliable.
Statisticians have attempted to overcome this
problem by including an additional model
parameter that allows the estimation of a
mathematical dose threshold associated with a
zero response (Cox 1987; Hunt and Bowman
2006; Schwartz et al. 1995). However, con-
siderable confusion has arisen because these
modeling outcomes are often interpreted as
toxicologic thresholds, but not as what they
really are, that is, descriptive model parame-
ters with little predictive power, strongly
dependent on the selected model and estima-
tion method. Even with the same set of data,
widely differing threshold estimates can be
obtained (Slob 1999).

Again, this analysis shows that just like
hypothesis testing, regression modeling alone
cannot resolve the problems associated with
assessing effects of a magnitude below the sta-
tistical detection limit (power) of the experi-
ment. The chosen critical effect size should be
of sufficient magnitude to allow accurate and
precise estimations of BMDs.

Low-dose estimations using multiple
comparisons and regression modeling: an inte-
grated approach. With the recognition that
doses associated with zero effects cannot be
determined empirically, the aim of low-dose
EDC testing can only be to derive estimates of
doses that correspond to a specific effect mag-
nitude. Thus, the starting point of low-dose
testing strategies should be a decision about
the effect size a low-dose experiment should be
able to demonstrate. Ideally, this decision

should be based on biological criteria, but in
the absence of viable biological criteria, effect
magnitudes can be set arbitrarily.

Only after such a choice has been made
can the strengths of hypothesis-testing proce-
dures (the ability to test certain doses with a
large number of replicates) and those of regres-
sion-based approaches (the ability to assess
effect trends) be exploited productively for
low-dose testing. It would therefore be desir-
able to develop a framework for an integrated
approach that combines the strengths of multi-
ple comparison techniques with those of
regression model-based techniques for the
analysis of dose–response data. The key ele-
ments of such an approach are outlined in
Figure 4. The proposed integrated procedure
aims a) to identify the minimum effective dose
that is statistically significant and that produces
an effect that is at least of the relevant effect
size, and b) if reliable, to estimate the corre-
sponding dose for this effect size (BMD). First,
a power analysis is performed with the aim of
assessing whether the suggested experimental
design is of sufficient sensitivity to demonstrate
effect sizes of relevance. This can be achieved
by comparing the MSD, which is achievable
with the chosen experimental design, with the
magnitude of the effect of relevance. In gen-
eral, only data sets should be used where type I
and type II errors are controlled and thus
where sufficient power is guaranteed. As a
guide, α and β can be set at 0.05 and 0.2,
respectively. Estimates of MSD can be made
on the basis of multiple historical studies and
should be used as a quality control tool. This
would answer the concerns of Ashby et al.
(2004) about control variability.
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Figure 4. Integrated approach for the estimation of effect doses. 
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Before either hypothesis-testing procedures
or regression-modeling techniques are pursued,
we suggest so-called multiple contrast tests be
carried out (Branson et al. 2003; Bretz et al.
2005) in order to guarantee that at least one
tested dose has produced an effect that is signif-
icantly different from the controls while pre-
serving the global error rate at the prespecified
α. These tests make certain assumptions about
the underlying shape of a dose–response
relationship, which is controlled by the selected
contrast (Bretz and Hothorn 2001; Hothorn
and Bretz 2000; Neuhaeuser et al. 2000).
Because the shape of the underlying dose–
response curve is unknown a priori, as many
contrasts as possible from a pool of a priori
selected candidate parametric models are
selected in order to enable informed choices of
the most significant one (which is automatically
the most powerful). In this way, the determina-
tion of the best contrast for each model is based
on the dose regime but not on the effect data. If
none of the contrast tests are significant, the
null hypothesis cannot be rejected; this indi-
cates that none of the tested doses induced an
effect that is statistically significantly different
from the MSD or the effect of relevance.
Consequently, no further steps toward identify-
ing low-effect doses can be taken.

If, however, the contrast tests signal signif-
icance, it is possible to determine the smallest
tested dose that produces a response signifi-
cantly above the relevant effect size. The most
significant contrast is the one most likely to
represent the underlying dose–response curve
and thus can yield a sound criterion for decid-
ing on a suitable candidate regression model
for dose–response analyses (Branson et al.
2003; Bretz et al. 2005). At this point, the
estimation of low doses can be pursued either
by hypothesis testing or by regression analysis.
Compared with current practice in the ED
field, this procedure has the advantage of
transparency and clarity; low-dose estimates
are made with clear reference to the statistical
power of the experiment.

Conclusions

There will always be examples in which cer-
tain observations cannot be reproduced by
other laboratories. As pointed out by Ashby
et al. (2004) and vom Saal et al. (2005), some
ED effects are specific to the particular strains
of animals used for testing, and such specifici-
ties are distinct from the failure to reproduce
observations when purportedly the same
experimental conditions are applied. If steps
are taken to ensure that the prerequisite of
similarity in experimental conditions is met,
we suggest that rigorous statistical power eval-
uations, fully integrated in the design stage of

the experiment, are likely to avoid such situa-
tions in the future. 

However, there are situations where
power considerations are of limited value.
Traditionally, all statistical approaches are
based on the mean effect concept, which
focuses on the middle of the distribution of
observed individual responses. It is crucial to
consider to what extent this leads to overlook-
ing sensitive subpopulations, which would be
found “in the tails” of frequency distributions
describing responsiveness to endocrine action.

Nevertheless, power analyses are a valuable
tool in recognizing the limitations of specific
experimental designs in current low-dose
testing. The application of power analyses is
likely to promote a badly needed discussion
about the magnitude of ED effects that should
be considered of toxicologic relevance. 
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